
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A neutral zone classifier for three classes with an application to text mining

Permalink
https://escholarship.org/uc/item/0j597241

Authors
Friel, Dylan C
Li, Yunzhe
Ellis, Benjamin
et al.

Publication Date
2023

DOI
10.1002/sam.11639

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0j597241
https://escholarship.org/uc/item/0j597241#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1 
 

A neutral zone classifier for three classes with an application to text mining 

Dylan C. Friel, Yunzhe Li, Benjamin Ellis, Daniel R. Jeske, Herbert K.H. Lee, Philip H. Kass 

Abstract 

A classifier may be limited by its conditional misclassification rates more than the overall misclassification 
rate. In the case that one or more of the misclassification rates are high, a neutral zone may be introduced 
to lower, and possibly balance, conditional misclassification rates. A neutral zone is incorporated into a 
three-class classifier with its region determined by controlling conditional misclassification rates. The 
neutral zone classifier is illustrated with a text mining application whose aim is to classify written 
comments associated with student evaluations of teaching. 

Keywords: classification, neutral zone, text mining, sentiment analysis, Word2Vec 

 

1. Introduction 

 Classification of observations into groups is an objective for many applications. For example, 

patients might be classified as diseased or not, or loan applications might be classified as high risk or 

not. While classification problems often involve only two categories, any number of classes may be of 

interest. A common procedure for classification is to obtain the probabilities that an observation 

belongs to each of the possible classes, and then assign it to the class with the largest probability. A 

drawback of the hard boundaries used in this approach is the forced classification of ambiguous 

observations into a specific class. Introduction of a “neutral zone” between the hard classification 

boundaries delays a formal decision. If an observation falls in the neutral zone, it does not immediately 

receive classification into one of the classes. Instead, it will be labeled “neutral.” A practitioner may 

subsequently engage in follow-up investigations of the observations that lie in the neutral zone before 

making a final classification decision. 

The development of a neutral zone in the context of a classification problem has been explored 

in several works. A neutral zone was proposed in the context of two classes factoring in the costs of 
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misclassification [1-2]. Alternatively, a neutral zone was proposed for the same context but with the aim 

of controlling both the false positive and false negative error rates [3-4]. Beyond two classes, there is 

framework for a three-class neutral zone that can be created based on the cost of misclassification [5]. 

A consequence of the implementation of a neutral zone is the recognition that follow-up is 

necessary to reach a final classification decision for observations that fall into the neutral zone. While 

this reduces misclassifications overall, the follow-up investigation adds cost to the overall decision. The 

accuracy-cost tradeoff depends on consequences of making misclassifications, which in healthcare 

applications, for example, are typically severe. 

When evaluating the quality of a classifier, the overall misclassification rate may mask 

underlying weakness. For example, when the classes are not balanced, the overall misclassification rate 

may be low if observations are predominantly classified in the largest class. It is important to analyze the 

conditional misclassification rates, especially when classes are not balanced, to assess the overall 

performance of a potential classifier. When using a neutral zone classifier, it is also important to quantify 

the rates associated with making neutral zone assignments. 

In this paper, we develop a three-class neutral zone classifier that meets specified criteria for 

conditional misclassification rates. We will aim for balance in the conditional misclassification rates, but 

other choices may be implemented. We make no assumptions about the class-conditional distributions. 

The rest of the paper is outlined as follows. Section 2 presents the motivating application for the 

development of a three-class neutral zone classifier. In Section 3, we present the formulation of the 

classifier. Section 4 returns to our motivating application and shows successful implementation of the 

classifier. Finally, Section 5 offers a summary of the work presented in this paper. 
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2. Motivating Application 

The motivating application for this work is to classify written comments associated with student 

evaluations of teaching as reflecting positive, negative, or mixed feelings about a student’s overall 

experience in the class. The data we use are comments written by undergraduate students for teaching 

evaluations at the University of California, Santa Cruz (UCSC) and the University of California, Riverside 

(UCR). Student evaluations are an important factor when evaluating the performance of instructors. 

These evaluations consist of both Likert scale questions as well as open-ended questions where the 

student may leave comments in their own words. The effectiveness of the Likert-scale questions has 

been greatly researched [6-9]. The scope of topics covered in written comments left by students is 

examined in Ross et al. [10]. The focus of our work is on assessing the overall sentiment of the 

comments left by students. 

Whereas numerical evaluations from instructor reviews are presented in summary form, written 

comments are typically presented verbatim in the order in which they were recorded. There may be 

hundreds of evaluations from a single course. The reviewer of the comments is left on their own to 

extract the overall message of the comments. In the worst cases, the written comments can be glossed 

over or cherry picked to support an established narrative. If the comments could be classified before the 

review, they could be sorted to assist the reviewer in getting a more representative understanding of 

the comments. While we strongly recommend that reviewers read all comments in an evaluation, a 

sorted ordering would make the review process more systematic and efficient. 

There are a wide variety of comments that may appear in instructor evaluations. We define 

three major categories in which these comments may be classified: positive, negative, other. For 

“positive” comments, the overall interpretation of the comment is that the instructor is doing a great 

job and the evaluator would recommend this instructor to other students. A “negative” comment 
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conveys that the instructor is not doing a good job and the student would not recommend this 

instructor to other students. “Other” comments are those that are decidedly mixed with both positive 

and negative remarks or comments that seem to provide no evaluation of the instructor. 

Our data set comprises 104,143 comments from evaluations conducted at UCSC and 34,749 

comments from evaluations at UCR. The courses where these comments originated were medium to 

large enrollment undergraduate classes in both STEM and non-STEM fields and were taught between 

Fall 2018 and Summer 2021. To obtain the true label for each comment, a team of three undergraduate 

students was employed, and the label was determined via majority rules voting. Initially, two students 

read and labeled each comment. If the labels from the two students agreed, it was assigned as the true 

label. If the two students disagree, a third student was summoned to give a label. If the third student’s 

label agrees with one of the first two, it was assigned as the true label. If there is disagreement between 

all three students, a graduate student researcher made the final determination of the true label. The 

comments from UCSC resulted in approximately 63% positive comments, 13% negative comments, and 

24% other comments. The comments from UCR were approximately 66% positive, 15% negative, and 

19% other. 

After obtaining the true labels, 𝐶, we used a multinomial logistic regression model to build a 

classifier [11]. Details will be explained further in Section 4, including how to extract numerical features 

from the text comments. Let 𝑝0, 𝑝1, and 𝑝2 denote the predicted probabilities of the classes negative, 

positive, and other, respectively. The standard logistic regression classifier would be defined as 

�̂� = {

Negative 𝑝0 > 𝑝1 and 𝑝0 > 𝑝2

Positive 𝑝1 > 𝑝0 and 𝑝1 > 𝑝2

Other 𝑝2 > 𝑝0 and 𝑝2 > 𝑝1

 

The results from such a classifier applied to the UCSC and UCR data (fit on training data and 

applied to an independent test set of data) are presented in Table 1 and Table 2, respectively. While the 
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overall misclassification rates are about 20%, it can be seen in each that there is a large difference in the 

(bolded) class-conditional misclassification rates. This is undesirable in the context of instructor 

evaluations. Namely, we would not want misclassified positive comments to inflate the number of 

negative comments just as we would not want a misclassified negative comment to go unnoticed by 

being classified as a positive comment. Our goal for this application is to incorporate a neutral zone to 

improve the balance in the conditional misclassification rates as well as reduce the overall 

misclassification rate. 

Table 1: Class-conditional classification rates for a standard logistic regression classifier on comments from student evaluations 
of teaching at UCSC. 

 
Predicted Label 

Conditional 
Misclassification 

True Label Positive Negative Other Rate 

Positive 0.921 0.021 0.058 0.079 
Negative 0.232 0.515 0.253 0.485 
Other 0.277 0.127 0.596 0.404 

Overall Misclassification Rate   0.212 
 

Table 2: Class-conditional classification rates for a standard logistic regression classifier on comments from student evaluations 
of teaching at UCR. 

 
Predicted Label 

Conditional 
Misclassification 

True Label Positive Negative Other Rate 

Positive 0.927 0.026 0.047 0.073 
Negative 0.201 0.602 0.197 0.398 
Other 0.401 0.218 0.381 0.619 

Overall Misclassification Rate   0.224 
 

3. Neutral Zone Classifier 

The proposed classifier assumes that the probability that an observation belongs to each class 

has been obtained, and these probabilities sum to one. While our application utilizes a multinomial 

logistic regression model for this purpose, the probabilities can be obtained in a variety of other ways 
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including a neural network classifier or a Bayes classifier. Traditionally, an observation would be 

assigned to the class with the largest probability. A drawback of this method is the hard boundary when 

the probabilities for each class are close. Consider a simple example where the probabilities that an 

observation belongs to each class are 0.35, 0.32, and 0.33. The traditional classifier would assign the 

observation to the class with probability 0.35. However, with such ambiguity the observation might 

easily belong to any category, and we can expect a high probability of misclassification. The introduction 

of a neutral zone creates regions between classes, identifying and labeling these borderline observations 

as “neutral.” The observations that fall into the neutral zone are left for further investigation through 

follow-up. We next explore the alternatives for constructing the neutral zone boundaries. 

3.1 Symmetric Boundaries 

 Yu et al. [5] developed a minimum cost neutral zone classifier for three classes where a neutral 

zone region between class boundaries is uniformly created by a single constant, 𝐿. The experimenter 

determines 𝐿 based on the cost of misclassification. While we do not know the cost of misclassification 

in our current setting, we can take this same approach but choose 𝐿 to achieve desired misclassification 

rates. Letting 𝑁 denote the label for the neutral zone, the symmetric neutral zone classifier is defined as 

�̂� = {

0 𝑝0 > 𝑝1 + 𝐿 and 𝑝0 > 𝑝2 + 𝐿
1 𝑝1 > 𝑝0 + 𝐿 and 𝑝1 > 𝑝2 + 𝐿

2
𝑁

𝑝2 > 𝑝0 + 𝐿 and 𝑝1 > 𝑝1 + 𝐿
otherwise

 

( 1 ) 

If 𝐿 ∈ [0,1] starts at zero and is increased toward one, the conditional misclassification rates go 

to zero. Therefore, if we find the first 𝐿 such that 𝑃(�̂� = 𝑖|𝐶 =  𝑗) ≤ α𝑖𝑗  for 𝑖, 𝑗 =  0,1,2 and 𝑖 ≠ 𝑗, then 

there always will be a solution. The optimal 𝐿 is the smallest 𝐿 such that each conditional 

misclassification rate is less than or equal to its target size. Figure 1a sketches the general shape of the 

symmetric neutral zone classifier. While this symmetric approach allows a uniform upper bound on the 
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conditional misclassification rates, it generally will not produce a classifier with balanced conditional 

misclassification rates. 

3.2 Asymmetric Boundaries 

 Rather than using a single 𝐿 to define neutral zone regions, an alternative is to separately 

choose an 𝐿 for each pairwise decision boundary individually. Namely, we define the asymmetric neutral 

zone classifier as 

�̂� = {

0 𝑝0 > 𝑝1 + 𝐿01 and 𝑝1 > 𝑝2 or 𝑝0 > 𝑝2 + 𝐿02 and 𝑝2 > 𝑝1

1 𝑝1 > 𝑝0 + 𝐿10 and 𝑝0 > 𝑝2 or 𝑝1 > 𝑝2 + 𝐿12 and 𝑝2 > 𝑝0

2
𝑁

𝑝2 > 𝑝0 + 𝐿20 and 𝑝0 > 𝑝1 or 𝑝2 > 𝑝1 + 𝐿21 and 𝑝1 > 𝑝0

otherwise

 

( 2 ) 

where 𝐿𝑖𝑗 ∈ [0,1] is the size of the neutral zone when deciding on class 𝑖 over class 𝑗. If all 𝐿𝑖𝑗 = 0, then 

�̂� is the traditional classifier that has no neutral zone. 

Otherwise, for an observation to be assigned a class, the probability of that class must be larger 

than the probabilities of the other two classes by margins defined by their respective 𝐿𝑖𝑗’s. Each 𝐿𝑖𝑗 only 

affects the classification boundary when class 𝑗 is the second-most likely category after class 𝑖. Figure 1b 

sketches the general shape of the asymmetric neutral zone classifier. 
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(a) (b) 

Figure 1: Symmetric (a) and Asymmetric (b) neutral zone classifiers. Dotted lines represent the boundaries of the no neutral zone 
classifier. 

 It can be verified that the geometrical area of the neutral zone as a proportion of the entire 

classification region is ∑ ∑
Lij

12
(2 − Lij)/(1/2)ji  for 𝑖, 𝑗 =  0,1,2 and 𝑖 ≠ 𝑗. This area may be used to 

roughly compare the size of alternative neutral zone classifiers. However, this area differs from the 

proportion of observations that fall within the neutral zone due to the fact that the latter depends on 

the underlying class-conditional distributions of the features. Notwithstanding that, Table 3 displays the 

area in terms of the proportion of the entire classification region for different choices of 𝐿𝑖𝑗 = 𝐿, i.e. the 

single 𝐿 scenario which generates a symmetric neutral zone. 

Table 3: Proportion of classification region that is taken up by the neutral zone for cases when 𝐿𝑖𝑗 = 𝐿. 

𝐿 Area of Neutral Zone 

0.05 0.0975 
0.10 0.1900 
0.25 0.4375 

1 − 1/√2 0.5000 

0.50 0.7500 
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3.3 Controlling Conditional Misclassification Rates 

Conditional misclassification rates of the proposed neutral zone classifier can be controlled by 

selecting 𝐿𝑖𝑗 such that 𝑃(�̂� = 𝑖|𝐶 = 𝑗) ≤ α𝑖𝑗. If α𝑖𝑗 = α, for all 𝑖, 𝑗, and some constant α, better balance 

of the conditional misclassification rates will be achieved. As the 𝐿𝑖𝑗’s approach one, the conditional 

misclassification rates go to zero. Both the symmetric and the asymmetric neutral zones will either give 

the same predicted class as the traditional classifier or change the predicted class to “neutral.” Thus, no 

new misclassifications are introduced by using the neutral zone classifier. For each 𝑖, the pair of 𝐿𝑖𝑗’s are 

found jointly since a single 𝐿𝑖𝑗 affects only two of the six conditional misclassification rates. For example, 

(𝐿01, 𝐿02) are found from the equations 𝑃(�̂� = 0|𝐶 = 1) ≤ α01 and 𝑃(�̂� = 0|𝐶 = 2) ≤ α02 and 

similarly for (𝐿10, 𝐿12) and (𝐿20, 𝐿21). When there is more than one solution, the practitioner can select 

the one that minimizes the overall probability of a neutral zone classification.  

3.4 Grid Search 

A straightforward approach to finding the 𝐿𝑖𝑗 is to use a grid search as follows. First, the 𝑝0, 𝑝1, 

and 𝑝2 probabilities are obtained for all the observations in the training data set. As explained in the 

previous section, we find the 𝐿𝑖𝑗 two at a time. Consider the case of finding 𝐿01 and 𝐿02. For each 

(𝐿01, 𝐿02) on a unit grid, use the predicted classes for the training data to estimate 𝑃(�̂� = 0|𝐶 = 1) and 

𝑃(�̂� = 0|𝐶 = 2). Then choose the (𝐿01, 𝐿02) that gives the conditional misclassification rates closest to 

α01 and α02 without exceeding them. Perform this same search similarly to find (𝐿10, 𝐿12) and 

(𝐿20, 𝐿21). 

3.5 Feature Space Representation 

In some situations, the classifier in Equation (2) can be inverted to display the decision 

boundaries in the feature space. We illustrate this in a Bayes classification setting with two dimensions. 
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Let π𝑖  represent the prior class probabilities. Suppose the features in each class follow the probability 

density function 𝑓𝑖(𝑥). Then 𝑝𝑖 = π𝑖𝑓𝑖(𝑥)/ ∑ π𝑗𝑓𝑗(𝑥)2
𝑗=0  are the posterior class probabilities. These 

probabilities are used in �̂� from Equation (2) to obtain the predicted classes. Let 𝐴0, 𝐴1, 𝐴2, and 𝐴𝑁 

denote the regions in the feature space that correspond to the predicted labels 0, 1, 2, and 𝑁, 

respectively, from Equation (2). 

𝐴0 = {𝑥: 𝑝0 > 𝑝1 + 𝐿01, 𝑝1 > 𝑝2} ∪ {𝑥: 𝑝0 > 𝑝2 + 𝐿02, 𝑝2 > 𝑝1} 

𝐴1 = {𝑥: 𝑝1 > 𝑝0 + 𝐿10, 𝑝0 > 𝑝2} ∪ {𝑥: 𝑝1 > 𝑝2 + 𝐿12, 𝑝2 > 𝑝0} 

𝐴2 = {𝑥: 𝑝2 > 𝑝0 + 𝐿20, 𝑝0 > 𝑝1} ∪ {𝑥: 𝑝2 > 𝑝1 + 𝐿21, 𝑝1 > 𝑝0} 

𝐴𝑁 = 𝐴0 ∪ 𝐴1 ∪ 𝐴2 

The six conditional misclassification probabilities are calculated as 

𝑃(�̂� = 𝑖|𝐶 = 𝑗) = ∫ 𝑓𝑗(𝑥)
𝐴𝑖

 𝑑𝑥,     𝑖, 𝑗 ∈ {0,1,2}, 𝑖 ≠ 𝑗 

In addition, the conditional neutral zone rates are given by 

𝑃(�̂� = 𝑁|𝐶 = 𝑗) = ∫ 𝑓𝑗(𝑥)
𝐴𝑁

 𝑑𝑥,     𝑗 ∈ {0,1,2} 

Although the regions of integration are complex, the integrals can be evaluated easily using simulation 

techniques. We can use the simulated distributions in the grid search explained in Section 3.4 to 

estimate the conditional misclassification rates and determine the 𝐿𝑖𝑗. 

 When the 𝑓𝑖(𝑥) are bivariate normal, the regions 𝐴0, 𝐴1, 𝐴2, and 𝐴𝑁 can be graphed in the 

feature space. This is demonstrated in Figure 2 and 3. The linear boundaries in Figure 2 are a 

consequence of assumed equal covariance matrices, while the spherical boundaries in Figure 3 are a 

consequence of unequal, but diagonal, covariance matrices.  
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Figure 2: Neutral zone in the feature and posterior space for 𝑋 ∼ 𝑁(𝜇𝑖 , 𝛴) where 𝜇0 = (1,1), 𝜇1 = (3,3), 𝜇2 = (5,5), 𝛴0 = 𝛴1 =
𝛴2 = 𝐼2, and 𝜋𝑖 = 1/3 for 𝑖 = 0,1,2. The 𝐿𝑖𝑗 are found to give conditional misclassification probabilities less than or equal to 

0.1. The dotted lines show the no neutral zone classifier boundaries. 
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Figure 3: Neutral zone in the feature and posterior space for 𝑋 ∼ 𝑁(𝜇𝑖 , 𝛴) where 𝜇0 = (1,1), 𝜇1 = (3,3), 𝜇2 = (5,5), 𝛴0 = 𝐼2, 
𝛴1 = 2 ∗ 𝐼2, 𝛴2 = 3 ∗ 𝐼2, and 𝜋𝑖 = 1/3 for 𝑖 = 0,1,2. The 𝐿𝑖𝑗 are found to give conditional misclassification probabilities less 

than or equal to 0.1. The dotted lines show the no neutral zone classifier boundaries. 

 

4. Example Application 

4.1 Word2Vec 

We return to our motivating application from Section 2. When working with text data, we first 

need to transform the text into numeric values. We investigated several directions to achieve this and 

found Word2Vec to be the most effective for our purposes [12-14]. The main purpose of Word2Vec is to 

try to predict words that are written together [15-17]. A key step in that process is mapping of words to 

numerical features. Word2Vec is a mapping based on a neural network and was originally proposed with 

a choice of two algorithms: continuous bag-of-words (CBOW) and skip-gram. In this paper, we will focus 
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on the former. The CBOW algorithm attempts to predict a “center” word based on the given “context” 

words. 

A visual map of the CBOW algorithm is displayed in Figure 4. When training the CBOW 

algorithm, we move through each word in each comment, treating it as the center word, 𝑤. The context 

words are determined in a window around 𝑤. The window size is inputted by the user. The input layer 

of the neural network consists of one-hot vectors 𝑏1, 𝑏2, … , 𝑏𝑐 representing the context words. The one-

hot vectors have length 𝑑, where 𝑑 is the number of words in the entire corpus of comments and are 

zero everywhere except for a 1 at the position of the word in a dictionary formed from the corpus. 

These input vectors are used to extract rows from a to-be-determined 𝑑 × 𝑚 matrix, 𝑊, where 𝑚 is 

inputted by the user. An element-wise sum on the extracted rows creates the latent vector 𝑢𝑤. Then 

matrix multiplication is performed with 𝑢𝑤 and another to-be-determined matrix 𝑈. The result is a 

vector, 𝑣, which is inputted to a softmax function that uses a normalization transformation to create a 

vector, 𝑝, of length 𝑑 that consists of the probability that each word is the center word. This vector of 

probabilities is used with the one-hot vector of the true center word to compute the loss function. The 

cumulative loss is an aggregation of the loss from performing this process with each word as the center 

word. The fitting process solves for the 𝑊 and 𝑈 that minimize the aggregated loss. 
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Figure 4: Map of the CBOW algorithm used in Word2Vec 

There are several hyperparameters that may be adjusted in Word2Vec. These include the 

window size – number of words to consider around the center word, number of features – length of the 

latent vector for each word, and occurrence threshold – number of times a word must occur to be 

considered one of the 𝑑 words. We have used the default values recommended for each of these in the 

R package word2vec [18]. 

In our application, we do not need to predict words given context words. Instead, we can extract 

the matrix of word embeddings, 𝑊, from within the projection layer of Word2Vec. With the fitted 𝑊, 

we have a matrix where each row represents a word in our corpus and the columns represent numerical 

features. For each word in a comment, we extract the corresponding rows of 𝑊 to get a matrix of word 

embeddings for the comment. After normalizing the vector of column sums to account for the length of 

the comment, we obtain a numeric vector of length 𝑚 that can be used as the features in a multinomial 

logistic classifier. In the following sections, we use 5-fold cross-validation to evaluate the accuracy of the 

classifier. Each training set is used to fit the Word2Vec model, fit the multinomial logistic regression 

model, and find the 𝐿𝑖𝑗’s. 
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4.2 UCSC Data 

First, we analyze 104,143 comments from instructor evaluations at the University of California, 

Santa Cruz. Recall that the comments labeled as “negative,” “positive,” and “other” have been defined 

as Class 0, Class 1, and Class 2, respectively. The results of a largest-probability classifier using 

multinomial logistic regression were presented earlier in Table 1. In this section, we incorporate an 

asymmetric neutral zone to the same data to lower the conditional misclassification rates. Setting each 

α𝑖𝑗 = α = 0.1 with an 80-20 train-test split of the data, we get the 𝐿𝑖𝑗’s seen in Figure 5. The points 

plotted in this figure are the 20,828 observations from test set. Approximately 20% of the test set falls 

into the neutral zone. 

 
Figure 5: Asymmetric neutral zone applied to a test set of comments from UCSC. Neutral zone 
is indicated by the transparent points. Dotted lines show the no neutral zone boundaries. 
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 Table 3 displays the 5-fold cross-validation estimates of the conditional misclassification rates 

for the UCSC data. It clearly shows that all six conditional misclassification rates have been lowered to be 

less than or equal 0.1. In two cases, the conditional misclassification rates are much lower than the 

target. As seen in Table 1, these two values were lower than the target before incorporating the 

asymmetric neutral zone, which explains why the corresponding 𝐿𝑖𝑗’s are zero. Notice that the overall 

misclassification rate of the classifier has been reduced from about 20% to about 10% by employing the 

neutral zone. The improved accuracy is the result of approximately 20% of the comments getting 

classified as neutral because they are too ambiguous to be confidently assigned to any of the classes. 

Table 3: Asymmetric neutral zone classifier applied to classification of comments from student evaluations of teaching at UCSC. 

 Predicted Label Conditional 
Misclassification 
Rate 

True Label Positive Negative Other Neutral 

Positive 0.763 0.017 0.045 0.174 0.063 
Negative 0.100 0.459 0.097 0.344 0.196 
Other 0.100 0.100 0.470 0.330 0.200 

Overall Rate    0.234 0.114 
 

4.3 UCR 

 Next, we incorporate the asymmetric neutral zone into the multinomial logistic classifier from 

the 34,739 comments from University of California, Riverside. Again, we set each α𝑖𝑗 = 𝛼 = 0.1 with an 

80-20 train-test split of the data and obtain Figure 6. Approximately 30% of the 6,948 test set 

observations fall into the neutral zone. 
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Figure 6: Asymmetric neutral zone applied to a test set of comments from UCR. Neutral zone is indicated by the transparent 
points. Dotted lines show the no neutral zone boundaries. 

In Table 4, we present the results of 5-fold cross-validation for the asymmetric neutral zone 

classifier applied to UCR data. All conditional misclassification rates have been lowered appropriately to 

be less than or equal to the target value. As with the UCSC data, there are two instances where the 

conditional misclassification rate is much lower than the target. This is a result of these rates being 

lower than the target α before the neutral zone was implemented and gives one of the 𝐿𝑖𝑗’s a value of 

zero. Notice that while the conditional misclassification rates are roughly comparable for the two 

campuses, the set of 𝐿𝑖𝑗’s needed to achieve that are different. The UCR data leads to slightly more 

comments being labeled as neutral. 
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Table 4: Asymmetric neutral zone classifier applied to classification of comments from student evaluations of teaching at UCR. 

 Predicted Label Conditional 
Misclassification 
Rate 

True Label Positive Negative Other Neutral 

Positive 0.734 0.015 0.036 0.215 0.051 
Negative 0.078 0.396 0.100 0.427 0.178 
Other 0.098 0.103 0.281 0.518 0.201 

Overall Rate    0.303 0.098 
 

The main difference between the two universities is how the comments were prompted. The 

comments at UCR were all responses to a single, broad question asking the student to “comment on 

how the instructor's teaching helped your learning of the material in this course.” On the other hand, 

UCSC used different, more targeted questions to prompt comments from students. While the fitted 

classifiers from the two campuses are similar, we recommend that each university develop its own 

classifier. R code is provided in the supplementary material to create the asymmetric neutral zone 

classifier from any set of training data. 

5. Summary 

 In this paper, we have developed a neutral zone classifier for the three-class setting that can 

improve the balance of conditional misclassification rates and lower the overall misclassification rate. 

No assumptions are necessary about the class-conditional distributions; therefore, this classifier may be 

employed in any three-class scenario where the probabilities for each class are obtained from any of a 

variety of methods that create them. There are two major benefits of the employment of a neutral zone: 

avoidance of misclassifying borderline observations and control of the conditional misclassification 

rates. The conditional misclassification rates of the neutral zone classifier are never worse than if the 

neutral zone was not used, and the overall misclassification rate will always be better.  

 This work was motivated by student comments written for instructor evaluations. We have 

shown how Word2Vec and multinomial logistic regression may be combined to analyze text data with 
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three classes. The neutral zone classifier in this setting assists a reviewer in the reading of many 

comments by providing at a glance the frequency of comments that are classified as positive, negative, 

or other. The predicted labels also allow the comments to be grouped so that they can be presented to 

the reviewer in sorted order, which aids the selection of a representative sample of the comments for 

full reading. 
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