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Abstract

Global address space languages like UPC exhibit high
performance and portability on a broad class of shared and
distributed memory parallel architectures. The most scal-
able applications use bulk memory copies rather than in-
dividual reads and writes to the shared space, but finer-
grained sharing can be useful for scenarios such as dy-
namic load balancing, event signaling, and distributed hash
tables. In this paper we present three optimization tech-
niques for global address space programs with fine-grained
communication: redundancy elimination, use of split-phase
communication, and communication coalescing. Parallel
UPC programs are analyzed using static single assignment
form and a dataflow graph, which are extended to han-
dle the various shared and private pointer types that are
available in UPC. The optimizations also take advantage of
UPC’s relaxed memory consistency model, which reduces
the need for cross thread analysis. We demonstrate the ef-
fectiveness of the analysis and optimizations using several
benchmarks, which were chosen to reflect the kinds of fine-
grained, communication-intensive phases that exist in some
larger applications. The optimizations show speedups of up
to 70% on three parallel systems, which represent three dif-
ferent types of cluster network technologies.

1 Introduction

Partitioned Global Address Space (PGAS) languages
have emerged as a promising alternative to the traditional
message passing model for parallel applications. De-
signed as parallel extensions for popular sequential pro-
gramming languages, PGAS languages such as UPC [12],
Titanium [36], and Co-Array Fortran [25] provide better
programmability through the support of a user-level global
address space, leading to more flexible remote accesses
through language-level one-sided communication. This hy-
brid approach can potentially achieve a good balance be-
tween programmability and performance; PGAS languages

offer a more convenient and productive programming style
compared to explicit message passing (e.g., MPI [22]), and
achieve better performance than the pure shared memory
model (e.g., OpenMP [27]) because programmers retain ex-
plicit control of data placement and load balancing. An-
other virtue of PGAS languages is their portability: UPC
implementations are now available on most platforms, rang-
ing from single processors, shared memory multiproces-
sors, generic clusters, and supercomputers [1, 29, 13, 9, 7].

Global address space languages offer a convenient pro-
gramming style, especially for programs with fine-grained
data sharing that can be cumbersome in a message pass-
ing style. Fine-grained remote accesses, however, are in-
herently expensive operations on distributed memory ma-
chines with high latency networks. Since the compiler as-
sumes the responsibility of communication code generation
for PGAS languages, the absence of efficient communica-
tion optimizations could result in poor performance for pro-
grams that employ fine-grained communication in cluster
environments, where a remote memory access is orders of
magnitude slower compared to a local memory operation.
A naive code generation scheme turns every remote read
and write into a blocking round-trip network transfer, which
correctly implements a shared memory model but is not ef-
fective for fine-grained programs. To improve the perfor-
mance of fine-grained programs, compilers must reduce the
number, volume, and latencies of the message traffic on be-
half of the programmer. For PGAS languages, the following
optimizations are particularly important for lowering com-
munication overhead:

• Redundancy elimination: A well-known se-
quential optimization, redundancy elimination is also
critical for shared memory accesses in PGAS lan-
guages, since expensive communication operations
may be disguised as such accesses. Redundancy elim-
ination may also be used to avoid some of the book-
keeping overhead of a shared address space.

• Split-phase communication: On message-
passing networks, communication routines are split-



phase by nature; an init call initiates the operation, and
a subsequent sync call ensures the delivery of data on
the remote side. By separating the initiation of a re-
mote memory access as far away as possible from its
completion, its latency can be hidden through the over-
lapping of communication and computation as well as
message pipelining. This capability is especially rele-
vant for UPC, which currently offers no nonblocking
communication operations at the language level.

• Message coalescing: Coalescing small puts and
gets into large messages can be a valuable optimiza-
tion, due to the significant savings of the per-message
startup overhead. The data referenced by two remote
memory accesses may exhibit either temporal locality
(overlap) or spatial locality (belong to the same array
or struct), so that a single network transfer would suf-
fice.

In this paper, we describe an optimization framework for
fine-grained UPC applications that includes all three opti-
mizations. Using the SSA representation from the Open64
compiler [26], our analysis can support both pointer and
array-based shared memory accesses. First, we propose a
simple SSA-based partial redundancy elimination (PRE) al-
gorithm to optimize the expensive shared pointer arithmetic
operations in UPC. The algorithm is next extended to gener-
ate split-phase communications for shared read expressions
by propagating their init operations upwards in the control
flow graph. The optimization achieves both communica-
tion latency hiding and elimination of redundant messages,
as consecutive remote reads are merged. For remote writes
the analysis applies a path-sensitive algorithm to propagate
their sync operations downward. Finally, a coalescing op-
timization combines the nonblocking communication calls
generated by the split-phase communication analysis to re-
duce the number of messages and thus save on message
startup overhead. The correctness of these optimizations
rely on the relaxed UPC memory consistency model, as they
change the order of shared memory operations, which may
be visible to other threads.

The communication optimizations have been imple-
mented in the Berkeley UPC Compiler [4]. The optimiza-
tions were evaluated with a number of irregular UPC bench-
marks that employ a variety of communication patterns, in-
cluding nearest neighbor exchange, random table lookup,
and dynamic access to sparse data structures. Experimen-
tal results collected on three popular network interconnects
suggest that our optimization framework can achieve signif-
icant performance improvement for common fine-grained
communication patterns, offering speedup as high as 70%.

The rest of the paper is organized as follows. Section 2
presents background information about UPC and the Berke-
ley UPC compiler. Section 3 describes the compiler algo-

rithms for the three optimizations. Section 4 presents ex-
perimental results for a number of fine-grained UPC bench-
marks on different network interconnects. Section 5 dis-
cusses related work while Section 6 concludes the paper.

2 Background

2.1 Unified Parallel C

UPC is a parallel extension of the ISO C programming
language aimed at supporting high performance scientific
applications. The language adopts the SPMD programming
model, so that every thread runs the same program but keeps
its own private local data. In addition to each thread’s pri-
vate address space, UPC provides a shared memory area to
facilitate communication among threads, and programmers
can declare a shared object by specifying the shared type
qualifier. While a private object may only be accessed by its
owner thread, all threads can read or write data in the shared
address space.

Pointers in UPC can be classified based on the locations
of the pointers and of the objects they point to. Accesses
to the private area behave identically to regular C pointer
operations, while accesses to shared data are made through
a special pointer-to-shared construct. The speed of local
shared memory accesses will be lower than that of private
accesses due to the extra overhead of determining affin-
ity, and remote accesses in turn are typically significantly
slower because of the network overhead.

UPC gives the user direct control over data placement
through memory allocation and distributed arrays. When
declaring a shared array, programmers can specify a block
size in addition to the dimension and element type, and
the system uses this value to distribute the array elements
block by block in a round-robin fashion over all threads.
A pointer-to-shared thus needs three logical fields to fully
represent the address of a shared object: address, thread id,
and phase. The thread id indicates the thread that the object
has affinity to, the address field stores the object’s “local”
address on the thread, while the phase field gives the offset
of the object within its block.

2.2 The Berkeley UPC Compiler

Figure 1 shows the overall structure of the Berkeley UPC
Compiler [1], which is divided into three main components:
the UPC-to-C translator, the UPC runtime system, and the
GASNet communication system. During the first phase of
compilation, the Berkeley UPC compiler translates UPC
programs into C code in a platform-independent manner,
with UPC-related parallel features converted into calls to
the runtime library. The translated C code is then com-
piled using the target system’s C compiler and linked to the
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Figure 1. Architecture of the Berkeley UPC
Compiler.

runtime system, which performs initialization tasks such as
thread generation and shared data allocation. The Berke-
ley UPC runtime delegates communication operations such
as remote memory accesses to the GASNet communication
layer, which provides a uniform interface for low-level com-
munication primitives on all networks.

The compiler algorithms described in this paper have
been implemented in the Berkeley UPC-to-C Transla-
tor [1]. The translator is derived from the Open64 Com-
piler Suite [26], an open-source collection of optimizing
compiler tools. Major components in Open64 include front
ends for C/C++/Fortran 90, a loop-nest optimizer (LNO), a
global scalar optimizer (WOPT), and a code generator for
the Itanium architecture. Our optimizations utilize Open64
features such as the Static Single Assignment (SSA) repre-
sentation and the pointer analysis.

2.3 Runtime Support and Hardware Testbed

The translator converts UPC shared memory accesses
into runtime function calls that may require communication
if the requested data are remote. For the purposes of this pa-
per, our communication optimizations target the following
simple one-sided communication interface:

sync_t get(void *dest, shared void *s,
size_t n);

sync_t put(shared void *dest, void *s,
size_t n);

void sync(sync_t handle);

Both get and put are nonblocking memory-to-memory
operations, transferring n bytes of data and returning an ex-
plicit synchronization handle. The sync function blocks un-
til the operation corresponding to the supplied handle com-
pletes. Synchronization of a get operation implies the local
dest (usually a stack temporary) now contains the value of

the remote address; synchronization of a put means that the
remote dest has been updated with the content of the local
source. This generic interface can be implemented on top of
any of today’s high-performance networks, but also means
that compiler has the responsibility of managing handles
and issuing synchronization calls at the right place. Specif-
ically, every get and put must be explicitly synchronized
exactly once in the function it appears in.

Performance results were collected on the supercom-
puter clusters listed in Table 1, covering the three popular
high-performance networks. Get and Put in Table 1 refer
to the cost of executing an 8 byte blocking access in our
runtime. Add refers to the overhead of pointer arithmetic
on a generic UPC pointer-to-shared. From the table it is
clear that shared address calculation is another source of
performance slowdown for UPC code. Since UPC pointers-
to-shared are represented as opaque types internally in the
translator to achieve maximal portability, shared pointer
arithmetic is implemented as a runtime function. Pointer
arithmetic on shared addresses is inevitably slower than reg-
ular C pointer operations, since a pointer-to-shared contains
three fields, all of which may be updated during pointer ma-
nipulations. Furthermore, since such expressions are con-
verted into function calls in the translated output, the back-
end C compiler likely will have difficulties optimizing them.

3 Compiler Algorithms

UPC extends the ISO-C99 type system with the notion
of shared data types, which encapsulate information about
data layout. Pointer-to-shared variables in UPC are thus al-
most as expressive as normal C pointers, and can gener-
ally appear anywhere in the code where it is legal for a C
pointer. Within the Open64 framework, our translator ex-
tends only the type system and uses the same internal pro-
gram representation for shared expressions, which are dis-
tinguished based on their types. This design decision allows
us to transparently reuse some of the analyses and the opti-
mizations already present in the framework.

The analyses presented in this paper are performed on
the Hashed SSA (HSSA) program representation from [6].
This representation uniformly handles both scalar variables
and indirect memory references, and allows a transpar-
ent extension of optimization passes developed for scalar
variables to handle indirect accesses, e.g.,*p, *(p+1),

**p, p->x. HSSA uses a global value numbering ap-
proach to build a sparse program representation that cap-
tures the aliasing information for both scalar and indirect
memory reference expressions. Our work builds on prior
HSSA results [37, 2] by extending HSSA to handle both
pointer and array expressions.

We present the following analyses: 1) partial redundancy
elimination (PRE) for pointer arithmetic on shared types



System Processor Network Software Get Put Add
Alpha/Elan 1GHz Alpha Quadrics Elan 3 Tru64 V5.1, gcc 3.4.0 7us 6.5us 110ns
Opteron/VAPI 2.2GHz Opteron Infiniband 4X Linux 2.6.5, gcc 3.3.3 11.6us 8.4us 72ns
Itanium2/GM 900MHz Itanium2 Myrinet GM 1.6.5 Linux 2.4.18, gcc 3.4.3 26us 16us 220ns

Table 1. Machine summary

and shared memory accesses; 2) split-phase optimizations
to separate the initiation of a memory access from its com-
pletion; and 3) a coalescing optimization that combines in-
dividual messages.

While Open64 includes a powerful PRE optimization [5]
(SSAPRE) in its global optimizer, for practical reasons our
optimization is implemented as a separate pass. Since the
cost of a remote load/store is orders of magnitude slower
than a local one, our analysis must go beyond redundancy
elimination and apply communication optimizations such as
split-phase communication and coalescing. Second, the SS-
APRE implementation does not correctly preserve the type
information associated with the expressions it eliminates.
This type information is needed in a later compiler pass that
generates runtime calls. While our optimization is not as
powerful as SSAPRE and might miss some optimization
opportunities, it handles uniformly both pointer-to-shared
arithmetic and load/store operations on shared data. We
have found it to work well in practice.

The goal of the split-phase optimizations is to separate
the initiation of a communication operation (get,put) as far
apart from its synchronization (sync) as possible, while pre-
serving data and control dependencies. This minimizes the
chance that the sync call will waste time blocking for com-
pletion, and allows other communication and computation
to be overlapped with the latency of the remote access. In
the case of remote reads, downward code motion of syncs is
limited by the fact that the value will immediately be needed
in the absence of code scheduling, an optimization gener-
ally ineffective at the source level. Upward code motion
of the get operations is not subject to such constraint; we
can “prefetch” the remote value by issuing the initiation ear-
lier in the program. A reverse situation applies for remote
writes. While the upward movement of the initiation is lim-
ited by the availability of the rhs value, we can still generate
split phase communication by moving the synchronization
operation later in the program.

3.1 Optimizing Shared Pointer Arithmetic

The analysis begins with a mark phase that iterates
through all statements in a function and finds distinct shared
pointer arithmetic expressions. HSSA’s global value num-
bering uses a single node to represent expressions that com-
pute the same value, which makes it trivial to identify the
static occurrences of an expression. If the expression is

i2 = …

p1 = foo();

i3 = Φ(i2,i1)

… *(p1+i3)

… *(p1+i3)

i2 = …

p1 = foo();

i3 = Φ(i2,i1)
t = p1+i3

… *(t)

… *(t)

Def point for (p1+i3)

After OptimizationBefore Optimization

Figure 2. Redundancy Elimination for Shared
Pointer Arithmetic.

computed more than once in the program, we consider it to
be potentially redundant and determine the earliest point in
the function where the expression can be computed1. This
can be done in two steps. First, we collect the definition
point for all variables and indirect loads that appear in the
expression; a definition point can either be an assignment
that explicitly redefines the variable, a statement that may
redefine a variable (e.g., function calls), or a φ-statement in
SSA. Because the program is in SSA form, every variable
and indirect load is guaranteed to have a single definition
that must dominate it. If a variable is never defined inside
the function, we set its definition point to be the function
entry point. In the second step, we perform a merge oper-
ation on the collection of definition points to find the one
that is dominated by all of the rest (i.e., it occurs last). This
point serves as the single definition for the shared pointer
arithmetic expression, since at this point the values of all
variables used by the expression have become available.

The use-def information extracted from the SSA form is
all that is needed for our optimization. Figure 2 illustrates
the transformations of our algorithm. In the example we are
working on the shared pointer arithmetic expression p + i,
which can be computed immediately after the φ-assignment
to i. We thus place the original expression there and assign
its value to a newly created variable. All occurrences of the
expression are then replaced with the temporary. While this

1In SSA, each use of a variable has the same value.



optimization is not always profitable (e.g., the occurrences
of the expression may all be on different paths), the specula-
tion is safe since pointer arithmetic operations will not raise
exceptions. Note also that our approach can handle generic
multi-term pointer arithmetic expressions such as p+i+j.

3.2 Split-phase Communication for Reads

The first step of the analysis is similar to the previous
case, as we also compute the single definition point for ev-
ery shared load. A major difference, however, is that we
cannot simply place the dereference operation at the “ad-
dress” definition point, since it may effectively place com-
munication on a path that does not perform it in the original
code. In a cluster environment, communication operations
on invalid addresses will generate runtime exceptions and
speculative communication movement is unsafe. Further-
more, get in our communication system uses RDMA (re-
mote direct memory access) to copy remote data directly
into a stack-allocated temporary. All outstanding nonblock-
ing reads must thus be synchronized before a function re-
turns to avoid memory corruption, even if the value is never
used. The spurious message traffic can have a significant
performance penalty that outweighs the benefits of the op-
timization.

To prevent speculative code motion, we rely on the con-
cept of anticipated expressions [23]. An expression is an-
ticipatible at program point p if every path from p to exit
evaluates the expression, with nothing in between that could
alter the value of the expression. To achieve safe code place-
ment, a shared read e must be anticipatible at a communica-
tion point, or the program point where a get call is inserted.
We start by inserting exactly one communication point cp in
every basic block that contains uses of e. A communication
point is either located at the top of its basic block, or right
after the definition point if it is contained in the block. It is
clear to see that correctness is guaranteed if a get is placed
at each cp, as every cp has the property that it is dominated
by the definition point and that e is anticipatible at cp. Such
code generation, however, does not maximize the amount of
overlap; for example, in part a) of Figure 3 it is safe to place
the communication before the branch, as ∗p is anticipati-
ble at this point. We solve this problem with a breadth-first
postorder traversal of the basic blocks that propagates com-
munication points upward using the following rule: if all of
a basic block bb’s successors have a communication point,
the communication points are merged into one and moved
to bb. Thus, part a) of figure 3 requires only one communi-
cation point in BB1, while part b) needs two since not all
children of BB1 and BB2 have communication points.

Once the locations of the gets are determined, the corre-
sponding syncs are inserted immediately before every use
of the expression. Synchronization generation is suppressed

foo();

… *p

upc_barrier;

… *p

… *p

BB1 Def pointBB1 Def point
Comm Point

a) b)

… *p
Comm Point

BB2

Comm Point

Figure 3. Split-phase Analysis for Reads.
Communication points correspond to gets,
actual use syncs

if the sync can be statically proven to be redundant (e.g., it
follows another sync for the get in the same basic block).
To ensure that no nonblocking calls are synchronized more
than once, the handle is invalidated after each sync call.

3.3 Split-phase Communication for Writes

A different algorithm is needed for remote writes, pri-
marily because the HSSA representation does not provide
the def-use relation that associates a definition with all of
its uses and killing definition. Instead, we employ a path-
sensitive analysis that minimizes the number of syncs in-
serted. For each shared write w, our analysis examines
paths leading from the statement to function exit, using the
rules shown in Algorithm 1. If a statement that may ref-
erence or modify the shared location is encountered, we
place a sync before the statement and terminate the anal-
ysis for the current path, to prevent the insertion of redun-
dant syncs in subsequent blocks. For example, in part b) of
Figure 4, no sync is needed in BB1, since the shared write
can never reach the block without encountering an earlier
sync (marked by the sync point). Since for each write a ba-
sic block will be examined at most once, the analysis has a
O(n2) running time, where n is the number of expressions.
Finally if a path reaches the exit node, a sync will be is-
sued at function exit (see Figure 4(a) for example). Once
the sync points are determined, a put is inserted to replace
the shared write.

In general, our algorithm will attempt to push the syn-
chronization as far away as possible from the initiation of
the write, with the exception of loops. Our analysis stops
the forward code motion when encountering a loop, to avoid
executing a sync in every iteration. Similarly, the algorithm
avoids propagating sync along the loop back edge, to pre-



Input: a shared write w of the form exp = ...

for every statement s after w in the same block do
if s uses or modifies exp then

insert sync for w before s ;
return ;

end
end
set : a set of basic blocks;
add to set the successors of w’s basic block;
while set is not empty do

Remove a basic block bb from set;
if bb is seen then

continue;
end
for every statement s in bb do

if s uses or modifies exp then
insert sync for w before s;
goto while loop;

end
end
Add bb’s successors to set;

end

Algorithm 1: Optimizing Shared Writes

clude the error of issuing the operation prior to the corre-
sponding put. Loop-invariant code motion is applied in-
stead in the cases where the shared write can be hoisted out
of the loop. Redundant writes can be optimized by the stan-
dard dead-store elimination algorithm in Open64.

3.4 Coalescing Communication Calls

The split-phase placement analysis optimizes shared
accesses individually to hide communication latencies
through overlapping. Message pipelining and communica-
tion and computation overlapping, however, are not the only
ways to reduce communication overhead; by combining the
small gets and puts into larger messages, one can save sig-
nificantly on the per-message startup overhead. Therefore,
following the split-phase analysis, we perform another op-
timization pass to coalesce communication operations.

For remote reads our analysis considers as coalesc-
ing candidates get calls that share the same communica-
tion point; in other words, the gets appear consecutively
(pipelined) in the program without other intervening state-
ments. For each communication point, the algorithm coa-
lesces pair-wisely the accesses get(addr1) and get(addr2),
where addr1 and addr2 are the shared source addresses.
Since our framework handles both pointer based (p→x) and
array based (a[i]) accesses, it is not always possible to de-
termine whether two reads can benefit from coalescing. For

*q = …;

upc_barrier;

Exit

*q = …;

Exit

foo();

a) b)

Sync Point

Sync Point

bar(); foo();
Sync Point

Sync Point

BB1

Figure 4. Split-phase Analysis for Writes.

p = foo();

a). Original UPC code b). After split-phase

= p x;
= p y;

= p y;
= p x;

p   = foo();
h1 = get(&t1, &p x, 8);
h2 = get(&t2, &p y, 8);

sync(h1);
= t1;

sync(h2)
= t2;

sync(h2);
= t2;

sync(h1)
= t1;

p = foo();
h = get(&t, &p->x, 16);

sync(h);
= t[0];
= t[1];

sync(h);
= t[1];
= t[0];

c). After coalescing

shared struct { double x; double y;} *p; 

stack var:  double t1, t2 stack var:  double t[2]

Figure 5. Compiler directed coalescing.

situations where the accesses are to consecutive locations on
the same processor (e.g., p→x and p→y with x and y next
to each other), coalescing is always profitable. Our analy-
sis thus merges the two reads into one nonblocking get that
fetches both elements and stores the results into a stack tem-
porary. The corresponding syncs are also updated to use the
new handle. Figure 5 illustrates the transformation.

When addr1 and addr2 are non-contiguous but still be-
long to the same processor, profitability for coalescing de-
pends on both network performance characteristics and the
distance between the two addresses. Specifically, if the
two accesses are combined into one contiguous transfer, the
amount of extraneous data between the addresses that must
be copied may outweigh the benefit of coalescing. We use
microbenchmarks to determine the tradeoffs between coa-
lescing and pipelining on a network; coalescing is favored
when the distance is below a certain threshold value, and
pipelined communication is used otherwise.

Figures 6 and 7 show the performance difference be-
tween pipelining and coalescing communication for the In-
finiband and Quadrics networks. The microbenchmark used
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performs either two pipelined communication calls with a
variable size (axis y), or a single call to transfer a bound-
ing box containing all the data of interest. The x axis shows
the distance in bytes between the transferred data areas. For
example, the point at (128,1) in the figure shows the perfor-
mance difference between performing two pipelined 8 byte
transfers and a single transfer with size 1024+2*8 bytes. In
the two figures, the series labeled with positive values indi-
cate the scenarios where coalescing is faster than pipelining.
Based on the results, we use a threshold value of 1024 bytes
for the filler space within the bounding box corresponding
to a coalesced transfer.

Such a bounding box method, of course, is just one way
that non-contiguous transfers can be coalesced. An alterna-
tive pack method that communicates only the needed ele-
ments by packing them into a buffer prior to sending may
be preferable depending on network and application char-
acteristics. Our communication interface currently supports
only contiguous transfers, and we are studying the tradeoffs
involved between the two methods.

If the locations of addr1 and addr2 can not be resolved
at compile time, we delay the decision of whether to co-
alesce them until runtime with a different code generation
strategy. A general multi-message call capable of gathering
data from arbitrary source memory regions is introduced to
our communication interface. The function takes as input
an array of the source and destination addresses of the gets,
as well as their corresponding synchronization handles. The
multiple gets associated to a communication point thus can
be collected and issued using the multi-message call. Syncs
that correspond to the original get operations remain in their
original locations. Based on the same coalescing profitabil-
ity model established from microbenchmarks, the runtime

dynamically chooses whether to perform coalescing or not.
If coalescing is not desirable, nonblocking communication
is initiated for each transfer. If coalescing is profitable, the
transfers are coalesced and the runtime is in charge of pro-
viding the extra buffer space required and managing the cor-
rect synchronization of the operations involved.

The algorithm for coalescing remote writes is similar to
that of reads, except that coalescing is only performed on
puts that access contiguous memory locations (i.e., consec-
utive struct fields or array elements). The reason is that coa-
lescing individual writes into a single contiguous store may
cause spurious updates to memory locations that should not
be modified. In [37], Zhu and Hendren present an algorithm
capable of coalescing non-contiguous write operations to
struct fields, by first fetching the “filler” fields in between
that are not written in the original program, then writing the
entire struct back. This transformation is unsafe for SPMD
programs, since other threads may be simultaneously up-
dating the filler fields in the struct.

3.5 Preserving the UPC Consistency Model

One interesting UPC feature is its support for both a strict
and a relaxed memory consistency model [18, 35]. Every
shared access in UPC is type qualified as either “strict” or
“relaxed”, either explicitly or by inferrence from pragmas.
The strict memory model ensures sequential consistency in
that it requires the actual execution of the accesses on each
thread to be consistent with program order [19], while re-
laxed accesses only need to preserve local data dependen-
cies. The difference between the two models is visible only
in a program with a data race, which occurs when two
threads access the same memory location with no ordering



constraints between them, and at least one of the accesses
is a write [24]. UPC provides both memory models and
allows them to be mixed within a single program. Strict op-
erations are not only sequentially consistent with respect to
each other, but they also prevent the movement of certain
relaxed operations past strict accesses. Thus, built-in UPC
synchronization primitives are strict, and programmers may
use strict variables to implement their own synchronization
operations such as full-empty bits.

The compiler transformations presented so far maintain
safety by preserving local data dependencies. Such a no-
tion of correctness, however, is inadequate for parallel pro-
grams, as it does not take into account the restrictions im-
posed by the synchronization constructs on the ordering of
memory accesses. For example, UPC supports barrier syn-
chronization to divide a program into different phases, and
accesses from different phases must execute in program or-
der. In our analysis, we model barriers as black box func-
tion calls that could modify every shared memory loca-
tion, so that any code motion across barriers is prevented.
For lock-based synchronization, we ensure that code exe-
cuted inside the critical section will not be moved outside
the lock protected region. Therefore, the upc lock op-
eration is modeled as a backward code motion barrier that
must complete before subsequent shared memory accesses;
similarly, upc unlock will inhibit forward code motion.
UPC’s memory consistency model also prohibits reorder-
ing of strict reads and writes if they could be observed. To
prevent illegal reordering caused by our optimizations, we
model all strict accesses as we do barriers, i.e., they are
repreanted as if they may modify every shared variable in
the program. This is conservative, but sufficient for UPC
programs in practice, which rarely contain strict accesses
other than the built-in synchronization primitives.

3.6 Example

Figure 8 provides a concrete example of how our com-
piler automatically performs the communication optimiza-
tions. The code is extracted from a fine-grained UPC bench-
mark that performs parallel unbalanced tree search [28], ex-
cept that variable names were shortened to fit in the fig-
ure. The shared arithmetic expression pool[i], which is
computed five time in the original program, has been re-
placed with a temporary variable, eliminating all redundant
address computations. The three individual reads following
the lock operation are coalesced to reduce their communica-
tion overhead, as they access fields in the same struct. The
optimization also correctly conforms to the UPC memory
model by not issuing any of the pipelined reads before the
lock call.

struct node_t {
int workAvail;
int local;
int sharedStart;
…

};

typedef struct node_t Node;
shared Node pool[THREADS];

int steal(Node*s, int i, int k) {

int obsAvail = pool[i].workAvail;
upc_lock(pool[i].stackLock);
victimLocal = pool[i].local;
victimShared = 

pool[i].sharedStart;
victimWorkAvail = 

pool[i].workAvail;
…

/* local storage for coalesced gets */
char _CSE4[12];

/* _ADD1 pool[i] */
_ADD1 = UPCR_ADD (pool, 480048, i);
_sync7 = UPCR_GET(

&_CSE5, _ADD1, 0, 4);
UPCR_SYNC (_sync7);
obsAvail = _CSE5;
_sync9 = UPCR_GET (

&_lock8, _ADD1, 40, 8);
UPCR_SYNC (_sync9);
UPCR_LOCK (_lock8);
_sync10 = UPCR_GET (

&_CSE4, _ADD1, 0, 12);
UPCR_SYNC(_sync10);
victimLocal = *(int*) (_CSE4 + 4);
victimShared = *(int*) (_CSE4 + 8);
victimWorkAvail = *((int*) _CSE4);

Original UPC Code Optimized C output

Figure 8. Sample Code from Optimized Pro-
grams

4 Experimental Results

We evaluate the effectiveness of the optimizations on
communication-intensive UPC code with fine-grained ac-
cesses. The benchmarks were written by researchers out-
side of our group and reflect the kinds of fine-grained com-
munication that is present in larger applications during data
structure initializations, dynamic load balancing, or remote
event signaling.

4.1 Performance Improvements

Figure 9 presents the speedups achieved by our optimiza-
tions over the unoptimized version of the benchmarks. The
benchmarks were executed with one thread per node. Each
benchmark is discussed in more details below.

Gups: The benchmark performs random
read/modify/write accesses to a large distributed ar-
ray, a common operation in parallel hash table construction.
The amount of work is static and evenly distributed among
threads at execution time. The read/modify/write loops in
the benchmark are unrolled to allow for communication
overlap2. Due to the presence of indirect memory accesses,
message coalescing cannot be applied to this benchmark.
Our optimizations improve the benchmark running time
by an average of 13%, across all networks and processor
configurations. The least improvement is observed on the
Quadrics network where execution speeds up by at most
3%. The best improvement is observed on the Infiniband
network, with an improvement of 27%.

2We are currently exploring the heuristics of automatic unrolling in the
presence of communication operations.



Mcop: The benchmark solves the matrix chain multipli-
cation problem [8]. This is a classical combinatorial prob-
lem that captures the characteristics of a large class of par-
allel dynamic programming algorithms. The matrix data
is distributed along columns, and communication occurs in
the form of accesses to elements on the same row. For this
benchmark coalescing is not applicable. Our optimizations
improve the execution time by an average of 32%, across
all networks and processor configurations. Least improve-
ment is observed on the Quadrics network with a value of
26%. Best improvement is observed on the Infiniband net-
work with a value of 60%.

Sobel: The benchmark, whose implementation is de-
scribed in [11], performs edge detection with Sobel oper-
ators (3X3 filters). The image is divided horizontally into
rows of bytes and distributed by block rows, so that com-
munication is required only when the thread is processing
its first and last row of data. Our optimizations are able
to perform read pipelining as well as redundant communi-
cation and pointer arithmetic elimination. This benchmark
exhibits the highest speedup under the optimizations, as its
performance bottleneck is in a short inner loop that is effec-
tively optimized by our compiler. Our techniques improve
execution time by an average of 40%, with a maximum of
76% for the Quadrics network.

Psearch: This benchmark performs parallel unbalanced
tree search [28]. The benchmark is designed to be used as an
evaluation tool for dynamic load balancing strategies. The
code fragment in Figure 8 is extracted from this benchmark
and shows the effect of our optimizations. This benchmark
benefits the least from optimizations, since communication
occurs only for the work stealing part of the implemen-
tation. The trees are replicated across processors and the
benchmark spends only a small fraction of the total running
time performing work stealing. Our optimizations improve
the execution time by an average of 3% across all platforms
and processor configurations. Maximum improvement is
observed on the Quadrics network at 7%.

Barnes: The application [34] simulates the interaction
of a system of bodies (e.g. galaxies or particles) in three
dimensions. It uses the Barnes-Hut hierarchical N-body
method. The program performs one tree traversal per body
in order to compute the interactions. Written in shared
memory style, communication in this program is unstruc-
tured and involves many locking operations that can limit
the effectiveness of communication optimizations. The
most effective optimization for this case is coalescing, and
in several instances accesses to fields within a particle were
combined into a single call. The optimizations are effective
on all platforms, achieving 17% speedup on average and
a maximum speedup of 24%. There is a noticeable slow-
down for one processor runs on two systems, caused by the
extra stack temporaries generated during the split-phase op-

Benchmark Quadrics Myrinet Infiniband
gups 29.3 22.8 39.1
mcop <1 (9.8) <1 (10) <1 (10.5)
sobel 46 1.3 0.53
psearch 23 6.5 16.5
barnes <1 (3.8) <1 (2.3) <1 (4.3)

Table 2. Speedups of 32 processor runs rela-
tive to 1 processor runs.

timization.

4.2 Scalability and Breakdown of Execution
Times

Table 2 summarizes the scaling results by computing
tb(1)/to(32), where tb(1) is the running time of serial un-
optimized code and to(32) that of 32 processor optimized
code; a speedup of 32 thus represents linear speedup. Since
our benchmarks are communication-intensive, some exhibit
slowdowns going from one to two processors, as the intro-
duction of communication outweighs the benefits of paral-
lelism. For such cases, we instead show their parallel scal-
ability (relative to 2 processor unoptimized code, with 16
being linear speedup) in parenthesis.

The results underscore the importance of data distribu-
tion in achieving good performance on clusters. For ex-
ample, psearch’s data layout results in a balanced commu-
nication/computation ratio and thus scales well, especially
on the faster Quadrics network. Gups also shows excellent
speedup, since the benchmark is constructed such that each
processor performs the same amount of work independent
of other processors. Mcop, however, scales poorly from one
to two processors, as its cyclic layout dictates that four reads
to different processors may be performed in a critical loop.
While our optimizations are able to overlap those reads, it
could not overcome the inefficiencies of the data distribu-
tion strategy. Similarly, our barnes implementation is writ-
ten in a shared memory style, performing only fine grained
memory accesses and does not scale well. Although co-
alescing reduces the costs of accessing fields in the same
node, it provides only incremental improvements, and no
compiler optimization short of changing the application’s
parallel layout is likely to remedy the poor scalability on
distributed memory machines. Shan et al [30] show that a
bulk implementation of the same algorithm using MPI out-
performs a shared memory implementation even for SMP
systems.

Figure 10 presents a breakdown of the benefits of each
individual optimization. Four threads were used in the ex-
ecution. In the figure, “Add’ represents the results ob-
tained with only redundancy elimination enabled for pointer



-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

barnes gups mcop psearch sobel

HP(AlphaQuadrics)
Itanium/Myrinet
Opteron/Infiniband

Average of Opt Speedup

benchmark processors

machine
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arithmetic. “SP+Add” optimizes the program further with
nonblocking communication, while “Full” is the most opti-
mized version that also performs coalescing. As the figure
shows, all three optimizations contribute to the reduction
of the program’s execution time; while redundancy elimi-
nation produces a substantial performance gain on several
benchmarks, applications like barnes that read and write
fields from a node will profit more from coalescing. The
split-phase optimization as expected is more effective on
networks with higher latencies (e.g. Myrinet).

5 Related Work

In the context of communication optimizations for ex-
plicitly parallel languages, the prior research that is most
closely related to our techniques is Hendren and Zhu’s work
on parallel C programs [37]. Their analysis identifies the
earliest point that a remote read can be issued, and ap-
plies either pipelined or blocking (coalesced) communica-
tion based on heuristics. Remote writes are propagated for-
ward in the program and might also be subject to coalesc-
ing. Our work is different from theirs in several ways. They

consider only pure pointer based programs, while the HSSA
representation in our framework allows us to optimize both
pointer and array based programs. More importantly, their
analysis is assisted by runtime support present in the Earth
MANNA system: 1) non-abortive speculative communica-
tion and 2) runtime managed synchronization for communi-
cation operations. The first allows for speculative loads on
possibly invalid addresses, while the second will automati-
cally suspend execution if a thread attempts to use a value
for which a remote load has not completed. The presence of
both features significantly simplifies the compiler analyses
required. Our target systems (commodity networks and pro-
cessors) lack the hardware support required for an efficient
implementation of these features.

Krishnamurthy and Yelick [17] studied compiler analy-
sis and optimizations for explicitly parallel programs with
a global address space. Most of their work focuses on
improving the accuracy and efficiency of the cycle detec-
tion [31] algorithm for SPMD programs, which enforces se-
quential consistency under reordering transformations. Our
work instead uses UPC’s relaxed memory model to avoid
this analysis, although it could be augmented with cycle de-
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Figure 10. Breakdown of the benefits of the
optimizations. Execution times are normal-
ized so that the time of the unoptimized code
is 1.

tection so that UPC’s strict accesses would become candi-
dates for optimization. Their work was done on a subset
of the Split-C [10], but with the important simplifying as-
sumption that pointers are never aliased. Our compiler per-
forms the necessary analysis to handle aliasing. Another
difference is that they do not consider the opportunities for
redundancy elimination or communication coalescing.

Lee et al. [21, 20] also describe an approach for
compiling explicitly parallel programming languages.
They present a concurrent static single assignment
(CSSA) form that can represent parallel programs with
cobegin/coend and post/wait synchronization.
They propose several optimizations based on the CSSA
form, including global value numbering, common subex-
pression elimination, and redundant load/store elimination.
Their optimizations maintain correctness by enforcing se-
quential consistency, while our method takes advantage of
UPC’s relaxed memory model to preserve sequential con-
sistency only for strict accesses. Their work addresses a
more general parallelism model than ours but a more re-
stricted class of shared memory architectures where ex-
plicit non-blocking communication optimizations are not
relevant.

Communication optimizations of parallel programs have
been studied extensively in the context of data parallel lan-
guages [32, 14, 15, 33, 16, 3]. Although some of the opti-
mizations are similar to our work, the analysis problems are
quite different: data parallel languages have a serial seman-
tics without race conditions or memory consistency models,

but they have an added burden of managing the mapping of
fine-grained parallelism onto coarse-grained architectures.
These projects tend to focus on array optimizations, such
as communication vectorization, an ongoing effort in our
compiler as well. In addition, the work by Chakrabarti et
al. [2] uses redundancy elimination and a global commu-
nication optimization algorithm for reads, which identifies
the earliest and latest safe position to issue the communi-
cation. Their analysis is different as it starts from a data
parallel language and adds an additional greedy algorithm
to attempt to optimally place communication between the
earliest and latest possible points.

6 Conclusion and Future Work

In this paper, we presented an optimization framework
that effectively improves the performance of fine-grained
UPC programs. The framework consists of three optimiza-
tions: a PRE optimization that eliminates redundant shared
pointer arithmetic and memory accesses, a split-phase op-
timization that increases communication and computation
overlap, and a coalescing optimization that reduces the mes-
sage startup overhead. Experimental results on a number of
benchmarks suggest that our optimization framework can
achieve impressive speedups for common fine-grained com-
munication patterns on today’s high performance networks.
While our optimizations do not overcome the problem that
fine-grained accesses perform poorly on clusters, they do re-
duce a substantial portion of their communication overhead.
Combined with programmer efforts such as more sophis-
ticated choices of algorithms and data decomposition that
reduce the amount of communication necessary, our frame-
work has the potential of achieving reasonable performance
on clusters for UPC applications written using fine-grained
accesses.

There are several areas where our analysis can be further
improved. One useful extension is to incorporate a local-
ity analysis that attempts to determine statically whether a
shared access is local or remote, so that the communication
optimizations can concentrate only on remote accesses. The
analysis presented in Section 3 does not perform specula-
tive communication movement, because of both correctness
constraint (loading incorrect address causes exceptions) and
performance considerations (speculation may worsen per-
formance by creating additional communication). Although
it is unclear whether speculative code motion will help fine-
grained UPC programs, the former problem may be solved
by extending our runtime system to support speculative re-
mote accesses that suppress the exception on invalid address
until the value is actually used. The latter problem may be
addressed by utilizing profiling information to issue specu-
lative accesses only when they appear profitable.

Runtime based coalescing is another area where we can



improve the performance of our approach. In particular,
when coalescing non-contiguous accesses, we need to un-
derstand better the performance tradeoffs between the dif-
ferent methods for fetching remote data. For example, a
gather operation that packs the selected elements on the re-
mote side may be appropriate for small number of accesses,
while for large number of accesses retrieving a contiguous
bounding box with the needed elements may be more effi-
cient.
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