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In-ear integrated sensor array for the 
continuous monitoring of brain activity  
and of lactate in sweat

Yuchen Xu    1,4, Ernesto De la Paz2,4, Akshay Paul1, Kuldeep Mahato2, 
Juliane R. Sempionatto    2, Nicholas Tostado2, Min Lee    1, Gopabandhu Hota3, 
Muyang Lin    2, Abhinav Uppal    1, William Chen1, Srishty Dua2, Lu Yin2, 
Brian L. Wuerstle3, Stephen Deiss1, Patrick Mercier    3 , Sheng Xu    1,2 , 
Joseph Wang    2  & Gert Cauwenberghs    1 

Owing to the proximity of the ear canal to the central nervous system, 
in-ear electrophysiological systems can be used to unobtrusively 
monitor brain states. Here, by taking advantage of the ear’s exocrine 
sweat glands, we describe an in-ear integrated array of electrochemical 
and electrophysiological sensors placed on a flexible substrate 
surrounding a user-generic earphone for the simultaneous monitoring 
of lactate concentration and brain states via electroencephalography, 
electrooculography and electrodermal activity. In volunteers performing 
an acute bout of exercise, the device detected elevated lactate levels 
in sweat concurrently with the modulation of brain activity across all 
electroencephalography frequency bands. Simultaneous and continuous 
unobtrusive in-ear monitoring of metabolic biomarkers and brain 
electrophysiology may allow for the discovery of dynamic and synergetic 
interactions between brain and body biomarkers in real-world settings 
for long-term health monitoring or for the detection or monitoring of 
neurodegenerative diseases.

Wearable sensing technologies have greatly expanded health  
monitoring and human–machine-interface applications, bridg-
ing the gaps between traditional clinical instrumentation and the 
urgent demand for remote and daily health care. Recent advances in 
high-performance, stretchable and conformal skin interfaces1,2 are 
yielding opportunities for unobtrusive physiological3,4 and metabolic5,6 
monitoring in a highly wearable setting. Several of these sensing modali-
ties can be integrated to offer greater functionality where biosignals 
of interest are conveniently co-located7,8.

Among the many sensing modalities, electrophysiological 
brain-state monitoring and health-related metabolite monitoring 

are two dimensions that may have substantial implications for early 
disease detection, health monitoring, body-performance improve-
ment and virtual/augmented-reality applications. Brain-state moni-
toring, widely employed in brain–computer interfaces, has been used 
for neuromodulation and rehabilitation, whereas the monitoring of 
vital metabolites provides real-time analytics on dynamically chang-
ing health conditions. Previous medical studies have suggested that 
some of the day-to-day cognitive state variations such as stress9 and 
emotions10, as well as neurodegenerative diseases, such as epilepsy11 
and Alzheimer’s disease12, can trigger characteristic patterns in both 
electrophysiological brain-state monitoring and produce abnormal 
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their relevance in a variety of health-related contexts, including trau-
matic brain injuries31 and stress variation during the day10,32. The imple-
mentation of both modalities into a miniaturized in-ear non-invasive 
system with minimized sensing crosstalk could thus facilitate the 
process of using multiple instruments for assessing these features 
during neurological monitoring and potentially allow self-monitoring  
in patients.

For optimal integration, the layout of the sensors (Fig. 1c) was 
determined from functional mapping inside the ear canal, where elec-
trophysiological electrodes were oriented towards the temporal lobe 
with lower secretion of sweat, while the electrochemical electrodes 
were oriented towards the location with higher secretion of sweat. Such 
functional mapping is conducive to obtaining a higher signal-to-noise 
ratio given the proximity to the signal sources while minimizing poten-
tial crosstalk. To determine this location, a multiparticipant series of 
experiments to map the areas with higher sweat secretion was per-
formed using a participant-custom earpiece (Extended Data Fig. 1 
and Supplementary Fig. 1) while performing stationary cycling at a 
fixed exercise level for 30 min. On the basis of the in-ear sweat map-
ping results, the electrochemical electrodes were oriented towards 
the tragus, where the highest sweat volume was found (Fig. 1i). To 
integrate with most earphone silicone tips, the sensors have a flat bot-
tom with an adhesive layer (Fig. 1d). The sensor fabrication employed 
a fast and low-cost printing-bonding-assembly process (Fig. 1e and 
Extended Data Fig. 2), resulting in a single integrated device with high 
mechanical resiliency and efficient space utilization. Structurewise, 
the sensors consist of a 150-μm-thick terephthalate polyurethane 
(TPU) substrate with chemical resistance and stretchability. Serpen-
tine interconnection traces and the lactate sensing electrochemical 
reference electrode (RE) were made with modified stretchable silver 
(Ag) ink. An insulation layer extends on top of the interconnections 
using stretchable styrene-ethylene-butylene-styrene block copolymer 
(SEBS). At the patterned openings of the SEBS layer, the electrophysi-
ological electrodes and the electrochemical reference electrode were 
printed on top of the interconnection traces with modified stretch-
able Ag ink. The electrochemical working electrode (WE) and counter 
electrode (CE) were fabricated using stretchable Prussian-blue (PB) 
ink and further modified (Extended Data Fig. 3a,b). To account for 
the anatomical variation in ear shapes across participants and the 
geometrical mismatch between the round-arc earphone tip and the 
ear canal, the electrophysiological stretchable Ag electrodes adopt 
a three-dimensional (3D) structure (Extended Data Fig. 2q–v), while 
the three planar electrochemical electrodes are covered by a piece of 
polyvinyl alcohol (PVA) hydrogel (Extended Data Fig. 3c–e) to enhance 
sweat collection.

Sequential data acquisition from the in-ear sensors was achieved 
using a customized wearable system to allow real-time sampling and 
wireless data transmission. The electrophysiological sensing is based 
on potentiometric measurement by connecting the in-ear electro-
physiological electrodes to a portable data acquisition (DAQ) system 
in the single-ended mode (Supplementary Fig. 3). Five stretchable Ag 
electrodes were made under the same conditions and used for elec-
trophysiological sensing, including three in-ear electrophysiological 
electrodes, one electrophysiological reference electrode (REF) at the 
concha cymba and one driven right leg (DRL) electrode at the concha 
cavum (Fig. 1h–j). During the measurement, each electrophysiological 
electrode was measured with respect to the same REF, which went to the 
inverting input of the fully differential programmable gain amplifier at 
each channel of the DAQ. The DRL was used to suppress common-mode 
interference from power lines and other sources. Simultaneously, the 
electrochemical biosensing implements chronoamperometry (CA) for 
detecting the hydrogen peroxide product of the enzymatic reaction 
between the lactate oxidase (LOx)-modified working electrode and the 
lactate present in the secreted sweat. The in-ear sensors were character-
ized in a single and parallel sensing modality, both in vitro and on body, 

metabolic profiles in an individual. For instance, lactate monitoring has 
been found to complement electroencephalogram (EEG) recording for 
the differentiation of generalized epileptic seizures from psychogenic 
non-epileptic and syncopal events in monitoring epileptic seizures13,14. 
Clinical evidence has further corroborated the conducive role of the 
monitoring and control of metabolite levels (such as those of lactate) 
in improving brain functions by enhancing neuroplasticity and angio-
genesis15,16. These results highlight the need for integrated monitoring 
of brain states and health-related metabolites.

EEG collected on the scalp with gel-based electrodes allows great 
spatial coverage and high signal-to-noise (SNR) ratio in active brain-state 
monitoring, but at the expense of restricting the user’s mobility and 
comfort. Dry-contact EEG electrodes provide much improved user 
comfort and reduced setup time, but at a loss in SNR primarily when  
used over hairy sites on the scalp17. Whereas skin metabolic health 
moni toring has been demonstrated using skin-penetrating tools (small 
filaments, or blood pricking/sampling), non-invasive technologies 
(such as epidermal patches) or optical procedures (via near-infrared or 
ultraviolet–visible light or Raman spectroscopy)18, their availability in 
the market as reliable commercial technologies is limited in the form of 
skin-penetrating filaments or blood collection approaches that require 
small or higher volumes of sample to perform metabolite analysis19. 
In addition, despite the extensive evidence supporting their isolated 
analysis studies, the integration of these two sensing modalities within 
a single wearable technology still presents a major challenge20. This is 
in part due to interference present in the measured signals attributed 
to crosstalk between the sensors of dissimilar sensing modalities21,22 
and the disparity in optimal combined electrophysiological and elec-
trochemical sensing (co-sensing) locations on the body, typically 
requiring extensive form factors spanning a wide area across the body, 
such as in an EEG headset or headband23.

In-ear electrophysiological sensing systems24,25 provide elegant 
solutions to unobtrusive brain-state monitoring inside the ear canal. 
The ear is located close to the central nervous system, major vascula-
ture and auditory cortex while being mechanically stable because of the 
ear’s anchoring structure by nature. In addition to access to physiologi-
cal parameters, such as EEG, pulse rate and oxygen saturation26, it has 
multiple exocrine sweat glands for the analysis of vital metabolites27. 
Due to the extremely limited space in the ear and large anatomical 
variations across ears, developing a user-generic ear sensor covering 
a broad range of biophysical modalities of interest to general health 
monitoring is still an extremely challenging goal28. While in-ear sensing 
of multiple physiological parameters has been demonstrated24,25,29,30, 
integrating both brain-state and metabolite monitoring in a single 
unobtrusive system has remained elusive due to the relatively large 
form factors of conventional electrochemical sensors.

This work presents an unobtrusive and fully in-ear integrated array 
of multimodal electrophysiological and electrochemical sensors for 
simultaneous monitoring of the brain state and dynamic metabolic 
sweat concentration. Such integrated in-ear electrophysiological 
and electrochemical system was realized through strategic material 
selection, layout design and fabrication engineering that not only 
fitted the irregular ear anatomy between different individuals but 
also provided simultaneous and real-time operation of both sensing 
modalities (Fig. 1a,b). Via tight integration with widely used in-ear  
earphones, the integrated sensors track daily activities along two 
principal sets of features in biosignal space characterizing general 
brain–body health state. The first set of features implements a general-
ized form of a wearable brain–computer interface (BCI) in the ear, track-
ing brain state-related electrophysiological signals, such as EEG and 
electrodermal activity (EDA). The second set of features implements 
electrochemical analysis of metabolites in the ear. For this study, lactate 
in sweat was selected as the analyte of choice. The combined brain-state 
and metabolite sensing offers a unique sensing modality for wearable 
monitoring addressing the relationship between EEG and lactate and 
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Fig. 1 | Design of the in-ear integrated sensors. a, Design schematic of the 
in-ear integrated sensors. The grey and green dashed outlines denote the 
electrophysiological and electrochemical sensor sites registering brain 
activity and sweat secretion, respectively. b, Assembled in-ear integrated 
electrophysiological (ePhys) and electrochemical (eChem) sensing electrodes. 
The white dashed outlines denote the locations of the electrophysiological 
and electrochemical electrodes. c, Layout of the in-ear integrated sensors (left) 
showing 3D cushioning of the electrophysiological electrodes and indicating 
the mechanism of sweat lactate electrochemical sensing. LOx on the working 
electrode surface (right) catalyses oxidation of lactate acid into pyruvate and 
hydrogen peroxide (H2O2). In turn, PB transforms H2O2 into hydroxyl ions (OH−), 
generating a sensing current proportional to lactate concentration. d, Layer-

by-layer structure. From bottom to top, the sensors were made of adhesive, 
TPU, SEBS, PB, stretchable Ag, PVA hydrogel and flexible printed circuit board 
(fPCB). e, Fabrication process of the sensors showing three main procedural 
steps: printing of sensors, bonding with electronics and assembly to earphones 
(details can be found in Extended Data Fig. 2). f, In-ear sweat mapping for 
electrochemical sensing using an Ecoflex earpiece with distributed filter papers, 
the distribution of which was used as sweat secretion indicators. g, Integrated 
sensors before assembly and after 20% latitudinal stretching. h, Assembled 
integrated sensors in the ear. The grey dashed outlines indicate the locations of 
electrophysiological REF and DRL electrodes. i, Geometry of the ePhys, REF, DRL 
and eChem electrodes. j, Skin contact locations of the ePhys and eChem sensors 
as revealed by insertion in an ear phantom.
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with several human participants. Compared with a scalp EEG headset 
or a commercial blood lactate metre, the sensors have a considerably 
smaller form factor, perform similarly, are less obtrusive and are more 
comfortable to wear. Further details on the sensor design, fabrication 
and assembly are provided in Supplementary Note 1. Characterization 
of the robustness of the sensors is described in Supplementary Note 2.

Results and Discussion
The electrophysiological sensing performance of the in-ear integrated 
sensors was characterized across multiple signal conditions, and con-
trolled validation was conducted with a commercial dry-contact EEG 
headset (Supplementary Text Note 3 and Extended Data Fig. 7). The 
3D electrophysiological electrode design for the in-ear integrated 
sensors produced a more robust electrode–ear interface, reducing the 
possibility of contact loss and increasing the effective contact surface 
(Extended Data Fig. 2q–v). The electrode–ear impedance was character-
ized by continuous measurement at 10 Hz (EEG alpha band, Fig. 2a,b) 
and by electrochemical impedance spectroscopy (EIS) over 1 Hz–1 kHz 
(Fig. 2c,d and Supplementary Note 3). The continuous impedance meas-
urement revealed electrodermal activity in the ear in terms of a gradual 
and consistent decrease in impedance at the electrode–ear interface 
due to accumulation of sweat secreted at the contact area (Extended 
Data Fig. 4a,b,d,e). On average, the results show a 386 kΩ electrode–ear 
impedance at 50 Hz with a planar electrode size of 12.56 mm2, compa-
rable to the impedance of a state-of-the-art in-ear dry electrode (377 kΩ 
at 50 Hz for a 60 mm2 electrode area)25 but at reduced dimensions. 
Electrode direct current (DC) offset (EDO) for the in-ear integrated 
sensors was mainly due to the different electrophysiological and REF 
electrode sizes, the small impurities within the electrode surface and 
the slight ionic concentration variations under different sweating con-
ditions. Figure 2e,f show normal distribution fit results with a mean and 
standard deviation of 0.59 mV and 21 mV, respectively, and a maximum 
recorded EDO (51.30 mV) that is well within the ±187 mV input range 
of the analogue front end used in this work.

On-body experiments showed several EEG signals measured by 
the in-ear integrated sensors. Alpha modulation is a spontaneous EEG 
pattern in the 8–12 Hz frequency range modulated by the participant’s 
state of visual attention or relaxation. Figure 2g shows the synchro-
nous emergence of alpha-band signals with the participant’s eyes 
closed over two 1-min intervals. Figure 2h shows 4 participants’ grand 
average alpha-band power spectral density (PSD) when they opened 
and closed their eyes for 1 min each. An evident rise in the alpha-band 
power was observed, characterized by an alpha modulation ratio of 
RAM = 2.44 ± 0.66 (V2/V2). The reported RAM is comparable to previously 
reported results from dry in-ear EEG sensors (average RAM = 1.2 (ref. 24) 
and 2.17 (ref. 25)). Another widely studied evoked EEG pattern origi-
nating from the auditory cortex is the auditory steady-state response 
(ASSR), an ongoing oscillatory brain signal resulting from an acoustic 
stimulus’s continuous amplitude modulation33. Figure 2i–l shows  
the grand average ASSR PSDs across 4 participants. ASSR response 
peaks corresponding to four 1-min ASSR stimuli (25 Hz, 40 Hz, 55 Hz  
and 70 Hz) were observed in the PSDs. SNRs of the 25 Hz, 40 Hz, 55 Hz and  
70 Hz ASSRs were 12.80 ± 1.27 dB, 8.98 ± 2.26 dB, 10.63 ± 4.88 dB and 
10.92 ± 1.88 dB, respectively. The reported ASSR SNRs were between 
previously reported results from dry in-ear sensors (average SNR of 
5.94 dB (ref. 25) and approximate SNR of 15 dB (ref. 24)). Supplemen-
tary Note 3 also corroborates the effectiveness of ASSR measurement 
for in-ear integrated sensors compared with the EEG headset due 
to its proximity to the auditory cortex. Another electrophysiologi-
cal sensing modality available in the ear is eye movement character-
ized by electrooculography (EOG), often considered as artefacts in 
EEG measurements34 while finding utility for some BCI applications 
including drowsiness detection35, eye vergence therapy36 and motor 
control37,38. Figure 2m,n show that the in-ear integrated sensors, when 
using a reference electrode in the same ear, are more resilient to EOG 

eye movement artefacts for purposes of EEG measurements (further 
discussed in Supplementary Note 3 and Extended Data Fig. 5). The 
in-ear electrophysiological sensors are intrinsically multimodal in that 
they simultaneously acquire biopotentials from various sources of 
brain and body electrical activity including, besides EEG and EOG, the 
electromyogram (EMG), along with electrochemical impedance regis-
tering EDA. The richness of concurrently present electrophysiological 
sensing modalities supports a comprehensive account of physiological 
processes undergoing an array of cognitive and emotional states while 
also being subject to motion and other artefacts. A detailed analysis of 
such simultaneous electrophysiological sensing as well as signal pro-
cessing for motion-artefact rejection can be found in Supplementary 
Note 3 and Extended Data Fig. 6.

The performance of the in-ear electrochemical sensor was first 
evaluated in vitro under the established concentration range of sweat 
lactate39. As shown in Fig. 3a and Extended Data Fig. 8a, the successive 
additions of 5 mM lactate displayed an increase in the well-defined 
current response of the sensor. Further characterization of the sen-
sor involved the selective response of the sensor in the presence of 
relevant interferent constituents found in sweat. As illustrated in  
Fig. 3b, a 2 mM addition of lactate increased the current response from 
the sensor. Successive additions of lactic acid (LA), acetaminophen 
(AC), ascorbic acid (AA), glucose (Gluc) and uric acid (UA) resulted in 
negligible current changes. Such specific response towards lactate 
reflects the combination of a selective bioreceptor and a low potential 
step of −0.2 V applied to the PB-based transducer. The relative change 
in response from the sensor after running 18 repetitive CA scans at 
a fixed concentration (that is, 10 mM) displayed in Fig. 3c showed 
minimal changes (<5%), demonstrating the efficient entrapment of 
the enzymatic layer on the electrochemical transducer. In addition, the 
sensor operational stability has been validated by a persistent response 
to a 10 mM step in lactate over a continuous scan for ~1 h (Fig. 3d). The 
analytical performance of the electrochemical sensors at various tem-
peratures and humidity levels, matching environmental and human 
physiological conditions in the ear40,41, has been evaluated for different 
lactate concentrations. Figure 3e shows the sensitivity in the slope of 
current vs concentration (μA/mM) at temperatures ranging from 25 °C 
to 40 °C. Negligible differences in slope were observed in this range of 
temperatures, probably owing to the retention of the activity of the lac-
tate oxidase and stable sensor matrix. Similarly, the sensor showed con-
sistent slope across humidity levels ranging from 40% to 70% (Fig. 3f),  
which could be attributed to the wet interfacing PVA gel resisting the 
impact of the fluctuating environmental humidity level. Further details 
on the electrochemical sensor stability characterization are presented 
in Supplementary Note 2 and Supplementary Fig. 7. After in vitro char-
acterization, the response of the electrochemical sensor to lactate in 
sweat was evaluated before, during and after performing stationary 
exercise while wearing sensors with and without an enzymatic layer. 
On each step of the test, blood samples were collected using a commer-
cial blood lactate metre for validation purposes. The sensor modified 
with the enzymatic layer showed an incremental current Δi of −0.4 μA 
compared with the initial values after 10 min of starting stationary 
exercise. Also, blood lactate levels displayed their maximum level at 
this stage of the experiment (Fig. 3g,h). Interestingly, the recovery of 
the signal close to the pre-exercise levels was observed a few minutes 
after the exercise. Such reversible behaviour of the sensor during the 
exercise stage could suggest a depleted concentration of sweat lactate 
which was generated during exercise. This behaviour is dependent on 
the sweat rate and is unique to every individual42, which can be seen 
in another recorded exercise session in different participants (Sup-
plementary Fig. 11). The difference in the CA fluctuation is evident in 
these figures (Fig. 3g and Supplementary Fig. 11), also corroborating 
the different degrees of perspiration among individuals. Following 
the culmination of exercise, the current displayed a drop in the signal 
and a decay in the blood lactate levels caused by the resting state of the 
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individual. In experiments without the enzymatic layer, negligible cur-
rent changes were observed despite the increasing blood lactate levels 
during stationary exercise (Fig. 3i,j). Along with the selective response 
of the enzyme-modified sensor towards lactate, these results support 
the idea that the current changes obtained in Fig. 3g,h correspond to 
the electrochemical detection of lactate in sweat.

The in-ear integrated sensors combine potentiometric EEG elec-
trophysiological and chronoamperometric lactate electrochemi-
cal sensors as the two primary sensing modalities. The conductive 
nature and tight space of the ear canal pose challenges in mitigating 

crosstalk between these two sensing modalities. Co-sensing crosstalk 
experiments showed minor transient crosstalk interference, which 
manifested as a brief artefact and a discharging phase to the electro-
physiological measurement following the start of the lactate sensing 
measurement, taking place right after the driving voltage was applied 
to the electrochemical electrodes (Fig. 3k,l). Under two emulated exer-
cise conditions with different concentrations of sweat, the co-sensing 
measurements revealed ASSR SNRs comparable to baseline measure-
ment with continuous lactate measurement (Fig. 3m,n and Extended 
Data Fig. 9d,g,j), indicating that potentiometric and CA measurements 
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Fig. 2 | Characterization of the in-ear electrophysiological sensing capability. 
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magnitude and (d) phase spectra in steady state after insertion for more 
than 2 min. e,f, EDO characterization with (e) temporal profile and (f) fitted 
normal distribution of the 96 EDO recordings. g,h, EEG characterization with 
(g) spectrogram and (h) power spectrum density (PSD) for alpha modulation 
experiments with participants opening and closing their eyes at 1-min 
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spectrum. i–l, Auditory steady state response (ASSR) PSDs for four acoustic 

stimuli amplitude modulated at (i) 25 Hz, (j) 40 Hz, (k) 55 Hz and (l) 70 Hz. 
m,n, EOG characterization. m, Transient response to various eye movements 
recorded within one ear with ipsilateral referencing. n, Comparison between 
contralateral and ipsilateral referencing in the time-averaged transient response 
to two representative eye movements: glancing up and blinking. Further EOG 
characterization can be found in Extended Data Fig. 5. The total number of 
measurements taken from each individual electrophysiological sensor per 
experiment is denoted as index n in each panel. For each electrophysiological 
sensor, solid lines and shaded bands represent participant-averaged mean ± s.d. 
of the measured time series and PSD.
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capability and integrated co-sensing capability. a–f, Lactate sensing 
characterization. a, In vitro lactate sensing calibration with 5 mM lactate 
additions. b, Lactate sensing selectivity test. c, Lactate sensing stability results 
after 18 repetitive runs under a fixed concentration of 2 mM lactate.  
d, Operational stability evaluation by extended scan at 10 mM lactate for ~1 hr. 
e, Sensitivity comparison at various temperatures (25 °C, 30 °C, 32.5 °C, 35 °C, 
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CA recording with (g) or without (i) enzyme modification on the electrochemical 
electrodes, compared with simultaneous blood lactate metre reference 
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k–n, Characterization of co-sensing crosstalk on three ears from two  
participants. k, Waveform of three 70-s 40-Hz ASSR measurements with  
(l) concurrent 60-s CA measurements (synchronous with EEG measurement, 
starting from t = 5 s and ending at t = 65 s). m, 40-Hz ASSR PSD baseline recordings 
without concurrent CA recording, compared with (n) same measurements with 
concurrent CA recording and artefact blanking (Supplementary Text Note 4). The 
total number of measurements taken from each individual electrophysiological 
or electrochemical sensor per experiment is denoted as index n in each panel. 
For each electrophysiological and electrochemical sensor, solid lines and shaded 
bands represent the participant-averaged mean ± s.d. of the measured time series 
and PSD.
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can be reliably performed concurrently in the ear. The comparable 
ASSR SNRs also indicated that the design of the in-ear sensors pre-
served the integrity of the earphone’s other features, including its 
audio quality. A detailed analysis of co-sensing crosstalk can be found 
in Supplementary Note 4.

Previous research has found elevated broad EEG frequency 
bands including theta (4–8 Hz), alpha (8–12 Hz) and beta (13–30 Hz) 
during and right after acute exercise, driven by changes in periph-
eral physiology and not only within the brain itself, and returning to 
pre-exercise baseline resting-state EEG levels approximately 10 min 
after exercise43,44. In this combined sensing experiment, five healthy 
participants were instructed to conduct a 20-min cycling exercise, 
along with one pre-exercise alpha modulation and three post-exercise 
alpha modulation measurements at four timings: t0 (pre-exercise), 
t1 (post-exercise-immediate), t2 (post-exercise-after 3 min) and t3 
(post-exercise-relaxed) shown in the timeline of Fig. 4. Concurrent 

EEG and lactate sensing were conducted throughout the exercise 
experiment. Pre- and post-exercise alpha modulation analysis and 
brain-state classifications were conducted to characterize the partici-
pants’ brain-state variations throughout the entire session. Figure 4a–d 
demonstrated the participant-averaged alpha modulation results at 
the four times (t0 through t3). Extended Data Fig. 10 shows pre-exercise 
baseline and post-exercise alpha modulation spectra of all individual 
participants. Consistent with previous observations43,44, the EEG PSD 
transitions from the pre-exercise baseline levels (Fig. 4a,e) to elevated 
levels across the entire theta, alpha and beta bands after the exercise 
(Fig. 4b,e), finally returning to pre-exercise baseline levels (Fig. 4c–e). 
These EEG PSD variations in brain activity were accompanied by concur-
rent changes in other body physiological indicators, including heart 
rate, ventilation and breathing rate. Returning to the resting state 
~10 min after the exercise, all participants showed comparable pre- and 
post-alpha modulation ratios (pre-exercise RAM = 3.20 ± 1.10 (V2/V2)  
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Asterisks denote onset of sweating, the timing of which varied across individual 
participants. Recordings before t = 0 min were for stabilization of current and not 
used in the analysis. g, Ten-min lactate CA current centred around dynamically 
aligned onset of sweating across all participants. Thick solid lines and shaded 
bands indicate the mean ± s.d. of the 5 participants’ measured data (light and dark 
blue colour for alpha modulation PSD, red colour for lactate sensing current).  
All individual participant data are overlayed on the average results as thin lines 
and are further shown in Extended Data Fig. 10.
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vs post-exercise-relaxed RAM = 3.00 ± 1.14 (V2/V2)) and re-emerging 
baseline alpha-band brain activity when the participants were fully 
rested (Fig. 4d). In addition, filter-bank-based common-spatial-pattern 
(FBCSP) analysis45,46, which combines spatially diverse recordings 
across channels and extracts EEG-related features across different 
frequency bands, was conducted to classify brain states before and 
after exercise. For every participant, both the post-exercise-immediate 
brain state and post-exercise-relaxed brain state were classified with 
respect to the pre-exercise brain state as the baseline.

Table 1 shows that the post-exercise-immediate brain state  
demonstrated a considerably higher prediction accuracy (on average, 
eyes open: 88.02%, eyes closed: 90.26%) than the post-exercise-relaxed 
state (on average, eyes open: 63.47%, eyes closed: 64.97%), confirm-
ing clear differences among all participants’ brain states before and 
immediately after exercise, before returning to resting conditions 
afterwards. Classification accuracy varied when more frequency 
bands were used in the FBCSP pipeline, indicating that the recorded 
signals possess some discriminative characteristics in both the fast  
waves (beta, gamma) and the mid-band slow waves (theta, alpha).

Lactate concentration was recorded to show the secretion 
of sweat and the intensity of physical activity during the exercise.  
Figure 4e shows the grand average of the 25-min lactate sensing current 
throughout the exercise session (with individual participants’ lac-
tate sensing current given in Extended Data Fig. 10c,f,i,l,o). The initial 
stage of the experiment showed low and stable current values, reflect-
ing the absence of lactate in sweat. In contrast, the exercise-induced 
change in the current profile was measured ~12 min after exercise 
onset, showing a −0.47 ± 0.10 μA incremental current Δi on average 
(for the five participants: −0.58 μA, −0.34 μA, −0.41 μA, −0.42 μA and 
−0.58 μA, respectively). Across participants, the sweat lactate CA cur-
rent remained for a variable duration, extending beyond exercise due 
to post-exercise sweat residue before recovering at rest after exercise. 
An extended 60-min recording of the temporal profile of the lactate 
current is shown in Supplementary Fig. 11. Although different partici-
pants showed different timings of sweat onset, dynamic alignment of 
the onset timing and level of the recorded sweat lactate current across 
participants in Fig. 4f shows a clear and consistent current increment 
pattern immediately upon sweat onset.

Outlook
We have reported results from fully in-ear integrated sensors for moni-
toring brain-state and dynamic lactate-concentration changes. The 
continuous and simultaneous sensing of both modalities was achieved 
after rejecting the onset transient artefact of the chronoamperometric 
driving potential. Overall, the sensors displayed an observable degree 
of changes after exercise compared with the pre-exercise baseline. This 
work extends previous in-ear systems (Supplementary Table 1) by dem-
onstrating integrated brain-state and dynamic chemical monitoring 

in one fully integrated, user-generic device completely in the ear. The 
proof-of-principle demonstration presented here used off-the-shelf 
data-acquisition systems not optimized for power and size, but rather 
for the dependable performance required to characterize the sensors. 
Further advances in sensor–electronics integration with our low-power, 
low-noise analogue front-end signal-amplification, filtering and acqui-
sition integrated-circuit designs47,48, as well as clinical validation across 
a large population pool, promise to bring about an abundance of wear-
able diagnostic and therapeutic applications.

Methods
Materials and reagents
Ecoflex 00–30 was purchased from Smooth-on. TPU film was pur-
chased from Lubrizol. Silver flakes, SEBS, toluene, Prussian blue  
(soluble), chitosan, acetic acid, potassium hydroxide (KOH), PVA (MW 
~89,000), phosphate buffer solution (PBS) (1 M, pH 7.4), uric acid, 
l-lactic acid, d(+)-glucose, acetaminophen, ascorbic acid, sucrose, 
sodium chloride, bovine serum albumin (BSA) and potassium chloride 
were purchased from Sigma-Aldrich. Graphite powder was purchased 
from Acros Organics. Super-P carbon black was obtained from MTI. 
Silver conductive epoxy adhesive was purchased from MG Chemicals. 
LOx (activity 101 U mg−1) was purchased from Toyobo. Mould release 
spray (Smooth-on) was purchased from Amazon.

Sensor design and fabrication
Sweat-gland mapping. Locations where the sweat secretion was 
higher after physical activities were evaluated by using custom sili-
con pieces. Extended Data Fig. 1 demonstrates the preparation of the 
custom silicon pieces, which were modified by incrusting filter paper 
traces (2 × 4 mm). A small section (2 × 1 mm) of the filter paper was 
modified with edible blue dye. As shown in Extended Data Fig. 1f, the 
area modified with blue was exposed to the outside (skin), while the 
un-modified area was exposed to the inside of the silicon piece. As 
shown in Supplementary Fig. 1, by performing individual experiments 
on three participants, it was observed that the areas with the highest 
sweat volumes were found towards the tragus area of the ear channel. 
The geometry of the in-ear electrochemical sensors was then designed 
to match such sweat secretion distribution.

Sensor fabrication, electrode modification and earphone assem-
bly. The in-ear integrated sensors were fabricated on the basis of 
the layer-by-layer screen printing method using a semi-automatic 
MPM-SPM printer (Speedline Technologies) and custom 10 × 10-inch 
stainless-steel stencils (MetalEtch). Starting from the 150-μm-thick 
TPU substrate, stretchable Ag interconnection layer, stretchable SEBS 
layer and stretchable PB electrochemical electrodes were sequentially 
printed and cured. After the printing of a layer, the patch element 
was cured in a hot-air oven for 10 min each at 80 °C, 80 °C and 60 °C, 
respectively, which stabilizes the printed polymeric materials and 
evaporates out the toluene traces from the thin layer. 3D stretchable 
Ag electrophysiological electrodes were then built using a 3D-printed 
750-μm-thick tough polylactic acid mould (S5, Ultimaker). The sensor 
was then bonded to a flexible printed circuit board (PCB) (PCBWay) 
using silver liquid solder for electrical connections. The sensor, along 
with the flexible PCB, was then assembled onto a generic in-ear ear-
phone and secured using the pre-applied double-sided adhesive (3M 
medical 1509) as well as a silicone earphone hook. Details of the ink 
formulation, printing parameters, 3D electrophysiological electrode 
fabrication, bonding and assembling processes, and electrode modi-
fication method are given in Supplementary Note 1.

3D electrophysiological electrode design. 3D electrophysiological 
electrodes were built to provide tight contact between the electro-
physiological electrode and the ear canal. To overcome the geometrical 
variations of participants’ ears, the electrophysiological electrodes’ 

Table 1 | Accuracy of FBCSP-based brain-state classification 
across five participants’ pre- and post-exercise in-ear EEG 
data

Frequency  
bands (Hz)

Accuracy (%)

Eyes open Eyes closed

Fully 
relaxed

Immediately 
post-exercise

Fully 
relaxed

Immediately 
post-exercise

4–28 (3 bands) 64.06 84.40 63.25 88.45

4–36 (4 bands) 63.37 86.45 64.11 90.34

4–44 (5 bands) 63.94 89.77 66.11 91.48

12–44 (4 bands) 62.74 89.77 65.31 90.91

20–44 (3 bands) 63.25 89.71 66.06 90.11

Each of the participants’ brain-state classification data are given in Supplementary Table 2.
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3D structure was featured with an electrode thickness that was 5 times 
of the TPU substrate (750 μm stretchable Ag thickness, 150 μm TPU 
thickness) and a ‘spring-loaded backing’ structure made with SEBS 
(Extended Data Fig. 2r). Such a structure was realized by using the 
thermal coefficient mismatch between the TPU substrate and the 
stretchable Ag ink at the curing step to create a curvature shape under 
the electrode. The concept of using the thermal coefficient mismatch 
was demonstrated with a finite element model (Supplementary Note 1), 
which showed a deflection of 53% of the TPU thickness (80 μm, 150 μm 
TPU thickness) after the curing process. This deflection created the 
space underneath the electrophysiological electrodes, which was then 
filled with elastomer material SEBS to function as the ‘spring-loaded’ 
support for the electrophysiological electrodes.

Participant-specific tight fitting inside the ear. To account for the 
anatomical variation in ear shape between participants and the geo-
metrical mismatch between the round-arc earphone tip and the ear 
canal, three sizes of generic silicone earphone tips were used in the 
assembly of the sensors for a tight fit across different human par-
ticipants during on-body experiments, with small (11.6 mm), medium 
(12 mm) and large (13.5 mm) diameters. The outline contour of the 
integrated ear sensors was customized to match the contour of the 
earphone and its silicone tip. Moreover, the electrophysiological 
stretchable Ag electrodes adopted a 3D structure (Extended Data 
Fig. 2q–v), whereas the three planar electrochemical electrodes were 
coated with a piece of PVA hydrogel (Extended Data Fig. 3c–e) to cush-
ion the gap between the electrochemical electrodes and the ear canal, 
in addition to enhancing sweat collection due to its hydrophilicity 
and porosity. Such soft structures offered additional cushioning to 
accommodate the anatomical variation of the ear in addition to the 
existing tight fit between the earphone tip and ear canal. Lastly, the 
sensors were assembled to the earphone using the bottom adhesive. 
In this work, a silicone earphone hook was used to provide further 
mechanical anchoring to the auricle (Extended Data Fig. 2f). These 
three design factors ensured interference fit between the sensors 
and the ear canal as well as mechanical stability when the participant 
moved. More intricate designs of the earphone and sensor enclosure 
in flexible and stretchable form factors may provide equal or greater 
levels of mechanical stability with greater user comfort, conforming 
to various ear sizes and shapes. Likewise, the fabrication and assem-
bly procedures employed in this work can be further mechanized for 
large-scale, low-cost production by using 3D-printed custom moulds, 
spinning machines and automated cutters.

PVA gel characterization. The suitability of the PVA interfacial hydrogel 
for skin and on-body application was evaluated. As the PVA hydrogel is in 
contact with the skin, its potential skin-irritant components were evalu-
ated. Since KOH was used to prepare the sensor, there is a possibility of 
its retention in the hydrogel due to its spongy texture. To characterize 
the presence of KOH, we optimized the post-synthetic washing steps and 
confirmed the results with infrared tests, where the infrared spectra of 
the PVA hydrogel were recorded immediately after preparation and after 
subsequent washing (Supplementary Fig. 5a). The disappearance of the 
peak at 670 cm−1 and fainting of the peak at 2,940 cm−1 of the spectrum 
after washing was attributed to the absence of the KOH in the hydrogel. 
In addition, the PVA hydrogel was evaluated by measuring the pH at 
its surface before each experiment, where a neutral pH ensured and 
confirmed the elimination of the KOH irritant from the PVA hydrogel.

Electrophysiological sensing
The on-body tests of the in-ear integrated sensors were conducted on 
healthy consenting individuals with no previous history of hearing 
damage, heart conditions or chronic pain and in strict compliance 
with the protocol approved by the Institutional Review Board of the 
University of California, San Diego.

Electrode–ear impedance characterization. The electrode–ear 
impedance measurements were performed with a potentiostat  
(PalmSens4, PalmSens) in a three-electrode setup, which characterized 
the impedance at the working electrode–ear interface. Here, all three 
electrodes were made of the same stretchable Ag material. The working 
electrode and reference electrode were two adjacent electrophysi-
ological electrodes in the ear canal, and the reference electrode was 
the concha cymba REF electrode, as shown in Fig. 1i. The continuous 
impedance testing used the galvanostatic impedance spectroscopy 
method with an applied current range of 10 μA (iac = 0.01 × 10 = 100 nA), 
a total duration of 120 s and a fixed frequency at 10 Hz, which is a rep-
resentative EEG frequency. The EIS testing also used the galvanostatic 
impedance spectroscopy method with an applied current range of 
100 μA (iac = 0.01 × 100 = 1 μA) and a frequency range of 1 Hz–1 kHz. 
The galvanostatic impedance spectroscopy method strictly clamped 
the current level running into the body to ensure safety. Figure 2a–d 
show the grand average for both the continuous impedance and the 
EIS experiments; 6 electrophysiological electrode–ear impedance 
recordings across 2 participants were obtained and averaged to pro-
duce the results.

Electrophysiological measurement system integration and 
on-body setup. The electrophysiological measurement system 
consisted of the in-ear integrated sensors’ electrophysiological elec-
trodes and a wireless DAQ (BioRadio, Great Lakes Neurotechnologies,  
Bluetooth low energy). For on-body electrophysiological measure-
ments, the electrophysiological electrodes on the in-ear integrated 
sensors were connected to the input channels of the DAQ through the 
bonded flexible PCB (Extended Data Fig. 2y) and connector cables 
(Supplementary Fig. 2). During measurements, the participants wore 
the in-ear integrated sensors assembled on earphones. The flexible PCB 
was adhered to the mastoid and the hindneck. The DAQ was attached to 
the collar at the participant’s back (Extended Data Fig. 7a). According 
to the continuous electrode–ear impedance measurement results, the 
participant was instructed to wear the in-ear integrated sensors and 
the DAQ for more than 2 min to stabilize the electrode–ear interface 
and reach a magnitude of less than 1 MΩ at 10 Hz. The DAQ employed 
the following configurations: sampling rate, 500 Hz per channel (two 
ears, 6-channel input) or 1 kHz per channel (1 ear, 3-channel input);  
measurement mode, single-ended; resolution, 1 μV; input range, 
±187 mV. Live streaming raw EEG data (Unit V) were transmitted via 
Bluetooth to the host computer and were saved with the DAQ-bundled 
software (BioCapture, Great Lakes Neurotechnologies). The raw EEG 
data were then exported as .csv files for processing.

The DAQ system in this work had an integrated 24-bit 
high-precision TI ADS1299 acquisition chip. The ADS1299 chip was 
pre-programmed to have the lead-off detection functionality, which 
injected a current of 6 nA at minimum and 31.2 Hz alternating current 
signal to the body for impedance measurement purposes49. The 6 nA 
injected resulted in ~30 μV of artefact signal at 31.2 Hz, which is within 
the frequency range of the EEG signals. For all the EEG spectral analy-
ses of alpha modulation and the ASSR measurements, the calculated 
31.2 Hz data point was rejected from the EEG PSD spectra.

Electrophysiological electrode DC offset characterization. No 
skin cleaning preparation was conducted before the electrophysi-
ological EDO experiments. The EDO experiment was conducted on 2 
participants’ 4 ears; each electrophysiological electrode took the EDO 
recording 8 times, with a time separation of ~5 min between recordings. 
Each EDO recording measured the potential on one electrophysiologi-
cal electrode against the REF electrode for 10 s. The EDO value of one 
recording ‘edo (s)’ was the average potential over the 10-s duration, 

calculated using edo (s) = 1
10,000

10,000
∑
n=1

vs(n). Here, n is the time sequence: 

n = 1–10,000 since the sampling rate of the 10-s EDO recordings was 
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1 kHz. s is the recording index: s = 1–96 since 96 EDO recordings were 
taken. The 96 EDO waveforms were averaged in Fig. 2e and the EDO 
values were normally distributed in Fig. 2f. Here, the normal distri-
bution fit returns the probability density function of the 96 EDO 

values with the mean μ = 1
96

96
∑
s=1
edo (s)  and the standard deviation 

σ =
√√
√

1
96

96
∑
s=1

(edo (s) − μ)2  as follows:

f (edo(x),μ,σ) = 1
σ√2π

e
−(x−μ)2

2σ2 (1)

Alpha modulation measurement protocol and analyses. The alpha 
modulation measurements employed the following protocol: the 
alpha baseline measurement was conducted when the participant 
stayed relaxed and kept eyes open for 1 min. The alpha modulation 
measurement was taken when the participant stayed relaxed and kept 
eyes closed for 1 min. By pressing the triggering button on the DAQ, the 
timings for the start and end of the alpha baseline or alpha modulation 
measurements were recorded as event markers along with the EEG data 
stream. Both time-frequency analyses and spectral analyses were con-
ducted. For the time-frequency analyses, the participant conducted a 
4-min experiment with the following sequence: eyes open, eyes closed, 
eyes open, eyes closed. The raw EEG streaming data were then used 
to generate a spectrogram with the following parameters in Matlab 
(MathWorks): window segment length, 3,000 (3 s); overlapped points, 
no overlap; sampling frequency, 1 kHz. For the spectral analyses, the 
participant first conducted a 1-min eyes-open alpha baseline meas-
urement and then conducted a 1-min eyes-closed alpha modulation 
measurement. The raw EEG streaming data were then used to generate 
the power spectral density with the Matlab EEGLAB toolbox (spectopo 
function) using the following parameters: window segment length, 
10 s; window overlapping, 0.5 s. Here, the PSD was calculated using a 
time-domain averaging method. Raw EEG data were first segmented 
and the PSD was the averaged results of individual window segments, 
which helped smooth the noise. The alpha modulation ratio RAM char-
acterized the modulated alpha-band power relative to the eyes-open 
baseline over the 8–12 Hz frequency alpha band. Here, RAM was defined 
as the ratio of the 1-min eyes-closed EEG power P(AlphabandEyes open) and 
the 1-min eyes-open EEG power P(AlphabandEyes closed):

RAM =
P (AlphabandEyes closed)

P (AlphabandEyes open)
(2)

P (Alphaband) =

12Hz
Δf

∑
n= 8Hz

Δf
+1

PSD (n) Δf (3)

As an overall evaluation, the alpha modulation results were char-
acterized by statistically averaging PSDs from 4 participants’ 12 elec-
trophysiological sensors in total, as shown in Fig. 2h.

ASSR measurement protocol and analyses. ASSR is an important 
auditory brain signal pattern and has found applications in hearing 
threshold estimation and brain–computer interfaces. ASSR can be 
evoked by presenting ASSR sound stimuli to the participants, which 
commonly takes the form of amplitude-modulated white noise  
signals24. The ASSR stimuli were generated in Matlab with the follow-
ing processing steps (Supplementary Fig. 4): uniformly distributed 
Gaussian white noise was first generated and then convolved with a 
set of sinusoids used in the ASSR experiments (25 Hz, 40 Hz, 55 Hz, 
70 Hz), producing an amplitude-modulated white noise signal. Super-
imposed waveforms were separated from the modulated noise signal 
into frequency-specific amplitude modulations. A Blackman envelope 
was applied to the separated waveforms, producing an appropriately 

shaped and timed final ASSR stimulus. The ASSR stimuli were played 
on the Bluetooth-connected earphones, integrated with the in-ear 
integrated sensors. The sound pressure level (SPL) of the ASSR stim-
uli was adjusted to 75 dB by putting the earphone tip in proximity 
to a high-sensitivity electric sound gauge. The ASSR measurement 
employed the following protocol: the participant stayed relaxed, kept 
eyes closed and was played one of the ASSR stimuli (25 Hz, 40 Hz, 55 Hz, 
70 Hz) at both ears for 1 min. The raw EEG streaming data taken dur-
ing the ASSR measurement were then used to generate the PSD with 
the Matlab EEGLAB toolbox (spectopo function) using the following 
parameters: window segment length, 10 s; window overlapping, no 
overlap. The ASSR SNR was calculated as the ratio of the power at the 
ASSR frequency fASSR to the averaged power of noise from fASSR – 5 Hz to 
fASSR + 5 Hz, excluding fASSR power:

SNRfASSR =

P (fASSR)
PAvg (fASSR − 5Hz to fASSR + 5Hz, excluding fASSR)

(4)

P (fASSR) = PSD(
fASSR

Δf
)

PAvg (fASSR − 5Hz to fASSR + 5Hz, excluding fASSR) =

1
10Hz−Δf

⎛
⎜⎜
⎝

fASSR
Δf

−1

∑
n= fASSR−5Hz

Δf
+1
PSD(n)Δf +

fASSR+5Hz
Δf

∑
n= fASSR

Δf
+1
PSD(n)Δf

⎞
⎟⎟
⎠

(5)

As an overall evaluation, the ASSR results were characterized by 
statistically averaging PSDs from 4 participants’ 12 electrophysiological 
sensors in total, as shown in Fig. 2i–l.

Eye movement measurement protocol and analyses. Eye movement 
measurements were taken with in-ear integrated sensors in both ears. 
Here, the REF electrode of one ear was used as the common REF for the 
6 electrophysiological electrodes in both ears. Ipsilateral referencing 
refers to measurements taken from the electrophysiological electrodes 
at the REF electrode’s side. In contrast, contralateral referencing refers 
to measurements taken from the electrophysiological electrodes at 
the other ear. During the eye movement measurements, the participant 
was instructed to sit relaxed in front of a monitor and perform the fol-
lowing eye movements with a timer hint on the screen: glancing up, 
glancing down, glancing left, glancing right, normal eye blinking and 
heavy eye blinking. The corresponding 6-channel, synchronous raw 
EEG data stream was processed on the host computer. The DC offset 
of the EEG data stream was removed by subtracting the mean of the 
time series. The power line interference was removed by applying a 
60 Hz notch filter. For individual eye movement characterization, the 
peaks of the corresponding eye movement signals were detected and 
centred in a 1-s window segment. The signal amplitude of each eye 
movement was characterized by calculating the absolute value of the 
difference between the averaged peak potential over the 200-ms inter-
val (V400−600msavg) centred within the 1-s window segment, and the aver-
aged baseline potential over the leading and trailing 100-ms intervals 
(V0−100ms,900−1000msavg) of the 1-s window segment:

A = ||V400−600msavg − V0−100ms,900−1000msavg || (6)

As an overall evaluation, the eye movement measurement results 
were characterized by statistically averaging EEG time-series data from 
2 participants’ both ears (6 sensors per participant, 12 electrophysi-
ological sensors in total) as shown in Fig. 2m,n and Extended Data Fig. 5.

Electrochemical lactate sensing
The electrochemical characterization of the lactate biosensor was per-
formed and recorded using a PalmSens4 potentiostat (Supplementary 
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Fig. 2) and PSTrace software (PalmSens), respectively. In all experi-
ments using the electrochemical sensor, CA was used as the sensing 
method, applying a potential step of −0.2 V vs Ag (RE).

In vitro characterization. In standard addition, selectivity and stability 
tests, CA scans were applied for 60 s. A solution of PBS (0.1 M, pH 7.3) 
was used as the electrolyte covering the electrochemical sensor. After 
adding the desired concentration to the PBS aliquot, the solution was 
mixed 10 times using a regular pipette, followed by an incubation time 
of 60 s. This period was followed by the recording step using CA. The 
relative response (%) of each run performed in the stability test (Fig. 3c) 
was calculated by dividing the current of each amperogram (run n) by 
the initial amperometric scan (run 0). The resulting number was then 
multiplied by 100 to acquire the percentage difference. The electro-
chemical sensors were also characterized for stability in repeated scans 
and long-term scanning, variable temperature and variable humidity. 
For evaluating repeated scanning stability, subsequent scans were 
recorded after every 10 min at 10 mM of lactate for 18 times. Thereafter, 
the assessment in the long-term scan was performed by scanning the 
sensor at 0 mM and 10 mM of lactate. Further, the temperature- and 
humidity-dependent stability of the sensors was assessed by evaluat-
ing the dose-dependent study at various temperatures (25 °C, 30 °C, 
32.5 °C, 35 °C, 37.5 °C and 40 °C) and relative humidity levels (40%, 
50%, 60% and 70%), respectively. These dose-dependent studies were 
performed by scanning the CA after sequential addition of 5 mM lactate 
aliquots at four concentrations (5–20 mM).

On-body characterization. Before transferring the device, the ear 
of each volunteer was cleaned with alcohol prep pads. After clean-
ing, the area was left to dry for 2 min. Meanwhile, a 0.5 × 0.5-cm piece 
of PVA hydrogel was placed on top of the electrochemical sensor. 
Next, the hydrogel layer was pressed for 30 s to ensure good contact 
between the gel and the sensor. Next, the device was transferred inside 
the ear of the individual. The test started by continuously applying 
CA for 45 min. In the first stage of the experiment, 3 volunteers were 
asked to stay still for 20 min to stabilize the sensors. The recorded CA 
current during the stabilization phase was not used in the analysis. 
Next, the stationary exercise was performed for 20 min at a fixed level. 
After concluding the last stage of the experiment, volunteers were 
asked to remain still for 5 min. Simultaneously, blood samples were  
collected 10, 30 and 43 min after starting the experiment using a blood 
lactate metre (NOVA Biomedical). The recorded CA currents from the 
electrochemical sensors were temporally averaged over a 50-point 
sliding rectangular window to filter out high-frequency noise due to 
PVA hydrogel electrochemical fluctuations at the electrochemical sen-
sor–skin interface. The incremental current induced at sweat onset was 
calculated by taking the difference between the average current of the 
sweating session and that of the 30-s pre-sweating session, the timing 
of the sweat onset was variable across participants.

Co-sensing crosstalk characterization
The crosstalk between the electrophysiological and electrochemical 
signals was analysed on-body by monitoring the changes in one signal 
while the other signal was generated. Co-sensing experiments com-
bined the experimental setups of both the electrophysiological and 
electrochemical measurements. Specifically, the participants wore 
one of the in-ear integrated sensors in one ear. Three electrophysi-
ological electrodes were in direct contact with the ear canal and were 
connected to the DAQ, and 3 electrochemical electrodes contacted the 
ear canal through a piece of PVA hydrogel and were connected to the 
potentiostat. Both the EEG potentiometric and lactate amperometric 
data streams were transmitted to the host PC wirelessly via separate 
Bluetooth connections.

Two aspects were considered in analysing co-sensing interfer-
ence: the sweat condition and the effect of the electrochemical CA 

measurement setup. Sweat concentration inside the ear was an influ-
encing factor because it affected the conductivity of the skin, the 
electrode–ear interface and the PVA hydrogel. Sweating conditions 
were simulated with two ideal settings. First, before each co-sensing 
crosstalk experiment, the participant’s ear was cleaned with alcohol 
to remove sweat residues. Then, one setting simulated the less-sweaty 
condition by drop casting 10 μl of deionized water to the PVA hydro-
gel, which diffused to the skin after insertion (Extended Data Fig. 9b). 
The other setting simulated the extremely sweaty condition by drop 
casting 10 μl of 0.1 mol l−1 PBS to the PVA hydrogel (Extended Data 
Fig. 9c). Under normal conditions, the expected amount of sweat in 
the ear is ~20% of the 10 μl PBS solution42 used in the sweaty setting. 
To demonstrate the effect of the electrochemical CA measurement 
setup, after considering real-life usage conditions, a typical auditory 
EEG paradigm ASSR was used for the EEG measurement. Participants 
were presented with a 40 Hz ASSR stimulus for 70 s. During the period, 
an EEG measurement session was taken. After 5 s from the onset of 
the EEG measurement, a lactate measurement session was started by 
applying the −0.2 V potential between the electrochemical WE and RE, 
resulting in a CA current between the electrochemical WE and CE. The 
lactate measurement session lasted for 60 s and ended 5 s before the 
end of the EEG measurement session. Crosstalk was characterized by 
statistically analysing the time series and spectra of EEG and lactate 
measurements across the 3 ears of 2 participants.

As shown in Extended Data Fig. 9d–j, the co-sensing crosstalk 
experiment results show that the potentiometric and CA measure-
ments could operate simultaneously in the ear despite the presence 
of transient artefacts, which took place right after the driving voltage 
was applied to the electrochemical electrodes. Such artefacts are 
location-dependent, which can be explained by the different amounts 
of voltage drop across the skin given different separation distances. 
There are several ways to avoid or reject such artefacts. The first 
solution is to separate the electrophysiological and electrochemi-
cal electrodes even further, which is not ideal for in-ear applications 
given insufficient space. The second solution is to build insulating 
structures between the electrophysiological and electrochemical 
electrodes, as shown in previous work8. However, this may result in 
challenges due to the limited space in the ear. The third solution is to 
apply front-end mitigation techniques50. For the application in this 
work, the CA-induced artefact was controllable and sporadic, and the 
artefact blanking method was used without adding complexity to the 
circuit. Specifically, a portion of the EEG time series data after the onset 
of the lactate measurement was rejected for both time domain and 
frequency domain analyses to maintain the fidelity of the EEG features. 
A detailed discussion of the EEG spectral analyses regarding artefacts 
in this work can be found in Supplementary Note 4.

Combined EEG and lactate sensing
The experiment involved an exercise session, during which five partici-
pants experienced resting state, sweating, exciting state and return to 
resting state. The combined sensing experiment integrated the experi-
mental setups of both the electrophysiological and electrochemical 
measurements. Throughout the experiment, every participant wore 
the in-ear integrated sensors in one ear, which connected to both 
the DAQ and the potentiostat for EEG and lactate data streaming and 
wireless transmission. Before transferring the device, the ear of each 
volunteer was cleaned with alcohol prep pads. After cleaning, the 
area was left to dry for 2 min. Meanwhile, a 0.5 × 0.5-cm piece of PVA 
hydrogel was placed on top of the electrochemical biosensor. Next, the 
hydrogel layer was pressed for 30 s to ensure good contact between 
the gel and the sensor. Afterwards, the device was transferred inside 
the ear of the individual.

The combined sensing experiment used the following protocol as 
shown in the timeline in Fig. 4: The EEG recording first started and the 
participant then remained seated at a table for more than 2 min to relax 
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thoroughly. Following that, the 30-min lactate sensing with CA began. A 
2-min pre-exercise alpha modulation experiment (consisting of a 1-min 
eyes-open alpha baseline experiment and a 1-min eyes-closed alpha 
modulation experiment) was conducted and time-stamped sequen-
tially by pressing the trigger buttons on the DAQ (denoted as t0). At 
t = 0 min, the participant moved to a nearby stationary bike and started 
a 20-min cycling session (room temperature). At t = 20 min, the partici-
pant stopped cycling, moved back to the table and sat down. Immedi-
ately after the participant sat down, the first 2-min post-exercise alpha 
modulation experiment was conducted and time-stamped (denoted 
as t1). After 2 min, the second 2-min post-exercise alpha modulation 
experiment was conducted and time-stamped (denoted as t2). When 
the participant returned to normal breathing rhythm and self-reported 
the relaxing state, the third 2-min pre-exercise alpha modulation meas-
urement was conducted and time-stamped (denoted as t3). The third 
alpha modulation measurement was repeated to ensure that partici-
pants reached consistent fully relaxed state. All the post-exercise alpha 
modulation measurements were conducted using the same instru-
mental setup and followed the same procedures as the pre-exercise 
alpha modulation measurements. During the exercise session, motion 
artefacts were present for the EEG recording, while all alpha modulation 
data were collected when the participant remained motionless, avoid-
ing the introduction of motion artefacts. Signal processing methods 
including automatic subspace reconstruction may be applied to reduce 
the motion artefacts recorded from the electrophysiological sensors. 
Details of the automatic subspace reconstruction algorithm used for 
in-ear sensors can be found in Supplementary Note 3. To characterize 
the brain states before and after exercise, Extended Data Fig. 10b,e,h,k,n 
and d,g,j,m,p show the measured pre-exercise and post-exercise alpha 
modulation results from each participant, respectively, on the basis of 
which the alpha modulation ratios were calculated. Figure 4a–d show 
the calculation of participant-averaged alpha modulation results at 
four different timings: t0 (pre-exercise), t1 (post-exercise-immediate), t2 
(post-exercise-after 3 min) and t3 (post-exercise-relaxed), respectively. 
Figure 4d summarizes the results of participant-averaged EEG alpha 
band (8–12 Hz) power and participant-averaged alpha modulation 
ratios, both of which were calculated from each participants’ measured 
PSD in the alpha band and then statistically averaged. For sweat moni-
toring, Extended Data Fig. 10c,f,i,l,o show the measured lactate sensing 
currents from each participant, which again were temporally averaged 
over a 50-point rectangular sliding window to filter out high-frequency 
noise. Figure 4f summarizes the results of participant-averaged lactate 
sensing current. Figure 4g further characterizes the change in lactate 
sensing current by dynamically aligning the current waveform at the 
onset of measured sweating from each participant.

FBCSP method for EEG feature classification. The EEG recording was 
further used to classify the pre- and post-exercise brain states from a 
broader frequency scope, apart from the alpha modulation, which only 
focused on the 8–12-Hz frequency band and resting states. The FBCSP 
approach has been widely deployed as a classification algorithm for 
scalp-EEG motor imagery tasks45,46. This work used the FBCSP method 
to extract features and classify physiological and brain-state changes 
acquired via in-ear EEG sensing.

FBCSP used a two-stage data processing pipeline for two-class 
feature extraction and classification (Supplementary Fig. 12). The three 
participants’ continuous EEG data before, during and after the exercise 
were used as inputs to the pipeline. In both cases, the eyes-open-session 
data and eyes-closed-session data were used to investigate the 
brain-state changes. The first stage of the pipeline consisted of multiple 
bandpass filters (4–12 Hz, 12–20 Hz, 20–28 Hz, 28–36 Hz and 36–44 Hz). 
These bandpass-filtered signals went through a common-spatial-filter 
transformation where a projection matrix was calculated, maximiz-
ing the variance of class-specific samples in a spatial dimension and 
maximizing the other class variance in a different spatial dimension. 

In this stage, we also extracted the reduced-dimension CSP features 
for all windows and generated the final CSP feature vector and associ-
ated their class labels. Further, a mutual information-based feature 
extraction technique selected the most discriminative features for 
classification. The final stage was a support-vector-machine classifier, 
which calculated the decision boundary for classification.

Combining the FBCSP, an in-ear EEG data processing pipeline 
consisting of signal processing and machine learning methods was 
used to determine the participants’ physiological states accurately. In 
this work, the same datasets from all participants’ alpha modulation 
sessions at t0, t1, t2 and t3 in Fig. 4a–d were used. Here, the classification 
of the pre-exercise brain state at t0 and post-exercise-immediate state 
at t1 was chosen as one task, while the classification of the pre-exercise 
state at t0 and post-exercise-relaxed state at t3 was chosen as the other 
task. Table 1 shows the averaged accuracy of brain-state classifica-
tion, with each individual participant’s classification results shown in  
Supplementary Table 2.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the results in this study are available within 
the paper and its Supplementary Information. Source data for the  
figures are provided with this paper, and are available in figshare at 
https://doi.org/10.6084/m9.figshare.22829051.

Code availability
Custom codes for electrophysiological signal analysis, for the 
automatic subspace reconstruction (ASR) algorithm and for the 
filter-bank-based common-spatial-pattern (FBCSP) method are  
available at https://doi.org/10.1038/zenodo.8193117.
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Extended Data Fig. 1 | Fabrication of the custom Ecoflex earpiece used for 
sweat mapping. a. The modeling clay was inserted and pressed gently inside the 
ear to obtain the inner shape of the participants. Next, the clay with the shape of 
the inner ear was removed from the participants. b. After removal, the clay with 
the inner ear canal shape was sprayed with mold release. Afterward, the piece 
was placed inside a receptacle in which a mixture of Ecoflex mixture was poured. 
Next, the receptacle and its content were dried at 65 °C for 15 minutes. c. After 
drying, the clay was removed from the receptacle, leaving an Ecoflex mold in the 
shape of the clay. The clay’s void space was first sprayed with mold release and 
then filled with a mixture of Ecoflex and dried following the same conditions 
used in the previous step. d. The resulting Ecoflex earpiece was removed from the 

mold to use in further experiments. e–f. Sweat mapping using a costume Ecoflex 
earpiece. (e) With the help of a tweezer, small cavities were made in the resulting 
Ecoflex earpiece. Next, pieces of filter paper (2 ×4 mm) were modified with an 
edible blue dye covering a certain area (2 × 1 mm). These pieces were inserted 
inside the cavities of the earpiece, exposing the area with blue dye to the ear skin. 
(f) Three participants (n = 3) wore the resulting earpiece to perform 30 minutes 
of stationary cycling at a fixed level. Before exercise, no dye stain was observed 
due to the absence of sweat (i). After concluding the 30 minutes of exercise, dye 
spread across the filter paper was observed, indicating areas of higher sweat 
secretion(ii).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Fabrication and design specifications of the in-ear 
integrated sensors. a–l. Fabrication procedure. (a) Print and cure (60 °C for 
10 minutes) the stretchable Ag interconnection layer with the corresponding 
stencil. (b) Print and cure (60 °C for 10 minutes) the SEBS insulation layer 
with the corresponding stencil. (c) Print and cure (60 °C for 10 minutes) the 
stretchable PB layer for lactate sensing WE and CE with the corresponding 
stencil. (d) Mold and cure (room temperature for 30 minutes) the 3D 
electrophysiological electrodes with a 3D printed PLA mold. (e) Drop cast and 
fill the 3D electrophysiological electrode back holes with the SEBS. (f) Adhere 
a piece of double-sided medical tape onto the back of the sensor enclosing the 
SEBS backing. (g) Cut the profile of the sensor. (h) Align and adhere the flexible 
PCB to the bonding pads. (i) Fill silver epoxy onto a piece of Kapton tape with 
openings aligned to the sensor’s bonding pads. (j) Release the Kapton tape to 
cure and pattern the silver epoxy onto corresponding bonding pads. (k) Peel off 
the release liner of the medical tape at the back, assemble the sensor onto the 

targeted location of the earphone, and install the earphone hook as fixation.  
(l) Adhere the PVA hydrogel and modify the lactate electrodes with LOx.  
m–p. Pattern design of each layer. (m) Substrate TPU layer. (n) Interconnection 
stretchable Ag layer. (o) Insulation SEBS layer. (p) Electrochemical electrode 
stretchable PB layer. q–s. 3D electrophysiological electrode design. (q) Air gap 
observed for the earphone’s silicone tip to the ear canal. (r) Design principle of 
the 3D electrophysiological electrode with ‘spring-loaded’ backing. (s) Finite 
element simulation of the 3D electrophysiological electrode structure showing 
the curved back hole formation via thermal expansion coefficient mismatch 
between the TPU and the stretchable Ag ink. t. 3D printed PLA mold structure. 
u–v. Molded 3D electrophysiological electrode (u) before and (v) after curing. 
w–x. Silicone earphone hook stretchable Ag ink modification, (w) REF and DRL 
exposed wire location. (x) Cured stretchable Ag electrodes on the earphone 
hook. y. Connecting flexible PCB layer by layer design.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-023-01095-1

Extended Data Fig. 3 | Electrochemical electrode modification preparations. 
a–b. electrochemical lactate electrodes mechanism and modification.  
(a) Lactate sensing was based on detecting the biocatalytic oxidation of lactate, 
glucose, or alcohol molecules to pyruvate along with the production of hydrogen 
peroxide. (b) The Prussian-blue working electrode was modified first by drop-
casting 1.5 μL of a solution of LOx (40 mg/mL) containing BSA (10 mg/mL) in 
0.1 M PBS pH 7.3. The sensor was left at room temperature to allow the drying 
of the enzymatic layer. After the layer was dried, 2 μL chitosan (0.5 wt% in acetic 
acid) was drop-casted on the sensor to stabilize the biocatalyst layer on the PB 

surface. The modified electrochemical sensor was then stored at 4 °C overnight. 
The modification was made after the sensor was assembled onto the earphone. 
c–e. PVA hydrogel preparation. (c) A mixture of solutions of PVA, KOH, and 
sugar were prepared separately in water. (d) Next, a mixture of 10 g of PVA, 14 g 
of KOH, and 2 mL of sugar solutions were mixed inside a glass container under 
mild stirring. A volume of 15 g of the resulting solution was poured into a glass 
slide and left inside a vacuum desiccator overnight. (e) The formed hydrogel 
(thickness: 0.5 mm) was immersed in 0.1 M PBS pH 7 to remove the residue. After 
washing, the hydrogel disk was sliced and stored in 0.1 M PBS buffer.
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Extended Data Fig. 4 | Electrophysiological electrode-ear impedance 
analysis. a–f. Electrophysiological electrode composition characterization 
before and after interfacing with the ear canal. Pre-insertion SEM (scanning 
electron microscope) at two magnifications (a) and (b), and (c) EDS (energy-
dispersive X-ray spectroscopy) of the electrophysiological electrodes. The EDS 
is the average of three scanned surface locations on the electrophysiological 

electrode. Post-insertion SEM at two magnifications (d) and (e), and (f) EDS of 
the electrophysiological electrodes. Sweat residue was observed in the SEMs and 
indicated by a 176% increase in the intensity of Na+ in the EDS. g–k. Equivalent 
model fitting results with the (g) RRC model, (h) the RRCRC model, and (i) the 
constant phase element (CPE) model. (j) Magnitude fitting results. (k) Phase 
fitting results.
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Extended Data Fig. 5 | Characterization of the EOG. Transient response 
to various eye movements recorded with a. contralateral and b. ipsilateral 
referencing. Transient eye movements performed by the participants included 
‘glancing up’, ‘glancing down’, ‘glancing left’, ‘glancing right’, ‘heavy blinking’ 

and ‘blinking’, each returning to centered gaze before the next eye movement. 
c. Time-averaged transient response for each eye movement. The mean and 
standard deviation are shown in solid lines and shaded bands for all participant-
averaged data.
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Extended Data Fig. 6 | Characterization of combined multimodal 
electrophysiological in-ear sensing capability. a–b. EEG-only baseline 
recording of 40 Hz ASSR (a) time series data, and (b) its PSD. c–d. Simultaneous 
EEG + EOG recording of 40 Hz ASSR (c) time series data and (d) its PSD under eye 
blinks at 5-s intervals. e–j. Simultaneous EEG + EDA measurement for the same 
auditory stimulus. The ear-electrode impedance was continuously measured at 

10 Hz (e,f), 100 Hz (g, h), and 500 Hz (i,j), with simultaneous EEG and impedance 
time series data shown in (e,g,i) and the corresponding EEG PSD shown in (f,h,j). 
The mean and standard deviation of the measured 40 Hz ASSR PSDs across all 3 
electrophysiological sensors are represented by solid lines and shaded bands, 
respectively.
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Extended Data Fig. 7 | Controlled validation of the in-ear integrated sensors’ 
electrophysiological sensing performance with a commercial dry contact 
EEG headset. a. Experimental setup with both the in-ear integrated sensors 
and the EEG headset. Participants wore a pair of in-ear integrated sensors in 
both ears, with the REF and DRL on the left side (ipsilateral referencing for the 
left ear sensor, and contralateral referencing for the right ear sensor). b. Eye 
movement signals from one participant simultaneously measured with the in-
ear integrated sensors and the EEG headset. c–d. Controlled alpha modulation 
measurement with participant-averaged PSDs obtained from measurement with 

(c) 6 electrophysiological sensors in each pair of ears, and (d) 27 channels of the 
EEG headset. O1 is the channel at the occipital lobe that recorded a significant 
alpha modulation signal. The yellow shaded interval illustrates the 8–12 Hz 
alpha band. e–f. Controlled 40 Hz ASSR PSDs obtained from measurement with 
(e) 6 electrophysiological sensors in each pair of ears, and (f) 19 channels of the 
EEG headset. CP6 is the channel nearest to the auditory cortex that recorded a 
significant ASSR signal. For each in-ear and headset electrophysiological sensor, 
the participant-averaged mean and standard deviation of the measured time 
series and PSD, are represented by solid lines and shaded bands, respectively.
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Extended Data Fig. 8 | Characterization of the in-ear integrated sensors’ lactate sensing performance. a. In vitro lactate sensing: calibration experiment with 
increasing lactate concentration. b. Lactate in-vitro characterization before and after mechanical stretching of the in-ear integrated sensors for 200, 400, and 600 
cycles, respectively.
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Extended Data Fig. 9 | Co-sensing crosstalk characterization of the in-ear 
integrated sensors. a. Top view of the electrode layout of the in-ear integrated 
sensors. b–c. Co-sensing setup, with testing performed under (b) less sweaty and  
(c) more sweaty conditions. d. ASSR PSD of the three 70-s 40-Hz ASSR baseline  
measurements in the absence of electrochemical recording. e–j. Effect of lactate  
chronoamperometry (CA) current recording on simultaneous EEG recording  
under less sweaty (e–g) and more sweaty (h–j) conditions. (e,h) Time traces of the  
40-Hz ASSR measurements, with light red and blue shaded regions representing 

the data rejection and data acceptance intervals used in the artifact blanking 
method. (f,i) Currents recorded for CA measurements initiated at t = 5 s and 
completed at t = 65 s into the simultaneous EEG recording. (g,j) PSD of the 40 Hz 
ASSR after artifact blanking (averaged rejection interval: 9.63 s under less sweaty 
conditions, and 10.78 s under more sweaty conditions; see Supplementary Note 4 
for more details). For each electrophysiological and electrochemical sensor, the 
participant-averaged mean and standard deviation of the measured time series 
and PSD, are represented by solid lines and shaded bands, respectively.
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Extended Data Fig. 10 | Individual participant EEG and lactate integrated 
sensing data before, during, and after exercise. a. Experimental timeline used 
for the integrated experiments. EEG and lactate recordings from participants 
1 (b–d), 2 (e–g), 3 (h–j), 4 (k–m) and 5 (n–p). (b,e,h,k,n) Pre-exercise alpha 
modulation data from individual participants. (c,f,i,l,o) Lactate CA current 
measurements from individual participants, showing lactate concentration 
variation during the experiments. (d,g,j,m,p) Post-exercise alpha modulation 

data from individual participants. The yellow shaded interval illustrates the 
8–12 Hz alpha band. The pre-and post-exercise alpha modulation ratios for the 
five participants were 2.13 (V2/V2) vs 2.25 (V2/V2), 2.21 (V2/V2) vs 1.58 (V2/V2), 5.04 
(V2/V2) vs 4.91 (V2/V2), 3.77 vs 3.24 (V2/V2), and 2.88 vs 3.10 (V2/V2), respectively. For 
alpha modulation results, the mean and standard deviation of the measured EEG 
PSD across all 3 electrophysiological sensors per participant are represented by 
solid lines and shaded bands, respectively.
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