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Professor Albert Hsiao, Chair 
 
 

Cardiac MRI is the gold standard for quantification of cardiac volumetry, function, 

and blood flow. Despite the wealth of information that may be gleaned from these 

acquisitions, its use has been limited primarily to academic and specialty clinics due to 

the need for specialty trained physicians and technologists required for planning of 

these scans. 

Recently, deep convolutional neural networks (DCNNs) have shown promise in 

automating various aspects of radiology workflows in cardiac MRI, including tasks such 

as segmentation, disease prognosis, and tissue characterization. In addition to these 

tasks, DCNNs have been employed for anatomic localization. However, an often-cited 

limitation of clinically focused DCNNs is uncertainty of how well an algorithm will 

perform outside of its original training environment. Additionally, these systems are 
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often seen as “black boxes”, which fail to provide an explanation of how the underlying 

system functions. Designing mechanisms that provide a rationalization for predictions 

may increase the confidence of clinical end-users in these systems is therefore 

essential for the adoption of any medically focused DCNN system. 

With these concerns in mind, I propose automating the planning of cardiac MR 

imaging planes using a system of DCNNs. In the first chapter, I explore the potential of 

automating the prescription of long and short-axis imaging planes. To ensure the DCNN 

retained a rationalization for the plane prediction, we subdivided this challenge into two 

separate problems: 1) to identify the position of the apex and valve landmarks on either 

short or long-axis images, and 2) to use these inferred localizations to plan the short 

and long-axis image planes. 

In my second chapter, I further extend this technique of planning the cardiac MR 

imaging planes by planning the dedicated axial and vertical long-axis imaging planes 

and explore the potential of this algorithm to perform across a varying range of clinical 

environments. Moreover, I assess the potential of integrating information from multiple 

image views to overcome the inherent anisotropic nature to cardiac MR. 

Finally, in my third chapter, I explore the potential of efficiently adapting a DCNN 

to a new clinical environment by integrating uncertainty sampling and transfer learning 

methods. This includes the development of two novel uncertainty metrics which can be 

used to assess a DCNN’s confidence in prediction.
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Chapter 1: Introduction 

1.1 Background 

Cardiac MRI is the quantitative gold standard for measuring cardiac volumetry, 

function, and blood flow [1]. The human heart forms a natural axis, from which one can 

define both short and long-axes. To provide cardiovascular radiologist standardized 2-

dimesntional views of the heart, cardiac MR imaging planes are defined by these axes 

[2]. Acquiring these long and short-axis images is an iterative process. Once an initial 

view has been acquired, subsequent views are then planned on the basis of the image 

position of the left ventricular apex, mitral valve, tricuspid valve, and aortic valve (Figure 

1). Given the complex anatomy of the heart, cardiac MRI acquisition requires 

specialized training among MRI operators, limiting this technique mostly to academic 

and sub-specialty clinics [3]. 

Prior authors have attempted to automate the planning of cardiac MR using a 

variety of machine learning methods. For example, Jackson et al proposed using a 

semiautomated approach utilizing expectation maximization for planning the short and 

long-axis imaging planes [4]. This however required a technologist to label blood pools, 

requiring specialized knowledge of cardiac anatomy. Other methods utilized mesh-

based segmentations based on canonical geometry or an anatomic atlas [5], [6]. These 

methods, however, relied on additional volumetric images not typically acquired for a 

cardiac MRI.  
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Figure 1: Schematic for prescribing cardiac 

A) A 3-plane localizer series is acquired, consisting of sagittal, coronal, and 
axial views. B). From the coronal images, a dedicated axial stack of images 
can be prescribed to ensure adequate cardiac coverage. C) From either a 3-
plane or dedicated axial stack of images, the vertical-long axis is prescribed 
by identifying the image locations of the left ventricular apex and mitral valve. 
D) The short-axis stack of images is prescribed from a vertical long-axis by 
identifying the image location of the apex and mitral valve. E). Dedicated long-
axis images for the 4-, 3-, and 2-chamber images are acquired by identifying 
the image location of the mitral, tricuspid, and aortic valves. Cross referencing 
a previously acquired long-axis image (such as the vertical long-axis in dotted 
lines) may be performed to enforce acquiring these prescriptions along the 
long axis of the heart. 
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More recently, deep convolutional neural networks (DCNNs) have shown 

promise for automating visual tasks in cardiac MR imaging, including disease 

stratification, anatomic segmentation, and tissue characterization [7]–[10]. In addition to 

these tasks, DCNNs have been employed for anatomic localization of cardiac 

landmarks [11]. While there exists a number of ways to localize landmarks, one popular 

method for landmark localization is heatmap regression [12]–[16]. Prior authors have 

proposed other localization strategies, such as directly regressing the image position 

coordinates with a DCNN [17]–[19]. This strategy however requires the use of fully 

connected layers to learn the non-linear relationship between imaging features and the 

coordinate position. Therefore, fully convolutional networks (such as U-Net) are not able 

to preserve spatial information throughout the DCNN, potentially diminishing their 

capacity to recognize spatial information [20], [21]. More recently, Duan et al proposed a 

localization strategy in which pixels use binary classification for each landmark [11]. 

While this strategy is compatible with fully convolutional networks, most pixels will not 

contain a landmark, creating a highly imbalanced class problem [22]. In contrast to 

these other proposed localization methods, heatmap regression creates 

pseudoprobability heatmaps centered around each landmark [23]. This strategy may be 

more advantageous as it provides an attention map that the DCNN can refine with 

training, while additionally providing a direct attention map that is relevant to 

understanding how the DCNN functions. It however remains unclear if this approach of 

landmark localization can accurately localize the apex and valve landmarks and use 

these to prescribe the long and short-axis views. 
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Despite previous successes of DCCNs to improve clinical workflow in cardiac 

MRI, only a handful of proposed DCNNs have been implemented into clinical practice 

[10], [24]. Currently, the main limitations of implementing DCNNs into clinical practice 

are as follows: First, DCNNs are oftentimes trained on a limited dataset, which may limit 

their generalizability [25], [26]. One often cited limitation of machine learning algorithms 

is uncertainty around generalizability, where the performance of an algorithm may vary 

outside the environment where it was trained. For example, multiple studies have 

shown poorer DCNN performance on external vs. internal test data [27], [28]. This is 

particularly true in the context of MRI, where different image acquisition parameters may 

alter the image appearance, limiting the generalizability across clinical sites [25], [29]–

[31]. Other studies have shown that curating a diverse dataset can help with external 

generalizability [32], [33]. It may therefore be possible to provide wide generalizability to 

a DCNN by training over a wide range of visually distinct data, such as MR images 

acquired with multiple field strengths. Despite the promise of this approach, however, 

curating a diverse biomedical imaging dataset may be challenging due to legal, ethical, 

or logistical obstacles [34]–[37]. Given these constraints, there has been prominent 

attention given to improving the data-efficiency of DCNN training – where one is able to 

achieve a similar level of performance with a reduced quantity of data [38]. 

Comparatively less attention, however, has been paid to improving DCNN training data-

efficiency within the context of different MRI parameters. 

Secondly, DCNN based systems are often criticized for their lack of explainability 

in how the system determines a result [39]–[42]. Given the complex structure of 

DCNNs, it is often challenging to determine the source of model error, which decreases 
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the confidence in clinical end-users of the system. Prior studies have highlighted the 

importance of providing clinical end users information on how these DCNN systems 

operate [43], [44]. Moreover, in the case of an incorrect DCNN, important design 

considerations must be given to design an appropriate failure mechanism that does not 

impede or halt clinical workflows. Failure to provide appropriately designed failsafes 

could provide distrust in the system, limiting the adoption of machine learning based 

systems [45]. Therefore, it is an important design and implementation consideration of 

how to appropriately design clinical DCNN-based systems. 

Third and finally, most DCNNs often operate on a single image view. However, a 

limiting factor to cardiac MRI is that stacks of images are often highly anisotropic, and 

may have poor through-plane slice resolution [46]. This may result in a diminished 

ability to visualize and analyze apical slices of a short-axis image –necessary for 

ensuring that the 4-, 3-, and 2-chamber prescriptions conform to the long-axis of the 

heart. To overcome this, human MRI operators may optimally use multiple imaging 

planes for the planning of cardiac planes. Currently, it remains unclear how to integrate 

information from multiple imaging planes to accurately represent the 3-dimesnional 

nature of the heart. Prior authors have proposed various multiview analyses to improve 

cardiac segmentation performance [11], [47]. However, these implementations have 

relied on fusing multiple DCNN inputs, which may not allow for the independent 

optimization of each DCNN. 

1.2 Outline of the Dissertation 

In my first chapter, I explore if DCNNs can automatically plan the long and short-

axis imaging planes. To improve the interpretability of my approach, I break this 
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problem down into two separate subproblems: 1) whether heatmap localization is a 

feasible method to localize the apex and valve positions on images routinely collected 

during a cardiac MRI exam and 2) whether these localizations can then be used to 

accurately plan the cardiac long and short-axis imaging planes. 

In my second chapter, I extend this initial proof of concept work of landmark 

localization for planning an entire cardiac MRI scan. I also demonstrate the feasibility of 

using segmentation to identify the cardiac boundaries for prescribing a dedicated axial 

stack of images. Using this system, I further explore whether incorporating a diversity of 

field strength data enhances the performance of this system across multiple clinical 

environments. I then further evaluate the importance of integrating imaging information 

from multiple views of the heart to improve prescription of cardiac MR imaging planes. 

In my third chapter, I explore the potential of adapting DCNNs to new clinical 

environments by combining uncertainty sampling and transfer learning. I first create a 

model system based on the visual differences between cardiac MR images acquired at 

either 1.5T or 3T field strength. I then develop two novel uncertainty metrics, based 

either on strength of DCNN prediction or the spatial variance of test-time rotational 

augmentation, and assess their potential to reduce the number of training cases 

required to generalize a DCNN to a new clinical environment. 

This introduction was adapted in part from “Deep Learning–based Prescription of 

Cardiac MRI Planes” in Radiology Artificial Intelligence, 2019 by Kevin Blansit, Tara 

Retson, Evan Masutani, Naeim Bahrami, and Albert Hsaio. The dissertation author was 

the primary investigator and author of this paper.  
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Chapter 2: Deep Learning-based Prescription of MR Cardiac Imaging Planes 

2.1 Abstract 

Purpose: 

Develop and evaluate a system to prescribe imaging planes for cardiac MRI, 

based on deep learning (DL) based localization of key anatomic landmarks. 

Methods: 

With HIPAA-compliance and IRB waiver of informed consent, we retrospectively 

collected and annotated landmarks on 892 long-axis (LAX) and 493 short-axis (SAX) 

cine SSFP series from cardiac MRIs at our institution between February 2012 to June 

2017. U-Net-based heatmap regression was used for localization of cardiac landmarks, 

which were used to compute cardiac MR imaging planes.  

Performance was evaluated by comparing localization distances and plane angle 

differences between DL predictions and ground truth. We further compared the plane 

angulations from DL to those prescribed by the technologist at the original time of 

acquisition. Data was split into 80% for training and 20% for testing, and results 

confirmed with 5x cross-validation.  

Results: 

On LAX images, DL localized the apex within 12.56±19.11 mm and the mitral 

valve within 7.68±6.91 mm. On SAX images, DL localized the aortic valve within 

5.78±5.68 mm, mitral valve within 5.90±5.24 mm, pulmonary valve within 6.55±6.39 

mm, and tricuspid valve within 6.39±5.89 mm. Based on these localizations, average 

angle bias and mean error of DL predicted imaging planes relative to ground truth 

annotations were -1.27±6.81°, 4.93±4.86° for SAX; 0.38±6.45°, 5.16±3.80 for 4-
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chamber; 0.13±12.70°, 9.02±8.83° for 3-chamber; and 0.25±9.08°, 6.53±6.28° for 2-

chamber prescriptions.  

Conclusions: 

DL-based anatomic localization is a feasible strategy for planning cardiac MRI 

planes. We show that this approach can produce imaging planes comparable to those 

defined by ground truth landmarks. 

2.2 Introduction 

Cardiac MRI is the gold standard for quantification of cardiac volumetry, function, 

and blood flow [1]. Cardiac MRI can be performed as a series of sequential image 

acquisitions, where earlier images inform the prescription of subsequent planes. This 

approach is typically composed of multiple acquisitions, including a short-axis (SAX) 

stack and multiple long-axis (LAX) planes, requiring multiple breath-holds by the patient. 

A key component of acquiring these images is the identification of specific cardiac 

structural landmarks by a physician or trained technologist. Proficient acquisition of high 

quality scans therefore requires extensive anatomical and technical expertise [48], [49]. 

Cardiac MRI has in large part been predominantly limited to major academic institutions 

and subspecialty centers, which to some extent may be related to the availability of 

specialized expertise [50]–[52]. 

 Prior attempts to help automate the prescription of cardiac imaging planes 

predominantly have used traditional machine-learning based approaches for image 

analysis. Previously, Jackson et al proposed a semi-automated approach using 

expectation-maximization for planning cardiac MRI planes [4]. Part of this approach 

however required manual technologist labeling of blood pools. This method was 
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developed and tested in 50 healthy subjects, but not validated in a clinical population 

which may have greater variation in anatomical morphology. Another approach has 

used a mesh-based segmentation model based on canonical geometry or an 

anatomical atlas [5], [6]. However, these approaches used an additional volumetric scan 

not typically acquired during cardiac MRI. 

Deep learning (DL) techniques have recently gained popularity for a variety of 

computer vision tasks in medical imaging ranging from disease risk stratification, 

segmentation of anatomic structures, and quantification of imaging features [53]–[56]. 

DL has also been used for anatomic localization [23], [57]. For example, this method 

has been previously used to localize bony structures in hand x-ray and MR images [14]. 

We hypothesize that this technique may be advantageously applied to localize key 

anatomic landmarks that define the cardiac imaging planes. Furthermore, we 

hypothesize that DL-based localizations of these landmarks may be sufficiently accurate 

to prescribe each of the cardiac imaging planes. 

2.3 Methods 

2.3.1 Patients and Data Description 

With HIPAA compliance and IRB approval, we retrospectively collected 482 

cardiac MRI studies performed on a 1.5T MRI scanner between February 2012 to June 

2017. Within these studies there were 892 long-axis (LAX) cine SSFP series (including 

257 4-chamber, 207 3-chamber, 197 2-chamber, and 231 other LAX views) and 493 

short-axis (SAX) cine SSFP series. Of these studies, 303/482 (62.86%) were male and 

179/482 (37.14%) were female patients, with an age range from 12 to 90. A typical 

imaging protocol from our institution is shown in Supplemental Figure 1. 
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Radiology resident Tara Retson was trained by a board-certified cardiac 

radiologist Albert Hsiao with ten years of experience to identify and annotate cardiac 

landmarks on each MRI series. Albert Hsiao had final approval of all ground truth 

annotations. LAX images were annotated for mitral valve (MV) and apex, while SAX 

stacks were annotated for aortic valve (AV), MV, pulmonic valve (PV), and tricuspid 

valve (TV). Cine SSFP images were each acquired on a 1.5T MRI scanner with mean 

flip angle of 54 (range: 45 to 60), Matrix = 256x200, mean field of view of 351 mm 

(range: 290 mm to 440 mm), slice thickness of 8 mm (range: 5 mm to 10 mm), mean 

repetition time of 3.96 ms (range: 3.14 ms to 4.45 ms), and echo time of 1 ms. SAX 

stack images were acquired in intervals of 10 mm (range: 5 mm to 13 mm).  

2.3.2 Long-Axis Landmark Localization 

To localize the LAX landmarks (apex and MV), we implemented a 2D U-net 

modified for heatmap regression, trained on a variety of LAX images (Figure 2) [14], 

[20]. The final convolutional layer was replaced with a linear activation and a kernel size 

of 1 using L2 loss. Channel-by-channel isotropic gaussian pseudoprobability heatmaps 

centered at each localization (representing probability densities of landmark localization) 

were created for the apex and MV [57]. Deep learning (DL) predicted localizations were 

defined by the maximal index of the predicted pseudoprobability heatmaps. 
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2.3.3 Short-Axis Landmark Localization 

 SAX stack landmark localization was decomposed into multiple 2D problems 

(Figure 3). First, we identified the mitral valve slice (MVS) with a MVS localization 

model. Second, we created a bounding box around the heart to reduce the search 

space for the anatomic landmarks. Third, we created a final localization network for fine-

grain anatomic localization of the AV, MV, PV, and TV. 

Figure 2: Input data used to train the long-axis localization model 

Vertical long-axis (VLAX), 4-chamber, 3-chamber, and 2-chamber 
views were aggregated to train the long-axis model for localization 
of the mitral valve (MV) and apex. 
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To identify the MVS, we utilized a previously described method using a 2.5D 

VGG-19/LSTM ensemble network [58]–[60]. This redefined the MVS localization as a 

classification task to reduce the difficulties that arise from imbalanced data 

(Supplemental Figure 2) [22], [61]. The MVS model was trained to classify proposal 

slices as either atrial or ventricular to the ground truth labeled MVS. Spatial context was 

provided by adding two slices atrial and two slices ventricular to each target slice for a 

total of 5 channels. Within a given SAX stack of images, the first ventricular slice in the 

sorted stack was marked as the predicted MVS. 

To reduce the localization search space, we implemented a 2.5D U-net to 

perform a rough in-plane bounding box around the heart, using all slices of the SAX 

stack. Bounding box labels were defined by identifying the minimum rectangles that 

surround a 20-pixel in-plane border that encompassed the AV, MV, PV, and TV 

landmarks.  

The output of the MVS model was combined with the output of the in-plane 

bounding box to serve as inputs for a final localization model (Figure 3). This final 

localization model was implemented as a 2.5D heatmap regression model. 

2.3.3 Plane Prescription 

Based off the vertical LAX view, the SAX plane angle was defined as the plane 

orthogonal to the line between the apex and the MV landmarks (Supplemental Figure 

1). A SAX stack may be therefore be prescribed at regularly spaced intervals along that 

line. Based off the SAX stack, the 4-chamber plane was defined as the plane 

intersecting the TV and MV, the 3-chamber plane was defined as the plane intersecting 
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the AV and MV, and the 2-chamber plane was defined as the plane bisecting the 4- and 

3-chamber planes. 

2.3.4 Model Training 

DL models were each independently trained by Kevin Blansit on a GPU 

workstation running Ubuntu 16.04, equipped with four Titan X graphics card (NVIDIA; 

Mountain View, CA). We performed all DL experiments using Keras with TensorFlow 

backend. Hyperparameters for the final models are described in Supplemental Table 

1.1.3.5 Model Analysis and Statistics 

To assess localization accuracy, we compared ground truth expert annotation 

localizations to those predicted by DL, with results confirmed using 5-fold cross 

validation. For each cross-validation step, we reinitialized a blank model and 

independently trained with 80% of exams, using the remaining 20% of exams as an 

Figure 3: Input data used to train short-axis localization models 

The short-axis stack images are used as inputs to train the mitral 
valve slice (MVS) and the bounding box (BB) models. The slice 
localization and bounding box outputs are then used to train the 
short-axis model for localization of aortic valve (AV), mitral valve 
(MV), pulmonary valve (PV), and tricuspid valve (TV). 
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independent test data. Cross-validation is a commonly used strategy to ensure that 

proposed machine learning algorithms are not dependent on the subset of training data 

used. 

To assess plane angulation accuracy, we calculated the angle difference 

between deep learning (DL planes) and ground truth (GT planes). As a secondary 

assessment of performance, we also calculated the difference between DL planes and 

the retrospectively identified plane prescribed by the MRI technologist at the time of 

image acquisition. Finally, we compared these calculated angle differences against 

previously reported strategies for automated plane prescription. This last comparative 

analysis was performed using summary statistics reported in the previous studies. 

Differences in localization error and angulation error were compared using t-test in R (R 

Foundation for Statistical Computing, Vienna Austria) with a type I error threshold (α) of 

0.05. 

2.4 Results 

2.4.1 Landmark Localization Performance 

To assess localization accuracy on LAX images, we measured the distance 

between ground truth annotation and DL predicted localizations. For LAX images, the 

mean DL localization was within 12.56±19.11 mm for apex and 7.69±6.91 mm for the 

MV (Figure 4A). Given the importance of VLAX accuracy for subsequent derivation of 

the SAX stack, we examined the localizations for the VLAX. For VLAX images, mean 

predicted localizations were within 10.20±13.58 mm for the apex and 8.21±10.71 mm 

for MV.  
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 As a first step towards SAX localization, we first identified the MVS. The average 

distance between ground truth and predicted MVS localization was within 4.87±8.35 

mm, on average within the 10 mm spacing between slices typically used for planar 

cardiac MRI at our institution. The majority of predicted MVS localizations (465/493, 

94.32%) were within 1 slice of the labeled MVS. The second neural network was used 

to identify an in-plane bounding box around the heart on SAX images. These predicted 

segmentations had an average Dice score of 0.91±0.05, relative to ground truth 

bounding boxes. Of these predicted bounding boxes, 493/493 (100%) contained the AV, 

492/493 (99.8%) contained the MV, 490/493 (99.39%) contained the PV, and 491/493 

(99.59%) contained the TV. After standardizing bounding boxes to native resolution, 

there was only one case where the PV and TV localization were not contained within 

the input image for SAX-localization. The results of the MVS localization and bounding 

box were then combined to create the SAX-localization model. The average localization 

Figure 4: Distances between predicted and ground truth for the A) long-axis and 

B) short-axis localization models. 

Each independent iteration of cross-validation is shown in a corresponding 
color 
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for SAX landmarks was 5.78±5.68 mm for AV, 5.90±5.24 mm for MV, 6.55±6.39 mm for 

PV, and 6.39±5.89 mm for TV (Figure 4B). 

To further assess SAX landmark localizations, we compared slices that were 

within a single slice error of the ground truth label (465/493, 94.32%), and slices that 

were two or more slices away (28/493, 5.78%). For SAX series within a single slice, 

average localization of the AV was within 5.24±3.33 mm compared to 14.60±17.66 mm 

(p<0.01) for two or more slice error, MV was within 5.01±3.79 mm for within one slice 

compared to 12.13 ±14.46 mm (p=0.02) for two slices, PV within 6.08±4.99 mm 

compared to 14.03±15.73 mm (p=0.01), and TV within 5.81±3.69 mm compared to 

15.96±17.19 (p<0.01). 
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2.4.2 Plane Prescription Performance 

To assess the performance of landmark localizations obtained from DL, we 

computed plane angulations defined by these landmarks. SAX imaging planes were 

prescribed using DL predictions on VLAX images. These plane predictions were 

compared against expert ground truth. For SAX plane prescription, the mean angle bias 

was -1.27±6.81° and mean absolute angle difference was 4.93±4.86° (Figure 5A, Table 

1). Similarly, LAX planes were computed from DL predictions on SAX images. For LAX 

plane prescription, the mean angle bias and mean absolute angle difference for 4-

chamber were 0.38±6.45° and 5.16±3.80°, for 3-chamber were 0.13±12.70° and 

9.02±8.83°, and for 2-chamber were 0.25±9.08° and 6.53±6.28°. Representative images 

of plane prescriptions and their frequency are shown in Supplemental Figure 3. 

Figure 5: Comparison of plane prescriptions against A) expert ground truth planes 
and B) retrospectively matched technologist planes used during examination. 

Each independent iteration of cross-validation is shown in a corresponding color. 
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To further validate our approach of planning cardiac MRI planes using DL 

predicted landmarks, the DL planes were compared to those prescribed by a 

technologist at the time of acquisition (Figure 4B, Table 1). For SAX plane prescription, 

the mean angle bias and mean absolute angle difference were 0.40±7.20° and 

5.56±4.60°. For LAX plane prescriptions, the mean angle bias and mean angle 

difference for 4-chamber were -2.67±7.01° and 5.49±5.06°, for 3-chamber were 

4.29±7.68° and 7.19±4.97°, and for 2-chamber were -2.36±9.83° and 8.00±6.03°. There 

was greater agreement and consistency between the DL prediction and technologist for 

the 4-chamber than the 2-chamber plane. The performance of 3-chamber plane 

prescription was in-between. Example plane prescriptions are in Figure 6. 

 

 

Table 1: Accuracy of imaging planes prescribed by deep learning compared to A) 
expert ground truth and B) retrospectively matched planes prescribed by the MRI 
technologist. 

 

Comparison Value 

Prescription Plane 

SAX 4-Chamber 3-Chamber 2-Chamber 

A) Ground Truth 

Angle Bias -1.27±6.81° 0.38±6.45° 0.13±12.70° 0.25±9.08° 

Angle Difference 4.93±4.86° 5.16±3.80° 9.02±8.83° 6.53±6.28° 

B) Technologist 

Angle Bias 0.40±7.20° -2.67±7.01° 4.29±7.68° -2.36±9.83° 

Angle Difference 5.56±4.60° 5.49±5.06° 7.19±4.97° 8.00±6.03° 

We report absolute angle differences. Means and standard deviations are 
reported. Statistical significance between the performance of DL and previously 
described strategies are denoted with asterisks. 
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We also compared our method against recently described strategies by Frick et 

al and Lu et al [5], [6]. Results are highlighted in Table 2. Though our studies don’t 

share common reference data sets, we found statistically improved SAX and 4-chamber 

angulation relative to ground truths than prior methods. Further, 3-chamber and 2-

chamber angulations also appear improved, relative to Lu et al. 

2.5 Discussion 

In this study, we demonstrated the feasibility of using DL to localize cardiac 

landmarks for prescription of SAX, 4-chamber, 3-chamber, and 2 chamber view planes. 

For LAX images, this was readily accomplished with a single 2D U-net modified for in-

We report absolute angle differences. Means and standard deviations 
are reported. Statistical significance between the performance of DL and 
previously described strategies are denoted with asterisks. 

Comparison 
Prescription Plane 

SAX 4-Chamber 3-Chamber 2-Chamber 

Current method 4.93±4.86° 5.16±3.80° 9.02±8.83° 6.53±6.28° 

Frick et al 6.7±3.6° * 7.7±6.1° * 9.1±6.3° 7.1±3.6° 

Lu et al 8.6±9.7° ** 19.2±8.5° *** 12.3±11.0° *** 18.9±2.1° *** 

 

Table 2: Accuracy of imaging planes prescribed by deep learning 
compared to two recently described strategies. 

*      p<0.05 
**    p<0.01 
***  p<0.001 
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plane heatmap regression. For localization of a SAX stack, we applied a cascaded 

system of neural networks to localize key anatomic landmarks by first identifying the 

basal slice at the plane of the mitral valve. We found that the MVS localization model 

correctly localized the MVS within a single slice in nearly all cases (465/493, 94.32% of 

SAX inputs). More importantly, these localizations yielded imaging planes very similar to 

those marked by a radiologist or those prescribed by a technologist at the time of image 

acquisition. 

Previous view planning systems have been proposed for cardiac MRI. Lelieveldt 

et al proposed planning a SAX plane using MRI scans of the entire thorax [62]. Utilizing 

Figure 6: Example images of short-axis (SAX), 4-chamber, 3-chamber, and 2-
chamber plane prescription from two cases. 

Solid lines denote the imaging planes, while solid dots demarcate the 
localizations used to plan them. Ground truth is shown in yellow and the guidance 
system in red. The actual plane prescribed by the technologist is shown in teal. 
Note the large mass within the left ventricle in patient 2, which did not 
dramatically interfere with short-axis prescription. 
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a deformable atlas, these authors identified the organ landmarks (including lungs, 

ventricles, and heart) to prescribe the SAX plane. This approach was validated by 

showing that clinical measurements including ventricular mass and ejection volume 

were not significantly different between acquisition approaches. However, the study’s 

authors did not identify the essential 4-chamber, 3-chamber, and 2-chamber LAX 

imaging planes that are necessary for the assessment of wall motion and valve function 

[63], [64]. More recently, other studies have utilized mesh segmentation-based 

approaches to plan sequences of view planes from a single 3D cardiac MRI acquisition 

[5], [6]. While promising, these approaches were developed using a more limited test 

population with the use of an additional acquisition that is not typically used in many 

cardiac MRI workflows. Recent works have shown that DL-based approaches may MRI 

benefit from the wider generalizability to other modalities and image contrasts than 

typically seen with traditional methods of machine learning [65]. Addy et al recently 

presented the use of a DL-based method to plan cardiac MRI views citing a similar 

strategy [66], [67]. Unlike prior efforts, we chose in our study to assess whether we 

could develop a system of convolutional neural networks which could be seamlessly 

integrated into a typical workflow of cardiac MRI, covering the heterogeneity of heart 

morphologies and disease states seen in clinical practice. 

This study must be considered with the following limitations in mind. The current 

study is a proof of concept feasibility study showing the performance of a system of 

neural networks for landmark localization on planar MRI. There are many potential 

approaches for applying deep neural networks to solve this plane prescription problem, 

and it appears that DL-based landmark localization may be a feasible approach. While 
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the performance of this prototype system is promising, it is still relatively early in 

development. There is room for further optimization and refinement of this overall 

strategy. There is variability in the performance of different imaging planes, with greater 

consistency between DL and technologists for the 4-chamber view than the 2-chamber 

view. This may be related to exact angle bisections done for the DL prescription, which 

are only visually approximated by the technologist. However, DL appears to produce 

planes with greater agreement with ground truth than previous methods. Future work 

may be required to assess the performance of such a system prospectively within a 

clinical workflow and determine an acceptable error range for plane prescription. To 

implement this strategy in practice, there are multiple additional steps that need to be 

implemented. For example, a SAX stack may be optimally prescribed not just from one 

LAX view, but perhaps two. Achieving the first LAX prescription may require additional 

localization on an axial or sagittal stack. These may require further development before 

a fully-comprehensive workflow could be tested. 

An important factor for overall generalizability of machine learning algorithms is 

the scope of the problem to be solved and the data that is ultimately used to train and 

test algorithm performance. We demonstrate that in a contiguous retrospective cohort 

on MRIs from a single vendor and field strength, that this strategy is generally effective 

with few exceptions and outliers in performance. It is not yet clear whether the system 

will achieve similar performance on images from other MRI vendors or at 3T, where 

blood-pool to myocardial contrast may not be relatively weaker or off-resonance 

banding artifacts may be present. Moreover, further work may be needed to evaluate 

performance of the algorithm on non-gated or single-shot images, rather than the Cine 
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SSFP which were included in this study. Incorporation of these data into further training 

may be necessary to further generalize this methodology. 

Nevertheless, in this study, we demonstrated that a DL-based localization 

approach is adequate for cardiac MRI plane prescription. It is possible that the SAX and 

LAX localizations may be used to sequentially optimize imaging planes, as can be 

performed by skilled technologists or physicians. Future work may help determine 

whether such a system may fully automate prescription of cardiac imaging planes. As 

specialty technologist and physician training is currently a limiting factor for the 

availability of cardiac MRI, we believe that further development of this approach may 

alleviate this current barrier to access of this essential imaging modality. 
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Chapter 3: Generalizability and Robustness of an Automated Deep Learning 

System for Multiplanar Cardiac MRI Plane Prescription  

3.1 Abstract 

Purpose: 

Cardiac MRI is the reference standard for non-invasive assessment of cardiac 

morphology, function, and myocardial scar. Accessibility of cardiac MRI is limited by the 

need for specially trained operators to identify landmarks that define the imaging planes. 

With this clinical need in mind, we developed a multi-component deep convolutional 

neural network (DCNN) system to automatically identify and prescribe the cardiac 

imaging planes. 

Methods: 

To assess performance and generalizability, we collected 363 HIPAA compliant 

cardiac MRI studies from three tertiary academic hospitals including 1.5T and 3T field 

strengths. Images were annotated for ground truth position of plane prescription 

landmarks by a cardiovascular radiologist. We compared the position and angulation of 

imaging planes collected by technologists at the time of exam against those inferred by 

the DCNN. The quality of long-axis images was also assessed by two radiologists on a 

5-point Likert scale to relate plane angulation error to image quality. 

Results: 

We found that images with higher angulation error (>15°) were more likely to be 

scored as lower (score: 1-3) vs higher plane quality (score: 4-5) (25% vs. 11%; 

p<0.001). DCNN inferred short-axis imaging planes had a median angulation error of 

2.24°±6.09, lower than technologist error 2.96°±3.73, (p<0.001). Inferred 4, 3, and 2-
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chamber imaging planes were either comparable or had lower median angulation errors 

than technologists (4-chamber: 5.61°±6.47 DCNN vs. 7.51°±5.28 technologist, p<0.001; 

3-chamber: 6.23°±7.40 vs 6.63°±5.62, p=0.243; 2-chamber: 5.61°±6.47 vs. 8.68°±6.33, 

p<0.001). 

Discussion 

An automated deep learning system is capable of prescribing cardiac imaging 

planes with reduced angulation error compared to cardiac MRI technologists. The 

DCNN system shows robust performance across multiple institutions and field strengths 

and may help improve accessibility of cardiac MRI. 

3.2 Introduction 

Cardiac MRI is the reference standard for non-invasive quantification of cardiac 

volumetry, ventricular function, blood flow, and assessment of myocardial scar [1]. 

Acquisition of high-quality images requires detailed anatomic knowledge by the MRI 

operator. These double-oblique imaging planes are defined by patient-specific anatomic 

landmarks, including the left ventricular apex, mitral valve (MV), tricuspid valve (TV), 

and aortic valve (AV). Specially trained physicians and technologists are required to 

plan cardiac imaging planes, which limits the accessibility of cardiac MRI to primarily 

major academic and subspeciality centers. 

Deep Convolutional Neural Networks (DCNNs) have shown promise for 

automating visual tasks in cardiac MRI, including heart segmentation, tissue 

characterization, and localization of anatomic structures [7]–[9], [11], [68]. While many 

DCNN algorithms have been described, very few have yet been implemented into 

clinical practice [24]. One concern for application of DCNNs in the clinical environment 
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is algorithm generalizability, where an algorithm’s performance in the laboratory may not 

be maintained in clinical populations [26], [69]. For example, prior studies have shown 

poorer DCNN performance when tested on external patient populations [32]. Another 

factor for confident application of algorithms in the clinical environment is providing 

transparency into their mechanism of operation [43], [44]. Specifically for acquisition of 

cardiac MR images, heatmap localization has been shown as a feasible strategy for 

image plane planning [70]. This prior work illustrated that DCNNs can reliably recognize 

the anatomic landmarks needed for plane prescription on either long-axis (LAX) or 

short-axis (SAX) stack cine SSFP image series. This approach to planning the cardiac 

MR imaging planes using landmark localization parallels the approach used by human 

operators to scan cardiac MRI, and could be used to provide algorithm explainability. 

However, a human operator may use landmarks on multiple planes to obtain the optimal 

cardiac images, and the prior work only explored the feasibility of DCNNs to operate on 

a single view. 

To address these limitations to DCNN application in the real world we developed 

a multi-stage system of DCNNs to comprehensively prescribe cardiac imaging planes, 

expanding upon the heatmap localization strategy. We hypothesized that a strategy of 

incorporating images from multiple field strengths would help provide algorithm 

generalizability across multiple institutions. We also explored the feasibility of 

incorporating DCNN inferences across multiple imaging planes to better capture the 3-

dimensional nature of the heart and optimize plane prescription. 
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3.3 Methods 

3.3.1 Multi-Stage Cardiac MRI System 

We developed a multi-stage system for prescribing cardiac imaging planes 

consisting of 4 deep convolutional neural network (DCNN) modules (Figure 7): 1) 

CorSegNet for segmenting the lungs and mediastinum from coronal 3-plane localizer 

series to prescribe an axial stack, 2) AxLocNet to localize the MV and apex from the 

axial stack to prescribe a vertical long-axis (VLAX), 3) LaxLocNet to localize the MV and 

apex from LAX views to prescribe a SAX stack, 4) SaxLocNet to localize the MV, TV, 

and AV, which is combined with the apex localized by LaxLocNet to prescribe the 4-, 3-, 

and 2-chamber views. Details regarding training image parameters are shown in 

Supplemental Table 2.  

Training data were labeled by one of two board certified cardiovascular 

radiologists (either Albert Hsiao or Seth Kligerman) each with over 10 years of 

experience in cardiac MRI or a senior radiology resident with radiologist review. For 

training of CorSegNet, coronal images from 3-plane localizers were annotated with lung 

and mediastinal masks. For AxLocNet, an axial stack of images was annotated with the 

center of the MV and left ventricular apex. Annotations for training of LaxLocNet and 

SaxLocNet were as previously described [70]. The details of the annotations used for 

algorithm evaluation are detailed in each of the relevant sections below. 

The multi-stage algorithm was tested on an independent set of clinical exams 

from three geographically distinct tertiary academic medical centers in the United 

States. With HIPAA compliance and IRB waiver of informed consent, we collected a 

convenience sample of 363 examinations that included (174 from site 1, 90 from site 2, 
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and 99 from site 3). Of these studies, 197 (54%) were male, with an age range from 15 

to 87. MRI examinations were performed for a variety of clinical indications 

representative of each clinical practice, and further detailed in Table 3. These studies 

Figure 7: Left) Schematic of an automated, multi-stage system for prescribing cardiac 
imaging planes comprised of multiple DCNN modules and Right) number of image 
series used for either training/validation or testing. 

A) CorSegNet is used to segment the lungs andc mediastinum from a coronal localizer, 
which is used to define the superior and inferior coverage of an axial stack, B) 
AxLocNet localizes the mitral valve (MV) and apex on either a localizer or dedicated 
axial stack to prescribe a vertical long-axis image, C) LaxLocNet localizes the MV and 
apex from a vertical long-axis image to prescribe a short-axis stack, D) SaxLocNet first 
localizes the MV, aortic valve, and tricuspid valves on a short-axis stack, which is then 
combined with the apex localization of the apex from a cross referenced long-axis 
image using LaxLocNet to prescribe the 4-, 3-, and 2-chamber long-axis images. 
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included 324 three-plane coronal localizer, 124 axial, 270 VLAX, 233 SAX, 263 4-

chamber, 205 3-chamber, and 194 2-chamber series. Imaging parameters are listed in 

Supplemental Table 3. All ground truth annotations for evaluation were performed by 

one of the board-certified cardiovascular radiologists. The details of the annotations 

used for algorithm evaluation are detailed in each of the relevant sections below.  

3.3.2 Chest Coverage (CorSegNet) 

CorSegNet generated lung and mediastinal masks based on a 3-plane localizer. 

This DCNN architecture was based on a U-Net architecture [20]. The superior and 

inferior mask margins were used to infer the chest coverage. Ground truth was defined 

as the superior margin of the lung apices to the inferior most extent of the lungs and 

mediastinum. Labels were performed by a cardiovascular radiologist (Albert Hsiao) 

separate from the lung and mediastinal masks used for training. The superior and 

inferior margins were also recorded from those determined by a technologist during the 

clinical exam. 

All Site 1 Site 2 Site 3

n 363 174 90 99

Age Median: 47 (Range: 15 - 87) Median: 47 (Range: 18 - 87) Median: 57 (Range: 15 - 86) Median: 60 (Range: 15 - 86)

Field Strength 54% 1.5T (n=197) 30% 1.5T (n=53) 50% 1.5T (n=45) 100% 1.5T (n=99)

Sex 53% Male (191) 51% Male (n=89) 58% Male (n=52) 51% Male (N=50)

Date Range June 30, 2018 - December 29, 2020 November 21, 2019 - December 29, 2020 June 30, 2018 - December 16, 2018 October 09, 2019 - December 06, 2019

Clinical Indications

Cardiomyopathy 86 32 - 54

 Structural evaluation 54 54 - 0

Other 31 20 - 11

Viability/scar 18 9 - 9

Pericardial Disease 17 0 - 17

Arrythmia / Syncope 17 17 - 0

Myocarditis / Sarcoid 15 10 - 5

Heart Failure 15 15 - 0

Mass 12 10 - 2

Research study 6 6 - 0

Amyloid 1 0 - 1

Scanner Model

DISCOVERY MR750 111 110 1 0

Optima MR450w 124 0 25 99

Signa HDxt 56 53 3 0

SIGNA Premier 34 0 34 0

SIGNA Artist 17 0 17 0

DISCOVERY MR750w 14 11 3 0

SIGNA Architect 6 0 6 0

SIGNA PET/MR 1 0 1 0

Table 3: Evaluation Patient Demographics 

Note that clinical indications were not available for site 2. 
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To evaluate performance, we calculated distances between ground truth margins 

and either 1) CorSegNet inferred margins, or 2) technologist acquired margins, and 

reported difference and standard deviations. To assess generalizability, a subset 

analysis was performed on sites 1 and 3 (site 2 was not included as all data from that 

site was used for training this module). Differences in margin error variations were 

compared using Levine’s Test (R Foundation for Statistical Computing, Vienna Austria). 

P-Values < 0.05 were considered statistically significant. 

3.3.3 Prescription of Cardiac Imaging Planes 

3.3.3.1 Prescription of a Vertical Long-Axis Imaging Plane (AxLocNet) 

The vertical long axis imaging plane was defined as the plane that intersects the 

mitral valve and apex, and we developed AxLocNet as a cascaded DCNN to localize 

these landmarks from either a 3-plane localizer or axial of images. A cardiac bounding 

box was first implemented to reduce the search space. Then, we implemented a 2.5D 

slice selection network to identify the axial slice containing the apex and mitral valve, 

similar to efforts by previous authors [70]. The mitral valve and apex locations were then 

determined with two 3-dimensional heatmap regression networks and computed as the 

point position with the maximal pseudoprobability from each network.  

3.3.3.2 Prescription of a Short-Axis Imaging Plane (LaxLocNet) 

The SAX imaging plane was defined as the plane orthogonal to the line 

intersecting the MV and apex. To prescribe the SAX image, based on previously 

described methods we implemented LaxLocNet as a 2-dimensional cascaded system to 

localize the apex and MV on a long-axis image [70]. Compared to the previously 

described DCNN, LaxLocNet is a two-stage network, where the initial localization is 
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used for a bounding box for a secondary fine-grain localization network, Moreover, this 

networked performed at both 1.5 and 3T field strength. 

3.3.3.3 Multi-Planar Prescription of Cardiac Imaging Planes (Combining 

LaxLocNet and SaxLocNet) 

To prescribe LAX imaging planes, we iterated on a previously described DCNN 

to develop SaxLocNet as a 3-dimensional cascaded system trained on 1.5T and 3T 

scout and cine images [70]. The 4-chamber imaging plane was defined as intersecting 

the mitral and tricuspid valves, the 3-chamber as intersecting the mitral and aortic 

valves, and the 2-chamber as bisecting the 4- and 3-chamber planes. To refine 

prescription, we used LaxLocNet to cross reference and localize the apex on a VLAX for 

4-chamber prescription, and on the 4-chamber prescription for the 3- and 2-chamber 

prescriptions. 

3.3.4 Evaluation of Cardiac Imaging Planes 

3.3.4.1 Defining Ground Truth Landmarks and Angulation Error 

For this fully independent test set, ground truth imaging planes were defined by 

landmark locations labeled by a cardiovascular radiologist (A.H.). Imaging planes 

obtained by the technologist during the clinical exam were also compared. To assess 

similarity, we calculated the angulation error between the ground truth planes, and 

either 1) the DCNN inferred planes, or 2) the planes acquired by the technologist at time 

of clinical exam. Given the multifactorial inputs necessary for optimally prescribing the 

4-, 3-, and 2-chamber images as detailed above, these analyses are decomposed into 

the angulation errors on the basis of either LAX or SAX input images. 
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3.3.4.2 Plane Quality Score Evaluation 

To develop a surrogate indicator of image plane quality, we assessed the 

relationship between qualitative image plane quality and the angulation error. Two 

board-certified cardiac radiologists (Michael Horowitz and Lewis Hahn) with 3 years of 

experience graded the 4-, 3-, and 2- chamber images by subjectively rating plane 

quality on a 5-point Likert scale (1 signifying poor quality, and 5 signifying ideal quality). 

Inter-reader variability was assessed for a subset of images with a linearly weighted 

Kappa statistic. If scores differed, the lower of the two was used. The angle error 

between the ground truth and LAX image acquired at time of exam was calculated, 

grouped by Likert score, and plotted against frequency of angulation error (binned in 5° 

increments). Differences were assessed by Chi-square. 

3.3.4.3 Long-Axis and Short-Axis DCNN Module Evaluation 

To evaluate AxLocNet, LaxLocNet, and SaxLocNet, we computed angulation 

errors between ground truth imaging planes and either 1) DCNN inferred planes or, 2) 

technologist acquired imaging planes. A subset analysis was also performed by site. 

Site 2 was excluded from our testing set for AxLocNet as it was used for training this 

module. We report mean errors compared with paired Wilcox test. 

3.4 Results 

3.4.1 Relationship between angulation error and plane quality 

To establish the clinical relevance of angulation error, we performed a reader 

study to assess its relationship to image plane quality. Of the LAX images, 345 (53%) 

were scored a 5 (high quality), 212 (34%), scored 4, 52 (8%), scored 3, 24 (4%) scored 

2, and 5 (1%) scored 1 (low quality). Of the 131 images that were scored by both 
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reviewers, the interrater variability Kappa statistic was fair (κ: 0.34). Frequency of 

binned angulation errors was then plotted against their image plane quality scores. 

Intuitively, higher angulation errors were more likely to be associated with lower image 

plane quality (Figure 8) (Chi-squared test: p<0.001). Exemplar images that correspond 

with different quality scores are shown in Figure 8B. 
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Figure 8: Angulation error and its the relationship to plane quality score. 

A) Lower Likert plane quality scores had a greater representation of 
higher angulation errors. B) The top row represents short-axis images 
used for valve localization. The middle row represents cross referenced 
long-axis images used for apex localization. Combing the valve and 
apex localizations defines the plane of long-axis images shown in the 
bottom row. Cardiovascular radiologist defined ground truth valve and 
apex localization are shown as yellow dots and corresponding planes. 
Technologist acquired imaging planes are show in teal. 
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3.4.2 Axial Coverage Performance (CorSegNet) 

We first assessed the ability of CorSegNet to infer and plan the superior and 

inferior extent of an axial stack of images. Variances were compared between ground 

truth margins and either those inferred by CorSegNet or those acquired by a 

technologist (Figure 9). For the superior margin, CorSegNet showed markedly lower 

variance than technologists (9.94 mm vs. 60.40 mm, Levene’s test: p<0.001), both 

overall, and at the individual sites. Similarly, for the inferior margin, CorSegNet showed 

lower variance than technologists (39.0 mm vs. 35.4 mm, Levene’s test: p=0.288). 

On the left, comparison graphs of the A) superior or B) inferior margin distances 
between ground truth and either technologist (teal) or CorSegNet (red) axial 
coverage. In the top right, exemplar coronal image with ground truth (yellow), 
technologist prescribed (red), or CorSegNet predicted superior and inferior 
margins. Predicted CorSegNet lung segmentation is shown in red on top, and 
CorSegNet mediastinum segmentation in red on bottom. In the bottom right, an 

Figure 9: Relationship between axial coverage by a technologist compared to 
the field of view inferred by CorSegNet. 
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There was some variation in performance by site, with no statistical significance 

difference at site 1, site 3 had greater technologist variance in inferior prescription. 

3.4.3 Vertical Long-Axis Prescription Performance (AxLocNet) 

AxLocNet was assessed by comparing the angulation errors between algorithm 

inferred and technologist acquired VLAX imaging planes (Figure 10). AxLocNet inferred 

errors were greater than those acquired by a technologist (5.21°±12.56 vs. 3.60°±6.22, 

Wilcoxon signed-rank test: p>0.001) overall, with some variation by site. AxLocNet 

inferred VLAX imaging planes had greater angulation error at site 1 compared to 

Figure 10: Relationship between vertical long-axis angulation error by a technologist 
compared to AxLocNet. 

A) Comparison graph of angulation differences between ground truth and either 
technologist acquired (teal) or AxLocNet predicted (red) vertical long-axis planes 
(VLAX). B) Exemplar images from an axial stack shown at the mitral valve (top) 
and apex slice (bottom) levels with ground truth (yellow), technologist acquired 
(teal), and AxLocNet predicted (red) VLAX imaging plane. Ground truth and 
AxLocNet predicted mitral valve and apex localizations are shown as yellow and 
red dots, respectively. C) Technologist acquired VLAX image is shown. 
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technologist images, while angulation error was higher but not statistically significant at 

site 3. 

3.4.4 Short-Axis Prescription Performance (LaxLocNet) 

LaxLocNet was assessed by comparing angulation errors between the algorithm 

inferred and technologist acquired SAX imaging planes (Figure 11). LaxLocNet inferred 

SAX errors were smaller than those acquired by technologist (2.22°±6.17 vs. 

2.95°±3.73, Wilcoxon signed-rank test: p<0.001) overall, with some variation by site. 

LaxLocNet inferred SAX imaging planes had lower angulation error compared to 

technologists at sites 1 and 3 and were equal at site 2. 

3.4.5 Dedicated Long-Axis Prescription Performance (SaxLocNet and LaxLocNet) 

Finally, we assessed the angulation errors between the combined SaxLocNet 

and LaxLocNet inferred 4-, 3-, and 2-chamber imaging planes. Overall, imaging planes 

A) Comparison graph of angulation differences between ground truth and either 
technologist acquired (teal) or SaxLocNet predicted (red) short-axis planes 
(SAX). B) Exemplar vertical long-axis image is shown with ground truth (yellow), 
technologist acquired (teal), and LaXLocNet predicted (red) SAX imaging plane. 
Ground truth and SaxLocNet predicted mitral valve and apex localizations are 
shown as yellow and red dots, respectively. C) A midventricular technologist 
acquired SAX clinical image is shown. 
 

Figure 11: Relationship between short-axis angulation error by a technologist 
compared to LaxLocNet. 
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had either similar or lower angulation error compared to technologist acquired images. 

For 4-chamber images, the error was lower compared to technologist acquired images 

(5.60°±6.48 vs. 7.51°±5.12, Wilcoxon signed-rank test: p<0.001), while the 3-chamber 

error was similar (6.12°±7.31 vs. 6.54°±5.51, Wilcoxon signed-rank test: p=0.215), and 

the 2-chamber was lower (4.99°±7.80 vs. 8.77°±6.33, Wilcoxon signed-rank test: 

p<0.001). 

Given the multicomponent nature of the dedicated LAX imaging, we sub-

analyzed the 4-, 3-, and 2-chamber planes, first on the basis of SAX image stacks, and 

then on the basis of cross reference SAX images. Assessing on the basis of the SAX 

mage stack, SaxLocNet inferred 4-chamber errors were lower than those acquired by 

technologist (4.31°±4.76 vs. 6.68°±5.40, Wilcoxon signed-rank test: p<0.001) (Figure 

12A, left column). By site, inferred 4-chamber errors were equal at site 1, and they were 

lower at sites 2 and 3. SaxLocNet inferred 3-chamber errors were equal to those 

acquired by technologist (5.24°±5.43 vs. 5.45°±5.28, Wilcoxon signed-rank test: 

p=0.789) (Figure 12B, left column), and errors were equal at all sites. SaxLocNet 

inferred 2-chamber errors were lower than those acquired by technologist (4.16°±4.19 

vs. 6.69°±6.38, Wilcoxon signed-rank test: p<0.001) (Figure 12C, left column). Errors 

were lower at sites 1 and 3, and equal at site 2. 

Performance of LaxLocNet was sub analyzed to determine the importance of 

further refining the dedicated long-axis imaging planes based on LV apex localizations. 
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On the basis of a VLAX image, LaxLocNet inferred 4-chamber errors were lower than 

those acquired by technologist (1.78°±5.32 vs. 2.56°±2.34, Wilcoxon signed-rank test: 

p<0.001) (Figure 12A, middle column). While cross referenced LaxLocNet inferred 4-

chamber errors were lower at sites 1 and 3, they were equal at site 2. LaxLocNet 

inferred 3-chamber errors were lower than those acquired by technologist (1.19°±4.38 

vs. 1.92°±2.88, Wilcoxon signed-rank test: p<0.001) (Figure 12B, middle column), with 

errors lower at all sites. Inferred 2-chamber errors were lower than those acquired by 

Figure 12: Relationship between dedicated long-axis angulation errors by a 
technologist compared to SaxLocNet and LaxLocNet. 

In the left column, comparison graphs of angulation differences between ground truth 
and either technologist acquired (teal) or SaxLocNet predicted (red) for either A) 4-
Chamber, B) 3-Chamber, and C) 2-Chamber planes. In the middle column, 
comparison graphs of angulation differences between ground truth and either 
technologist acquired (teal) or LaxLocNet predicted (red) long-axis imaging planes. 
Exemplar images of SAX and cross referenced LAX are each shown with ground truth 
(yellow), technologist acquired (teal), and AI (combining SaxLocNet predicted valve 
and LaxLocNet predicted apex) imaging planes. Ground truth and AI predicted valve 
and apex localizations are shown as yellow and red dots, respectively. In the right 
column, technologist acquired long-axis clinical images are shown. 
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technologist (2.10°±5.3 vs. 3.19°±3.17, Wilcoxon signed-rank test: p<0.001) (Figure 

12C, middle column), and while errors were equal at site 1, they were lower at sites 2 

and 3.  

3.5 Discussion 

In this paper, we assessed the ability of a multi-stage DCNN for the automation 

of cardiac MRI plane prescription on routine cardiac MRIs performed at three tertiary 

academic medical centers. We demonstrate that the performance of the system was 

comparable to or exceeded performance of cardiac MRI technologists for the majority of 

cardiac imaging plane prescriptions. 

 Many DCNN systems are trained and evaluated within a single institution or 

research laboratory [69]. However, prior studies have highlighted the importance of 

carefully evaluating DCNNs in local clinical environments to ensure translation of 

performance from laboratory to the real world [32], [71]. This is particularly relevant for 

cardiac MRI, where imaging parameters such as manufacturer and field strength may 

produce visually different images [72]. For example, Yan et al. showed that a left 

ventricular segmentation DCNN lost performance when tested on images from different 

MRI scanners [25]. In this study, despite two DCNN modules being trained on data from 

a single site, performance across all test sites and scanner models was preserved. 

Previous studies have shown that inclusion of heterogeneous training data performance 

on outside datasets [25], [32], [73]. Our study supports this, showing that incorporation 

of a large and diverse set of training data (spanning 1.5T and 3T field strengths) 

provided sufficient diversity for generalizable performance of our DCNN algorithms. 
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Another obstacle to the integration of DCNNs into clinical practice is their limited 

explainability [39]–[42]. Tonekaboni et al. discussed the importance of providing a 

rationale for algorithm decision making when integrating machine learning systems 

within existing clinical workflows [74]. We developed this system to localize the 

landmarks that define the cardiac MR imaging planes on standard cardiac acquisitions, 

thereby providing clinical end users a tangible rationale for plane prescription. This has 

perhaps greatest potential for MRI technologists inexperienced in cardiac MRI. At each 

of our respective centers, cardiac technologists require months to years of training to 

become proficient. An automated DCNN system for plane prescription has the potential 

to reduce the barrier to basic proficiency in cardiac MRI. Further, like any system, 

DCNNs may make errors. By having the DCNN provide localizations for the 

standardized landmarks used by technologists, the rationale for each plane becomes 

clear, and allows an expert technologist or radiologist the option to change or correct 

prescriptions.  

Prior approaches to planning cardiac MRI imaging planes have focused primarily 

on planning all planes from a single acquisition [4]–[6]. However, stacks of 2-

dimensional MR images are often anisotropic, and may have poor through-plane slice 

resolution [46]. For these reasons, previous authors have highlighted the importance of 

integrating multiple cardiac views for MRI analysis to fully capture the 3-dimensional 

nature of the heart [11], [47]. Thus, we developed a multiplanar approach to image 

plane prescription that integrates information from multiple views to precisely localize 

landmarks in 3-dimensional space. For example, prescription of a 3-chamber view 
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benefits from not only localization of valve landmarks on a short-axis stack of images, 

but also from the apex visualized on a 4-chamber view.  

In this study, we developed angulation error as a surrogate metric for image 

plane quality, and saw that images scored as lower plane quality were associated with 

greater angulation errors. However, we note that this was based on a retrospectively 

acquired dataset, and images of insufficient quality due to factors such as obvious 

malalignment or patient motion may have not been saved at time of exam. Prospective 

studies are needed to further assess the relationship between angulation errors and 

subjective plane quality. Moreover, this study did not seek to make an authoritative 

judgment in the inter-site variability of technologist image acquisitions. Factors 

underlying any heterogeneity in technologist prescription may be related to differences 

in training and local institutional preference [75]–[77]. Another benefit of DCNN-assisted 

workflow could therefore be increased standardization of cardiac image prescription and 

acquisition. 

Using angulation error, we demonstrated that each component of our multistage 

system performed with the range of clinical variability seen during a clinical exam. On 

further analysis, we found that SAX and dedicated LAX prescription performed more 

favorably than prescription of the VLAX. This may be explained by wider heterogeneity 

of cardiac morphologies and cardiac orientations within the thorax on axial imaging, 

compared to the more standardized presentation of VLAX and SAX images. Prior 

authors for example have highlighted the importance of standardizing cardiac image 

orientation for optimal performance of DCNNs [78]. Future work may be directed at 
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enhancing the performance of VLAX images with more diverse training data or DCNN 

training strategies.  

Here we demonstrate that a multi-component system of DCNNs was able to 

prescribe cardiac imaging planes similar to gold standard planes defined by a 

cardiovascular radiologist. Moreover, this study showed generalizability of the DCNN 

system across multiple sites, including multiple scanners and field strengths. 
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Chapter 4: Uncertainty Sampling Enables Data-Efficient DCNN Active Learning – 

Feasibility for Cardiac MRI Landmark Localization 

4.1 Abstract 

Purpose: 

Deep Convolutional Neural Network (DCNN) algorithms show promise 

automating aspects of cardiac MRI. However, algorithms developed on one platform 

may not generalize to another. The amount and type of data required to make DCNNs 

extensible beyond the scope of their training environments is an area of open 

investigation. Here, we investigated the effectiveness of uncertainty sampling to 

improve performance of a DCNN designed for cardiac landmark localization. 

Methods: 

A DCNN was previously trained on 1.5T images using heatmap localization. We 

retrospectively curated 1,028 1.5T and 389 3T long-axis cardiac MR image series and 

manually-annotated the location of apex and mitral valve. We propose two metrics of 

‘confidence’ of the initial DCNN: pseudoprobability maximum (𝜙̂𝑚𝑎𝑥) and the spatial 

variance of rotational entropy (𝑆𝑙) for uncertainty sampling. Using transfer learning, the 

DCNN was trained using variable subsets of 1.5T and 3T images based on 𝜙̂𝑚𝑎𝑥 and 𝑆𝑙. 

Results: 

Both uncertainty metrics stratified 3T images, which correlated with localization 

error. When 3T cases were sorted by 𝜙̂𝑚𝑎𝑥 or 𝑆𝑙, only 60 were required to achieve apex 

localization within 16mm. Reversed and random sorting required greater number of 3T 

cases. Inclusion of 1.5T image data was necessary to preserve performance on 1.5T 

images. 
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Conclusions: 

Our proposed uncertainty sampling metrics are effective at stratifying cases with 

higher localization error. Use of these metrics may reduce the number of training cases 

required to generalize performance of DCNNs across variations in MRI equipment or 

acquisition parameters, while minimizing expense of curating training data. 

4.2 Introduction 

 Cardiac magnetic resonance imaging (MRI) is an essential imaging technique for 

accurate assessment of cardiac morphology, size, and function [1]. However, these 

exams are challenging to perform, requiring expertise from dedicated cardiac 

technologists and physicians to accurately place imaging planes [48], [49]. Cardiac 

imaging planes have previously been automatically prescribed by employing deep 

convolutional neural networks (DCNN) with heatmap regression to localize cardiac 

landmarks at 1.5T field strength [70]. While many centers perform cardiac MRI with 

equipment at 1.5T field strength, cardiac MRI at 3T field strength is becoming 

increasingly available at clinical imaging centers [79]–[81]. Images acquired at the 

higher 3T field strength appear visually distinct from those acquired at 1.5T; for 

example, 3T acquisitions generally have poorer myocardium to blood pool contrast due 

to specific absorption rate limits [82]. Moreover, acquiring cardiac MRIs at the higher 3T 

field strength may introduce off-resonance, chemical shift, and flow artifacts, impacting 

the resulting image and potentially obscuring cardiac anatomy. It therefore remains 

unclear if the initial performance of DCNNs at 1.5T field strength may generalize to 3T. 

 The uniform performance of DCNNs across all MRI acquisition parameters is not 

guaranteed. Prior work by Knoll et al. highlighted the importance of including 
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heterogeneous training data to generalize DCNN performance across MRI acquisition 

parameters [31]. However, curating a diverse biomedical imaging dataset may be 

challenging due to legal, ethical, or logistical obstacles [34]–[37]. Given these 

constraints, there has been prominent attention given to improving the data-efficiency of 

DCNN training – where one is able to achieve a similar level of performance with a 

reduced amount of data [38]. Comparatively less attention, however, has been paid to 

improving DCNN training data-efficiency within the context of different MRI parameters. 

 Many strategies have been described for improving the generalizability of 

DCNNs, but not all of them may be suitable for medical imaging due to the time, labor, 

and monetary costs associated with collecting high quality ground truth annotations 

[34]–[37]. Uncertainty sampling, a form of active learning, aims to improve the data-

efficiency of machine learning training by identifying the data with the greatest 

uncertainty, resulting in fewer cases needed for training [83], [84]. However, quantifying 

uncertainty for imaging data is not a straightforward task. One simple formulation for 

uncertainty quantification uses the output layer as a surrogate for DCNN confidence in 

predictions [85], [86]. These formulations were used with an active learner to improve 

the data-efficiency across multiple non-medical benchmark datasets. Despite initial 

promise, these formulations were specific to multiclass classification, and may not 

generalize to regression DCNNs. While prior strategies for uncertainty quantification 

focused on DCNN output layer confidence in prediction, testing by image 

transformations (e.g. rotation, translation, and warping) was proposed by Wang et al. to 

estimate the uncertainty related to the image [87], [88]. Here, instead of focusing on 
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model robustness, we propose using image rotations of test data for uncertainty 

sampling. 

 Our paper makes the following contributions: After we observed that localization 

performance of an initial DCNN trained on 1.5T long-axis images (referred to as the 

initial LaxLocNet) performed poorly at 3T field strength, we sought to leverage active 

learning to teach it to perform well at both field strengths. Specifically, we define two 

novel uncertainty measures; maximum pseudoprobability metric based on DCNN 

activation, and spatial variance of rotational entropy based on test-time image 

augmentations. We demonstrate that these metrics can be used for uncertainty 

sampling to increase the data-efficiency of transfer learning by reducing the number of 

Figure 13: Schematic of transfer learning strategy for optimizing performance 
of a deep convolutional neural network. 

We took an initial implementation of LaxLocNet, trained with only on 1.5T 
long-axis images to localize the mitral valve and apex. Controlling the 
number of 1.5T and 3T images, transfer learning was then used to improve 
performance on 3T images, while preserving performance on 1.5T images. 
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training cases required to generalize performance to both 1.5 and 3T field strengths. We 

anticipate that this strategy can be extended to improve the performance of DCNNs 

across a wide variety of MRI equipment and acquisition parameters, while reducing the 

data overhead required. 

4.3 Methods 

4.4.1 Heatmap Localization 

 We implemented a variant of heatmap localization as proposed by Payer et al. to 

localize the cardiac apex and the mitral valve (MV) (Figure 6) [13], [14]. We define 

target pseudoprobabilities for a set of 𝑖 landmarks; 𝐿 = {𝑙1, 𝑙2, … 𝑙𝑖}. For each of the 𝑙𝑖 

landmarks, ground truth pseudoprobabilities (𝑃𝑙) are defined as a Gaussian function 

centered at the expert-defined ground truth coordinates (𝑥∗𝑙) and spread (𝜎𝑙) according 

to (1). Our DCNN (2) learns to map the training set of images (𝐼) to predicted 

pseudoprobabilities (𝑃̂𝑙) by identifying the weights w and b that minimize the L2 loss as 

defined in (3). Predicted anatomic localizations (𝑥̂𝑙) can then be determined by 

identifying the coordinates with maximal pseudoprobability according to (4). 

 𝑃𝑙 = 𝑓𝑙(𝑥; 𝑥
∗
𝑙 , 𝜎𝑙) = 𝑒

−
1

2𝜎𝑙
2(𝑥−𝑥

∗
𝑙)
2

 (1) 

 𝑃̂𝑙 =  𝑔𝑙(𝐼; 𝒘, 𝒃)  (2) 

 𝑚𝑖𝑛
𝑤,𝑏 

∑ ∑ ‖𝑓(𝑥; 𝑥∗𝑙 , 𝜎𝑙) − 𝑔𝑙(𝐼; 𝑤, 𝑏)‖
2

𝑥
𝐿
𝑙   (3) 

 𝑥̂𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

 𝑔𝑙(𝐼;𝒘, 𝒃)  (4) 

4.4.2 Pseudoprobability Maximum 

 In previous descriptions of the heatmap localization method, only the maximal 

pseudoprobability coordinate is used for localization, without an explicit interpretation of 
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the confidence of prediction. We therefore extend the work of Payer et al. by applying a 

confidence interpretation of the predicted pseudoprobabilities [13], [14]. A wide variety 

of uncertainty metrics are possible, but for sake of simplicity, we propose the 

pseudoprobability maximum (𝜙̂𝑚𝑎𝑥) as a metric of neural network confidence for each 

landmark, described in (5) and Figure 14, top. Confident DCNN predictions are 

proposed to have higher predicted pseudoprobability maximum values, whereas less 

confident predictions are proposed to have lower values, reflecting greater uncertainty. 

 𝜙̂𝑚𝑎𝑥 =  𝑚𝑎𝑥 𝑔𝑙(𝐼; 𝒘, 𝒃)  (5)  

Figure 14: Schematic of transfer learning strategy for optimizing performance of a 
deep convolutional neural network. 

The initial localization network is provided test images from which the image-wide 
pseudoprobability maximum is calculated. The initial localization network is also 
presented rotated test images. Rotated pseudoprobabilities are then reoriented 
into the original image orientation to generate a rotational entropy map. The 
spatial variance of the rotational entropy map is then calculated as a second 
uncertainty metric.  
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4.4.3 Spatial Variance of Rotational Entropy 

 Given the variety of possible DCNN formulations and training strategies, we 

sought to develop an additional uncertainty metric to capitalize on a concept of 

rotational invariance. For a DCNN with high confidence and broad generalizability, its 

predictions should be invariant to simple perturbations, such as image rotation. A visual 

representation of DCNN uncertainty can thus be defined by the composite of 

pseudoprobabilities generated with these perturbations. We developed a metric to 

quantify these perturbations, which we refer to as spatial variance of rotational entropy 

(𝑠𝑙) for each landmark as follows and illustrated in Figure 14, bottom. 

 Given the rotational range set 𝛩 = {𝜃1, 𝜃2, … 𝜃𝑚}, we define 𝐼𝑙,𝜃 as the rotation of 

image 𝐼𝑙 about its center by angle 𝜃𝑗. This can be implemented using test time 

augmentation to generate a set of rotated predicted pseudoprobabilities (𝑃̂𝑙,𝜃) (6). These 

pseudoprobabilities may be reoriented into the original orientation (𝑃̂𝑙,𝜃
∗
) and the mean 

absolute error calculated to determine their deviations from the non-rotated prediction 

(𝑃̂𝑙). This cumulative entropy map (𝐸𝑙), thus provides a composite visual representation 

of the uncertainty and instability of the DCNN inference to rotation, described in (7). 

 𝑃̂𝑙,𝜃 = 𝑔𝑙(𝐼𝑙,𝜃;𝒘, 𝒃)  (6) 

 𝐸𝑙 =
1

𝑚
∑ |𝑃̂𝑙 − 𝑃̂𝑙,𝜃

∗
|𝜃   (7) 

 We calculated the spatial variation of the rotational entropy maps to quantify 

uncertainty into a singular value. We first calculated Hu’s image moments of the 

rotational entropy map (8) [89]. Horizontal and vertical variances were calculated as the 

second order moments in (9) and (10). We then defined the spatial variance of 
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rotational entropy (𝑠𝑙) as the quadratic mean of the horizontal and vertical variances 

(11). 

 𝑀𝑖,𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑗𝐸(𝑥, 𝑦)
𝑗
𝑦

𝑖
𝑥   (8) 

 𝜇2,0
′ = 𝑀2,0 ∕ 𝑀0,0 − (𝑀1,0 ∕ 𝑀0,0)

2
  (9) 

 𝜇0,2
′ = 𝑀0,2 ∕ 𝑀0,0 − (𝑀0,1 ∕ 𝑀0,0)

2
  (10) 

 𝑠𝑙 = √𝜇2,0
2 + 𝜇0,2

2   (11) 

4.4.5 Data 

With HIPAA compliance and IRB waiver of informed consent, we retrospectively 

collected 405 cardiac MRI examinations at our institution between February 2012 to 

July 2019. Patients were 60% male and 40% female with a median age of 53 (range of 

18-111). Among these examinations, 285 (70%) were collected with a 1.5T GE Signa 

HDxt MRI, (GE Healthcare, Chicago, IL) and 120 (30%) were collected with a 3T GE 

750 MRI, (GE Healthcare, Chicago, IL). These examinations included 259 2-chamber 

series, 311 3-chamber series, 403 4-chamber series, and 444 other long-axis series. 

For patients scanned at 1.5T, cine steady-state free precession (SSFP) images were 

performed with the following parameters: median flip angle 50.08° (range: 24.71° to 

78.08°), 256x200 matrix, median field of view of 340 mm (range: 310 mm to 440 mm), 

median slice thickness of 8 mm (range: 6 mm to 10 mm), median repetition time of 4.11 

ms (range: 3.19 to 4.45 ms) and echo time of 1 ms. For patients scanned at 3T, cine 

steady-state free precession (SSFP) images were performed with the following 

parameters: median flip angle, 43.46° (range: 41.98° to 84.92°), 192x192 matrix, 

median field of view of 360 mm (range: 320 mm to 400 mm), median slice thickness of 8 
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mm (range: 8 mm to 10 mm), median repetition time of 3.61 (range: 3.27 to 4.60 ms and 

echo time of 1 ms). All images were annotated by radiologists Albert Hsiao or Seth 

Kligerman who marked the location of the apex and MV using custom localization 

software written with python and Matplotlib. 

4.4.6 Initial DCNN 

We first created an initial DCNN to localize the apex and MV on 1.5T long-axis 

images, which we refer to as LaxLocNet, implemented as a U-net modified for heatmap 

regression [13], [14], [20]. The final convolutional layer was replaced with linear 

activation and kernel size of 1 to predict pseudoprobability values. We performed all 

deep learning experiments using Keras with TensorFlow backend. The initial LaxLocNet 

was trained with 80% of the 1.5T images. We applied rotational augmentations by 

rotating these images and their paired pseudoprobability maps from -60° to +60°. Initial 

training was performed with stochastic gradient descent, a learning rate of 10-4, and 

momentum of 0.99. We then confirmed the performance of initial LaxLocNet by 

measuring the distance between ground truth and predicted localizations in a held-out 

validation set of the remaining 20% 1.5T data. Differences in localization error means 

were compared using t-test in R (R Foundation for Statistical Computing, Vienna 

Austria). P-Values < 0.05 were considered statistically significant. 

4.4.7 DCNN Transfer Learning 

We used transfer learn ing to generalize our initial LaxLocNet from 1.5T to 3T 

field strength (Figure 6). Transfer learning is a technique to generalize an initial DCNN 

to a greater range of tasks using a smaller amount of data [90]. From our 3T dataset, 

we separated 60% of cases for training data to be used for transfer learning and 
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reserved the remaining 40% for model evaluation. Our transfer learning DCNN was 

initialized with the weights from the initial LaxLocNet model and was further trained with 

varying amounts of the 1.5T training and 3T training data. We applied rotational 

augmentations by rotating images and paired pseudoprobability maps from -60° to 

+60°. Transfer learning was performed using stochastic gradient descent with a learning 

rate of 10-5
 and momentum of 0.99. We evaluated our generalized models by measuring 

the distance between predicted and ground truth localizations from the reserved 

evaluation 1.5T and 3T datasets. Transfer learning experiments were validated for 

robustness using 5-fold cross validation. 

4.4.8 Uncertainty Metric Assessment 

To assess the ability of our uncertainty metrics (pseudoprobability maximum and 

spatial variance of rotational entropy) for identifying 3T cases with high vs. low initial 

LaxLocNet prediction confidence, we first divided our uncertainty metrics into quartiles. 

Quartiles were then plotted against initial LaxLocNet 3T localization error for each 

landmark. Differences in inter-quartile localization error and localization variances were 

compared using Kruskal–Wallis and Levene’s test in R (R Foundation for Statistical 

Computing, Vienna Austria) respectively. P-Values < 0.05 were considered statistically 

significant. 

4.4.9 Uncertainty Sampling 

 Uncertainty sampling is a machine learning methodology for selecting cases by 

greatest uncertainty, thereby potentially reducing the total volume of data required for 

DCNN performance [83], [84], [91]. To assess if we could improve the data-efficiency of 

improving 3T localization by incorporating uncertainty sampling, we developed a series 
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of transfer learning experiments. The data-efficiency of uncertainty sampling (using 

either pseudoprobability maximum or spatial variance of rotational entropy) was 

compared to reversed sorting (using our proposed uncertainty metrics) and to random 

order. We assessed the data-efficiency for each transfer learning experiment by plotting 

the averaged localization error for each of the 5-fold cross validation experiments 

against the number of cases used for transfer learning. 

 To gauge how well our 3T optimized LaxLocNet preserved performance at 1.5T 

field strength, we conducted a series of transfer learning experiments using varying 

amounts of the initial 1.5T and 3T training data. We assessed how well our 3T 

optimized LaxLocNet preserved initial 1.5T performance by plotting each landmark’s 

1.5T test data localization error against increasing amounts of the initial 1.5T and 3T 

training for each of the 5-fold cross validation experiments.  
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Figure 15: Representative images of initial LaxLocNet predictions and 
uncertainty map 

Cases with low and high localization error for a) apex and b) mitral valve (MV) 
are shown. Input images are on the left, with a yellow dot indicating the ground 
truth and a red dot indicating the maximum inference. When localization error 
is low, the predicted pseudoprobability map often shows high peak intensity 
and narrow width and is invariant to rotation. When localization error is high, 
predicted pseudoprobability is diffuse with lower peak intensity and wide 
rotational variation. 
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4.5 Results 

4.5.1 Initial LaxLocNet Performance 

 We first assessed the performance of our initial LaxLocNet by measuring the 

localization error between predicted and ground truth localization on an independent 

test set of 1.5T long-axis data. We found that the apex was localized within 9.64 mm, 

and the MV within 7.18 mm. To assess how well the initial LaxLocNet generalized to 3T, 

we compared the localization results of images acquired at 1.5T to images acquired at 

3T. We found that the initial LaxLocNet had greater localization error on 3T images, with 

the apex localized within 29.79 mm vs. MV within 15.5 mm (p < 0.01). 

4.5.2 Qualitative Assessment of Initial LaxLocNet Predictions 

 We reviewed the initial LaxLocNet pseudoprobability predictions on 3T long-axis 

images with high vs. low localization error to help guide the development of our 

proposed uncertainty metrics (Figure 15). First, images with low localization error had 

higher predicted pseudoprobabilities, which we quantified as the proposed maximum 

pseudoprobability uncertainty metric. Moreover, these images also had greater spread 

in their rotational entropy map, which we quantified as spatial variance of rotational 

entropy. We found that the 3T long-axis images with higher localization error had off-

resonance artifacts and a greater range of image contrast. 
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4.5.3 Uncertainty Metric Performance 

 To assess the potential of our uncertainty metrics to gauge initial LaxLocNet 

confidence in 3T predictions, we first divided our uncertainty metrics into quartiles, and 

plotted each quartile’s 3T localization error for each landmark (Figure 16, Table 4). 3T 

Figure 16: Relationship between localization error and metrics of model 
uncertainty. 

To gauge the relationship between our uncertainty metrics a), 

pseudoprobability maximum (𝜙̂𝑚𝑎𝑥) and b) spatial variance in spatial variation 
in rotational entropy (sl), we binned our uncertainty metrics into quartiles. We 
then plotted these quartiles against initial LaxLocNet 3T localization error for 
the apex and mitral valve (MV). Higher uncertainty (low pseudoprobability 
maximum values and higher spatial variation in rotational entropy) were 
associated with greater 3T localization error and variance. 
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images with low pseudoprobability maximum (i.e. higher uncertainty) had both greater 

localization error and variance for the apex and MV. Similarly, 3T images with higher 

spatial variance of rotational entropy (i.e. higher uncertainty) had higher localization 

error and variance for the apex. However, while greater values of spatial variance of 

rotational entropy had greater MV localization variance, there was not a statistical 

difference in MV localization error across quartiles (p=0.09). 

 

 

Landmark 
Uncertainty 

Metric 
Q1 Q2 Q3 Q4 

Kruskal 

Test 

Levene’s 

Test 

Apex 

 

40.32±4,084.93 mm 17.93±722.02 mm 13.99±191.68 mm 10.70±134.38 mm p<0.01 p<0.01 

 

14.59±327.79 mm 13.19±552.40 mm 17.85±878.44 mm 22.26±4359.92 mm p<0.01 p<0.01 

MV 

 

15.99±1,428.23 mm 10.95±35.98 mm 9.15±24.15 mm 9.54±21.45 mm p<0.01 p<0.01 

 

9.95±59.58 mm 10.04±43.16 mm 10.96±47.08 mm 11.04±1,503.55 mm p=0.09 p<0.01 

𝜙 
𝑚𝑎𝑥

 

𝑆𝑙  

𝜙 
𝑚𝑎𝑥

 

𝑆𝑙  

Table 4: Error in localization of the apex and mitral valve prior to transfer learning 

Cases with the lowest quartile of pseudoprobability maximum (𝜙̂𝑚𝑎𝑥), showed the 
greatest localization error. Median standard deviation are shown displayed. Cases 
with the highest quartile of spatial variance of rotational entropy (sl) showed the 
highest localization error. 
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4.5.4 Uncertainty Sampling Improves Data-Efficiency 

 We aimed to assess the potential of uncertainty sampling to improve the data-

efficiency of transfer learning by conducting a series of transfer learning experiments. In 

each transfer learning experiment, we compared the average of each 5-fold cross 

validation, varying the number of 3T images. When selecting 3T images for transfer 

learning, we selected top ranking cases by our uncertainty metrics, random order, and 

reversed uncertainty order. Performance of each selection method was assessed by 

determining the number of 3T images required to improve 3T localization performance 

(Figure 17). 

Figure 17: Uncertainty sampling increases data-efficiency for transfer learning 

when selecting data by either a) pseudoprobability maximum (𝜙̂𝑚𝑎𝑥) or b) spatial 
variance of rotational entropy (sl) 

Each line represents an average of five sets of trainings, while varying the 
number of input 3T training images. When sorting properly in order of 
decreasing uncertainty (red line), apex localization error improved more rapidly 
with fewer number of cases than random sorting (green line) or reversed 
ordering (blue line). We did not observe the same effect for the mitral valve, 
which started from a small baseline localization error. 
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 We first assessed the ability to use uncertainty sampling to improve initial 

LaxLocNet localization of the apex on 3T images. This required substantially fewer 

cases when using uncertainty sampling with either pseudoprobability maximum or 

spatial variance of rotational entropy for selecting transfer learning cases than random 

selection and reversed order. Regardless of the uncertainty metric used, only 60 cases 

were required to localize the apex within 16 mm, compared to 80 cases for random 

selection. Backward sorting by reversing pseudoprobability maximum required 100 

cases to localize the apex within 16 mm and required 160 cases for spatial variance of 

rotational entropy. 

 We also assessed the effectiveness of uncertainty sampling to improve initial 

LaxLocNet 3T localization of the MV on 3T images. Here, we found that the MV 

localization was already within 15.5 mm prior to additional training. Selection of 3T 

cases by either of our proposed uncertainty metrics did not improve the data-efficiency 

of 3T MV localization compared to random and reversed order.  
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Figure 18: Preservation of Performance for 1.5T Requires 
Inclusion of 1.5T Training Data. 

To gauge the importance of including 1.5T training data for 
transfer learning, we assessed the effect of training with 
varying numbers of 1.5T and 3T images. Regardless 

whether either a) pseudoprobability maximum (𝜙̂𝑚𝑎𝑥) or b) 
spatial variance in rotational entropy (sl) was used, 1.5T 
localization performance improved with greater numbers of 
1.5T images. When very few 1.5T images were used, 3T 
images surprisingly also improved performance on 1.5T 
images. 
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4.5.5 Preservation of 1.5T Localization Performance 

 To determine how well this active learning strategy preserved the localization of 

the apex and MV for images obtained 1.5T field strength, we assessed the localization 

error while varying the amount of 1.5T and 3T data used in transfer learning (Figure 18). 

Increased number of 1.5T images improved localization performance for both the apex 

and MV. This was true when using either uncertainty metric. Surprisingly, increasing the 

number of 3T images also improved localization of the apex, especially when few 1.5T 

images (less than 80) were applied to transfer learning. The choice of uncertainty metric 

used to select 3T images for transfer learning did not affect the localization error on 

1.5T images. 

4.6 Discussion 

 In this work, we proposed a methodology to efficiently generalize a DCNN to 

multiple field strengths by combining uncertainty sampling with transfer learning. 

Starting with an initial LaxLocNet that had poor performance on 3T long-axis images, 

we proposed two uncertainty metrics (the maximum pseudoprobability metric and the 

spatial variance of rotational entropy metric) to identify images with low confidence in 

initial LaxLocNet prediction. Moreover, we demonstrated that these uncertainty metrics 

could be used to reduce the number of cases to improve apex localization on images 

from 1.5T to 3T magnets. We further show that inclusion of 1.5T images in transfer 

learning helps to preserve performance on 1.5T images. 

 There has been great promise of DCNNs to automate and augment labor 

intensive aspects of cardiac MRI [70], [92]–[94]. However, it is not guaranteed that 

these DCNNs are extensible beyond the scope of their initial training environments. 
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Differing MRI acquisition protocols may have substantial differences in imaging 

characteristics, due to factors such as field strength, pulse sequence, or underlying 

hardware [79]–[81], [95]. To expand the utility of DCNNs outside of their initial scope of 

training environment, it is necessary to generalize these DCNNs across a wide range of 

imaging parameters [31]. In our work, we found that our initial LaxLocNet performed 

poorly on 3T long-axis images, especially for those images with substantial off-

resonance banding artifacts and greater myocardial-to-blood pool contrast (Figure 15A). 

Since these imaging characteristics are uncommon in the initial training set of images 

acquired at 1.5T field strength, the initial LaxLocNet never had adequate exposure to 

these features. To overcome the lack of these imaging characteristics in our initial 1.5T 

training data, we used transfer learning to generalize our initial LaxLocNet efficiently by 

identifying the 3T images with the greatest uncertainty. 

 In our uncertainty sampling experiments, we demonstrated that combining 

transfer learning with uncertainty sampling increased the data-efficiency for 3T apex 

localization. These data-efficiencies were followed by random selection and reversed 

sorting, suggesting that pseudoprobability maximum and spatial variance of rotational 

entropy were able to routinely identify 3T images with visual information not contained in 

the initial 1.5T training data important for apex localization. However, this increased 

data-efficiency for 3T generalization was not replicated for localizing the MV on 3T 

images. Selecting 3T transfer learning cases by uncertainty sampling failed to improve 

data-efficacy compared to random selection and reversed ordering. Since the MV 

localization was substantially better than apex localization on 3T images to begin with, 
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there was not as much opportunity to improve localization performance to be gained 

from learning from highly uncertain cases. 

 The qualitative differences between 1.5 and 3T imaging are representative of a 

larger suite of differences between MRI formats and parameters [95]. Our current study 

highlights the potential of MRI acquisition parameters to confound DCNN predictions 

and led to a proposed methodology to efficiently generalize the initial LaxLocNet from 

1.5T field strength to 3T. Further evaluation of how well this technique improves the 

data-efficiency for generalizing DCNNs across other MRI acquisition parameters is 

therefore warranted. Nevertheless, the kinds of methodological strategies introduced 

here can be broadly implemented to DCNN active learning, enabling the clinical 

implementation of DCNN-based tasks. 

4.7 Conclusions 

 In this study, we demonstrated that the combination of uncertainty sampling with 

transfer learning improved can be used to efficiently generalize DCNNs to perform well 

beyond their initial training environment. This proposed strategy and uncertainty metrics 

may be applied to ensure robust performance of these algorithms in the clinical 

environment. Uncertainty sampling can reduce the amount of data required, to minimize 

the cost and labor of curating ground truth annotations that require radiological 

expertise and enable the broad clinical use of DCNNs. 
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Chapter 5. Conclusions 

With this dissertation, I have demonstrated the feasibility of planning cardiac MR 

imaging planes by localizing the apex and valve image positions on routinely collected 

cardiac images. I then developed this method into a platform to interrogate important 

deep convolutional neural networks (DCCNs) concepts, including generalizability, the 

fusion of multi-image information, and adapting DCNNs to a changing clinical 

environment. 

In the first chapter, I hypothesized that heatmap regression-based DCNNs could 

identify the apex and valve landmarks for the purposes of prescribing the cardiac MR 

imaging planes. I then explored the potential of prescribing these landmarks on cardiac 

MR images that are routinely collected during an exam, providing a rationalization of the 

basis for prescription. This additionally provided expert MR operators the opportunity to 

seamlessly intervene in the rare case of an incorrect localization.  

In the second chapter, I expanded the previous DCNN-based system for 

prescribing the cardiac MR imaging planes to include prescription of the dedicated axial 

and vertical long-axis imaging planes. This system prescribed cardiac MR imaging 

planes that were either comparable or exceeded the performance of cardiac MR 

technologists across multiple clinical environments and field strengths. To accomplish 

this, I hypothesized that training DCNNs with a complement of both 1.5T and 3T data 

would provide a wide range of distinct visual information. Performance of the DCNNs 

were found to be preserved across each clinical site, indicating that curation of diverse 

datasets may be required to ensure adequate DCNN performance across different 

clinical environments. 
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I additionally assessed how to integrate multiple DCNNs to improve the analysis 

of cardiac MR images. In this subaim, I hypothesized that an initial long-axis 

prescription could be refined from a short-axis image by cross-referencing previously 

acquired long-axis image for the apex image position. By integrating imaging 

information from multiple cardiac views, I was able to refine the automatic prescription 

of the dedicated long-axis images. In the current implementation of the system for 

prescribing the cardiac MR imaging planes, the intermediate step of acquiring a VLAX 

image is required for prescription of the SAX image stack. However, further refinement 

of the AxLocNet to accurately localize the MV and apex from an axial stack of images 

may be further investigated to directly prescribe the SAX prescription. This may allow 

for either reduction of scan time or site-specific modification of the system due to fit 

institutional preference. 

In the third chapter, I use the long-axis localization model to explore the potential 

of adapting existing models to work in a new clinical environment. I hypothesized that 

combining transfer learning and uncertainty sampling could efficiently adapt a model 

trained using only 1.5T data to work at both 1.5T and 3T field strengths. To test this, two 

novel uncertainty metrics were developed—pseudoprobability maximum based on a 

DCNN’s inferred pseudoprobability map, and spatial variance of rotational entropy 

based on test-time rotational augmentations. I demonstrated that these uncertainty 

metrics could be used to reduce the number of images required to generalize 

performance of DCNNs while retaining initial performance. 

Despite the wide availability of and inexpensive nature of echocardiography 

equipment, this modality is often limited in the amount of diagnostic information that can 
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be gleaned [96]. For example, echocardiography is often inaccurate with respect to 

volumetric and functional metrics compared to the gold standard of cardiac MRI [1], 

[97]. Cardiac MRI on the other hand has higher through-slide resolution, allowing for 

detailed structural evaluation and tissue characterization [96], [98]. Additionally, single 

photon emission computed tomography (SPECT) and cardiac computed topography 

(CT) are both additional complimentary imaging modalities to cardiac MRI which do not 

require technologists to prescribe the cardiac views at the time of image acquisition. 

While these modalities are commonly used to evaluate cardiac perfusion, they require 

the use of ionizing radiation. Ordering physicians must therefore balance the clinical 

need of the exam with the effects of additional doses of radiation [99], [100]. Despite the 

fact that newer CT scanners and scanning techniques have dramatically lowered the 

amount of radiation exposure, the cumulative effects of repeated radiation exposure 

associated with perfusion CT exams have remained a concerns among public health 

researchers [101]. Additionally, recurring safety incidents involving technologist errors in 

radiation dosing highlight the potential safety aspects of any techniques that utilize 

radiation [102]. 

Since the supply of specialty-trained physicians and technologists is the primary 

limiting factor of the availability of cardiac MRI, this system of DCNNs for prescribing the 

cardiac MR imaging planes can potentially alleviate some of the current barriers to 

accessing this essential cardiac imaging modality. For clinical institutions that have 

already have an established cardiac MR program, integration of this system may 

enhance acquisition workflows. For example, full-implementation of this system into a 

clinical environment may only require minimal technologist supervision of the system, 
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allowing the technologist to focus on tasks such as IV contrast administration and 

patient monitoring. This could result in significant time savings for cardiac MRI exams, 

which studies have highlighted as a major bottleneck for cardiac MRI utilization [103], 

[104]. 

The financial and fiscal reality for most hospitals is that they are largely 

dependent on patient volume to cover the considerable fixed and variable costs of 

operating a radiology department [105]. The volume of expected cardiac MRIs based on 

average turnaround times may determine the operational and financial viability of 

offering these specialized services [106]. Adopting the proposed DCNN based system 

for cardiac MRI planning may therefore decrease the marginal costs associated with 

cardiac MRI examination, thereby enabling greater patient access to this essential 

modality.  

From a patient perspective, reduction in scan durations may increase patient 

satisfaction, especially with those who experience anxiety when undergoing MRI 

imaging. Currently, up to 37% of patients report moderate to high levels of anxiety 

during MRI exams, and 3-5% are not able to complete the exam [107]–[109]. Reducing 

the time required to fully scan a cardiac MRI may therefore reduce potential 

psychological burden and increase the willingness of patients to undergo and complete 

cardiac MRI studies. 

While there is great promise and potential for the ability of this system of DCNNs 

to help standardize and improve accessibility of cardiac MRI, one must be proactive to 

minimize potential unintended consequences. One major concern in deploying DCNN-

based systems into clinical practice is automation complacency, where clinicians 
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availed to such conveniences may become overly reliant on technology substituting for 

clinical judgement [110], [111]. In the case of a system malfunction or DCNN error, the 

human operator responsible for correcting any faults may lack the proper training to 

operate without the technological assistance. Failure of prescribing the cardiac imaging 

planes accurately could result in either suboptimal diagnostic scans or a repeat 

scanning procedure, increasing both the physical and financial cost to the patient as 

well as the hospital. In safety-critical environments, these automated systems must 

provide a graceful method to provide end-user feedback and the opportunity for 

corrective input [112]–[114]. In the proposed system of using DCNN to prescribe the 

cardiac MR image planes, we localized the image positions of the valve and apex 

landmarks which define these imaging planes. Further research within the human-

computer interface domain that leverages human psychology may be necessary to 

explore the optimal way to provide clinical end-users with this feedback. For example, it 

is unclear if the image position alone or the underlying inferred pseudoprobability 

heatmaps may optimally aid in providing a robust human-machine system. Incorporating 

uncertainty metrics such as pseudoprobability maximum or spatial variance of rotational 

entropy may additional provide understanding of the underlying confidence the DCNN 

based system has in prescription [115]. Future work investigating how to integrate these 

systems to provide a robust prescription platform will be necessary to further optimize 

the implementation of this system into clinical practice. 

In conclusion, while there is future work that is required to investigate the most 

optimal integration of this system for planning cardiac MR imaging planes, there is great 

promise of this system to positively augment acquisition of cardiac MRI. Increasing 
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access to cardiac MRI may have substantial benefits to patient care, allowing clinicians 

to better monitor and treat cardiac disease. 
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SUPPLEMENTAL FIGURES 
  

Supplemental Figure 1: Typical sequence of imaging planes obtained for cardiac MRI 
at our institution 

Images are sequentially acquired. From an initial vertical long axis (VLAX), a short 
axis stack (SAX) is prescribed. From the SAX stack, the 4-chamber, 3-chamber, and 
2-chamber long axis views are prescribed.  
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Supplemental Figure 2: Sliding window localization of mitral valve slice 

Each slice in the short axis stack is classified as either “atrial” or 
“ventricular” using a VGG-19/LSTM ensemble classifier. The adjacent 
slices are used to provide context for the neural network. Zero-padding 
was added to the beginning and end of the stack of slices.  
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Supplemental Figure 3: Example images of short-axis (SAX), 4-
chamber, 3-chamber, and 2-chamber plane prescription angulation 
errors. 

Differences between GT planes and DL predicted planes are 
shown for the ranges of: <5°, 5-10°, 10-15°, and >15°. 
Frequency of each are shown in the bottom-right corner of each 

panel. 
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SUPPLEMENTAL TABLES 

 
  

Supplemental Table 1: Hyperparameters and details of each of the deep neural 
networks used. 
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Supplemental Table 2: Deep convolutional neural network module and training 
information. 

Model Name CorSegNet AxLocNet LaxLocNet SaxLocNet

Model Input Coronal 3-Plane
Axial 3-Plane or 

Dedicated Axial

Vertical Long-Axis 

or 4-chamber
Short-Axis

Training Data Source Sites 1 + 2 Sites 1 + 2 Site 1 Site 1

Pulse Sequence SSFSE + SSFP SSFP SSFP SSFP

Dimentionality 2D 3D 2D 3D

DCNN Type Segmentation Heatmap Regression
Heatmap 

Regression

Heatmap 

Regression

Number of Images 

Used For Training
1,390 4,647 24,320 11,109

Output
Lung and 

Mediastinum Mask
Mitral Valve and Apex

Mitral Valve and 

Apex

Mitral, Tricpuspid, 

and Aorotic Valves
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Supplemental Table 3: Evaluation Imaging Acquisition Parameters 

3-Plane Localizer - SSFP 3-Plane Localizer - SSFSE AX, LAX, SAX - SSFP

Echo Time (ms) 1.61 (range: 0.75 – 2.14) 58.15 (range: 0.79 – 83.14) 1.42 (range: 0.90 – 2.50)

Repition Time (ms) 3.86 (range: 2.48 – 4.88) 599.27 (range: 2.48 – 1398.66) 3.51 (range: 2.48 – 6.21)

Field of View (mm^2) 410.70 (range: 339.99 – 480.00) 458.44 (range: 380.01 – 480.00) 365.41 (range: 259.99 – 440.01)

Thickness (mm) 8.72 (range: 8.00 – 10.00  ) 7.78 (range: 5.00 – 10.00 ) 7.89 (range: 6.00 – 12.00)

Flip Angle (°) 0.00 (range: 0.00 – 0.00) 0.00 (range: 0.00 – 0.00) 40.80 (range: 0.00 – 101.86)
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