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1  |  INTRODUC TION

Bloom syndrome (BSyn) is caused by biallelic null variants in BLM, 
which encodes for a DNA helicase protein in the RecQ family that 
functions in the maintenance of replication fork stability (Bennett 

& Keck,  2004; Daley et al.,  2014). Cells from patients with BSyn 
demonstrate a 10-fold increase in the frequency of sister chro-
matid exchanges (SCEs) compared to normal patients (Chaganti 
et al., 1974). Additionally, BLM plays a role in telomere maintenance 
by interacting with telomere proteins TRF1 and TRF2 (Barefield 
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Abstract
Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the 
BLM gene, which is involved in genome stability. Patients with BSyn present with 
poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of 
cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other 
signs of premature aging such as early, progressive hair loss and cataracts. We set out 
to determine epigenetic age in BSyn, which can be a better predictor of health and 
disease over chronological age. Our results show for the first time that patients with 
BSyn have evidence of accelerated epigenetic aging across several measures in blood 
lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit ac-
celerated methylation age in multiple tissues, including brain, blood, kidney, heart, and 
skin, according to the brain methylation clock. Overall, we find that Bloom syndrome 
is associated with accelerated epigenetic aging effects in multiple tissues and more 
generally a strong effect on CpG methylation levels.
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& Karlseder,  2012; Lillard-Wetherell et al.,  2004; Lu, O'Rourke, 
et al.,  2019; Rezazadeh,  2013). While persistent DNA damage is 
thought to correlate with aging and drive senescence, it is unre-
solved whether germline variants in BLM cause accelerated aging 
that can be measured using molecular markers.

Patients with BSyn present with short stature, congenital telan-
giectatic erythema, and increased susceptibility to infections and 
cancer, most commonly leukemia, lymphoma, and colorectal can-
cer (Aktas et al.,  2000; Aljarad et al.,  2018; Bloom,  1954; Cunniff 
et al., 2017; Sugranes et al., 2022). Traditional anti-cancer treatments 
that cause damage to DNA, such as chemotherapy and radiation, 
often result in severe life-threatening toxicities and increased risk of 
secondary malignancies for patients with BSyn, warranting signifi-
cant dose modifications from standard practice (Adams et al., 2013; 
Grasemann et al., 1998; Kataoka et al., 1989). The molecular basis for 
the early cancers and treatment-related toxicities seen in patients 
with Bloom Syndrome is poorly understood beyond the function 
of BLM in maintaining genomic integrity through its DNA helicase 
activity.

A different member of the RecQ helicase family of enzymes, 
WRN, underlies Werner Syndrome (Yu et al.,  1996). Werner 
Syndrome is characterized by signs of premature aging, such as cat-
aracts, early-onset graying, and skin changes (Chen et al., 2018; de 
Renty & Ellis, 2017; Takemoto et al., 2013), which are absent in Bloom 
Syndrome. Yet, cumulative and persistent DNA damage, as seen in 
BSyn, are thought to contribute to aging (de Winter & Joenje, 2009; 
Ou & Schumacher, 2018; Ribezzo et al., 2016; Vogel et al., 1999). In 
fact, it has previously been shown that whole blood from patients 
with Werner have accelerated epigenetic aging, even after adjusting 
for chronologic age and blood counts (Maierhofer et al., 2017).

Epigenetic age, an estimator of biological age that can be built 
from DNA methylation levels, can be a better predictor of health, 
cancer, and mortality risk than chronological age (Horvath, 2013; Lu, 
Quach, et al., 2019; Morales Berstein et al., 2022). Epigenetic age ac-
celeration, where the epigenetic age is greater than the chronologi-
cal age, can occur as the result of segmental progeria such as Down 
Syndrome (Horvath et al., 2015) and Werner syndrome (Maierhofer 
et al., 2017). We hypothesized that BSyn patients will have increased 
epigenetic age due accumulation of DNA damage over time. In this 
study, we analyzed blood samples from BSyn patients and carriers, 
as well as a mouse model of Bloom syndrome (Luo et al., 2000), and 
demonstrate that patients and mice with BSyn have accelerated epi-
genetic age across multiple measures and tissues.

2  |  RESULTS

2.1  |  Human data

We generated and analyzed data from 18 BSyn samples (age range: 
1–38 years) and 30 samples from carriers of BSyn (age range: 23–
69 years) (Table 1). They represented different germline variants in 
BLM as well as the Ashkenazi Jewish founder variant noted as BlmAsh 

TA B L E  1 Characteristics of patient samples from the Bloom 
syndrome Registry, Jscreen, and UCLA.

Age at sample 
collection (years) Condition Sex Variant

0.8 BSyn M BLMash; BLMash

1.8 BSyn F 275delA; 275delA

1.9 BSyn F 1933C > T; 3261delT

2 BSyn F 2695C > T; 3171-3172insT

2.6 BSyn M BLMash; BLMash

4.3 BSyn M BLMash; BLMash

5 BSyn M 1642C > T; Deletion of exons 
11–12

5.8 BSyn M 2695C > T; 2695C > T

6 BSyn M 1642C > T; Deletion of exons 
11–12

8.1 BSyn F 3727insA; 3727insA

16 BSyn F BLMash; Deletion of exons 3–22

26 BSyn F 2695C > T; 2695C > T

26.6 BSyn F 1933C > T; 1933C > T

27 BSyn F 2695C > T; 2695C > T

32 BSyn M BLMash; BLMash

36.3 BSyn M 2506-2507delAG; 
2506-2507delAG

37 BSyn M Unknown

38 BSyn M Unknown

23.8 Carrier F BLMash

24 Carrier F Unknown

24.6 Carrier F BLMash

25.1 Carrier M BLMash

27.9 Carrier M Unknown

29.2 Carrier F 3261delT

29.7 Carrier M 275delA

30.8 Carrier F 275delA

31.4 Carrier M 2695C > T

31.7 Carrier M 1933C > T

32 Carrier M BLMash

32.4 Carrier F 3727insA

33.8 Carrier M BLMash

34 Carrier M BLMash

34.3 Carrier M BLMash

35.8 Carrier F 2695C > T

37.8 Carrier M 3727insA

38 Carrier M 1642C > T

39 Carrier F 1642C > T

40 Carrier M Deletion of exons 11–12

41 Carrier M Deletion of exons 11–12

46 Carrier F 1933C > T

46.6 Carrier M 1933C > T

59 Carrier F Deletion of exons 3–22

62 Carrier M BLMash

63 Carrier M BLMash

64 Carrier M BLMash

65 Carrier M 1642C > T

67.5 Carrier F 2506-2507delAG

69.4 Carrier M 2506-2507delAG
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(German et al., 1977; Li et al., 1998). There were 2 participants with 
BSyn with unconfirmed variants but had increased sister chromatid 
exchange and 2 obligate carriers.

In our study, we considered several epigenetic clocks that 
were implemented in the online DNAm methylation (DNAm) age 
calculator (see Section  4). First, we used the DNA methylation 
pan-tissue clock, which is a multi-tissue predictor of age devel-
oped using 8000 samples from 51 healthy tissues and cell types 
(Horvath, 2013). It quantitatively measures the cumulative effect 
of aging using 353 CpG sites and applies to a broad spectrum of 
tissues and cell types. We showed that patients with BSyn have 
significantly increased DNAm age according to the pan-tissue 
clock (Figure 1a).

Although the pan-tissue clock can be used across all tissues, 
it does not perform as well when using fibroblasts, which are 

routinely used for in vitro experiments (Horvath, 2013). The skin 
and blood clock was subsequently developed to estimate chrono-
logic ages of human fibroblasts, keratinocytes, endothelial cells, 
skin cells, and other tissues (Horvath et al.,  2018). While the 
original pan-tissue clock did not detect any age acceleration in 
Hutchinson Gilford Progeria Syndrome (HGPS), the skin and blood 
clock applied to fibroblast samples from patients with HGPS did 
detect accelerated epigenetic age. When we applied the skin and 
blood clock to our samples, we found that patients with BSyn, like 
HGPS, have significantly increased DNAm age compared to carri-
ers (Figure 1b).

The Hannum blood-based clock was developed using methy-
lome data from 656 individuals, ages 19 to 101 years, combined with 
clinical data such as gender and body mass index (BMI) (Hannum 
et al., 2013). This model has been shown to apply to other human 

F I G U R E  1 DNA methylation age of BSyn patients and carriers. (a) Pan-tissue clock, (b) Skin and blood clock, (c) Hannum clock, (d) 
GrimAge clock, (e) PhenoAge clock, and (f) telomere length. P-values calculated by simple linear regression for pan-tissue, skin and blood, 
Hannum, GrimAge clocks and telomere length. Quadratic regression used for PhenoAge.
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tissues and detects accelerated aging in tumor tissue. Using 
Hannum's blood-based clock, we show that patients with BSyn have 
increased epigenetic age compared to carriers (Figure 1c).

Patients with BSyn also have an increased GrimAge and 
PhenoAge, two clocks that predict human lifespan and health span, 
mortality risk, cancer, physical functioning, and Alzheimer's dis-
ease (Figure  1d,e; Horvath,  2013; Levine et al.,  2018; Lu, Quach, 
et al., 2019). Of note, GrimAge is also a DNA methylation-based es-
timator of smoking pack years (Lu, Quach, et al., 2019). PhenoAge 
was trained using clinical measures such as coronary heart disease, 
physical functioning, familial longevity, cognitive impairment, diet, 
physical activity, obesity, amongst others, and considered 20,169 
CpGs (Levine et al., 2018).

During statistical analyses, we compared linear and quadratic re-
gression fits for age versus each of the epigenetic clocks and found 
linear fit to be sufficient for pan-tissue, GrimAge, Hannum, and 
Skin and Blood clocks, while quadratic fit was better for PhenoAge. 
Therefore, we used simple linear regression to examine differences 
between BSyn and carriers for the pan-tissue, GrimAge, Hannum, 
and Skin and Blood clocks to compare slopes, and quadratic regres-
sion for PhenoAge to compare the coefficient of age squared. The 
Y-intercepts for Hannum and PhenoAge are negative values most 

likely because these epigenetic clocks were trained on adult sam-
ples and there are no data on how these clocks perform in children. 
We also demonstrate that the pan-tissue, SkinBlood, Hannum, 
GrimAge, and PhenoAge clocks are highly correlated with each 
other (Figure S1a,b).

Telomeres are repetitive DNA sequences at the ends of chromo-
somes that shorten with each cell division (Lopez-Otin et al., 2013). 
A specialized DNA polymerase known as telomerase is responsible 
for preserving the repetitive DNA sequences at telomeres (Zvereva 
et al.,  2010). Senescence or apoptosis is triggered when there is 
DNA damage at telomeres or when telomeres are critically short-
ened (Fumagalli et al.,  2012; Hayflick & Moorhead,  1961; Hewitt 
et al., 2012). We used DNA methylation-based estimates of telomere 
length (Lu, Seeboth, et al., 2019) and found patients with BSyn had 
significantly shorter telomere length, DNAmTL, compared to carriers 
(Figure 1f). DNAmTL only exhibits a weak correlation with actual telo-
mere length (r = 0.4), that is, our findings should not be interpreted 
as statements about actual telomere length. Thus, it is possible that 
DNAmTL relates to Bloom syndrome while actual telomere length 
does not. In fact, there are reports of normal telomere length and 
telomerase activity in BSyn cells (Kaneko et al., 2001). Other stud-
ies have shown that BLM functions in alternative lengthening (as 

F I G U R E  2 DNA methylation age of mutant Blm mouse model (m3/m3) compared to wildtype (+/+) and heterozygotes (+/m3) using the 
Pan-tissue clock. Data are shown as mean ± SEM with comparisons made using unpaired t-test.
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opposed to shortening) of telomeres (ALT) independent of telomerase 
(Acharya et al., 2014; Lu, O'Rourke, et al., 2019; Opresko et al., 2005).

2.2  |  Mouse studies

We then studied epigenetic aging in a Bloom syndrome mouse model 
created using embryonic stem cell technology (Luo et al.,  2000). 
Mice with null alleles generated using this approach did not de-
velop to term but the Blmm3 allele gives rise to an aberrant message. 
Blmm3/m3 mice are viable, fertile, and have increased sister chromatid 
exchange, as well as cancer predisposition.

Brain, heart, kidney, liver, skin, and blood were sampled from 
four wildtype C57Bl6 mice (noted as Blm+/+), four heterozygous 
mice, which were the F1 progeny of wildtype and Blmm3/m3 mice 
(noted as Blm+/m3), and four homozygous Blmm3/m3 mice all aged be-
tween 70–73 days. There were no statistically significant differences 
between wildtype and heterozygous Blm+/m3 across any of the mea-
sured epigenetic clocks (data not shown). Therefore, these groups 
were combined for downstream analyses.

There was no statistically significant increase in DNAm age 
according to the mouse pan-tissue clock (Figure  2). The tissue-
specific mouse clocks showed significantly increased methylation 

aging in brain (Figure 3a) but not heart, kidney, liver, skin, or blood 
(Figure 3b–f) in Blmm3/m3 mice compared to wildtype and heterozy-
gous mice. We also found that Blmm3/m3 mice have increased DNAm 
age according to the murine brain clock in brain, heart, kidney, skin, 
and blood (Figure 4a–c,e,f), compared to wildtype and heterozygous 
mice.

Given the surprising result that the murine brain clock measures 
increased DNAm in Blmm3/m3 mice in brain, heart, kidney, skin, and 
blood compared to wildtype and heterozygous mice, we applied 
the other tissue-specific clocks to all other tissues and found that 
most did not result in any statistically significant differences (data 
not shown). We created correlation plots using the pan-tissue and 
tissue-specific clocks and were able to demonstrate that the pan-
tissue clock for mouse appears to have limitations in accurately 
predicting the ages in specific tissues (Figure S2). Furthermore, we 
demonstrate that the brain clock can apply to heart and kidney tis-
sues but not to skin and liver.

Epigenome wide association study (EWAS) showed significantly 
differentially hyper- and hypomethylated genes (Figure 5). We used 
Genomic Regions Enrichment of Annotations Tool (GREAT) to ana-
lyze the functional significance of these hyper- and hypomethylated 
regions (McLean et al., 2010). Gene ontology (GO) enrichment anal-
ysis showed hypermethylated genes in many biological processes 

F I G U R E  3 DNA methylation age of mutant Blm mouse model (m3/m3) compared to wildtype (+/+) and heterozygotes (+/m3) using tissue-
specific clocks. Data are shown as mean ± SEM with comparisons made using unpaired t-test. **p < 0.0021.
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related to DNA conformation and packaging, as well as chromatin 
assembly, disassembly, and remodeling.

Tissue-specific GREAT analyses also showed hypermethylated 
regions in DNA packaging and chromatin assembly, as well as genes 
involved in upregulation of Th1 cells, post-radiation tumor escape 
signatures, breast cancer invasiveness and clinical outcome, and 
acute myeloid leukemia stem cells (Figure 6; Gu et al., 2014, 2016). 
Classification of protein families found in hypomethylated regions 
included C-type lectin and Ly49-like N-terminal, which both function 
in immunity (Brown et al., 2018; Malarkannan, 2006) and could be re-
lated to the mild immunodeficiency seen in some patients with BSyn.

3  |  DISCUSSION

Bloom syndrome is a rare cancer predisposition syndrome thought 
to be driven by defective DNA repair leading to genomic instabil-
ity. There is a wide spectrum of clinical phenotypes seen in disor-
ders caused by genomic instability. For example, Hereditary Breast 
and Ovarian Cancer (HBOC) syndrome caused primarily by vari-
ants in BRCA1/2 which have overlapping functions with BLM, is as-
sociated with increased cancer risk without syndromic features 

(Gudmundsdottir & Ashworth, 2006; Wu et al., 2010; Yoshida, 2021). 
Fanconi Anemia (FA), on the other hand, is a recessive disorder that 
exhibits increased chromosomal breakage and is associated with 
growth abnormalities, congenital malformation, bone marrow fail-
ure, increased risk of head and neck cancers, and is also increasingly 
recognized as having early senescence (Helbling-Leclerc et al., 2021; 
Kalb et al., 2006; Nalepa & Clapp, 2018). Lastly, a recent study on 
patients with short telomere syndromes demonstrated that T cell 
exhaustion rather than genomic instability led to development of 
solid cancers (Schratz et al., 2023). These examples highlight gaps in 
our understanding of genomic instability, cancer, and aging.

A recent study investigating the incidence of cancer in individu-
als from the Bloom Syndrome Registry revealed that 53% were di-
agnosed with cancer and 35% of individuals with cancer developed 
multiple cancers (Sugranes et al.,  2022). Yet, cancer surveillance 
in this rare population is challenging due to the variety of cancers 
that can develop and lack of evidence-based guidelines (Cunniff 
et al., 2018; Walsh et al., 2017). Development of a biomarker of aging 
and cancer would revolutionize clinical care of BSyn as well as many 
other cancer predisposition syndromes.

Epigenetic clocks have been shown to be robust markers of age 
and mortality. This study reports, for the first time, a molecular 

F I G U R E  4 DNA methylation age of mutant Blm mouse model (m3/m3) compared to wildtype (+/+) and heterozygotes (+/m3) using the 
brain tissue clock. Data are shown as mean ± SEM with comparisons made using unpaired t-test. **p < 0.0021, ***p < 0.0002.
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marker of accelerated aging detected in BSyn humans and mice. 
Interestingly, when we studied different tissues and different epi-
genetic clocks in the Bloom mouse model, the brain clock most 
consistently found accelerated aging in the Bloom mice compared 
to heterozygous and wildtype mice. This may be explained by the 
decreased proliferative capacity of postnatal mouse brain resem-
bling cellular features from Bloom mice (Semenov,  2021). Indeed, 
cells from BSyn patients also display decreased DNA replication 
(Subramanian et al., 2021) and silencing of BLM in vitro leads to in-
hibition of viability and proliferation (Feng et al., 2022). This was a 
surprising result that merits further investigation.

Carriers of BSyn have not been extensively studied and it 
is unclear whether they have adverse health impacts (Antczak 
et al., 2013; Prokofyeva et al., 2013). Studies have found increased 
risk of colorectal cancer and endometrial cancer in heterozygous 
Blm carriers (Gruber et al., 2002; Schayek et al., 2017) while other 
studies found no significantly increased prevalence of cancer among 
carriers (Baris et al., 2007; Cleary et al., 2003; Laitman et al., 2016). 
This study demonstrates that carriers of BSyn do not appear to have 
accelerated epigenetic aging compared to BSyn, though we were not 
able to compare to a population without heterozygous BLM variants. 
Heterozygous mice also had epigenetic age indistinct from wildtype 
mice.

This study has important limitations for consideration. Due to 
the rarity of Bloom syndrome and challenges in obtaining precious 
human samples, there may be confounding variables in the way 

that samples were obtained, processed, and stored. In addition, we 
have limited available data on the study participants about other 
potential confounders such as smoking packyears. It is known 
that smoking has a strong effect on GrimAge and PhenoAge and 
though we lack information on this, it is reasonable to assume that 
most of the Bloom syndrome participants did not have high smok-
ing pack years since they are children or young adults. Lastly, the 
Bloom mouse model has known limitations because while it does 
recapitulate important human Bloom syndrome features such as 
cancer predisposition and radiation sensitivity, the mouse model is 
hypomorphic and appears to be fertile, unlike patients with Bloom 
Syndrome.

Future studies are needed to understand whether accelerated 
epigenetic aging is associated with cancer or other clinical features 
seen in BSyn and to fully understand the tissue-specific differences 
in methylation in better model systems. Pathways identified in our 
GREAT analyses provide potential mechanisms driving cancer risk 
in Bloom Syndrome. These findings are expected to lead to the de-
velopment of improved biomarkers of disease as well as potential 
therapeutic opportunities.

4  |  METHODS

All study participants were consented on protocols approved by the 
UCLA and Weill Cornell Institutional Review Boards. Blood samples 

F I G U R E  5 Manhattan plot of median Z-scores from murine epigenome-wide association study using coded genotypes in a recessive 
fashion: 0 = WT/ heterozygous, homozygous = 1. The vertical red line indicates location of Blm gene at 7:80454993 using GRCm38/mm10 
genome. Horizontal red lines indicate Z-score ± 6.
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obtained from the Bloom syndrome Registry were collected, pro-
cessed, and stored in liquid nitrogen until DNA extraction. All other 
samples were obtained, processed with DNA extraction within 
2 days, and then stored at −80 until sequenced. All animal proce-
dures were performed under protocols approved by UCLA animal 
care and use committees. All mouse samples were obtained, pro-
cessed with DNA extraction within 2 days, and then stored at −80 
until sequenced.

4.1  |  Methylation analyses

Genomic DNA was extracted from peripheral blood using the 
PureLink Genomic DNA kit (Thermo Fisher). For human samples, 
we used the Illumina Infinium Methylation EPIC v2.0 kit (Illumina) 
and standard Illumina protocols to sequence DNA from BSyn partici-
pants and carriers. Briefly, the Illumina bead chip measured bisulfite-
conversion-based, single-CpG resolution DNA methylation levels at 
866 k CpG sites. The noob normalization method from the minfi R 
package was used to normalize the human data.

For mouse samples, we used the HorvathMammalMethylChip320 
custom mammalian array, which combines a prior custom mamma-
lian array (HorvathMammalMethylChip40) and the 285 k Illumina 
Mouse Methylation BeadChip (Arneson et al.,  2022). The mouse 
methylation data were normalized using the SeSAMe normalization 
method (Zhou et al., 2018).

4.2  |  Epigenetic clock software

The human epigenetic clocks were computed using the online epi-
genetic clock software to calculate the human epigenetic clocks, 
https://dnama​ge.genet​ics.ucla.edu/new. The mouse clocks were 
trained and developed in different data sets (“DNA Methylation Age 
Calculator,”). The underlying software code can be found in the sup-
plements of Mozhui et al. (2022).

4.3  |  EWAS

The epigenome-wide association studies (EWAS) were conducted 
separately in each tissue type using the standardScreeningNu-
mericTrait function from the WGCNA R package (Langfelder & 
Horvath, 2008). Genotypes were coded as “0” or “1” and used as the 
trait for the EWAS analysis. For mouse samples, the genotypes were 
recessively coded as “0” for wildtype and heterozygous mice and “1” 
for homozygous mice.

4.4  |  GREAT enrichment analysis

The Genomic Regions Enrichment of Annotations Tool (GREAT) 
(McLean et al.,  2010) was used to identify functional annotations 
of the top BSyn-related CpGs from the EWAS analyses through the 

F I G U R E  6 Tissue-specific GREAT analyses showing annotation of hyper- and hypomethylated regions. Bars on the left indicate the 
number of annotation genes within the custom mammalian array. Each cell presents unadjusted hypergeometric p-values (number of 
overlapped genes) that have an FDR <0.05 and overlapped genes > = 3 in the heatmap. The heatmap color codes the -log10 p-values.

https://dnamage.genetics.ucla.edu/new
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rGREAT R package (Gu et al., 2014, 2016; Gu & Hubschmann, 2022). 
By using a custom background consisting of the methylation array 
for each sample, GREAT performed hypergeometric testing using 
the top EWAS CpGs as foreground and the methylation array appro-
priate for human or mouse samples as the background. The top 500 
CpGs were used for the mouse samples and the top 1000 CpGs were 
used for the human samples. Annotations were restricted to those 
with 5 to 3000 gene sets to avoid multiple comparisons. The settings 
of “Proximal: 5.0 kb upstream, 1.0 kb downstream, plus Distal: up to 
50 kb” were used for the enrichment analysis.

4.5  |  Mice

Blmm3/m3 mice (strain 01BM1) were procured from the NCI Mouse 
Repository. Heterozygous mice were bred by crossing Blmm3/m3 and 
wildtype C57BL/6J mice (strain 000664) from Jackson laboratories. 
At 70–73 days, male mice were euthanized and whole liver, blood, 
kidney, heart, skin, and brain tissue were collected for DNA extrac-
tion and methylation analyses.

4.6  |  Statistical analyses

Statistical analyses were performed using Prism GraphPad 9. Data 
are shown as mean+/− SEM. The associations between human 
methylation data versus age were modeled using linear regression 
and quadratic regression. Unpaired t-tests were used to compare 
Blm mice to wildtype and heterozygous mice.
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