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ABSTRACT 

Electric Vehicles (EVs) are energy-efficient and often presented as a zero-emission transport mode to 

achieve longer-term decarbonization visions in the transport sector. The implementation of a sustainable 

transportation environment through EV utilization, however, requires the addressing of certain cost and 

environmental concerns, before its full potential can be realized. These include EVs’ limited driving range 

and issues related to battery charging. Taxis are visible and thus EV use in taxi service can bring attention 

in urban life to a commitment towards sustainability in the public's opinion. For this reason, this study 

proposes an integrated approach incorporating EV operation and an appropriate shared-ride conceptual 

design for taxi service. Despite several obvious societal and environmental benefits, it is however true 

that EV use entails certain vehicle productivity loss due to the time lost in charging. As this could lead to 

a deterioration in system performance, and thus in demand as well, it is important to look at whether the 

expected performance loss from the passengers’ and systems’ standpoint can be offset with ingenuity in 

operational design. A combination of shared-taxi and EV fleet is proposed for this purpose, as it can be 

competitive in passenger travel and wait times with conventional non-EV taxis. Such systems are 

modeled and analyzed using simulation in this paper, under routing algorithms modified from previous 

research. More specifically, EV charging schemes for taxi service implementation were proposed and the 

effects of the limited driving range and battery charging details were examined from a system 

performance viewpoint. First, this study shows illustrative results on the impact of the EV taxi fleet’s 

vehicle charging on system performance. Then, real-time shared-taxi operation schemes are developed 

and applied to maximize the system efficiency with such a fleet. Some limitations and future research 

agenda have also been discussed. 

 

KEY WORDS: Electric Vehicles (EV), EV feet charging schemes, EV charging demands, real-time 

shared-ride, shared-taxi algorithms, insertion heuristics, taxi simulation. 

 

 

1. INTRODUCTION 

Reducing carbon-based vehicle emissions and greenhouse gases (GHG) has been a critical issue due to 

its serious impact on environment and human health in my urban areas. There have been two major 

approaches that emerged in sustainable transportation research, (1) developing energy efficient 

technologies and (2) adopting efficient transportation operations. As part of the energy strategy, auto 
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manufacturers are producing Alternative-Fuel Vehicles (AFV) such as Hybrid Vehicles (HV), Plug-in 

Hybrid Electric Vehicles (PHEV), Electric Vehicles (EV), and Fuel Cell Vehicles (FCV) that have zero or 

significantly reduced vehicle emissions. There is growing interest in EVs because they are also 

considered to be Zero Emission Vehicles (ZEV) as they use no internal combustion engines (ICE), and 

are powered by electric motors from battery packs without any CO and NOx emissions. Nevertheless, 

other concerns limit EV utilization due to the higher vehicle-prices and the cost for the charging 

infrastructure, along with the shorter driving range compared to gasoline vehicles and the lost 

productivity if vehicles are idle due to battery-charging. Even if EVs are not yet considered ready to 

replace ICE vehicles on a large scale, they can certainly be considered as a viable option for many fleet 

applications that envisage the use of energy-efficient vehicles and require fewer resources to operate than 

even personal automobiles (Barth and Todd 2001; Better Place
TM

 2011; Blosseville et al. 2000).  

As the traditional transportation systems’ designs may render the above limitations of EVs prohibitive, 

it becomes important to consider if newer paradigms of passenger transport can help offset it. For instance, 

newer designs of sustainable Demand Responsive Transit (DRT) have been introduced in recent years 

because the provision of traditional public transport services for medium or lower demands has always 

been criticized for its operational inefficiency (Dial 1995; Cortés and Jayakrishnan 2002; Quadrifoglio 

2007). However, it has been known that the newer conceptual designs are not yet fully refined for 

practical service in the real world. At the same time there are also commercial enterprise proving that 

newer concepts can indeed be introduced. For instance, Zimride and Avego are services recently initiated 

in the U.S. in the private sector, which facilitate ridesharing by simply matching drivers and riders in real-

time for passenger travel in urban areas. These services utilize vehicles operated by regular car owners 

and not commercial drivers. However, those private ridesharing services could raise potential concerns 

about passenger insurance and fare-collection systems since the services use private vehicles operated by 

private drivers. In addition, a shared ride on any given vehicle can be offered only when that private 

vehicle is moving, and not all the time, which raises operational issues about the nature and composition 

of available vehicles at any point in time. Real-time shared-taxi can be a good alternative that overcomes 

these issues and maximizes the efficiency of conventional taxi services by employing a shared-ride 

concept. Shared-taxi can be characterized as an on-demand ride-share service operated by an online 

dispatch center such that the system is capable of taking service requests from individual customers in 

real-time and establishing service vehicle schedules.  

There have been studies in the recent past on EV deployment, with regard to environmental impacts, 

effects of driver behavior, site selection for charging stations, and smart grid solutions. Unfortunately, 

there has not been much focus on the potential impact of EV fleet characteristics on the performance of 

fleet operations and the charging infrastructure, and furthermore, there has been no consideration of 

flexible transportation solutions that may be particularly applicable for even larger use of EVs than the 

limited fleet contexts discussed so far. A simulation study conducted by Jung and Jayakrishnan (2012) is 

a good example of larger-scale EV fleet application for DRT. The study assumed an innovative 

transportation alternative called High Coverage Point-to-Point Transit (HCPPT), which involves a 

sufficient number of deployed small vehicles for point-to-point passenger travel services, with associated 

hub terminals for passenger transfers (Cortés and Jayakrishnan 2002). However, that study mainly 

focused on the HCPPT design and operation rather than on investigating the impact of vehicle-charging. 

In this study, we consider an EV charging scheme for taxi service and its impact on system performance 

of taxi services considered as a potential EV fleet application.  
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There are some reasons to study shared-taxis for EV use before other potential newer passenger 

transport concepts. First, taxi is certainly the most popular on-demand dial-a-ride system in many urban 

areas of the world. The next reason is that the typically-short taxi trips within smaller areas are 

particularly suitable when EV driving range is an issue. Finally, taxis are known to be no less polluting 

than private autos because of lesser average number of riders than even private vehicles, which in turn is 

caused by substantial driving without passengers.  It is indeed easier, however, to improve this using 

better ridesharing, unlike with private auto use. Apart from the cost of initial investment, utilizing EVs for 

taxi may prove to be an ideal application in terms of reducing emissions and fuel costs. 

This study first examines the expected inefficiency of EVs when introduced in conventional taxi 

services. The paper then proposes an EV-based shared-taxi strategy that allows ride-sharing to improve 

the system performance. The main objectives of this paper are to model a case of a large fleet of vehicles 

providing shared-ride in a real-time demand responsive manner, and to discuss the specific issues that 

affect the feasibility of the implementation of EV fleets for taxi service. The discussion is divided into 

two main topics: real-time shared-taxi service and EV taxi charge-replenishing schemes. For shared-taxi 

operation, a brief discussion of the background on the shared-ride concept is also given first. In the 

subsequent section, we propose an EV charging scheme for taxi service. Then, detailed simulation 

assumptions and scenarios are introduced. Finally, we discuss the simulation results in terms of system 

performance, quality of service and recharging demands. 

 

2. THE EV SHARED-TAXI CONCEPT 

2.1. Shared-taxi algorithm 

In many urban areas, real-time taxi dispatching offers better services in terms of shorter wait times but 

it is possible to maximize its efficiency via the use of shared rides. There are recent successes in 

implementing real-time ridesharing as well, as mentioned above. These services are typically operated by 

online dispatch center algorithms with the help of communication technologies and geo-location services 

utilizing GPS (Global Positioning System) and digital maps. Developing advanced vehicle dispatch 

algorithms to maximize occupancy and minimize travel times in real-time then becomes important. An 

advanced shared-taxi service is capable of taking service requests from individual customers travel 

demands and establishing subsequent vehicle schedules that combine individual rides. Such services are 

differentiated from conventional carpooling services by Cervero (1997): (1) Vehicles are operated by taxi 

drivers; (2) Vehicle pickup schedules are assigned dynamically to minimize passenger waiting time and 

in-vehicle travel time; and (3) Vehicle operations are scheduled and controlled by the central dispatch 

system. In recent years,  a few studies have addressed the design of dynamic taxi-dispatch scenarios 

(Seow et al. 2010; Tao 2007), and various real-time shared-taxi dispatch algorithms have been proposed 

based on advanced optimization techniques such as Insertion Heuristics, Genetic Network Programming, 

and Hybrid Simulated Annealing (Lee et al. 2005; Meng et al. 2010; Jung et al. 2013). 

In a typical real-time taxi dispatch system, when a new request is identified by system operator, the 

service request is delivered to the system queue where each customer is labeled with time windows and 

locations of trip origin and destination. Meanwhile, the dispatch algorithm takes a service request from 

the queue based on a first-come-first-served (FCFS) policy and finds an available taxi for the pickup 

request within the time windows. If there is no available taxi to meet the pickup and delivery time 
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windows, the dispatch system can reject the request. Once a vehicle is assigned with the updated schedule, 

the most natural scheme is for the vehicle to use the shortest (fastest) path to the pickup location or drop-

off location based on the real-time traffic information provided by the dispatch system. Since customer 

requests are incoming in real-time, the dispatch algorithm should be able to optimize the system 

performance without incurring prohibitively high computation times. 

For a shared-ride taxi service such as we propose here, the dispatch algorithm needs to find not only 

the best vehicle among candidates, but also the optimal route with the newly updated schedules that avoid 

the violation of time windows of previously-assigned and new passengers as well as the vehicle capacity 

constraints. This study involves two types of time windows, which are based on maximum waiting times 

and maximum detour times. Note that the first constraint is necessary because trip requests can be 

rejected by service provides due to the number of vehicles being limited. The constraint for maximum 

wait time prevents the indefinite deferment of unassigned passengers. In other words, once a trip request 

is accepted, the system guaranties vehicle arrival in a pre-set amount of time. The second constraint is 

self-explanatory, in that a maximum detour time prevents excessive detours caused by too many 

passengers being assigned on a vehicle trip.  

The real-time shared-taxi problem in this study can be defined as a continuous many-to-many vehicle 

routing problem. An algorithm based on an Insertion Heuristic (IS) was recently proposed by Jung et al. 

(2013) for such a problem. The insertion heuristic starts comparing all vehicles to find a best vehicle to 

minimize both passenger travel time and waiting time. However, the algorithm results in computational 

inefficiency when both the service area and the fleet size are large. As a notable improvement, in this 

paper we propose a two-stage algorithm, which is shown in Figure 1. First, each passenger trip is 

identified by its origin and destination, and the available vehicles are identified in the corresponding 

geographical service area, to insert a new trip request. In this stage, available vehicles are filtered to 

prevent excessive computational burden. In the second stage, the algorithm selects the best vehicle by 

minimizing service waiting time and travel time of the new passengers as well as the existing passengers.  

 

Stage 1: Prepare a vehicle set J based on  i’s trip points and time windows. 

 

Stage 2: Find a best vehicle Vmin, Vmin   J satisfying the following objective function to insert new l-th 

and m-th stops in the vehicles schedule as pickup and drop-off for the new request zi of 

passenger i from the set of passengers, i   I. 

  

     ICj = Cj(Ej zi) – Cj(Ej)        (1) 

 

 Cj(Ej) =                               (2) 

 

 Cj(Ej zi) =                                                      (3) 

 

where 

 

zi = a new passenger request i, i   I 

ICj = incremental cost of vehicle j for inserting a new request zi 

Cj(Ej) = current total cost of vehicle j’s with schedule Ej 
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WT(Ej,k) = waiting time (cost) associated with k-th event in Ej 

TT(Ej,k) = in-vehicle time (cost) associated with k-th event in Ej 

Cj(Ej zi) = total cost of vehicle j when adding a new request zi 

 

In this formulation, when a new passenger request comes in, the dispatch system constructs a set of 

vehicles that are available to serve, based on the passenger’s origin point and the minimum waiting time 

allowance. For example, if a vehicle is in a certain zone which is too far from the passenger’s origin point 

within a waiting time window, the vehicle is excluded from the available vehicle set. Vehicles in the 

corresponding passenger zone would have higher priority to serve the passenger request. Once the vehicle 

set J is built, the algorithm goes over the vehicles in the set. For each vehicle j, it first confirms whether 

the constraints are satisfied for the new pair of pickup and drop-off events. If they are acceptable, the 

incremental cost ICj over the cost of its current schedule Ej is calculated for the new events based on the 

expected waiting and in-vehicle travel times of the new passenger and the previously-assigned passengers. 

For vehicle j under consideration, an inner optimization is done for finding the best insertion position in 

the current schedule over alternate l-th positions for pickup and alternate m-th positions for drop-off (m 

being always greater than l). Once all vehicles in set J are examined, the best vehicle, with the minimum 

incremental cost is found and its schedule is updated with the optimal insertion positions l and m in its 

current schedule of vehicle stops. If no vehicle in the set satisfies the time window constraints, then the 

passenger request is rejected. 

The insertion heuristic is fairly easy and straight-forward to implement, and shows computational 

efficiency, but it has limitations on large-scale dynamic pickup and delivery problems. Since the insertion 

heuristic based on an FCFS priority scheme does not consider all new requests at the same time, it may 

lead to a sub-optimal solution as well. In other words, there is no re-optimization by exchanging a 

passenger assigned to one vehicle’s schedule to another vehicle’s schedule later. As expected, such re-

optimization causes significant combinatorial issues and is computationally prohibitive. It is also possible 

that such re-optimizations and exchange of passengers across vehicle schedules may cause operational 

difficulties, as the drivers may keep finding pickup locations to be disappearing from the schedule. The 

current algorithm can add additional locations by inserting a new passenger pickup, but does not remove 

an existing pickup. Thus, despite not having fully-optimal solutions, the algorithm is computationally and 

operationally practical, and our studies have found it to lead to reasonable solutions. Note that the FCFS 

priority is used only to give an earlier request a higher priority to be considered in vehicle schedules. It 

does not imply that the pickups will be according to that priority order. Requests that come in later will be 

considered later, but the pick-up time for that request can be earlier than for a previously-assigned 

passenger. 
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Figure 1.  Insertion Heuristic for Shared-Taxi Dispatch 

 

2.2. EV Taxi charging system 

EV taxi service is an ideal application when speeds are lower and traveling distances are shorter, 

especially in several Asian and European contexts. An EV charging station is commonly called EVSE 

(Electric Vehicle Supply Equipment). The Society of Automotive Engineers (SAE) lists three classes of 

EV charging schemes: (1) Level 1 refers to a portable “plug” using a 120 volt outlet; (2) Level 2 refers to 

using 240 volts to deliver AC power to the on-board charger, usually over five to eight hours; and (3) 

Level 3 refers to fast charging with higher-voltage DC power, bypassing the on-board charger, and taking 

less than one hour. An alternative to quick recharging is battery swapping, i.e., replacing the depleted 

battery with a fully charged one, which takes only about five minutes. For example, Better Place
TM

, an 

American-Israeli firm based in Palo Alto, California, is one of the companies offering a battery switch 

station for EV, and their pilot installations are already operating in Israel, Denmark and Hawaii, as we 

write this paper. A pilot project showed the feasibility of battery swapping as a means for EV taxi 

services in Tokyo in 2010. Considering that waiting five or six hours for charging is not a good option for 

fleet applications, EV taxi will require fast charging stations or instantaneous battery replacement services 

so as to maintain their services. However, it is still necessary for EV taxicabs to visit charging stations to 

replenish the batteries, and so taxicabs cannot be in service (with passengers) during the charging period. 

This indicates a direct impact on not only the revenue of taxi companies, but also the charging 

infrastructure. This motivates our investigation of charging issues in EV taxi service. 
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Since all vehicles are dynamically re-routed in response to real-time service requests, it is not a viable 

option to optimize battery charging schedules in terms of long-term vehicle routing plans. Thus in the 

cases we consider, vehicles build their own charging decisions based on their existing pickup and delivery 

schedules. Also, we hasten to note that we do not consider any optimality of charging control in vehicle-

to-grid (V2G) schemes because the focus of this simulation study is on the taxi system performance rather 

than on the grid-scale power infrastructure. 

 

2.3. EV Taxi Recharging Scheme 

The proposed EV vehicle recharging schemes in general real-time routed transi and shuttle systems 

was previously studied by Jung and Jayakrishnan (2012) in an HCPPT context. However, the recharging 

scheme in the current study are significantly different in its basic characteristics. We assume here that an 

EV taxi can visit a charging station only after completion of passenger delivery whereas HCPPT vehicles 

can visit charging stations with passengers on board so that charging events can be treated similar to an 

ordinary vehicle schedule event, as could be done in our previous study. In the context of system 

efficiency, since hub terminals in HCPPT can be used both for passenger transferring and electric 

charging locations, the concept of hubs could not only yield infrastructure investment benefits for both 

systems, but also be a great advantage for vehicles to save on travel times when visiting charging stations. 

However in taxi service, visiting charging stations with passengers on board could result in noticeable 

deterioration of the service quality. It is also not reasonable to predict the travel distance to the next idling 

state using measures such as say the average busy period distances, because vehicle idling is a rarer event 

in fully-operational real-time demand-responsive shared taxi service, resulting in very high variance for 

the distances traveled between idle periods. Thus new schemes are necessary to incorporate charging 

events within EV taxi operations, as we develop here. 

The new EV taxi dispatch algorithm consists of three types of vehicle events: passenger pickup, 

passenger delivery, and vehicle charging events. In the proposed charging scheme, a call request for 

inserting a new pickup and delivery in the schedule can be rejected due to the limited remaining range of 

EV. However, it is possible to insert a new pickup and delivery event even if a vehicle charging event is 

already scheduled as long as the vehicle has enough range to visit a charging station and the new 

passenger event can be added before the charging event. 

Inserting pickup, delivery, and charging events proposed in this study is straightforward, but it has a 

few requirements: (1) When the current battery level (Br) of a vehicle gets lower than the critical battery 

level (θ), the vehicle starts considering vehicle charging into current schedules; (2) A charging event (er) 

can be inserted only at the end of the vehicle’s existing schedules (Ej) to prevent it from visiting charging 

stations with passengers on board; (3) new pickup and delivery events are prohibited if the vehicle is 

already headed to a charging station, which implies that it is the only event left in the schedule list (i.e., er 

= Ej), or if the vehicle has the potential to get discharged (R > Rc) when the new schedule is performed, 

given the remain range (Dr). 
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Figure 2. EV Taxi Charging Scheme 

 

Figure 2 provides the proposed charging scheme for EV taxi. Inserting a charging event is primarily 

controlled by Vehicle Position Update module. Vehicle Schedule Checker is introduced to regulate newly 

incoming passenger events. The proposed insertion algorithm mainly checks against the drive range 

constraint while inserting a new passenger pickup and delivery event ei. This is done by searching among 

the available vehicle’s schedules for the best vehicle and its best insertion position so as to minimize the 

passenger waiting and travel times as well as the risk of the vehicles’ battery getting discharged. Once a 

charging event er is inserted into a vehicle and the vehicle is already headed to a charging station, a new 

passenger request cannot be assigned to the vehicle. 

A risk function is considered in the constraint preventing the battery discharge. As mentioned above, I 

is defined as a set of new passenger requests indexed by i   I waiting to be assigned to a vehicle Vj from a 

vehicle list J. For a passenger request, zi, the possible insertion positions are l and m (for pickup and drop-

off) in the schedule list for a vehicle Vj, j   J. If the risk R associated with inserting new pickup and 

delivery events at positions l and m in the existing schedule of the vehicle Vj is higher than the critical 

level (Rc), then the new pickup and delivery request will not be considered. 
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zi = Passenger request i 

  
   

 = Vehicle j with pickup and delivery in the l-th and m-th positions in its schedule list of events. 

De = Travel distance to the charging station from current location 

Dr = Remaining range (distance) based on the current battery level 

  = Scale parameter 

 

The risk function assumes a simple probability for the battery being discharged for a given schedule. 

De is calculated by summing up the event-to-event travel distances from the current vehicle position to the 

last drop-off location and then to the nearest recharging station. Combined EV ranges based on highway 

and city can be used for the scale parameter,  . 

 

3. SIMULATION STUDY 

3.1. EV Shared-Taxi Simulator 

The current study requires the simulation of door-to-door passenger services with flexible routes and 

vehicle scheduling. As facilities for such modeling are not available in most commercial transportation 

simulation tools, an EV shared-taxi simulation framework was developed with Microsoft Visual C++, 

which offers great flexibility in implementing various types of algorithms and visualizing all relevant 

simulation elements (e.g., transportation network, vehicle operations, passenger requests, and charging 

locations), without any dependency on commercial simulators. The EV shared-taxi simulator imports 

digital maps designed for map display and geo-coding, and performs faster vehicle routing with realistic 

roadway attributes such as road categories, turning prohibition, one-way links, posted speed, number of 

lanes, link length, and link shapes. It also supports graphic user interfaces (GUI) that allow users to track 

simulation objects such as vehicles’ schedules and locations of passenger requests during simulation runs. 

The statistics module in the simulator stores all system performance data, algorithm running time, and 

generated stochastic passenger demand data. It is noted that the simulation environment used in this study 

does not consider traffic dynamics, as predictive control based on changing travel times was not a focus, 

though the re-optimization schemes developed here are evidently faster and makes such real-time 

feedback control more practical. Elaborate microscopic simulation models have been developed for real-

time routed fleet vehicle operations with real-time traffic feedback (see Cortes and Jayakrishnan, 2002), 

but the computational burden was considered too high, as the parametric study in this paper requires a 

fairly large number of simulations, 

 

3.2. Simulation Assumptions 

As the case study that is subsequently presented is based on a network in Korea, the simulation model 

that we developed includes modeling of recharging that is appropriate for a common vehicle model in 

Korea. The representative EV assumed is a Renault-Samsung SM3 Z.E., built in South Korea. Renault-

Samsung claims that the SM3 Z.E. is outfitted with a 24 kWh lithium-ion battery with the maximum 

range of 184 km (115 mile) measured on the NEDC (New European Driving Cycle) combined cycle. A 

“QuickDrop” system (known as battery swapping) that allows the discharged battery to be replaced 
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quickly with the fully charged one at a dedicated EV battery switch station is introduced, as well as a fast 

charging system using a 32A 400V 3-phase supply that completes battery charging in 30 minutes. Since 

an official range specification is not yet established in South Korea, we assume conservative average 

ranges of 113 km (70 miles) on highways and 145 km (80 miles) in city traffic with +/-16 km (10 miles) 

of uniform random variation across individual vehicles. The insertion heuristic algorithm described in the 

earlier section is adopted for both conventional taxi and shared-taxi algorithm. For conventional single 

customer group taxi service, the insertion heuristic algorithm assigns the new passenger to the nearest 

available vehicle. 

 

   

Figure 3. Passenger Requests Points and Charging Locations in EV Shared-taxi Simulator 

 

For taxi demand generation, the demand data in the KOTI (The Korea Transportation Institute) 

regional transportation planning model based on the EMME/2 software is used. As of 2011, the trip 

demand files consists of auto, bus, subway, rail, taxi, and other types of demands, and the model covers 

the city of Seoul with a total of 560 zone centroids over and area of 605 km
2 (233 mi

2). Under the usual 

assumption of spatial uniformity of demand around a zone centroid, point-to-point taxi demands are 

randomly generated in accordance with destination probabilities of the taxi demand table in each centroid. 

The point-to-point demands are projected to the nearest directed road segment to model door-to-door 

services, except on limited-access roads. The real-time service requests arrive according to a temporal 

Poisson process with the locations being spatially uniformly distributed along the road segments in each 

zone. Figure 3 shows the network where 24,000 trip requests are generated for an 8-hour simulation based 

on the taxi demand table with the minimum trip length of 1.5 km for taxi service. A total of 22 charging 

stations on 5 km by 5 km reference grid cells are assumed over the road network. Figure 4 shows that a 

majority of generated trip demands are within 10 km. The average trip length is 6.4 km and the expected 

door-to-door travel time 13.4 min under the assumption that vehicles can travel at 60~90% of the posted 

speeds on the network. 

 

Origin         Destination
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Figure 4.  Distribution of Passenger Trip Requests 

 

3.3. Simulation Scenarios 

According to the statistics from the Seoul Taxi Association (2006), a taxi carries more than 30 

passengers each day, on average. The average travel distance is over 235 km/day and 5 km/trip, with a 

significant portion of the travel distance being non-revenue segments when the taxis travel empty for the 

pickups. A total of 72,000 taxi licenses are registered including owner-driver taxis, and a total fleet of 

40,000 vehicles operated as of 2011 under a taxi rotation system to restrict the number of operating 

taxicabs. Shared rides in taxis are prohibited by regulations in South Korea, but it is known publicly that 

many taxicabs carry multiple passenger groups at the same time if they are traveling to the same 

destination because there are higher passenger demands than taxicabs available during the peak hours. 

In this study, 600 taxicabs are considered, which is equivalent to 1.5% of the total number of vehicles 

operating in Seoul. The initial positions of vehicles are randomly generated over the simulation area. The 

simulation time is set to 8 hours including 30 minutes as a warm-up period. An average of 1-min boarding 

and alighting times are assumed for each passenger, which is based on a normal distribution N(1.0, 1.0). 

In the shared-taxi scenario, the time window constraints represent a maximum waiting time of 15 minutes, 

and the maximum detour lengths used are uniformly randomly distributed between 1.1 to 1.5 times the 

door-to-door travel distances. A taxicab can carry a maximum two passenger groups at the same time, 

which provides a realistic scenario rather than having three or more groups. Two charging times are 

assumed for fast charging (30 min) and battery replacement (5 min), both assuming standard 24 kWh 

batteries. Two different initial charging strategies were considered because it was found in our previous 

studies that charging demands tend to cause peaking of the grid power demand as well as poor system 

performance when the eight hour period started with all vehicles fully charged, as many vehicles go off 

service for charging at the same time later during the period. Thus we studied one case that involves fully 

charged EVs (FISOC: Full Initial Sates of Charge) and another case that involved randomly charged EVs 

(RISOC: Random Initial State of Charge) at the beginning of the simulation. Both cases are realistic, 

however, with the former case applying to the start of day and the latter situation perhaps applying to a 

later period in the day, in the regular operation of such systems. 
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Table 1. Simulation Scenarios 

Simulation setup for Taxi service and EV charging 

     Service area  

     Simulation time and warm up time (hours) 

     Number of service vehicles 

     Vehicle capacity (passenger groups/vehicles) 

     Vehicle types 

     Service types 

     Number of EV charging locations 

     Battery Capacity
2
 

     EV Range on Highway and City Traffic (km/charge)  

     Charging time (minutes)  

     ISOC (Initial State of Charge) 

605 km
2
 

8 hours, 0.5 hour 

600 vehicles 

Maximum 2 groups with 4 seats 

ICE
1
, EV 

Non-Shared, Shared-Taxi 

22 locations 

24 kWh 

113 km, 145 km 

5 (battery replace), 30 (fast charge) 

Fully charged, Randomly charged 

1
 ICE: Internal Combustion Engine Vehicle (Non-EV) 

2
 Battery pack capacity (kWh): kilowatt-hour(s) 

 

4. SIMULATION RESULTS 

4.1. EV Non-Shared Taxi Service 

Figure 5 shows (a) numbers of completed and rejected requests, (b) numbers of charging events with 

difference combinations of recharging times, (c) average vehicle load, and (d) average vehicle distance 

traveled for non-EV and ISOC scenarios. It is noted that refueling ICE vehicles is not considered in this 

simulation because regular taxi vehicles use engines powered by Liquefied Petroleum Gas (LPG) and 

there are more than 70 LPG charge locations distributed in Seoul as of 2011. This indicates that refueling 

of the LPG vehicles would not significantly impact the system performance.  

Figure 5(a) clearly shows that employing EVs reduces the number of delivered passengers in 

comparison with ICE. Recharging time with 30 min significantly worsened the performance of taxi 

service. For example, the number of completed requests under RISOC 30 (Random Initial State of Charge 

with 30 min recharging time) decreased by 15% compared with ICE while it decreased by 5% under 

RISOC 5 (Random Initial State of Charge with 5 min battery replace time). It is reasonable that the 

number of rejected requests increased at the same time too, as vehicles spent more time to recharge. As 

for charging events in Figure 5 (b), FISOC 30 shows the lowest value among the scenarios and the overall 

numbers of charging events under FISOC are significantly lower than under RISOC. In the RISOC 

scenarios, the vehicles start with insufficiently charged batteries that vary from 20% to 100% of 

maximum charge, which results in more frequent visits to charging stations. Under FISOC 30, each 

vehicle has an average of 1.35 charging event while under RISOC 30, it is 1.86 during the simulation 

period. 
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                                      (a)                                                                                   (b)        

 

 
                                      (c)                                                                                   (d)        

Figure 5. Non-shared EV Taxi System Performance: (a) Numbers of completed and rejected 

requests (b) Number of Charging Events (c) Average Vehicle Load (passengers/vehicle) (4) Average 

Vehicle Distance Traveled (km/vehicles). 

 

Average vehicle distance traveled and vehicle load in Figure 5 (c) and (d) show the same pattern. 

Since vehicles with 30 min recharging time spend much more time at charging locations, they travel 

shorter distance with fewer passengers given the simulation time. It should be noted that the average 

vehicle loads are a direct reflection of the number of delivered passengers in non-shared taxi serve. 
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                                        (a)                                                                        (b)        

  
                                        (c)                                                                        (d)        

Figure 6. Charging Demand Profiles: (a) FISOC 5 min (b) RISCO 5 min (c) FISOC 30 min (d) 

RISOC 30 min 

 

Figure 6 shows the number of vehicles at charging locations. Since a sufficient number of charging 

stations is assumed at each location, these numbers indicate the number of vehicles being charged, as no 

vehicle is assumed to have to wait at charging locations to get a charging station. As expected, during the 

first three hours of simulation, charging events can be hardly seen in Figure 6 (a) and (c) because the 

vehicles start with FISOC from the beginning of the simulation whereas randomly charged vehicles start 

visiting the charging stations earlier on in Figure 6 (b) and (d). It is also seen that EV charging demands 

are concentrated with FISOC because EV batteries on the vehicles tend to run out roughly around the 

same time and all those vehicles start visiting the charging stations. An average of under 10 vehicles are 

at each charging location under the 5 min battery-replacement scenario, as seen in Figure 6 (a) and (b). 

Obviously this shows much lower occupancy at charging stations than for the cases with 30 min charging 

time. It is apparent that the total numbers of charging events with 5 min replacing time are higher than the 

numbers with 30 min. The peak charging load of FISOC 30 shows 34 vehicles at the charging location #8 

and a total of 307 vehicles over all charging locations. That means that more than a half of services 

vehicles could be in energy replenishing mode at a given time due to FISOC and 30 minutes of recharging 
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time. In contrast, the peak demand is 6 vehicles under RISOC 5. Considering that we assumed enough 

number of charging stations at each location, the impact could be more significant on system performance 

under FISOC than RISOC. It can be concluded that the shorter recharging time shows not only better 

performance, but also less impacts on the charging infrastructure even though the total number of 

charging events are not different. It is conceivable that vehicle arrivals at the charging locations are 

correlated with peak charging load that could result in not only a shortage of service vehicles in term of 

system performance, but also a large coincident peak in the grid system. Perhaps uncontrolled charging 

might be the most serious concern of the grid system especially with larger fleet sizes of taxis. Note that 

FISOC 30 has lower number of charging events than FISOC 5 because of not only the shorter charging 

time but also the eight hours of simulation time. 

 

 

  

Figure 7. Trip demands and charging vehicles at charging locations 

 

Figure 7 provides the OD distribution of trip requests corresponding to the nearest charging locations 

and the numbers of vehicles charged at each charging locations. Since the trip OD demand table used in 

this study is for daily demand, not for a peak time, there are no directional patterns in origins and 

destinations flows. However, it is apparent that the charging demands at charging locations are affected 

by the spatial distribution of trip data. It is expected that the EV charge load is affected by delivery points 

rather than pickup because the taxis visit the charging stations only after completing a final delivery in a 

sequence of pickups and deliveries.  

While the above graphs bring out several illustrative details of relevance during the operation of EVs 

in shared-taxi operation, they are only illustrative in nature and quite context dependent in a given urban 

area. It is as important to also examine the system performance summaries to make judgments on how 

competitive EVs are, in comparison to conventional taxis, as we know that EVs will certainly lose some 

periods due to recharging. Of course, if the recharging locations are owned by the taxi companies and 

replacement vehicles are available immediately, then EVs will operate quite similar to conventional taxis 

except for the deadheading trips to the charging stations. Then the issues of concern are more related to 

the grid level energy demands, as we examined above, rather than the taxi system performance. Our 

interest here is however any potential performance loss due to charging needs, and thus our next summary 

results refer to the case when a fixed fleet of vehicles are in operation and some are lost from service 

during the charging time.  
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Table 2 (a) reports the detailed performance measures. The non-shared taxi service results include the 

conventional ICE taxi column, which can be used as the comparison to examine any potential 

deterioration of system performance. As can be seen in the different EV cases show certain loss of 

performance. This is primarily on the basis of the rejected customers. Between 10 and 20% more 

customers are rejected in the case of EV use. For those customers who were served, the average wait time 

home and average passenger travel time (in-vehicle) are constant over all the EV scenarios. This indicates 

that vehicles are fully utilized with generated demands in this simulation. It is noted that random 

passenger boarding and alighting times are included in passenger travel time, not in the wait time. The 

question arises on how the lost customers can also be served with EV taxis, and the next set of results, as 

in Table 2 (b) show that this is indeed possible. 
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Table 2. Detailed Performance Measures 

(a) EV Non-shared Taxi Service with Different charging schemes 

Initial State of Charging (ISOC) Scheme ICE taxi
1
 Full Random Full Random 

Charging time (min) n/a 5 5 30 30 

Number of delivered passengers 15,281 14,720 14,440 13,953 13,027   

Number of rejected requests 7,294 8,058 8,156 8,991 9,678    

Avg. wait time home (min) 14.03 13.80 13.83 13.81 13.92   

Avg. passenger travel time (min) 12.78 12.52 12.52 12.49 12.42   

Avg. vehicle load (passengers/vehicle) 0.73 0.68 0.67 0.64 0.60    

Avg. vehicle distance traveled (km) 210.17 206.24 205.66 192.46 183.85  

Number of charging events n/a 1,019 1,177 815 1,121 

Peak charging loads n/a 65 29 307 109 

 (b) EV Shared Taxi Service with Different Detour Factors 

Initial State of Charging (ISOC) Scheme Random Random Random Random Random 

Charging time (min) 30 30 30 30 30 

Detour factor for shared-ride 1.1 1.2 1.3 1.4 1.5 

Number of delivered passengers 14,274 14,597 15,005 15,226 15,467   

Number of rejected requests 8,348 8,023 7,556 7,328 7,075    

Avg. wait time home (min) 13.07 12.79 12.48 12.34 12.32   

Avg. passenger travel time (min) 13.85 15.02 16.57 17.85 18.67   

Avg. vehicle load (passengers/vehicle) 0.75 0.85 0.96 1.06 1.13    

Avg. vehicle distance Traveled (km) 180.00 179.24 176.85 176.78 176.17  

Number of charging events 1,078 1,069 1,050 1,048 1,034    

1
 ICE taxi: Conventional taxi powered by internal combustion engine (Non-EV taxi) 

 

4.2. EV Shared-taxi Service 

It would be expected that employing EVs in taxi would cause system inefficiency due to its inherent 

limitations in travel range and lost productivity while vehicles are idle for charge replenishment. The 

results on modeling the shared-ride concept to improve system performance in EV taxi service are 

reported in Table 2 (b), which immediately shows that even for the worst case EV operation with 30 

minutes charging time, operational scenarios that serve the same number of customers as conventional 

taxi are possible.  

We assumed that ride-sharing allowed with the maxim capacity of two passenger groups in RISOC 30, 

and then another constraint is employed with maximum detour factors from 1.1 to 1.5 in which the system 

can provide efficient service with less passenger inconvenience. The maximum detour factor is equivalent 

to the ride-time index when the system is fully operated. In this study, the maximum detour factor of 1.0 

implies a single customer policy in which a taxi can carry only one passenger group at any time. 

Figure 8 shows system performances with difference detour factors in comparison with single 

customer non-EV (ICE) and single customer EV (Detour factor 1.0) scenarios. As seen in the previous 

simulation, the number of delivered passengers decreases by 15% in RISOC 30 in comparison with ICE. 
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However it is seen that the number of completed requests increases as the maximum detour factor 

increases with shared-ride. RISOC 30 with the detour factor 1.5 shows even better system performance 

than single customer with ICE vehicles in terms of delivered passengers. 

It is also important to note the vehicle load, as that indicates potential higher revenue for the same or 

lower miles traveled by vehicles, though a proper comparison is only possible with pricing of shared and 

non-shared services, which is beyond the scope of this study. Certainly the increased vehicle load 

indicates a significant increase in system efficiency with the shared EV taxi system. The vehicle distance 

traveled remains significantly at lower levels with shared-taxi scenarios. It means that the shared taxi 

system can deliver more passengers with less operational travel distance. The average vehicle distance 

traveled decreases as the detour factor increases, which could be a potential benefit for the vehicle 

operator to reduce the vehicle operating cost as well as the number of EVs in charge replenishing mode. 

The smaller numbers of charging events are expected with shared-ride taxi service due to the shorter 

distance traveled given the same ISOC and recharging time. In other words, higher efficiencies in both 

passenger delivery and power grids are expected with the share-ride in taxi system. 

  

 
                                            (a)                                                                                   (b)        

 

 
                                            (a)                                                                                   (b)        

Figure 8. Shared EV Taxi System Performance (30 min recharging time) : (a) Numbers of 

completed and rejected requests (b) Number of Charging Events (c) Average Vehicle Load 

(passengers/vehicle) (4) Average Vehicle Distance Traveled (km/vehicles). 
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Further numbers, as reported in Table 2(b) in terms of the passenger times are also important, as they 

directly impact the demand for the service. In this study, no demand models can be incorporated for 

shared and non-shared services. Such a demand model would conceivably involve the travel and wait 

times, pricing and perceived disutility from shared rides and additional stops. As pilot systems have not 

been used for developing such models, this study does not delve into the demand aspects. It is however 

instructive to look at the indicative results in Table 2, under the assumption that demand stays at a certain 

level. It is reasonable that the values of average passenger travel time increase as the system allows longer 

detours with the detour factor. One interesting result is that the average wait times at home (12 - 13 min) 

with shared-taxi are lower than the values of single customer operations (14 min) because there are higher 

opportunities to pick up passenger requests when vehicles have available seats. Even in the worst case 

from the user perspective, i.e., with a detour factor of 1.5, the average total time spent is 30.99 minutes, as 

opposed to the best case (conventional taxis in Table 2(a)) of 26.81 minutes – and increase of about 15%. 

Considering that the average passenger load increases from 0.73 to 1.13, an increase of nearly 55%, even 

that scenario of shared-ride EV operation may prove to be beneficial from the operator’s and society’s 

viewpoint. Though this is at the expense of the passenger, note also that this seemingly worst scenario is 

able to serve as many passengers as the conventional taxis can, which indicates that the users are also 

served well in the final analysis. 

Finally, Table 2 also shows summary results regarding the charging demand profiles, the effects of 

which on the energy grid was discussed in detail above. Once again, we see that the share-taxi operation 

could reduce the total number of charging events, without showing much noticeable difference in the peak 

charging demand during the simulation period. Thus shared-ride operations appear not to have 

significantly different impacts on the power grid in comparison with single ride EV taxis. 

 

5. CONCLUSION 

This study investigated the feasibility and the expected changes in system performance if EVs are used 

for taxi service. First set of studies dealt with conventional single-customer taxi operations. Those 

simulation results showed that system productivity decreases with respect to regular ICE taxis, especially 

when longer periods of charging are required, but the quicker battery replacement schemes shows similar 

system performance to ICE vehicles in terms of passenger delivery. The simulation result reveals that 

battery replenishing time and charging location are two important factors for EV fleet operation. In 

addition, starting fully charged batteries without any control scheme would cause the charging demands 

to concentrate at the same time. 

As EVs are expected to cause productivity loss due to charging times, we proposed an alternative that 

could yield similar system performance as conventional taxi, and the simulation results showed that the 

shared-ride taxis can indeed result in comparable the system performance to conventional ICE taxis in 

terms of both passenger delivery and EV charging demands. The average passenger loads in vehicles 

were found to be improved significantly with the same fleet of vehicles and under the same passenger 

time window constraints, by up to 55% from conventional taxi service. Considering the environmental 

and societal benefits, shared-ride EV taxis should then be taken as a much better alternative for urban 

regions where significant taxi demands exist. Certain details were also brought out such as the need to 

properly design the EV charging schedules to prevent excessive demands on the power grid. 
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Much further work remains to study the performance of such EV-based shared-taxi systems for 

different urban contexts and under various fleet and passenger constraints. The results of this study are 

primarily to illustrate the impact of EV on taxi system by assuming predefined EV charging specifications 

and fixed locations. The design of optimal charging locations would be an interesting issue for further 

study. As a possibility, a simple non-parametric approach can be used to find the optimal charging 

locations for EV taxi operation via the consideration of alternative sites. It is also beneficial to develop 

demand models to incorporate in the simulation framework by studying the passenger response behavior 

to pricing as well as their discomfort in shared-rides, or undergoing significant rerouting, preferably from 

a real world implementation.  
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