
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Moving Target Defense for Attack Mitigation in Multi-Vehicle Systems

Permalink
https://escholarship.org/uc/item/0j38p25q

ISBN
978-3-030-10596-9

Authors
Giraldo, Jairo
Cardenas, Alvaro A

Publication Date
2019

DOI
10.1007/978-3-030-10597-6_7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0j38p25q
https://escholarship.org
http://www.cdlib.org/


Chapter 7
Moving Target Defense for Attack
Mitigation in Multi-Vehicle Systems

Jairo Giraldo and Alvaro A. Cardenas

Abstract Cyber-Physical Systems (CPS) have traditionally been considered more
static with more regular communication patterns when compared to classical
information technology networks. Because the structure of most CPS remains
unchanged during long periods of times, they become vulnerable to adversaries with
the precise knowledge of the system, and who can tailor their attacks based on their
knowledge about the system dynamics, communications, and control.

Moving Target Defense (MTD) has emerged as a key strategy to add uncertainty
about the state and execution of a system in order to prevent attackers from having
predictable effects with their attacks. In the last few years MTD has been used in
different CPS scenarios by adding uncertainties into the physical characteristics of
the system. Most of these applications are used to detect attacks, or to make difficult
for attackers to gather information. In this chapter, we propose an MTD strategy
for multi-vehicle systems that can be used to mitigate the impact caused by cyber-
attacks. We characterize the trade-off between impact mitigation and performance
degradation, and illustrate the viability of our approach in two applications, (1)
vehicular platooning, and (2) UAV formation. Finally, we extend our results to a
more general control systems framework, and we introduce different types of MTD
mechanisms, i.e., at the controller level and at sensors.
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7.1 Introduction

Moving target defense (MTD) has been proposed as a way to make difficult
the reliable exploitation of a system by attackers because it makes the attack
surface dynamic [5]. For instance Dunlop et al. [3] proposed MT6D, an MTD
mechanism for IPv6 which maintains user privacy and protects against targeted
network attacks by repeatedly rotating the addresses of both the sender and receiver.
Similarly, Wang et al. [22] introduced MOTAG, a strategy that defends against
Internet DDoS attacks, by employing a layer of secret random proxy nodes to relay
communications between clients and the protected application servers.

Most applications of MTD have been used for network protection and to secure
applications. However, in the last couple of years the use of MTD techniques
has been extended to protect cyber-physical systems. Several authors have used
MTD approaches for state estimation in the smart grids [2, 16, 20], where the
main idea consists on changing the physical topology of the power grid in order
to reveal false data injection attacks. Weerakkody and Sinopoli [23] proposed the
addition of an external system unknown to the attacker that uses additional sensor
readings to obtain an estimate, making it harder for an adversary to design stealthy
attacks. A similar approach was introduced by Valente and Cárdenas [21], where
external visual challenges (e.g., a screen with extra information) are used to verify
the authenticity of video footage. Closer to our work, Pang et al. [12] considered
DDoS attacks that can shut down control commands; to prevent this attack, they
propose the use of multiple distributed controllers so when a control command is
not received, another controller is selected. On the other hand, Kanellopoulos and
Vamvoudakis [6] propose a proactive MTD mechanism that consists on randomly
switching among multiple controllers to increase the unpredictability of the control
system. The switching probabilities are selected in order to maximize the entropy
produced by the switching strategy while ensuring minimum controller cost. One
of our approaches is similar, but we focus on minimizing the impact of the attack
instead of the entropy. However, in our formulation it is possible to include the
entropy maximization as an additional objective.

In this chapter we show how MTD can be used not only to increase the cost and
difficulty of designing cyber-attacks, but also to mitigate the impact of successful
attacks. We propose the use of random communication topologies for multi-vehicle
systems as a moving target mechanism that can be designed to decrease the negative
impact of the attack. We derive stability conditions for second-order consensus
protocols in the presence of random switching topologies and we identify trade-offs
between the convergence rate and the attack impact. The viability of our approach is
illustrated with two case studies, (1) vehicular platooning, where a group of vehicles
need to remain close enough to exploit the benefits of the platoon (i.e., decreasing
CO2 emissions and fuel consumption) while avoiding collisions, and (2) Unmanned
Aerial Vehicle (UAV) formation, where a group of UAVs need to maintain a
formation that can be used for surveillance or exploration. Finally, we extend
our analysis to a more general framework and introduce novel MTD strategies
that induce random switching between different controllers, or between sensors.
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We formulate optimization problems in order to obtain the optimal probability
distribution that minimizes the impact of the attack.

Preliminaries and Notation
Graph theory: Let G = (V ,E ,A ) represents a graph, where V = {1, 2, . . . , N}
is the set of nodes or vertices, and E {(i, j)|i, j ∈ V } is the set of pairs called
edges. If a pair (i, j) ∈ E , then i, j are adjacent. The adjacency matrix A = [aij ]
is the symmetric (nonsymmetric for directed graphs) matrix N × N, where aij = 1
if (i, j) are adjacent, aij = 0 otherwise. For the ith node, the set of neighbors is
Ni = {j |(i, j) ∈ E }, and the degree of a vertex ds

i is the number of neighbors

that are adjacent to i, i.e., ds
i = ∑N

j=1 aij or, for directed graphs, the number of
neighbors whose direction is heading to node i. A sequence of edges (i1, i2), (i2,
i3), . . . , (ir−1, ir) is called a path from node i1 to node ir. The graph G is said to
be connected if for any i, j ∈ V there is a path from i to j. The degree matrix is
D = diag(d1, d2, . . . , dN), and the Laplacian of G is defined as L = D − A . A
graph is said to be a k-regular graph if all vertices have connectivity equal to k, each
node is connected to k neighbors.

7.2 MTD for Multi-Agent Systems

Multi-agent systems (MAS) are systems that capture a variety of social and dis-
tributed interactions where agents make decisions based only on local information
(See Fig. 7.1). One of the main components of MAS are the communication links,
that indicate whether or not one agent shares information with another. Unfortu-

Fig. 7.1 Examples of multi-agent systems
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nately, MAS are susceptible to adversaries that may gain access to a subset of
communication links and inject false information. For instance, a man-in-the-middle
attack can inject false data about a specific sensor, or in social networks, releasing
false information to a subset of people in a group that interacts to complete a specific
task. In this chapter, we propose MTD strategies to help to mitigate the effects of
false data injection attacks in MAS, with emphasis on multi-vehicle systems.

Second-Order Multi-Vehicle System
Let us consider a system with n agents that update their states using the information
from a set of neighbors. Each agent is represented by a discrete-time second-order
integrator of the form

xi(k + 1) = xi(k) + vi(k)

vi(k + 1) = vi(k) + ui(k), for all i ∈ � = {1, 2, . . . , n}. (7.1)

where xi(k) ∈ R and vi(k) ∈ R are the position and velocity of each agent i at time
k, respectively. Typically, a distributed control action ui(k) is designed by consid-
ering information from a set of neighbors. The communication interaction among
agents is modeled by a time-varying directed graph G (k) = (V ,E (k),A (k)),
where each vertex represent an agent, and the set of communication links are
described by E (k), where the link eij (k) ∈ E (k) if node i receives information from
j. Therefore, we consider the consensus protocol adapted from [25] with dynamic
communication interactions described by

ui(k) = − α1

n∑

j=1

aij (k)(xi(k) − xj (k) − δij (k))

− α2

n∑

j=1

aij (k)(vi(k) − vj (k) − γij (k))

(7.2)

where aij(k) are the elements of the time-varying adjacency matrix A (k), α1, α2
are parameters to be designed, and δij(k), γ ij(k) correspond the attack injected in
the information that agent i receives from its neighbor j, for δij(k) �= δji(k), and
γ ij(k) �= γ ji(k).

Attacker Model
We consider an adversary that has knowledge about the system dynamics and
parameters α1, α2, and he knows the fixed communication topology that represents
all possible communications. Let ka, kf denote the initial and final time of the attack.
Thus, the adversary can craft the attack sequences {φ(ka), φ(ka + 1), . . . , φ(kf )}
and {γ (ka), . . . , u(kf a)}. We assume that an adversary is able to hijack a subset of
communication links and modify the information sent from agent i to agent j. This
model may represent two types of attacks as depicted in Fig. 7.2: Sybil attack, where
an adversary falsifies the identity of an agent and starts sending false information;
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Fig. 7.2 Example of two types of attacks considered in this chapter

and false-data injection attacks, where the attacker intercepts the communications
between two agents and falsify the information that is being transmitted. We do not
assume that a sensor is compromised, but only the communication channel used to
transmit the sensor information to a specific neighbor. For instance, for agents 1, 2,
3, the adversary may compromise the information of y1 sent from 1 to 2, but not the
information of y1 sent from 1 to 3.

7.2.1 Random Communication Topology

The use of random communication topologies for first-order consensus algorithm
are useful to model uncertainties in the system such as link failures or DDoS attacks
[7, 13]. In this work, we propose the use of random topologies as an MTD strategy
that can help to mitigate the impact of adversaries. In particular, we focus on the
second-order consensus algorithm in Eq. (7.2) and we derive sufficient conditions
for stability.

Let us define the total graph (or supergraph) GT = (V ,ET ,AT ) as the fixed
graph that represents all possible communications between agents, where the set
ET collects all the channels that can be established directly among pairs of sensors,
i.e., it is the set of realizable edges. Without an MTD policy, we consider that the
communication topology is represented by a fixed graph Gf , which is a spanning
connected subgraph of GT , such that Ef ⊆ ET .

Now, our MTD strategy can be modeled by the time-varying graph G (k) =
(V ,E (k),A (k)) with fixed vertex set V , and time-varying edge set E (k) ⊂ ET ,
where the edges can vary with time either deterministically or completely random.
The instantaneous Laplacian matrix is then L(k).

Now, let x(k) = [x1(k), x2(k), . . . , xn(k)]�, v(k) = [v1(k), . . . , vn(k)]�, and
z(k) = [x(k)�, v(k)�]. Also, let δi(k) = ∑n

j=1 aij (k)δij (k) and γi(k) =
∑n

j=1 aij (k)γij (k) and δ(k) = [δ1(k), . . . , δn]� and γ (k) = [γ 1(k), . . . , γ n(k)]�.
We can rewrite the system in (7.1) with the consensus protocol in (7.2) in a compact
matrix form as
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Fig. 7.3 The main idea behind the switching topology consists on changing the topology such
that the number of times the compromised information is used decreases while guaranteeing
stability of the system for the attack-free scenario. In this example only 50% of the times the
fake compromised information can be transmitted. However, in the fixed case the attack is always
affecting the communication between two nodes

z(k + 1) =
[

I I

−α1L(k) I − α2L(k)

]

︸ ︷︷ ︸
F(k)

z(k) +
[

0 0
α1In α2In

]

︸ ︷︷ ︸
G

φ(k),

z(k + 1) = F(k)z(k) + Gφ(k), (7.3)

for φ(k) = [δ(k)�, γ (k)�]�.
The main idea of MTD in multi agent systems is summarized in Fig. 7.3, where

a communication graph with an MTD switching policy can mitigate the impact of
an attack in the communication link by minimizing the amount of time the fake
information is transmitted.

7.2.2 Random Graphs

A random graph G (k) is a graph generated by some random process [13]. Typically,
the set of vertices V is assumed constant throughout time whereas the set of edges
E (k) varies randomly with time. A general way of modeling the randomness of the
edges consists in assuming a probability of connection between two vertices i and j,
such that aij(k) = 1 is a Bernoulli random variable with probability 0 ≤ pij ≤ 1. We
can define the connection probability matrix P ∈ R

n×n with entries
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P ij =
{

pij , i �= j

0, i = j.

Then, a realization G (k) at time k can be seen as a spanning subgraph (not
necessarily connected) of the super graph GT . Due to the random nature of A (k),
the instantaneous Laplacian matrix L(k) is also random. The expected value of
the adjacency matrix E[A (k)] = P and the expected Laplacian matrix is then
L̄ = diag(P 1n) − P .

Erdös-Rényi Model
Erdös and Rényi [4] introduced two models of random graphs that consider two
different ways of modeling the randomness of the edges:

1. The model G (k) = (V , s) refers to a random graph with a fixed vertex set V ,
where at each realization there exists exactly s edges. In other words, at each time
k a graph G (k) is chosen uniformly at random from the collection of graphs that
have n vertices and s edges.

2. The model G (k) = (V , p) refers to a graph with vertex set V where each edge
exists with nonzero probability p, equal for all vertices, such that for all i, j,
pij = p.

We focus on a special case of the second Erdös-Rényi model, where only the
edges that belong to ET have probability p. In other words, E[A (k)] = pAT and
E[L(k)] = L̄ = pLT . We refer to these types of graphs as MER (Modified Erdös-
Rényi) graphs.

7.2.3 Convergence of the Attack-Free Scenario

It is necessary to guarantee that the inclusion of the proposed random MTD
strategy does not affect the convergence to a consensus state. First, as it was
pointed out in [25], convergence to a consensus state of a second-order model
depends on the correct selection of α1, α2 and the connectivity properties of the
communication topology, according to the following theorem adapted from [25] for
fixed communication graphs.

Theorem 7.1 (Collorary 1 [25]) Consider the multi-agent system in (7.3) without
attack and with an undirected and fixed communication topology. Consensus can be
achieved if and only if α2 > α1 > 0 and α1 − 2α2 > −4

μi
for all i.

Now, the following theorem extends Theorem 7.1 and establishes sufficient
conditions for convergence in expectation in the presence of random switching
topologies.

Theorem 7.2 Let GT = (V ,ET ) be the communication graph that describes all
possible communications between n agents, and let AT be its adjacency matrix
with Laplacian matrix LT . Let μ1 = 0 < μ2 ≤ . . . ≤μn be the eigenvalues of LT .
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Suppose that each communication link exists with identical probability p such that
E[AT ] = P = pAT and L̄ = pLT . The consensus state zc = [x�

c v�
c ]�, for

xc = 1N

⎛

⎝ 1

N

n∑

j=1

xj (0) + k

N

n∑

j=1

vj (0)

⎞

⎠ ,

vc = 1N

1

N

n∑

j=1

vj (0)

(7.4)

is reached in expectation if α1 = p
μn

and α2 = 1+p
μn

.

Proof Let z̄(k) = E[z(k)] denote the expected state vector, such that the dynamics
in (7.3) without attack can be rewritten as

z̄(k + 1) = F̄ z̄(k)

where

F̄ =
[

I I

−α1L̄ I − α2L̄

]

.

Recall that L̄ is the Laplacian matrix of an undirected graph and that the consensus
state is reached for fixed topologies if α1 > α2 > 0 and α1 − 2α2 > −4

μ̄i
according

to Theorem 7.1, where μ̄i is the ith eigenvalue of L̄ for i = 2, . . . , n. Since LT is
symmetric, we have that μ̄i = pμi . Thus, p

μn
− 2 1+p

μn
> −4

pμn
> −4

pμi
. Multiplying

by pμn, we obtain − p2 − 2p + 4 > 0 which is always true for 0 < p ≤ 1. �
Remark 7.1 Convergence in expectation means that the speed v(k) will converge to
a vicinity of vc.

Corollary 7.1 When the random graph is described by an Erdös-Rényi model
with degree s, then the states z(k) will converge surely to zc, i.e., Pr{limk→∞ z(k) =
zc} = 1.

We have shown convergence conditions in expectation that depend on the correct
selection of α1, α2. However, convergence in expectation is not enough to guarantee
asymptotic behavior to a consensus state. Therefore, we introduce the following
definition.

Definition 7.1 (Mean Square Consensus) Under random switching topologies,
the multi-agent system in (7.1) reaches mean square consensus if, for any i �= j,
|xi(k) − xj(k)|→ 0 and |vi(k) − vj(k)|→ 0 hold in mean square sense for any initial
states, such that the consensus state belongs to the vicinity of zc.
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The notion of mean square consensus ensures that z(k) will converge asymptoti-
cally to a consensus state with probability 1, and the consensus state is in the vicinity
of zc.

To find conditions for mean square consensus, we will use the results stated in
the following Theorem adapted from [26] for Markovian switching topologies.

Theorem 7.3 (Theorem 4 in [26]) Assume the switching topology is driven by an
ergodic Markov process (or a Bernoulli process). There exists gains α1, α2, such
that under the linear protocol in (7.2) the multi-agent system in (7.1) reaches mean
square consensus, if and only if the union of the graphs in the topology set of size r,
{G1, G2, . . . , Gr} has a globally reachable node.

Since our edge set is random and changes at each time instant k, we do not
have a fixed set of communication topologies; however, if we can show that after a
finite number of switches, the union of any random graph realizations has a globally
reachable node, we can ensure mean square consensus.

Lemma 7.1 For any MER (and Erdös-Rényi) graph G (k) = (n, p)with p > 0, there
exists a k∗ < ∞ such that the union of graph realizations G = G (1) ∪ G (2) ∪ . . . ∪
G (k∗)is connected.

Proof Let E = {E (1) ∪ E (2) ∪ . . . ∪ E (k∗)} be the union of the edge sets with
elements eij . Therefore, eij �= ∅ if, for k = 1, . . . , k∗ , the link eij(k) has existed at
least once. It is easy to see that the union of modified Erdös-Rényi graphs G is also
a modified Erdös-Rényi random graph with the same vertex set and probability p̃ =
Pr[eij �= ∅]. Since the existence of the edge eij (k) ∈ E (k) at an instant k is described
by a Bernoulli random variable with probability p, then the probability that the link
has existed at least once after k∗ realizations is described by the complement of a
binomial distribution, as follows

Pr[eij �= ∅] = 1 − Pr[(eij (k) �= ∅) ≤ 1, k∗]
= 1 − (1 − p)k

∗ − k∗p(1 − p)k
∗−1.

(7.5)

where Pr[(eij (k) �= ∅) ≤ 1, k∗] is the probability that eij existed at most once after
k∗ trials.

Notice that

lim
k∗→∞ 1 − (1 − p)k

∗−1 (
1 − p + k∗p

) = 1 (7.6)

such that G → GT . However, we need to show that there exists a finite k∗ < ∞
such that G is connected with high probability. To this end, recall that for a typical
Erdös-Rényi graph G(k) = (n, p), there exists a threshold p >

log n+c
n

< 1 such

that Pr[G(k) = connected] → e−e−c
[4]. The proof is based on defining a random

variable X0 that counts the number of isolated vertices when all communications
are possible, and finding the probability that P[X0 = 0]. Therefore, for the modified
Erdös-Rényi random graph G = (n, p̃), we can apply the same methodology by
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Fig. 7.4 Relationship between the instant k∗ and the probability of an edge being connected
after k∗ iterations p̃. When k∗ increases, the union of random graphs (where each graph may be
disconnected) forms a connected graph

restricting the edge set to ET , and find the specific threshold for which Pr[G =
connected] with high probability. The calculation of that threshold is not an easy
task, but since (7.6) holds, we know it exists. �
Example
Consider the modified ER random graph with n = 10, where GT is a 2-regular graph.
Figure 7.4 illustrates the relationship between k∗ and p̃ for different p. Clearly, as
k∗ increases, so does the probability of connection. Also, we calculated the number
of iterations k∗ until G is connected and we repeated this process 1000 times. The
asterisk indicates the maximum k∗ associated to each probability. Clearly, for each
p there is a finite k∗ that ensures that G is connected.

Now, we are able to state the following theorem.

Theorem 7.4 The system in (7.1) with the consensus algorithm in (7.2) and with
MTD policy described by the modified Erdös-Rényi graph with 0 < p < 1 and total
graph GT reaches mean square consensus if α1, α2 are selected according to
Theorem 7.2, and if GT is connected.

Proof Invoking Theorem 7.3, and since the union of modified Erdös-Rényi graphs
is connected after a finite number of iterations for p > 0 according to Lemma 7.1,
then there exists gains α1, α2 such that the second-order consensus algorithm is
mean square stable and converge to a vicinity of zc. From Theorem 7.2, we have
found α1, α2 that guarantee stability in expectation. Thus, they also are sufficient to
ensure mean square consensus. �
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7.2.3.1 Convergence Rate with MTD

Using the proposed MTD strategy induces a deterioration of the convergence rate
to the consensus state. Therefore, we will use the convergence rate as a measure of
performance in order to identify how p and GT affect the performance of the system.

Definition 7.2 The convergence rate in a consensus algorithm is the rate of
convergence to the steady state value and it can be characterized by the spectral
gap R = 1 − ρ(F), where ρ(F ) = max(|λi | : λi �= 1). A convergence rate of 1 is the
fastest possible convergence and 0 implies that the dynamics are not evolving at all.

In order to quantify the convergence rate in the presence of random switching, we
introduce the following lemma adapted from [25].

Lemma 7.2 Let us consider the second-order consensus algorithm described in
(7.3) for fixed communication topology such that L(k) = L with eigenvalues μi and
F(k) = F. The eigenvalues of F are given by

λi1,2 =
−α2μi ±

√
α2

2μ2
i − 4α1μi

2
+ 1

Proof The proof can be found in [25]. �
The degradation caused by using MTD can be calculated by comparing two cases,
consensus with a fixed topology described by Gf , and with a random topology. For
the fixed topology, we consider the special case where all possible communications
are active, such that Gf = GT , as follows.

Lemma 7.3 Let GT be the graph that represents all possible communications and
let us consider the special case where all possible communication links exist, i.e.,
the fixed communication topology without MTD is given by Gf = GT . Applying
the algorithm in (7.3) with fixed topology (i.e., p = 1) the convergence rate is

Rf = 1 − ρ(F), for ρ(F ) =
√

1 − μ2
μn

.

Proof From Lemma 7.2, we have that for a fixed topology with Laplacian matrix L,
the eigenvalues of F are given by

λi1,2 =
−α2μi ±

√
α2

2μ2
i − 4α1μi

2
+ 1.

When p = 1, from Theorem 7.2 we have that α1 = 2
μn

, α2 = 1
μn

, such that

λi1,2 =
−2 μi

μn
±

√

4
μ2

i

μ2
n

− 4 μi

μn

2
+ 1 = − μi

μn

±
√

μi

μn

(
μi

μn

− 1

)

+ 1.
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Notice that the term inside the square root is always negative, such that the
eigenvalues have a component in the imaginary axis. We then can rewrite the
eigenvalues as

λi1,2 = − μi

μn

+ 1 ± j

√
μi

μn

(

1 − μi

μn

)

.

The magnitude is then

|λi | =
√

(

1 − μi

μn

)2

+ μi

μn

(

1 − μi

μn

)

=
√

1 − μi

μn

.

Since all eigenvalues μi are real, ρ(F ) =
√

1 − μ2
μn

and Rf = 1 − ρ(F). �

Now, the upper bound of the expected convergence rate is derived in the
following theorem.

Theorem 7.5 Suppose that an MTD random mechanism is introduced such that the
communication topology changes randomly over time with probability p. Therefore,
the expected convergence rate R̄MT D < Rf for any 0 < p < 1 is given by

R̄MT D = 1 −
√

1 − p
μ2

μn

.

Proof Since ρ(F) is a convex function for nonnegative matrices, from the Jensen’s
inequality, we have that

E[ρ(F (k))] ≥ ρ(E[F(k)]) = ρ(F̄ ).

Therefore, R̄MT D = E[RMT D(k)] = 1 − E[ρ(F (k))] ≤ 1 − ρ(F̄ ).
Now, suppose 0 < p < 1, such that the eigenvalues of F̄ are given by

λ̄i1,2 =
−(1 + p)

μ̄i

μn
±

√

(1 + p)2 μ̄2
i

μ2
n

− 4p
μ̄i

μn

2
+ 1,

where μ̄i are the eigenvalues of L̄. Since LT is symmetric, then μ̄i = pμi .

Following the same steps as before, it is easy to see that |λ̄i | =
√

1 − p
μi

μn
and

R̄MT D ≤ 1 −
√

1 − p
μ2
μn

. Clearly, R̄MT D < Rf since

√

1 − p
μ2

μn

>

√

1 − μ2

μn

holds for any p < 1, and there is a degradation in the convergence rate. �
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Fig. 7.5 Convergence rate
for different probabilities and
for several GT . Notice that
increasing the communication
capabilities in the network
improves the consensus
performance
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Remark 7.2 Using MTD comes with a degradation in the convergence rate.
Applications that require fast convergence to a consensus or a formation will need
to select an appropriate large enough p.

Figure 7.5 shows the convergence rate for different graphs. Notice that the
convergence rate increases with the connectivity of the communication graph, and
decreases with p. As we will see next, p not only affects the convergence rate, but
also the impact caused by an attacker. As a consequence, the defender needs to select
appropriate p and GT to maintain a good performance while making the system
resilient to attacks.

7.2.4 Attack Impact with Random Switching Topology

We have calculated the convergence rate of the multi-vehicle system with a random
switching communication topology in terms of the probability p. Clearly, to increase
the convergence rate, it is necessary to select a large p. However, we need to quantify
how the effect of a cyber-attack is affected by p in order to obtain a trade-off between
the performance (convergence rate) and the impact of the attack.

Let xc be the desired state or operational point at which the control action drives
the system states. The main objective of an adversary is to deviate the system states
from xc. For instance, an adversary may intent to cause an increase on the pressure
in a chemical reactor or cause that two vehicles crash. Therefore, we can define
I ∈ R+ as the impact that an attack can cause to the system as a function of
x(k) − xc. In this chapter, we define the impact as

I = lim
k→∞ ‖x(k) − xc‖, (7.7)

which captures effects of the attack even when stability is not compromised.



176 J. Giraldo and A. A. Cardenas

Now, suppose that the communication network in the multi-vehicle system
changes randomly according to the model in (7.3). Let E[z(k)] = z̄, E[L(k)] = L̄,
and E[F(k)] = F̄ , where

F̄ =
[

I I

−α1L̄ I − α2L̄

]

.

Similarly, we can define E[φ(k)] = [E[δ(k)]�, E[γ (k)]�] = φ̄ where

E[δi (k)] = p
∑n

j=1
aijα1E[δij (k)]

and

E[γ i (k)] = p
∑n

j=1
aijα2E[γij (k)]

such that

z̄(k + 1) = F̄ z̄ + pGφ(k). (7.8)

Theorem 7.6 Let GT = (V ,ET ). be the communication graph that describes
all possible communications between n agents, with Laplacian matrix LT . Let
μ1 = 0 < μ2 ≤ . . . ≤ μn be the eigenvalues ofLT . Consider the system in (7.3) with
a random topology with link connection probability 0 < p < 1 and gains α1, α2
selected according to Theorem 7.2. The impact of the attack is given by

Ī = p

μn

√

n(2p2 + 2p + 1).

Proof The solution of (7.8) in the presence of an attack is given by

z̄(k + 1) = F̄ kz̄(0) +
k−1∑

l=0

F̄ k−l−1pGφ̄(k), (7.9)

In [25] it has been shown that, if α1, α2 are properly selected,

lim
k→∞ F̄ k =

[
1nξ

� 1nξ
�k

0 1nξ
�

]

, (7.10)

where ξ = 1n√
n

is the unique nonnegative left eigenvector of L̄ associated with the
eigenvalue 0. In order to quantify the impact of an attack, we focus our attention on
how any attack can affect the vehicles speed. Thus, from (7.3), (7.9) and (7.10) we
have that
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lim
k→∞ F̄ k−l−1pG = p

[
1nξ

� 1nξ
�k

0 1nξ
�

] [
0 0

α1In α2In

]

= p

[
α11nξ

�k α21nξ
�k

α11nξ
� α21nξ

�
]

.

Taking only the part related to the vehicle speed for G2 = [α1I, α2I] and α1, α2
according to Theorem 7.2, the expected impact can be defined as

Ī = ‖1nξ�pG2‖ =
√

np2(α2
1 + α2

2) = p

μn

√

n(2p2 + 2p + 1).

�
Figure 7.6 shows the trade-off between the performance given by the conver-

gence rate and the impact of the attack for different types of graphs. Notice that
small probabilities will decrease the impact of the attack but at the cost of small
convergence rates. On the other hand, the degree of connectivity of GT has a
significant impact on mitigating the effects of the attack. When GT is a full graph, all
communication links are possible, and the system is clearly more resilient than for
any other topology. Thus, the system designer can increase the amount of possible
communication channels in order to select smaller p that will not cause a significant
performance degradation, while guaranteeing good resiliency to attacks. However,
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Fig. 7.6 Convergence rate vs. impact metric for different graphs with n = 10. Clearly, small p leads
to lower vulnerability but at the cost of a decrease in the performance (decrease in the convergence
rate). In particular, increasing the connectivity of the total graph, decreases considerably the impact
of the attack
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having a wide amount of communication channels for each vehicle may require
more expensive equipment and more energy consumption.

7.3 Experiments

In order to illustrate the viability of our analysis, we consider two case studies, (1)
vehicular platooning, and (2) UAVs formation control. In both scenarios, we show
how the proposed random MTD strategy can be used to mitigate the impact of the
attack.

7.3.1 Vehicular Platooning

We consider the problem of vehicular platooning. In particular, platooning offers
many benefits over solo driving such as better reaction times, decrease of CO2
emissions, and lower fuel consumption [18]. The objective of the platoon is
to maintain an adequate distance between vehicles, such that sudden changes
in the leader’s speed (e.g., braking) will not cause any crash in the preceding
vehicles. This is known as the string stability of the platoon and has been widely
studied in the literature [11, 14, 19]. Typically, the Adaptive Cruise Control
(ACC) system controls the distance and/or relative velocity between adjoining
vehicles by measuring (radar/lidar) and reacting to the relative distance and/or
velocity between adjacent vehicles compared to a desired setpoint. More recently,
work has leveraged vehicle-to-vehicle or infrastructure-to-vehicle communication to
inject feed-forward commands. Such Cooperative Adaptive Cruise Control (CACC)
systems improve the string stability of the platoon and allow vehicles to follow
each other with a closer distance than with ACC, thereby improving traffic flow
capacity. CACC gathers information of vehicles further in front according to a
specific communication network topology (Fig. 7.7).

Fig. 7.7 Scheme of a platoon of n vehicles. Each vehicle is equipped with a CACC strategy
using vehicle-to-vehicle communication network. An adversary can gain access to some sensors
or actuator commands transmitted through the network
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The dynamics of each vehicle in the platoon are dictated by (7.13) with a control
strategy of the form

ui(k) = −α1

n∑

j=1

aij (k)
(
xi(k) − xj (k) − dij

) − α2

n∑

j=1

aij (k)
(
vi(k) − vj (k)

)
,

where dij = (j − i)d such that adjacent vehicles always have distance d [1].
In our simulations, we consider a platoon with 10 vehicles, d = 2m, and scenarios

with and without MTD. Figure 7.8 illustrates the intra-vehicular distance xi − xi+1
and the speed of each vehicle. Before the attack, all intra-vehicle distances converge
to d = 2 and to a speed of 72 km/h. Notice that including MTD affects the
convergence time to the consensus state.
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Fig. 7.8 Vehicles distance (xi − xi+1) and speed for the vehicular platooning problem, with desired
d = 2 and final speed of 72 km/h. Vehicles reach the desired distance even with MTD, with a cost
of slower convergence time. After 200 s an attacker compromises some of the communications
received by vehicle 3 and launches a bias attack that fades over time. Without MTD, the attack
causes that vehicles 2 and 3 crash (Top) causing the entire platoon to stop. On the other hand, with
our proposed MTD and p = 0.2, the crash is avoided and the platoon speed slightly increases due
to the attack (bottom)
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Now, suppose that an adversary is able to compromise the information that agent
3 receives from one of its neighbors and injects a bias attack that fades over time.
Without MTD, vehicles 2 and 3 crash after 5 s causing the entire platoon to stop
(Fig. 7.8-Top). On the other hand, with a random MTD with p = 0.2, it is possible
to avoid the crash and mitigate the impact of the attack. Notice that the attack only
causes a slight increase in the speed and some oscillations but the consensus state is
attained after the attack.

7.3.2 Formation Control of UAVs

Formations of UAVs have found use in military and civilian activities such as
surveillance and exploration [8], building construction [24], and disaster manage-
ment [15]. The main idea of these type of formations lies on the possibility that
the group of UAVs moves as a single rigid body while performing a specific task
using distributed and decentralized control strategies, where each UAV exchanges
information only with a small group of agents.

To simply model the dynamics of n UAVs, we use (7.1) to represent the position
and velocity in each axis, X and Y, respectively of each UAV [17], such that

xX,i(k + 1) = xX,i(k) + vX,i(k)

vX,i(k + 1) = vX,i(k) + uX,i(k)

xY,i(k + 1) = xY,i(k) + vY,i(k)

vY,i(k + 1) = vY,i(k) + uY,i(k),

(7.11)

where xX,i(k), vX,i(k) are the position and speed in the X axis, xY,i(k), vY,i(k) are the
position and speed in the Y axis.

For the formation control of UAVs, we assume that each UAV is able to control
its speed in the X and Y axis separately, using a consensus-based algorithm of the
form

uX,i(k) = − α1

n∑

j=1

aij (k)
(
xX,i(k) − xX,j − dX,ij

)

− α2

n∑

j=1

aij (k)
(
vX,i(k) − vX,j (k)

)

uY,i(k) = − α1

n∑

j=1

aij (k)
(
xY,i(k) − xY,j − dY,ij

)

− α2

n∑

j=1

aij (k)
(
vY,i(k) − vY,j (k)

)
(7.12)
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where dX,ij, dY,ij are the desired distances between each pair of agents that describe
the desired formation. Since dX,ij, dY, ij are fixed and since we assume that the
states in each direction are independent, the stability analysis does not depend on
the desired formation, but only on the selection of α1, α2 and p.

As an example, suppose we have 10 UAVs, each one with X,Y speed controls and
the desired formation is a diamond shape at a height of 5 m. Each UAV possesses
communication capabilities to transmit their XY position and both speeds in a single
package where GT is a 4-regular graph. Figure 7.9 depicts the X − Y trajectories of
the group of UAVs with the proposed MTD with p = 0.2 and without attack. Clearly,
even in the presence of switching topologies, the desired formation is achieved.

Now, we assume an adversary compromises only the communication links that
agent 3 receives from 1 after 200 s, with φX,31 = 0.3, γ X,31 = 0.2 for the X axis
and φY,31 = −0.3γ Y,31 = −0.2. The attack causes that the formation changes its
direction by increasing the speed, as depicted in Figs. 7.10 and 7.11. However, the
deviation can be mitigated for small p, at the cost of larger convergence times.

Fig. 7.9 Formation control of 10 UAVs that intend to form a diamond shape formation
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Fig. 7.10 Speed in the X axis of the group of UAVs with and without MTD. Before the attack, the
control action guarantees a consensus in the speed and the desired formation is attained. After 200
s, an adversary compromises the information that agent 3 receives from one if his neighbors

Fig. 7.11 Formation control of 10 UAVs with an MTD strategy for different p = 0.2 (black),
p = 0.5 (blue), and no MTD (red) during 400 s. An attacker compromises one communication
link received by agent 3 and launches a bias attack after 200 s. The group of agents is deviated
from its destination at different speed rates depending on p. Clearly MTD decreases the impact
caused by an attack that aims to deviate the formation
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7.4 Toward Optimal Mitigation

We have shown how random switching of the communication topology in multi-
agent systems can mitigate the deviation caused by cyber-attacks. Now, we want
to extend the proposed strategy to a more general control systems frameworks
where the switching can be performed at a sensor level (or in the communications
between sensors and actuators), or at the controller level (e.g., performed by a
PLC). Besides, we consider heterogeneous switching probabilities such that we
can formulate optimization problems that allow us to find the optimal probability
distribution of the switching strategy that decreases the impact caused by sensor
attacks.

We consider a discrete-time linear time invariant (LTI) system described by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + φ(k), (7.13)

where A, B, C are matrices of proper dimensions, and x(k) ∈ R
n, y(k) ∈ R

p, u(k) ∈
R

m are the state, output, and input vectors, respectively. Since the sensor/control
commands can be sent through a communication network, we assume that the
system can be subject to additive sensor attacks φ(k) ∈ R

p.

7.4.1 MTD in the Controller

We now consider the case where uncertainties are added to the system through the
controller actions. The general architecture is illustrated in Fig. 7.12, where the
control action is chosen from a group of appropriate controllers. Our objective
is to design the sequence of control gains that can decrease the state deviation
caused by sensor attacks. A similar MTD approach has been proposed in [6], where
the authors design the random switching strategies that maximizes the entropy or
unpredictability caused by the MTD mechanism.

Suppose we have nc different control modes and let σ(k) ∈ Z+ for σ (k) ≤ nc

be the index of the control mode at the kth time instant. Let Σ = {σ (0), σ (1), . . . }
denote the switching sequence or switching logic that orchestrate the different mode
changes between controllers. Thus, we can define the control action as

u(k) = Kσ(k)y(k), (7.14)

where at each time instant k, the control gain is given by Kσ(k) ∈ K, for K =
{K1,K2, . . . , Knc }. Therefore, combining (7.13) and (7.14) we obtain

x(k + 1) = (A + BKσ(k)C)x(k) = Fσ(k)x(k) (7.15)

where Fσ (k) = A + BKσ (k)C.
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Fig. 7.12 MTD scheme for
switching among different
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The challenge with these type of linear systems lies on guaranteeing stability for
an arbitrary index sequence Σ . Lin et al. [10] summarized some important results
in the stability of the switched system in (7.15). The next theorem adapted from [9]
states the necessary and sufficient condition for asymptotic stability.

Theorem 7.7 The switched system in (7.15) is asymptotically stable under an
arbitrary switching if and only if there exists an arbitrary integer n such that for
all n-tuple Fij ∈ {F1, F2, . . . , Fnc } for j = 1, . . . , n

‖Fi1Fi2 . . . Fin‖ < 1.

The question now is, how can we limit the impact of cyber-attacks by switching
among controllers?

To answer this question, we need to solve two problems: (1) find the set of
controllers K, and (2) find the switching sequence. We propose an approach that
solves both problems as a motivation to show how MTD can decrease the impact
of attacks. To solve the first problem, and since we are trying to limit the impact of
sensor attacks, we assume that the elements of an optimal control gain (e.g., LQR
controller) can be active or inactive, such that not all sensor data is used at each time
instance. For instance, if an optimal control (without switching) is KT = [KT1, KT2,
KT3], we can assume that K1 = [0, KT2, KT3], K2 = [KT1, 0, KT3], and K3 = [KT1,
KT2, 0]. In this way, we do not use all the sensor information at all times. Therefore,
if conditions of Theorem 7.7 are satisfied for the control set, any arbitrary switching
sequence guarantees asymptotic stability. If we consider observer-based controllers,
the same technique can be applied to the estimation gain L.
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For the second problem, we will consider random switching, such that we can
exploit some tools from stochastic systems. Let pj be the probability that control
Kj ∈ K is active where

∑nc

j=1 pj = 1. Suppose that x̄(k) = E[x(k)] denotes the
expected state, such that

x̄(k + 1) = F̄ x̄(k)

where

F̄ = E[Fσ(k)] = A + BK̄C

and K̄ = ∑nc

j=1 pjKj . Therefore, the design of the switching mechanism becomes
the design of an appropriate probability distribution that assigns probabilities to each
controller.

In the presence of a sensor attack, we have

x̄(k + 1) = F̄ x(k) + BK̄E[φ(k)],

with solution

x̄(k) = F̄ kx̄(0) +
k−1∑

l=1

F̄ k−l−1BK̄E[φ(l)]. (7.16)

Assuming that E[φ(k)] = φ̄ is constant for all k, and combining (7.7) with (7.16)
for xc = 0 and for x̄(k) we can calculate the expected impact

Ī = lim
k→∞ ‖x̄(k)‖ ≤ ‖(I − F̄ )BK̄‖‖φ̄‖,

such that we can formulate the following nonlinear optimization problem:

Problem 1

min
p1,p2,...,pnc

‖(I − F̄ )−1BK̄C‖

s.t.

(7.17)

nc∑

i=1

pi = 1,

pi ≥ 0, for all i.

(7.18)

The solution of Problem 1 provides the probability distribution of the random
switching strategy that minimizes the effects of an adversary in expectation. This
formulation can be extended to include performance constraints or additional
objectives, such as the entropy metric proposed in [6].
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Remark 7.3 When E[φ(k)] is not constant, we can consider other impact metrics
such as the sensitivity of the H∞ gain.

Example 1
Consider the linear system described by

A =
⎡

⎣
0.7 −0.5 0
0.2 0.8 0.3
0.4 0.2 0.7

⎤

⎦ , B =
⎡

⎣
1
1
1

⎤

⎦ , C = I, KT = −[0.14, 0.17, 0.16]

where KT is an LQR control. Suppose that an adversary gains access to sensors 1 and
2 and injects a sensor bias attack φ = [1, 1, 0]�. We assume that the system possesses
an MTD strategy that selects between a set of controllers K1 = −[0, 0.17, 0.6],
K2 = −[0.14, 0, 0.16], K3 = −[0.14, 0.17, 0]. In total we have 3 possible control
gains that are randomly selected at each time instant. Solving Problem 1, we found
the switching probability distribution p = [0.91, 0.04, 0.05]. Figure 7.13 illustrates
how switching among controllers can help to mitigate the effects of the attack by
decreasing the deviation caused by the adversary. We use ‖x(k)‖ to measure the total
state deviation at each time instant. Notice that MTD comes with a performance cost
by decreasing the convergence rate to the equilibrium, but it decreases the total state
deviation.
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Fig. 7.13 States and energy of a linear system with an MTD that switches among three different
control strategies (solid line), and with a fixed LQR control (dashed). Clearly, MTD decreases the
deviation caused by the adversary at the cost of performance degradation
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Fig. 7.14 MTD scheme for
sensor switching. Each sensor
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data at a specific time instant)
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7.4.2 MTD in Sensors

In this case, the MTD mechanism can arbitrarily break the communication between
a subset of sensors and the controller at any time k, as depicted in Fig. 7.14. For
instance, suppose sensor y2 is compromised. If the probability that the communi-
cation link between y2 and the controller exists is low, then the amount of fake
information received by the controller (or estimator) will decrease and the effects of
that attack in the control command may be mitigated.

Suppose we have m sensors and the communication link between any sensor and
the controller may be active or inactive. Let C = {C1, C2, . . . , Cns } be the desired
set of matrices that combine active or inactive sensors. Let θ(k) ∈ Z+ be the index
of the output modes at the kth time instant. Let Θ = {θ (0), θ (1), . . . } denote the
switching logic that changes among different sensors subsets. The output is then
given by ỹ(k) = Cθ(k)x(k), where Cθ(k) ∈ C . Therefore, the linear system in (7.13)
becomes

x(k + 1) = (A + BKCθ(k))x(k) = Gθ(k)x(k). (7.19)

Notice that (7.15) and (7.19) are similar, and the asymptotic stability of (7.19) can
be guaranteed if conditions in Theorem 7.7 are satisfied for Gθ(k).

Similar to the case with switching actuators, we will assume that each sensor
is active with probability pi, for i = 1, . . . , m, such that we can define the matrix
P = diag(p1, p2, . . . , pm). To facilitate the analysis, we can define S (k) as the
diagonal matrix with elements sii(k) = 1 if sensor i is active at the instant k, and 0
otherwise. When the system is subject to a sensor attack φ(k), we can rewrite (7.19)
as

x(k + 1) = (A + BKS(k)C)x(k) + BKS(k)φ(k),

where C is the output matrix without MTD and S(k)C = Cθ(k). Notice that
E[S(k)] = P, such that C̄ = E[S(k)C] = PC and Ḡ = A + BKC̄. The expected
state dynamics are then given by

x̄(k + 1) = Ḡx̄(k) + BKP φ̄.
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Now, we can formulate an optimization problem that aims to find P that
minimizes the impact of the attack while preserving performance conditions
F (A,B,C,K,P ) < β (e.g., expected spectral radius ρ(Ḡ)) as follows:

Problem 2

min
p1,p2,...,pns

‖(I − Ḡ)−1BKP ‖

s.t.

F (A,B,C,K,P ) < β

0 ≤ pi ≤ 1, for all i.

(7.20)

Example 2
Suppose A, B are the same from example 1, but now the system has 4 sensors, with
output matrix and control gain given by

C

⎡

⎢
⎢
⎣

1 0 0
0 1 1
0 0 1
1 1 1

⎤

⎥
⎥
⎦ , K = −[0.14, 0.17, 0.16, 0.13].

Solving Problem 2 for F = ρ(Ḡ) and β = 0.92 we obtain p = [0.06, 0.11, 0.07,
0.2]. Figure 7.14 illustrates how MTD strategies can decrease the impact caused
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Fig. 7.15 States and energy of a linear system with an MTD with sensor switching and p = [0.06,
0.11, 0.07, 0.2] (solid line), and without MTD (dashed lines). MTD mitigates the deviation caused
by the adversary
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by an adversary that injects an attack in all sensors φ = [1, 1, 1, 1]�. Dashed lines
correspond to the case without MTD (Fig. 7.15).

7.5 Conclusions and Future Directions

In this chapter, we have proposed an MTD strategy that randomly switches between
different communication topologies in order to mitigate the deviation caused by an
adversary. We have identified the trade-off between MTD and the convergence rate
such that a system designer can choose adequate parameters that maintain specific
levels of performance. In particular, from our analysis we found out that high
connectivity of the graph GT describing all possible communications and the low
probability p play an important role in making the system more resilient to cyber-
attacks with good convergence rate. We have also introduced two MTD strategies
for more general feedback-control systems and we have proposed optimization
problems that allow us to find the optimal probability distribution for the random
switching mechanism.

There are many research directions that can be derived from the work presented
in this chapter. In future work, we will consider heterogeneous probabilities for
the multi-vehicle problem and find a relationship between the topology GT and the
matrix P. Besides, we will consider more realistic models of multi-vehicle systems
that include collision avoidance control, actuator saturation, and more complex
dynamics. Finally, we will study how our proposed random MTD can affect
anomaly detection mechanisms and design detection strategies that can leverage
the use of MTD for CPS.
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