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ABSTRACT While most bacterial and archaeal taxa living in surface soils remain un-
described, this problem is exacerbated in deeper soils, owing to the unique oligotro-
phic conditions found in the subsurface. Additionally, previous studies of soil micro-
biomes have focused almost exclusively on surface soils, even though the microbes
living in deeper soils also play critical roles in a wide range of biogeochemical pro-
cesses. We examined soils collected from 20 distinct profiles across the United States
to characterize the bacterial and archaeal communities that live in subsurface soils
and to determine whether there are consistent changes in soil microbial communi-
ties with depth across a wide range of soil and environmental conditions. We found
that bacterial and archaeal diversity generally decreased with depth, as did the de-
gree of similarity of microbial communities to those found in surface horizons. We
observed five phyla that consistently increased in relative abundance with depth
across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla
GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abun-
dance of Dormibacteraeota at depth, we assembled genomes representative of this
candidate phylum and identified traits that are likely to be beneficial in low-nutrient
environments, including the synthesis and storage of carbohydrates, the potential to
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use carbon monoxide (CO) as a supplemental energy source, and the ability to form
spores. Together these attributes likely allow members of the candidate phylum
Dormibacteraeota to flourish in deeper soils and provide insight into the survival and
growth strategies employed by the microbes that thrive in oligotrophic soil environ-
ments.

IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and micro-
bial abundances typically decrease with soil depth, but microbes found in deeper
horizons are still important components of terrestrial ecosystems. By studying 20 soil
profiles across the United States, we documented consistent changes in soil bacterial
and archaeal communities with depth. Deeper soils harbored communities distinct
from those of the more commonly studied surface horizons. Most notably, we found
that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in
subsurface soils, and we used genomes from uncultivated members of this group to
identify why these taxa are able to thrive in such resource-limited environments.
Simply digging deeper into soil can reveal a surprising number of novel microbes
with unique adaptations to oligotrophic subsurface conditions.

KEYWORDS soil microbiology, metagenomics, microbial traits, critical zone,
microbial ecology

Subsurface soils often differ from surface horizons with respect to their pH, texture,
moisture levels, nutrient concentrations, clay mineralogy, pore networks, redox

state, and bulk densities. Globally, the top 20 cm of soil contains nearly five times more
organic carbon (C) than soil in the bottom 20 cm of meter-deep profiles (1). In addition,
residence times of organic C pools are typically far longer in deeper soil horizons (2),
suggesting that much of the soil organic matter found in the subsurface is not readily
utilized by microbes. Unsurprisingly, the strong resource gradient observed through
most soil profiles is generally associated with large declines in microbial biomass (3–8);
per gram soil, microbial biomass is typically 1 to 2 orders of magnitude lower in the
subsurface than surface horizons (4, 6, 7). Although microbial abundances in deeper
soils are relatively low on a per gram soil basis, the cumulative biomass of microbes
inhabiting deeper soil horizons can be on par with that living in surface soils, owing to
the large mass and volume of subsurface horizons (3, 5). Moreover, those microbes
living in deeper horizons can play important roles in mediating a myriad of biogeo-
chemical processes, including processes associated with soil C and nitrogen (N) dy-
namics (9, 10), soil formation (11), iron redox reactions (12, 13), and pollutant degra-
dation (14).

Given that soil properties typically change dramatically with depth, it is not surpris-
ing that the composition of soil microbial communities also generally changes with
depth through a given profile (4–6, 8, 15, 16). In some cases, the differences observed
in microbial communities with depth through a single soil profile can be large enough
to be evident even at the phylum level of resolution. For example, both Chloroflexi (15,
17) and Nitrospirae (15) may increase in relative abundance with depth. However, while
previous work suggests that particular taxa can be relatively more abundant in deeper
soils, it is unclear if such patterns are consistent across distinct soil and ecosystem types.
We hypothesized that there are specific groups of soil bacteria and archaea that are
typically rare in surface horizons but more abundant in deeper soils. Taxa that are
proportionally more abundant in deeper soil horizons likely have slow-growing, oligo-
trophic life history strategies due to the lack of disturbance at depth and the low-
resource conditions typical of most deeper soil horizons (18). Likewise, we expect
deeper soils to harbor higher proportions of novel and undescribed microbial lineages,
given that oligotrophic taxa are typically less amenable to in vitro, cultivation-based
investigations (19).

We designed a comprehensive study to investigate how soil bacterial and archaeal
communities change with soil profile depth, to identify taxa that are consistently more
abundant in deeper horizons, and to determine what life history strategies enable these
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taxa to thrive in the resource-limited conditions typical of most subsurface horizons. We
collected soil samples at 10-cm increments from 20 soil profiles representing a wide
range of ecosystem types throughout the United States, with most of the profiles
sampled to 1 m in depth. We examined the bacterial and archaeal communities of
these soil profiles by pairing amplicon 16S rRNA gene sequencing with shotgun
metagenomic sequencing on a subset of samples. We found that deeper soil horizons
typically harbored more undescribed bacterial and archaeal lineages, and we identified
specific phyla (including Dormibacteraeota, GAL15, Chloroflexi, Euryarchaeota, and Ni-
trospirae) that consistently increased in relative abundance with depth across multiple
profiles. Moreover, we found one candidate phylum (Dormibacteraeota, formerly AD3)
to be particularly abundant in deeper soil horizons with low organic C concentrations.
From our metagenomic data, we were able to assemble genomes from representative
members of this candidate phylum and document the life history strategies, including
low maximum growth rates and spore-forming potential, that are likely advantageous
under low-resource conditions.

RESULTS AND DISCUSSION
Sample descriptions and soil properties linked to soil depth. We collected soils

from a network of 10 current and former Critical Zone Observatories (CZOs) located
across the United States (Fig. 1A) that span a broad range of hydrogeological provinces,
soil orders, and ecosystem types, including tropical forest, temperate forest, grassland,
and cropland sites. Soils were sampled from two distinct profiles per CZO for a total of
20 different soil profiles. Details of the site characteristics and edaphic properties for

FIG 1 (A) Site map of sampling locations. We analyzed bacterial and archaeal communities from two soil
profiles located at each of 10 different CZOs across the United States. Each profile was sampled in 10-cm
intervals from surface soils to 1 m in depth (where possible). (B) Bray-Curtis dissimilarity to surface
samples increases with depth. As depth increases, soil bacterial and archaeal communities become less
similar to those communities at the surface. (C) Bacterial and archaeal diversity generally decreases with
depth. Colors of points match the colors of the CZO sites indicated in panel A with two profiles sampled
per site (n � 20). (D) The proportion of 16S rRNA gene sequences from the sampled soils for which
representative genome data are available decreases with depth. We matched our 16S rRNA gene
amplicon sequences to 16S rRNA genes from finished bacterial and archaeal genomes in the NCBI
database. At deeper soil depths, we found that fewer taxa in our data set had matches to publicly
available genomes, indicating that the bacterial and archaeal taxa found in deeper soil horizons are less
represented in genomic databases than those found in surface soils. More details on these analyses are
presented in Materials and Methods. The purple trend lines represent smoothed conditional means,
generated using the loess modeling method.
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each of the 20 soil profiles are provided in Data Set S1 in the supplemental material.
Soils were collected from the first meter (where possible) of freshly excavated profiles,
sampling at 10-cm increments and focusing on mineral soil horizons only (O horizons,
if present, were not sampled). Together, this collection yielded 179 individual soil
samples collected across sites with a wide range of different climatic conditions (e.g.,
mean annual temperatures ranging between 5 and 23°C and mean annual precipitation
ranging from 26 to 402 cm yr�1) (Data Set S1). The sampled profiles ranged from poorly
developed Entisols and Inceptisols to highly developed Oxisols and Ultisols (per the
USDA soil taxonomy system) and reflected an extremely broad range of soil properties.
For example, in the 0- to 10-cm depth increment, soil pH ranged from 3.3 to 9.8, organic
carbon concentrations ranged from 1.3% to 21.6%, and texture ranged from 0% to 45%
silt plus clay across the profiles.

Some soil properties changed consistently with depth across all 20 profiles. Total N
and organic C concentrations were both negatively correlated with soil depth, in
agreement with previous observations (1, 20) (depth versus %C rho � �0.61, P � 0.001;
depth versus %N rho � �0.56, P � 0.001; Spearman). On average, soil total organic C
concentrations below 50 cm were 4.4 times lower than in surface soils, while total N
concentrations were 6.3 times lower. While we measured a suite of additional chemical
and soil properties (Data Set S1), only clay concentrations exhibited consistent changes
with depth (with percent clay generally increasing with depth; rho � 0.29, P � 0.001;
Spearman). Given that our sampling effort included a wide range of different soil types
and the expectedly high degree of variability in inter- and intraprofile edaphic char-
acteristics, our goal was not to determine if distinct soil samples harbored distinct
microbial communities or to characterize the factors related to shifts in overall com-
munity composition. Rather, our goal was to determine if there were any consistent
changes in soil microbial communities with depth across the 20 sampled profiles.

Community characteristics linked to soil depth. Unsurprisingly, we found that the
location of each soil profile had a strong influence on the composition of soil bacterial
and archaeal communities, as determined by 16S rRNA gene amplicon sequencing
(r � 0.47, P � 0.001, permutational multivariate analysis of variance [PERMANOVA]).
Individual soil profiles generally harbored distinct microbial communities (Fig. 2;
Fig. S1). In addition to this variation across the profiles, soil depth also had a significant
effect on the composition of the bacterial and archaeal communities within individual
profiles (P � 0.01 for 16 of 20 profiles, rho values ranging from 0.24 to 0.45). In general,

FIG 2 Different soil profiles have distinct microbial communities. Here, we show the relative abundances
of the eight most abundant phyla identified from our 16S rRNA gene amplicon data. Not all profiles were
sampled to 1 m due to variable bedrock depth. Note that the two profiles sampled from each CZO site
were selected to represent distinct soil types (details on soil characteristics are available in Data Set S1
in the supplemental material).

Brewer et al. ®

September/October 2019 Volume 10 Issue 5 e01318-19 mbio.asm.org 4

https://mbio.asm.org


the variation in community composition with depth within a given profile, while
significant, was less than the differences in soil communities observed across different
profiles when all profiles and soil depths were examined together (depth, r � 0.02,
P � 0.001; location, r � 0.47, P � 0.001, PERMANOVA).

Several characteristics of the bacterial and archaeal communities changed consis-
tently with depth despite the high degree of heterogeneity observed across the
different soil profiles. As soil depth increased, microbial communities found at depth
became increasingly dissimilar to those found in surface horizons (Fig. 1B). When we
analyzed the entire sample set together, dissimilarity to surface soils (0- to 10-cm
depth) was positively correlated with depth (P � 0.001, rho � 0.73, Spearman). This
trend also held for 17 out of 20 individual soil profiles (depth was not significant in both
Eel River sites and IML site 1). We also found that, in general, the diversity of microbial
communities decreased with depth, with several CZOs exhibiting stronger declines
with depth than others (Calhoun, Luquillo, and South Sierra) (Fig. 1C). Lastly, when we
compared the 16S rRNA gene sequences from this study to those 16S rRNA gene
sequences from finished bacterial and archaeal genomes in the NCBI database, we
found that the proportion of taxa for which genomic data are available declined with
depth (from 6.2 to 26.1% in surface soils to 1.9 to 18.0% in the deepest horizons
sampled) (Fig. 1D). Although representative genomes are currently unavailable for the
majority of soil bacterial and archaeal taxa (21), we found that this problem is exacer-
bated for taxa living in deep soils.

Taxonomic shifts with soil depth. Although each soil profile harbored distinct
microbial communities (Fig. 2), we identified five phyla that consistently increased in
abundance with soil depth, as measured by Spearman correlations across the entire
data set: Chloroflexi, Euryarchaeota, Nitrospirae, and the candidate phyla Dormibacte-
raeota and GAL15 (Fig. 3) (false discovery rate [FDR]-corrected P values � 0.02, rho �

0.22). For example, Dormibacteraeota were, on average, 27 times more abundant in
soils at 90 cm than in surface horizons. The candidate phylum Dormibacteraeota,
Chloroflexi, and Nitrospirae have previously been found to increase in abundance with
increasing soil depth in individual profiles (15, 17), while candidate phylum GAL15 has
been shown to be abundant in oxic subsurface sediments (22). Members of these phyla
are likely oligotrophic taxa adapted to survive under the resource-limited conditions
found in deeper horizons. Indeed, soil Euryarchaeota (23), Chloroflexi, and Nitrospirae
(24) have been shown to decrease in relative abundance upon soil fertilization. These
five phyla are also underrepresented in public genome databases; together, they

FIG 3 Five bacterial and archaeal phyla that consistently increased in relative abundance with soil depth.
These phyla were identified via Spearman rank correlations against depth (FDR-corrected P values �
0.02, rho � 0.22). The purple trend lines represent smoothed conditional means, generated using the
loess modeling method. For details on all phylum level abundances in each individual soil profile, see
Table S5.
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account for only 2.8% of bacterial and archaeal genomes deposited in the IMG database
(as of December 2018), reinforcing our observation (highlighted in Fig. 1D) that bacteria
and archaea living in deeper soils are underrepresented in genome databases.

Community-level shotgun metagenomic analyses. We selected one soil profile
from each of the CZOs for metagenomic sequencing, selecting the profile that dis-
played the most community dissimilarity through depth (Eel River samples were not
analyzed for logistical reasons). In total, we obtained shotgun metagenomic data from
67 soil samples with an average of 7.84 million quality-filtered reads per sample (see
Table S1 for details). We first used these metagenomic data to quantify changes in the
relative abundances of the bacterial, archaeal, and eukaryotic domains with depth. The
overwhelming majority of rRNA gene sequences that we detected were from bacteria
(89.2% to 98.7% of reads), followed by archaea (0.03% to 7.70%), and then eukaryotes
(0.04% to 4.27%). Interestingly, we found that the proportion of eukaryotic sequences
in our samples decreased with depth (rho � �0.32, P � 0.05). Most of these eukaryotic
rRNA gene reads were classified as Fungi (58%), followed by Charophyta (16%),
Metazoa (9.3%), and Cercozoa (7.0%). These results are in line with previous work
showing that the contributions of eukaryotes, most notably fungi, to microbial biomass
pools typically decrease with soil depth (25).

We also directly compared the results obtained from our 16S rRNA amplicon and
shotgun metagenomic sequencing across the same set of samples. We did this to check
whether our PCR primers introduced significant biases in the estimation of taxon
relative abundances. We found that the shotgun and amplicon-based estimations of
abundance for the most ubiquitous and abundant phyla we observed across the
sampled profiles (Fig. 2) were well correlated (Fig. S2, mean rho values � 0.70). Next,
we checked whether our primers missed any major groups of bacteria or archaea, as it
has been noted that many taxa from the Candidate Phyla Radiation (CPR; recently
assigned to the superphylum Patescibacteria) (26) are not detectable with the primer
set used here (27). While we found that our primer pair did fail to recover sequences
from the superphylum Patescibacteria, these taxa were rare in our data—the entire
superphylum accounted for only 0.5% of 16S rRNA gene reads across the whole
metagenomic data set.

Candidate phylum Dormibacteraeota is relatively more abundant in soils with
low organic carbon. We found that members of candidate phylum Dormibacteraeota

were consistently more abundant in deeper soil horizons and particularly abundant in
subsurface horizons from the Calhoun and Shale Hills CZOs (Fig. 4). In these soils,
Dormibacteraeota dominated the microbial communities—in some samples, over 60%
of 16S rRNA sequences were classified as belonging to members of the Dormibacte-
raeota candidate phylum. The high abundances of Dormibacteraeota were confirmed
with shotgun metagenomic analyses (Fig. S2), indicating that the abundances of this
phylum were not inflated by PCR primer biases. The candidate phylum Dormibacte-
raeota was first observed in a sandy, highly weathered soil from Virginia, United States
(28), and does not yet have a representative cultured isolate. The phylum was previ-
ously known as “AD3” but was renamed Dormibacteraeota after three genomes from
the phylum were assembled from Antarctic soils (29). Other representative genomes
from this phylum have also become available with the recent addition of 47 genomes
assembled from thawing permafrost (30). The phylum Dormibacteraeota has been
observed in subsurface soil horizons previously (31, 32), and its relative abundance has
been found to be negatively correlated with water content, C, N, and total potential
enzyme activities (17).

While the abundance of members of the phylum Dormibacteraeota was generally
positively correlated with depth across all samples included in this study (rho � 0.22,
P � 0.02, Spearman), this pattern did not hold for all profiles (Fig. 4). Instead, we found
organic C concentrations to be the best predictor of the abundance of Dormibacte-
raeota in these soil communities (Fig. S3); Dormibacteraeota were typically eight times
more abundant in soils with less than 1% organic C than in soils where organic C
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concentrations were greater than 2%. Because soil depth and organic C concentrations
were correlated across the profiles studied here, we used an independent data set of
surface soils (0- to 10-cm depth) collected from 1,006 sites across Australia to determine
if the abundances of Dormibacteraeota were also correlated with organic C concentra-
tions when analyses were restricted to a broad range of distinct surface soils (33).
Indeed, we found that the relative abundances of Dormibacteraeota in Australian
surface soils (which ranged from 0.0 to 7.0% of 16S rRNA gene sequences) were also
negatively correlated with soil organic carbon concentrations (Fig. S3). Together,
these results indicate that members of the Dormibacteraeota phylum are typically
most abundant in surface or subsurface soils where organic C concentrations are
relatively low.

Dormibacteraeota draft genomes recovered from metagenomic data. To gain
more insight into the potential traits and genomic attributes of soil Dormibacteraeota,
we conducted deeper shotgun metagenomic sequencing on several soils where
Dormibacteraeota were found to be particularly abundant (Fig. 4A), with the goal of
assembling draft genomes from members of this group. We assembled two Dormibac-
teraeota genomes, both from deep soils (Fig. 4). These genomes are considered
medium-quality drafts, according to published genome reporting standards for
metagenome-assembled genomes (MAGs) (34); bin 3 is estimated to be 72.6% com-
plete at 3.43 Mb, while bin JG-37 is 69.9% complete at 2.48 Mb (see further genome
details in Table S1). These genomes are similar in size to those previously assembled
from the phylum (range of 3.0 to 5.3 Mb, all �90% complete [29]; range of 1.6 to

FIG 4 (A) The 16S rRNA gene relative abundance of phylum Dormibacteraeota is variable across different soil
profiles but generally increases with depth. The samples used for the Dormibacteraeota genome assemblies are
noted with stars. The trend lines represent smoothed conditional means, generated using the loess modeling
method. (B) The two Dormibacteraeota genomes we assembled from soil profile metagenomic data cluster
phylogenetically with previously published Dormibacteraeota genomes. Our deep soil genomes also fall near the
known sister phyla Chloroflexi and Armatimonadetes, validating their identity as members of candidate phylum
Dormibacteraeota. This tree was created using the concatenated marker gene phylogeny generated from GTDBTk
(26) and was plotted using iTOL (70). Only closely related phyla are included in the tree. Genomes assembled in
this study are indicated in red, and all other AD3/Dormibacteraeota genomes originated from either reference 29
or 30. The family groupings for the Dormibacteraeota tree were first presented in reference 30.
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4.3 Mb, all �70% complete [30]). These genomes share only 45.1% average amino acid
identity (AAI) (35) and cluster phylogenetically with the Dormibacteraeota genomes
assembled from Antarctic soil metagenomes (29) and those from permafrost meta-
genomes (30) (Fig. 4B).

Analyses of the Dormibacteraeota genomes that we recovered indicate that mem-
bers of this phylum are aerobic heterotrophs adapted to nutrient-poor conditions. Both
Dormibacteraeota genomes encode high-affinity terminal oxidases, indicative of an
aerobic metabolism (cbb3 oxidase, bin JG-37; bd oxidase, bin 3). These genomes
contain no markers of an autotrophic metabolism, with no RuBisCO or hydrogenase
genes detected in either of the assembled genomes. Both genomes encode glycosyl
hydrolases (with bin 3 containing 14 of these genes in total), indicating an ability to use
polysaccharides for growth. Specifically, both genomes contain glycogen catalysis
(alpha-amylase, glucoamylases) and synthesis (glycogen synthase) genes. The ability to
synthesize, store, and break down glycogen has been shown to promote the survival
of bacteria during periods of starvation (36, 37). Additionally, both Dormibacteraeota
genomes contain the trehalose 6-phosphate synthase gene, a key gene in the pathway
for the synthesis of trehalose, a C storage compound that also confers resistance to
osmotic stress and heat shock (37) and can protect cells from oxidative damage,
freezing, thermal injury, or desiccation (38). These attributes likely confer an advantage
in resource-limited soils, as the ability to store C for later use may be advantageous in
environments where organic C is infrequently available or of low quality.

Based on several lines of evidence, soil-dwelling Dormibacteraeota appear to be
oligotrophic taxa with low maximum growth rates. First, as mentioned above, these
taxa have the highest relative abundances in soils with low organic C concentrations,
where we would expect oligotrophic lifestyles to be advantageous. Second, both
Dormibacteraeota genomes appear to contain a single rRNA operon, a feature often
linked to low maximum potential growth rates (39). Third, although we cannot directly
measure the maximum growth rate of uncultivated bacterial cells, we can estimate
maximum growth rate from genomes by measuring codon usage bias with the ΔENC=
metric (40). ΔENC= is a measure of codon bias in highly expressed genes and has been
shown to correlate strongly with growth rate for both bacteria and archaea (41). We
calculated ΔENC= for our Dormibacteraeota genomes, the Antarctic Dormibacteraeota
genomes (29), the thawing permafrost Dormibacteraeota genomes (30), and a set of
bacterial and archaeal genomes which matched the 16S rRNA gene amplicon se-
quences recovered from our soil profile samples at �99% sequence similarity. The
ΔENC= values for all the Dormibacteraeota genomes clustered together toward the
lower end of the spectrum for our set of soil bacteria and archaea, indicating that
members of the phylum Dormibacteraeota are likely to exhibit low potential growth
rates (Fig. S4).

To our knowledge, all previous Dormibacteraeota genomes were recovered from
either Antarctic desert (29) or permafrost soils (30), while our genomes hail from
subsurface soils collected from temperate regions. Despite these disparate origins,
some central characteristics of the phylum Dormibacteraeota appear to be consistent.
Similar to the Antarctic and permafrost Dormibacteraeota genomes, our Dormibacte-
raeota genomes also contained carbon monoxide (CO) dehydrogenase genes. There
are two forms of CO dehydrogenases, which differ in their ability to oxidize CO and the
rate at which they do so (42). While the active site of form I is specific to CO
dehydrogenases, form II active sites also occur in many molybdenum hydroxylases that
do not accept CO as a substrate (42). Using sequence data from our assembled
Dormibacteraeota genomes, the Antarctic and permafrost Dormibacteraeota genomes,
and selected CO dehydrogenase large-subunit sequences (CoxL), we generated a
phylogenetic tree based on the amino acid sequence of CoxL (Fig. S5). With these
analyses, we found that both of the Dormibacteraeota genomes recovered here possess
form II CO dehydrogenase genes, as do many of the Antarctic and permafrost
Dormibacteraeota genomes. Although it has been shown that form II CO dehydroge-
nases can permit growth with CO as a sole C and energy source in some cases (43),
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further work is needed to determine whether the form II CO dehydrogenase genes
allow Dormibacteraeota to actively oxidize CO or if these genes code for molybdenum-
containing hydroxylases responsible for other metabolic processes (44). Interestingly,
one Antarctic and many permafrost Dormibacteraeota genomes also encode form I
CoxL, indicating that some members of this phylum are capable of CO oxidation
(Fig. S5). CO oxidation with form I CO dehydrogenases has been shown to improve the
survival of bacterial cells under nutrient-limited conditions (45).

Analyses of our assembled Dormibacteraeota genomes also reveal that these soil
bacteria may be capable of spore formation. All together, our Dormibacteraeota ge-
nomes contain 34 spore-related genes scattered across a variety of spore generation
phases (Table S2). We also found spore-forming genes among the Antarctic and
permafrost Dormibacteraeota genomes, most notably those encoding SpoIIE, SpoIIM,
SpoIIIE, and SpoVS. Nutrient-limiting conditions are known to trigger spore formation
(46), and sporulation can allow bacterial cells to persist until environmental conditions
become more favorable. Additionally, members of the Chloroflexi, a sister phylum to
Dormibacteraeota, are capable of spore formation (47). Because there are no Dormibac-
teraeota isolates available to test for sporulation, we adapted a method previously used
in stool samples (48) to identify potential spore-forming taxa by using a culture-
independent approach. We incubated three soil samples from our study in 70% ethanol
to kill vegetative cells and then used propidium monoazide (PMA) to block the
amplification of DNA from these dead cells (49). We then sequenced these soils using
our standard 16S rRNA gene amplicon method both with and without the ethanol and
PMA treatment. We found that the abundances of the two dominant Dormibacteraeota
phylotypes were significantly higher in the spore-selected treatment than the un-
treated controls (Table S3). Other known sporeformers were enriched in the spore
selection treatment as well, including taxa from the orders Actinomycetales, Bacillales
(48), Myxococcales (50), and Thermogemmatisporales (51). While the enrichment of
Dormibacteraeota in ethanol-treated samples shows that these cells are hardy, it is not
conclusive proof of spore formation and further testing is needed to verify our findings
(there are other methods of ethanol resistance in bacteria, such as biofilm formation
[52] and residence inside other cells [53]).

Conclusions. Our results indicate that as soil depth increases, not only do bacterial
and archaeal communities become less diverse and change in composition, but novel,
understudied taxa become proportionally more abundant in deeper soil horizons. We
identified five poorly studied bacterial and archaeal phyla that become more abundant
in deeper soils across a broad range of locations and investigated one of these further
(the candidate phylum Dormibacteraeota, formerly AD3) to determine what character-
istics may allow Dormibacteraeota to survive in resource-limited soil environments. We
found that members of Dormibacteraeota are likely slow-growing aerobic heterotrophs
capable of persisting under low-resource conditions by putatively storing and process-
ing glycogen and trehalose. Members of this candidate phylum also contain type I and
II carbon monoxide dehydrogenases, which can potentially enable the use of trace
amounts of CO as a supplemental energy source. We also found that soil-dwelling
Dormibacteraeota are likely capable of sporulation, another trait that may allow cells to
persist during periods of limited resource availability. More generally, analyses of these
novel members of understudied phyla suggest life history strategies and traits that may
be employed by oligotrophic microbes to thrive under resource-limited soil conditions.

MATERIALS AND METHODS
Sample collection and processing. Samples were collected from the network of 10 Critical Zone

Observatories (CZOs; http://criticalzone.org) across the United States: Southern Sierra (CA), Boulder Creek
(CO), Reynolds Creek (ID), Shale Hills (PA), Calhoun (SC), Luquillo (PR), Intensively Managed Landscapes
(IL/IA/MN), Catalina/Jemez (AZ/NM), Eel River (CA), and Christina River (DE/PA). Volunteers from each CZO
excavated two separate soil profiles (“sites”) selected to represent distinct soil types and landscape
positions. Soils were collected at peak greenness (as estimated from NASA’s MODIS [moderate-resolution
imaging spectroradiometer]) between April 2016 and November 2016, with the exception of the Eel River
CZO samples, which were collected in May 2017. Volunteers were asked to sample in 10-cm increments
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to a depth of at least 100 cm or to refusal. Site details are available in Data Set S1 in the supplemental
material.

All soil samples were sent to the University of California, Riverside, for processing. A portion of each
field sample was sieved (�2 mm, ASTM no. 10), homogenized, and divided into subsamples for further
analyses, with subsamples stored at either 4°C, �20°C, or �80°C. For some soils (particularly some wet,
finely textured depth intervals), sieving was not practical. These samples were homogenized by mixing,
with larger root and rock fragments removed by hand. In addition, as samples from Shale Hills site 2 (70-
to 100-cm depth) consisted almost entirely of medium-sized rocks, soil was collected by manually
crushing rocks with a ceramic mortar and pestle; this material was then passed through a 2-mm sieve.

DNA was extracted from subsamples frozen at �20°C using the DNeasy PowerLyzer PowerSoil kit
(Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions, with minor modifications
to increase yield and final DNA concentration based on the assumption that some sites and depths
would have a relatively low microbial biomass. Specifically, 0.25 g of soil was weighed in triplicate (i.e.,
three 0.25-g aliquots � 0.75 g total soil per sample) from one frozen aliquot of sieved soil. Extractions
on each 0.25-g replicate aliquot proceeded in parallel, until the stage when DNA was eluted onto the spin
filter; replicates were pooled at this point onto a single filter, and extractions proceeded from this point
as a single sample. In addition, the final step of elution of the DNA from the filter was conducted with
50 �l of elution buffer instead of 100 �l; the initial flowthrough was reapplied to the filter once to
increase yield.

Soil characteristics. Frozen subsamples (stored at �20°C) were shipped to the University of Illinois
at Urbana-Champaign for characterization of soil physicochemical properties. Soil C and N concentra-
tions were measured on freeze-dried, sieved, and ground subsamples using a Vario Micro Cube
elemental analyzer (Elementar, Hanau, Germany). Approximately 1 g of each subsample was also
extracted in 30 ml of 0.5 N HCl for determination of Fe(III) and Fe(II) concentrations by using a modified
ferrozine assay (54). Soil texture was measured for oven-dried and sieved soil in accordance with the
method of Gee and Bauder (55).

Soil pH and gravimetric water content were measured using modified Long Term Ecological Research
(LTER) protocols, as described by Robertson et al. (56). Soil pH was determined using 15 g of field-wet
soil and 15 ml of Milli-Q water (Millipore Sigma, Burlington, MA) and was measured on a Hannah
Instruments (Woonsocket, RI) HI 3220 pH meter with an HI 1053B pH electrode, designed for use with
semisolids. For determining gravimetric water content, we oven-dried 7 g of soil at 105°C for a minimum
of 24 h.

Amplicon-based 16S rRNA gene analyses. To characterize the bacterial and archaeal communities
in each sample, we used the barcoded primer pair 515f/806r for sequencing the V4-V5 region of the 16S
rRNA gene. We amplified this gene region three times per sample, combined these products, and
normalized the concentration of each sample to 25 ng using SequalPrep normalization plate kits (Thermo
Fisher Scientific, Waltham, MA). All samples were then pooled and sequenced on the Illumina MiSeq
(2 � 150 paired-end chemistry) at the University of Colorado next-generation sequencing facility. The
sample pool included several kit controls and no template controls to check for possible contamination.

Sequences were processed using a combination of QIIME (57) and USEARCH (58) commands to
demultiplex, quality-filter, remove singletons, and merge paired-end reads. Sequences were classified
into exact sequence variants (ESVs) using UNOISE2 (59) with default settings, and taxonomy was assigned
against the Greengenes 13_8 database (60) using the RDP classifier (61). ESVs with greater than 1%
average abundance across all sequenced controls were classified as contaminants and removed from
further analyses, along with ESVs identified as mitochondria and chloroplasts. The entire data set was
then rarefied to 3,400 sequences per sample. All statistical analyses were done in R version 3.5.1 (62), and
all figures were created with ggplot2 (63) unless otherwise noted. We used the R package Vegan (64) to
calculate Bray-Curtis dissimilarity (vegdist, method�“bray”) on Hellinger transformed ESV tables (de-
costand, method�“hellinger”) and to calculate Shannon diversity (diversity, index�“shannon”). We
calculated Spearman and Pearson correlations (cor.test) and corrected P values using base R functions
(p.adjust, method�“fdr”).

We checked if our amplicon sequences had “representative genomes” in public databases by
matching the 16S rRNA gene amplicon sequences generated in this study to 16S rRNA genes from
finished bacterial and archaeal genomes in the NCBI database using the USEARCH10 command “use-
arch_global.” We considered 16S rRNA gene amplicons to have a “representative genome” if they
matched a genome sequence with �97% identity.

Shotgun metagenomic analyses. One soil profile from each CZO was selected for shotgun
sequencing; we chose the profile that exhibited the most dissimilarity in microbial community compo-
sition through depth to sequence. The Eel River CZO samples were not collected in time to be included
in these analyses. Using the same DNA as used for the amplicon sequencing, we generated metagenomic
libraries with the TruSeq DNA LT library preparation kit (Illumina, San Diego, CA). All samples were pooled
and sequenced on an Illumina NextSeq run using 2 � 150-bp paired-end chemistry at the University of
Colorado next-generation sequencing facility. Prior to downstream analysis, we merged and quality
filtered the paired-end metagenomic reads with USEARCH. After quality filtering, we had an average of
8.8 million quality-filtered reads per sample (range, 1.9 to 15.4 million reads; we included only samples
with at last 1 million reads). These sequences were uploaded to MG-RAST (65) for public access. We used
Metaxa2 (66) with default settings to extract small-subunit (SSU) rRNA gene sequences (bacterial,
archaeal, and eukaryotic) in each sample and assigned taxonomy as described above using the
Greengenes 13_8 database (60) and the RDP classifier (61).
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Assembly, annotation, and characterization of Dormibacteraeota genomes. We assembled two
genomes belonging to the candidate phylum Dormibacteraeota (29) from individual metagenomes
obtained from Calhoun site 1 (60 to 70 cm) and Shale Hills site 1 (90 to 100 cm). These two soil samples
were selected for deeper sequencing based on the high abundance of the phylum Dormibacteraeota
(�60% of amplicon 16S rRNA gene reads at Calhoun, �23% at Shale Hills). This sequencing effort yielded
57.7 million paired-end reads for Calhoun site 1 (60 to 70 cm) and 65.6 million paired-end reads for Shale
Hills site 1 (90 to 100 cm).

Genomes were assembled using unmerged, paired-end reads that had been filtered using Sickle
version 1.33 (-q 20 -l 50). We used Megahit version 1.1.4-2 (67) with the “bulk” preset to build the
assembly and MaxBin 2.2.1 (68) for binning. We used a script to cycle through several MaxBin conditions
(-min_contig_length 1100 –1500, -prob_threshold 0.95– 0.99) and used checkM version 1.0.7 (69) to pick
the most complete bins. Selected bins were then manually curated by removing contigs that fell below
the 2.5 percentile or above the 97.5 percentile in either scaffold abundance, tetranucleotide frequency,
or GC content. After selecting the highest-quality bins from each sample, we ran Metaxa2 on the bins
themselves to detect SSU or large-subunit (LSU) rRNA genes that could be used to determine taxonomic
affiliations. Bin 3 contained one 16S rRNA sequence, which matched with 97.2% sequence identity a
Dormibacteraeota sequence within the Greengenes database (sequence ID 151897). The bin 3 16S rRNA
also matched the amplicon sequence for ESV1 at 98% identity. This ESV was the most abundant
Dormibacteraeota sequence in our amplicon data set; its maximum relative abundance was 57% at
Calhoun site 1 (50 cm), and it reached �1% relative abundance in 43% of our sites. Bin JG-37 contained
only small fragments of the 5S and 23S rRNA genes, which were insufficient for taxonomic classification.

To verify that these two bins were affiliated with the Dormibacteraeota candidate phylum, we used
the concatenated marker gene phylogeny generated from GTDBTk (26) to compare the placement of our
genomes to previously published Dormibacteraeota genomes (29, 30). While GTDBTk could taxonomi-
cally classify our genomes only to the bacterial domain (a problem replicated in 45/53 currently available
Dormibacteraeota genomes), both genomes clearly fall within the Dormibacteraeota phylum in the tree
generated from concatenated marker genes (Fig. 4B). This tree was plotted in iTOL (70). Both Dormibac-
teraeota genomes were submitted to IMG for annotation under the taxon IDs 2824080494 (bin JG-37)
and 2767802471 (bin 3). Based on CheckM (69) estimates, both genomes are substantially complete, with
medium to high contamination (bin JG-37, 69.9% complete, 7.7% contamination; bin 3, 72.6% complete,
10.7% contamination). See Table S1 for additional genome details.

Phylogenetic tree of CoxL genes. The evolutionary history of the Dormibacteraeota CoxL genes was
inferred by using the maximum likelihood method based on the JTT matrix-based model (71). The tree
with the highest log likelihood (�24,038) is shown (Fig. 4). The percentage of trees in which the
associated taxa clustered together is shown below the branches. An initial tree(s) for the heuristic search
was obtained automatically by applying neighbor-joining and BioNJ algorithms to a matrix of pairwise
distances estimated using a JTT model and then selecting the topology with the superior log likelihood
value. A discrete gamma distribution was used to model evolutionary rate differences among sites (5
categories [�G, parameter � 1.10]). The rate variation model allowed for some sites to be evolutionarily
invariable ([�I], 6.75% sites). The resulting tree was drawn to scale, with branch lengths measured in the
number of substitutions per site. The analysis involved 71 amino acid sequences. All positions containing
gaps and missing data were eliminated. There were a total of 658 residues in the final data set.
Evolutionary analyses were conducted in MEGA7 (72), and the tree was plotted in iTOL (70).

Calculation of maximum growth rate proxy �ENC. Because there are no cultivated members of
the phylum Dormibacteraeota, we calculated ΔENC= to estimate potential growth rate, as described
previously (40, 41). We also calculated ΔENC= on complete genomes in NCBI that matched amplicon
sequences in our data set with �99% sequence similarity using the USEARCH10 command “usearch-
_global.” We used this set of genomes to represent the bacteria found in the same soil profiles studied
here to establish a range for potential microbial growth rates in soil. We ran ENCprime (40) with default
options on both concatenated ribosomal protein sequences and concatenated genome sequences, and
calculated ΔENC= (73) as described by Vieira-Silva and Rocha (41).

Spore selection treatment. We adapted a method previously used for human stool samples (48) to
select for spores in a culture-independent manner in three soil samples from our study (Calhoun site 1,
soils of 50- to 60-cm and 60- to 70-cm depths, and Calhoun site 2, soil of 50- to 60-cm depth). To select
for spores, we incubated 0.04 g of each sieved soil (as described above) in 70% ethanol for 4 h under
aerobic conditions and constant agitation, with the goal of killing vegetative cells. After the incubations,
we washed both sets of samples with phosphate-buffered saline (PBS) three times and then applied
propidium monoazide (PMA) to the ethanol-treated samples, as described previously (49). We used PMA
to block the amplification of DNA from cells with compromised membranes, ensuring that only those
cells capable of surviving the harsh ethanol treatment would be amplified in subsequent PCRs. We PCR
amplified, sequenced, and processed these samples as previously described. We restricted our analysis
to the top 1,000 most abundant phylotypes to remove rare taxa and used the Wilcoxon test to identify
enriched taxa, scoring taxa as “possible sporeformers” if they had false discovery rate (FDR)-corrected P
values of �0.05. These taxa are presented in Table S3.

Data availability. Both Dormibacteraeota genomes and the metagenomes they were assembled
from are publicly available in the IMG database under taxon IDs 2767802471 (bin 3), 2824080494 (bin
JG-37), 3300022691 (Calhoun 60-cm metagenome), and 3300021046 (Shale Hills 90-cm metagenome).
The merged, quality-filtered, and unassembled shotgun sequences are available under MG-RAST project
ID mgp80869. The raw, unmerged 16S amplicon sequences are available on figshare at https://doi.org/
10.6084/m9.figshare.4702711.
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