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A B S T R A C T

To address the escalating demand and supply constraints for semiconductor devices, manufacturing techniques
such as thermal atomic layer etching (ALE) have been utilized, which require robust temperature control
systems. Radiative heating with lamps is a promising method for achieving fast and precise temperature control.
However, there is limited research in analyzing the dynamic control of radiative lamp heating systems. In
this study, a transient, two-dimensional (2-D) radiative heating model in a cross-flow thermal ALE reactor is
constructed through Ansys Fluent. A sparse identification (SINDy) modeling approach is applied to build a
reduced-order dynamic model for the prediction of system states in the control system. A model predictive
controller (MPC) is then developed to bring the wafer surface temperature to the target temperature while
preserving the uniformity of the temperature on the wafer surface. Control is implemented by adjusting the
powers of three groups of heating lamps independently. Notably, a novel feedback-based time-varying steady-
state penalty approach is applied with the MPC in this study, which enables the system to reach the target
temperature range within 10 s while maintaining temperature uniformity for 1000 s.
1. Introduction

Over the last decade, there has been a rising demand for high-
performance semiconductor chips such as 5-nm fin-field effect tran-
sistors (FinFETs) that are fabricated through advanced processes like
extreme ultraviolet (EUV) lithography (Wang et al., 2020). Due to their
wide usage, there is a potential for a global supply shortage of advanced
semiconductor chips, which are difficult to fabricate from silicon-based
materials and consist of over 500 processing steps (Espadinha-Cruz
et al., 2021). A considerable portion of these processing steps re-
quires thermal processing under high temperatures, such as thermal
atomic layer etching (ALE), to ensure conformal fabrication of these
downscaled devices. Thermal ALE is a top-down fabrication procedure
that improves the surface uniformity and alignment of transistors by
employing a system of reactions that produce volatile byproducts to
enable surface etching. However, to ensure that complete byproduct
removal is observed, the specific optimal operating temperature de-
pends on the material of the substrate. For instance, aluminum oxide,
Al2O3 requires high operating temperatures of 573 K, which has been
proposed experimentally (Lee et al., 2016) and studied in prior in
silico modeling work (Yun et al., 2022a). In addition to reaching the
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chosen operating temperatures, it is important that the temperature
of the substrate surface is uniform. This ensures that the self-limiting
surface reactions on the wafer will finish concurrently and minimize
the processing time.

Prior work has extensively focused on the in silico modeling of
thermal ALE processes through various reactor configurations (Yun
et al., 2022b,c), during which a constant and uniform temperature, both
on the substrate surface and operating environment, are assumed. This
assumption overlooks the possibility of temperature fluctuations both
on the wafer surface and in the overall reactor, which is widely reported
in both laboratory experiments and numerical simulations (Gyurcsik
and Sorrell, 1991). Furthermore, these studies typically neglect the
transient and dynamic nature of energy transfer among the wafer,
reactor, and external environment. However, realistic thermal ALE pro-
cesses often experience disturbances that disrupt the standard operating
conditions of the process and introduce surface defects that result in
product nonconformance, performance degradation, and lower produc-
tivity, depending on the magnitude of the disturbance. For example, a
temperature fluctuation of 5 K will substantially change the half-cycle
time, as observed in Yun et al. (2022a). Therefore, precise temperature
vailable online 16 December 2023
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Fig. 1. Schematic figure that compares the (a) conventional heating plate structure and (b) novel radiative heating structure, where red arrows represent the direction of energy
transfer.
control is necessary to maintain the desired operating temperatures
uniformly across the substrate surface for thermal ALE processes. In
order to achieve a comprehensive understanding of the ALE process
under practical industrial settings, it is critical to develop a transient
model that characterizes the physical heating process of the wafer.

Using heating lamps as the thermal source for a reactor is a popular
and widely employed method in industrial practices (Roozeboom and
Parakh, 1990). Unlike a traditional heating plate where the primary
heating mechanism is conduction, the primary heating mechanism for
a heating lamp is thermal radiation, as shown in Fig. 1.

An advantageous feature of radiative heating is the high instanta-
neous changing rate in temperature that is beneficial for achieving fast
controller response to mitigate disturbances. For instance, Gyurcsik and
Sorrell (1991) determined that radiative heating can supply a maximum
temperature rate of 200 K/s, which has been validated in in silico
modeling work by Theodoropoulou et al. (1998). Radiative heating
also achieves better temperature uniformity on the wafer surface that
is maintained by individually adjusting lamp powers, where in most
industrial and experimental contexts, multiple groups of lamps are
involved, and each group is independently controlled. Additionally, the
temperature uniformity resulting from radiative heating is beneficial
for the modern downscaling of semiconductors (Dassau et al., 2006).
By combining the quick heating capabilities and improved temperature
uniformity, radiative heating reduces the process time of the ALE
processes by decreasing the time required to preheat the system and
by providing more flexible control options (Timans, 1998).

To manifest the superior performance of radiative heating, the
geometrical design of the reactor is crucial. Various geometric con-
figurations of lamp groups have been explored in prior works: a par-
allel configuration of individual lamps positioned directly above the
wafer (Gyurcsik and Sorrell, 1991), a ring structure with varying radii
above the wafer (Oh et al., 2009), and a structure where there are
lamps both above the wafer and on the side of the wafer (Theodor-
opoulou et al., 1998). Baker and Christofides (1999) also proposed a
complete configuration with circular lamps positioned above, on the
side, and beneath the wafer in a quartz process chamber. With the
aforementioned reactor configurations, the temperature uniformity is
significantly improved with individually controlled lamp power.

Nevertheless, prior studies have been primarily concentrated on
optimizing the power supplied to the lamps to achieve a uniform tem-
perature profile in a steady-state condition after thousands of seconds,
which is similar to an open-loop control strategy (Gyurcsik and Sorrell,
1991; Cho et al., 1994; Theodoropoulou et al., 1998; Oh et al., 2009).
There is limited work focused on transient temperature analysis and
real-time control. Due to the dynamic nature of industrial production
and the prolonged time to reach steady-state, there is a greater need
for dynamic temperature and uniformity control, especially for systems
that fabricate wafers with diameters exceeding 200 mm, that operate
at temperatures below 600 K, and that are sensitive to temperature
changes (Roozeboom and Parakh, 1990). Prior works such as Schaper
et al. (1994) and Baker and Christofides (2000) discussed the transient
model and output feedback control of radiative heating processes, but
with simpler reactor configurations and analytical transport equations.
The analytical equations only work for ideal models that lack complex
2

geometries and configurations, and for a modern industrially applicable
system, a numerical computation model is required. To model the
complex reactor accurately, in this study, a transient computational
fluid dynamics (CFD) model incorporating physical heating devices is
introduced. With the proposed model, the dynamic behavior of the tem-
perature on the wafer surface and the ensuing energy transfer between
the wafer, reactor, and surrounding environment can be analyzed. The
development of a dynamic model facilitates the application of a model
predictive controller (MPC) for real-time feedback control over the
wafer surface temperature to optimize the dynamic performance of the
reactor. The objective of the controller is to conduct a rapid elevation
of the wafer surface temperature from room temperature to the de-
sired value, and then maintain the wafer surface temperature within
a user-specified range around the target. Additionally, the controller is
expected to preserve optimal surface temperature uniformity. Such a
controller conforms with evolving demands of precise thermal control
in state-of-the-art semiconductor technology.

The organization of this work is as follows: the computational
fluid dynamics model setup is discussed in detail in Section 2, the
dynamic modeling by the sparse identification method is examined
in Section 3, the formulation of the model predictive controller is elu-
cidated in Section 4, and the in silico experimental results are provided
in Section 5.

2. Transient modeling of radiative heating in ALE

This section analyzes the development of the radiative heating
model conducted by heating lamps. In this work, the 2-D model for the
radiative heating ALE reactor is first created. Following the construc-
tion of the 2-D reactor, a meshing procedure is performed to discretize
the geometry into an appropriate mesh with sufficient quality to ensure
numerical accuracy and efficiency. Lastly, the macroscopic compu-
tational fluid dynamics (CFD) simulation that is integrated with the
radiation model is conducted to generate spatiotemporal temperature
data on the wafer surface.

2.1. 2-D reactor model and mesh generation

In this work, the macroscopic modeling framework begins by con-
structing the thermal ALE reactor geometry in computer aided design
(CAD) software Ansys SpaceClaim. In order to conserve computational
resources, a 2-D symmetrical modeling approach is adopted, which is il-
lustrated in Fig. 2 . The wafer, with a diameter of 300 mm, is positioned
at the base of the reactor, which has a cross-flow configuration (Elers
et al., 2006). Three distinct groups of lamps, the center, edge, and
side lamp groups, are arranged above the reactor, and supplies heat
to the surrounding environment in the form of thermal radiation. The
center lamp group consists of three lamps, while the edge and side
groups consist of two lamps each. The output power of each lamp group
is independently adjustable, which provides a flexible control scheme
with the potential to precisely modulate the wafer surface temperature.
A quartz boundary with a small gap distance is positioned between the
wafer and lamps, which serves as a physical barrier for internal gas flow
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Fig. 2. Schematic diagram of the 2-D thermal ALE, cross-flow reactor: The red lines are the Center lamp group; the yellow lines are the Edge lamp group; the solid black lines
are the Side lamp group; the dashed black line is the quartz window; the gray rectangle part is the wafer. A comprehensive list of geometry parameters are displayed in Table 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
The mesh quality acceptability criteria range and mesh parameters calculated from
Ansys Fluent for the ALE reactor. For the orthogonality, the minimum value is
presented. For the aspect ratio, the maximum value is presented.

Quality indicator Orthogonality Skewness Aspect ratio Number of cells

Criteria 0.001 ∼ 1a 0a ∼ 0.95 1a ∼ 8 N/A
ALE reactor 0.998 0.002 1.46 28 180

a Desired value for ideal mesh quality.

while allowing light and energy transfer across the boundary. Addition-
ally, external radiation from the room temperature environment is also
defined as boundary conditions into the model to reflect the natural
cooling process in a practical scenario (Theodoropoulou et al., 1998).

The procedure to divide the CAD model into discrete cells for
numerical calculation is called meshing, and the mesh quality plays
a significant role in the accuracy, convergence, and stability of the
numerical CFD simulation. In this work, Ansys Workbench Meshing is
applied to create a discretized 2-D grid that is composed of rectangu-
lar cells with maximum cell distances of 0.5 mm. The mesh quality
parameters, orthogonality, skewness, and aspect ratio, for rectangular
cells in this work is within the acceptable range by the criteria rec-
ommended by ANSYS (2022) in all phases and boundaries, and it is
summarized in Table 1. Additionally, the reactor was discretized into
28,000 cells to balance the computational efficiency and accuracy of
the CFD simulation.

2.2. Macroscopic energy model

The computational fluid dynamics (CFD) simulation is conducted in
the multiphysics software, Ansys Fluent. Since the energy transfer and
surface temperature profile are major concerns in this study, only the
heat transfer equation is calculated to save computational resources.
The conservation of energy equation is described as follows:
𝜕
𝜕𝑡
(𝜌𝐸) + ∇( ⃖⃗𝑣(𝜌𝐸 + 𝑝)) = −∇(𝛴ℎ𝑗𝐽𝑗 ) + 𝑆ℎ (1)

where 𝜌 is the density of the fluid, 𝐸 is defined as the internal energy
of the system, ⃖⃗𝑣 is the fluid velocity, 𝑝 is the system pressure, ℎ𝑗 is the
sensible enthalpy of the gas-phase species 𝑗, 𝐽𝑗 is the diffusion flux of
gaseous species 𝑗, and 𝑆ℎ is the heat transfer source flux rate.

The convective heat transfer originated from gas flow is also con-
sidered as a boundary condition on wafer. As demonstrated in a prior
work (Yun et al., 2022a), the gas flow in the thermal ALE process
is laminar and has small surface flow velocities for small reactor
volumes (Ponraj et al., 2013). As a result, the convective heat transfer
coefficient on the wafer is approximated as a fixed value where forced
convection is negligible. A complete list of the parameters and constants
used in the CFD model is outlined in Table 2. As the quartz window
is thin, the amount of light absorbed by the quartz glass is neglected
for simplicity, which implies that the quartz window is assumed to be
fully transparent.
3

Table 2
Parameters and constants of CFD model.

Parameter Value Units

Convective heat transfer coefficient 2.5 W/m2/s
Convective flow temperature 520 K
Wafer diameter 300 mm
ALE reactor height 10 mm
ALE reactor diameter 460 mm
Gap distance 83 mm
Single lamp group width 60 mm
Interval between lamp groups 6 mm
Maximum lamp power 5000 W/m2

Minimum lamp power 0 W/m2

Quartz window thickness 1 mm
Quartz window heat capacity 964 J/kg/K
Quartz window absorption coefficient 0 m−1

Quartz window thermal conductivity 1.67 W/m/K
Initial temperature 298 K

2.3. Discrete ordinate radiation model

Various radiation models are provided in Ansys to calculate radi-
ation intensity. The discrete ordinate (DO) model is one of the most
reliable models to simulate radiative heat transfer with optically-thin
and transparent media like air and thin glass in this study (ANSYS,
2022). The DO model solves the radiative transfer equation (RTE)
described in Eq. (2) to obtain a spatiotemporal solution of the radiation
intensity 𝐼 within any media that absorbs, emits, and scatters light. The
DO model considers ⃖⃗𝑠 as a field function, and the slightly modified RTE
equation is defined by Eq. (3) below:

𝑑𝐼
(

𝑟⃗, ⃖⃗𝑠
)

𝑑𝑠
+
(

𝑎 + 𝜎𝑠
)
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0
𝐼
(
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)

𝛷
(

⃖⃗𝑠 ⋅ ⃖⃗𝑠′
)

𝑑𝛺′

(3)

where 𝑟⃗ is the position vector, ⃖⃗𝑠 is the direction vector, ⃖⃗𝑠′ is the
scattering direction vector, 𝑠 is the path length, 𝑎 is the absorption
coefficient, 𝑛 is the refractive index, 𝜎𝑠 is the scattering coefficient, 𝜎
is the Stefan–Boltzmann constant, 𝐼 is the radiation intensity, 𝑇 is the
local temperature, 𝛷 is the phase function, and 𝛺′ is the solid angle.
The items on the left-hand side of the conservation equation represent
the sum of the spatial derivative of radiation intensity and absorption of
light, while the items on the right-hand side of the equation represent
the sum of the emission and scattering of light. A detailed description
and guide to the calculation theories are further examined in ANSYS
(2022).

The radiation-related parameters for the wafer, walls, and heating
lamps are listed in Table 3. Additionally, radiation permeation is dis-
abled for all wall boundaries except for the quartz window. For the DO
method, it is assumed that the light beams transmit in a finite number
of directions to make the numerical calculation possible. In this 2-D
system, the discretization of the angular directions is implemented by
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Fig. 3. Angular discretization of an adjacent, 2-D rectangular cell on a heating lamp, where control angles are generated to reflect the light emissions produced from the heating
lamps.
Table 3
Parameters and constants of the radiation model.
Parameter Value Units

Wafer emissivity 0.7 N/A
Wafer diffuse fraction 0.3 N/A
Side wall emissivity 0.3 N/A
Side wall diffuse fraction 0.3 N/A
External radiation temperature 300 K
External radiation emissivity 1.0 N/A

separating a space of 360◦ into partitions, which are further separated
into angular divisions that are called control angles. The default settings
in Ansys Fluent divide the angular space into eight partitions with 45◦

intervals, and additional control angles can be specified to improve
the accuracy of the numerical methods, as demonstrated in Fig. 3.
The number of control angles defined by the user plays a substantial
role in both the accuracy and computational complexity of the sim-
ulation. To find the optimal balance between numerical accuracy and
computational efficiency, a grid search method is implemented through
extensive test runs with the goal of finding the smallest number of
control angles that will result in a minimal difference in simulation
results when compared to test runs with more control angles. This
work determined an optimized value of 8 for the number of user-
defined control angles in each default partition zone, for a total of
64 control angles. However, the discretization may encounter issues
in areas with irregular geometry and cause control angles to become
overhanging angles, which results in unwanted reflection and refraction
of light beams (ANSYS, 2022). To reduce the risk of overhanging angles
appearing, rectangular cells are used in the meshing component of this
work.

2.4. Implementation and monitoring

Given the transient and dynamic nature of the model, the controller
frequently adjusts the lamp power to adapt to perturbations in the
temperature on the wafer surface. Any changes in the lamp power
are formulated as a linear interpolation function between the two con-
secutive power levels determined by the controller to avoid potential
numerical error produced from abrupt changes to the lamp power and
reflect the continuously changing nature of the lamps. The calculation
of the lamp power at time 𝑡 is expressed by the following equation:

𝑃𝑖(𝑡) = 𝑃𝑖(𝑡0) +
𝑡 − 𝑡0 (𝑃𝑖(𝑡1) − 𝑃𝑖(𝑡0)), 𝑖 = 1, 2, 3 (4)
4

𝑡𝑠
where 𝑖 = 1, 2, 3, corresponds to the center, edge, and side lamp groups,
respectively, 𝑃𝑖(𝑡) is the power of lamp group 𝑖 at time 𝑡, 𝑃𝑖(𝑡0) is
the power of lamp group 𝑖 at the start of the current sampling time
period, 𝑃𝑖(𝑡1) is the power of lamp group 𝑖 determined by controller
with feedback of temperature measured at 𝑡0, and 𝑡𝑠 is the length of
one sampling time period.

To accurately represent the surface temperature profile, four tem-
perature inspection positions are defined on the wafer surface. These
locations include the center point (𝑟 = 0 m), the first trisection
point (𝑟 = 0.05 m), the second trisection point (𝑟 = 0.10 m), and
the edge point (𝑟 = 0.135 m), where 𝑟 is the distance between the
inspection points and the center of the wafer. The outermost 10% of
the wafer is omitted from the region of interest due to inherent cooling
effects on the periphery (Gyurcsik and Sorrell, 1991). The controller
described in the following sections will use the temperatures monitored
at these designated inspection points as feedback values to maintain the
temperature within an acceptable range around the target temperature.
For the purpose to regulate the process time of ALE within operable
range determined by Yun et al. (2022a), a target temperature over 570
K is required on wafer surface, but not exceeding too much for saving
energy cost. On the other hand, the acceptable range is determined by
the criteria that boundary temperatures have less than 20% half-cycle
time difference with target temperature. By microscopic simulation
result conducted by Yun et al. (2022a), the acceptable range within
±3 K fulfill the above criteria within temperature range of [570, 580] K
with half-cycle time around 0.8 s and 1.0 s. Consequently, 573 ± 3 K is
determined as the goal for temperature control.

3. Sparse identification modeling

One key aspect in accurately predicting system behavior is a dy-
namic model that fully captures the time derivatives of the state
variables. For simple process systems with basic kinetics, such as a
continuous stirred tank reactor (CSTR) or a plug-flow reactor (PFR),
first-principle models can be constructed using mass and energy bal-
ances (e.g., Fogler, 2006). However, these standard first-principle mod-
eling procedures are unavailable for most complex chemical processes,
such as the ALE reactor examined in this work. As a result, data-driven
approaches have emerged as effective tools for modeling nonlinear
processes; for example, there is the numerical method for subspace
state-space system identification (Van Overschee and De Moor, 1994),
the polynomial nonlinear state-space method (Alanqar et al., 2015),
and machine learning methods like recurrent neural networks (Wu
et al., 2019; Ren et al., 2022). Recently, a novel method for building
dynamic models from open-loop data called sparse identification of
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Fig. 4. Temperature profiles of sample open-loop datasets used for model training to illustrate the surface temperature uniformity for various lamp power configurations. Dashed
lines are for the uniform 2000 W/m2 case and solid lines are for the nonuniform case where 𝑃1 = 𝑃2 = 450 W/m2, 𝑃3 = 4000 W/m2. The side surface temperature is over 10 K
lower than center temperature at 𝑡 = 2000 s in the case of uniform lamp power; in contrast, nonuniform lamp power results in better surface temperature uniformity.
nonlinear dynamics (SINDy) has gained attention for its effectiveness
in several complex engineering systems (e.g., Proctor et al., 2014), such
as modeling a nonisothermal CSTR reactor (Abdullah and Christofides,
2023) and fluid vortex shedding behind a cylinder (Brunton et al.,
2016). Of which, the latter case is a nonlinear system whose under-
lying dynamics were identified after nearly 30 years by field experts.
SINDy has also been used directly with input/output data (known as
generalized SINDy or GSINDy) and the Kalman filter to construct time-
variant digital twin models (Wang et al., 2022). The Kalman-GSINDy
approach was subsequently used along with the proper orthogonal
decomposition (POD) to find the lifting functions to find reduced-order
Koopman linear models for incorporation into MPC. SINDy is a data-
driven method that utilizes discrete measurements from a physical
system to identify a first-order ordinary differential equation (ODE) of
the following form:

̇̃𝑥(𝑡) = 𝑓 (𝑥̃(𝑡), 𝑢(𝑡)) (5)

where 𝑥̃(𝑡) represents the state vector of the SINDy model, and 𝑓 (𝑥̃(𝑡),
𝑢(𝑡)) is a function of state and input variables that captures the dynamics
of the underlying physical laws that govern the system. The SINDy
model is applied with the goal of system identification; of note, this
does not necessarily mean accurately representing the true underlying
physics of the process. The key assumption of the SINDy algorithm is
that 𝑓 (𝑥̃(𝑡), 𝑢(𝑡)) is sparse and only has a few nonlinear terms. Although
there is a large pool of candidate nonlinear functions, only a few
terms are expected to be active and contribute to system dynamic
identification. The sparsity of the SINDy model facilitates calculating
the nonzero coefficients, while also preventing overfitting.

3.1. Open-loop data generation

The training, or fitting, of the SINDy model requires measurements
of three quantities: the state variables, the manipulated inputs, and the
time-derivative of the state variables. The state variables in this study
are the temperature inspection points on the wafer: 𝑇1 at 𝑟 = 0.00 m,
𝑇2 at 𝑟 = 0.05 m, 𝑇3 at 𝑟 = 0.10 m, and 𝑇4 at 𝑟 = 0.135 m, where 𝑟 is
the distance from the center of the wafer. The control variables are the
power settings for the three lamp groups, 𝑃1, 𝑃2, and 𝑃3, as depicted
in Fig. 2.

The training data is generated via open-loop simulations that heat
the reactor and wafer from an ambient temperature of 298 K using
fixed lamp powers. Both uniform and nonuniform lamp power combi-
nations, as detailed in Table 4, are used to generate the spatiotemporal
temperature data that is then used to create the dynamic model. The
temperatures on the four inspection points and corresponding lamp
powers are recorded in each simulation from 𝑡 = 0 s to 𝑡 = 2000 s,
5

Table 4
List of lamp powers used to generate open-loop data
(W/m2).
𝑃1 𝑃2 𝑃3

1000 1000 1000
2000 2000 2000
3000 3000 3000
4000 4000 4000
5000 5000 5000
2000 2000 4000
1500 2500 3500
1000 5000 3000
1000 1000 5000
450 450 4000

which is when the system is indistinguishable from its final steady-state.
Variable sampling times were also used to account for the fast dynamics
at the start of each run. Examples of transient profiles of open-loop data
are presented in Fig. 4.

To achieve desired model performance, the range of operating
conditions in training data is larger than the operating range of interest.
The target temperature in the paper is 573 ± 3 K, and the generated
open-loop data set contains final steady-state temperatures from less
than 540 K to over 700 K. Moreover, the coupling effects of control vari-
ables are also necessary to be taken into consideration, as 5 groups of
nonuniform lamp power data with various power ratios were involved
in model training. Additionally, process safety is an inevitable issue
when obtaining data from real world experiments under the wide range
of operating conditions; however, computational simulation methods
such as CFD avoid the potential safety risk.

The time derivative of the temperature generated from the open-
loop data is calculated using a first-order numerical method as per the
equation,

̇⃖⃖⃗𝑇 𝑡 =
⃖⃖⃗𝑇 𝑡+1 − ⃖⃖⃗𝑇 𝑡−1

2𝛥𝑡
(6)

where ⃖⃖⃗𝑇 𝑡 is the measurement temperature vector containing all 4
temperature measurement points at time 𝑡, ⃖⃖⃗𝑇 𝑡+1 is the temperature
vector at the subsequent time step, ⃖⃖⃗𝑇 𝑡−1 is the temperature vector at
the previous time step, and 𝛥𝑡 is the length of the time step. In order to
reduce the computational cost while preserving simulation accuracy, a
time-varying step size is implemented during the open-loop simulation.
A much smaller integration time step is used for the first 5 s of the
simulation duration when the temperature increases rapidly, while in-
creasingly larger integration time steps are employed for the remainder
of the simulation as the temperature increases slowly therein. The
detailed distribution of the integration time step is described in Table 5.
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Fig. 5. Comparison of the temperature profiles of the original and reconstructed data. The reconstructed temperature approaches the final steady-state value within 20 s, which
enables the dynamic model trained using the reconstructed data to capture the correct steady state while retaining the trend of the original data.
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Analysis of Fig. 4 shows a distinct trend: Temperatures at all four
points initially rise rapidly but then rise slowly for the remainder of
the simulation, which leads to larger time derivatives in the first few
seconds compared to the majority of the simulation. This phenomenon
leads to a data imbalance problem, i.e., if the data used for modeling
spans the entire time frame, then the model will accurately capture nei-
ther the fast transient nor the subsequent slow rise. Instead, selectively
using only the early simulation data with the fast transient changes
and discarding the remainder of the simulation is often proposed as
one intuitive solution to maximize the ability of the model to capture
the dynamic behavior. However, the temperature at the end of the
initial fast transient step remains significantly lower than the final,
steady-state temperature, which deteriorates the ability of the model to
capture the final steady state when using such an approach. Therefore,
an innovative data reconstructing methodology is proposed, where each
trajectory is reconstructed according to the following function in time:

𝑇new(𝑡) =
(𝑇final − 𝑇init) ⋅ 𝑡

1 + 𝑡
+ 𝑇init (7)

here 𝑇new is an arbitrary, reconstructed temperature at any time 𝑡,
final and 𝑇init are the true final and initial temperatures under the
esignated open-loop simulation, respectively, and 𝑡 is the time. This
ormulation guarantees that the reconstructed data will have the same
nitial and final temperatures as the original data since 𝑇new → 𝑇init
s 𝑡 → 0, while 𝑇new → 𝑇final as 𝑡 → ∞. Importantly, the dynamic
ehavior of the reconstructed function is altered from the original, such
hat the temperatures reach their steady states earlier. Additionally,
ince deriving an analytical derivative function is possible for the
econstructed data, the temperature derivative is calculated as follows:

̇new(𝑡) =
𝑇final − 𝑇init
(𝑡 + 1)2

(8)

An example of the comparison between the original and reconstructed
plot is illustrated in Fig. 5. To overcome the data imbalance problem,
since the fast transient behavior still occurs within the first 5 s in the
reconstructed data set, only the first 20 s of the reconstructed trajectory
is used because the temperature of the reconstructed trajectory at 𝑡 = 20
s is sufficiently close to the final, steady-state temperature, unlike the
original temperature trajectory, which enables the model to capture
the steady-state dynamics while retaining the shape and trend of the
original data.

3.2. Dynamic model development

To train the SINDy model, the open-loop data obtained from the
data generation process is rearranged into two matrices: the state
6

e

Table 5
List of 𝛥𝑡 applied during different time regions.
Time region 𝛥𝑡

0 s → 5 s 0.01 s
5 s → 20 s 0.02 s
20 s → 75 s 0.05 s
75 s → 2000 s 0.1 s

matrix 𝑋 and the control input matrix 𝑈 , both of which are defined
as follows:

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1(𝑡1) 𝑥2(𝑡1) … 𝑥𝑛(𝑡1)

𝑥1(𝑡2) 𝑥2(𝑡2) … 𝑥𝑛(𝑡2)

⋮ ⋮ ⋱ ⋮

𝑥1(𝑡𝑚) 𝑥2(𝑡𝑚) … 𝑥𝑛(𝑡𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(9)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑢1(𝑡1) 𝑢2(𝑡1) … 𝑢𝑝(𝑡1)

𝑢1(𝑡2) 𝑢2(𝑡2) … 𝑢𝑝(𝑡2)

⋮ ⋮ ⋱ ⋮

𝑢1(𝑡𝑚) 𝑢2(𝑡𝑚) … 𝑢𝑝(𝑡𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(10)

here 𝑥𝑖(𝑡𝑘) is the 𝑖th state variable at the 𝑘th sampling time, 𝑢𝑗 (𝑡𝑘) is
he 𝑗th control variable at the 𝑘th sampling time, 𝑚 is the number of
ime-series data points, 𝑛 is the number of state variables, and 𝑝 is the
umber of control input variables. With the state matrix and control
nput matrix, a function library 𝛩(𝑋,𝑈 ) is developed that consists of
andidate linear and nonlinear features of both the state and control
nput variables. An example of a function library is

(𝑋,𝑈 ) =
⎡

⎢

⎢

⎣

| | | | | | |

𝟏 𝑋 𝑈 𝑋2 𝑈2 sin𝑋 ⋯
| | | | | | |

⎤

⎥

⎥

⎦

(11)

ach candidate function in 𝛩(𝑋,𝑈 ) is then assigned a pre-multiplying
oefficient to fit the derivative of the data, as shown in Eq. (12) below:

̇ = 𝛩(𝑋,𝑈 )𝛯 (12)

here 𝛯 is the coefficient matrix that stores the coefficients associated
ith each basis function for each dependent variable. To find 𝛯,
q. (12) is solved by Lasso regression, an optimization-based linear
egression with first-order norm regularization. The Lasso optimization
roblem to solve for 𝛯 can be formulated as follows:

= arg min
𝛯′∈R

‖𝛩(𝑋,𝑈 )𝛯′ − 𝑋̇‖2 + 𝜆|𝛯′
|1 (13)

here 𝛯′ is a dummy variable that replaces 𝛯 for the optimization

xpression and 𝜆 is the regularization coefficient. The second term that
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includes 𝜆 is the first-order regularization term that encourages sparsity
n the 𝛯 matrix by zeroing all coefficients with an absolute value less
han 𝜆 at each iteration. The optimization is solved using the Lasso
egression function in the Python package Scikit Learn (in which the
arameter 𝛼 corresponds to 𝜆 as per the formulation of Eq. (13)).

The state variables in this work are the four temperature measure-
ent points on the wafer, 𝑇𝑖, 𝑖 ∈ {1, 2, 3, 4}, and the control input

ariables are the power levels for the three lamp groups, 𝑃𝑗 , 𝑗 ∈ {1, 2, 3}.
The four temperatures are decoupled from each other and modeled
using four separate SINDy models, leading to the following sparse
identification problem formulation:

𝑇̇𝑖 = 𝛩𝑖(𝑇𝑖, 𝑃 )𝛯𝑖, 𝑖 ∈ {1, 2, 3, 4} (14)

where 𝑇𝑖 ∈ R𝑚 is the 𝑖th temperature state variable vector with time-
erivative 𝑇̇𝑖, 𝑃 = [𝑃1 𝑃2 𝑃3] ∈ R𝑚×3 is the lamp power control

input matrix, and 𝛯𝑖 is the coefficient vector for each basis function
for the ODE corresponding to the 𝑖th temperature state. The variables
𝑇𝑖 and 𝑃 correspond to 𝑋 and 𝑈 in Eq. (12), respectively. The rationale
behind employing a distinct SINDy model for each state variable is to
introduce sparsity during the candidate function selection process. The
derivative of each state variable is presumed to be solely dependent
on its own value, without the influence of other state variables. The
candidate functions for each 𝛩𝑖 implemented in this work are a bias
term and a combination of linear and quadratic functions of the states
and inputs, as follows:

𝛩𝑖(𝑇𝑖, 𝑃 ) =
⎡

⎢

⎢

⎣

| | | | | |

𝟏 𝑇𝑖 𝑃 𝑇𝑖 ⊙ 𝑇𝑖 𝑃 ⊙ 𝑃 𝑇𝑖 ⊙ 𝑃
| | | | | |

⎤

⎥

⎥

⎦

(15)

where 𝟏 ∈ R𝑚 is a column vector of ones that serves as the bias term in
linear regression, and ⊙ denotes element-wise multiplication except in
the term 𝑇𝑖 ⊙𝑃 , where it denotes element-wise multiplication between
the 𝑖th temperature state variable vector and each lamp group’s power
control vector, i.e., 𝑇𝑖 ⊙ 𝑃 = [𝑇𝑖 ⊙ 𝑃1 𝑇𝑖 ⊙ 𝑃2 𝑇𝑖 ⊙ 𝑃3]. As a
result, 𝛩𝑖(𝑇𝑖, 𝑃 ) is the R𝑚×12 feature map matrix of 𝑇̇𝑖. To improve
the conditioning of the sparse identification problem, each candidate
function/column in 𝛩(𝑇 , 𝑃 ) is multiplied by an additional coefficient
to standardize all columns to a comparable scale. For this work, the
regularization parameter 𝜆 is set as 0.01.

The choice of basis functions is highly dependent on the system un-
der consideration. The natural occurrence of polynomials and trigono-
metric functions in engineering systems makes them an appropriate
first choice for the basis functions when using SINDy (Brunton et al.,
2016). However, the basis set can and should be adapted based on
both performance of the method and, more importantly, any prior
knowledge of the system dynamics. For example, for chemical re-
actors, the temperature-dependence of the reaction kinetics is based
on the Arrhenius law, which suggests using exponential terms in the
reactor temperature dynamic equation in the SINDy library (Abdullah
and Christofides, 2023). Conversely, trigonometric functions form an
appropriate basis for power systems (Stanković et al., 2020). In the
ALE process studied, since quadratic polynomials were sufficient to
accurately capture the system dynamics when used in conjunction with
the proposed data reconstruction scheme, no other basis functions were
considered.

The accuracy of the trained SINDy model can be represented by
derivative fitting plots and state prediction plots. The derivative fitting
plot for when the lamp power is set at a uniform 2000 W/m2 is shown
in Fig. 6(a), which demonstrates that the trained SINDy model fits
well to the derivative data. The state prediction plot is illustrated
in Fig. 6(b), and it compares the true and predicted temperatures. The
predicted trajectory is obtained by integrating the trained SINDy model
using the explicit Euler method from the same initial temperature
measurement as the true data. By examining the state prediction plot,
the predicted temperature from the model is 8.81 K lower than the true
7

temperature at the end of the trajectory at 𝑡 = 20 s. As the total change
in temperature for the true trajectory is 190 K, this represents an error
of less than 5% error compared to the true trajectory. Furthermore,
while the entire 20 s of the prediction in Fig. 6(b) is initialized once
from the temperature at 𝑡0, in practice, when the SINDy model is
incorporated into a model-based controller, it will typically predict over
much smaller time periods than 20 s with a single initialization, which
will yield much smaller errors. Overall, the results suggest that the
dynamic model developed fulfills the requirement of the controller.

4. Model predictive control

Model predictive control is an optimization-based advanced control
strategy that utilizes a dynamic model to predict the future values of the
state variables and then optimizes a cost function to find the optimal
control action. The general formulation of model predictive controller
is shown in the following set of equations:

min
𝑢(𝑡)∈𝑆(𝑡𝑠) ∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(𝑥̃(𝜏), 𝑢(𝜏)) 𝑑𝜏

s.t. ̇̃𝑥(𝑡) = 𝑓 (𝑥̃(𝑡), 𝑢(𝑡))

𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 )

𝑔MPC,1(𝑥̃(𝑡), 𝑢(𝑡)) = 0

𝑔MPC,2(𝑥̃(𝑡), 𝑢(𝑡)) ≤ 0

here 𝐿(𝑥̃, 𝑢) is the cost function to be optimized, 𝑢(𝜏) is the set of
ontrol actions and inputs that the controller receives, 𝑓 (𝑥̃, 𝑢) is the
ynamic model used for state prediction, 𝑥̃(𝑡) is the predicted state
ariable, 𝑥(𝑡𝑘) is the measured state variable from the physical system
t time 𝑡𝑘 where [𝑡𝑘, 𝑡𝑘+𝑁 ) represents the prediction horizon in model
redictive control, and 𝑔MPC,1 and 𝑔MPC,2 denote equality and inequality
onstraints, respectively.

Model predictive control has received recognition for commercial
pplications because of its advantages over traditional controllers (Qin
nd Badgwell, 1997). Unlike traditional controllers that implement con-
rol based on the feedback of offsets, such as the proportional–integral
PI) controller, an MPC foresees the future state values to make opti-
ized control actions. PI controllers may encounter difficulties when

rying to achieve a fast response with minimal overshoot due to their
eliance on the continuously updated integral term to eliminate bias.
n the other hand, with the predictions made by the dynamic process
odel, the MPC is able to optimize the control actions to quickly reach

he setpoint while eliminating severe overshoots. Moreover, the MPC
s capable of controlling highly nonlinear processes with constraints
n the control actions and states, which is challenging for traditional
inear controllers that cannot explicitly account for the presence of
onstraints (Garcia et al., 1989; Mayne, 2014). Model predictive control
lso offers flexibility in the control objectives, as the cost function
an be customized to optimize for a variety of objectives, such as to
aximize a profit or yield function in economic MPC.

.1. Implementation of model predictive controller

In order to implement model predictive control, it is necessary
o define the sampling time and prediction horizon and construct
he cost function and constraints for the state and control variables.
he sampling time 𝑡𝑠 is set to 0.2 s in this work, signifying that the
emperature is measured every 0.2 s, and the control action is applied
nd held constant for 0.2 s until the next control action is applied. The
rediction horizon is set to 3 in this work, denoting that the controller
orecasts three sampling periods (0.6 s) to calculate the cost function
or optimization. The cost function and constraints used in the MPC are
escribed below:

ost Function: 𝐿(𝑇 , 𝑃 ) =
4
∑

(𝑇𝑖(𝑡) − 573)2 + 𝛽
3
∑

(𝑃𝑗 (𝑡) − 𝑃 𝑠𝑠
𝑗 )2 (16)
𝑖=1 𝑗=1
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Fig. 6. (a) Derivative fitting and (b) state prediction plots for checking model performance. The fitted line in (a) closely aligns with the original data, suggesting that the SINDy
model successfully captures the system dynamics. The fitted line in (b) shows strong correspondence between the predicted temperature and original data, where the maximum
absolute error is 8 K when predicting 20 s of temperature.
w
w
t
t
o
o
c

Input Magnitude Constraint: 𝑃𝑗 ∈ [0, 5000] W/m2 (17)

Input Rate of Change Constraint: |

|

|

𝑃𝑗 (𝑡 + 𝑡𝑠) − 𝑃𝑗 (𝑡)
|

|

|

≤ 250 W/m2 (18)

where 𝑇𝑖(𝑡) is the predicted value of the measured temperature on
inspection point 𝑖 at time 𝑡; 𝑃𝑗 (𝑡) denotes the power of lamp group 𝑗 at
time 𝑡, as the power is adjusted at the start of each sampling period. The
cost function consists of two components. The first term is the sum of
squared differences between the predicted temperatures and the target
temperature of 573 K. The predicted temperatures are calculated by
integrating the SINDy model using the explicit Euler method starting
at the state measurement at 𝑡 = 𝑡𝑘. The second component is the
sum of the squared differences between the optimized lamp power and
the assigned steady-state values. The second term serves as a steady-
state regularization on the input lamp power, where 𝛽 is a tunable
coefficient. A high 𝛽 value drives the optimized lamp power closer
to the assigned steady-state value, while a small 𝛽 value encourages
a lamp power that minimizes the deviation between the predicted
and target temperatures. Based on extensive tests, 𝛽 = 1 ⋅ 10−4 is
used for involving moderate influence of the steady-state power in the
optimization process to reach the target quickly while keeping stability
at the same time. The upper bound of lamp power and maximum
adjusting rate are set to 5000 W/m2/s and 250 W/m2/s, respectively, to
account for physical constraints in practical lamps. The Python package
CyIPOPT is used for solving the constrained nonlinear optimization
problem to obtain the optimized lamp power.

4.2. Feedback-based time-varying steady state in MPC

It is important to note that both the reactor and wafer are at room
temperature at 𝑡 = 0. The components of the reactor are simultaneously
heated with the wafer by the lamps via radiative heat transfer. The
walls of the reactor and the lamp surfaces also contribute to additive
amounts of radiation through reflection, emission, and transfer of
external radiation. As a result, the temperature of the environment
around the wafer changes continuously as ambient surface tempera-
tures rise with time. This changing nature of the ambient temperature
implies that the required ‘‘steady-state’’ power is not constant during
the process, i.e., the power required to maintain the wafer at the target
temperature is unique at any given time. From a modeling perspective,
the same input vectors of surface temperatures and lamp powers can
produce completely different temperature derivatives as the incoming
energy from the reactor and environment is continuously changing.
Moreover, since reconstructed data was used during the training of the
process model, deviations exist between the reconstructed derivative
data and the original derivative data, particularly in the initial region,
which also must be accounted for in the controller. Consequently, a
novel approach of a feedback-based time-varying steady-state 𝑃𝑠𝑠 (VSS)
is proposed where the steady-state lamp power is dynamically adjusted
8

to accommodate the continuously changing temperature of the wafer 5
Algorithm 1: Feedback-Based Time-Varying Steady-State Update

Data: 𝑡; 𝑇𝑡; 𝑆𝑜𝑙𝑑 ; 𝑃 𝑠𝑠
𝑜𝑙𝑑

Result: 𝑆new; 𝑃 𝑠𝑠
new

Parameters: 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙; 𝑃

𝑠𝑠
0 ; 𝛥𝑃

/* Read 𝑡, 𝑇𝑡 from simulation of last sampling
time */

/* Read 𝑆𝑜𝑙𝑑, 𝑃 𝑠𝑠
𝑜𝑙𝑑 from saved text file */

1 if 𝑡 ≤ 50 s then
2 𝑆new = 0;
3 else if min(𝑇𝑡) ≤ 571.0 K and 𝑆𝑜𝑙𝑑 = 0 then
4 𝑆new = 1;
5 else if max(𝑇𝑡) ≥ 574.5 K and 𝑆𝑜𝑙𝑑 = 1 then
6 𝑆new = 0;
7 else
8 𝑆new = 𝑆𝑜𝑙𝑑 ;

/* Switch variable 𝑆new is updated */

9 if 𝑃 𝑠𝑠
𝑜𝑙𝑑 ≤ 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙 then
10 𝑃 𝑠𝑠

new = 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙;

11 else if 𝑡 ≤ 2.5 s then
12 𝑃 𝑠𝑠

new = 𝑃 𝑠𝑠
0 ;

13 else if 𝑆new = 0 then
14 𝑃 𝑠𝑠

new = 𝑃 𝑠𝑠
𝑜𝑙𝑑 − 𝛥𝑃 ⋅ 𝑑𝑡;

15 else if 𝑆new = 1 then
16 𝑃 𝑠𝑠

new = 𝑃 𝑠𝑠
𝑜𝑙𝑑 ;

/* New steady-state power 𝑃 𝑠𝑠
new is updated */

/* Send 𝑃 𝑠𝑠
new to CFD simulation */

/* Write 𝑆new, 𝑃 𝑠𝑠
new to saved text file */

environment and compensate for the derivative differences. The VSS
algorithm is described in Algorithm 1.

In the VSS algorithm, the steady-state power is initialized with lamp
powers of 𝑃 𝑠𝑠

0,1 = 𝑃 𝑠𝑠
0,2 = 2400 W/m2, 𝑃 𝑠𝑠

0,3 = 5000 W/m2 and kept constant
hen 𝑡 ≤ 2.5 s to a achieve a quick response at the start of the time
hen the reactor is cool. Afterward, a switch variable 𝑆 is introduced

o serve as an indicator of the system status. For the first 50 s, 𝑆 is set
o 0 to allow the steady-state power to continuously decrease at a rate
f 𝛥𝑃1 = 𝛥𝑃2 = 8.1 W/m2/s, 𝛥𝑃3 = 4.6 W/m2/s to avoid a potential
vershoot and account for the heated reactor. The temperature is
onstantly monitored, and if the minimum temperature is lower than
71.0 K, the system indicator variable 𝑆 changes from 0 to 1, and
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Fig. 7. Temperature profiles with open-loop control strategy, where the lamp power is fixed at 𝑃 𝑠𝑠
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𝑃 𝑠𝑠 stops decreasing to allow the temperature to gradually increase
back towards the target temperature until the maximum temperature
measured on the inspection points is higher than 574.5 K, which is
when 𝑃 𝑠𝑠 resumes decreasing. These two critical temperatures are
within the bounds of the acceptable range of [570, 576] K and are
xpected to enable the VSS strategy to control the temperature within
he range of 𝑇 ∈ [571.0, 574.5] K at all times. The power is expected to
each 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙 = [𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,1 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙,2 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,3] = [400 400 3866] W/m2 when the

ystem reaches the final steady-state condition after a sufficiently long
ime. 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙 has been verified to produce a uniform temperature profile
round the target temperature through an independent steady-state
imulation.

. Results and discussion

.1. Open-loop control performance

The open-loop control strategy fixes the lamp power at 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙, where

he transient temperature profile is shown in Fig. 7. With this setup, the
afer temperature only reaches the target temperature after 2000 s of

process time. 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙 is defined as the power used in this final steady-

state scenario where the reactor is thoroughly heated up. Of note is
that, in this situation, the power required to maintain a steady-state is
much lower than during the initial stage of the reactor. As a result, the
temperature increases rapidly during the initial stage and very slowly
afterward due to the colder reactor temperature at 𝑡 = 0. The overall
response is unacceptably slow and prevents practical implementation
of the open-loop control strategy. In addition, the uniformity of the
temperature on the wafer surface is not within an acceptable range of
the temperature setpoint (±3 K) for most of the time. Consequently, a
feedback controller must be implemented to improve the performance.

5.2. Closed-loop performance with fixed steady-state power

In closed-loop control, the measured wafer surface temperature is
fed to the controller, which is then used by the MPC to compute
the optimal control actions to transmit to the lamp. In the current
process, the controller development is challenging due to the changing
environment in the reactor and the use of reconstructed training data.
Specifically, the cost function of Eq. (16) constitutes of a state penalty,
which is the first term, and an input penalty, which is the second term.
We consider two cases for the steady-state power in the input penalty
term, 𝑃 𝑠𝑠

𝑗 .
Figs. 8 and 9 depict the closed-loop wafer temperature and lamp

power profiles, respectively, under the MPC when using a fixed steady-
𝑠𝑠
9

state power of 𝑃𝑓𝑖𝑛𝑎𝑙 in the MPC cost function. From Fig. 8, it can
be observed that the wafer surface temperature is not uniform for
most of the process duration as the difference between maximum and
minimum temperatures measured on inspection points is over 6 K. This
phenomenon is attributed to the low power of the center and edge
lamps compared to the side lamps, as the ratio of 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙,1, 𝑃
𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,2 to

𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,3 is about 1 to 10, as shown in Fig. 9. However, it is worth
entioning that the uniformity improves continuously with time as

he reactor gradually heats up. The slow response is attributed to the
act that the final steady-state power, 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙, calculated using a steady-
tate simulation, corresponds to the case where the whole reactor
s thoroughly heated up to reach their steady-state temperature in
onjunction with the wafer, which is far from the case for most of
he process duration. This is because both the reactor walls and lamps
tart at room temperature (298 K) at 𝑡 = 0 s, alongside the wafer.
he input profile demonstrated in Fig. 9 shows that the powers of
he center and edge lamps, 𝑃1 and 𝑃2, are significantly lower than
he power of the side lamp, 𝑃3. The low center and edge lamp power
esults in the phenomenon in Fig. 8, where the center temperature
s much lower than the edge temperature, resulting in poor unifor-
ity. Nevertheless, the closed-loop controller performance surpasses

hat of the open-loop control case, as the temperature of the closed-
oop controller is much closer to the target temperature for any given
ime. Under the MPC, the temperature at two inspection points on the
afer reached a temperature of over 570 K at 𝑡 = 1000 s, while, in
pen-loop, all inspection points on the wafer are under 550 K at 𝑡 =
000 s. This case study demonstrates the effectiveness of an MPC over
he open-loop control strategy, even if the convergence to the target
emperature of 573 K occurs more slowly than desired. Additionally,
n observable feature of Figs. 8 and 9 the oscillatory-like behavior in
articular times is originated from the numerical CFD simulation that
roduces converged solutions when residual tolerances are met. The
esulting error generates chattering in the temperature profiles that
imultaneously affects the MPC action. However, to prevent the drastic
ttenuation in the temperature rise after the first 20 seconds, next, we
onsider a second case of using a higher steady-state power in the input
enalty term, 𝑃 𝑠𝑠

0 .
Figs. 10 and 11 demonstrate the closed-loop state and input profiles,

espectively, under MPC when using a fixed steady state power of 𝑃 𝑠𝑠
0 in

he cost function of the MPC. As expected, the controller with the high
ixed steady-state power penalty cannot capture the target temperature
nd final steady-state. However, it significantly reduces the time it
akes the wafer surface temperature to reach the target temperature.
n addition, with the steady-state power set to 𝑃 𝑠𝑠

0 , the ratios 𝑃 𝑠𝑠
1 ∕𝑃 𝑠𝑠

3
nd 𝑃 𝑠𝑠

2 ∕𝑃 𝑠𝑠
3 are reduced to between 1 and 2, which causes the spatial

niformity in temperature to worsen as the system evolves, and the
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Fig. 8. Temperature profile under closed-loop MPC with steady-state power in input
penalty term fixed at 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙 . This performance surpasses open-loop control since the
emperature is closer to target. The gray middle dashed line is the target temperature;
he two red solid lines on the bottom and top are boundaries of control range around
he target. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Fig. 9. Lamp power profiles under closed-loop MPC with steady-state power in input
penalty term fixed at 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙 . The low power for the center (𝑃1) and edge (𝑃2) lamps
compared to the power of the side lamp (𝑃3) corresponds to the phenomenon that the
center temperature is significantly lower than the edge temperature in Fig. 8, which is
attributed to a low 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙,1 and 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,2.

emperatures to vary by more than 6 K between inspection points soon
after the initial rise. This phenomenon is reflected in the control actions
in Fig. 11, where the center lamp power is much higher than in the low
fixed steady-state case. However, as the system continues to evolve,
the high center-to-edge power ratio results in a much higher center
temperature than the edge and also severe overshoot because of the
high total lamp power.

By combining the observations from the low fixed steady-steady
power and the high fixed steady-state power cases, it can be proposed
that a time-varying steady-state power is necessary to fulfill the re-
quirements of a fast response, small overshoot, and spatial temperature
uniformity at all times.

5.3. Closed-loop performance with feedback-based time-varying steady-
state in MPC

The time-varying steady-steady power controller defined in Algo-
rithm 1 has a temperature output as shown in Fig. 12. Under the VSS
approach, the temperature successfully reaches the target value of 573
K within 10 s, which is as fast as the high fixed steady-state power
penalty case. After reaching the target temperature and overshooting a
minor amount, which is below the upper threshold limit, the continu-
ously decreasing steady-state power gradually drives the wafer surface
temperature back towards the temperature setpoint. After the lowest
measured temperature on the wafer reaches the lower temperature
10

s

Fig. 10. Temperature profile under closed-loop MPC with steady-state power in input
penalty term fixed at 𝑃 𝑠𝑠

0 . The plotting criterion is identical to that used in Fig. 8. The
ystem response is quicker, but severe overshoot occurs due to a higher total lamp
ower.

.

Fig. 11. Lamp power profiles under closed-loop MPC with steady-state power in input
penalty term fixed at 𝑃 𝑠𝑠

0 . The center lamp power (𝑃1) is significantly higher than that
observed in Fig. 9 because 𝑃 𝑠𝑠

0,1 and 𝑃 𝑠𝑠
0,2 have a larger magnitude than 𝑃 𝑠𝑠

𝑓𝑖𝑛𝑎𝑙,1 and 𝑃 𝑠𝑠
𝑓𝑖𝑛𝑎𝑙,2,

hich results in a higher center temperature than the edge temperature in Fig. 10.

hreshold of 571.0 K, the VSS controller stops decreasing the steady-
tate power and successfully moves the temperature back to target. The
SS controller then resumes decreasing the steady-state power when

he highest wafer surface temperature reaches the upper temperature
hreshold of 574.5 K, and successfully brings the temperature back to
he target. The control logic of the VSS controller is observed in the con-
rol action in Fig. 13, where the inflection points are observed on lamp
ower curve when plotted against time, which indicates that the VSS
lgorithm does exhibit start-stop behavior when decreasing the steady-
tate lamp power as described above. Throughout the whole process,
nd especially after the initial stage, the temperature is well-controlled
ithin the accepted region, and uniformity is also well-maintained.
rom Fig. 12, it is seen that the VSS controller greatly surpasses the
ixed steady-state controller in terms of controller performance.

. Conclusion

In this work, we developed a 2-D transient energy model for a
hermal atomic layer etching (ALE) reactor with a radiative lamp
eating system that consists of three groups of independently controlled
eating lamps. A data-driven dynamic model that predicts the system
ehavior is generated through sparse identification (SINDy) with an
pen-loop dataset consisting of 10 trajectories. A model predictive
ontroller (MPC) that relies on the generated dynamic model is then
pplied to both the reactor and wafer, with the goal of driving the

ystem from room temperature to the target temperature of 573 K. The
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Fig. 12. Temperature profile under closed-loop MPC with the feedback-based time-
varying steady-state (VSS) power approach. The temperatures reach the target within
10 s and are kept within the acceptable range as desired. The blue dotted lines are the
lower and upper temperature bounds (571.0 K, 574.5 K) for the VSS to stop or resume
decreasing 𝑃 𝑠𝑠 in the cost function of the MPC formulation.

Fig. 13. Lamp power profiles under closed-loop MPC with the feedback-based time-
arying steady-state (VSS) power approach. The red points indicate that VSS stops
ecreasing 𝑃 𝑠𝑠 in MPC cost function, while green points indicate resume decreasing.
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

pen-loop controller strategy showed a slow response with poor tem-
erature uniformity. An MPC was implemented with two settings for
he input penalty term in the objective function, one with a low fixed
teady-state power and one with a high fixed steady-state power. While
he former MPC resulted in a faster response and better uniformity
han that of the open-loop, the latter produced a rapid response but
vershot heavily. Therefore, a feedback-based time-varying steady-state
VSS) power penalty approach was proposed, where the MPC gradually
ecreases the steady-state power from an initial high value based on the
afer surface temperature and process conditions. The VSS approach

uccessfully achieved a fast response and kept the temperature within
n acceptable range for the entire duration of the process.
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