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ABSTRACT
With the rapid advance ofmobile internet, communication technology and the Internet
of Things (IoT), the tourism industry is undergoing unprecedented transformation.
Smart tourism offers users personalized and customized services for travel planning
and recommendations. Location-based social networks (LBSNs) play a crucial role
in smart tourism industry by providing abundant data sources through their social
networking attributes. However, applying LBSNs to smart tourism is a challenge due
to the need to deal with complex multi-source information modeling and tourism data
sparsity. In this article, to fully harness the potential of LBSNs using deep learning
technologies, we propose an knowledge-driven personalized recommendation method
for smart tourism. Representation learning techniques can effectively modeling the
contextual information (e.g., time, space, and semantics) in LBSNs, while the data
augmentation strategy of contrastive learning techniques can explore user personalized
travel behaviors and alleviate data sparsity. To demonstrate the effectiveness of the
proposed approach, we conducted a case study on trip recommendation. Furthermore,
the patterns of human mobility are revealed by exploring the effect of contextual data
and tourist potential preferences.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Social Computing
Keywords Smart tourism, Personalized recommendation system, Location-based social networks,
Artificial intelligence

INTRODUCTION
Benefitting from the rapid development of information and communication technologies,
the emergence of smart cities has transformed various aspects of people’s lives. By
integrating intelligent technologies into urban infrastructure, smart cities achieve
intelligent, efficient, and sustainable development goals. Smart tourism is a significant
practical application within the context of smart cities, and its components are shown in
Fig. 1. It aims to enhance the overall travel experience by offering intelligent services
that optimize users’ travel arrangements (Johnson, 2023; Wang et al., 2020b). As a
key component of the smart tourism, personalized recommendation systems utilize
technologies such as machine learning and data mining to conduct in-depth analysis of
travelers’ personal interests, travel preferences, and past behaviors. This enables service
providers to offer personalized travel planning recommendations and customized services.
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Figure 1 Components of smart tourism. Image credit: Flaticon.
Full-size DOI: 10.7717/peerjcs.2375/fig-1

The system not only enhances traveler satisfaction and experience quality but also helps
the tourism industry improve competitiveness and expand market share.

To better meet the personalized needs of travelers, personalized tourism
recommendation systems are exploring the integration with location-based social networks
(LBSNs). Unlike traditional social networks, LBSNs not only facilitate connections between
users but also capture and exchange users’ spatial trajectories and activity information
(Zhou et al., 2023). The LBSNs enable users to share real-time check-in records with
geolocation information in various locations. Such locations that meet users’ needs in
the real physical world are referred to as points of interest (POI), such as restaurants
and entertainment venues. For recommendation systems, the social networking features
of LBSNs facilitate users to share travel experiences, recommend attractions, exchange
opinions, and provide feedback. These user-generated content and social interactions serve
as valuable data sources (Canturk et al., 2023). Additionally, LBSNs can provide temporal
and spatial contextual information for recommendation systems. By gaining insights into
the user’s current geographical location and the surrounding environment, personalized
recommendation systems can effectively cater to the real-time needs of travelers.

However, applying LBSNs for smart tourism is still challenging. On one hand, users
utilizing LBSNs exhibit diverse interests, preferences, and behavioral patterns, which can
evolve over time. Effectively modeling user mobility patterns and dynamic preferences
is a challenge. Human mobilization, although it is a kind of human behaviour, implies
the attributes of the specific spaces where mobility happens (Wang et al., 2020a). For
example, population exposures in urban greenery were highly correlated with land use
distribution and the dynamics of human mobility. On a worldwide scale, the tourism
hotspots in the US and EU cities are identified based on geotagged photographs, which
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in turn discovers the power-law distribution of the attractiveness of tourist attractions
(Paldino et al., 2015). On the other hand, personalized recommendation systems encounter
data sparsity issues, particularly when integrating multiple data sources. The inherent
characteristics and limitations of individual data sources can result in the inclusion of
only specific users or travel resources, thereby presenting challenges for recommendation
systems in acquiring comprehensive information. Although a number of efforts have been
conducted, the discussion about novel solutions to existing challenges of combining smart
recommendation systems with LBSNs is missing in other articles.

In this article, we summarize existing efforts and present our view on future directions
of smart tourism. We attempt to provide a state-of-the-art article that focuses on existing
issues from the perspective of integrating LBSNs, including the dynamics of user preferences
and data sparsity. The main contributions of this article are outlined as follows:
1. We perform a case study that combines representation learning techniques and

contrastive learning techniques to comprehensively explore the user personalized
travel patterns in trip recommendation. The aim is to address the challenges by
knowledge-driven personalized recommendation method in integrating smart travel
recommendation systems with LBSNs and improve user personalized travel experience.

2. We propose a Spatio-Temporal Contrastive Learning method for POI sequence
recommendation that based on contrastive learning and attention mechanisms.
Furthermore, we devise four data augmentation techniques aimed at emulating human
mobility patterns and mitigating data sparsity.

3. In two real datasets, the effectiveness and impact of different factors in user behavior
on recommendation effectiveness is discussed. We further point out the promising
prospects for future research on personalized smart tourism.
The remainder of this article is organized as follows. In Section ‘Related Work’,

we systematically review the relevant works on personalized smart tourism and POI
recommendation. Our work is focused on Sections ‘Methods and Experiments’, where
we present a case study of smart tourism and offer an extensive discussion on the design
principles underlying each component and experimental results of our method on two real
datasets. Furthermore, Section ‘Opportunities for Personalized Smart Tourism’ describe
future research directions for smart tourism. Finally, we conclude our work in Section
‘Conclusion’.

RELATED WORK
In this section, we systematically review the relevant works on personalized smart tourism
and POI recommendation.

Personalized smart tourism
With the rapid advancements in mobile internet and intelligent technologies, including
artificial intelligence, big data analysis, machine learning, and recommendation algorithms,
travel behaviors have undergone significant transformations. There is an increasing
trend among users to utilize smart phones and mobile applications for accessing travel
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information, planning itineraries, and booking services. This intelligent travel approach
serves as the technological foundation for personalized tourism.

Traditional travel planning processes typically require travelers to invest a substantial
amount of time and effort in searching for information, organizing itineraries, and dealing
with challenges related to information overload and decision-making (Wang &Wang,
2023; Xia et al., 2018). However, traditional travel recommendation systems often rely on
generic strategies or static travel guides, lacking the ability to offer personalized travel
recommendations tailored to users’ interests, preferences, and time constraints.

Personalized smart tourism encompasses the use of advanced technologies and intelligent
algorithms (e.g., next POI recommendation, trip recommendation) to aid users in efficiently
filtering and presenting the most pertinent and valuable information, thereby alleviating
the cognitive burden associated with information retrieval and filtering (Kong et al., 2019)
and provide valuable market insights and user insights to tourism enterprises (Chen et al.,
2020).

POI recommendation
In contrast to conventional POI recommendation tasks, the POI sequence recommendation
problem entails crafting a sequence of POIs adhering to particular spatiotemporal
restrictions. Algorithms for POI sequence recommendation fall into two main categories:
statistical-based and deep learning-based methods. Statistical-based approaches often
draw inspiration from the orienteering problem (OP) and leverage heuristic techniques to
optimize the accumulated scores within predefined constraints. These methods integrate
specific query constraints and historical data, such as POI popularity and user preferences,
to generate trajectory sequences. For example, Taylor, Lim & Chan (2018) use Integer
Linear Programming (ILP) to recommend a sequence of places, considering factors like
starting and ending points, time intervals, duration at each point, and popularity. Wei,
Zheng & Peng (2012) introduce a collective knowledge-based framework for inferring
routes, which extracts spatiotemporal characteristics from uncertain trajectories within
predefined location and time constraints. They build a routable graph through a mutually
reinforcing approach and employ a routing algorithm to produce top-k popular routes.
Zheng & Xie (2011) initially capture the historical geographic locations of multiple users
using a Tree-based Hierarchical Graph (TBHG) modeling technique. Yet, these methods
either depend on local transition distributions, overlook long-term dependencies among
POIs, or focus solely on time constraints. Consequently, relying solely on statistical
approaches fails to deliver personalized recommendations or grasp the authentic check-in
patterns of users.

Recently, numerous studies have turned to deep learning techniques to handle the
intricate relationships and features present in data, tackling tasks related to POI sequences
by leveraging sequence or location embeddings. Notably, recurrent neural networks
(RNNs), long short-term memory (LSTM), and gated recurrent units (GRU) have been
utilized to capture semantic connections between user mobility and POI sequences.
Zhou, Mascolo & Zhao (2019) introduce a holistic deep learning framework that seamlessly
merges community and user preferences. They develop a topicmemory-enhanced network,
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employing neural attention mechanisms and nonlinear methodologies, to amplify both
the interpretability and recommendation efficacy of POIs. Feng et al. (2018) introduce
the DeepMove model, utilizing RNN as its backbone, to account for various factors
impacting user mobility via a multimodal embedding approach. By employing historical
attentionmechanisms, they capture diverse periodicities and transition patterns within user
flows, facilitating accurate predictions of user mobility (Feng et al., 2018). These sequence
modeling approaches using RNNs typically capture linear transition patterns between
check-in POIs but overlook the sparsity and high dimensionality of user sequences. Zhou
et al. (2018) present a user trajectory autoencoder model grounded in semi-supervised
learning. Their model relies on robust assumptions regarding the distribution of user
sequences and effectively encodes semantic information within and across check-in
sequences to capture human mobility patterns. Gao et al. (2021) introduce DeepTrip, an
adversarial neural network model employing a generator and discriminator to produce
query and travel representations, enhancing the recommendation of optimal routes. The
model delves deeply into contextual POI information and employs an encoder–decoder
structure to capture user mobility. Kong et al. (2024) extracted temporal dependence
through time series decomposition and autocorrelation mechanisms, and extracted spatial
dependence through learnable adaptive graph convolution operations. However, these
deep learning techniques neglect user diversity, excessively depend on historical data, and
struggle to accurately model the intricate and uncertain nature of user check-in behavior.
In order to emphasise more clearly the place and importance of this study in the literature,
we have added a literature table containing various important columns such as model
name, dataset, evaluation, etc., as shown in Table 1.

In this study, we will employ self-supervised contrastive learning and incorporate user
travel patterns to simulate users’ real travel behavior, thereby enhancing the POI sequence
recommendation problem.

METHODS
To better illustrate the significance of LBSNS and AI-empowered recommendation system
for smart tourism, we show a case study on trip recommendation. Trip recommendation
is a significant part of smart tourism, which aims to offer tourist a sequential arrangement
of POIs considering specific spatio-temporal constraints.

This section introduces the core components of the ourmethod,which involve leveraging
representation learning to investigate the contextual information associated in LBSNs and
utilizing contrastive learning to mitigate travel data sparsity. The overall framework of the
method is illustrated in the Fig. 2.

Exploring POIs in LBSNs
POI context information modeling
Location-based recommendation methods not only need to consider user preferences but
also take into account the contextual information related to POIs in LBSNs, including
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Table 1 List of related literature. For each article, we describe the name of the corresponding proposed model, the modules used in the proposed
solution, the metrics used for performance evaluation, and the disadvantage of the model. The papers are sorted by year of publication in decreasing
order.

Model Dataset Modules Evaluation Disadvantage

MPGNNFormer (Kong et al.,
2024)

The real-world bus
dataset

GCN, Attention MAE, RMSE, MAPE Although adaptive graph convolution is
proposed to reduce the computational
complexity, Transformer models and
graph neural networks usually still have
high computational cost when dealing
with large-scale graph data.

DeepTrip (Gao et al., 2021) Flickr, Foursquare RNN, GAN F1 score, pairs-F1
score

There are data sparsity and overfitting
problems.

NASR+ (Wang, Wu & Zhao,
2021)

The Beijing taxi
dataset, The Porto
taxi dataset, The
Beijing bicycle dataset

RNN, GNN,
MLP

F1 score, Precision,
Recall, Edit Distance

There are data sparsity and high compu-
tational complexity problem.

TEMN (Zhou, Mascolo & Zhao,
2019)

WeChat Memory Net-
work

HR@k, NDCG@k This is a complex hybrid model model
training and tuning is more difficult and
the generalization ability has not been
verified.

DeepMove (Feng et al., 2018) Foursquare RNN Top-1 accuracy This method focuses mainly on predict-
ing the next position without consider-
ing real-time prediction and adaptation
in dynamic environments.

TULVAE (Zhou et al., 2018) Foursquare RNN, VAE ACC@K, macro-P,
macro-R, macro-F1

The TULVAE model, which combines
hierarchical trajectory modeling and la-
tent representation, may not be effec-
tive enough on small datasets, especially
when the number of users is small.

LP+M (Taylor, Lim & Chan,
2018)

Flickr ILP Inclusion of Must-
see POIs, Tour Profit,
POIs Visited, Utilized
Budget

ILP models can be computationally chal-
lenging when dealing with large-scale
datasets and are not flexible enough to
handle user-specific preferences and con-
straints.

RICK (Wei, Zheng & Peng, 2012) Foursquare,The Bei-
jing taxi dataset

A* algorithm Route score, NDTW,
MD

When data points are sparse, the accu-
racy of route inference may be affected.

spatial information, time information, semantic information, and sequence information,
as shown in Fig. 3. The modeling process is as follows:
1. Spatial information. Our goal is to investigate users’ underlying geographic

preferences, particularly their inclination towards selecting nearby check-in locations
when choosing their next destination. To achieve this, We set a geographic threshold
of 2 km and established the spatial connections among POIs within this threshold. We
construct a POI-geographical graph Gvv = (V∪V,Evv), where V denotes a set of POI,
Evv is the set of edges between POIs.

2. Time information.Users may have a preference for visiting certain POI during specific
time periods, such as visiting museums in the morning and going shopping in the
afternoon. In order to model the periodic patterns in time, we define a POI-time
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Figure 2 Framework of LBSNs and AI-empowered travel system for trip recommendation.
Full-size DOI: 10.7717/peerjcs.2375/fig-2

graph Gvt = (V∪T ,Evt ), where T denotes the set of time-stamp, Evt is the set of edges
between POI and timestamp.

3. Semantic information.Our aim is to explore the relationships between POI, specifically
by modeling an POI-category graph Gvc = (V∪C,Evc), where C denotes the set of
category, Evc is the set of edges between POI and category.

4. Sequence information. Human mobility patterns exhibit strong sequential patterns,
where the transition from one checked-in POI to another follows a non-uniform
distribution. In order to leverage sequential effect, we employ text analysis methods to
construct relationships between POI. Specifically, each POI is treated as a word, each
sequence of checked-in POI is treated as a sentence, and all sequences of checked-in
POI are treated as a corpus to be represented.
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Figure 3 The exploration of POI context informaiton in LBSNs.
Full-size DOI: 10.7717/peerjcs.2375/fig-3

POI context information embedding
Currently, most graph representation methods primarily focus on node similarity and
overlook the similarity among node neighbors. To address these issues, large-scale
information network embedding (LINE) technique introduces first-order and second-
order proximities to constrain the learning of nodes in a homogeneous graph, thereby
preserving both local and global network structures (Tang et al., 2015). In this article,
we uilitize LINE to embed aboved three graph structure. For a given undirected graph
G= (VA∪VB,E), where Va and Vb are two different sets of node types and e represents the
edges between heterogeneous nodes. We define the conditional probability of a node vj in
the node set VB being generated by a node vi in the node set VA as:

p
(
vj |vi

)
=

exp
(
EvTj · Evi

)
∑

vk∈vB exp
(
EvTk · Evi

) (1)

where Evi the representation vector of node vi and Evj is the representation vector of node vj .
By preserving the weight wij of the edge eij , the approximate empirical distribution of the
dimension-reduced p(vj |vi) is defined:

p̂
(
vj |vi

)
=

wij

di
(2)

where di is the degree of node vi, with di =
∑

jwij . The above two formulas define the
conditional distribution p(·|vi) and p̂(·|vi) of nodes in VB, and the next step is to define
and minimize the objective function:

O=
∑
vi∈vA

λiKL
(
p,(·|vi), p̂(·|vi)

)
(3)
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where λi is the importance of vi nodes in the graph. This optimization objective is
expensive because it requires traversing the entire set of nodes of the graph. Here, a
Negative Sampling strategy is used to sample multiple negative example edges from the
noisy space parameterized by the weight coefficients, and the final objective function is as
follows:

O= logσ
(
EvTj · Evi

)
+

K∑
n=1

Evn∼Pn(v)
[
logσ

(
−EvTn · Evi

)]
(4)

where K is the number of negative sampling edges, σ (x)= 1
1+e−x is the sigmoid activation

function, Pn(v)∝ d3/4v , where dv is the out-degree of the node.
For sequence information, we use Skip-gram model of Word2vec to map POIs to

low-dimensional vector space while preserving the semantics similarity and sequential
relationship between POIs. Given an POI, the Skip-gram model provides a series of
context POIs ranging from vi−w to vi+w , thereby producing the embedding of sequence.
Accordingly, the objective function is defined as follows:

L=
1∣∣Snu∣∣

∑
vi∈Snu−w≤k≤w,k 6=0

∑
i+k

p(vi+k |vi)

p(vi+k |vi)=
exp

(
EvTi+k · Evi

)
∑

vj∈V exp
(
EvTj · Evi

) . (5)

After obtaining the geographical distance representation d , the timestamp representation
t , the category representation c , and the sequence representation v , the representation
vectors dv , tv and cv of the POIs are extracted from d , t , and c , respectively. These vectors
are then concatenatedwith the sequence representation v to form the context representation
vectors s= [v;dv;tv;cv]. Hence, the vector s incorporates a variety of complex contextual
information in LBSNs.

Alleviate data sparsity by contrastive learning
Existing supervised models for trip recommendation overly emphasize performance
and overlook the potential correlation between contextual data and POI sequence data,
resulting in inefficient data representation. To address the above issues, this study draws
inspiration from self-supervised learning to enhance POI sequence recommendation. The
ability of supervised learning to automatically learn from large amounts of labeled data
has led to its wide application in fields such as natural language processing and computer
vision. Models represented by SimCLR and MoCo have achieved remarkable results on the
ImageNet dataset. The SimCLR model generates positive samples by rotating the image,
cropping the image, adding Gaussian noise, and coloring (Chen et al., 2020). The MoCo
model encodes negative samples using a momentum encoder to increase the number of
negative samples, and also employs a sliding average strategy to ensure timeliness (He et al.,
2020). In our method, a contrastive learning module is designed to pretrain the model and
explore different data augmentation strategies to uncover the intrinsic correlations within
the data, thereby enriching the self-supervised signals for enhancing data representation
and alleviate data sparsity. The data augmentation strategies can be denoted as follows.
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1. Token shuffling. The purpose of token shuffling is to randomly shuffle the order of
token in an input sequence to increase the robustness and generalization performance
of the model. When mapping token shuffling strategy to real travel behavior, it can
be modeled as the scenario where even if the recommendation method suggests a
sequence of POI to the user, the user may change the entire trip due to immediate
preferences. For example, the method suggests a sequence of POIs<A,B,C,D,E,F >
to a user, but the user may temporarily change it to <A,C,E,B,D,F > due to various
factors. This is a result of the diversity of user preferences. To simulate this disruptive
behavior, we randomly shuffle the order of POI in the sequence, create a new trip
route, and add it to the training set. Define the sequence of POI [vi,...,vi+r+1] of S to
be [vmi ,...,v

m
i+r+1], and S

R
=R(S)= [v1,v2,...,vmi ,v

m
i+r−1,...,vn], where r =dωne is the

length of the sub-interest sequence, 0≤ω≤ 1.
2. Random deletion. By applying the random deletion strategy to trip recommendation,

we simulate the behavior of users temporarily not wanting to visit certain POI, thereby
creating a new itinerary view. For example, users may change their trip plans for
various reasons (e.g., personal reasons, weather conditions) and decide to skip or
cancel visiting the next POI and proceed to the following one. Define the sequence
SM =M (S)= [vm1 ,v

m
2 ,...,v

m
n ], where v

m
1 represents that if v1 is selected, it will be

erased; otherwise, vm1 = v1. Define l =dµne as the set of points to be erased, where l is
controlled by the hyperparameter µ, with 0≤µ≤ 1.

3. Random insertion. In the check-in dataset, the user’s POI check-in sequences are
often sparse, making it difficult to fully capture the user’s preferences and the relevance
of POIs when training with these sequences. To address this issue, the approach of
inserting POI can be used to construct expanded check-in sequences. Specifically, we
randomly select k different POI indices {idx1,idx2,...,idxk} from the POI sequence,
where k = dαne, idxi ∈ [1,2,...,n], α ∈ [0,1] is the substitution rate. The substituted
sequence is Ss= S(S)= [v1,v2,...,v̄idxi,v|S|], where v̄idxi is the substituted interest point.

4. Synonyms substitution. The purpose is to recommend similar and substitutable
POI to users in order to discover their additional real interests. Replacing elements
in the sequence with highly correlated POIs reduces the information loss of
the original sequence, thereby generating high-quality positive pairs. In trip
recommendation, recommending similar and substitutable items can help users
discover more of their actual interests. Meanwhile, users may have a preference for
visiting similar POI within a geographic threshold. Specifically, the ratio of inserted
interest points is controlled by β ∈ [0,1]. Randomly select k different POI indices
{idx1,idx2,...,idxk}, where k = dβne, idxi ∈ [1,2,...,n]. The sequence after insertion
is SI = I (S)= [v1,v2,...,v̄idxi,vidxi,...,vn], where v̄idxi is the POI related to vidxi . The
length of the expanded sequence SI is k+n.
During the contrastive learning phase, by implementing the objective of having positive

examples of POI close to the sequence and negative examples far from the sequence (Oord,
Li & Vinyals, 2018), the correlation between POI and sequences is used as an additional
signal to improve trip recommendation effectiveness.
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For a given set of interest point sequences S, for each interest point sequence Si, two
augmentation strategies are randomly selected from the four strategies mentioned above.
This results in an augmented sequence of 2N elements S1,S2,...,S2i−1,S2i,...,S2N−1,S2N ,
where i 1,2,...,N . The pairs (S2i−1,S2i) are treated as positive pairs, while the remaining
2(N-1) augmented views serve as negative pairs for each positive pair. After encoding
by the model’s decoder, each positive pair is represented as (h2i−1,h2i). In this paper, we
adopt Noise Contrastive Estimation (NCE) as the loss function. The final pre-training loss
function is as follows:

L= log
exp

(
sim

(
h̃2i−1,h̃2i

))
exp

(
sim

(
h̃2i−1,h̃2i

))
+
∑2N

k=1,k 6=2i−1exp
(
sim

(
h̃2i−1,h̃k

)) . (6)

The overall process of framwork
First, to convert the user’s query conditions into vector embeddings, the contextual
representations of the POI obtained from Section ‘Alleviate data sparsity by contrastive
learning’ are used to transform the start location ls and the destination location ld . In
addition, the timestamps are divided into 24 h, and the start time ts and end time td are
one-hot encoded. After obtaining the embedding representations, we uses concatenation
to obtain the query condition q:

q= LeakyRelu([s(ls)|t (ts)|s(ld)|t (td)]Wq+bq). (7)

Second, we use an attention mechanism to fuse the query vector q and the historical
sequence vector S, and the fused vector contains both historical information and query
information. Through the attention mechanism, the model automatically learns which
historical visited POIs are most relevant to the current query and then takes the weighted
average of the representations of these locations to obtain a new vector Z .

Third, We input the fused vector Z into a encoder–decoder architecture and train the
neural network using the parameters learned from pre-training, ultimately obtaining the
recommendation results (Vaswani et al., 2017). The final loss function is defined as follows:

L=‖Ŝrc−Target‖. (8)

In the above, Ŝrc represents the output of the decoder, and Target represents the real
POI sequence.

EXPERIMENTS
In this section, a series of experiments and validations is discussed.

Experiment settings
Datasets
The dataset used in this article is the Yahoo Flicker Creative Commons 100 Million Dataset
(The dataset is available at https://webscope.sandbox.yahoo.com/catalog.php?datatype= i&
did=67) (YFCC 100M), which is the world’s largest image database since 2014 from Yahoo
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Table 2 Description of two real world datasets.

Dataset #user #check-in #poi sequence

YFCC 100M@Osaka 450 7747 1115
YFCC 100M@Glasgow 601 11434 2227

Flicker (He, Qi & Ramamohanarao, 2019). It includes 90 million photos and 1 million
videos from around the world between 2004 and 2014. All geotagged image information
from two cities, Osaka and Glasgow was extracted from the YFCC 100M dataset in this
article. We selected the POI data contained in these two cities separately, which comes
from the open-source POI dataset. There are more than five types of POI, covering aspects
such as amusement, park, historical, religious, entertainment.The data for the two cities
are described in the Table 2.

To ensure the quality of the dataset, we first filters out check-in sequences with less
than three POIs, as such sequences are insufficient to reflect the user’s actual behavior. In
addition, the timestamps are standardized to a 24-hour format with an hourly granularity.
Furthermore, to ensure the accuracy of the geographical latitude and longitude, only the
high-precision Flicker image set is selected.

Evaluation metrics
To evaluate the model performance, we employ F1 and pairs-F1 as performance metrics,
which are widely used in related works. F1 can effectively measure the quality of the
recommended sequence of POI. Similarly, pairs-F1 can measure the accuracy and sequence
order of every pair of POI in the sequence, regardless of whether they are adjacent or not.

Baselines
We compare our proposed approach with the following five baseline methods:

• Markov (Chen, Ong & Xie, 2016). Constructing a POI transition matrix is a commonly
used and intuitive approach for trip recommendation.
• Markov-Rank (Chen, Ong & Xie, 2016). The Markov model combined with POI rank
information .
• POIRank (Chen, Ong & Xie, 2016). POIRank utilizes POI transition matrix and
rankSVM with linear kernel to learn rating ranking, and recommends POI sequences
based on Markov chains.
• DeepTrip (Gao et al., 2021). This study employs an encoder–decoder architecture
and generative adversarial network to capture user mobility patterns and model the
transitional distribution of POI.
• NASR (Wang, Wu & Zhao, 2021). This work improves the search algorithm of neural
networks by learning the cost function of the widely used A∗ algorithm.

Implementation details
We reproduce the benchmarks and implement our method in Tensorflow while methods
are accelerated by two NIVDIA RTX 3080Ti GPU. For our proposed method, we set the
number of encoder layer and decoder layer as 4. The number of attention heads is 8, and
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the dimensionality of POI and model is set as 256 and 128, respectively. In the pre-training
stage, the mask proportion of POI in random deletion strategy is set as 0.5. The model are
optimized by Adam optimizer with learning rate of 0.1 and the batch size is set as 8 and 16
in the pre-training and fine-tuing stage, respectively.

Performance comparison
The performance of our proposed model and the eight baselines on two datasets evaluated
by F1 and pairs-F1 is shown in Table 3. Our methods achieves the best results in both F1
score and pairs-F1 score, demonstrating the highest accuracy compared to other methods.
The Markov-based methods focus more on transitions between POIs but overlook other
contextual information, resulting in the poorest performance compared to other methods.
On the other hand, the rank-based methods, Markov-Rank and POIRank, capture user
mobility by considering both co-occurrence patterns and feature information of POIs,
outperforming the Markov-based method. However, due to their reliance on statistical
modeling or machine learning methods, these approaches fail to fully exploit users’
complex mobility patterns and their short and long-term preferences, leading to inferior
performance compared to deep learning models such as DeepTrip and NASR. Although
DeepTrip combines latent variables and utilizes adversarial generative neural network
structures to capture users’ visiting intentions and mobility patterns, its performance is
affected by data sparsity and ranks second. Our model exhibits the best performance.
This is attributed to its effective fusion of POI contextual features, the design of intuitive
augmentation strategies to simulate users’ real check-in behavior, and the provision of
self-supervised signals for adequately modeling users’ complex demands.

Next, we analyze the results of recommendation visualization using Osaka as the
validation city for trip recommendation, as shown in Fig. 4. Users provide the starting
and ending locations of POIs, along with the corresponding time information. The figure
displays the recommendation results of three baseline methods: Markov, Markov Ranking,
DeepTrip, as well as our proposed method. From the analysis of the figure, it can be
observed that the Markov-based methods can only form a short sequence of POIs. This
is because this method focus on capturing local features and transition relationships, only
using the last POI in the sequence to recommend the next one. The Markov algorithm will
result in redundant POIs, as shown in the figure. By introducing POI ranking information,
the Markov-Rank methods can effectively reduce the occurrence of redundant POIs but
perform poorly in terms of the global sequence distribution. DeepTrip can capture global
sequence patterns and outperforms the previous two methods, but it falls short in dealing
with the issue of data sparsity and insufficient modeling of sequence position information,
resulting in inferior recommendation performance compared to our method.

Data augmentation analysis
In this section, we evaluate the effect of various trip augmentation strategies for
recommendation performance.We consider five options for each transformation, including
aforementioned four strategies andNone, resulting in 5× 5 combinations. Especially, None
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Table 3 The recommendation performance comparison on the two datasets.

Method Osaka Glasgow

F1 Improve pairs-F1 Improve F1 Improve pairs-F1 Improve

Markov 0.634 25.1% 0.385 55.1% 0.687 20.2% 0.427 45.6%
Markov-Rank 0.689 18.6% 0.497 42.1% 0.695 15.6% 0.454 42.2%
POIRank 0.705 16.7% 0.535 37.6% 0.773 6.18% 0.547 30.4%
DeepTrip 0.798 5.78% 0.723 15.7% 0.810 1.69% 0.769 2.16%
NASR 0.815 3.77% 0.805 6.17% 0.806 2.18% 0.731 6.97%
OurModel 0.864 0.865 0.824 0.786

Figure 4 The visualization of recommendation results.
Full-size DOI: 10.7717/peerjcs.2375/fig-4

means we do nothing and diagonal implies that we employ the same augmentation strategy
for a sequences.

The testing results with different couples of augmentation strategy can be found in
Fig. 5. We can make the following observations. First, Random Insertion is the most
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Figure 5 The visualization of four augmentation stratgies.
Full-size DOI: 10.7717/peerjcs.2375/fig-5

effective strategies, significantly outperforming other augmentation strategies. By solely
utilizing the random insertion strategy, we obtained the optimal outcome. Additionally,
when integrating random insertion with synonyms subtitution, we achieved the second
highest performance. The reason for this phenomenon may be attributed to the fact that
in recommendation model, which recommend a series of consecutive POIs, the sequence
length is typically short. Therefore, both the random insert strategy and the synonyms
subtitution strategy can effectively perturb the correlation between POIs, resulting in
augmented sequences with higher confidence, especially with the random insertion strategy.
As a result, whether employing only the random insert strategy or a combination of random
insertion and synonyms subtitution, the model achieves remarkably high performance.
Random deletion performs slightly worse than random insertion but better than other
strategies, possibly because it alters the structure of the sequence and generates hard
examples.

Impact of different infactors
In this part, we first verified the impact of individual factors among various factors
in exploring POI context representation on the overall performance. Additionally, we
examined the influence of the contrastive learning module on the model’s effectiveness.
Hence, we use W/O to represent the removal of the corresponding factors, and we design
several variants of proposed method to verify the impact of each information, as shown in
Fig. 6.
After conducting ablation experiments on Osaka datasets, the method that incorporated

the context feature module achieved the best performance. This indicates the significance
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Figure 6 The comparison of various infactors.
Full-size DOI: 10.7717/peerjcs.2375/fig-6

of incorporating POI context information into the model. Compared to relying solely
on a single sequence representation or a few representations, a more comprehensive
set of information influences user decision-making. In the Osaka dataset, the sampling
methods that removed the POI distance representation and POI category representation
achieved the first and second worst performances, respectively. Removing the remaining
two representations yielded slightly lower performance. This suggests a strong correlation
between user check-in patterns in Osaka and time factors, indicating that users may be
influenced more by their time periodic preferences when making decisions. This shows
that there is a strong correlation between user check-in patterns in Osaka and geographical
factors, indicating that users may be more affected by the distance of the check-in point
and the POI itself when making a decision.

Additionally, through the exploration of the contrastive learning module on both
datasets, we found that this module effectively improved the overall performance of the
algorithm in terms of the F1 score and pairs-F1 score. This demonstrates that employing
data augmentation strategies can enhance data representation, adequately modeling
complex travel patterns and dynamic preferences of users. It indicates that the sparsity of
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sequence data and the heterogeneity of user needs are critical factors influencing sequence
recommendation.

Parameters analysis
This section investigates the sensitivity of some key hyperparameters, including (1) the
number of layers in the encoder and decoder, nlayer, (2) the number of heads in the
multi-head attention mechanism, nhead, and (3) the model’s embedding dimension, dmodel.
We conduct extensive experiments to analyze the importance of these parameters. The
chosen parameters for this study are: nlayer= 4, nhead= 8, dmodel= 128. As shown in Fig. 7,
the model’s representational dimension and the number of encoder–decoder layers cause
more drastic changes in model performance, with the model dimension being the most
significant. The possible reason is that a higher number of parameters means the model can
learn and represent the complex relationships within the data more fully. When adjusted,
the model has a greater capacity to adapt to a wider range of data characteristics. Model
performance is most sensitive to the model’s dimension. When adjusting the number
of attention heads, the model performance does not change significantly, which may be
because the dataset does not have particularly complex dependencies that would lead to a
notable performance improvement.

OPPORTUNITIES FOR PERSONALIZED SMART TOURISM
Through a series of evaluations, the effectiveness of our method in trip recommendation
tasks has been demonstrated. However, there are still promising directions for smart
toursim, especially trip recommendation. First, for the exploration of LBSNs, additional
information such as social and weather data can be incorporated to enrich the contextual
data. Furthermore, in modeling user mobility patterns and alleviating data sparsity,
exploring more effective data augmentation strategies to capture dynamic user needs, such
as transferring some augmentation strategies from the computer vision or natural language
processing domains, may be considered. Finally, in method selection, the complexity of the
encoder–decoder structure itself can limit its performance when dealing with large-scale
data. Simplifying the structural design to achieve lower computational complexity could
be explored for smart and personalized recommendation.

CONCLUSION
This work focuses on the core application of smart tourism, which is personalized smart
travel recommendation system. The goal is to provide users with satisfying and customized
travel services by integrating with LBSNs. We first described the overview of smart tourism
and discussed the main characteristics and significance. To fully explore the potential
of LBSNs by deep learning technologies, this article proposed a method that combines
POI context presentation learning with contrastive learning to model tourist personalized
behavior and alleviate data sparsity. Then, extensive experiments and evaluations on two
real LBSNs datasets demonstrate the effectiveness of the our work. Specially, we analyzed
the impact of different data augmentation strategies and various contextual information
on user personalized behavior modeling for smart recommendation. Finally, considering
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Figure 7 The parameter sensitivity analysis of Osaka.
Full-size DOI: 10.7717/peerjcs.2375/fig-7
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the complexity of tourist travel needs, we suggested several promising research directions
in smart tourism. However, there are still some improvement directions for our proposed
model. Firstly, is it possible to include other additional information such as social and
weather information in the point-of-interest representation. In addition, on the issue of
exploring user movement patterns, is there a more effective data augmentation strategy to
capture user dynamics, such as exploring the possibility of migrating some strategies from
the computer vision domain or the natural language processing domain.
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