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Neural space–time model for dynamic 
multi-shot imaging

Ruiming Cao    1 , Nikita S. Divekar    2, James K. Nuñez    2, 
Srigokul Upadhyayula    2 & Laura Waller    3 

Computational imaging reconstructions from multiple measurements 
that are captured sequentially often suffer from motion artifacts if 
the scene is dynamic. We propose a neural space–time model (NSTM) 
that jointly estimates the scene and its motion dynamics, without data 
priors or pre-training. Hence, we can both remove motion artifacts and 
resolve sample dynamics from the same set of raw measurements used 
for the conventional reconstruction. We demonstrate NSTM in three 
computational imaging systems: differential phase-contrast microscopy, 
three-dimensional structured illumination microscopy and rolling-shutter 
DiffuserCam. We show that NSTM can recover subcellular motion  
dynamics and thus reduce t he m is interpretation of living systems caused  
by motion artifacts.

Multi-shot computational imaging systems capture multiple raw meas-
urements sequentially and combine them through computational algo-
rithms to reconstruct a final image that enhances the capabilities of the 
imaging system (for example, super-resolution1,2, phase retrieval3 and 
hyperspectral imaging4). Each raw measurement is captured under a 
different condition (for example, illumination coding and pupil coding) 
and hence encodes a different subset of the information. The recon-
struction algorithm must then decode this information to generate 
the final reconstruction.

If the sample is moving during the multi-shot capture sequence, the 
reconstruction may be blurry or suffer artifacts5 as the system effectively 
encodes information from slightly different scenes at each time point. 
Thus, most methods require that the sample be static during the full 
acquisition time, which limits the types of samples that can be imaged. 
Approaches for imaging dynamic samples aim to reduce acquisition 
time by multiplexing measurements via hardware modifications6–8, 
developing more data-efficient reconstruction algorithms9–11 or deploy-
ing additional data priors with deep-learning techniques12–19; however, 
these methods may be impractical to implement and usually are only 
applicable for a specific imaging system. Data priors, for example, 
are nontrivial to generate (for example, due to the lack of access to 
groundtruth data) and may fail with out-of-distribution samples20.

Here we take another approach for imaging moving samples, 
where we model the sample dynamics to account for it during the image 

reconstruction. Modeling sample dynamics in multi-shot methods is 
challenging for two reasons. First, each measurement has a different 
encoding, so we cannot simply register the raw images to solve for 
the motion. Second, the motion can be highly complex and deform-
able, necessitating a pixel-level motion kernel. Our approach is to 
use deep-learning methods to develop flexible motion models that 
would be very difficult to express analytically. For example, recent 
work successfully used a deep-learning approach (with a robust data 
prior) to model dynamics in the case of single-molecule localization 
microscopy21.

We propose a neural space–time model (NSTM) that can recover 
a dynamic scene by modeling its spatiotemporal relationship in 
multi-shot imaging reconstruction. NSTM exploits the temporal 
redundancy of dynamic scenes. This concept, widely used in video 
compression, assumes that a dynamic scene evolves smoothly over 
adjacent time points. Specifically, NSTM models a dynamic scene 
using two coordinate-based neural networks; these networks store 
the multi-dimensional signal through their network weights, and 
are used for novel view-synthesis22, three-dimensional (3D) object 
representation23 and image registration24,25. As illustrated in Fig. 1b, 
one network of NSTM represents the motion and the other network 
represents the scene. The motion network outputs a motion kernel 
for a given time point, which estimates the motion displacement for 
each pixel of the scene. Subsequently, the scene network generates 
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The motion and scene networks in NSTM are interdependent 
and failing to synchronize their updates leads to poor convergence of 
the model. This poor convergence typically happens when the scene 
network overfits to the measurements before the motion is recov-
ered, a situation common for scenes involving more complex motion 
(Extended Data Figs. 1 and 2). To mitigate this issue, we developed 
a coarse-to-fine process (detailed in Methods), which controls the 

a scene using spatial coordinates that have been adjusted for motion 
by the motion network. Then, the generated scene is passed into 
the system’s forward model to produce a rendered measurement.  
To train the weights of the two networks (which store the scene and its 
motion dynamics), we use gradient descent optimization to minimize 
the difference between the rendered measurements and the acquired 
measurements (Methods).
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Fig. 1 | The neural space–time model for dynamic imaging reconstruction. 
a, Multi-shot computational imaging systems capture a series of images under 
different conditions and then computationally reconstruct the final image. For 
example, DPC captures four images with different illumination source patterns, 
and then uses them to reconstruct quantitative phase. Sequential capture of the 
raw data results in motion artifacts for dynamic samples, as the reconstruction 
algorithm assumes a static scene. Our proposed NSTM extends such methods 
to dynamic scenes, by modeling and reconstructing the motion at each time 
point. b, NSTM consists of two coordinate-based neural networks, one for the 

motion and one for the scene. Once the networks have been trained using the 
dataset of raw measurements, we can give the NSTM any time point as the input 
and it will generate the reconstruction at that time point. The network weights 
of NSTM are trained to match the forward model-rendered measurement with 
the actual raw measurement at each time point. c, The coarse-to-fine process 
for the reconstruction of a live C. elegans worm imaged by DPC. d, Zoom-ins for 
NSTM reconstruction at different time points with the recovered motion kernel 
overlaid, along with a comparison to conventional reconstruction.
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granularity of the outputs from both networks. Specifically, the recon-
struction starts by recovering only the low-frequency features and 
motion and then gradually refines higher-frequency details and local 
deformable motion as illustrated in Fig. 1c.

NSTM is a general model for motion dynamics and can be 
plugged into any multi-shot system with a differentiable and deter-
ministic forward model. It does not involve any pretraining or data 
priors; the learned network weights describe the final reconstructed 
video for each dataset individually, so it can be considered a type of 
‘self-supervised learning’. We demonstrate NSTM here for three dif-
ferent computational imaging systems: differential phase-contrast 
microscopy (DPC)26, 3D structured illumination microscopy (SIM)2 
and rolling-shutter DiffuserCam27. In future, we hope it will find use in 
other applications as well.

Results
Differential phase-contrast microscopy
Our first multi-shot computational imaging system captures four raw 
images, from which it reconstructs the amplitude and phase of a sam-
ple26. The images are captured with four different illumination source 
patterns, which are generated by an LED array microscope in which the 
traditional brightfield illumination unit is replaced by a programmable 
LED array28. In Fig. 1a, we show the system and raw images captured 
for a live, moving Caenorhabditis elegans sample. The conventional 
reconstruction algorithm assumes a static scene over these four raw 
images. Consequently, unaccounted sample motion leads to artifacts 
in the reconstruction (Fig. 1d). Through the coarse-to-fine process 
(Fig. 1c), the NSTM recovers the motion of the C. elegans at each time 
point, giving both a clean reconstruction without motion artifacts and 
an estimate of the sample dynamics.

3D structured illumination microscopy
Our second multi-shot system is 3D SIM2, which captures 15 raw meas-
urements at each z plane (three illumination orientations and five phase 
shifts for each orientation). The conventional 3D SIM reconstruction 
assumes there is no motion during the acquisition; thus, it is limited 
to fixed samples. Previous work in extending 3D SIM to live cells 
focuses on accelerating the acquisition through faster hardware8,29,30 
or assumes translation-only motion2. NSTM provides a strategy to 
recover and account for deformable motion. Because we model motion 
during the acquisition of a single volume, we can reconstruct both the 
super-resolved image and the dynamics (Methods).

Figure 2 shows results for a single-layer dense microbead sample in 
which we introduced motion by gently pushing and releasing the opti-
cal table during the acquisition. Using a conventional reconstruction 
algorithm (fairSIM31) results in a motion blurred image in which the 
individual beads cannot be resolved. In contrast, our NSTM recon-
struction resolves individual beads with a quality comparable to the 

groundtruth reconstruction. In addition, we also recover the motion 
map (Extended Data Fig. 3b,d). In this experiment, the groundtruth 
was reconstructed from a separate set of raw measurements captured 
without motion (Fig. 2d).

Applying this technique to live-cell imaging, Fig. 3 and Extended 
Data Fig. 4 show 3D SIM reconstructions for a live RPE-1 cell express-
ing StayGold-tagged32 mitochondrial matrix protein. In Fig. 3b, the 
conventional reconstruction seems to show a mitochondrion with 
a tubule branch (red arrow); however, our NSTM result recovers the 
sample dynamics (Extended Data Fig. 4b and Supplementary Video 3)  
and thus recognizes that it is actually a single tubule which is mov-
ing during the acquisition time. This can be further verified by the 
low-resolution widefield images (Fig. 3e) and by running our NSTM 
algorithm without the motion update (Extended Data Fig. 4c). In 
addition to resolving motion, NSTM removes motion blur, recovering 
features that were blurred in the conventional reconstruction (blue 
arrows in Fig. 3b,c) and thus NSTM preserves more high-frequency 
content compared to conventional reconstructions (Extended  
Data Fig. 4d).

In another 3D SIM experiment, we imaged a live RPE-1 cell expres-
sing StayGold-tagged endoplasmic reticulum (ER) (Fig. 4). The conven-
tional reconstruction struggles to resolve clear ER network structures, 
likely due to their fast dynamics (see red arrows). Additionally, the 
motion artifacts in the conventional reconstruction are changing 
over time, making it difficult to visually track different features to 
see the ER dynamics. NSTM, on the other hand, recovers the motion 
kernels and the dynamic scene from the same set of raw images for a 
single volume reconstruction and the ER structures that it resolves 
are consistent over time. The recovered motion kernels reveal the 
dynamics happening at different time points within a single 3D SIM 
acquisition as shown in Fig. 4c and Supplementary Video 4. We also 
imaged a live RPE-1 cell tagged with F-Actin Halo-JF585 to show NSTM’s 
capability on dense subcellular structures (Extended Data Fig. 6 and 
Supplementary Video 5).

Rolling-shutter DiffuserCam lensless imaging
Our third multi-shot computational imaging example is rolling-shutter 
DiffuserCam27, a lensless camera that compressively encodes a 
high-speed video into a single captured image. This method leverages 
the fact that each row of the image, captured sequentially by the rolling 
shutter, contains information about the whole scene at that time point, 
due to the system’s large point-spread-function (PSF). To enable video 
reconstruction from the single raw image, the original algorithm27 uses 
total variation regularization to promote smoothness. In contrast, by 
modeling for the motion explicitly, NSTM produces cleaner reconstruc-
tions without over-smoothing (Extended Data Fig. 7b). As a byproduct 
of NSTM, the motion trajectory for any point can be queried directly 
from the motion network (Extended Data Fig. 7c).

a b c dWidefield Conventional reconstruction Groundtruth

1 µm

NSTM

Fig. 2 | Structured illumination microscopy of a dense microbead sample 
with vibrating motion. a, The diffraction-limited widefield image cannot 
resolve individual beads. b, The conventional SIM reconstruction algorithm 
(fairSIM31) assumes a static scene, so suffers from motion blur. c,d, Our NSTM 

reconstruction resolves all of the subresolution-sized beads and gives a similar 
quality reconstruction (c) as the groundtruth case (d), in which we collected the 
data without sample motion. Bottom right of each image shows the frequency 
spectra (with gamma correction power of 0.7).
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Discussion
We demonstrated our NSTM for recovering motion dynamics and 
removing motion-induced artifacts in three different multi-shot imag-
ing systems; however, the models are general and should find use in 
other multi-shot computational imaging methods. Notably, NSTM does 
not use any data priors or pretraining, such that the network weights 
are trained from scratch for each set of raw measurements. Hence, 
it is compatible with any multi-shot system with a differentiable and 
deterministic forward model. For multi-shot imaging systems such 
as 3D SIM, which do not use gradient-based reconstruction, we can 
alternatively implement a forward model as part of the NSTM recon-
struction (Methods).

While NSTM is a powerful technique to resolve dynamic scenes 
from multiple raw images, it relies on temporal redundancy (the 
smoothness of motion and correlatable scenes over adjacent time 
points), to jointly recover the motion and the scene. As a consequence, 
this strategy tends to degrade or fail when the motion is less smooth. To 
demonstrate some failure modes, we provide several simulation exam-
ples. First, we simulate different amounts (magnitudes) of motion, 
showing that NSTM does well with large magnitudes of rigid-body or 
linear motion, presumably due to the effectiveness of coarse-to-fine 
process, but begins to degrade with large magnitudes of local deform-
able motion (Extended Data Fig. 8). Second, we simulate periodic local 
deformable motion with different vibration frequencies (Extended 
Data Fig. 9). We find that as NSTM does not explicitly account for 
periodic motion, it cannot capture high-frequency vibrations when 
the motion is no longer smooth between adjacent frames. Third, we 
simulate additive Gaussian noise to the raw measurements (Extended 
Data Fig. 10) to show how noise degrades the NSTM reconstruction.

One limitation of our method is that its two-network construc-
tion cannot accommodate for certain dynamics. Despite that this 
construction allows an explicit motion model and ensures reconstruc-
tion fidelity, it also introduces an additional constraint: as the scene 
network does not depend on the temporal coordinate, any frame of 
a dynamic scene has to be obtained by deforming a static reconstruc-
tion (from the scene network) with a motion kernel (from the motion 
network). As a result, NSTM is unable to recover dynamic scenes with 
appearing/disappearing features or switching on/off dynamics (such 

as neuron firing or fluorescence photoactivation), which cannot be 
reproduced by a time-independent scene network. To overcome this 
limit, future work could modify the NSTM architecture to account for 
the different types of nonsmooth dynamics and/or incorporate the 
time-dependency to the scene network.

Another limitation is that our NSTM reconstructions generally 
require more computation than conventional methods. For example, 
the dense microbead reconstruction using NSTM took ~3 min on a 
NVIDIA RTX 3090 GPU, in contrast to the conventional algorithm 
(fairSIM) which completed in less than 10 s on a CPU. The live-cell 3D 
reconstructions (volume size 20 × 512 × 512 with 15 time points) using 
NSTM took 40.5 min on a NVIDIA A6000 GPU (Supplementary Table 1). 
Future work could improve the computational efficiency of NSTM by 
better initialization of network weights33, hyper-parameter search for a 
faster convergence34, using lower precision arithmetic and data-driven 
methods to optimize a part of the model in a single pass35.

One interesting advantage of using coordinate-based neural net-
works like NSTM is that it can accommodate arbitrary coordinates that 
may not be on a rectilinear grid. This is especially advantageous for 
modeling spatiotemporal relationships, as it can intuitively handle sub-
pixel motion shifts and nonuniformly sampled measurements in both 
space and time, without requiring interpolation of a uniformly sampled 
matrix. For example, one can output a temporally interpolated video 
with any desired temporal resolution simply by querying the network at 
intermediate time points between actual measurement timepoints to 
render the corresponding frames, as demonstrated in Supplementary 
Video 6. The resulting reconstructions are clean (no motion blur) and 
can faithfully represent the scene at those timepoints, provided that 
the dynamics are accurately modeled by the NSTM. We should not, 
however, expect to recover any dynamics happening at timescales 
faster than those that can be learned from the measurements.

In summary, we showed that our NSTM method can recover 
motion dynamics and thus resolve motion artifacts in multi-shot com-
putational imaging systems, using only the typical datasets used for 
conventional reconstructions. The ability to recover dynamic samples 
within a single multi-shot acquisition seems particularly promising for 
observing subcellular systems in live biological samples. By accounting 
for motion through NSTM’s joint reconstruction, NSTM reduces the risk 
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Fig. 3 | 3D SIM reconstruction of a live RPE-1 cell expressing StayGold-
tagged mitochondrial matrix protein. a, Maximum projection of the volume 
with color-coded depth. b,c, Zoom-in of a slice from the 3D reconstruction, 
comparing the conventional 3D SIM algorithm (CUDA-accelerated three-
beam SIM reconstruction software2) with our NSTM algorithm. The NSTM 

reconstruction disambiguates the artifacts induced by tubular motion (as 
indicated by the arrows). d,e, The NSTM reconstructions and widefield images at 
three timepoints coded by colors. Widefield images are obtained by summing the 
raw images from five phase shifts.
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of misinterpretations in the study of living systems caused by motion 
artifacts in multi-shot acquisitions. Further, it effectively increases the 
temporal resolution of the system when multi-shot data are captured.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02417-0.
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Methods
Cell-line generation
The RPE-1 cell lines used in 3D SIM experiments were cultured using 
Dulbecco’s modified Eagle medium/Nutrient Mixture F12 (Thermo 
Scientific, 11320033) supplemented with 10% FBS (VWR Life Science 
100% Mexico Origin 156B19), 2 mM l-glutamine, 100 U ml−1 penicillin 
and 100 mg ml−1 streptomycin (Fisher Scientific, 10378016). Trypsin–
EDTA (0.25%) phenol red (Fisher Scientific, 25200114) was used to 
detach cells for passaging. To generate the cell lines, we obtained the 
pCSII-EF/mt-(n1)StayGold (Addgene, plasmid #185823) and pcDNA3/
er-(n2)oxStayGold(c4)v2.0 (Addgene, plasmid #186296) from  
A. Miyawaki32 to tag the mitochondrial matrix and the ER, respectively. 
We obtained the LifeAct-HaloTag from D. Gadella (Addgene #176105) 
to tag F-Actin. The er-(n2)oxStayGold(cr)v2.0, mt-(n1)StayGold and 
the LifeAct-HaloTag sequences were PCR amplified and cloned into a 
lentiviral vector containing an EF1 α promoter. The vector is a derivative 
of Addgene #60955 with the sgRNA sequence removed. Lentiviral par-
ticles containing each plasmid were produced by transfecting standard 
packaging vectors along with the plasmids into HEK293T cells (ATCC 
CLR-3216) using TransIT-LT1 Transfection Reagent (Mirus, MIR2306). 
The medium was changed 24 h post-transfection without disturbing 
the adhered cells and the viral supernatant was collected approximately 
50 h post-transfection. The supernatant was filtered through a 0.45-mm 
PVDF syringe filter and ~1 ml was used to directly seed a 10-cm plate of 
hTERT RPE-1 cells (ATCC CRL-4000). Two days post-infection, cells were 
analyzed on BD FACSAria Fusion Sorter and BD FACSDiva Software. The 
highest 5% of StayGold/GFP (FITC) fluorescence cells were sorted for 
the StayGold-tagged-ER and mitochondrial matrix lines (gating strat-
egy illustrated in Supplementary Fig. 1). To prepare F-Actin Halo-tagged 
RPE-1 cells for sorting, Janelia Fluor HaloTag Ligand 503 was diluted 
at 1:20,000 from a 1 mM stock in supplemented DMEM-F12. Then the 
original medium was carefully aspirated off the cells and replaced with 
DMEM-F12 medium containing the ligand. The ligand and cells were 
incubated at 37 °C for 15 min, then washed three times with PBS before 
trypsinization and subsequent sorting. For the LifeAct-Halo-tagged 
RPE-1 line, the same gating strategy was used as described above for 
StayGold cells wherein highest 5% of Halo fluorescence cells were 
sorted (gating strategy illustrated in Supplementary Fig. 2). All sorted 
cells were expanded for imaging experiments.

Sample preparation
Janelia Fluor JF585 dye was used to label the F-Actin on the LifeAct- 
Halo-tagged RPE-1 cells before imaging. The dense microbead sample 
was made with 0.19-μm dyed microbeads (Bangs Laboratories, FC02F). 
The stock solution was diluted 1:100 with distilled water and placed on 
a glass-bottom 35-mm dish coated by poly-l-lysine solution (Sigma 
Aldrich, P8920).

Data acquisition
The 3D SIM datasets were acquired on a commercial three-beam SIM 
system (Zeiss Elyra PS.1) using an oil immersion objective (Zeiss, ×100 
1.46 NA) and ×1.6 tube lens. The effective pixel size was 40.6 nm. The 
system captures 15 images at each depth plane, with three illumination 
orientations and five phase shifts for each orientation. A single image 
plane was acquired for the dense microbead sample. Twenty planes 
with a step size of 150 nm were captured for the RPE-1 cell expressing 
StayGold-tagged mitochondrial matrix protein, LifeAct-Halo-tagged 
RPE-1 cell stained with Janelia Fluor JF585 and 12 planes with a step size 
of 150 nm were captured for the RPE-1 cell expressing StayGold-tagged 
ER. A 488 nm laser was used for all but the F-Actin Halo-JF585 tagged 
cell, for which we used a 561 nm laser. The SIM system has a illumina-
tion update delay of around 20 ms for each phase shift or z-position 
shift, and a delay of 300 ms for each illumination orientation change. 
We set the exposure time to 20 ms for the dense microbeads and 5 ms 
for all cell experiments.

The DPC images were obtained from36 with a commercial 
inverted microscope (Nikon TE300) with ×10 0.25 NA objective 
(Nikon) and an effective pixel size of 0.454 μm. An LED array28 (SCI 
Microscopy) was attached to the microscope in place of the Köhler 
illumination unit. Four half-circular illumination patterns, with the 
maximum illumination NA equal to the objective NA, were sequen-
tially displayed on the LED array to capture four raw images26. The 
exposure time was 25 ms.

The rolling-shutter DiffuserCam data are from the original work 
on the technique27. The raw image was taken by a color sCMOS (PCO 
Edge 5.5) in slow-scan rolling-shutter mode (27.52 μs readout time for 
each row) with dual shutter readout and 1,320 μs exposure time. The 
acquisition of the raw image took 31.0 ms.

Construction of NSTM
The motion and the scene network of NSTM are both coordinate-based 
neural networks22,23,37, a type of multi-layer perceptrons that learn a 
mapping from coordinates to signals. A coordinate-based neural net-
work can represent a multi-dimensional signal, for example, an image 
or a 3D scene, through its network weights. To enhance the capacity 
and efficiency of the coordinate-based networks, we use hash embed-
ding38 to store multiple grids of features at different resolutions and 
transform a coordinate vector to a multi-resolution hash-embedded 
feature vector, hhh = [h0,h1,⋯ ,hN−1], before passing it into the network 
(details in Supplementary Text on Hash Embedding). As the input 
coordinate varies, a fine resolution feature (for example, hN−1) changes 
more rapidly than a coarse resolution feature (for example, h0). During 
the coarse-to-fine process, we re-weight the output features of the hash 
embedding using a granularity value, α, to control the granularity of 
the network. α is set by the ratio of the current epoch to the end epoch 
of the coarse-to-fine process, which is set to 80% of the total number 
of reconstruction epochs in practice. As in ref. 39, each feature fi  
is weighted by 1

2
− 1

2
cos (π trunc (αN − i)) , where trunc truncates a  

value to [0, 1]. In this way, finer features will be weighted to 0 until α gets 
larger, as illustrated in Fig. 1c.

In the forward process of NSTM (Fig. 1b), every spatial coordinate 
of the scene, x, is concatenated with the temporal coordinate t, and the 
hash-embedded features of the spatiotemporal coordinate, hash (xxx, t), 
are fed into the motion network. The motion network, f (θmotion), pro-
duces the estimated motion displacement vector, δx, for each input 
spatiotemporal coordinate:

δxxx = f (hash (xxx, t) |θmotion) . (1)

The motion-adjusted spatial coordinate, (xxx + δxxx) is then transformed 
into hash-embedded features and fed into the scene network, f (⋅ |θscene) 
for the reconstruction value, o, such that

o (xxx, t) = f (hash (xxx + δxxx) |θscene) . (2)

This process is repeated for all spatial coordinates to obtain the recon-
structed scene at time t. As the scene network does not take the time as 
an input, it relies on the motion network to generate a dynamic scene. 
In our demonstrations, the scene network outputs a single channel as 
the fluorescent density for 3D SIM, two channels as the amplitude and 
phase for DPC and three channels as RGB intensity for DiffuserCam. As 
the hash embedding is always applied to the network input coordinate, 
we consider it a part of the network, f, and drop it from our expression 
for readability.

NSTM reconstruction
To update the network weights of NSTM, the reconstructed scene is 
passed into the imaging system’s forward model for a rendered meas-
urement. Comparing the rendered measurement with the actual meas-
urement acquired in the experiment, we compute the mean square 
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error loss and minimize it by back-propagating its gradient to update 
the network weights. Mathematically, the optimization becomes

argmin
θmotion ,θscene

∑
i∈{0,⋯ ,T−1}

(forwardi ( f (xxx + f (xxx, ti) |θmotion) |θscene) − Ii)
2, (3)

where forwardi is the forward model to render the ith measurement 
given the temporal coordinate ti. The actual measurement captured 
at time point ti is denoted as Ii. Adapting NSTM to new computational 
imaging modalities thus amounts to simply dropping in the appropri-
ate forward model.

In our implementation, the motion network has two hidden lay-
ers with a width of 32 and the scene network has two hidden layers 
with a width of 128. The gradient update is performed with Adam 
optimizer40. The initial learning rate is set to 1 × 10−5 for motion 
network (5 × 10−5 for rolling-shutter DiffuserCam reconstruction) 
and 1 × 10−3 for scene network, with a exponential decay schedule 
to a tenth of the initial learning rate at the end of the reconstruc-
tion. For the conventional reconstruction of NSTM without motion 
update (in Extended Data Fig. 3a and Extended Data Figs. 4c and 5b), 
we keep all settings the same as the NSTM reconstruction except 
that the motion network is not updated and the input time points 
are set to zero. The NSTM reconstruction is implemented using 
Python and JAX41.

DPC reconstruction
The raw images of DPC are normalized by the background intensity 
and then passed through the linear transfer functions derived in  
ref. 26 as the forward model:

forwardi (ou,op) = ℱ−1
2D [Hiuℱ2D (ou) + Hi

pℱ2D (op)] , (4)

where ℱ2D is two-dimensional (2D) Fourier transform, Hiu,Hip denote the 
absorption and phase transfer functions for the ith measurement, and 
ou and op are the absorption and quantitative phase of the scene. The 
conventional reconstruction is obtained by solving a Tikhonov regu-
larization with a regularization weight of 10−4 for both amplitude and 
phase terms26. For ease of comparison, we add the same Tikhonov 
regularization to the loss term for NSTM reconstruction.

3D SIM reconstruction
The conventional 3D SIM reconstruction uses five measurements of 
different sinusoidal phase shifts to separate the complex spectra of 
three frequency bands and then shifts each band accordingly based on 
its corresponding modulation frequency. The band separation process 
necessitates the assumption of a static scene over those five measure-
ments. To avoid this static assumption and preserve the temporal 
information, we implement the 3D SIM forward model in real space 
without band separation, rendering each measurement independently 
from NSTM’s reconstruction at the time point that the actual measure-
ment is taken.

This forward model can be expressed mathematically as

forwardi (o) = ∑
j∈{0,1,2}

ℱ−1
3D [OTFj ℱ3D (illumi,j o)] , (5)

where ℱ3D denotes 3D Fourier transform. The super-resolved 3D fluo-
rescent density, o, is first modulated by the corresponding illumination 
pattern, illumi,j, at the ith measurement and band j. Then, the modulated 
signal is filtered by the optical transfer function, OTFj, for each band j 
and the resulted signals for the three bands are summed to render the 
ith intensity measurement.

In the naive implementation, we need to feed the 3D fluorescent 
density, o, at hundreds of different time points to the forward model 
to render a set of measurements, which is computationally inefficient. 

For example, a dataset with 20 depth planes has 20 planes × 3 orien-
tations × 5 phases = 300 raw images that contain 300 distinct time 
points. To improve the efficiency, we group together measurements 
with identical orientation and phase captured at different depth planes 
and render them in one forward model pass as if they were acquired 
at the same time point. This simple modification allows us to feed o at 
only 15 time points to get the full set of raw images, regardless of the 
number of depth planes.

In our comparisons, we use the same illumination parameters 
estimated from measurements2,29 for both conventional reconstruction 
algorithms and NSTM. For the conventional reconstructions shown 
in Fig. 4b, we use the moving window approach to select a set of raw 
images around a certain time point to feed into the reconstruction 
algorithm and we repeat this process to get the conventional recon-
struction at every illumination orientation. For example, the conven-
tional reconstruction at time point 3 in Fig. 4b uses raw images from 
illumination orientation 2 and 3 from the current acquisition and also 
the illumination orientation 1 from the next acquisition, where there 
is no delay between two acquisitions. Note that the term ‘acquisition’ 
here refers to ‘time point’ in a regular context of time-series acquisi-
tion, as ‘time point’ is already heavily used for time within a single 
acquisition of a scene.

Rolling-shutter DiffuserCam reconstruction
Each row of the raw image captured by rolling-shutter DiffuserCam 
is the time integral of the dynamic scene convolved with the caustic 
PSF over the rolling-shutter exposure. Thus, its forward model can be 
written in a discrete-time sum of T time points27,

forward (o) =
T−1
∑
t=0

(o (t) ∗ PSF ) S (t) , (6)

where o is the dynamic scene, S is a binary map of the shutter on/off 
state and * denotes 2D convolution operation. However, rendering 
the entire image at once requires obtaining NSTM’s reconstructed 
scenes at all time points, which will be intensive on GPU memory. 
To make this feasible on common GPUs, during each step of the 
reconstruction we render a subset of image rows by only obtaining 
the reconstructed scenes at time points which have contributed 
signal to these rows. The forward model for the ith row of the raw 
image can be written as

forwardi (o) = ∑
t∈{t|S(i,t)=1}

(o (t) ∗ PSF ) S (t) . (7)

In practice, to improve the efficiency, we render 20 consecutive rows 
in each forward pass.

Reproducibility
The microbead with vibrating motion experiment shown in Fig. 2 and 
Extended Data Fig. 3 was repeated nine times. The optical table was 
pushed and released each time. Seven out of nine acquired datasets 
were suitable for NSTM reconstruction and produced similar results. 
The remaining two datasets suffered from severe motion blur in indi-
vidual raw images and, thus, could not be recovered by NSTM.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
SIM datasets collected in this study were deposited in Zenodo at https://
doi.org/10.5281/zenodo.13204660 (ref. 42). DPC and rolling-shutter 
DiffuserCam datasets were obtained from refs. 27,36 and are also avail-
able at https://github.com/rmcao/nstm.
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Code availability
NSTM software is available at https://github.com/rmcao/nstm.
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Extended Data Fig. 1 | Simulations of differential phase contrast microscopy 
(DPC) using a phase-only USAF-1951 resolution target with various types of 
motion. a, no motion, b, rigid motion - translation, c, rigid motion - rotation, 
d, non-rigid global motion - shearing, and e, local deformable motion - swirl. 
We reconstruct the quantitative phase of the dynamic scene using NSTM with 
the set of four simulated DPC images. Two reconstruction quality metrics are 

calculated: peak signal-to-noise ratio (PSNR) and the structural similarity index 
measure (SSIM). The NSTM does well with all types of motion. However, without 
using our coarse-to-fine process (‘NSTM w/o coarse-to-fine’), it is likely to fail as 
the motion gets complicated, due to poor convergence of the joint optimization 
of motion and scene. Full videos of the dynamic reconstructions can be seen in 
Supplementary Video 1.
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Extended Data Fig. 2 | Simulations of structured illumination microscopy 
(SIM) using fluorescent USAF-1951 resolution target with various types of 
motion. a, no motion, b, rigid motion - translation, c, rigid motion - rotation,  

d, non-rigid global motion - shearing, and e, local deformable motion - swirl. The 
forward model of single-plane three-beam SIM is assumed for the simulation. Full 
videos of the dynamic reconstruction can be seen in Supplementary Video 2.
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Extended Data Fig. 3 | Additional results for the dense microbead sample 
from Fig. 2. a, Reconstruction using NSTM without the motion update results 
in motion blurring similar to the conventional reconstruction in Fig. 2b, since 
dynamics are not accounted for. b, NSTM reconstruction with color-coded time. 
c, The raw images with color-coded time. In the images with color-coded time, 
each timepoint of raw images or reconstruction is drawn in a distinct color as 

indicated by the color bar. The ‘color dispersion’ in the zoom-in reconstruction 
suggests that subtle motion is recovered by NSTM. d, The recovered motion 
trajectory of a pixel on the vibrating microbeads from NSTM reconstruction. 
Each arrow shows the motion displacement vector with respect to the previous 
timepoint as indicated by the color code (color bar in b).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Additional 3D SIM results for the mitochondria-labeled 
RPE-1 cell from Fig. 3. a, Maximum projection of NSTM reconstruction volume, 
with three colors denoting the three timepoints that correspond to the three 
illumination orientations. b, Zoom-ins of a slice of NSTM 3D reconstruction, 
with color-coded time. The overlaid vector fields show the motion displacement 
recovered by NSTM, with their colors to indicate their corresponding timepoints. 
c, Zoom-in comparisons, from left to right: conventional reconstructions2, 

NSTM without motion update, NSTM reconstruction, NSTM reconstruction 
with color-coded time (three colors for three illumination orientations), and 
widefield images with color-coded time. d, A comparison of the spatial frequency 
spectra for each method. The two dashed circles indicate the diffraction-limited 
bandwidth and SIM super-resolved bandwidth, respectively. Gamma correction 
with power of 0.5 is applied to all frequency spectra for better contrast.
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Extended Data Fig. 5 | Additional 3D SIM results for the live endoplasmic 
reticulum-labeled RPE-1 cell from Fig. 4. a, Maximum z-projection of NSTM 
reconstruction volume, with three colors denoting the three timepoints that 
correspond to the three illumination orientations. b, Zoom-in comparisons,  

from left to right: conventional reconstructions2, NSTM without motion update, 
NSTM reconstruction, NSTM reconstruction with color-coded time (three colors 
for three illumination orientations), and widefield images with color-coded time.
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Extended Data Fig. 6 | 3D SIM reconstruction of a live F-Actin labeled RPE-1 
cell. a, Maximum z-projection of the reconstructed volume with color-coded 
depth. b, Zoom-in comparisons, from left to right: conventional reconstruction2, 
NSTM reconstruction, NSTM reconstruction with color-coded time (three colors 
for three illumination orientations), and widefield images with color-coded time. 

The second row of each zoom-in assumes raw images with longer delay between 
orientations, Δt(ori.), and thus more motion (that is, the raw images of orientation 
1 are from acquisition timepoint 1, orientation 2 from acquisition timepoint 2, 
and orientation 3 from timepoint 3 from a time-series measurement).
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Extended Data Fig. 7 | Results for rolling-shutter DiffuserCam. a, The 
raw image measurement. b, Comparisons of the reconstruction using basic 
deconvolution (assumes a static scene), FISTA with anisotropic 3D Total 
Variation regularization (TV)27 (the original reconstruction method), and our 

NSTM algorithm. c, NSTM reconstruction at different timepoints, with their 
corresponding measurement rows indicated by colored boxes on the raw image. 
The colored curves show some selected motion trajectories recovered by the 
motion network.
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Extended Data Fig. 8 | SIM simulations with various types and magnitudes of 
motion. From left to right: a, rigid motion - translation, b, rigid motion - rotation, 
c, non-rigid global motion - shearing, and d, local deformable motion - swirl. 
The first four rows show the NSTM reconstructions from simulated images with 

increasing magnitude of motion between frames, and the last row shows the 
groundtruth scenes. The reconstruction of local deformable motion is more 
likely to fail when the motion magnitude increases. Full videos of the dynamic 
reconstructions can be found in Supplementary Video 7.
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Extended Data Fig. 9 | Simulations of SIM with local deformable vibration 
motion. The deformable swirl motion for each frame is generated using the swirl 
factor shown in the last row. The frequency of the swirl factor increases from 

left to right. As the frequency increases, there will be less temporal redundancy 
between adjacent frames, and hence NSTM will be more likely to fail. Full videos 
of the dynamic reconstructions can be found in Supplementary Video 8.
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Extended Data Fig. 10 | Simulations of SIM with increasing amounts of 
additive Gaussian noise. a, The simulated raw image. b–e, Various types of 
motion: b, rigid motion - translation, c, rigid motion - rotation, d, non-rigid global 

motion - shearing, and e, local deformable motion - swirl. NSTM reconstruction 
degrades as the noise gets stronger for all types of motion. Full videos of the 
dynamic reconstructions can be found in Supplementary Video 9.
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Data collection Zeiss Zen Black (v14.0.9.201)
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(https://github.com/rmcao/nstm). Baseline study: cuda-accelerated three-beam 3D SIM reconstruction software (cudasirecon) v1.2.0 (https://
github.com/scopetools/cudasirecon), fairSIM v1.5.0 (https://www.fairsim.org). Visualizations were made with matplotlib v3.5.3, napari 
v0.4.18 (for Supplementary Video 3 and 5).  Cell sorting was performed with BD FACSDiva v9.0.2 and FlowJo v10.10.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Our code is available at https://github.com/rmcao/nstm. SIM datasets collected in this study were deposited in Zenodo at https://doi.org/10.5281/
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zenodo.13204660. DPC and rolling-shutter DiffuserCam datasets were obtained from Biomed. Opt. Express 9, 5456-5466 (2018) and https://doi.org/10.1109/
ICCPHOT.2019.8747341, and are also available at https://github.com/rmcao/nstm.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We chose a diverse set of imaging systems and samples to demonstrate our method. No sample size-based statistics is involved in this study, 
as this study focus on microscopy reconstruction method and does not have any hypothesis testing.

Data exclusions No data was excluded.

Replication The results of NSTM reconstruction can be replicated using the processing software included in the submission files.  
The microbead with vibrating motion experiment shown in Fig.2 was independently performed nine times. The optical table was pushed and 
released in each time. Seven out of nine acquired datasets are suitable for NSTM reconstruction and produce similar results. The remaining 
two datasets suffer from severe motion blur in individual raw images and thus cannot be recovered by NSTM.

Randomization Neural networks are initialized with random weights, and the dataset is randomly ordered during each epoch of training. Besides, 
randomization was not relevant to our study, as our study does not have any hypothesis testing.

Blinding Blinding was not relevant to our study as our method was based on computational metrics and algorithms that do not require subjective 
assessment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The cell line hTERT RPE-1 was obtained from ATCC (https://www.atcc.org/products/crl-4000); gender female. The HEK293t 
cell line was obtained from ATCC https://www.atcc.org/products/crl-3216; gender female.

Authentication ATCC cell lines arrive with certificate of analysis and obtained from the UC Berkeley Biosciences Division Cell Culture Facility. 
These lines are distributed commercially.

Mycoplasma contamination The cell lines were tested negative for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

The RPE-1 and HEK293t cells are not part of commonly misidentified lines.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation The RPE-1 cells were transformed using lentivirus transduction as described in the materials and methods, they were 
suspended using trypsin, and cultured using DMEM F-12 media. The cells were kept on ice at all times during sorting. After 
sorting they were spun down and resuspended and plated in 10 cm dishes before being used for imaging experiments.

Instrument BD FACSAria (TM) Fusion Cell Sorter (HHMI) was used the in the LSA flow cytometry core at UC Berkeley.

Software BD FACSDiva Software and FlowJo was used to collect and analyze flow cytometry data.

Cell population abundance The cells were approximately 95% (ER) and 78% (mitochondria) StayGold positive respectively after sorting. The halo-tagged 
F-Actin cells were 99% halo positive after sorting.

Gating strategy The StayGold negative cells were used for gating within live cells using wild-type RPE cells with no fluorophore. This gate was 
used to designate the StayGold positive cells. Within this population, approximately top 5% of StayGold positive cells were 
sorted for use in imaging experiments. Gating strategy included in the supplementary figure. The halo negative cells were 
used for gating within live cells using wild-type RPE cells with no fluorophore. This gate was used to designate the Halo 
positive cells in the BB515A channel (due to use of the JF503 ligand to gate Halo-positive cells). Within the Halo positive 
population, top 5% of cells were sorted. Gating strategy is included in supplementary figure.  

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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