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RESEARCH ARTICLE
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Abstract

Glial cells regulate multiple aspects of synaptogenesis. In the absence of Schwann cells, a

peripheral glial cell, motor neurons initially innervate muscle but then degenerate. Here,

using a genetic approach, we show that neural activity-regulated negative factors produced

by muscle drive neurodegeneration in Schwann cell-deficient mice. We find that thrombin,

the hepatic serine protease central to the hemostatic coagulation cascade, is one such

negative factor. Trancriptomic analysis shows that expression of the antithrombins serpin

C1 and D1 is significantly reduced in Schwann cell-deficient mice. In the absence of periph-

eral neuromuscular activity, neurodegeneration is completely blocked, and expression of

prothrombin in muscle is markedly reduced. In the absence of muscle-derived prothrombin,

neurodegeneration is also markedly reduced. Together, these results suggest that Schwann

cells regulate NMJs by opposing the effects of activity-regulated, muscle-derived negative

factors and provide the first genetic evidence that thrombin plays a central role outside of

the coagulation system.

Author summary

We utilized genetic methods to examine how Schwann cells prevent degeneration of

motor neurons (MNs) in the spinal cord. Blocking peripheral, neuromuscular activity

completely rescued MNs and neuromuscular junctions (NMJs) in erbB3 mutant mice

lacking Schwann cells, which normally exhibit profound neurodegeneration. We searched

for the molecular basis of this effect by examining the transcriptomes (all of the expressed

genes) in the muscle of control mice with Schwann cells and erbB3 mutant mice without

them. We found evidence that a negative signal expressed by muscle was regulated by

neural activity and normally blocked by factors produced in Schwann cells. When we
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eliminated this activity-induced negative signal (thrombin) from muscle, MNs and NMJs

were protected in erbB3 mutants, similar to the effects of eliminating activity. Together,

these results suggest that Schwann cells prevent neurodegeneration by inhibiting the effect

of activity-induced, muscle-derived negative factors, rather than by providing trophic pos-

itive factors.

Introduction

Synapses are the key elements of neural circuits underlying nervous system function. There-

fore, understanding cellular and molecular mechanisms of synapse formation and mainte-

nance is fundamental to neurobiology. During development, establishment of the mature

pattern of neuronal connectivity is achieved by the formation, differentiation, refinement and

maintenance of specialized synaptic contacts between pre-, peri- and post-synaptic cells. The

vertebrate neuromuscular junction (NMJ), a synapse between pre-synaptic motor axons,

peri-synaptic Schwann and postsynaptic skeletal muscle cells, has been an excellent model to

understand synapse formation and maintenance [1, 2]. Many of the neuronal and muscle-

derived factors regulating the spatial and temporal sequence of synaptogenesis have been iden-

tified. For example, the muscle-specific kinase (MuSK), low-density lipoprotein receptor-

related protein 4 (Lrp4) and adaptor protein rapsyn are required for the formation of the spa-

tially restricted pattern of the postsynaptic apparatus, including acetylcholine receptor (AChR)

clusters, known as the endplate band, whereas motor nerve-derived signals such as agrin and

acetylcholine (ACh) play opposing roles in the refinement and maintenance of the postsynap-

tic apparatus [3–13]. Similarly, muscle-derived factors such as β-catenin, Lrp4, fibroblast

growth factors and laminin β2 are required for branch positioning, presynaptic differentiation

and maturation of motor neurons [14–19].

The molecular signals from Schwann cells that regulate synapse formation and mainte-

nance, however, are presently unknown. One hint comes from studies of mutant mice lacking

Schwann cells as a result of the targeted deletion of neuregulin 1 (NRG1) or its erbB2 or erbB3

receptors [20–25]. Despite exhibiting a profound defasciculation, motor axons in Schwann

cell-deficient mice accurately navigate to their muscle targets, and, like in wild-type (WT)

embryos, nerve terminals make contacts in the middle of muscle fibers at embryonic day 14

(E14) [22]. However, nerve terminals and axons concurrently and completely degenerate by

E15.5- E16.5 [22] in a process that we refer to as developmental synaptic degeneration [26–28]

(see Results for details). Therefore, it is likely that these peripheral glial cells maintain develop-

ing newly-formed NMJs by providing signals to motor neurons and/or muscle cells. One

attractive possibility is that Schwann cells secrete neurotrophic factors to preserve the nascent

NMJ via promoting the survival of motor neurons (MNs) [29]. Alternatively or in addition,

peripheral glial cells may stabilize nascent NMJs via other pathways, similar to central glia

[30]. For example, perisynaptic Schwann cells modulate synaptic function at the postnatal

NMJ [31,32], raising the possibility that embryonic Schwann cells maintain newly-formed

NMJs by regulating activity-dependent signaling pathways in muscle and/or MNs. One family

of activity-dependent molecules potentially regulated by Schwann cells at the NMJ are prote-

ases. Administration of the broad-spectrum protease inhibitor leupeptin or the leech-derived

antithrombin hirudin delayed synapse elimination at the postnatal NMJ [33,34]. More recent

studies have shown a role for matrix metalloproteinases, neurotrypsin and calpains in regulat-

ing different aspects of neuromuscular synaptogenesis [35–37].
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Here we provide genetic evidence that Schwann cells maintain nascent neuromuscular syn-

apses by antagonizing the deleterious effects of peripheral neuromuscular activity. First, synap-

tic contact forms prematurely in erbB3 mutant mice lacking Schwann cells, suggesting that

alterations in signaling induced by synaptic activity may contribute to synaptic degeneration

in these mutants. Consistent with this idea, developmental synaptic degeneration is completely

blocked in erbB3 mutants lacking ACh, muscle-derived ACh receptor, or evoked release of

ACh, suggesting that MNs can survive in the absence of Schwann cell-derived neurotrophic

factors. In order to identify molecular signals mediating this effect, we profiled gene expression

in muscle with and without Schwann cells. We unexpectedly found that two serine protease

inhibitors (serpins) classically viewed as anticoagulants, serpin C1 (i.e., antithrombin III) and

serpin D1 (i.e., heparin cofactor II) are expressed in muscle-derived Schwann cells and down-

regulated in muscle without Schwann cells. Because serpins C1 and D1 antagonize the activity

of thrombin, a serine protease central to the hemostatic proteolytic cascade and with established

cell signaling properties, we explored the impact of genetically imposed deficits of prothrombin

on synaptogenesis in erbB3 mutants. Remarkably, developmental synaptic degeneration was

ameliorated when the prothrombin gene was deleted either in all cells or in a muscle-specific

fashion or if the protease activated receptor-1 (PAR-1), a signaling receptor for thrombin, was

inactivated. These results reveal that a protease traditionally associated with coagulation serves

as a fundamental determinant of synaptogenesis and identify local thrombin signaling as a

nexus of positive and negative modifiers derived from multiple NMJ components. To our

knowledge, these studies provide the first genetic evidence that prothrombin derived from a

local, non-hepatic cell is biologically meaningful. Together, these findings indicate a complex

interaction between activity and glia that underlies the refinement and maintenance of develop-

ing neuromuscular synapses and have broader implications in understanding synaptic mainte-

nance and treating neurodegenerative diseases [26–28].

Results

Genetic ablation of Schwann cells causes developmental synaptic

degeneration

Previous results showed that in the absence of NRG1 signaling, Schwann cells fail to migrate

and proliferate along outgrowing peripheral nerves [20,25]. As a result, motor axons innervat-

ing the muscle target fail to travel in tightly associated bundles and instead appear defascicu-

lated [21–25]. Nevertheless, nerve terminals transiently form synaptic contact in the

appropriate endplate region of muscle fibers before swiftly undergoing degeneration between

E14.5-E15.5 [22]. Because NRG1 and its erbB receptors are expressed in multiple cell types in

the developing neuromuscular system, including MNs, Schwann and muscle cells, it is possible

that the loss of NRG1 signaling in MNs and/or muscle, rather than the absence of Schwann

cells, is responsible for developmental synaptic degeneration in erbB2 or erbB3 mutant mice.

In order to address this possibility, we genetically ablated Schwann cells by crossing Wnt1-Cre
mice to mice conditionally expressing the cytotoxic diphtheria toxin A-chain (Wnt1-DTA).

Similar to erbB2 and erbB3 mutant mice, which display a complete absence of Schwann cells in

the ventral roots as well as along the phrenic nerve and diaphragm motor endplates via histo-

logical, immunohistochemical and ultrastructural analysis [20,24]. Wnt1-DTA mice exhibit a

near-complete loss of immunohistochemically detectable Schwann cells (3.8±3.8 S100-positive

Schwann cells per hemi-diaphragm; n = 4). Wnt1-DTA mice also display a profound loss of

motor axons innervating the diaphragm at E15.5, similar to erbB mutants, based on the

absence of vesicular acetylcholine transporter (VAChT)-immunoreactive synaptic vesicles,

which are transiently observed along developing motor axons [38] (7±3.2 VAChT-positive

Glia maintain synapses by regulating neural activity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007948 March 14, 2019 3 / 26

https://doi.org/10.1371/journal.pgen.1007948


single motor axons per hemi-diaphragm; Wnt1-DTA; n = 4; Fig 1A). Thus, Schwann cell abla-

tion caused by the absence of NRG1-mediated activation of erbB2/3 receptors on Schwann

cells, rather than the loss of other NRG1 signaling pathways such as NRG1-mediated activation

of erbB2/4 receptors on muscle cells [39], causes developmental synaptic degeneration at the

NMJ.

Aberrant synaptic contact in mutant mice lacking Schwann cells

In order to identify the molecular mechanisms underlying Schwann cell-mediated protection

of NMJs, we examined the time course of developmental synaptic degeneration in the dia-

phragm muscle of erbB3 mutant mice. At E14.25, NMJs were maximally innervated in erbB3
mutant mice. At E14.75, nearly half of all NMJs exhibited neurofilament-labeled axon termi-

nals with swellings or fractured, discontinuous immunolabeling (47±8%; 50 NMJs per dia-

phragm analyzed, n = 3). Between E15 to E15.5, nearly all synaptic boutons and phrenic motor

axons had degenerated, with the few remaining axons exhibiting extensive fragmentation.

Interestingly, when erbB3 mutant diaphragm was examined at E14.25, the last age at which

the motor endplate retained complete innervation, we noticed a large increase in the propor-

tion of α-bungarotoxin (α-BTX)-stained postsynaptic AChR clusters that were apposed to

synaptophysin-immunoreactive presynaptic nerve terminals, when compared to wild-type

(WT) diaphragm (Fig 1B). The percentage of synaptic contact observed in erbB3 mutant mice

at E14.25 was not detected in WT embryos until E16.0, nearly 2 days later (30.7 ± 11% vs.

89.3 ± 6.5% innervation, P< 0.005, E14.25 erbB3 WT vs. mutant mice, 50 NMJs/ diaphragm;

n = 3). It is possible that Schwann cells directly and tightly regulate synaptic contact. Alterna-

tively, or in addition, the fasciculation of axons restricts their ability to navigate, and the loss of

fasciculation caused by the absence of Schwann cells results in increased synaptic contact of

axons or nerve terminals by chance. In either case, these results suggest that Schwann cells

play a role in the initial timing of neuromuscular synaptic contact, in addition to their role in

maintaining these synapses.

ACh elicits a muscle-derived retrograde signal to induce synaptic degeneration. It has

been shown that repeated stimulation of muscle in chick increases the degeneration of MNs

[40]. Because neuromuscular synaptic contacts formed precociously in erbB3 mutant mice, we

hypothesized that synaptic activity may contribute to developmental synaptic degeneration in

Schwann cell-deficient mice. In order to test this idea, we examined erbB3 mutant mice lacking

choline acetyltransferase (ChAT), the biosynthetic enzyme for ACh. ChAT mutants exhibit no

spontaneous or evoked ACh release[3]. In striking contrast to erbB3 mutant diaphragm, which

is largely devoid of motor axons at E15.5 (5.4±1.1 vs. 0.6±0.55 neurofilament-positive second-

ary phrenic nerve branches, erbB3 WT vs. erbB3 mutant mice; P<0.0005; n = 5), erbB3;ChAT
double mutant diaphragm contains more axons (5.4±1.1 vs. 98±22.3 neurofilament-positive

secondary phrenic nerve branches, erbB3 WT vs. erbB3;ChAT double mutant; n = 3; Fig 2A).

The increase of secondary branches in the diaphragm of double mutants likely reflects a com-

bination of the increase of motor axons caused by the blockade of cell death observed in the

ChAT single mutants [41,42] (Fig 2A) together with the defasciculation of motor axons

observed in the erbB3 single mutants. Similar results were observed in erbB2;ChAT double

mutant diaphragm (S1 Fig). These results show that developmental synaptic degeneration

induced by Schwann cell deletion is prevented by the absence of neural activity.

Next, we sought to determine whether nerve-evoked or spontaneous release of ACh is

required for developmental synaptic degeneration by eliminating Snap25 in erbB3 mutants,

which resulted in a loss of evoked but not spontaneous release of ACh [43]. Similar to ChAT
mutants, mice lacking both erbB3 and Snap25 exhibit a complete rescue of motor axons and
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innervated NMJs (5.4±1.1 vs. 102.3±25 neurofilament-positive secondary phrenic nerve

branches, erbB3 WT vs. erbB3;Snap25 double mutant; n = 3; Fig 2A), suggesting that evoked

activity is required for triggering this degenerative process. The presynaptic terminals of res-

cued motor axons in Snap25;erbB3 double mutant diaphragm terminated onto postsynaptic α-

BTX-labeled AChRs within a centrally located endplate band, similar to WT NMJs, at E15.5

(Fig 2B), as well as at E18.5 (97.7±2.5% vs. 97.7±3.2% VAChT-positive, α-BTX-labeled AChR

clusters, erbB3 WT vs. erbB3;Snap25 double mutant; n = 3; Fig 2C and 2D). Finally, in order

to examine whether the evoked release of ACh mediates its effect on muscle-derived AChRs,

rather than motor axon-derived AChRs, we took advantage of AChRα1 mutant mice. The α1

subunit is restricted to muscle, mediates the regressive effects of ACh on muscle, and is

required for the assembly of the AChR complex in muscle [44]. Similar to the effects of the

removal of Snap25 and ChAT, genetic inactivation of AChRα1 in erbB3 mutant mice pre-

vented developmental synaptic degeneration (5.4±1.1 vs. 91±19.5 neurofilament-positive sec-

ondary phrenic nerve branches, erbB3 WT vs. erbB3; AChRα1 double mutant; n = 3; Fig 2A),

suggesting that evoked neurotransmission through muscle AChRs is required for the deleteri-

ous effects of activity on the maintenance of NMJs in Schwann cell-deficient muscle. Taken

together, these results suggest that the evoked release of ACh, acting through muscle-derived

AChR, induces a negative retrograde signaling pathway that triggers developmental synaptic

degeneration in the absence of Schwann cells.

Endogenous thrombin inhibitors are expressed by Schwann cells

In order to identify muscle-derived, activity-regulated factors that might induce this negative

signaling pathway, we performed transcriptome analysis on diaphragm samples isolated from

erbB3 WT and mutant mice at E14.75, when maximal denervation was observed. We per-

formed experiments on two different diaphragm samples and found that 240 and 152 genes

were upregulated and 242 and 240 genes were downregulated in each erbB3 WT vs. mutant

muscle sample (S2A and S3A Figs). Expression of Schwann cell-specific markers such as

Sox10 and myelin protein zero (MPZ) were reduced in erbB3 mutant relative to WT muscle

(0.5% and 2.4% by RPKM; Reads Per Kilobase Million), further corroborating the absence of

Schwann cells and their associated RNAs in erbB3 mutant muscle (S2B Fig).

We used DAVID (Database for Annotation, Visualization and Integrated Discovery) to

perform gene ontology (GO) analysis for biological process (BP), cellular component (CC)

and molecular function (MF) on differentially expressed genes in each of the two comparisons

between erbB3 WT and mutant muscle (Table 1 and S3B and S3C Fig). Significantly different

terms of BP, CC or MF were then compared using Cytoscape in order to visualize the consis-

tency between each of the two comparisons as well as the overlap between the terms them-

selves. We found that gene products differentially expressed in muscle of erbB3 WT vs. mutant

mice were often associated with wound healing, coagulation and serine protease inhibition

Fig 1. Developmental synaptic degeneration in the absence of Schwann cells. (A) Genetic ablation of Schwann cells,

similar to erbB inactivation, leads to developmental synaptic degeneration of the neuromuscular junction (NMJ).

Diaphragms were dissected at E15.5 from Wnt1-Cre:Rosa26LoxSTOPLox Diptheria Toxin A Chain (Wnt1-DTA; right column)

and wild-type mice (+/+; left columns), and stained with antibodies against S100 to label Schwann cells (green) and

vesicular acetylcholine transporter (VAChT) to label presynaptic motor axon terminals (red). Scale bar = 70 μm.

Representative example of n = 4. (B) Low- and high-power images (top and bottom panels, respectively) of diaphragm

muscle at E14.25 show a strikingly higher percentage of α-bungarotoxin (α-BTX)-labeled postsynaptic nicotinic

acetylcholine receptors (AChRs; red in bottom panels) receiving contact from synaptophysin-positive (Syp) motor

axon terminals (green in top and bottom panels) in erbB3 mutant (erbB3-/-; right panels) vs. wild-type (erbB3+/+; left

panels) mice; arrows denote unapposed AChRs, arrowheads denote apposed or innervated AChRs. Scale bar in top

panels = 250 μm; in lower panels = 50 μm.

https://doi.org/10.1371/journal.pgen.1007948.g001
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(Fig 3A). Several transcripts were downregulated in erbB3 mutant muscle and, interestingly,

two of them encode classic inhibitors of the procoagulant serine protease thrombin, namely

antithrombin III (serpin C1) and heparin cofactor II (serpin D1) (Fig 3B). The specificity of

these serpin expression changes was illustrated by the fact that a third serpin with antithrom-

bin potential, protease nexin I (PN-1; serpin E2), was not differentially expressed (Fig 3B). Pre-

vious in vitro studies showed that thrombin is expressed by muscle and causes motor neuron

death [45,46]. Therefore, we hypothesized that the loss of thrombin inhibition, caused by the

reduction of antithrombin expression in erbB3 mutant muscle, drives developmental synaptic

degeneration in these mice.

We first verified expression differences of serpins C1 and D1 in erbB3 WT vs. mutant mus-

cle by qRT-PCR (S2D Fig). To obtain direct evidence of Schwann cell-specific serpin C1 and

D1 expression, we employed a cell-specific profiling technique to probe the muscle-derived

Schwann cell transcriptome. Ribotag mice expressing a Cre-dependent, hemagglutinin (HA)

epitope-tagged Rpl122 ribosomal protein [47] were crossed to Wnt1-Cre mice. We confirmed

via immunohistochemistry that the HA epitope was robustly expressed by phrenic nerve-asso-

ciated Schwann cells in the diaphragm at E14.75 (S4A Fig). Next, we isolated ribosome-associ-

ated mRNAs from diaphragm muscle of these mice and performed RNA-Seq (n = 2; see

methods for details). Raw sequencing reads clearly showed an abundance of Sox10 in muscle

samples derived from Wnt1-Ribotag and erbB3 WT but not erbB3 mutant mice (S4B Fig). Ser-

pins C1 and D1 were also observed in muscle samples derived from Wnt1-Ribotag mice (S4C

Fig 2. Evoked activity through muscle-derived AChRs is required for developmental synaptic degeneration induced by

Schwann cell ablation. (A) E15.5 diaphragms from the indicated genotypes were dissected and immunostained with

antibodies against neurofilament. In contrast to the absence of motor innervation observed in erbB3 mutant (erbB3-/-) mice,

erbB3 mutant mice lacking ChAT, Snap25, or AChRα1 exhibit a complete lack developmental synaptic degeneration. The

rescued axons are spread out as a consequence of the absence of Schwann cell-mediated fasciculation. Scale bar = 1000 μm. At

least n = 3 for every genotype. (B) The motor endplate band is correctly positioned in the central region of Snap25; erbB3
double mutant diaphragm. E15.5 diaphragms were labeled with antibodies against motor nerve (anti-neurofilament; NF;

green), the presynaptic marker vesicular acetylcholine transporter (VAChT; red), and Cy5-α-BTX (blue). Scale bar = 150 μm.

(C) Rescued synapses in E18.5 Snap25; erbB3 double mutant diaphragm show apposition of VAChT-rich nerve terminals to

postsynaptic, α-BTX-labeled AChRs. Scale bar = 100 μm, n = 3. (D) The relative number of VAChT-positive innervated

AChRs is higher in E15.5 erbB3; Snap25 double mutant vs. wild-type mice (similar to the increased innervation observed in

single erbB3 mutant vs. wild-type mice at E14.25), but is equal between these genotypes by E18.5 (n = 3 diaphragms for wild-

type and double mutant mice, 50 NMJs counted per diaphragm).

https://doi.org/10.1371/journal.pgen.1007948.g002

Table 1. Functional categories of genes upregulated in muscle in the presence of Schwann cells.

erbB3+/+ #1

vs.

erbB3-/- #1

(240)

erbB3+/+ #2

vs.

erbB3-/- #2

(152)

GO Categories Category #s Term Corrected P value Category #s Term Corrected P value

Molecular Function GO:0030414 Peptidase inhibitor activity 4.48E-27 Endopeptidase inhibitor activity GO:0004866 1.25E-08

GO:0004866 Endopeptidase inhibitor activity 3.25E-26 Serine-type endopeptidase

Inhibitor activity

GO:0004867 2.63E-08

Cellular Component GO:0005576 Extracellular region 1.24E-24 Extracellular region part GO:0044421 4.76E-17

GO:0005615 Extracellular space 4.62E-19 Extracellular region GO:0005576 5.42E-17

Biological Process GO:0009611 Response to wounding Response to wounding GO:0009611 0.009146505

GO:0050817 Coagulation

Examples of the most significantly enriched Gene Ontology (GO) terms in the list of upregulated genes in WT vs. erbB3 mutant muscle, as annotated. The P value

indicated was corrected for multiple testing using the Benjamini-Hochberg me

https://doi.org/10.1371/journal.pgen.1007948.t001
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Fig). Together, these studies show that Schwann cells in the diaphragm express serpins C1 and

D1 at an age at which MNs require Schwann cells for synaptic maintenance.

In order to determine whether Schwann cell-derived endogenous antithrombins were capa-

ble of blocking the degenerative effects of thrombin in vitro, we modified a MN explant out-

growth assay [48]. We cultured cervical spinal cord explants prepared from E12.5 HB9:GFP
mice (expressing GFP in motor axons) with the growth factor GDNF for one day, imaged the

explant, and then further cultured these explants in either control, GDNF- or thrombin-con-

taining media for an additional 24 hours prior to re-imaging. Thrombin exerted a dose-depen-

dent response, inducing the degeneration of nearly all motor axons at 200 nM (Fig 4A). Pre-

incubation of thrombin for 15 minutes with control media or serum-free media that was con-

ditioned by differentiated C2C12 muscle cells for 24 hours failed to block the degenerative

effect of thrombin on motor axons in vitro (Fig 4B). In contrast, when thrombin was pre-incu-

bated with primary astrocyte- or primary Schwann cell-conditioned media, the negative effects

of thrombin were potently inhibited. A similar protective effect from thrombin-induced

degeneration was found by pretreatment with the thrombin-specific inhibitor from leech,

Fig 3. Functional genomic analysis of genes differentially regulated in diaphragm muscle containing (wild-type; erbB3+/+) or lacking (mutant; erbB3-/-) peripheral

Schwann cells. (A) Gene Ontology (GO) term networks from the results of GO analysis of the set of genes significantly upregulated in erbB3 wild-type vs. mutant

muscle were overlapped in Cytoscape. Two individual comparisons (each one between erbB3 wild-type- and mutant-derived muscle samples) were performed and are

represented by the blue and green lines. The number of gene members of each term, and degree of overlap, or genes common, between multiple terms are represented

by node and edge attributes. Highly interconnected nodes with overlap from both comparisons are particularly noteworthy. (B) Heatmap showing fold-changes in gene

expression of some individual members of the GO terms differentially regulated in erbB3 wild-type and mutant muscle. Expression values were determined by the

number of mapped reads normalized to gene length and depth of sequencing.

https://doi.org/10.1371/journal.pgen.1007948.g003
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Fig 4. Thrombin causes motor axon degeneration in vitro and is blocked by pre-incubation with glia- but not muscle-

conditioned medium. E12.5 cervical spinal explants from HB9:GFP mice were grown on laminin, treated at plating with 5 nM

GDNF in B27-containing neurobasal (B27-NB) medium, and re-imaged 24 hours after specific treatments, and the number of GFP-

positive motor axons with pathological swelling or other signs of degeneration were quantified at pre- and post-treatment intervals.

(A) Representative images of explants each treated with GDNF at plating and then treated with GDNF (top panels) or 200 nM

recombinant thrombin (lower panels) one day after plating. Images were captured one day after plating (left column), and one and

two days after treatment (middle and right panels, respectively). Scale bar = 200 μm (B) Quantification of axon degeneration,

represented by the percentage of degenerating motor axons observed one day after vs. before treatment. Thrombin exerted a dose-

dependent increase in the number of degenerating motor axons, which was significantly different from that in control, GDNF-

treated, muscle-conditioned medium (MCM)-, Schwann cell-conditioned medium (SCCM)-, and astrocyte-conditioned medium

(ACM)-treated explants (���, P<0.005, n = 3). Pre-incubation for 15 minutes of 200 nM thrombin with hirudin (at 500 μg/mL),

SCCM, or ACM, but not MCM (not significant; ns), blocked the degenerative effects of thrombin on motor axons (���, P<0.005, ��,
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hirudin (Fig 4C). Based on the specificity and known mechanism of action of hirudin, these in
vitro studies demonstrate that thrombin proteolytic activity (and not merely prothrombin) is a

determinant of developmental synaptic degeneration.

Muscle-derived prothrombin induces developmental synaptic degeneration

through PAR-1

In order to determine if the loss of Schwann cell-associated antithrombins, including serpins

C1 and D1, is responsible for developmental synaptic degeneration in erbB3 mutant muscle,

we examined the effect of genetic deletion of the prothrombin gene on synaptic degeneration

in erbB3 mutants. Constitutive prothrombin deficiency results in a loss of vascular integrity

and an embryonic lethal phenotype in most, albeit not all embryos, by E10.5 [49,50]. This par-

tial embryonic lethal phenotype provided the opportunity to investigate the role of thrombin

at the NMJ in embryos that lacked Schwann cells. We found a striking preservation of motor

innervation in prothrombin-deficient erbB3 mutant diaphragm, compared to erbB3 mutant

littermates with one or two copies of the prothrombin gene (5.2±1.3 vs. 34.7±9.3 synaptophy-

sin-positive secondary phrenic nerve branches, erbB3 WT vs. erbB3;prothrombin double

mutant; n = 3; 72.3±10.3% vs. 82.7±5% synaptophysin-positive clusters, erbB3 WT vs. erbB3;
prothrombin double mutant, at least 50 NMJs counted per diaphragm, n = 3; Fig 5A). Deletion

of prothrombin alone had no effect on motor innervation of the diaphragm, suggesting that

thrombin does not prune axon branches or NMJs in the presence of Schwann cells, but triggers

the degeneration of these same synapses in the absence of Schwann cells. Intriguingly, the res-

cue of motor innervation in erbB3 mutant mice lacking prothombin is not as complete as in

those lacking evoked activity, suggesting that, in addition to prothrombin, other factors may

contribute to developmental synaptic degeneration. Along these lines, we examined the role of

pro-brain-derived neurotrophic factor, which is stimulated by activity and induces refinement

of Xenopus neuromuscular synapses through activation of the neurotrophin receptor p75 [51],

but failed to detect the rescue of developmental synaptic degeneration in the p75; erbB3 double

mutant mice (S5A Fig).

The predominant sources of prothrombin during embryonic development are the yolk sac

and liver [52]. Because glia are known to regulate permeability of the blood-brain barrier in

the CNS and blood-nerve barrier in the periphery [53], one possible way by which thrombin

may trigger the loss of motor innervation is through an increase of vascular permeability in

peripheral Schwann cell-deficient muscle, which would allow egress into the nerve of systemic

molecules such as thrombin. However, when we examined vessel structure of the diaphragm

by PECAM1 immunostaining or vessel integrity by FITC dextran staining after transcardial

injection, we were unable to observe any overt differences between erbB3 WT and mutant dia-

phragm at E14.25, before the onset of denervation (S5B Fig). On the other hand, previous

findings suggest that skeletal muscle cells express and secrete active thrombin [34,45,54]. In

order to genetically test this idea, we took advantage of conditional prothrombin mutants [55].

Similar to the effects of constitutive deletion of prothrombin, conditional deletion in muscle of

prothrombin in an erbB3 WT background failed to affect the pattern or number of innervated

NMJs at E15.5. However, the NMJs of erbB3 mutant mice lacking prothrombin in muscle

exhibited strikingly preserved motor innervation compared to erbB3 mutant littermates

expressing one or two copies of the prothrombin gene in muscle (5.2±1.3 vs. 44.7±10.5

P<0.001). Treatment with MCM alone produced a significantly higher number of degenerating axons vs. CTL or GDNF treatment

(cross, P<0.005).

https://doi.org/10.1371/journal.pgen.1007948.g004
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Fig 5. PAR-1 mediates thrombin-induced developmental synaptic degeneration caused by Schwann cell ablation. (A) E15.5 diaphragms from the indicated

genotypes were dissected and immunostained with antibodies against synaptophysin (green). Note the retention of motor innervation of NMJs in prothrombin
(FII), erbB3;FII double mutant (erbB3-/-; FII-/-; bottom right panel) vs. erbB3 single mutant diaphragm (erbB3-/-; bottom left panel). In contrast, there is no

difference in the motor innervation between prothrombin wild-type (FII+/+) and mutant (FII-/-) diaphragm (top panels). (B) Muscle-specific elimination of

prothrombin in erbB3 mutants (erbB3-/-; FIIFlox/Flox; Myf5-Cre; bottom panel) results in the rescue of presynaptically innervated NMJs. Scale bar in

A-C = 100 μm. (C) PAR1; erbB3 double mutant diaphragm (erbB3-/-; PAR1-/-; bottom panel) also exhibits a rescue of motor innervation, whereas PAR1 single
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synaptophysin-positive secondary phrenic nerve branches, erbB3 WT vs. erbB3;conditional

prothrombin double mutant; n = 3; Fig 5B and 5D).

Prothrombin is unlikely to mediate the regressive effects of activity in the presence of

Schwann cells, because the number of axon branches and synapses is similar between WT and

constitutive or conditional prothrombin mutants (Fig 5A), whereas it is greater in ChAT
mutants [41,42]. One potential explanation underlying this observation is that in the presence

of Schwann cells, prothrombin is not expressed, whereas in the absence of Schwann cells, pro-

thrombin is induced. However, prothrombin is expressed at similar levels in erbB3 WT and

mutant diaphragm (S6A Fig). Alternatively, the activation of prothrombin to thrombin by

enzymes such as coagulation factor 10a (factor Xa) or fibrinogen-like protein 2 (fgl2) may be

induced by the absence of Schwann cells. Although the expression of the gene encoding factor

Xa, factor X, was not reliably detected by RNA-Seq at E14.75, fgl2 was not differentially

expressed in these samples (0.5 ± 0.2 vs. 0.6 ± 0.064 RPKM, erbB3 WT vs. mutant, P = 0.51,

n = 2). However, when we examined factor X and fgl2 expression by qPCR at E14.25, we

observed enhanced levels of factor X in erbB3 mutant diaphragm lacking Schwann cells (15.1

±2.1 vs. 19.7±1.6 fold-change relative to WT adult, E14.25 erbB3 WT vs. mutant, P = 0.036,

n = 3), but no change in fgl2 or prothrombin levels. These data suggest that Schwann cells may

normally prevent the activation of prothrombin to thrombin by regulating the expression of

factor X. In order to determine if factor X is developmentally regulated, similar to prothrom-

bin [34], we evaluated its expression in the diaphragm endplate region of WT mice at E14.25,

P15, and adult. Similar to prothrombin, we found that factor X expression is developmentally

regulated, with higher expression occurring at E14.25 and P15, relative to adult (S6B Fig). In

contrast, the expression of serpins C1 and D1 in the endplate region of the diaphragm were

not significantly different at each of these timepoints (serpin D1: 1.24 ± 0.15 vs. 1.16 ± 0.07 vs.

1.04 ± 0.08 fold-change relative to WT adult, E14.25 vs. P15 vs. adult; serpin C1: 1.19 ± 0.12 vs.

1.27 ± 0.06 vs. 1.1 ± 0.1 fold-change relative to WT adult, E14.25 vs. P15 vs. adult).

We next explored how neuromuscular activity regulates the response of Schwann cell-defi-

cient NMJs to muscle-derived prothrombin. While the expression levels of serpins C1 and D1

were indistinguishable in erbB3 mutant muscle with or without activity, prothrombin levels

were markedly reduced in erbB3 mutant muscle lacking activity (S6A Fig). In order to deter-

mine if inactivity exerts the same effects on prothrombin protein expression as on gene expres-

sion in muscle, we examined C2C12 myotubes stimulated with the ACh agonist carbachol. Using

an antibody specific to mouse prothrombin and thrombin [50], we observed a marked induction

of both prothrombin and thrombin in the conditioned medium of carbachol-stimulated C2C12

cells, whereas treatment with the voltage-gated sodium channel blocker tetrodotoxin reduced the

expression of both inactive and active thrombin (S6C Fig). Together, these studies show that the

blockade of neural transmission at the NMJ results in a potent downregulation of prothrombin

expression, which accounts for at least a portion of the protective effects exerted by inactivity in

Schwann cell-deficient muscle.

Thrombin exerts its biological function in part via the cleavage of the N-terminal region of

the protease-activated receptor-1 (PAR-1), a G-protein coupled receptor, to generate a teth-

ered auto-ligand which in turn activates PAR-1 downstream pathways [56]. PAR-1 is a

mutant diaphragm is similar to that of PAR1 wild-type (top panel). (D) Quantification of NMJs. The percentage of α-BTX-labeled AChRs apposed to

synaptophysin-immunoreactive presynaptic terminals in diaphragm muscle is significantly higher in erbB3 mutants lacking FII, PAR1 or muscle-derived FII
when compared to single erbB3 mutants alone (erbB3-/-; FIIFlox/Flox; Myf5-Cre vs. erbB3-/-; ���P<0.0005, n = 3 diaphragms for each genotype). (E) Lack of

muscle-derived prothrombin/FII expression in FIIFlox/Flox; Myf5-Cre mice, 1,2 = muscle from FIIFlox/Flox; Myf5-Cre mice (+,- reverse transcriptase; RT); Lanes

3,4 = muscle from Myf5-Cre and FIIFlox/+; Myf5-Cre mice (+,- RT); Lanes 5,6 = muscle from FII-/- mice (+,- RT); Lane 7 = liver from wild-type mice (+RT). β-

actin expression from same samples is shown below.

https://doi.org/10.1371/journal.pgen.1007948.g005
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member of the PAR family that also includes PAR-2-4. We added activating peptides of PAR-1

and PAR-4 to HB9:GFP explants, since PAR-2 is not activated by thrombin and PAR-3 merely

supports PAR-1 signaling [56,57]. We found that PAR-1 but not PAR-4 activating peptides

could mimic thrombin-mediated degeneration of motor axons in vitro (S7 Fig). In order to

examine whether MNs themselves express PAR-1, we compared the effects of thrombin on

HB9-GFP motor explants prepared from PAR1 WT and mutant mice. In contrast to those

from PAR1 WT mice, motor explants derived from PAR1 mutant mice [58] exhibited resis-

tance to thrombin-induced degeneration (Fig 6), suggesting that MN-derived PAR-1 expres-

sion is required. Although detection of PAR-1 protein with antibodies is complicated by the

absence of specific antibodies, the PAR1 mutants also express the lacZ gene, thus allowing for

the determination of cellular expression. When we examined the muscle of these mice, AChR-

innervating motor axons were robustly labeled with antibodies against the lacZ gene product

β-galactosidase (S8 Fig), further supporting the idea that muscle-derived thrombin acts

directly on MN-derived PAR-1. Finally, we crossed PAR1 mutants to erbB3 mutants and

observed a preservation of motor innervation similar to that of erbB3 mutants lacking consti-

tutive or muscle-derived prothrombin (5.2±1.3 vs. 29.7±3.1 synaptophysin-positive secondary

phrenic nerve branches, erbB3 WT vs. erbB3;PAR1 double mutant; n = 3; Fig 5C and 5D).

These findings demonstrate that MN-derived PAR-1 mediates muscle-derived, thrombin-

induced developmental synaptic degeneration in Schwann cell-deficient muscle.

Discussion

Based on these (Fig 7A) and previous findings [34,46,59,60], we propose the following model

for the role of Schwann cells in the formation and maintenance of the motor innervation of

developing neuromuscular synapses (Fig 7B). First, Schwann cells regulate the timing of initial

synaptic contact between muscle and nerve. Next, nerve-derived ACh induces the expression

in muscle of prothrombin, which is released and activated before acting in a retrograde fashion

to trigger the degeneration of presynaptic motor axon terminals. Finally, Schwann cells pre-

vent the activation of prothrombin to thrombin by downregulating the expression of factor X

and antagonize muscle-derived thrombin by expressing serpins C1 and D1. Thus, Schwann

cells antagonize the effects of neural activity indirectly by inhibiting the degenerative effects of

muscle-derived negative signals. This model provides a framework for considering several

aspects on the mechanisms underlying the interplay of neural activity and glial cells in regulat-

ing synaptic maintenance in development and in disease.

First, these results identify new regressive signaling events induced by neural activity at the

embryonic NMJ. For example, neural activity destabilizes postsynaptic AChR clusters. These

anterograde effects of ACh are inhibited by nerve-derived agrin [9], similar to the inhibition of

the retrograde effects of ACh by Schwann cell-derived antithrombin described in this study.

However, in the absence of agrin, ACh causes destabilization of postsynaptic AChRs but not

degeneration of presynaptic boutons and axons, whereas in the absence of Schwann cells, ACh

causes presynaptic degeneration but not postsynaptic destabilization. Thus, ACh elicits distinct

negative signaling pathways in muscle to coordinate different aspects of synaptogenesis. While

these results suggest that neuromuscular activity eliminates the motor innervation of NMJs

lacking Schwann cells in part through a retrograde thrombin pathway, additional pathways

downstream of activity are likely, since elimination of thrombin is not as effective or persistent

as elimination of activity itself. Some of these pathways may be dependent on the normal func-

tion of muscle, which undergoes significant atrophy, protein catabolism and impaired growth

in response to disuse or other forms of reduced activity [61].
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Second, these results highlight the role played by glia in regulating the relationship between

neural activity and synaptic maintenance. For example, in mouse models of motor neuron dis-

ease, neurotransmitter release and transmitter-mediated activation of terminal/perisynaptic

SCs are increased presymptomatically in a mouse model of amyotrophic lateral sclerosis (ALS)

[62]. These cells also exhibit structural alteration in mouse models of spinal muscular atrophy

[63], suggesting that the early dysregulation of synaptic function in these diseases may lead to

the loss of synaptic maintenance through alterations in Schwann cell signaling.

These results also suggest that local sources of thrombin may trigger synaptic degeneration

in various pathological contexts involving damage to glia. In such a scenario, the ability of glial

cells to antagonize thrombin activity would be diminished. For example, Schwann cells lacking

antithrombin PN-1 (serpin E2) exhibit a delay in functional recovery after nerve injury [64].

Fig 6. Thrombin fails to cause motor axon degeneration in spinal explants derived from PAR1 mutant mice. (A)

Explants obtained from PAR1 wild-type; HB9:GFP (PAR1+/+, top panels) and PAR1 mutant; HB9:GFP mice (PAR1-/-;
bottom panels) were plated with 10 nM GDNF and imaged the next day (left panels). Explants were then treated with

200 nM thrombin and imaged a second time the following day (right panels). In contrast to explants of PAR1 wild-type

mice, which exhibit axonal degeneration in response to 200 nM thrombin, those of PAR1 mutant mice are largely

unaffected. Scale bar = 100 μm. (B) The protective effect of PAR-1 deletion on thrombin-mediated axonal

degeneration is dose-dependent, because higher concentrations of thrombin (400 nM) elicit motor axon pathology.

CTL refers to GDNF treatment at plating and again at 1 day after plating. Each value reflects the percentage of healthy

motor axons at 2 vs. 1 day after plating, and represents the mean of 3 samples. �P<0.0005, thrombin-treated vs.

control; ��P<0.0005, thrombin-treated PAR1-/- vs. thrombin-treated PAR1+/+explants; ���P< 0.0005, 200 nM vs. 400

nM thrombin-treated PAR1-/- explants. Student’s t with Bonferroni correction.

https://doi.org/10.1371/journal.pgen.1007948.g006
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Similarly, consistent with expression of thrombin inhibitors in central glia [65,66], thrombin

was identified as a pathological component of plaques in multiple sclerosis (MS), a disease of

central axon-associated glia [67], and may serve as a potential early biomarker for MS [68].

Additionally, thrombin accumulation has been observed in the brains of patients with Alzhei-

mer’s disease [69], suggesting that glia-derived antithrombin signaling may be compromised,

either directly by disease-causing proteins or indirectly by changes in neural activity.

Thrombin may also play a role in the reduction of synapses that is observed in schizophre-

nia, as dysregulated expression of complement proteins, whose levels are regulated by throm-

bin signaling [70,71], is associated with an enhanced susceptibility to this disease [72]. These

Fig 7. Model for the interplay of neural activity and Schwann cells in maintaining the motor innervation of the

NMJ. (A) Summary of the presence or absence of Schwann cells, neuromuscular activity (+,–), or developmental

synaptic degeneration in 19 mouse lines. erbB2-/- mice refer to erbB2 null mutants crossed to transgenic mice

overexpressing erbB2 in the heart, which survive until birth[20]. (B) (Left panel) Presynaptic nerve terminals (green)

release ACh onto muscle-derived AChRs, resulting in the release of muscle-derived thrombin (factor II; FII), whose

activity is normally opposed by serpins C1 and D1 released from Schwann cells. (Right panel) In mice lacking Schwann

cells, thrombin causes developmental synaptic degeneration (red X) because of the absence of these antithrombins.

https://doi.org/10.1371/journal.pgen.1007948.g007
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findings may also provide insight into the mechanisms underlying the finding that chronic

warfarin therapy unexpectedly causes remission of psychotic symptoms in schizophrenia [73].

Together with recent evidence showing that the terminal complement pathway (i.e., starting

with the generation of C5a from C5 by C5 convertase or thrombin [70]) is upregulated and

promotes the degeneration of NMJs in ALS mouse models [74], these data also suggest that

chronic warfarin therapy may be neuroprotective in the context of ALS. Together, these stud-

ies point to glial cells as an important integrator of synaptic function and maintenance and

suggest that therapies aimed at restoring glial function may help prevent synaptic degeneration

and thereby maintain synapses in disease.

Methods

Mice

erbB3 mutant mice were kindly provided by Genentech [24]. erbB2, ChAT and AChRα1
mutant mice were described previously [20,41,44]. Constitutive and conditional prothrombin

mutants were described previously [49,55]. HB9:GFP mice were kindly provided by Sam

Pfaff (The Salk Institute). PAR1 mutant mice were purchased from mutant mouse regional

resource center (MMRRC; Davis, CA [55]). Snap25 mutant, Ribotag, Myf5-Cre, Wnt1-Cre,
Rosa26-LSL-Tomato and Rosa26-LSL-DTA mice were all purchased from the Jackson Lab (Bar

Harbor, ME). The use of animals is in compliance with the guidelines of the Animal Care and

Use Committee of the Salk Institute.

RNA isolation, RNA-Seq, and real-time quantitative PCR

For whole muscle or muscle endplate samples, total RNA was isolated from embryonic or

postnatal diaphragm muscle in Trizol reagent (Invitrogen). Briefly, diaphragms, or the end-

plate region surrounding the phrenic nerves, were minced into small pieces and then passed

through a 20-guage needle five times in 1 mL of Trizol, allowed to sit on ice for 5 minutes,

then passed similarly through 22-, 23- and 25-guage needles, before extraction. For Ribotag

samples [47], an entire litter of diaphragms produced from a cross between a homozygous

Ribotag mouse and a transgenic Wnt1-Cre mouse was dissected and quickly homogenized in

polysome buffer by needle as above. Genotyping subsequently revealed half of these embryos

to have been Cre-positive and hemizygous for the Ribotag allele. We analyzed two of these

pooled samples (i.e., each sample represents 4 pooled Wnt1-Cre, Ribotag diaphragms taken

from a litter). After immunoprecipitation and RNA elution using Promega RNA MicroEasy

buffers, RNA was evaluated with a PicoQuant chip on a BioAnalyzer. The RNA Integrity num-

ber was above 8 and the concentration was ~150–200 pg/ml. For RNA-seq, 500 ng (whole

muscle) or 2 ng (Riobtag sample) of RNA was incubated with oligodT beads (TruSeq, Illu-

mina) and incubated at 65˚C for 5 minutes to enhance mRNA binding to beads. Beads were

rinsed and eluted for two minutes at 80˚C, and eluants allowed to re-bind beads. Purified

mRNA was then fragmented (300–500 bp) and primed with random hexamers at 95˚C for 8

minutes. mRNA was then reverse transcribed into the first strand of cDNA and then frag-

mented using a Bioruptor sonicator. After second strand cDNA synthesis, double stranded

cDNA libraries were end-repaired, adenylated, and ligated with indexed adapter primers to

facilitate library amplification and sequencing. Libraries were amplified 11 cycles based on

analysis with SYBR Gold staining, and PicoGreen quantitation (Molecular Probes/Invitrogen)

was used to determine final library concentrations. For real-time qPCR, samples were treated

with DNase (Invitrogen) before reverse transcription with Superscript III (Invitrogen) and

Oligo(dt) primers. cDNAs from samples were amplified and detected using SYBR Green I

reagent (Roche) and a LightCycler 480 Instrument (Roche), or on a BioRAD CFX Connect.
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Quantification of mRNA levels was performed using the LightCycler 480 Software (Roche),

which calculates the expression ratio using an efficiency-calibrated method [75]. Target

mRNA levels were normalized to expression of β-actin. Primer sequences are listed in S10 Fig.

For timecourse studies, the gene expression fold-changes were normalized to adult samples.

Unpaired Student’s t tests were used in statistical analysis.

Explants and cell culture schwann cells

E12.5 HB9:GFP embryos were collected and placed into 1X Hank’s balanced salt solution

(HBBS) on ice [76]. The roof plate of the spinal cord was opened before removal from the ver-

tebral column, and following removal the meninges were pulled briskly off of the spinal cord.

This open-book preparation of the cord was then pinned onto Sylgard-coated 35 mm petri

dishes filled with B27-containing, L-glutamine supplemented Neurobasal (B27-NB) medium,

and the region of cord lateral and medial to the motor columns were excised by micro-dissect-

ing knife. Motor columns from the cervical region were then cut transversely using micro-iri-

dectomy scissors into explants and were transferred into poly-d-lysine pre-coated (PDL; 1 μg/

ml in borate solution, overnight), laminin-coated (5 μg/ml if glass, 1 μg/ml if plastic) coverslips

placed into 4-well trays or into 48-well tissue culture trays. Explants were plated in B27-NB

supplemented with 5 ng/ml glial-derived neurotrophic factor (GDNF; R&D). Images of GFP-

positive motor axons arising from these explants were taken at approximately the same time

the following day on an Olympus FluoView 1000 confocal microscope at 10X or 20X magnifi-

cation, gently rinsed, changed to pre-incubated NB-B27 plus experimental treatment, and

then imaged the following day. The percentage of healthy axons devoid of pathological swell-

ings were measured and presented as percent survival at 24 hours and 48 hours after plating

(i.e., 24 hours after treatment). Unpaired Student’s t-tests with the Bonferonni correction were

used for statistical analysis.

C2C12 myoblasts were cultured on 2% gelatin-coated 6-well tissue culture trays in DMEM

with 20% fetal bovine serum (FBS). When confluent, the culture medium was changed to dif-

ferentiation medium, which was DMEM with 2% normal horse serum (NHS). For experi-

ments analyzing prothrombin/thrombin levels by immunoblotting, 5-day differentiated

cultures were rinsed and replaced with 1.5mL serum-free DMEM. One day later, cultures were

treated with saline, the acetylcholine agonist carbachol (CCh; 100 μm; Sigma) or the sodium

channel blocker tetrodotoxin (TTX; 10 μM; Enzo Life Sciences). 18 hours following treatment,

conditioned medium was collected, passed through a 0.2-μm filter, and spun through a 3kD

cutoff column, before being eluted and mixed with equal volume 2X Laemmli buffer (62.5 mM

Tris, 20% glycerol, 2% SDS, and 5% 2-mercaptoethanol). Lysates were rinsed in cold phos-

phate-buffered saline (PBS, pH 7.3) and then lysed in RIPA buffer with sodium fluoride,

sodium orthovanadate, and protease inhibitors, sonicated, centrifuged, and supernatants

mixed with Laemmli buffer before boiling. For experiments analyzing the effects of condi-

tioned medium on spinal explants, 5-day differentiated cultures were rinsed and replaced with

serum-free NB-B27, and 1 day later, the medium was removed, passed through a 0.2-μm filter,

and administered without concentration to explants with or without co-treatments (e.g.,

thrombin).

Astrocyte cultures were prepared from E17.5 mouse cortex. After dissection, removal of

meninges, and chopping into small blocks, tissue from one brain was treated with 10 ml of

0.25% trypsin (Worthington) in HBSS for 5 minutes, passed through a 5 ml syringe, and incu-

bated in trypsin 2–3 more minutes. Trypsin was replaced with 1 ml of 20% FBS/DMEM

DMEM, and tissue was gently triturated 3 times with a 5-ml syringe, allowed to float to bot-

tom, and supernatant was transferred to a new tube. One ml of fresh 20% FBS/DMEM was
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added and the process was repeated 2 more times. Similar trituration with fire-polished glass

pipets was performed 3 more times, producing roughly 6 ml of cell suspension, which was sub-

sequently passed through a 70-μm filter and spun at 1000 rpm for 2 minutes. The medium was

removed and the pellet was re-suspended with 10% FBS/DMEM supplemented with penicil-

lin/streptomycin and added to a PDL-pre-coated 100-mm petri dish. The following day, cells

were rinsed 3X in warmed DMEM and replaced with fresh growth medium (10% FBS/

DMEM). 6–8 days after plating or when cells approached confluence, the tray was tapped

extensively to liberate microglia, rinsed, trypsinized in 0.25% trypsin-EDTA for five minutes

and re-plated in growth medium onto PDL-coated 6-well dishes. Two days after re-plating,

medium was rinsed and replaced with serum-free NB-B27 and 1 day later, the medium was

removed, passed through a 0.2-μm filter, and administered without concentration to explants

with or without co-treatments (e.g., thrombin).

Schwann cell cultures were prepared from P1-P2 neonatal sciatic nerves using a procedure

based on Wei et al. [77] with slight modification. Both nerves from one animal were dissected

from the ventral and dorsal cord (with care to remove spinal ganglia) to the knee. The nerves

were incubated in 0.3% collagenase type II for 30 minutes at 37˚C, switched into 0.25% tryp-

sin-EDTA for 5 minutes at 37˚C, and resuspended into 10% FBS/DMEM growth medium sup-

plemented with penicillin and streptomycin. After centrifugation at 100 rpm for 2 minutes,

resuspended cells (from 2 nerves of 1 animal) were plated into a single PDL-coated 60-mm

petri dish. The following day, the medium was replaced with 2% FBS/DMEM supplemented

with 10 ng/mL NRG1 (R&D) to facilitate the growth of Schwann cells but not fibroblasts. Two

days later, cultures were rinsed and replaced with 2% FBS/DMEM supplemented with 10 μM

cytosine arabinoside to kill fibroblasts. Two days later, cells were treated with 0.05% trypsin for

1 minute to differentially remove Schwann cells but not fibroblasts from the plate, and these

cells were spun down and re-plated onto PDL-coated 6-well dishes, treated with NRG1 for 2–4

more days, replaced with serum-free NB-B27 and 1 day later, the medium was removed,

passed through a 0.2-μm filter, and administered without concentration to explants with or

without co-treatments (e.g., thrombin).

Immunohistochemistry

Diaphragm muscles were fixed in 2% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH

7.3) overnight at 4˚C, rinsed briefly with PBS, incubated in 0.1 M glycine in PBS for 1 h, rinsed

briefly with PBS and then washed with 0.5% Triton X-100 in PBS. The muscles were blocked

with 10% FBS and then incubated with primary rabbit antibodies against neurofilament-150

(1:1000, Millipore), synaptophysin (1:1000; Santa Cruz), S100 (1:1000; DAKO), β-gal (1:1000,

MP Biomedicals) or MuSK (1:1000, gift of L. Mei, Case Western Reserve University, OH),

guinea pig antibodies against VAChT (Millipore), mouse anti-hemagglutinin (HA) antibodies

(Covance), or incubated with Alexa-Fluor-488-conjugated fasciculin to label AChE (2 μg/ml,

kind gift of R. Rotundo, University of Miami, FL) in blocking buffer overnight at 4˚C. After

being washed three times for 1 h each in 0.5% Triton X-100 in PBS, the muscles were incu-

bated with fluorescent secondary antibodies and/or Cy2- or Cy3- or Cy5-conjugated-α-BTX

(1:1500, Molecular Probes) overnight at 4˚C.

Western blotting

Rabbit anti-prothrombin antiserum was kindly provided by Evan Sadler (Washington Univer-

sity, MO). Extracts of mouse hindlimb, diaphragm or liver, or lysates or conditioned media

concentrates of differentiated C2C12 muscle cells, were prepared in RIPA buffer, sonicated,

diluted in 2X Laemmli buffer and boiled 5 minutes at 100˚C.
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Supporting information

S1 Fig. Developmental synaptic degeneration is rescued in erbB2 mutant mice lacking

activity. erbB2 mutant mice were crossed to ChAT mutant mice (right panels). Diaphragms

were dissected at E17.5 and stained with neurofilament antibody (green). Scale bar = 1000 μm.

(TIF)

S2 Fig. Differentially regulated genes identified by RNA-seq analysis and confirmed by

qPCR. (A) Scatter-plots reveal genes (circles) that are significantly upregulated (red) or down-

regulated (green) in erbB3 wild-type (+/+) vs. mutant (-/-) muscle. Each plot represents a sepa-

rate biological sample. (B) Analysis of RNA sequencing tracks confirmed that Schwann cell-

specific genes such as Sox10 and Myelin Protein Zero levels were reduced in erbB3 mutant

muscle (-/- #1,-/- #2) to 0.5% and 2.4%, respectively, of values derived from wild-type muscle

(+/+ #1, +/+ #2). (C) Functional genomic analysis of genes differentially regulated in dia-

phragm muscle containing (erbB3 wild-type; +/+) or lacking (erbB3 mutant; -/-) peripheral

Schwann cells. (C) Gene Ontology (GO) term networks of the set of genes significantly upre-

gulated in erbB3 mutant vs. WT muscle, overlapped in Cytoscape. The pathways most highly

upregulated in erbB3 mutant muscle were related to muscle contractility. In contrast to the

upregulation of serpins in muscle from WT mice, there was an increase of serine protease

expression in erbB3 mutant muscle.

(TIF)

S3 Fig. Transcriptomic sequencing analyses. (A) Number of raw and mapped reads in each

of two diaphragm samples from erbB3 wild-type (+/+ #1, +/+ #2) vs. mutant (-/- #1, -/- #2)

mice at E14.75, as well as comparison of the number of upregulated and downregulated genes

between each pair of samples derived from erbB3 wild-type and mutant mice. (B) Gene ontol-

ogy categories most highly upregulated in erbB3 wild-type sample 1 vs. mutant sample 1 and

(C) erbB3 wild-type sample 2 vs. mutant sample 2 show that serine protease inhibitors are

highly expressed in wild-type muscle containing Schwann cells vs. erbB3 mutant muscle lack-

ing Schwann cells. (D) qPCR analysis shows that expression of the serpins D1 and C1 are

10-fold and 6-fold higher, respectively, in diaphragm muscle derived from erbB3 wild-type vs.

mutant mice at E14.75, whereas expression of serpin E2 is unchanged. Fold-changes are rela-

tive to changes in β-actin expression. Dotted line indicates normalized expression of genes in

erbB3 mutant muscle. Each value represents (n = 3), samples run in duplicate.

(TIF)

S4 Fig. Schwann cell transcriptome screen of diaphragm muscle at E14.75 exhibits expres-

sion of serpins C1 and D1. (A) Staining of diaphragm muscle derived from Wnt1-Ribotag
(Wnt1-Cre; Rpl22LoxSTOPLox Ribotag) mice at E14.75 with a monoclonal antibody against hemag-

glutinin (HA) shows robust expression of epitope-tagged ribosomes in Schwann cells along

the phrenic nerve. Scale bar = 10 μm. (B) Raw sequencing tracks of Sox10 in diaphragm sam-

ples at E14.75 derived from erbB3 mutant mice (Rows 1–2), from WT mice (Rows 3–4), and

from Wnt1-Cre, Ribotag mice (Rows 5–6). (C) Reads per kilobase per million mapped read

(RPKM) values from muscle-derived samples of the indicated genotypes for the Schwann cell

markers Sox10 and myelin protein zero (MPZ) as well as for the anti-thrombins serpinC1 and

serpinD1. The enrichment of Sox10 and MPZ in Schwann cells, as determined by Wnt1-Ribo-
tag RPKMs, is higher than for serpinC1 and serpinD1, which may indicate that these proteins

are expressed by both muscle and Schwann cells.

(TIF)
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S5 Fig. Inactivation of the proBDNF receptor p75 fails to inhibit developmental synaptic

degeneration in erbB3 mutant diaphragm. (A) erbB3 mutant (-/-) mice were crossed to p75
mutant (-/-) mice, embryos were sacrificed at E15.5, and diaphragm muscles were stained with

antibodies against synaptophysin. Scale bar = 100 μm. n = 3 for erbB3; p75 double mutants. (B)

Diaphragm muscles from E14.25 erbB3 wild-type (+/+) and mutant (-/-) mice were imaged

after immunostaining with PECAM1 antibodies (red, top panels) or after transcardial injection

of FITC dextran (70-kDa, green, bottom panels). Scale bar = 50 μm.

(TIF)

S6 Fig. Thrombin but not antithrombin is regulated by activity in muscle. (A) qPCR

analysis shows that while expression of the serpins D1 and C1 is significantly higher in wild-

type vs. erbB3 mutant (-/-) muscle at E14.75, expression of prothrombin (Factor II or FII)

is unchanged. In contrast, whereas serpinD1 and serpinC1 expression levels in muscle are

unchanged by inactivity (i.e., equal expression in erbB3-/- vs. erbB3-/-;ChAT-/- mice), prothrom-
bin expression is significantly reduced by inactivity. �P<0.005, serpinC1 and serpinD1, erbB3
wild-type vs. mutant mice. ��P<0.001, prothrombin, erbB3-/- vs. erbB3-/-;ChAT-/- mice. Fold-

changes are relative to changes in β-actin expression. Dotted line indicates normalized expres-

sion of genes in erbB3 mutant muscle. Each value represents (n = 3), samples run in duplicate.

(B) Developmental timecourse of prothrombin and factor X gene expression by qPCR in the

endplate region of the diaphragm. Fold-changes are relative to changes in β-actin expression

and normalized to the level of prothrombin and factor X expression in adult samples. Each

value represents (n = 3), samples run in duplicate. (C) Western analysis shows that cholinergic

stimulation of muscle cells leads to an increase of prothrombin and active thrombin protein in

the conditioned medium. Top and bottom panels reflect the same gel cut in half and show pro-

thrombin and active, cleaved thrombin immunoreactivity, respectively. Whereas thrombin

immunoreactivity is observed at approximately 25 kD based on loading of recombinant

thrombin (bottom panel, lane 1), prothrombin immunoreactivity is detected near 75 kD

(arrow), based on loading of muscle extracts from prothrombin wild-type and mutant mice at

E14.75 (FII+/+ and FII-/-; top panel, lanes 2 and 3). Note the absence of a band at this molecular

weight in prothrombin mutant muscle. Treatment of differentiated, C2C12 muscle cells with

the ACh agonist carbachol (CCh) increased the amount of prothrombin (top panel, lane 6)

and active thrombin (bottom panel, lane 6) found in the medium, compared to activity-

blocked cultures (both panels, lanes 4 and 5).

(TIF)

S7 Fig. PAR-1-activating peptide (PAR1-AP) mimics the effects of thrombin on motor

axon degeneration in vitro. (A) qPCR analysis shows that expression of PAR-1, PAR-3 and

PAR-4 is unchanged in the ventral spinal cord at E14.75 of erbB3 wild-type vs. mutant mice.

Fold-changes are relative to changes in β-actin expression. Dotted line indicates normalized

expression of genes in erbB3 mutant muscle. Each value represents (n = 3), samples run in

duplicate. (B) PAR1-AP, at a concentration of 100 μM, but not PAR4-AP, causes significant

degeneration of HB9:GFP-positive motor axons when administered 1 day after plating with 5

nM GDNF. CTL refers to 5 nm or 10 nM GDNF treatment at plating and again 1 day after

plating. Each value reflects the percentage of healthy motor axons at 2 vs. 1 day after plating,

and represents the mean of 3 samples. Dark grey bars = lower dose and light grey bars higher

dose of agent. �P<0.01, Student’s t with Bonferroni correction. Scale bar = 200 μm.

(TIF)

S8 Fig. PAR-1 expression is detected in motor neurons. Hindlimbs from PAR1 mutant mice

expressing LacZ (PAR1LacZ/LacZ) at E14.75 were sectioned and stained with antibodies against
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β-galactosidase (β-gal; red) and fluorescent α-BTX (green). Note the staining of motor axons

innervating α-BTX-labeled AChRs. Scale bar = 20 μm.

(TIF)

S9 Fig. Normal positioning of endplate band in erbB3 mutants lacking thrombin / PAR1.

Diaphragm muscles from samples in Fig 5 stained both with synaptophysin as well as with α-

bungarotoxin (α-BTX) show the normal central positioning and size of the endplate band of

nicotinic AChR clusters. Scalebar = 100 μm.

(TIF)

S10 Fig. qPCR primer sequences. Sequences of primers used to detect expression of beta-

actin, prothrombin, factor X, fgl2, serpin C1 and serpin D1 via qPCR, and PCR product

lengths.

(TIF)

S1 Data. Raw data for results presented only in the text (row 1–12) or presented in figures

(rows 17–28 and 31–41). For each set of results, the age, genotype and dependent variable are

given, as well as averages, standard deviations and statistical tests, are provided.

(XLSX)
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