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Abstract

Category leamning is often seen as a process of inductive gener-
alization from a set of class-labeled exemplars. Human learn-
ers, however, often receive direct instruction concerning the
structure of a category before being presented with examples.
Such explicit knowledge may often be smoothly integrated
with knowledge gamered by exposure to instances, but some
interference effects have been observed. Specifically, errors
in instructed rule following may sometimes anse after the re-
peated presentation of correctly labeled exemplars. Despite
perfect consistency between instance labels and the provided
rule, such inductive training can drive categorization behavior
away from rule following and towards a more prototype-based
or instance-based pattern. In this paper we present a general
connectionist model of instructed category leaming which cap-
tures this kind of interference effect. We model instruction as a
sequence of inputs to a network which transforms such advice
into a modulating force on classification behavior. Exemplar-
based leamning is modeled in the usual way: as weight modifi-
cation via backpropagation. The proposed architecture allows
these two sources of information to interact in a psychologi-
cally plausible manner. Simulation results are provided on a
simple instructed category leaming task, and these results are
compared with human performance on the same task.

Introduction

Investigations into concept formation have often focused on
the learning of category structure solely through exposure to
labeled exemplars. Indeed, much of the success of connec-
tionistlearning models may be attributed to their ability to per-
form exactly this sort of statistical induction. Human learners
often need not rely solely on exemplars, however, to formu-
late an understanding of a concept. The presence of language
allows us to learn from the direct instruction provided by oth-
ers. Such explicit advice may simply direct our attention to
relevant features, or it may actually spell out necessary and/or
sufficient conditions for membership in a category. Learning
“by being told” may facilitate an otherwise exemplar-based
learning task, enabling a multistrategy approach integrating
induction and instruction.

Some forms of advice may be seen as explicitly providing
categorization rules to the learner. When viewed in this way,
the integration of exemplar-based induction and direct instruc-
tion begins to resemble another form of integration discussed
in the category learning literature. Sometimes human subjects
presented with labeled exemplars appear to induce explicit
classification rules, and sometimes induced category struc-
tures are better captured by prototype-based or instance-based
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representations. Much evidence has been gathered suggesting
that these two kinds of category representation result from two
dissociable learning mechanisms (Shanks & St. John, 1994),
so a question arises as to how these two processes are in-
tegrated in common learning tasks. In terms of instructed
category learning, this question becomes one of how cate-
gorization rules provided by direct instruction interact with
exemplar-based knowledge to form a learned category struc-
ture.

This work focuses on one particular interference phe-
nomenon which has manifested itself in instructed category
learning studies (Allen & Brooks, 1991; Nosofsky et al.,
1989). Specifically, subjects initially provided with an ex-
plicit classification rule may begin to violate that rule after
the presentation of correctly labeled exemplars. While none
of the presented examples contradict the instructed rule in
any way, similarity between instances drives subject behavior
away from rule following and towards a more prototype-based
or instance-based pattern. It appears, in these experiments,
as if an exemplar-based inductive learning process is directly
interfering with an instruction-based rule application process.

The goal of this paper is to demonstrate that our previously
proposed connectionist model of instructed learning (Noelle &
Cottrell, 1995) may capture and account for this interference
effect. To this end, we discuss one psychological experiment
in which this phenomenon has appeared, review our modeling
framework for instructed learning, and present the results of
applying our model to the discussed experimental domain.

An Interference Effect

In the category learning literature a debate has raged over
the internal representation of inductively learned categories.
Some view these as simple sentential rules which are acquired
in response to experience. Others view categories as regions
in some feature space, with region boundaries determined by
some similarity measure and a collection of remembered ex-
emplars or prototypes. In order to test these two competing
views, Nosofsky, Clark, and Shin (1989) designed and con-
ducted a number of elegant experiments. They used a set of
stimuli with two pertinent continuous features — the size of a
circle and the angle of rotation of a radial line. These objects
may be plotted as points in a two dimensional feature space,
as in Figure 1. In that diagram, each letter corresponds to
a potential stimulus object, and the letters enclosed by small
polygons are objects which were presented as labeled training
exemplars. The two enclosing shapes, triangles and squares,
correspond to category labels for two disjoint categories. We



Triangle Category:
A c H

Object Identifiers:

SIZE
SIZE

Instructed:

Square Category:

(- 000

Uninstructed:

SIZE

Figure 1: Two Categories: Training Exemplars, Feature Space, And Frequency Of Classification Into The “Triangle” Category

For Both Instructed And Uninstructed Subjects

may imagine that distance in this feature space corresponds to
perceived “similarity” between objects. How should object
“P" be classified? If similarity is used to define categories,
object “P” will be placed in the “square” category, due to
its close proximity to exemplar “K”. If some form of mini-
mum description length sentential rule is used instead (e.g.,
a rule for the triangle class is “tiny or huge or 155°
rotation”-shown as a dotted box), then this object will be
labeled as a “triangle”. Thus, classification behavior on novel
objects can inform explorations into the structure of internal
category representations.

In one experiment, Nosofsky and his colleagues compared
subjects who were explicitly told a sentential categorization
rule before being exposed to the training exemplars with sub-
jects who depended solely on the exemplars to formulate cat-
egory boundaries. In general, the explicitly instructed sub-
jects exhibited rule governed classification behavior, whereas
the uninstructed subjects matched a similarity-based model.
However, instructed subjects sometimes deviated from their
rule-based behavior when classifying objects highly similar
to training exemplars from the opposite category.

The situation depicted in Figure 1 produced the most strik-
ing results. Subjects were instructed to classify objects as
being members of the “triangle” category if and only if they
fit the given disjunctive rule. Following this instruction, the
subjects received 300 random presentations of the seven train-
ing exemplars, and they were asked to classify each of them.
After each selection, the subjects were told the true category
of the training exemplar, and the next object was presented.
Upon completion of this training period, the subjects were
tested on the entire collection of 16 objects. The final mean
frequencies of classifying objects as members of the “trian-
gle” category are displayed as percentages in Figure 1, along
with the same frequencies for subjects who received no ex-
plicit classification rule before being presented with labeled
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exemplars. Of particular note here is object “O", which in-
structed subjects tended to place in the “square” category
more often than not, despite the fact that such classification
violated the given rule. Note the low frequency with which
uninstructed subjects identified this object as a member of the
“triangle” category. It would seem that the same inductive
process which caused this response in the uninstructed sub-
jects has interfered with the rule processing of the instructed
subjects. Our goal is to show that an interference effect of
this type may be explained by our connectionist model.

A Connectionist Model

The modeling approach we advocate here is based on our con-
nectionist model of learning “by being told” (Noelle & Cot-
trell, 1995). This model arises from the recognition that the
weight update techniques typically used for inductive learning
in artificial neural networks are simply too slow to account for
the high speed of behavior change which occurs in response to
direct instruction. Activation propagation in such networks,
on the other hand, is quite fast. We suggest that instructed
learning is properly seen as a process in which presented ad-
vice pushes the activation state of part of the cognitive system
into a novel basin of attraction — a stable region of activa-
tion space which encodes the proper operationalization of the
given advice. Such novel attractors, corresponding to newly
received instructions, come into existence through the com-
ponential interaction of basins sculpted via past experience
with the instructional language (Plaut & McClelland, 1993).
Under this view, advice is seen as a sequence of input activity,
presented to a network which transforms such sequences into
appropriate behavior.

Our proposed general architecture is shown in Figure 2, on
the left. The boxes in that diagram represent layers of sig-
moidal processing elements and arrows represent complete
interconnections between layers. Categorization rules are en-



CATEGORIES

Plan
Categorization Network
Network
FEATURES ADVICE

CATEGORIES

Cl €2

o0

OO0000O000

A X

OO0 Q000000000

size angle cat? Al A2 A3 A4 S1 52 83 5S4 none?

FEATURES PLAN

Figure 2: Instructable Network: General Architecture & Isolated Categorization Network

coded as sequences of instruction tokens which are presented,
one at a time, at the advice input layer. Activation is then
propagated through the recurrent “Plan Network™ to produce
a stable pattern of activation at the plan layer. The plan is
then used to modulate the behavior of a simple feed-forward
“Categorization Network”, causing the mapping from stim-
ulus features to output categories to exactly match the rule
specified by the input advice.

Initially, this network must be inductively trained to un-
derstand the language of instruction. This may be accom-
plished using a version of backpropagation through time
(BPTT) (Rumelhart et al., 1986) in which error is backpropa-
gated for only a single time step, much as is done for Simple
Recurrent Networks (Elman, 1990). A training regimen simi-
lar to that used by the architecturally similar Sentence Gesralt
network (St. John & McClelland, 1990) may be used, requir-
ing an external error signal only at the final output layer. The
output units encode categorization judgements for specific
input stimuli in the context of instructions presented at the ad-
vice layer. By backpropagating error from the final category
outputs in this way, the internal representation of instruction
sequences, maintained at the plan layer, may be learned in the
service of the categorization task (St. John, 1992). Once the
network has learned to represent advice at the plan layer, no
further weight modifications are needed to exhibit immediare
behavior change in response to instruction.

This is the point at which induction and instruction be-
come integrated in this model. While further inductive weight
updates are not needed in order to exhibit instructed behav-
ior, such inductive learning may commence nonetheless. In-
deed, inductive weight modification in the “Categorization
Network” provides a means for rule following and exemplar-
based induction to interact. Modulating activation from the
plan layer will bias the network to act in accordance with
instructions, but further exemplar-based error feedback may
modify weights so as to violate the instructed rule.

While the initial learning of an instructional language is
an important component of our general model, the issue of
interference effects between exemplar-based induction and
instructed rule following is relatively orthogonal to how the
instructional language is acquired. In order to focus, then,
on interaction effects, we have modeled the instructed cate-
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gory learning task using the “Categorization Network™ alone.
We have fabricated an arbitrary representational format for
the plan layer, allowing us to replace the “Plan Network”
with the direct presentation of encoded categorization rules to
the “Categorization Network”. Some training in the instruc-
tional language is still necessary for the network to discover
the “meaning” of our plan layer encoding, but this initial
preparation is much more rapid than when the recurrent “Plan
Network” must be trained simultaneously. Still, we assume
that something similar to our plan layer representation could
be generated by the “Plan Network” from linguistic input,
given sufficient training.

The resulting categorization network is shown in Figure 2,
on the right. Disjunctive categorization rules were encoded
into a ten element plan using a bit-vector representation for
the set of rule terms. The first plan unit was used to indicate
if the given disjunctive rule was to describe the members of
the “square” category or of the “triangle” category. The next
eight units were used to encode the actual rule, with each unit
corresponding to one of the four levels of “size” or to one of
the four levels of “angle”. If a given “size™ unit was turned
on, this implied that the rule covered all stimuli of that size,
and a similar code was used over the “angle” units. Activat-
ing multiple units produced disjunctive rules, so the rule in
Figure 1 required the activation of the three units: “size =
tiny”, “size = huge”, and “angle = 155°”. The last unitin the
plan vector was used to signal the absence of any rule — the
uninstructed case. When no rule was available, this last unit
was turned on and the activity of the other nine plan units was
set to a medial value (i.e., 0.5). Unlike the quasi-binary plan
layer encoding, the two features of observed stimuli, size and
angle, were presented to the network in a continuous fashion.
One input unit was available for each of the features, and each
unit could take on one of four ranked values: 0, §, 2, or 1. The
network possessed two output units — one for eacil category.
The activation levels at these outputs where normalized into
conditional class probabilities using Luce ratios (Luce, 1963).
The hidden layer consisted of eight processing elements. The
result was a network which produced probabilistic categoriza-
tion judgements from two continuous features and an encod-
ing of an instructed classification rule (or the absence of such
arule).
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Figure 3: Probability Of Selecting The “Triangle” Category For Various Networks

This network was initially trained on the complete col-
lection of possible disjunctive classification rules, in order
to encourage the proper understanding of the rule encoding
format. The eight inputs which corresponded to rule terms
allowed for 28 = 256 possible disjunctive clauses, and each
of these could be used to describe either the “triangle™ cate-
gory or the “'square”™ category, for a total of 256 x 2 = 512
possible classification rules. In addition, the network expe-
rienced each of these patterns with rhe rule removed (i.e.,
without instruction) so that it associated the “no rule” input
unit with an uninformed 50/50 chance for either category.
During this initial training phase all 16 stimulus objects were
presented alongside each categorization rule, resulting in a
total of 512 x 2 x 16 = 16384 patterns used to train the
network in the instructional language. These patterns were
presented to the network in random orderings for 200 epochs
(i.e., passes through the entire training set). Standard incre-
mental (non-batch) backpropagation of mean squared error
was used, with activation levels ranging between 0.0 and 1.0,
a learning rate of 0.05, and no momentum. The termination
at 200 epochs was arbitrary, being a point at which instruction
following behavior was good, but not perfect.!

In order to observe interaction effects, this network was
then exposed to further inductive training in a particular clas-
sification of the objects. Specifically, further training of the
network involved only the seven training exemplars shown
in Figure 1. This training was conducted separately under
two conditions of instruction: uninstructed and instructed. In
the uninstructed case, the input plan layer was set to the “no
rule” configuration for the duration of this training. In the
instructed case, the input plan layer was set to the disjunctive
rule shown in Figure 1 for the duration of this training. In
both cases, training on the seven exemplars was conducted
using standard incremental (non-batch) backpropagation of
mean squared error with a very high learning rate (0.5) for
300 epochs. The high learning rate was needed to produce
significant learning over a small number of pattern presenta-
tions.

The classification performance was recorded on all 16 stim-
uli in four distinct network states: Guessing (immediately
after initial training, given no rule to follow — should be
guessing 50/50 category assignments), Rule Following (im-
mediately after initial training, given the appropriate rule to
follow), Uninstructed (trained on the seven exemplars, but

"This termination point is discussed further in our closing
discussion.
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given no explicit rule), and Instructed (trained on the seven
exemplars with the appropriate rule at the plan layer). The ba-
sic hypothesis was that the behavior of the instructed network
would deviate from the behavior of the initial rule following
network in a manner which brought it closer to that of the
uninstructed network.

As another baseline, a network of this kind was exposed
to the seven training exemplars without any initial training
in the instructional language. This “uninstructable™ network
was trained for 600 epochs at a very high learning rate (0.5)
with the plan layer always set in the “no rule” configuration.
This provided a view of how the category partitions would
be formed if no knowledge of the instructional language was
available at all.

Modeling Results

The results of the network simulations are summarized in Fig-
ure 3. That diagram displays the network predicted probabil-
ities, expressed as percentages, of the given stimulus objects
being in the “triangle” category. The only condition not ap-
pearing in this figure is the “guessing” case, under which the
network consistently produced scores between 42% and 46%,
showing a slight but consistent bias towards the “square” cat-
egory.

An examination of the resulting probabilities reveals the
phenomenon of interest in the behavior of these networks.
The first case of interest is the difference between the “rule
following” network and the “instructed” network. Recall that
the difference between these is that the “instructed” network
received specific training on the 7 exemplars. The classifica-
tion probabilities for a number of the objects move markedly
away from the “rule following™ predictions as a result of
exemplar-based training. For example, object 0", which
showed the greatest change for the human subjects, drops
from 94% to only 64% after exposure to the seven training
items. A similar change occurs for object “N”, which moves
from strong “triangle-ness” to uncertainty. Object “L” pro-
vides yet another example, and object “I" shows a weaker
trend from *square” to “triangle”. One thing that is surprising
about these probability changes, however, is that they are all
worse than the probabilities generated by the “‘uninstructed”
network. That is, our “uninstructed” network follows rules too
well, compared to the human data. The output of the “unin-
structable” network appears, as expected, much less “rule-
like”. This suggests that the behavior of the “uninstructed”
network was overly shaped by its non-specific experience
with the instructional language. That is, its representational



vocabulary is overly rule-based.
Discussion

This demonstration provides some preliminary support to the
notion that interference effects in instructed category learning
may be appropriately modeled using connectionist networks.
The behavior of the “instructed” network provided a reason-
able match to the human data, with 7 of the 9 test exemplars
classified in the same way, on average. There are a num-
ber of ways, however, in which these simulations could be
improved.

While the performance of the “instructed” network dis-
played the interference effect of interest, the behavior of the
“uninstructed” network did not match the human subjects
data very well. The pattern of probabilities generated by this
network more closely matched that of the “rule following”
network than that of the “uninstructable” network. This dif-
ference is particularly striking for objects “L”, “N”, “O", and
“P”. It appears as if this network preferred categories describ-
able as disjunctive rules.

Itis not surprising, in retrospect, that the uninstructed net-
work produced rule-like behavior, since all categories pre-
sented to the network during initial training in the instructional
language possessed the disjunctive rule structure. During this
initial training phase, hidden units were recruited to encode
portions of the rule-structured categories, and these units were
later put to use by the inductive learning process. While this
resulted in an “uninstructed” network that produced behav-
ior notably different than that of the uninstructed subjects, it
is possible that we are modeling a certain class of subjects.
Nosofsky and his colleagues noted that, “. . . there is support
for the idea that some of the category learners did indeed
adopt a simple rule-based strategy ...". Indeed, the human
data may reflect an average over a bimodal distribution of sub-
jects: those who, like the “uninstructed” network, appeared
to induce a rule and others who, like the “uninstructable” net-
work, used a more “similarity based” strategy. Notice that
an average of our “uninstructed” and “uninstructable” results
provides a somewhat better match to the uninstructed human
data than the “uninstructed” network alone.

What is surprising — and this is something for which we
have no explanation - is that exposure to the seven exem-
plars caused the instructed network to deviate from the rule it
was given, while the uninstructed network found the correct
rule and stuck to it. The difference between these networks
rested only in the pattern of activation presented at the plan
inputs during exemplar training. These inputs were fixed for
all seven exemplars, so the inputs acted like a bias during
exemplar exposure. In the instructed case, the rule pattern
was on, and in the uninstructed case, the “no rule” pattern is
on. It could be that this representation actually caused more
interference for the network given a rule, because these inputs
could be individually combinatorially combined with a subset
of the possible rules, where the “uninstructed” network had a
level playing field from which to select the perfect rule. Our
current research is aimed at understanding this puzzle.

In any case, we would like to get something like the effect
of combining the “uninstructable” network with the “unin-
structed” network in a single network. This might be achieved
in two ways. First, initial training on the instructional lan-
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guage could be interspersed with training on random “natu-
ral”, similarity-based categories over the stimulus space. The
network would be equipped with additional output units to
represent the category labels for these natural categories. This
modified initial training regime would allocate some hidden
layer resources to the task of representing the similarity-based
categories, and these hidden units could then be redeployed
during inductive learning on the seven training exemplars.
Alternatively, some hidden units could be architecturally iso-
lated from the instruction inputs, forcing them to encode only
similarity information. This would result in a “dual route”
mechanism, similar in general configuration to the rule en-
hanced ALCOVE model (Kruschke & Erickson, 1994). Cat-
egorization instructions would be allowed to modulate only
“rule-based™ hidden units, leaving other hidden units unaf-
fected by the structure of the instructional language. In future
work we will examine both of these options, with the goal
of producing a network capable of inducing both natural and
rule-structured categories.

Another issue for future work involves how the initial in-
structional language training is controlled. We were required
to limit the accuracy of the “rule following™ network by lim-
iting the initial training time to 200 epochs. This resulted in
a network which followed rules well, but not perfectly. An
ideal “rule following” network can be developed by training
for 1000 epochs or more, but this is undesirable. The lack of
perfection in rule following was necessary for this model to
work. The reason for this is simple — the network that never
makes a mistake has essentially lost plasticity. Interference ef-
fects would only arise if actual weight modifications occurred
during the exemplar based training phase. Such weight mod-
ifications are contingent on a significant error signal. If the
network follows rules perfectly, there will be no error signal
and, thus, no interference effect from exemplar based training.

This “training to slight imperfection” does not seem very
cognitively realistic. It also has unwanted side effects, like
the slight “guessing™ case bias towards the “square” category
which was not corrected by epoch 200. Fortunately, there are
a number of other methods that might allow us to learn the
instructional language without destroying our error signal. We
could introduce normally distributed noise into the network
both during training and during regular use. This noise might
be localized to the plan layer or to the stimuli features, or
it might be injected into the net input of every processing
element. This noise would generally be averaged out over
the course of learning the instructional language, but it would
still introduce a non-zero error signal for the exemplar based
learning phase.

Conclusion

We have provided some empirical support for the use of our
connectionist model of learning “by being told" as a model
of instructed category learning. In particular, we have shown
that an observed interference effect between instructed rule
following and exemplar-based category learning arises natu-
rally in this model. These results also suggest a connectionist
mechanism through which both rule governed category struc-
tures and “‘natural” categories may be induced from examples.
The observed mismatch between the “uninstructed” network
and the uninstructed subjects suggests that we produced a



model that is overly biased towards rules. We are currently
pursuing modifications to our training procedure to correct
this bias.
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