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Abstract

INTEGRATING PRIOR BIOLOGICAL KNOWLEDGE AND MACHINE

LEARNING FOR SINGLE-CELL TRANSCRIPTOMICS ANALYSIS

by

Lucas Seninge

Single-cell RNA sequencing (scRNA-Seq) has offered a unique window into studying

cellular identity at unprecedented scale and resolution. However, the process of revealing

this cellular identity remains challenging. For example, the annotation of each assayed cell

with a cell type label indicating its functional identity still relies on manual examination,

which is rate-limiting and poses reproducibility issues. Similarly, inferring the activity of

gene regulatory pathways specifying cell state relies on methods designed for bulk RNA

sequencing data and do not make use of the important amount of data generated by

single-cell experiments. Here, I describe my work to combine prior biological knowledge

about cellular entities contained in curated databases and machine learning to shed light

on the cellular identity of single cells. Specifically, I developed statistical frameworks for

the automated annotation of single-cell transcriptomes with cell type labels by integrating

prior cell ontology information and cell type-specific marker gene sets. Then, I developed

a method to infer pathway activity in single cells by using recent progress in the field of

deep generative modeling as well as prior knowledge from gene annotation databases. I

discuss potential future direction to design generative model architectures to approach

the more ambitious task of modeling targeted perturbation of pathways or transcription
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factors to perform in-silico experiments and alter cellular state at the single-cell level.

Finally, I present collaborative work, notably on generalizing drug response prediction

from bulk transcriptomic profiles of cell lines to cancer patients, integrating information

about chemical structure in the predictive model. This body of work contributes to the

growing literature of methods incorporating prior knowledge about biological systems

into complex machine learning frameworks, as well as highlights the challenges met in

such integration.
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Chapter I: Introduction

Cells are the structural and functional units of eukaryotic organisms. The adult human

body is composed of roughly 30 trillion cells [Sender et al., 2016], involved in many

roles from muscle contraction, nervous system message passing or immune response

to an infection. The study of cells’ functions and their role in both homeostasis and

disease have been confined to molecular and cell biology assays for a long time, from

morphological descriptions with microscopy to surface protein characterizations through

analytical methods. Since the completion of the first Human Genome sequence in 2003

[International Human Genome Sequencing Consortium, 2004], the development of high-

throughput sequencing (HTS) has offered a unique insight on the characterization of gene

expression patterns of mixtures of cell populations at the tissue level [Lonsdale et al.,

2013]. In more recent years, the advent of single-cell profiling methods have enabled

researchers to look at cell populations at an unprecedented resolution. Particularly, the

rapid development of single-cell RNA sequencing (scRNA-Seq) protocols have made

it possible to explore the transcriptome of an increasing number of individual cells in

various biological systems.

scRNA-Seq was introduced in 2009 [Tang et al., 2009], with a very limited throughput

at the time, and has since gone through multiple technological improvements. Notably,

the development of droplet-based methods and the Unique Molecular Identifier (UMI)

technology [Macosko et al., 2015, Islam et al., 2014] have enabled researchers to charac-
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terize the transcriptomes of thousands, and even millions of cells simultaneously. This

new biological resolution has motivated studies to refine the understanding of species’

distinctiveness at the single-cell level, and also to shed light on the role and definition of

different cell populations in homeostasis and diseases [Kolodziejczyk et al., 2015].

The novel challenges which came with the advent of single-cell transcriptomics have

encouraged the development of efficient computational tools to process and analyze

the data, in order to gain insights into the biological system of interest. In fact, a

few aspects of scRNA-Seq datasets have motivated the development of new tools and

analysis methods. First, the large size of the datasets (from thousands to millions of

cells, with 10,000-50,000 genes measured) encouraged the community to develop efficient

and scalable tools for analyzing such datasets in a realistic time. Secondly, the noise level

due to the low amount of RNA material in a single-cell, stochasticity of gene expression,

and technical limitations of amplification techniques result in variation that is not always

biologically meaningful. Notably, dropout effects plague singe-cell datasets: transcripts

can be missed during the capture and amplification, resulting in a technical zero inflation

of the cell-gene count matrix, which hinders the ability to analyze the data [Kharchenko

et al., 2014]. Lastly, the differences between experimental plateforms and protocols can

lead to huge batch effects that will obscure biological differences [Tung et al., 2017].

As a result of these technical challenges, analysis methods have been developed and

adapted to the specific problems of single-cell transcriptomics. A simple analysis

pipeline for single-cell transcriptomics can be described as followed: (1) quality control

and normalization, which aims at removing genes/cells of poor quality and ensure that
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differences in sequencing depth and technical batches are accounted for, (2) dimensionality

reduction for summarizing main characteristics about the dataset and visualization, and

(3) clustering to group similar cells together. Then, many downstream applications such

as differential gene expression [Love et al., 2014, Wang et al., 2019], trajectory inference

[Saelens et al., 2019] and functional annotations are possible to further investigate the

transcriptome of single-cells.

Despite the maturity of scRNA-Seq analysis procedures, there are a lot of remaining

challenges in the field. The first one is the problem of annotating cells with biological

entity labels such as cell types. In order to draw biological conclusions on an experiment,

it is crucial to know what cell populations are present in a dataset. This task is typically

done manually, which is time consuming and pose reproducibility issues. I propose

to leverage prior biological knowledge about characteristic marker genes to automate

cell type annotation, introducing a novel scoring algorithm called scoreCT (Chapter

II). I compare the method to a state-of-the-art enrichment method and show that it

is competitive. I further propose to integrate structured information about cell type

relationships such as cell ontology to perform annotation and reduce uncertainty of

labelling (Chapter I). I show that it is possible to combine these two types of information

into a unified framework and highlight challenges when using prior biological knowledge

in the annotation task.

The second problem I study in my thesis is the inference of gene regulatory modules

activities at the single-cell level by representing them as latent variables (Chapter

III). Genes act as coordinated units within programs that define the state of a cell.
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These modules can be metabolic modules, specific response to a stimulus, or even gene

regulatory networks. As these modules represent functional abstractions and lack direct

experimental evidence, their inference through statistical models that infer hidden/latent

variables is highly needed. I propose to leverage the recent advances in deep generative

modelling to construct an interpretable non-linear encoder-decoder architecture called

VEGA (VAE Enhanced by Gene Annotations). I also introduce a Bayesian differential

testing procedure to quantify differences in gene module activities across cell populations

that is competitive with standard enrichment methods. I discuss how to extend this

procedure to control for effect size. Finally, as prior knowledge contained in biological

databases can be erroneous and not context-specific enough, I discuss extensions to VEGA

to soften assumptions about prior biological knowledge through various regularization

strategies, as well as very recent advances in interpretable deep generative models. In

the last part of this chapter, I discuss potential strategies to create interpretable models

where latent variables can be manipulated to design in-silico experiments to study the

effect of targeted regulator or gene module perturbation on individual cell populations.

Finally, in the last chapter I introduce collaborative work I performed during my thesis.

This notably includes work on a deep learning model for drug response prediction in

patients incorporating drug structure information as well as data collected from cell lines.

I also contributed to create a novel framework to manipulate large genetics databases

such as UKBB for machine learning tasks in an efficient and scalable way.

Together, these projects highlight different strategies and challenges for incorporating

prior knowledge into machine learning frameworks.
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Chapter II: Using curated and structured prior

knowledge to enable fast and interpretable anno-

tation of cell ensembles

2.1 Retrieving cell type identity of cluster fingerprints in

single-cell transcriptomics datasets

Annotation of single-cell transcriptomes with biological entity labels is crucial to draw

meaningful biological conclusions from a scRNA-Seq dataset. However, it remains a

challenging task to automate. In this section, I propose a novel scoring algorithm to

label single-cell data using marker gene knowledge. I show that this novel approach

is both fast and competitive with state-of-the-art enrichment methods. I provide an

efficient Python implementation working within the popular Scanpy environment [Wolf

et al., 2018] at https://github.com/LucasESBS/scoreCT.

2.1.1 Cell type annotation of scRNA-Seq data

A critical application of computational tools to scRNA-seq data is the annotation of each

transcriptome with cell types to summarize the identity and the role of the cells in the

studied system, which is crucial to study cell heterogeneity. This step can be challenging

as it is often performed manually, which can be time-consuming. Another issue is that
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this annotation often relies on biologist knowledge of few relevant features, called “marker

genes,” which can make the annotation inconsistent and rarely reproducible between

labs. Considering these challenges, several attempts have been made to automate cell

type annotation in scRNA-seq datasets. A typical approach is to make use of the existing

collection of curated scRNA-seq datasets, gathered into an atlas, and try to map the

new dataset to annotated partitions of the atlas called clusters [Kiselev et al., 2018].

The methods using this approach often rely on similarity measures on a reduced number

of features, but can be intractable when the size of the atlas grows. Also, atlases can

introduce reference bias, and it is not clear at the time which atlas should be used

for such applications. Other approaches rely on the use of Artificial Neural Network

(ANN) to make the annotation a classification problem, where the model is trained on

curated datasets and applied to the new dataset to annotate each transcriptome. While

providing good results, methods similar to [Ma and Pellegrini, 2020] lack interpretability

as to which features motivated the assignment of each individual transcriptome to a

particular cell type. Finally, approaches using prior marker genes knowledge have been

developed. These models don’t introduce a reference dataset bias, and only rely on the

prior knowledge of a few marker genes per cell type. Classic enrichment methods such

as GSEA [Subramanian et al., 2005] can be repurposed for annotation in such fashion,

and more refined probabilistic generative models can also be used [Zhang et al., 2019a].

These methods are closer to the process of manual annotation by biologists, and present

the advantage of providing assignments that are directly interpretable in terms of known

biology of the system of interest.
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2.1.2 Retrieving cell type identity of cluster fingerprints in single-cell

transcriptomics datasets

It can be of major interest to propose an annotation framework using a reduced amount

of information about the cell gene expression profiles. One way to compress a single-cell

dataset along the sample axis is to group similar cells together using clustering algorithms.

Most notably, community detection algorithms such as the Louvain method [Blondel

et al., 2008] are popular to cluster single-cell dataset and identify sub-populations

representing cell types. Another possibility to further compress a single-cell dataset is

to only keep the top K differentially expressed genes (DEGs). Those genes are usually

picked by comparing groups of cells in a ”one-versus-rest” type of statistical testing

procedure. For example, a Wilcoxon Rank-Sum test [Mann and Whitney, 1947] can be

performed to compare the mean gene expression of a query group (cell cluster of interest)

to a reference group (the rest of the dataset). This procedure helps to identify biology

that is unique to the query group, and hence the top K DGEs (sorted by test statistics

or corrected p-values for example) are good candidates to build a cluster ”fingerprint”

representing the unique identity of the cell cluster and to further compress a single-cell

dataset along the feature axis.

In this section, I propose a method named scoreCT, that can take as an input these

cluster fingerprints and use prior knowledge about marker genes to annotate these

compressed datasets with biological labels. The framework aims at formalizing the

qualitative procedure that is applied by biologists in a way that is both accurate

and does not require to load the full dataset in memory. The code is available at
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https://github.com/LucasESBS/scoreCT.

2.1.3 The scoreCT procedure

2.1.3.1 Scoring function

The scoreCT algorithm works by attributing a score to each cell type in the reference,

for each cluster fingerprint. Based on the DGE ranking of each cluster, scoreCT splits

the top K cluster DGEs into m bins, and computes a score based on the weighted

intersection with the reference. Formally, the score Si,j for cluster i and cell type j is

computed as:

Si,j =
m∑
l=1

wl × sl

where wl is the weight associated with the l-th bin and sl = |ki,l
⋂
µj |, with ki,l being the

subset of the top K DGEs for cluster i present in the l-th bin, and µj the set of marker

genes for cell type j. We note that in the following we focus on the case where the top

K DGEs are evenly divided into m bins and wl = m− (l − 1) (uniformally distributed

integer weights), but the scoring function can be extended to other cases.

2.1.3.2 Score significance

Let M = {g1, g2, ..., gN} be a set of N background genes, representing the transcriptome

of the cells. Let µj ⊂ M be a set of n genes representing the marker genes for cell

type j. To assess if the score Si,j for a given cluster/cell type pair (i, j) is meaningful,

I propose to use a permutation test akin to those performed by enrichment methods
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[Subramanian et al., 2005]. Formally, P permutations of the full ordered DGE ranking

are performed, and the scoreCT score s is recomputed each time on the new randomized

gene ranking. If P is large enough, this allows to approximate the null distribution of

scores, which can be compared to the original score Si,j (Fig.2.1A). If X is the random

variable representing the scores obtained by this method, a p-value is approximated as

the probability to observe more extreme values according to the null distribution, as:

P (X ≥ Si,j) ≃
#(s ≥ Si,j)

P

We use the p-values derived from our model to assign cell types to cluster fingerprints:

we assign the cell type with the smallest p-value to each cluster fingerprint. A threshold

p is applied such that any cluster whose best p-value is greater than p is labelled as ’NA’,

meaning that it can’t be identified as belonging to any cell type in the reference by the

method. p is usually set to 0.1 in our analysis.

This non-parametric approach presents the advantage to be applicable for any variation

of the scoreCT scoring function (eg. non-uniformally distributed bin weights, non-even

binning of top K genes...), but can be relatively slow if P , the number of fingerprints to

score and the number of cell types in the reference are very large. As a fast alternative to

the permutation null model, I propose an approximation using the sum of multinomial

trials.
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2.1.3.3 Multinomial sum approximation

The scoring function of scoreCT can be approximated as the sum of the outcome of

multinomial trials. This approximation holds relatively well in most cases, discussed in

greater length in the next section.

Formally, we formulate the following null hypothesis:

H0 : Y ∼ Mult(K,π), Si,j =

K∑
k=1

yk

where K is the number of top DGEs, and π is a probability vector describing the

probability of each outcome when selecting a random gene (an outcome being the

contribution of the gene to the total score). In the case where the top K are evenly

distributed into m bins, we have π = (N−n
N ,

m︷ ︸︸ ︷
1− N−n

N

m
, · · · ,

1− N−n
N

m
).

Let X be the random variable representing the scores obtained by the method. To

compute the probability P (X = Si,j), we can use generating functions [Doubilet et al.,

1972] to solve the combinatorial problem. Let us consider the polynomial f(x) such as:

f(x) = C0 + C1x
w1 + C2x

w2 + C3x
w3 + · · ·+ Cmxwm

with (C0, C1, · · · , Cm) = π. The probability of obtaining a certain score Si,j after

selecting K random genes is given by the coefficient multiplying the term in x whose

exponent is Si,j :
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P (X = Si,j) = [xSi,j ]f(x)K

In order to derive a p-value for our score, we can compute the probability that a greater

score would be observed under the assumption that the null hypothesis is true (Fig.2.1B).

P (X ≥ Si,j) =

Smax∑
s=Si,j

[xs]f(x)K

These p-values are used to assign cell types to cluster fingerprints as previously described.

Finally, I demonstrate that for a variety of (m,K) parameters, the multinomial sum

approximation is several orders of magnitude faster than the permutation test on

simulated data (Fig.2.1C).

I note that this approach can be easily generalized to the case where the top K genes

are not evenly distributed into m bins, which only affects π and thus the coefficients

of the generating function. More worthy of note is the generalization to bin weighting

beyond the case wl = m− (l − 1), which can lead to polynomial expansions with non-

integer exponents to derive p-values. We leave this case for further research, as this is a

non-trivial issue.
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A B C

Figure 2.1: Proposed null models to compute scoreCT’s score significance. Null
model derived from synthetic data with n = 100 marker genes and N = 48284 total
genes with (A) a permutation test and (B) the multinomial sum approximation. (C)
Time improvement of the multinomial sum approximation compared to the permutation
null model for a grid of (m,K) parameters. Permutation number is kept constant at
P = 1000. Time ratio is shown on a log scale.

2.1.3.4 Relation to other tests

This method is strongly related to enrichment tests such as GSEA [Subramanian et al.,

2005] or Fischer’s exact test. We note that although enrichment tests have been studied

extensively and perform well in general, they do not allow to store compressed fingerprints

as they require to be run on the full transcriptome to be meaningful. On the other

hand, Fischer’s exact test can be used on a reduced amount of features similarly to

scoreCT, but does not make use of the ranking information of the top DGEs, therefore

not differentiating between edge cases where the same amount of marker genes are placed

at the top or bottom of the top K DGEs.

2.1.4 Validity of the multinomial sum approximation

In this section I discuss the validity of the multinomial sum approximation. To this

end, I used synthetic data generated as followed. The genes of the human transcriptome

are randomly ranked and K top genes are used as the synthetic cluster fingerprint.
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For n marker genes, we select k = ⌊n ∗ p⌋ genes from the K top as being part of the

marker gene list, where p ∼ U(0.33, 0.95) represents the proportion of total marker genes

present in the fingerprint. The n− k rest of marker genes are selected at random in the

non-fingerprint genes. This ensures that in practice, there are always a proportion p of

marker genes in the top K selected genes of the fingerprint.

From the formulation of the multinomial sum approximation, we notice intuitively that

since the process for drawing marker genes is ”with replacement”, when the number of

marker genes n becomes large we are likely to inflate the null model for larger scores.

We first validated this intuition qualitatively comparing the 2 null models. We see that

for a total number of genes N = 48284 and n ∈ {10, 100} marker genes, the 2 null

distribution overlap really well (Fig.2.2A,B). However when the number of marker genes

becomes much larger (n = 1000), the distribution obtained from the multinomial sum

approximation is shifted towards larger scores (Fig.2.2C). This null model is therefore

likely to underappreciate scores obtained from scoreCT.

To validate this trend quantitatively and derive a rule of thumb for using the multinomial

sum approximation, I studied the evolution of the (log) Kullblack-Leibler divergence

(KLD) between the permutation distribution and the multinomial sum approximation

distribution as a function of the ratio of marker genes to total genes, n
N (Fig.2.2D). As

expected, for small ratio n
N , the two distribution are very close. However, the log-KLD

increases rapidly when n
N > 5e−3. Using the elbow of this plot, we decide on a rule

of thumb to use the multinomial sum approximation model when n
N < 3e−3. This

encompasses most of use cases since marker genes are usually in the range of a few to a

13



few dozen, while the transcriptome is usually in the order of a few tens of thousands

genes.

A B

C D

Figure 2.2: Condition of validity for the multinomial sum approximation null
model. Comparison of the 2 null models for different number of marker genes n: (A)
n = 10, (B) n = 100, (C) n = 1000. (D) Evolution of the log-Kullback-Leibler divergence
between the 2 null distributions as a function of the fraction of marker genes in the
reference (10 random datasets per fraction). For this figure, parameters K and m were
kept constant respectively at 1000 and 10.

2.1.5 Results on a cortical organoid dataset

As a proof of concept of scoreCT ability to annotate clusters with cell types, I performed

a re-analysis of the week 2 cortical organoid dataset from [Field et al., 2019]. An

independent clustering of the cells was performed using the louvain algorithm [Blondel

et al., 2008]. I used a Wilcoxon rank-sum test to rank DGEs for each cluster in a ’one-

vs-rest’ comparison. ScoreCT is able to correctly assign cell types to most of the clusters

14



identified independently of the clustering solution provided by the original authors.

ScoreCT was able to correctly identified the clusters belonging to the three major cell

types present in the dataset (Neuroepithelium, Radial Glia and Cajal-Retzius neurons).

ScoreCT also rejected a population of cells labelled as doublets by the author, assigning

to ′NA′ as none of the cell type present in the reference passed the p-value threshold of

0.1 for the combination of parameter (m = 5,K = 300) used for the annotation for this

cluster.

A

B
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Figure 2.3: scoreCT accurately identifies the main cell types in week 2 cortical
organoid dataset. (A) scoreCT annotation recapitulates the cell type identity of
individual cluster on a t-SNE plot. Cells annotated as doublets were found to not
be included in any cell type population (NA). (B) t-SNE plots of the expression of
known cell type markers PTN (Radial glia cells), NR2F1 (Neuroepithelium) and LHX9
(Cajal-Retzius neurons). Levels correspond to log-normalized counts.

2.1.6 Comparison with a state-of-the-art enrichment method

Authors from [Diaz-Mejia et al., 2019] evaluated 5 enrichment methods making use of

prior marker gene knowledge to assign cell types to cluster centroids. Over all evaluated
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datasets, GSVA [Hänzelmann et al., 2013] globally performed the best in annotating

the cluster centroids. We evaluated scoreCT against GSVA on 4 selected gold standard

datasets provided by the authors: a liver dataset [MacParland et al., 2018], a retinal

neurons dataset [Shekhar et al., 2016], the Tabula Muris atlas [Schaum et al., 2018], and

a PBMC dataset [Zheng et al., 2017]. We used the gene sets collected by the authors in

order to evaluate our method in similar conditions. Overall, scoreCT achieved similar

performance to GSVA, being only slightly better with a mean score of 0.58 (against

0.57 for GSVA). However, we didn’t need to include more than the top 1000 expressed

genes to achieve similar performance, showing the possibility of only keeping a set of

K genes to maintain relative performance when assessing cell type identity of clusters.

This demonstrates the ability of scoreCT to be used on stored cluster fingerprints to

perform fast scoring of reference cell types.
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A B

C D

Figure 2.4: scoreCT comparison with GSVA on selected scRNA-seq datasets.
We compared scoreCT predictions to GSVA, a top performing method evaluated in
[Diaz-Mejia et al., 2019] and show precision-recall curves for the (A) liver dataset from
[MacParland et al., 2018], (B) retinal neurons dataset from [Shekhar et al., 2016] (C)
Tabula Muris atlas [Schaum et al., 2018] and (D) PBMC dataset from [Zheng et al.,
2017] .

2.1.7 Stability of parameter choice

To understand the stability of scoreCT results and p-values, we compared the −log10(p-

values) for different (m,K) combinations and for the main cell type of 3 different datasets:

Hepatocytes (liver), BC1A (retinal) and CD8+ T-cells (PBMCs). I found that scoreCT

results are robust for a large range of K values, while the number of bins m has less

influence once more than 1 bin is chosen. As a rule of thumb, we recommend the user to
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use K = 1000,m = 5, which works well in most studied cases.

B

A

B

C

Figure 2.5: Exploring parameter space for scoreCT. We ran scoreCT over clusters
of known cell types from three different datasets: (A) hepatocyte cluster from a liver
dataset, (B) T-cell CD8 cluster from a PBMC dataset, (C) BC1A cluster from a retinal
neuron dataset, and reported the −log10(pvalue) associated with the correct cell type
as reported by scoreCT, for various combinations of parameters (m,K).

2.2 Ontology-based annotation of cell ensembles

In the previous section, I introduced a simple statistical tool to automate the annotation

of single-cell clusters based on a prior knowledge about marker genes and a reduced set

of DGEs which I refered to as ”cluster fingerprint”. In this section, I approach the cell

type annotation problem by using ontologies as natural reference structures for mapping
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single-cell data to discrete categories representing cell types and marker gene knowledge.

Ontologies capture the relationships between cell types and can help lowering uncertainty

of annotating cells by mapping to broader categories when annotation is uncertain.

2.2.1 Rationale and preliminary model

Ontologies are natural structures to represent relationships of biological entities such as

gene functions or diseases. Cell types, the functional entities of pluricellular organisms,

can be seen as an analogous system where the hierarchy can represent an ontology (hier-

archical categorization of cell types) or lineages (developmental hierarchies). Ontologies

are typically represented as Directed Acyclic Graphs (DAGs) and most often with a

single source node. The nature of ontologies provides an interesting property regarding

uncertainty, that is that a parent category is a broader definition encapsulating its

descendants. This property is of particular interest when we attempt to assign labels to

a set of points such as clusters generated by single-cell transcriptomics, since uncertainty

about labeling for a given set of potential labels may be resolved by labeling with a

broader category of the ontology.

Knowledge about individual cell type is often recapitulated through marker gene sets,

which are sets of genes that are characteristic and specific of a given cell type. They

have been successfully used in cell type annotation tasks [Zhang et al., 2019a, Pliner

et al., 2019] and provide a compact representation of cell types. Therefore, I propose to

continue using them as guides for the cell type annotation task.
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2.2.1.1 Mathematical formulation

We first formalize the problem. Let X ∈ Rn×m be a single-cell dataset with n cells and

m gene features. Let C = {C1, C2, ..., Ck} be a set of k clusters partitioning X. Let

G = {V,E} be a DAG representing our knowledge about the hierarchy of individual cell

types in the dataset. Each node j ∈ V is equipped with a marker gene set µj representing

our knowledge about the cell type of node j. Because of the hierarchical nature of the

problem, a natural required property of the marker sets in G is the inheritance of marker

genes: since the predecessor nodes of j are broader categories, marker genes are inherited

from predecessors up to the single source node of G. We denote the set of predecessor

nodes to j as Π(j). Specifically:

µj = {
⋃

k∈{Π(j),j}

µk}

Mapping single-cell clusters to nodes in G

We propose a simple probabilistic mapping of clusters to G. Let Φi,j denote the mapping

of cluster Ci to node j. We propose to evaluate the following likelihood function:

Φ∗
i,j = argmax

Vj∈G
L(Φi,j),

L(Φi,j) = P (Ci|µj)

We further define the quantity P (Ci|µj) in terms of the individual cells contained in Ci,
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as followed:

P (Ci|µj) =
∏
c∈Ci

P (c|µj)

However, this probability might be hard to evaluate given the amount of noise present in

single-cell datasets. We redefine the problem as evaluating the probability ratio of each

individual gene expression value in cells of cluster Ci under two different models: (1) the

expression value was generated from a marker gene, (2) the expression was generated by

a background expression profile B. This formulation is notably used in analyzing DNA

motifs in genomics. We therefore introduce 2 empirical probability density functions,

hmarker(x) and hbackground(x) which associate a density to a given expression value in a

single cell. We now re-define the score to be evaluated in the mapping problem as :

Si,j = log (P (Ci|µj))− log (P (Ci|B))

=
∑
c∈Ci

∑
g∈µj

log(hmarker(xc,g))− log(hbackground(xc,g))

Here, we would like to note that the score S can also be penalized according to different

source of information, such as prior information on the marker set. This is equivalent to

putting a prior on P (µj) and P (B). Although not discussed in the main document, we

provide a note on this in appendix A.0.1.

2.2.2 Simulating single-cell data derived from DAG structures

In order to evaluate whether this model is suitable for annotating single-cell data, I

propose to create synthetic simulated data using a probabilistic model. A first generative
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model will produce a DAG representing an arbitrary cell type hierarchy with associated

marker genes, and sink nodes (nodes with out-degree 0) of the DAG will be used as a

second generative model to generate single-cell count data.

2.2.2.1 A simple probabilistic cell type DAG generator

To generate a synthetic cell type ontology, we propose the following model. The DAG

depth d is sampled from a Poisson distribution with parameter λd, which can be seen as

the average longest path length in our generative model. The number of successors c per

node is also sampled from a Poisson distribution with parameter λc, which represents

the average number of successors per node in the DAG. As it is, the generative mode

produces a specific type of DAG: directed trees. In order to transform the tree into

a more general DAG, we add a probability pDAG to create a directed edge between

a predecessor node and a newly created node. This ensure that the graphs that are

generated by the model are single source DAGs.

Finally, we need to include marker genes for each node in the DAG, with the inheritance

property described before. Marker genes are randomly (uniformly) sampled without

replacement from a list of genes representing the whole transcriptome (eg. from a GTF

file), and added to each node, including the marker from its predecessors. The number

of marker genes m is sampled from another Poisson distribution with parameter λm.

Taken together, the model is summarized as followed:
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d ∼ Poisson(λd)

c ∼ Poisson(λc)

m ∼ Poisson(λm)

2.2.2.2 Generative model for synthetic single-cell count data

Dataset generated by scRNA-Seq using the UMI technology are count data. However,

these data are often over-dispersed and zero-inflated because of the phenomenon of

dropout. Therefore, we draw inspiration from the literature [Zappia et al., 2017, Delaney

et al., 2019] and propose a simple count data generative model.

Each sink node of the DAG uses a noisy Gamma-Poisson mixture to generate over-

dispersed count data. The Gamma component has a different shape hyperparameter

α if the mean gene count is generated for a marker gene ( αm, ”more expression”) or

a background gene (α0, ”less expression”). The rate β is kept the same in both cases.

The true mean count λg is sampled from this Gamma distribution and used to sample

the true gene count Y 0
g from a Poisson distribution. This count value is then renoised as

followed: A noise level L is sampled from a Uniform distribution with range [1− e, 1+ e],

and is multiplied with Y 0
g to give a renoised mean count λ∗

g. This serves as the mean of

a new Poisson distribution from which we sample the renoised observed count Y ∗
g .

Finally, because single-cell count data are zero-inflated, we add a probability π to dropout

the count data. Since dropout effects have been shown to be stronger in less expressed

genes [Kharchenko et al., 2014], we set the probability as a sigmoid function of Y ∗
g :
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πg = 1

1+e−k(log(Y ∗
g )−x0)

. We summarize the generative model as followed:

αg = αm if g ∈ µj , α0 else

λg ∼ Γ(αg, β)

Y 0
g ∼ Poisson(λg)

L ∼ U(1− e, 1 + e)

λ∗
g = L× Y 0

g

Y ∗
g ∼ Poisson(λ∗

g)

πg =
1

1 + e−k(log(Y ∗
g )−x0)

D ∼ Bernoulli(πg)

Yg = D × Y ∗
g

In the evaluation, we used the following hyperparameters: α0 = 24, αm = 25, β = 0.1,

e = 0.2, k = 2.5, x0 = 5. The sampling is repeated for all genes, for N cells, and for the

K different sink nodes (cluster-generating nodes).

2.2.2.3 Applying the framework to synthetic data

As a proof of concept, we generated DAGs with average depth λd = 3, average number

of successors λc = 3 and pDAG = 0.2. We used Mus musculus genes with an average

number of unique marker genes per node of λm = 4 (setting a threshold of a minimum of

2 unique marker genes per nodes). Sink nodes were used as generative units for cell type

clusters, with 500 synthetic cells per cluster. We applied the ontology mapping framework
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described previously to the simulated dataset, with the goal to recover the true node

labels for each simulated group. We present the result in Fig.2.6. The proposed ontology

mapping framework correctly recovers the true label of the node used to generate the

single-cell data. We note that more distinct cell types (branching out earlier in the

ontology) are easier to recover, which is expected since their expression profile is more

unique. Equipped with these preliminary results, we can now apply the framework to

real world data.

Figure 2.6: Synthetic ontology and associated simulated single-cell RNA-seq
count data. (A): An example of simulated DAG representing a synthetic cell-type
ontology. Sink nodes are used to generate single-cell data corresponding to individual
cell types. (B) Heatmap of simulated single-cell data showing the counts of marker genes
selected during the generative process. Column colors correspond to the nodes in the
ontology, and row colors correspond to the label of the true node used to generate the
data. (C) Confusion matrix of assignment probabilities from the proposed ontology
mapping framework. The model correctly assigned each cluster to the true node that
generated its data.
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2.2.3 Applying the annotation framework to real world data

2.2.3.1 Constructing a reference ontology from existing databases

The use of an existing ontology with marker gene information is critical to our method.

As it can be challenging for biologists to come up with a specific annotated ontology

representing the expected biology of their dataset, we turn to existing databases. Cell

Ontology (CO) [Diehl et al., 2016] provides a defined vocabulary for cell types and their

relationship, which we can use for the topology of our reference. In order to populate

this topology with marker genes (the other core components of our reference), we use

the CellMarker database [Zhang et al., 2019b]. This database is composed of manually

curated marker genes from the literature for various cell types annotated by tissue of

origin, and present the advantage to also use CO identity tags. Therefore, it is simple to

link these two existing databases to construct a reference for our framework. We propose

a simple method to construct the reference ontology and restrict it to meaningful entities

for the target dataset to analyze.

First, we restrict cell types from CellMarkerDB to the tissue(s) of interest. We use these

cell type entities to restrict the CO graph to a sub-graph containing entities related

to the selected cell types from CellMarkerDB. We then prune nodes from the graph

for which we don’t have marker gene information (whether the marker set is empty in

CellMarkerDB or simply does not exist because this node is an intermediate entity not

present in CellMarkerDB). All predecessors of a pruned node are linked to all successors

of that node, ensuring that the graph is still a single component. Finally, marker genes

are inherited from predecessor nodes. This results in a subset of CO, annotated with
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marker genes from CellMarkerDB.

2.2.3.2 Application to the annotation of Peripheral Mononuclear Blood

Cells

We applied our ontology mapping framework to a demonstration Peripheral Blood

Mononuclear Cells (PBMCs) scRNA-Seq dataset from 10X Genomics. Transcriptomes

were normalized and PCA was performed, retaining the first 50 principal components

(PCs). We used clusters generated by the Louvain community detection algorithm as

input to our method (12 clusters). We constructed the reference using the peripheral

blood tissue subset of cells in CellMarkerDB and CellOntology. We compared the results

to manual annotation based on a few well-characterized immune cell markers: CST3

for Monocytes, MS4A1 for B-cells, CD3E/D for T-cells, CD8A/B for CD8+ T-cells,

GZMB for Natural Killer cells. The results are shown in Fig.2.7. The ontology mapping

framework is able to correctly map all the clusters to the correct 5 major cell types

of the dataset (Fig.2.7A,B). Despite the ontology containing 29 different immune cell

types (Fig.2.7C), the ontology mapping algorithm was able to correctly use the marker

information to label clusters. When studying the mean expression of canonical immune

markers in each predicted group, we can see that the algorithm was able to contrast the

expression of the specific markers with the background to correctly annotate clusters

(Fig.2.7D).

However, the task of labelling PBMC major cell types is quite easy. The markers for

PBMCs are well-characterized and strongly expressed by the individual populations,

making it easy for our algorithm to correctly label each group of cells. To further validate
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Figure 2.7: Application of the proposed method to a PBMC dataset (A): UMAP
plot with manually annotated cell type labels. (B) UMAP plot with predicted labels
(Maximum Likelihood). (C) Topology of the ontology used for the annotation. The
ontology is composed of many immune cell types, many of which are not in the studied
dataset. (D) Mean expression of canonical markers for the different cell types of the
dataset (the size of each dot represents the percentage of cell expressing the gene).

our method, we need to apply our framework to a more challenging dataset with more

diverse cell populations.

2.2.3.3 Application to a liver dataset

We gathered data from a human liver dataset [MacParland et al., 2018]. Transcriptomes

were normalized, and we use thed authors original clustering solutions, which comprises

20 distinct clusters. We also gathered their annotation of the cell types, describing an

heterogeneous landscape of 8 major cell types. As a reference, we gathered all cell types

annotated as part of the liver in CellMarkerDB and constructed our ontology reference

from there. Once again, we passed the clusters to our ontology mapping algorithm and

compared the predicted labels with the original labels. The results are shown in Fig.2.8.
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Figure 2.8: Non-expressed annotated marker genes can lead to incorrect labels
(A): UMAP plot with manually annotated cell type labels. (B) UMAP plot with predicted
labels (Maximum Likelihood). (C) Violin plot of marker expressions from the database
and those used by the original authors for the annotation in memory B cell cluster.
(D) Violin plot of marker expressions from the database and those used by the original
authors for the annotation in the natural killer cells cluster.

While some clusters are correctly labeled (notably hepatocytes clusters), an important

part of them are incorrectly labeled by the model (Fig.2.8A,B). Notably, most of the

immune cell types get incorrectly labeled. We demonstrate why this is the case using the

example of the memory B cells and Natural Killer cells (red arrows in Fig.2.8A). When

investigating the discrepancies between the markers for those cell types in CellMarkerDB

and those used by the authors for the annotation in [MacParland et al., 2018], we see

that markers originating from CellMarkerDB have zero or very limited expression in their

respective groups. In contrast, markers used by the original study are highly expressed.

This showcase an example where the knowledge in CellMarkerDB is incomplete, or not

specific enough for scRNA-Seq datasets. We discuss these issues and propose potential

solutions in the following section.
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2.2.4 Challenges met when using prior marker genes information

2.2.4.1 Incomplete knowledge about markers in CellMarkerDB

As we showed in the results on the human liver dataset, incorrect labelling can come

from incomplete or erroneous knowledge about marker genes in the reference. In fact,

CellMarkerDB was built using manual curation of marker genes from the literature. An

important portion of these markers most likely come from assays relying on protein

(immunostaining, blots...). mRNA level of expression does not always correlate to the

corresponding protein level. This poses a major challenge when using marker genes

to annotate single-cell data, since the signal for certain markers may be weaker at the

mRNA level. Secondly, the knowledge about marker genes in this database might be

incomplete, in the sense that some important markers might not be present for certain

cell types (eg. NKG7 for Natural Killer cells). Together, these problems hinder our

ability to readily use CellMarkerDB for annotation purposes. We note that, in the

literature, none of the methods using prior marker gene knowledge for annotation use

CellMarkerDB as a source of marker, but rather custom made sets that are hand curated

[Zhang et al., 2019a, Pliner et al., 2019]. This illustrates the need for further work on

the curation of marker gene databases.

2.2.4.2 Using pre-annotated datasets to further curate CellMarkerDB and

improve annotation

Following these preliminary results, the need for a method that could distinguish poor

and powerful markers from CellMarkerDB is clear. I supervised the work from a master
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student (Alex Pearson) on building a Naive Bayes classifier using both pre-annotated

scRNA-seq datasets (training data) and marker gene knowledge from CellMarkerDB

for classification purposes. The trained classifier outputs ”optimally binarized” data

that can be used to decide if a marker gene from CellMarkerDB was helpful in the

classification of a particular dataset. This obviously provides a framework to classify new

datasets, but also help to determine whether a marker from CellMarkerDB needs to be

removed from the reference or not. We demonstrated that the Naive Bayes classifier has

competitive performance with other type of models on predicting cell type labels, but

also emphasized how it could be use to study the predictive power of individual marker

genes from CellMarkerDB. The details of the method are available in Alex Pearson’s

master thesis [Pearson, Alexander, 2020].
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Chapter III: Inferring gene modules activity at

the single-cell level using sparse Variational Au-

toencoders

Genes are expressed as coordinated units in gene modules. Studying these gene modules is

crucial to understand the role of each individual cell in a larger biological context. In this

section, I propose a novel deep generative architecture for Variational Autoencoders (VAE)

called VEGA, which incorporates prior knowledge about gene modules (such as pathways,

Gene Regulatory Networks (GRNs) or cell type marker sets) to achieve interpretability

over the model’s latent space and infer the activity of various gene programs in single cell

populations. Finally, I introduce a Bayesian testing procedure for scoring differentially

activated programs (DAPs) and show that it suffers less bias than enrichment tests

such as GSEA. The model is implemented in the Scanpy and scvi-tools ecosystems

[Gayoso et al., 2022], and available at https://github.com/LucasESBS/vega. VEGA

is published in Nature Communications [Seninge et al., 2021].
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3.1 Background

3.1.1 Modularity of gene expression

One of the key insights of modern biology is that genes are often co-regulated and tran-

scribed as coordinated units, with those gene modules corresponding to key functions of

the cell [Zhang and Zhang, 2013]. For example, genes involved in important metabolic

functions such as oxydative phosphorylation have been shown to be co-regulated, both

in human and mouse [van Waveren and Moraes, 2008]. Notably, PGC-1α/NRF1 tran-

scription factors have been shown to control the transcription of both nuclear and

mitochondrial genes involved in the cell respiratory chain, such as ATP synthase com-

ponents (eg. ATP5G2 ) or parts of the respiratory complexes (eg. NDUFA38 ) [Satoh

et al., 2013, Hood et al., 2015]. Those types of core functions are often conserved across

organisms [Stuart et al., 2003], but the particular interplay between gene modules and

specific cell populations is yet to be fully elucidated. Particularly, external stimuli can

lead to drastic changes in gene expression programs of core cell functions, and studying

these changes is of major interest to link those stimuli to functional responses of specific

cell types. scRNA-seq provides an unprecedented insight on gene co-expression and

co-regulation at the single-cell level, and therefore enables researchers to study functional

gene module behaviours at the single-cell level.

To computationally study the activity of these gene modules, several efforts have been

made. The development of databases such as the Molecular Signature Database (MSigDB)

[Subramanian et al., 2005] to gather curated gene sets corresponding to core cellular
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processes or functions have been particularly import. Enrichment score methods such as

the popular GSEA [Subramanian et al., 2005] have been developed to study differences

at the gene module level in RNA-seq samples. Briefly, a differential expression test is

performed between two groups of interest and used to rank genes (according to test

statistic or fold-change). Then, a rank-based statistic is used to assess the significance

of the enrichment of different modules, often using reference gene sets from curated

databases. A variant of GSEA, single-sample GSEA (ssGSEA) was later developed

to infer gene module activity within each individual sample rather than the difference

between two groups [Barbie et al., 2009].

Principal Component Analysis (PCA) [Jolliffe, 1986] has also been used to summarized

the main source of variation in the data. Briefly, PCA decomposes a gene expression

matrix into ”metagenes”, which are formed from linear combination of the original

gene features. Those metagenes can be regarded as core source of variation such as

co-expressed genes acting together into a module. However, relating those metagenes

to known biological functions can be challenging and requires further investigation of

the PCA loadings. Integrating prior knowledge about gene modules directly into factor

analysis models would be highly desirable to study the activity of known biological

functions.
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3.1.2 Autoencoders and Variational Autoencoders

3.1.2.1 Autoencoder architectures

Autoencoders [Hinton, 2006] are popular neural network architectures used to efficiently

learn how to reconstruct data through a latent code, robust to noise. A simple math-

ematical description of such model can be formulated as such. Let fϕ : X → Z and

gθ : Z → X be respectively the encoding and decoding functions, where {ϕ, θ} is a set of

learnable parameters. In its simplest formulation, the goal is to learn {ϕ, θ} minimizing

the following criterion:

L(X) = ∥X− [gθ ◦ fϕ](X)∥22 (3.1)

which we will refer to as the reconstruction error (RE). Note that minimizing this

criterion is analogous to minimizing the negative log-likelihood (NLL) in Maximum

Likelihood Estimate (MLE) procedures under the assumption that the data X are

generated from a Gaussian distribution.

This kind of network present the advantage of allowing to efficiently encode a datum

x ∈ Rg into a latent code z ∈ Rh, allowing for data compression (when h < g) and

learning useful data properties.

35



3.1.2.2 Variational Inference and Variational Autoencoders

We introduced autoencoders, which allows to map a dataset X onto a latent code z.

It might be desirable to see z as a set of latent random variables that encodes some

properties about the data, and from which new examples can be sampled. We thus

reframe the autoencoder framework through an inference network (encoder) with same

parameters ϕ, and a generative network (decoder) with parameter θ. The names of

inference and generative networks are chosen on purpose: the encoder can be seen as

inferring the parameters for the set of random variables z from the data, while the

decoder generates new examples from samples of the multivariate distribution z.

In this setting, we are interested in computing the true posterior distribution p(z|X)

during training. However, this is often intractable because it involves computing a

costly integral. To solve this, we can use Variational Inference (VI) [Jordan et al.,

1998], a powerful alternative to Markov Chain Monte Carlo (MCMC) for posterior

approximation when the amount of data is large. The goal of VI is to treat the problem

as an optimization problem, where we try to find a distribution q(z|X) member of a

family of densities Q that best approximates the true posterior p(z|X) by minimizing

the Kullblack-Leibler (KL) divergence with the posterior, ie:

q∗(z|X) = argmin
q(z|X)∈Q

KL(q(z|X)||p(z|X))

In this new formulation, the generative model described here is called a Variational
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Autoencoder (VAE) [Kingma and Welling, 2014]. We want to find the parameters ϕ for

the inference network such that

q∗ϕ(z|X) = argmin
ϕ

KL(qϕ(z|X)||p(z|X))

From there, we can derive the Evidence of Lower Bound (ELBO), which is used as an

objective to be maximized to train the VAE:

ELBO(X, ϕ, θ) = Eqϕ(z|X) [log (pθ(X|z))]−KL(qϕ(z|X)||p(z)) (3.2)

Intuitevely, this can be seen as maximizing the log-likelihood of the reconstructed

data with respect to samples from the variational posterior, while minimizing the KL-

divergence between our variational posterior and p(z). It is worth noting that the

negative ELBO is often used as an objective to minimize, since it can be implemented

as a reconstruction loss and a regularization by the KL-divergence.

A multivariate Gaussian distribution with diagonal covariance is often chosen as the

variational posterior q(z|X), which leads to an inference network parametrized with

{µϕ,Σϕ}. This allows a closed-form computation of the KL term in (3.2) (since the prior

p(z) is often set to a standard normal distribution z ∼ N (0, I)). However, because the

first term in (3.2) has no closed-form solution, we draw Monte Carlo samples from qϕ(z|X)

to approximate the expectation in the ELBO and make the VAE optimization tractable.
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While it is impossible to use standard backpropagation through stochastic operation

like sampling, we can use the reparametrization trick [Kingma and Welling, 2014] to

sample from the variational posterior, while maintaining the gradient with respects to

the weights of the inference network: z = µϕ(X) + Σ
1
2
ϕ (X) ∗ ϵ, with ϵ ∼ N (0, I).

3.2 Incorporating prior biological knowledge about gene

modules into a VAE architecture: VEGA
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VEGA is an interpretable generative model for
inferring biological network activity in single-cell
transcriptomics
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Deep learning architectures such as variational autoencoders have revolutionized the analysis

of transcriptomics data. However, the latent space of these variational autoencoders offers

little to no interpretability. To provide further biological insights, we introduce a novel sparse

Variational Autoencoder architecture, VEGA (VAE Enhanced by Gene Annotations), whose

decoder wiring mirrors user-provided gene modules, providing direct interpretability to the

latent variables. We demonstrate the performance of VEGA in diverse biological contexts

using pathways, gene regulatory networks and cell type identities as the gene modules that

define its latent space. VEGA successfully recapitulates the mechanism of cellular-specific

response to treatments, the status of master regulators as well as jointly revealing the cell

type and cellular state identity in developing cells. We envision the approach could serve as

an explanatory biological model for development and drug treatment experiments.
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Recent advances in single-cell RNA sequencing (scRNA-Seq)
technologies have enabled the characterization of cellular
states at an unprecedented scale and resolution1. Among

the many widely-used frameworks for analyzing complex tran-
scriptomic patterns in single cells, artificial neural networks
(ANNs) such as autoencoders (AEs)2 have emerged as powerful
tools. AEs are neural networks that transform an input dataset
into a decoded representation while minimizing the information
loss3. The diversity in their architectural design makes AEs
suitable to tackle various important challenges of scRNA-Seq
analysis, such as dimensionality reduction4, clustering5, and data
denoising6.

More recently, deep generative models such as variational
autoencoders7 (VAEs) have proven to be extremely useful for the
probabilistic modeling of single-cell transcriptomes, such as scVI
and scGen8–10. While standard AEs learn to reconstruct an input
dataset, deep generative architectures explicitly model and learn
the true data distribution, which allows a broader set of queries
to be addressed. While deep generative models have shown
impressive performance for their dedicated modeling tasks, they
often lack interpretability thus cannot offer a biologically mean-
ingful latent representation of transcriptomes. For example, latent
perturbation vectors extracted with scGen cannot be directly
related to gene module variations10.

Integration of prior knowledge about gene modules to aid
interpretability has already been successfully applied to tran-
scriptomics data. DCell11 is a deep neural network integrating the
hierarchical information about the molecular subsystems involved
in cellular processes to guide supervised learning tasks, such as
predicting growth in yeast. Such a model yields an informative
biological interpretation of predictions by investigating the activa-
tion of the different subsystems embedded in the model’s archi-
tecture. However, this model only works in a supervised learning
setting where the goal is to predict a phenotypic outcome. On the
other hand, f-scLVM12 is a Bayesian hierarchical model with
explicit prior biological knowledge specification to infer the activity
of latent factors as a priori characterized gene modules. While this
approach enables the modeling of single-cell transcriptomes in an
interpretable manner, the computational cost of the inference
algorithm, as well as the absence of inference for out-of-sample
data, make the development of more efficient approaches highly
desirable.

Here we propose VEGA (VAE enhanced by gene annotations),
a VAE with a sparse linear decoder informed by biological
networks. VEGA offers an interpretable latent space to represent
various biological information, e.g., the status of biological
pathways or the activity of transcriptional regulators. Specifically,
the scope of VEGA is twofold, (1) encoding data over an inter-
pretable latent space and (2) inferring gene module activities for
out-of-sample data.

Results
Architectural design of VEGA. To create a readily interpretable
VAE, we propose a novel architecture we refer to as VEGA (VAE
enhanced by gene annotations) where the decoder (generative
part) connections of the neural network are guided by gene
module membership as recorded in gene annotation databases
(e.g., Gene Ontology, PANTHER, MolSigDB, or Reactome)
(Fig. 1a). In many standard VAE implementations, the infor-
mation bottleneck of the encoder-decoder architecture often
represents latent variables modeled as a multivariate normal
distribution. Despite providing highly informative representa-
tions of the input data, VAE latent variables are in general hard
to interpret. Svensson et al.13 proposed using a linear decoder
which directly connects latent variables to genes, providing

interpretability similar to that offered by standard factor models
such as PCA. Although providing valuable insights, such an
approach requires further statistical enrichment tests on the
weights of the decoder to infer biological processes contributing
to the single-cell expression dataset.

In contrast to previous approaches, VEGA implements a sparse
architecture that explicitly reflects knowledge about gene regulation.
In the service of biological pathways, genes work together in gene
modules, regulated by common transcription factors that often
produce correlated expression. Thus, if a given scRNA-Seq dataset
X reflects the patterns of known gene modules, then it is possible
for a VAE to learn a compact representation of the data by
incorporating those modules as latent variables Z. VAEs use
multiple layers to approximate the latent variable distribution and
produce a low dimensional, nonlinear representation of the original
feature data. Importantly, the first and last layers directly connect to
the input or predicted features and so can be fashioned to depict
intuitive groupings. Standard VAEs use a fully connected layer for
both the encoding first layer and the decoding final layer
(SFig. 1aiv). Instead, VEGA uses a gene membership mask M to
select a subset of trainable weights in the decoder layer that are
determined by a given set of gene modules (see Methods). The
mask is applied to the weights that connect to the predicted output
features to yield an interpretation of the latent variable layer where
each latent variable is viewed as a specific gene module, henceforth
referred to as a gene module variable (GMV). Specifically, the
generative part of VEGA (decoder) maintains a link from a GMV to
an output gene only if this gene is annotated to be a member of this
specific gene module. The two main advantages of this design are
(1) the latent variables are directly interpretable as the activity of
biological modules and (2) the flexibility in the gene module
specification allows it to generalize to different biological abstrac-
tions (such as pathways, gene regulatory networks (GRNs), or even
cell types) and can be taken from any of several curated databases of
gene sets (such as MSigDB14, Reactome pathways15, inferred
GRNs16). Additionally, VEGA incorporates information about
covariates such as technical replicates in its latent space. This can be
used to alleviate batch effects, as it has been demonstrated in
previous deep generative models for single-cell data9 (Fig. 1a and
SFig. 2)

Note that it is possible to implement gene module sparseness in
the encoder half of the neural network (inference part), in addition
to (or in place of) the decoder half (generative part), which gives
three possible VAE architectures that we considered for single-cell
RNA-seq analysis (SFig. 1ai–iii). As expected, we found that the
GMV-guided designs resulted in decent although slightly worse
performance compared to the full architecture (SFig. 1c). Among
these options, we chose the sparse decoding architecture over the
others for its improved separation of known cellular states and
types in the Kang et al. PBMC data17 (SFig. 1b). Intuitively, using a
deep encoder maintains a full VAE’s inference capacity to capture a
potentially complex latent space while together with a sparse
decoder approximates the posterior distribution of GMV activities
p(Z∣X) to provide interpretation over gene modules. Additionally,
we found that VEGA benefits from having a trainable, sparse
decoder to adequately capture the biological signal of a dataset
compared to simpler pathway transformations (SFig. 3).

Recapitulating biological information over an interpretable
latent space. We asked if VEGA could recapitulate the status of
biological pathways by applying it to a published and well-studied
peripheral blood mononuclear cells (PBMCs) dataset stimulated with
the chemokine interferon-β17 (Methods). We first found that VEGA
is able to capture cell types and stimulation status using the Reactome
collection of processes and pathways15 in the GMV decoding layer
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(Fig. 1b). Specifically, we found that the interferon-α/β signaling
GMV activity segregates stimulated and naive cells, confirming the
ability of VEGA to capture pathway activity in its latent space
(Fig. 1c, d). We further examined other known biological pathways
involved in interferon-induced immune cell activation and found
cell-type-specific activation of certain cellular processes. For
example, tryptophan catabolism response to interferon separates
innate immune cells (Dendritic cells, FCGR3A+monocytes, and
CD14+monocytes) from adaptive immune cells (NK cells, T-cell
CD8, T-cell CD4, and B cells) (Fig. 1d), as previously
investigated18,19. Together, these results suggest that VEGA’s
GMV’s reflect the expected major biological pathways in PBMCs
and therefore may be useful for other datasets to project cells into
an interpretable space, allowing investigation of cell-type-specific
patterns at the cellular process level.

We next asked whether the differential activities of the GMVs
accurately contrast pathway states as a function of a specific,
experimentally controlled context.

For this purpose, we propose a similar Bayesian hypothesis
testing procedure as introduced by Lopez et al.9 to study the
difference in GMV activities. As VEGA models the posterior
distribution of each GMV, we can formulate mutually exclusive
hypotheses similar to differential gene expression tests (i.e.,
GMVs are activated at different levels). We can approximate the
posterior probability of these hypotheses through Monte Carlo
sampling of VEGA’s latent variable distribution. The ratio of
hypothesis probabilities corresponds to the Bayes Factor20 (BF,
see Methods).

When applied to innate immune cells in the stimulated vs
control groups of the Kang et al.17 dataset, the BF analysis found
GMVs that correspond to pathways expected to be activated in
the stimulated groups (interferon signaling, tryptophan catabo-
lism; ∣loge(BF)∣ > 3, Fig. 1e). We compared the GMV BFs with the
false discovery rate (FDR) values of the standard GSEA toolkit
(Methods, Fig. 1f). While both methods found the expected
activation of the interferon-α/β signaling pathway GMV in the
stimulated groups, GSEA missed the tryptophan catabolism

activation in innate immune cells (Fig. 1f). Overall, VEGA seems
more robust than GSEA to gene set size bias (Fig. 1f and SFig. 4),
suggesting it may emphasize more context-relevant pathways.
Additionally, the differential GMV activity test can be applied in a
cell-type-specific fashion (similar to one-vs-rest differential gene
expression analyses). We found that such a procedure yields
informative results in terms of cell type-specific biological
processes activated independently of perturbation status (SFig. 5
and Supplementary Data 1).

Large-scale investigation of biological responses to drug
treatments in cell lines. Next, we investigated whether VEGA
could detect patterns of drug responses in large-scale experiments
over cancer cell lines, such as the data introduced in recent
experimental protocols like MIX-Seq21. To this end, we gathered
single-cell data for 97 cancer cell lines under five different con-
ditions: 24 h DMSO treatment (control), 24 h Trametinib treat-
ment (MEK inhibitor), 24 h Dabrafenib treatment (Mutated
BRAF inhibitor), 24 h Navitoclax treatment (Bcl-2 inhibitor), and
24 h BRD3379 treatment (tool compound with unknown mode of
action, MoA) (Methods). We trained one model for each different
drug treatment (four models in total) by combining the drug
treatment dataset and the control group (DMSO dataset), initi-
alizing the GMVs of VEGA with the hallmark gene sets from
MSigDB22 to focus on core cellular processes. Overall, each model
was able to separate cell lines and treatment conditions in the
GMV space (Fig. 2a, and SFig. 6). For Trametinib notably, the
important change in G2M checkpoint GMV activity (decrease in
the treated condition) agrees with the expected MoA of a MEK
inhibitor23,24 (Fig. 2b). Next, we sought to investigate whether we
could recapitulate the pattern of biological responses between
control and treated conditions for each cell line/drug treatment
pair. For each pair, we computed GMV BFs to approximate
differential pathway activities between the two conditions. The
resulting heatmap can be used to understand and interpret pat-
terns of response over all experimental conditions (Fig. 2c). As
found when visually investigating the low dimensional

Fig. 1 Designing a novel VAE architecture with interpretable latent space. a Overview of the VEGA model. Composed of a deep nonlinear encoder (μ, Σ)
and a masked linear decoder, VEGA represents single-cell transcriptomics data into a lower-dimensional interpretable latent space z that approximates a
set of user-supplied gene modules (GMV). Additionally, VEGA can integrate batch information as another variable s to condition its generative process on
batch labels. b UMAP embedding of the latent space of VEGA retains the biological signal of the Kang et al. PBMCs dataset17. c Inferred interferon-alpha/
beta signaling pathway activity segregates stimulated cells from the control population. d Bivariate GMV plot showing the ability of the model to recover
the tryptophan catabolism activity, an innate (Dendritic cells, FCGR3A+monocytes, CD14+monocytes) immune cell-specific response to the perturbation.
e Volcano plot showing differentially active GMVs between stimulated and control innate immune cells. The red dots indicate GMVs with ∣loge(Bayes
Factor)∣ > 3 and a mean absolute difference (MD) in the latent space of at least 5. f Comparison of VEGA Bayes Factor with GSEA -log10(FDR). The size of
the dots indicates the gene set size. The red, blue, and purple quadrants correspond respectively to significant hits unique to our model, unique to GSEA,
and common to both.
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embedding of each dataset (Fig. 2a and SFig. 6a–c), Trametinib
resulted in the strongest transcriptional response of all studied
drugs. Notably, the Trametinib-specific interferon-α and inter-
feron-γ response was correctly recapitulated in VEGA’s latent
space, consistent with previous experimental work25 and the
findings reported by the original MIX-Seq authors21. Further-
more, we found that Dabrafenib-treated BRAF-mutant mela-
noma cell lines exhibited larger ∣loge(BF)∣ than other Dabrafenib-
treated cell lines (average ∣loge(BF)∣ of 0.763 vs 0.668 for other cell
lines), clustering with the Trametinib-treated cell lines as reported
in the MIX-Seq study (Fig. 2c and SFig. 6d). Overall, the results
presented here agree with the previous gene set analysis results on
this dataset, and demonstrate VEGA’s GMVs can recapitulate
patterns of drug response in large-scale experiments.

Gene regulatory analysis of glioblastoma reveals stratification
of neoplastic cells. As previously mentioned, one of VEGA’s
strengths is the flexibility in the specification of the GMV con-
nectivity, as any gene module can be used in the decoder.
Transcription factors often exert tight regulation of gene
expression in many biological contexts26. Analyzing the activity
of transcriptional regulators is important in understanding bio-
logical states like cell types or diseases, as dysregulation in their
activity can have a dramatic impact on gene expression programs
and phenotypes27,28. To this end, we investigated whether using
master transcriptional regulators as the GMVs could help
understand the underlying GRNs in the context of a single-cell
glioblastoma (GBM) dataset29. We used the GBM ARACNe16

network reported in Carro et al.28 to guide the structural design of
our model. Specifically, VEGA’s GMVs were set to the reported
transcription factors and the connectivity matrix M, defining the
GMVs decoding architecture, was created from the set of pre-
dicted target genes of each transcription factor. After training, we
found that the pre-annotated cell types were well-separated in the
latent space (Fig. 2d). We examined the activity of STAT3 and

OLIG2, two well-known master regulators of the mesenchymal
(MES) and proneural (PN) GBM subtypes, respectively. We
confirmed that their GMV activity was largely anticorrelated in
neoplastic cells (Fig. 2e). Additionally, OLIG2, a known master
regulator of oligodendrocytes differentiation30, was inferred as
activated in oligodendrocyte precursor cells (OPCs). These results
demonstrate that VEGA is able to home-in on the relevant
transcriptional regulators when the decoder wiring is extended to
model known factor-to-target relationships.

Combining cell type and cellular state representations refines
cortical organoid development analysis. A great challenge of
modern cellular biology is to identify and define cell types and
cellular states, at the level of individual cells, in order to sys-
tematically study homeostasis and disease development under a
common vocabulary. In a typical single-cell study, a few “marker
sets” will be known, each containing a list of genes having
expected expression patterns for some of the cell types of interest.
Leveraging such marker sets often provides clues and helps orient
data analysis. We asked whether the information recorded in such
marker sets could be used in VEGA to produce a disentangled
representation of cell types and cellular states. To this end, we
added a GMV zt, with appropriate entries in M, for each latent
cell type t in addition to the Reactome pathway GMVs already in
VEGA’s model.

We applied VEGA to a dataset of cells assayed during the early
development of cortical organoids from Field et al.31, including all of
the major cell types defined in the study as GMVs (Fig. 3a). After
training, we found that the activity of each marker set GMV was able
to correctly segregate its corresponding cell type as annotated by the
original authors (Fig. 3b–d). Moreover, in a one-vs-rest differential
GMV analysis setting for each cell type population, the activity of the
corresponding marker set GMV showed significant enrichment
(∣loge(BF)∣ > 3), which suggests using GMV BFs could help annotate
the cell types of unknown clusters (Fig. 3e). We further noted that the

Fig. 2 The flexibility in the latent space specification sheds light on the activity of core cellular processes and transcription factors. a tSNE embedding
of the latent space of VEGA for the MIX-Seq data21. The color indicates the treatment condition, and the arrow indicates the median shift in coordinates of
each cell line between the two conditions. b Inferred G2M checkpoint activity of each cells, showing a decreased activity in the treated condition, as
expected from the MoA of Trametinib. c Heatmap with hierarchical clustering showing the average loge(Bayes Factor) of each pathway for each cell line/
drug treatment pair (test between DMSO and treatment condition). Each row corresponds to a hallmark gene set and each column to a different cell line/
drug pair. The first row of color indicates the drug, and the second row of color indicates the tissue identity (Tissue legend available in SFig. 2). Highlighted
cell lines correspond to BRAF-mutant melanoma. Highlighted activities correspond to Trametinib-specific responses. d tSNE embedding of the latent space
of the model for the glioblastoma dataset29, colored by cell type or e Inferred activity of the master regulators STAT3 and OLIG2.
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most differentially activated GMVs were coherent in the context of
early brain development (SFig. 7 and Supplementary Data 2). To
study whether VEGA could separate cell type identity from cellular
states such as dividing vs quiescent cell populations, we projected the
dataset into two components: (1) the cell type GMV representing the
neural epithelium marker set (a type of early brain progenitor) and
(2) the cell state GMV representing the cell cycle mitotic pathway
activity (Fig. 3f). As discussed previously, the activity of the neural
epithelium GMV separated the neural epithelium cells from the rest
of the dataset, while the activity of the cell cycle mitotic pathway
GMV separated quiescent from actively dividing cells in the two
progenitors populations (radial glia cells and neural epithelium). To
validate that the cells identified as dividing were proliferating, we
studied the correlation between the cell cycle mitotic pathway GMV
activity and the expression of the MKI67 gene, a canonical marker of
proliferation (external validator not present in the cell cycle mitotic
pathway set) (Fig. 3g). Overall, the expression of MKI67 correlates
well with the inferred activity of the cell cycle mitotic pathway GMV
(R2= 0.64). Together, these results demonstrate VEGA’s potential
use to jointly infer cell type and state for different populations of cells,
as combining different sources of information (pathways, master
regulators, and cell type markers) in the latent space can shed light on
different aspects of the identity of a single-cell.

Generalization of the inference process to out-of-sample data.
We next asked whether VEGA could generalize to correctly infer
an interpretable latent representation of data unseen at the time
of training (out-of-sample data). To this end, we evaluated VEGA
in two settings. In the first case, we measured the biological
generalization of VEGA’s inference by holding out (cell type,
condition) pairs during training. Specifically, we investigated
whether the inferred GMV activities for held-out cells were
conveying the same biological information as to when this

population is seen at the time of training. To this end, we
removed one cell type of the stimulated condition during training,
and then inferred the GMV activities for that held-out population
(out-of-sample) and compared them to the GMV activities
learned from the fully trained model. The experiment was con-
ducted using the Kang et al.17 PBMC dataset. In the second case,
we estimated the “technical generalization” of VEGA’s inference
by training on one dataset (study A) and then evaluating on a
second dataset (study B) that contains only control cells. We used
the Kang et al.17 PBMC dataset as study A and the Zheng et al.32

dataset as study B.
For the biological generalization test, we first checked that the

distribution of the interferon-α/β signaling pathway GMV activity
in the out-of-sample stimulated CD4 T cells matched the inferred
activity in the in-sample CD4 T cells (Fig. 4a). To perform a more
systematic comparison of the inferred latent space between out-
of-sample and in-sample cells, we used the differential BF
procedure (Methods) between (1) stimulated in-sample cells and
control cells for a given cell type (model trained with the whole
dataset) and (2) stimulated out-of-sample cells and control cells
for the same cell type (model trained with one cell type/condition
pair left out), and checked the amount of overlaps in the top 50
differentially activated GMVs (Fig. 4b). The results suggested
consistency between the in-sample and out-of-sample differen-
tially activated GMVs, with an average 72% overlap. To further
evaluate the capacity of data reconstruction, we measured the R2

between the original and decoded data in the in-sample and out-
of-sample settings (Fig. 4c). We found that the R2 decreases only
marginally in the out-of-sample setting, confirming the ability of
the model to generalize to unseen data produced in a similar
experimental setting.

For the technical generalization test, we again checked that the
interferon-α/β signaling pathway GMV activity distribution of
study B encoded control CD4 T cells matched that of study A

Fig. 3 Disentangling cellular states and cell types in the early development of cortical organoids. a UMAP embedding of the latent space of our model
for the week 2 cortical organoid dataset31. The cell type annotation corresponds to the original paper annotation. b, c, d The inferred activity of each cell
type GMVs (as defined by marker genes) correctly identifies the three main subpopulations of cells. e One-vs-rest differential GMV analysis of each cell
type population provides a statistical significance for each cell type signature. The significance threshold for positive enrichment was set to loge(BF)> 3.
f Identification of dividing and quiescent subpopulations of neural progenitors using pathway and cell-type activity projection. g CELL_CYCLE_MITOTIC
pathway activity correctly identifies dividing cells as reported by its correlation with MKI67 gene expression (an external canonical marker of dividing cells).
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control CD4 T cells (Fig. 4d). We also investigated whether the
top 50 differential GMVs of each cell type in a “one-vs-rest”
differential setting for the control cells of study A overlapped with
a similar procedure performed on the control cells of study B
(Fig. 4e). We found that on average 67% of the top 50 differential
GMVs for study A overlap with those of study B, showing that the
model can generalize across studies unseen at the time of training.
We then asked whether the model can use the inferred latent
space to accurately reconstruct the original expression profiles of
both studies. We found that the R2 between original and
reconstructed cells of study B, although lower than those for
study A, improves upon the baseline correlation between the
expression profiles of study A vs study B for most of the cell
types (Fig. 4f).

Discussion
In this study, we introduced VEGA, a novel VAE architecture with a
decoder inspired by known biology to infer the activity of various
gene modules at the level of individual cells. By encoding single-cell

transcriptomics data into an interpretable latent space specified a
priori, our method provides a fast and efficient way of analyzing the
activity of various biological abstractions in different contexts. In
contrast, previous approaches used a posteriori interpretations of the
latent variables to infer modules. VEGA’s flexibility in the specifi-
cation of the latent space paves the way for analyzing the activity of
biological modules such as pathways, transcriptional regulators, and
cell type-specific modules. We illustrated how VEGA could be used
to simultaneously investigate both cell type and cell state of cell
subpopulations, in both control and experimentally perturbed con-
ditions. Additionally, the weights of decoder connections provide
direct interpretability of the relationship between the latent variables
and the original features. For example, the decoder’s weights could be
used to contrast interaction confidence in inferred GRNs or to rank
genes by their importance in a certain biological module in a data-
driven way. We further note that it was possible to modify VEGA’s
architecture, following the same rationale as widely-used scVI9 and
linear scVI13, such that it could handle count data in place of nor-
malized expression profiles (SFig. 8).

Fig. 4 Generalization of VEGA architecture to out-of-sample data. a Violin plot (n= 10,000 randomly sampled cells per condition) representing the
distribution of the interferon-α/β pathway activity in control CD4-T cells, stimulated CD4 T cells unseen at the time of training (out-of-sample), and
stimulated CD4-T cells when included in the training procedure (in-sample). Boxes inside the violins represent the median of the distribution bounded by
the first and third quartile. Violin limits correspond to data extrema. b Proportion of overlap in the top 50 differentially activated GMVs in the in-sample and
out-of-sample settings with stimulated vs control differential procedures for the seven main cell types in the study. Data were presented as mean
values ± standard deviation over 100 random sampling. c R2 between the mean expression of real and reconstructed cells in the in-sample and out-of-
sample settings for the seven main cell types of the study. Data were presented as mean values ± standard deviation over 100 random samplings. d Violin
plot (n= 2000 randomly sampled cells per condition) of distribution of the interferon-α/β pathway activity in control CD4-T cells of study A (Kang
et al.17), stimulated CD4-T cells of study A and control CD4-T cells of study B (Zheng et al.32). Boxes inside the violins represent the median of the
distribution bounded by the first and third quartile. Violin limits correspond to data extrema. e Proportion of overlap in the top 50 differentially activated
GMVs of each study with one-vs-rest differential procedures for the control cells of the seven main PBMC cell types. Data were presented as mean
values ± standard deviation over 100 random samplings. f R2 between the mean expression of real and reconstructed cells of study A (Study A), mean
expression of real and reconstructed cells of study B (Study B), and mean expression of real cells of study A and real cells of study B (Study A vs Study B).
Data were presented as mean values ± standard deviation over 100 random samplings.
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The clear limitations of the current architecture resides in the
sparse, single-layer decoder of the model. In fact, such an archi-
tectural design prevents the further improvement of generalizability
and robustness. As a consequence, the generative capacity of VEGA
is limited. For example, while VEGA theoretically could be used for
interpretable response prediction using latent vector arithmetics in a
similar fashion to scGen10, VEGA’s limited generative capacity
sacrifices predictive performance for biological interpretability of the
latent space. We believe advanced insights in network biology, e.g.,
multi-layer GRNs that can describe regulatory machinery more
comprehensively, could alleviate these limitations. This would open
the possibility to perform targeted, in-silico activation, and repression
of biological programs on specific cell populations to study its effect
on development or disease progression. On the other hand, hard-
coded connections of the linear decoder do not leave any room for
correcting prior knowledge about gene modules when the context
requires it, as is the case in other latent variable models such as
f-scLVM12. In fact, prior biological knowledge obtained from
existing databases like MSigDB can be incomplete or not con-
text-specific, as additional unannotated genes can play an
important role in certain gene modules. In parallel to our work
on VEGA, Rybakov et al.33 introduced a regularization proce-
dure to incorporate prior knowledge from gene annotation
databases via a penalty term on the weights of the linear
decoder. We demonstrated that VEGA performs comparatively
to their interpretable autoencoder (SFig. 9), and that their
approach is complementary to the unique attributes of VEGA
and can be used to recover missing gene-GMV links in a data-
driven fashion (SFig. 10).

In summary, we found VEGA useful for understanding the
response of specific cell type populations to different perturbations,
providing interpretable insights on biological module activity. The
variational aspect of VEGA provides an advantage for addressing
queries about samples, or sample groups, that are not possible with a
regular AE. We illustrated how the latent multivariate Gaussian
distribution of the VAE, which approximates the posterior prob-
ability of every GMV, enables a new kind of differential test to be
performed. The BF reflects the likelihood of how active a gene
module is in one condition compared to another, providing a
straightforward method to perform differential activity analysis using
the RNA-Seq data similar to the approach described by Lopez et al.9.
Other types of queries are possible, for example, to automate the
annotation of unsupervised clusters or modules that dynamically
change across the branches of an inferred cellular trajectory. We
envision VEGA could also be useful to prioritize drugs based on
pathway expression in cancer, as studying the response of specific cell
populations may inform drug sensitivity and resistance. Integrating
drug response prediction models with such explanatory models could
benefit designing novel therapeutic strategies.

Methods
The VEGA architecture. VEGA is a deep generative VAE that aims at maximizing
the likelihood of a single-cell dataset X under a generative process7,10 described as:

pðXjθÞ ¼
Z

pðXjZ; θÞpðZjθÞdZ; ð1Þ

with θ being the learnable parameters of a neural network. VEGA uses a set of
latent variables Z that explicitly represent sets of genes (gene modules), such as
pathways, GRNs, or cell type marker sets. To enforce the VAE to interpret a
dataset from the viewpoint of a set of gene modules, VEGA’s decoder part is
made up of a single, masked, linear layer. Specifically, the connection of this
layer, between latent node z(j) and gene features, are specified using a binary
mask M in which Mi,j is true if gene i is a member of gene module j and false
otherwise. We refer to each latent variable z(j) as a GMV since each provides a
view of the data constrained to the subset of genes for a distinct gene module j.
During training, gradients associated with masked (false) weights are “zeroed
out” such that backpropagation only applies to weights originating from a user-
supplied given gene set. Additionally, the weights of the decoder are constrained

to be nonnegative (w ≥ 0) to maintain interpretability as to the directionality of
gene module activity.

Having explicitly specified the connections between genes and latent variables
in the decoder of VEGA (generative part), we incentivize that the latent space
represents a biological module activity interpretation of the data. We choose to
model the GMVs as a multivariate normal distribution, parametrized by our
inference network with learnable parameters ϕ As such, the distribution of the Z
latent variables can be expressed as:

qðZjX; ϕÞ ¼ N ðμϕðXÞ;ΣϕðXÞÞ ð2Þ
This choice of variational distribution is common and has proven to work well

in previous single-cell studies9,10. Following similar standard VAE
implementations7,10, the objective to be maximized during training is the evidence
of lower bound (ELBO):

LðXÞ ¼ EqðZjX;ϕÞ log pðXjZ; θÞ� �� KLðqðZjX; ϕÞjjpðZjθÞÞ ð3Þ
where the expectation over the variational distribution can be approximated using
Monte Carlo integration over a minibatch of data, and the Kullblack–Leibler
divergence term has a closed-form solution as we set the prior to:

pðZjθÞ � N ð0; IÞ ð4Þ
The reparametrization trick7 is used when sampling VEGA’s variational

distribution to allow standard backpropagation to be applied when training
the model.

To retain information of genes that are not present in our pre-annotated
biological networks, we add additional fully connected nodes to the latent space of
our model. This has two effects: (1) it allows VEGA to model the expression of
unannotated genes, which could be crucial for a good reconstruction of the data
during training, and (2) it can help capture additional variance of the data that is
unexplained by the provided gene modules, considerably improving the training of
the model. The number of additional fully connected nodes can be determined
based on a trade-off between model performances and the loss of information
encoded by pre-annotated GMV nodes. As a rule of thumb, we recommend picking
16 or fewer extra FC nodes to preserve the biological signals encoded by GMV
nodes (SFig. 11).

Additionally, the diagonal covariance prior used in the latent space modeling
discourages GMVs from being correlated. Thus, the VAE may be forced to choose
an arbitrary gene set among many equally informative but overlapping sets and
could fail to reveal a key annotation. To address this issue, we add a dropout layer
to the latent space of the model. This has been shown to force the VAE to preserve
redundancy between latent variables34, which is applicable when the gene
annotation database used to initialize VEGA’s latent space contains overlapping
gene sets (SFig. 12).

Finally, batch information or other categorical covariates can be encoded via
extra nodes in the latent space, conditioning the generative process of VEGA on
this additional covariate information (SFig. 2).

Measuring differential GMVs activity of the latent space with Bayes Factor
(BF). The difference in the activity of genes and/or pathways is often of interest
when contrasting two different groups of cells. To this end, we draw inspiration
from the Bayesian differential gene expression procedure introduced in Lopez
et al.9 and propose a similar differential GMV analysis procedure. We follow a
similar notation as Lopez et al. For a given GMV k, a pair of cells (xa, xb) and their
respective group ID (sa, sb) (e.g., two different treatment conditions), our two
mutually exclusive hypotheses are:

Hk
0 :¼ Es z

k
a

� �
> Es z

k
b

� �
vs: Hk

1 :¼ Es z
k
a

� �
≤ Es z

k
b

� � ð5Þ
This can intuitively be seen as testing whether a cell has a higher mean GMV

activation than another, the expectation representing empirical frequency. We
evaluate the most probable hypothesis by studying the log-Bayes factor K defined
as:

K ¼ log e
pðHk

0jxa; xbÞ
pðHk

1jxa; xbÞ
ð6Þ

Here, the sign of K tells us which hypothesis is more likely, and the magnitude
of K encodes a significance level. Having access to the conditional posterior
distribution q(Z∣X) over the GMVs activation (the encoding part of VEGA), we can
approximate each hypothesis’ probability distribution as:

p Hk
0jxa; xb

� � � ∑
s
p sð Þ

Z Z

sup:ðzaÞ; sup:ðzb Þ

p zka > zkb
� �

dq zkajxa
� �

dq zkbjxb
� �

ð7Þ

where p(s) is the relative abundance of cells in group s, and the integrals are
approximated with direct Monte Carlo sampling.

Similarly to Lopez et al.9, assuming cells are independent, we can compute the
average Bayes factor across many cell pairs randomly sampled from each group
respectively. This helps us decide whether a GMV is activated at a higher frequency
in one group or the other. Through the paper, we consider GMVs to be
significantly differentially activated if the absolute value of K is greater than 3
(equivalent to an odds ratio of ≈20)9,20.
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Datasets and preprocessing
Kang et al. dataset. The Kang et al.17 dataset consisted of two groups of PBMCs,
one control and one stimulated with interferon-β. We chose to use the same
preprocessing steps as described by scGen authors10, using the Scanpy package35.
Briefly, cells were annotated using the maximum correlation to one of the eight
original cell type clusters identified, using an average of the top 20 cluster genes.
Megakaryocytes were removed due to uncertainty about their annotation. Then
data were filtered to remove cells with less than 500 genes expressed and genes
expressed in five or less cells, using the scanpy.pp.filter_genes()and
scanpy.pp.filter_cells() functions. Count per cells were then normalized
and log-transformed using the scanpy.pp.normalize_per_cell() and
scanpy.pp.log1p() functions, and we selected the top 6998 highly variable
genes with scanpy.pp.highly_variable_genes(), resulting in a final
dataset of 18,868 cells. Raw data is available at GSE96583. We used the same
preprocessing functions for the rest of the datasets unless specified otherwise.

Zheng et al. dataset. The Zheng et al.32 dataset consists of 3K PBMCs from a healthy
donor. After filtering the cells, the count per cells were normalized and log-
transformed. We then subset the genes to use the same 6998 genes of the Kang et al.
PBMC dataset. The final dataset has 2623 cells and 6998 genes. Raw data are available
at https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.

MIX-seq dataset. The MIX-seq21 datasets were obtained from https://figshare.com/
s/139f64b495dea9d88c70, and we used the data from experiment 3 to have enough
cells to carry a smooth training of our model. For the five available datasets (97 cell
lines treated with respectively DMSO, Trametinib, Dabrafenib, Navitoclax, and
BRD3379), we removed cells with 200 or less expressed genes, and genes expressed
in less than three cells. We then normalized the number of counts per cell, and log-
transformed the data. Finally, each dataset that was a drug treatment experiment
was combined with a copy of the control dataset (DMSO treatment), and we
extracted the top 5000 highly variable genes. This resulted in final datasets of size
(16,732 cells and 4999 genes) for the Trametinib+DMSO data, (16,942 cells and
5000 genes) for the Dabrafenib+DMSO data, (14,507 cells and 5000 genes) for the
Navitoclax+DMSO data, and (15,304 cells and 5000 genes) for the
BRD3379+DMSO data.

Darmanis et al. dataset. The raw GBM data from Darmanis et al.29 were obtained
from http://www.gbmseq.org/ and preprocessed as followed: we removed cells with
200 or less expressed genes, and genes expressed in three or less cells. Count per
cells were normalized and data were then log-transformed. Finally, we restricted
the transcriptome to the top 6999 highly variable genes. The final dataset had a
total of 3566 cells. Raw data is available at GSE84465.

Field et al. dataset. The cortical organoid data from Field et al.31 was processed
similarly to the GBM dataset. After normalization and highly variable genes
selection, the dataset had a total of 4378 cells, with 6999 genes. Raw data is available
at GSE106245.

Shekhar et al. dataset. The mouse retina dataset from Shekhar et al.36 was processed
as described (see https://github.com/broadinstitute/BipolarCell2016). Briefly, we
removed cells with more than 10% mitochondrial transcripts. Then, cells with less
than 500 genes were removed, and genes expressed in less than 30 cells and with
less than 60 transcripts across all cells were removed. To be able to use human
versions of gene modules from the Reactome database, we performed one-to-one
ortholog mapping of mouse transcripts to human transcripts using BioMart from
the Ensembl project37. Genes without human orthologs were removed. We saved a
version of the dataset with the raw count data for the selected genes/cells, and
further processed the data by normalizing and log-transforming the libraries.
Finally, we restricted the transcriptome to the top 4000 highly variable genes. The
same highly variable genes were used to subset the raw QC count matrix. The final
datasets (for both count and log-normalized versions) had a total of 27,499 cells,
coming from two technical batches. We used the annotation with 15 cell types from
the original authors. Raw data is available at GSE81904.

Choice of gene annotations for the latent space of VEGA. When initializing the
latent space of our model, we chose to use pre-annotated gene sets from the
Molecular Signature Database (MSigDB, at https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp#C2)14. In particular, we chose to use the hallmark gene sets
annotation (50 gene sets) or the Reactome database (674 gene sets). Reactome was
used for the stimulated PBMCs analysis, and MSigDB’s Hallmark gene sets were
used in the MIX-Seq analysis part of this study. For the gene regulatory network
analysis of GBM cells, we derived an ARACNe16,38 network from bulk RNA-Seq
samples of GBM. Specifically, this network was obtained from a previously pub-
lished paper39 and repurposed for the study of GBM single-cell transcriptomics
profiles.

For the cell type marker genes in the cortical organoid analysis, we contacted
the authors to obtain relevant genes used in annotating those cell types. The GMT
file including these marker genes can be found along with the reproducibility code
at https://github.com/LucasESBS/vega-reproducibility.

Dimensionality reduction for visualization. For visualizing datasets, we used the
UMAP algorithm40 as implemented in the Scanpy35 python package, using
scanpy.pp.neighbors() for the k-NN computation with n_neigh-
bors=15, and scanpy.tl.umap() for the actual dimensionality reduction.
We used default parameters except for the min_dist parameter that we set to 0.5.
We also used tSNE41 implemented as sklearn.manifold.TSNE() in the
sklearn python package42, with default parameters.

Comparison with GSEA. We ran Gene Set Enrichment Analysis https://
www.zotero.org/google-docs/?grfpAv14 (GSEA) using the prerank function from the
gseapy package in Python. Briefly, we calculated differential expression scores for each
gene between the control and treatment group using a Wilcoxon rank-sum test, as
implemented in the scanpy.tl.rank_genes_groups() functionality of the
Scanpy package https://www.zotero.org/google-docs/?fKytT735. We ranked genes
according to their test statistics, and ran GSEA using the gseapy package function
gseapy.prerank() with the following settings: a minimum gene set size min_-
size=5, a maximum gene set size max_size=1000, and a number of permuta-
tions permutation_num=1000. We ranked gene sets according to their FDR and
considered significant hits when FDR ≤0.05. When the FDR returned by GSEA was
equal to 0, we replaced it with 1e-5 (to avoid math error when taking the logarithm).

Batch correction comparison. To assess batch information integration in VEGA’s
latent space, we compared the average silhouette scores on batch labels from the
Shekhar et al. retina dataset of (1) PCA with 50 principal components (computed
using scanpy.tl.pca() function), (2) linear scVI13 as implemented in the
scvi-tools package ran on the count version of the dataset with following
parameters: AnnData object setup with batch_key=Batch, model initialized
with n_hidden=800, n_layers=2, dropout_rate=0.2,
n_latent=677, training performed with max_epochs=300, ear-
ly_stopping=True, lr=5e-4, train_size=0.8, ear-
ly_stopping_patience=20, and (3) VEGA with following parameters:
AnnData object setup with batch_key=atch, model initialized using the
REACTOME pathway database with three extra FC nodes to initialize the latent
space and the same training hyperparameters as linear scVI.

Evaluation metrics. Silhouette scores were calculated to evaluate the separation of
cell types and states in the latent space of our model. We used Euclidean distance in
the latent space to compute the silhouette coefficient of each cell i defined as :

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ð8Þ

where a(i) and b(i) are respectively the mean intra-cluster distance and the mean
nearest-cluster distance for cell i. We used either the stimulation or cell type labels
from Kang et al.17 to assess the biological relevance of the latent space of our
model. The sklearn package17silhouette_score() implementation was used
for computation. For computing correlations throughout the paper, we used the
function numpy.corrcoef() from the Numpy package43.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this manuscript are publicly available. Please see the
section Datasets and preprocessing of Methods for details. These datasets are also
downloadable at https://github.com/LucasESBS/vega-reproducibility.

Code availability
The package and API for VEGA is available at https://github.com/LucasESBS/vega/tree/
vega_dev44. The code and data to reproduce the results of this manuscript is available at
https://github.com/LucasESBS/vega-reproducibility.
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3.3 Extensions of VEGA’s inference process to other tasks

3.3.1 Controlling for effect size in detecting differentially activated

programs

In the VEGA section, I introduced a Bayesian testing procedure for detecting differentially

activated (DA) GMVs inspired by previous work on differential gene expression (DGE)

in the context of VAEs [Lopez et al., 2018]. However, this testing procedure can lead

to detect irrelevant gene modules as being significantly activated, since it does not

control for effect size (in this context, an arbitrary measure of how different the activity

of a given GMV is between 2 groups of cells). Controlling for effect size has been a

standard procedure in differential gene expression tests for a long time [Costa-Silva et al.,

2017]: the most popular method, DESeq2 [Love et al., 2014] offers a composite null

hypothesis aimed at detecting genes whose (absolute) log-fold change (LFC) is greater

than a threshold. Recently, this type of null hypothesis implicitly controlling for effect

size in DGE has been incorporated into deep generative modelling framework such as

scVI [Lopez et al., 2018, Boyeau et al., 2019]. I once again draw inspiration from this

work to propose an alternative null hypothesis controlling for effect size in the context

of detecting DA GMVs.

3.3.1.1 Formalization

In this section, I use the same notation as [Boyeau et al., 2019] with application to

GMVs instead of genes. Let a and b be two cells, and let rka,b = f(zka , z
k
b ) be a random

variable representing the cells difference in activity of the GMV k. Here f represents a
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function capturing some biological difference between its input. In DGE analysis, f is

set to the LFC defined as f(xag, xbg) = log2(xag)− log2(xbg). However, in the context of

our interpretable VAE the activity of GMVs is represented as normally distributed latent

variables, meaning that LFCs are not readily available as a measure to capture biological

changes in the magnitude of GMV activities. I propose to use a simpler measure of

difference as f(zka , z
k
b ) = zka − zkb . I discuss the implication of such a choice in a later

section.

We formulate the two mutually exclusive hypotheses:

Hk
0 := |rka,b| ≤ δ versus Hk

1 := |rka,b| > δ

where δ is an arbitrary threshold set to detect GMVs whose activity shift is large enough

to be biologically meaningful. Similarly to DGE, this design implicitly excludes programs

whose shift might be significant but not large enough to be interesting in practice.

The posterior distribution for the difference measure is given by:

p(rka,b|xa, xb) =
∫∫

p
(
rka,b|zka , zkb

)
dp

(
zka |xa

)
dp

(
zkb |xb

)

Similarly to the previous Bayesian hypothesis testing procedure, the posterior probabili-

ties p(Hk
0 |xa, xb) and p(Hk

1 |xa, xb) can be approximated using Monte Carlo sampling of

the variational posterior q(zn|xn), and generalized for groups of cells rather than pairs.

For short in the following we will note p(Hk
1 |xa, xb) as pk.
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3.3.1.2 Decision rule for calling gene module variables as differentially

activated

In the work on DGE inspiring this procedure [Boyeau et al., 2019], the authors describe 2

ways to decide whether to call a gene as DE or not. The first one is to consider Bayesian

decision theory [Berger, 1985] and call a gene g as differentially expressed when:

pg ≥ α, where α =
K1

K1 +K0

with K0 being the cost of a false negative and K1 the cost of a false positive. This can

be extended without loss of generality to calling a GMV k as differentially activated,

replacing pg with pk.

Another strategy is to control the false discovery rate (FDR) [Muller et al., 2006, Cui et al.,

2015]. Specifically, as explicited in [Cui et al., 2015] we rank GMVs in decreasing order

of pk. We write the ordered estimated posterior probabilities as p(1) > p(2) > > p(M),

where M is the number of GMVs in the model. If we call ”differentially activated” the

set GMVs such that pk ≥ p(d), for each d = 1, ...,M , then the corresponding posterior

expected FDR is defined:

F̂DRd =

∑d
i=1(1− p(i))

d

We then call GMVs as differentially activated when F̂DRd < q0. In practice we set

q0 = 0.1.

50



3.3.1.3 Implications of the choice for measuring latent variable differences

One implication of the choice f(zka , z
k
b ) = zka − zkb is that it is not as readily interpretable

as LFC in terms of meaningful difference in activities, and therefore the threshold δ can

be hard to set in practice for users. The properties of VEGA’s latent space (continuous

support over R) prevent the use of a definition of f involving the log function. A potential

future direction would be to study variation of VEGA with a log-normally distributed

latent space. This would amount to embedding each cell into a M -dimensional simplex,

with the interesting property of zkn ≥ 0 for all cell n and all GMV k. Such parametrization

of the variational posterior in single-cell VAEs has been studied and shown to work well

in practice [Svensson et al., 2020], providing support for extending the use of LFC to

differential activity testing in interpretable deep generative models such as VEGA.

3.4 Future work on interpretable deep generative models

in single-cell analysis

3.4.1 Improving the integration of prior biological knowledge in deep

generative models

Following the publication of VEGA, different strategies have been proposed to improve the

integration of prior knowledge in deep generative models. I demonstrated (concurrently

to [Rybakov et al., 2020]) that it is possible to soften the prior knowledge constraints on

the linear decoder of the VAE by applying L1 regularization on terms for which prior

knowledge is not available [Seninge et al., 2021]. I also implemented other regularization
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methods such as GelNet [Sokolov et al., 2016] in VEGA to incorporate information about

gene-gene interaction networks. [Lotfollahi et al., 2022b] proposed to solve the issue of

potentially correlated latent variables (because of potential redundancy in gene sets) by

deactivating irrelevant terms using an L2 or L1 regularization term (analogous to an ARD

prior in the case of L2 [Neal, 1996], or group LASSO [Yuan and Lin, 2007] in the case of

L1). Further work done on linearly decoded VAEs implemented a closed-form solution to

the calculation of Bayes Factors in the differential activity test [Lotfollahi et al., 2022b].

This implementation also combined ideas of architecture surgery [Lotfollahi et al., 2022a]

and an Hilbert-Schmidt independence criterion loss in order to integrate new dataset to a

pre-trained model and discover novel biological programs specific to the newly integrated

dataset [Lotfollahi et al., 2022b]. On the other hand, the pmVAE approach does not

use a linear decoder, but models each pathway as its own VAE module using annotated

genes as input/output variables, and combines the individual losses into a global loss

[Gut et al., 2021]. More recently, the PAUSE approach implemented recent advances

post-hoc analyses of deep learning models using pathway and gene attributions to build

an interpretable deep generative model [Janizek et al., 2022]. This active development

and improvement of interpretable deep generative models demonstrate that it is a popular

area of research in the single-cell field, and is likely to remain one in the near future.
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3.4.2 Modelling transcription factor activities in deep generative mod-

els for in-silico perturbation experiments

3.4.2.1 Gene regulatory mechanics

Most cellular functions are carried through the controlled expression of certain genes

acting together to achieve said function. In order to control when a certain function

is carried, whether it is as a function of time (eg. cell cycle, circadian rythm) or as a

response to an external stimuli (eg. stress response), the expression of most gene products

is regulated. While this can be done at different stages of the gene expression process

(chromatin accessibility, RNA stability, translation, post-translational modifications...),

one of the main regulatory mechanism is the control of the transcription level by

molecules called transcription factors (TFs). TFs can bind to specific DNA motifs

in order to activate or repress the transcription of certain genes into RNA molecules.

This modulation of transcription results in potentially large-scale changes in the cell,

affecting its state or even its fate. TFs play an important role in the development of

diseases [Lee and Young, 2013], and as such are primary targets for new therapeutics.

As they play a crucial role in cell differentiation into committed cell types, they are

also targeted in stem cell differentiation protocols [Oh and Jang, 2019]. Modulating

the TF activity is therefore of main interest in potentially treating certain diseases or

improving stem cell differentiation protocols. However, the combinatorial nature of TF

modulating experiments in order to find which combination of activations/repressions

achieve a cellular phenotype of interest makes such experiments time-consuming and

expensive. It is therefore highly desirable to provide a model achieving high performance
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when predicting how the modulation of a set of TFs will affect the transcriptome of a

cell. This would provide an in-silico experimental platform for researchers to prioritize

combinations of TFs to perturbed in order to achieve a cellular phenotype of interest.

3.4.2.2 Incorporating transcription factor information in deep generative

models

I showed in the previous sections of this chapter that it is possible to infer transcription

factor activities from their targets in VEGA. However, the linear decoder of VEGA

reduces the generative capacity of the model and it’s ability to model complex regulatory

behaviours between genes. A potential strategy would be to directly model transcription

factor activities in the latent space by using available information about transcription

factor expression directly. Such model would enforce interpretability in the latent space

by using a prior on transcription factor expression for each latent variable, rather than

constraining the architecture in the way VEGA or other linearly decoded VAE do.

The model could be formalized this way. Let X ∈ RN×G be a single-cell experiment

count matrix with N cells and G genes. Let T = {TF1, . . . ,TFk} represent the subset of

k genes known a-priori to be transcription factors. We describe the generative process

from which each observed expression vector xn is drawn:

zn∼ log normal
(
τn, τ

2
σ

)
xn= fw (zn, sn)
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sn represents some batch ID for cell n and fw is a neural network. The main modification

from a standard VAE is that zn is a k-dimensional log-normal distribution representing

the activity of TFs for cell n, with a prior mean vector τn with each entry representing

the corresponding observed (empirical) TF log-normalized expression (directly computed

from the count matrix), and the prior covariance is a diagonal matrix with τ
2(i)
σ being the

i-th entry computed as the observed TF-specific variance (variance of TF i log-normalized

expression over all cells). Explicitly:

τ (i)n = log(TF(i) + 1)

τ2(i)σ =

∑N
n τ

(i)
n − ¯τ (i)

N − 1

Intuitively, we are using observed TF expression as a prior for the latent TF activity,

which is used by the generative model to produce expression values. I note that the

prior covariance matrix can be computed over the whole dataset, per batch (reflecting

batch-specific variance of each TF) or per cell type label if available (reflecting cell type-

specific variance of each TF). The goal is for the generative model to learn the regulatory

mechanics which map transcription factor activities to an observed transcriptome. The

TF-VAE model is trained using mini-batch optimization: the variational posterior

distribution of the TF-VAE is mean-field and the ELBO is :
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ELBO(x, s) =Eq(z|x,s) log p (x|z, s)

−KL (q(z|x, s) ∥ p(z))

3.4.2.3 Perturbing cells in-silico by affecting transcription factor activities

If such generative model is successful in producing faithful transcriptomes using prior

information about TFs expression, arithmetics operations on the latent space are possible

in order to perturb cells by pushing the activity of a given set of TFs in a direction

or another (down-regulation or up-regulation). Latent vector arithmetics have been

shown to work in a classic VAE setting with models such as scGen [Lotfollahi et al.,

2019], but the lack of interpretability as to what each latent variable represents has

limited applications for in-silico screens of possible perturbations. A VAE incorporating

information about TFs into latent variables would enable such experiments.

I obtained preliminary results suggesting that this task is possible using scRNA-Seq data.

Dr. Hongxu Ding and I collaborated with the Oro lab at the Stanford University on

screening potential combinations of TF perturbations to improve stem cell differentiation

protocols in the context of esophageal basal cell differentiation. The preliminary results

(Fig.3.1) suggest that the perturbation strategies put forward by the model are successful

in improving stem cell differentiation towards a target cell fate, upon optimization

of TF modulator concentrations. Further biological and computational validation is

underway and will be crucial to validate that such models are successful to act as in-silico
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perturbation screening platforms to prioritize experiments in the lab.

Figure 3.1: Preliminary results of in-silico perturbation strategies to produce
basal cells from stem cell cultures (A) UMAP of stem cells (D4-43), perturbed
stem cells (D16 P, D24 P) and in-vivo basal cells (PG,BC, SB1-5). (B) Heatmap of
pairwise Pearson R from cell group expression centroids. (C) Expression of known basal
cell marker genes. Perturbed stem cells display expression of those 3 marker genes.
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3.4.2.4 Embedding more complex regulatory logic in deep generative models

The model discussed in the previous section is quite simple in its design, and rely on

the assumption that a neural network can learn the regulatory mechanics mapping

transcription factor activities to an expression profile. However, it does not address

key concepts of gene regulation. First, similarly to most VAE implementations, the

variational distribution is chosen to have a diagonal covariance, assuming independence

among the latent variables representing transcription factor activities. This assumption

is too simplistic, as TFs can be assembled in TF regulatory networks breaking the

independence assumption. As one example, hematopoietic differentiation is driven by

the interplay of several TFs [Goode et al., 2016] In addition, it can be important to

model other key members of GRNs, such as kinases or transcription co-factors. However,

this requires knowledge about the GRN structure.

In the past, Probabilistic Graphical Models (PGMs) and more notably Bayesian Networks

(BNs) have been used to infer cellular networks from expression data [Friedman, 2004].

Such models are attractive because the graph stucture can be interpreted to determine

causal relationships (for example regulation) between genes. But learning regulatory

networks from expression data is challenging as it is an NP-hard problem [Friedman,

2004]. Using knowledge about which genes are likely to be regulators can simplify the

learning procedure to infer GRNs [Pe’er et al., 2002]. Similarly, genes can be grouped a

priori into modules of co-regulated genes (eg. in pathways) to facilitate the inference task

of learning a module network [Segal et al., 2003]. Once the network structure and the
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conditional probability distribution has been learned, BNs offer the possibility to simulate

interventions using the ”Do calculus” framework [Pearl, 1995]. This enables us to in-

terrogate the effect of the knock-down of a set of regulators on the transcriptome of a cell.

Similarly, dynamical models such as ordinary differential equation (ODE) [Gardner

et al., 2003] models can be used together with experiments to infer GRNs and the effect

of perturbation on cellular signaling. Boolean network models can be used to encode

regulatory logic in a a priori fashion between a few key regulators, as well as simulating

perturbation in-silico to produce knock-out phenotypes [Krumsiek et al., 2011]. However,

those models are limited by the number of genes that can be modeled, as well as requiring

some prior knowledge about the GRN structure.

The combination of well-studied mechanistic models such as BNs and ODE dynamic

models with novel efficient parameter optimization engines such as those used in deep

learning offers interesting tracks to improve the ability to perform in-silico perturbation

experiments. For example, module BNs with VAEs have been combined to model clinical

data and simulate counterfactual scenarios in virtual patients [Gootjes-Dreesbach et al.,

2020]. A similar approach could be envisioned for single-cell data, where a BN is learned

simultaneously to training a VAE model, allowing to simulate perturbations either at

the module level (if the BN is learned as a module network) or at the regulator level (if

the BN is learned by restricting the set of potential regulators using litterature). Such

model would present the advantage to incorporate mechanistic information (the BN
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structure, as well as potentially enforcing prior knowledge on the BN structure during

inference) while retaining a powerful generative capacity with the VAE. On the other

hand, recent work on simulating perturbation though dynamical systems coupled to

efficient optimization through deep learning techniques has found great success. This

has been done either by directly modelling the dynamics of the system though molecular

interaction terms between genes and perturbators like in CellBox [Yuan et al., 2021],

or by modelling cellular differentiation has a diffusion process via stochastic differential

equations and inferring a potential function like in PRESCIENT [Yeo et al., 2021] These

approaches showcase the strength of dynamical models as powerful generative models

that are likely to become even more popular in the future.

In summary, I envision that deep generative models integrating mechanistic information

and prior biological knowledge will become powerful tools to model biological processes

and provide opportunities for in-silico experiments at the single-cell level. I believe that

combining the high-throughput of single-cell experiments, the existing knowledge about

gene regulation and the recent advances in generative models will greatly accelerate

biological discoveries.
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Chapter IV: Collaborative work

4.1 Improving drug response prediction in patients using

cell line and drug structure information

During my PhD I also collaborated with Ioannis Anastopoulos on improving drug

response prediction in cancer patients. Large efforts have been made to screen drugs

on cancer cell lines and gather RNA-seq data to determine the transcriptional profile

of cancer types responding to certain compounds, such as the CCLE database [Ghandi

et al., 2019]. However, the environment in which cell lines are grown is vastly different

from the environment of primary tumors. Similarly, the mutational landscape of those

cell lines differs from primary tumors. Therefore, translating sensitivity of cell lines

to similar tumor types in patients is a non-trivial task. Sequencing of tumors in large

consortia such as The Cancer Genome Atlas (TCGA) have shed light on the expression

profiles of a large number of tumor types. However, drug response data for such large

cohort of patients is not yet readily available. There is an unmet need for computational

methods able to translate cell line sensitivity information to real patients. To that end,

Dr. Anastopoulos lead work to design a novel deep learning architecture called the

PACE framework (Patient Adapted with Chemical Embedding) leveraging from 2 recent

fields of machine learning: (1) graph embedding with Graph Convolutional Networks

(GCNs) [Kipf and Welling, 2017] and (2) domain adaptation [Farahani et al., 2020].
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The former aims at embedding drug structure information as well as atomic features

in a data-driven way to aid in the drug response prediction tasks. The latter aims at

bridging the inherent differences between cell line transcriptional profiles and primary

tumors, using Maximum Mean Discrepancy distance (MMD) to align the information

from the CCLE expression neural network and the TCGA expression neural network. I

contributed to designing the domain adaptation strategy and analyzing the results to

improve the model’s performance. The full work is described in the following manuscript,

which has been submitted on BioRxiv and to the International Journal of Environmental

Research and Public Health.
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ABSTRACT
In-silico modeling of patient clinical drug response (CDR) promises to revolutionize personalized
cancer treatment. State-of-the-art CDR predictions are usually based on cancer cell line drug
perturbation profiles. However, prediction performance is limited due to the inherent differences
between cancer cell lines and primary tumors. In addition, current computational models
generally do not leverage both chemical information of a drug and a gene expression profile of a
patient during training, which could boost prediction performance. Here we develop a Patient
Adapted with Chemical Embedding (PACE) dual convergence deep learning framework that a)
integrates gene expression along with drug chemical structures, and b) is adapted in an
unsupervised fashion by primary tumor gene expression. We show that PACE achieves better
discrimination between sensitive and resistant patients compared to the state-of-the-art linear
regularized method (9/12 VS 3/12 drugs with available clinical outcomes) and alternative
methods.

GLOSSARY: GCN, Graph Convolutional Network. MorganFP, Morgan Fingerprint. SMILES,
Simplified Molecular Input Line Entry System for annotating chemical structures using character
strings. ML/DL, machine learning/deep learning, CDR, Clinician Drug Response. CDI
Cell-line-Drug-IC50. EM Expression Module. DM Drug Module. PM Prediction Module. OOD Out
of Distribution. CL Cell Line.

INTRODUCTION
INTRODUCTION
Precision medicine promises to revolutionize cancer treatment by improving clinical drug

response (CDR) prediction. CDR prediction could be greatly facilitated by cutting-edge
high-throughput sequencing technologies, which provide comprehensive and individualized
omics profiles. Based on these omics profiles, several CDR prediction approaches have been
proposed. For instance, Tissue-Guided Lasso TG-LASSO1 integrates tissue-of-origin
information with gene expression profiles for CDR prediction. DeepDR2, on the other hand,
predicts CDR from mutation and expression profiles.

However, as another crucial component for CDR prediction, the chemical properties of
drugs have been under-utilized. Although the traditional Morgan Fingerprint molecular
representation3 has been used to integrate drug chemical information for CDR prediction, it
cannot adaptively learn alternative representations of drug chemical properties as it is a static
representation of the molecule and does not dynamically extract features for the desired
prediction task. For example, CDRscan, similarly to TG-LASSO, does not take advantage of the
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diverse patient RNA-Seq profiles that are published on The Cancer Tumor Atlas (TCGA), and is
not evaluated to address if the model can be applied for drug response prediction to patients,
which is what such a model would be used for in practice. In addition, CDRscan uses Morgan
Fingerprints to represent key molecular substructures using an explicitly defined featurization. A
limitation of this specific methodology is its inability to adaptively learn alternative
representations that may be beneficial to the particular task in hand4. DrugCell also uses
Morgan Fingerprints to represent drugs along with an Visible Neural Network (VNN) embedded
in Gene Ontology (GO) terms, which provides interpretable results5, but it is also not evaluated
on patients.

Graph Convolutional Network (GCN)6 representations emerge as a powerful alternative
for encoding drug chemical properties. GCN adaptively learns chemical information by
generalizing the convolution operation from a grid of pixels to a graph, where each node can
have a variable number of neighbors. GCNs have been used to explore drug-target interactions
and side effect predictions - the two most important factors for developing a new drug. For
instance, Decagon uses GCN to predict potential side effects of a drug 7. Such methodological
advances provide novel insights in incorporating drug chemical properties during CDR
prediction.

The majority of CDR prediction algorithms are trained with cancer cell line (CL) drug
preturbation profiles. CLs have long served as models to study molecular mechanisms of
cancer, because they maintain valuable molecular information of the primary tumor from which
they were derived. CLs offer the advantages of being easily grown, relatively inexpensive, and
amenable to high-throughput  assays. Data generated from CLs can then be used to link cellular
drug response to molecular features, where the ultimate goal is to build predictive signatures of
patient outcomes 8. Various models have been developed to predict patient CDR from the
molecular profiles of CLs 9–11. However, these models only show limited success in certain drugs
12 13. Therefore, developing a model based on CL molecular features to predict CDR in patients
for most drugs remains challenging 14. One major difficulty for such cross-domain CDR
prediction is the prominent differences between cell lines and primary tumors 15–19. Recent
advances in domain adaptation aim at aligning domains to tackle domain alignment problems,
such as batch effect correction to reconcile differences across laboratories and studies 20. Mean
Maximum Discrepancy (MMD) 21 has shown promising results in aligning domains in an
unsupervised manner 22. Such a technique could be used to align CL and patient tumors in
developing drug response models that are more clinically focused.
Inspired by the advanced GCN-based drug chemical information encoding, as well as the
MMD-based domain adaptation, we develop a drug response predictor using Patient Adaptation
and Chemical Embedding (PACE). This deep learning framework uses a GCN to dynamically
learn chemical information of each compound, and is adapted to implicitly align the CL
expression representation with that of a patient sample of the same tissue of origin. Thus, the
model does not assume that CL and patient samples are drawn from the same distribution. We
achieve this by using Mean Maximum Discrepancy (MMD) to align the latent spaces produced
by CL expression and patient expression vectors. Such a technique has been successfully
applied in previous studies 23–25 in transferring generalizable features across domains 26. We
trained our model on 142,351 of CL-drug-IC50 (CDI) pairs where each CL vector was paired with
a random patient expression vector of the same tissue of origin. We used a Graph Convolutional
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Network (GCN) to encode drug information and pair it with the patient adapted expression
information in order to predict IC50. To evaluate our model, we collected a curated CDR dataset
with patient outcome information on response to 12 drugs in total. Our model achieved superior
performance (9/12 drugs) compared to alternative PACE models and the state-of-the-art linear
method (3/12 drugs) in significantly discriminating between sensitive and resistant patients.

RESULTS

Overview of PACE and evaluation strategy
The PACE deep learning framework consists of three modules: an Expression Module

(EM), Drug Module (DM), and Prediction Module (PM). As shown in Figure 1A, the EM is
composed of fully connected layers and learns highly informative features from gene expression
vectors. The DM is composed of a GCN and learns highly informative features for each atom
from the graph representation of chemical compounds. Atom-level features are then aggregated
to represent information about the compound as a whole (see METHODS). Given the success
GCNs have had in computational chemistry and biology applications 27–29, we posited that the
DM could learn a general graph embedding that would extend to drugs unseen during training.
The PM is composed of a fully connected layer and takes the information learned from the EM
and DM as input to predict log(IC50). We included gene expression information, the drug used,
and the associated IC50 value from the Genomics of Drug Sensitivity in Cancer (GDSC) project
30. The model was trained with “CDI tuples” -- Cell line, Drug SMILES, IC50 -- indicating which
drug was applied to a particular cell line and what that cell line’s response was to the drug.

Our goal is to extrapolate drug response from cell lines to patients. Hence, the model
needs to generate an out-of-distribution (OOD) embedding space (for patient samples)
representing a distribution not present in the training data (of cell lines). Inspired by 23, and
recent advances in the field of domain adaptation26, we used maximum mean discrepancy
(MMD) to adapt the latent distribution produced by the EM so that cell line gene expression is
aligned to patient gene expression. Each CL was paired with a TCGA tumor sample’s gene
expression vector of the same tissue of origin (see Supplemental Table 1/2), which has been
shown to play a key role in a tumor’s treatment and progression. Restricting cell lines to match
the tissue of origin of primary tumors resulted in 531 cell lines treated across 310 drugs,
amounting for 142,351 CDI pairs. Cell lines and tumors that did not have a matching tissue of
origin were not included in training. Each cell line was paired with a random primary tumor
sample of the same tissue with the goal of creating a general enough adaptation of EM’s latent
space.

To test the efficacy of adapting the EM with patient gene expression via MMD, we
constructed a non-adapted version of PACE for comparison purposes. In addition, we also
compared our model to one in which the DM uses Morgan Fingerprints (MorganFP),
representing a more conventional molecular encoding. Altogether, we created three alternative
models closely related to PACE -- PACE-Morgan, noPACE, and noPACE-Morgan (see Table 1).
Alternative models with an adapted EM should provide a poorer fit to the cell line data, yielding
poorer performance in cell lines, compared to non-adapted models because the adapted
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models attempt to fit the distribution of both cell lines and patients. On the other hand, the
adapted models should perform better in the patient setting.

Table 1. All alternative models used and their specifications

EM DM Name

Adapted GCN PACE

Adapted MorganFP PACE-Morgan

Not adapted GCN noPACE

Not adapted MorganFP noPACE-Morgan

Figure 1. Deep learning model architecture. (A) Graphic overview of the proposed deep learning framework.
Expression Module (EM) extracts highly informative features for the input expression vectors for both CCLE and
TCGA via shared weights. These two compact expression representations are compared with each other via Mean
Maximum Discrepancy (MMD) to diminish the distance between them, thereby aligning the two representations. The
Drug Module (DM) encodes the molecule and pools the most informative nodes (atoms) to also create a highly
informative compact representation. Finally, the CCLE expression representation and the drug representation are
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concatenated together and passed to the Prediction Module (PM) that makes the final log(IC50) prediction for each
CDI pair. (B) Per drug predictive performance, which is quantified by theSpearman Rho between actual and predicted
log(IC50) across all perturbed cell lines. GCN-MMD is compared against MORGAN-MMD (left), GCN-NoMMD
(middle), MORGAN-NoMMD (right). Each point represents a drug. Points above the diagonal represent better
performance by GCN-MMD.

Combining domain adaptation and graph encoding preserves performance in cell lines
while increasing the accuracy of predicting patient response for more drugs.

We compared the Spearman Rho achieved by our proposed PACE model to all the other
variations for cell lines treated by each drug in our dataset  (Figure 1B). We found that although
PACE does better compared to PACE-Morgan for the majority of the drugs (points above the
diagonal), the non adapted versions (noPACE and noPACE-Morgan) achieve a higher
correlation (points below the diagonal). Nevertheless, when comparing across all 142,351 CDI
pairs, the proposed model and the alternatives achieved comparable results (Supplementary
Fig. 1). This suggests that MMD adaptation preserves the prediction performance of drug
response in CL while yielding superior discrimination performance in the patient setting (shown
next).

In addition to the models described in the previous section, we compared PACE to the
state-of-the-art TG-LASSO1 model, which is a linear regularized method to predict clinical drug
response (CDR). To evaluate all of the models in the patient setting, we followed the same
evaluation presented in the TG-LASSO study1. We used the same curated CDR dataset
consisting of 531 patients treated across 24 drugs labeled with the type of response indicated
for each patient. The majority of patients in this dataset (70%) were treated with a single drug,
while the rest were given two or more. Patients with stable disease and clinical progressive
disease were labeled as resistant (R), whereas those with partial or complete response were
labeled as sensitive (S). After following the same filtering steps and retaining samples for which
we had expression information, 506 patients across 12 drugs remained. To measure the
performance of the methods, we asked if their predicted log(IC50) drug response (a continuous
measure)  correlated to the drug response labels (R/S) (a categorical measure) in the CDR
dataset (see METHODS). Specifically, a one sided Mann-Whitney U test was used to determine
whether the predicted log(IC50) for the true resistant (R) patients is significantly larger than that
of true sensitive (S) patients.

As shown in Figure 2A, MMD adaptation produces an embedding that can discriminate
between resistant and sensitive patients across more drugs compared to all other models that
lack such adaptation. The combination of patient information adaptation with MMD and GCN for
drug embedding had better correlation to patient response than all the alternative methods
examined (Figure 2A, Supplementary Fig 2). Specifically, PACE showed significant
discrimination between resistant and sensitive patients (p<0.05) for nine out of the twelve drugs
compared to six by noPACE (Figure 2A). Similarly, PACE-Morgan predicted six drugs ,
compared to five by noPACE-Morgan (Supplementary Fig. 2). TG-LASSO was the worst
performing method with three drugs predicted significantly.

We also observed that regardless of the method used, cisplatin, etoposide, and
paclitaxel were predicted correctly. In contrast, bicalutamide, bleomycin, and docetaxel were not
predicted correctly by any of the methods. We further observe that CDR prediction using MMD
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adaptation improved CDR prediction for cisplatin, doxorubicin, gemcitabine, paclitaxel,
tamoxifen, temozolomide, and vinorelbine suggesting that tissue of origin may play a crucial role
for these drugs. However, for gemcitabine, tamoxifen and vinorelbine, using the MorganFP drug
encoding did not achieve significant CDR prediction in patients, even with MMD adaptation,
further suggesting that the appropriate drug embedding is needed for such a task
(Supplementary Fig. 2).

Lastly, we found that for the hard to predict bicalutamide PACE and PACE-Morgan
produced predicted IC50 values with the correct direction (predicted IC50 for resistant patients
should be higher than that of sensitive patients) (Figure 2B, Supplementary Figure 3A). The
non-adapted variants of PACE (noPACE, noPACE-Morgan) produced predicted IC50 values with
the incorrect direction (Supplementary Figure 3B/C). This is also evident by the direction of the
difference between the median of sensitive predicted IC50 and sensitive predicted IC50, which we
term as ΔIC50 (Supplementary Table 3). The ΔIC50 for bleomycin was also observed to be the
most negative in the PACE models compared to the noPACE models. PACE-Morgan produced
the most negative ΔIC50 for docetaxel compared to the noPACE models, however for this hard to
predict drug PACE produced a ΔIC50 in the wrong direction.

Taken together, these results suggest that the combination of patient adaptation via
MMD and a combination of the chemical embedding learned from GCN produced a highly
informative model that can be extended to the patient setting.
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Figure 2. TCGA CDR performance comparison with framework variants and with TG-LASSO. We compare our
model with the unregularized alternative and with the state-of-the-art TG-LASSO linear method. GCN-MMD yields the
best resistant-sensitive discrimination performance in the TCGA CDR dataset (A) Bar plots showcasing p-value,
corresponding to the one-sided Mann-Whitney U test, determined by averaging 10 independent predictions made by
each model. (B) Box plots reflecting the distribution of estimated log(IC50) values using GCN-MMD for resistant or
sensitive patients. The p-values here also correspond to a one-sided Mann-Whitney U test.
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Cell line diversity is more important than drug diversity for patient CDR prediction.
Next, we asked if gene expression information or drug information has a bigger impact in

predicting drug response in patients. To this end, we created two different drop out experiments
-- one where all the CDI pairs for a cell line were withheld and another in which all the CDI pairs
for a drug were withheld. For the cell line dropout experiment, we created training sets with
20%, 40%, 60%, and 80% of the total cell lines (531). For the drug dropout experiment, we
measured the performance of a method in predicting the twelve CDR drugs having never seen
those same drugs during training. To this end, we removed the 12 drugs present in the CDR
dataset and then created training sets in cell lines that included 20%, 40%, 60%, and 80% of the
remaining 298 drugs. For each of the training sets, the model was trained ten independent times
on each fold. The ten independent cell line-trained models were then applied to the patient CDR
dataset, and the average predicted log(IC50) was computed. The Mann-Whitney U test was used
to evaluate the discrimination between labeled resistant and sensitive patients (see
METHODS).

As summarized in Figure 3A, lack of gene expression information had a bigger impact
compared to lack of drug information across all drugs in our CDR dataset. This is likely caused
by the vast difference in complexity and variance between the gene expression profiles and the
compound structures. The robustness (measured by the variance of the p-value across 10 fold
cross validation) of the model suffers more with 20% of the CLs included in training compared to
the same percentage of drugs included in training (Supplementary Figure 4A/B). Addition of
more CLs in the training set drastically improves robustness of the model as shown by the
decreasing variance of the p-value across all 10 folds, indicative of the crucial role expression
information plays in predicting drug response (Supplementary Figure 4A). This result also
suggests that the GCN needs a small amount of graph examples in the training set to be able to
generalize well to new graphs not seen in the training set. Additional graph examples improved
the robustness of the prediction of all but five drugs: bicalutamide, bleomycin, gemcitabine,
sorafenib, and tamoxifen in the CDR dataset (Supplementary Figure 4B) with the variance in
p-value decreasing slightly. We conducted an additional experiment, where only the 12 CDR
drugs were removed from training and reported minimal reduction in CDR prediction
performance (Figure 3B). It is crucial to note that the small improvements in CDR prediction
from additional training molecules can be explained by the fact that most of the CL have been
treated by most of the drugs (median number of CL = 498.5). This means that most of the
variability in gene expression has been seen by the model even when 20% of the drugs are
included in training (Supplementary Figure 4C), which leads to robust results in the CDR
dataset and is consistent with what we observed in the CL dropout experiment.
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Figure 3. Drug/Cell Line 10 fold cross validation dropout experiment. Dropping data, drug-wise and CL-wise to
test the limits of the model’s OOD inference ability in a 10-fold cross validation fashion. For each fold the training was
repeated 10 independent times. (A) Showing the variance of the -log(p-val) determined by the Mann-Whitney U test
for the difference between the predicted log(IC50) between resistant and sensitive patients across 4 conditions: 20%
of CL retained in training, 40% of CL retained in training, 60% of CL retained in training, and 80% of CL retained in
training. (B) Dropping only the 12 drugs in the CDR dataset. Variance results are displayed for all 12 drugs in the
CDR dataset.
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Top Predictions Recapitulate Knowledge on Targeted Therapy
Most of the drugs with CDR in patients that were tested here can be classified as

chemotherapy agents, with the exception of sorafenib (VEGFR inhibitor) and tamoxifen (ESR1
inhibitor). To assess the performance on targeted agents for well characterized cohorts, we
carried out an in-silico analysis on drugs with known biomarkers of response. We used
mutations as biomarkers of response for the TCGA cohorts where expression and mutation
information were available. For the cohorts where these were not available we used expression
as a biomarker of response to confirm that the model learns biologically meaningful information.
The idea here is that as a target gene’s expression increases, the drug’s predicted IC50 should
decrease accordingly, indicating an increase in sensitivity.

We collected mutation information from TCGA breast cancer (BRCA), melanoma
(SKCM) samples and LUSC/LUAD cohorts (combined and abbreviated as LUNG). We used
mutation information as a biomarker of sensitivity. We tested trametinib, olaparib, dabrafenib
and gefitinib on all of the aforementioned cohorts. Trametinib is a MEK inhibitor and used to
treat SKCM. Olaparib is a PARP1 inhibitor and used to treat BRCA1- or BRCA2-mutated breast
and ovarian (OV) cancers. Next, we examined the correlation between a drug’s predicted
log(IC50) and its target gene’s expression (after Z-score transformation of the gene expression
values). We specifically examined OV in this way due to the fact that we could not collect
sufficient OV samples with predicted BRCA1 or BRCA2 mutations, and thus could not use
BRCA1/2 mutation as a biomarker for OV and olaparib.

As expected, BRCA1 mutant samples were predicted to be more significantly sensitive
to olaparib compared to BRCA1 WT samples (Figure 4A), NRAS and MAP2K1 SKCM mutants
were predicted to be significantly more sensitive to trametinib compared to SKCM WT samples
(Figure 4B/E). NRAS SKCM mutants were additionally predicted to be more sensitive to
dabrafenib compared to NRAS WT samples (Figure 4C). Olaparib has been previously shown to
be effective in ATM mutated BRCA patients. Although our model was not able to predict this
association correctly, SKCM ATM mutated samples were predicted to be sensitive to olaparib
(Figure 4D). Lastly, LUNG cancer NRAS mutated samples were predicted to be more sensitive
to dabrafenib (Figure 4F).

Studies have pointed to PARP expression as a promising biomarker of olaparib
response31. When we examined the correlation between PARP1 z-score and the predicted
log(IC50) per disease, OV had a significantly negative Spearman Rho (rho=-0.48)
(Supplementary Figure 5A). Testicular cancer (TGCT) showed the strongest negative correlation
between PARP1 expression and predicted IC50 for olaparib, which has recently been in clinical
trials in combination with chemotherapy for TGCT32.

We further examined the predicted response of lapatinib and the correlation with the
expression of its target genes, EGFR and ERBB2 (gene expression first transformed . In-vitro
studies have previously shown that lapatinib inhibits cell proliferation and migration of breast
cancer cell lines expressing different levels of EGFR and ERBB2, and that cells overexpressing
ERBB2 were more sensitive33. Interestingly, our model predicted EGFR expression as a
stronger biomarker (Supplementary Fig. 5B) in BRCA patients compared to ERBB2 expression
(Supplementary Fig. 5C). Taken together, these results suggest that our model can recapitulate
the relationship of well characterized drugs with the appropriate biomarkers, and their
applicability in equally well-characterized cohorts.
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Figure 4. Functional Analysis. (A) Predicted log(IC50) for BRCA1 mutant and wild-type (WT) breast cancer (BRCA)
samples in-silico treated with olaparib. P-value corresponds to the one-sided Mann Whitney U test discriminating
between mutant and WT predicted log(IC50). (B) Predicted log(IC50) for NRAS mutant and wild-type (WT) melanoma
(SKCM) samples in-silico treated with trametinib. (C) Predicted log(IC50) for NRAS mutant and wild-type (WT)
melanoma (SKCM) samples in-silico treated with dabrafenib. (D) Predicted log(IC50) for ATM mutant and wild-type
(WT) melanoma (SKCM) samples in-silico treated with olaparib. (E) Predicted log(IC50) for MAP2K1 mutant and
wild-type (WT) melanoma (SKCM) samples in-silico treated with trametinib. (F) Predicted log(IC50) for NRAS mutant
and wild-type (WT) LUSC/LUAD (LUNG) samples in-silico treated with dabrafenib.
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DISCUSSION
In this study, we presented a new deep learning framework that uses both a graph

convolutional network (GCN) as a general encoding for drug information together with patient
information to aid in out-of-dataset prediction. During training, the method aligns cell-line and
patient gene expression domains using implicit tissue-driven adaptation together with drug
information to derive highly informative features for drug response prediction.

We showed that adapting tumor information with maximum mean discrepancy (MMD)
preserves performance in cell lines while improving the prediction of clinical drug response
(CDR) in patients regardless of the drug encoding used. We found that GCN’s embedding
extends to drugs that have not been seen in training. These results suggest that a combination
of implicit tissue-driven adaptation and a highly flexible drug encoding lead to improved
prediction performance in patient samples. Interestingly, we note that the drug dropout
experiments revealed that only 20% (298) of drugs are needed to yield robust generalization
performance. On the other hand, the cell line dropout experiments showed that a lack of cell line
diversity during training greatly impacts generalization of drug response in patients. We further
examined if our model can recapitulate some of the well known therapeutics for melanoma,
breast cancer, and lung cancer. We found that the model was able to predict MEK2 mutant
melanomas as significantly more sensitive to trametinib, a MEK inhibitor, compared to the WT
cohort. Similarly, BRCA1 mutants in breast cancer were significantly more sensitive to olaparib,
a first-line treatment to patients with such a mutation, compared to the WT cohort. #

Ideally, the type of models studied here should be trained on patient samples rather than
surrogates such as cell lines. However, at this time, an adequate amount of patient data is
lacking for any particular drug of interest as most patients receive the standard of care based on
the tissue of origin. For example, we attribute the poor performance in predicting sensitivity to
bicalutamide, bleomycin, and docetaxel to lack of adequate training data (Figure 2A). In the
coming years, single cell sequencing should improve the performance of predictive models.  For
example, promising results have been published by the MIX-seq study in which the sequencing
of cell lines before and after drug treatment has detailed the heterogeneity in response across
individual cancer cells36. Together with single-cell sequencing, human-derived xenografts and
3D human organoids should complement cell line studies to add needed realism for classifier
training; e.g. by including contributions from the microenvironment. #

The framework we presented can be extended to incorporate additional diverse
biological data as it becomes available. As expected, we found that accuracy depended heavily
on the presence of an appropriate cell line of a matching tissue type in the training data. Beyond
extending the training data to cover more cell lines, which will increase the diversity of patients
to which the method can be applied, other data types may also provide a boost in performance.
For example, the current work focuses on gene expression and does not consider genomic
alterations, such as mutations and structural variants, and the vulnerabilities that these may
introduce. Genetic dependency data generated from the ACHILLES project 37 for example are
now available for many of the same cell lines that our model was trained on. In theory,
incorporating synthetic lethality prediction into the model should improve drug response
prediction, as drugs that target synthetically lethal pairs should have a substantial impact on
drug response. Incorporating protein level information could also lead to improvements in
performance as many of the drugs target specific proteins whose expression may or may not be
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correlated with the gene’s RNA. The ongoing CPTAC project 38 is systematically quantifying
protein levels and phosphorylation states in cancer patients from TCGA. In addition, it has been
shown that proteome-level characterization of cell lines can aid in drug response prediction 39. It
is therefore evident that addition of proteomic data to our model could have a significant impact
on the prediction of drug response.

Lastly, increasing the interpretability of our model would be of great value. It would be
very informative to developers of new drugs if they could predict the pathways affected by
administration of a new treatment. Recent advances in developing more interpretable biological
models40,41 should help models like ours in providing generalizable and interpretable results.
Lastly, the GCN of our model uses only atom features for drug encoding. Other types of GCN,
such as GINEConv from this study 42, are more expressive and use both atom and bond
features, which could potentially create an even more generalizable drug embedding. We leave
the exploration of the most appropriate GCN for this task and the inclusion of an interpretable
EM to future studies.

METHODS
Overall Framework. Our model is an adapted dual convergence architecture that integrates
gene expression information with drug structure aimed at generalizing clinical drug response
(CDR) prediction in patients. It consists of three modules: Expression Module (EM), Drug
Module (DM) and Prediction Module(PM). Highly informative representations of gene expression
and drug structure are generated by the EM and DM, respectively. These representations are
jointly passed to the PM where the log(IC50) prediction is made. The model takes as input a cell
line (CL) expression vector (xc), a primary tumor expression vector (xt), and the compound that
was applied on the CL. The way the compound is presented as input to the model is explained
in the Morgan Fingerprint (MorganFP) Representation of Drugs and Graph Representation
of Drugs sections.

Expression Module (EM). The EM consists of 2 fully connected layers of 1024, and 100 nodes
with Rectified Linear Unit (ReLU) activation. BatchNormalization and Dropout of 0.35 are
applied on each layer. During training, the EM produces latent representations for both CL and
primary tumors via weight sharing as follows:
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𝑐
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) =  𝑧

𝑡

where and represent the latent vectors of CL and primary tumor, respectively. 𝑧
𝑐

 𝑧
𝑡

Inspired by the field of domain adaptation, and driven by the need to generalize drug response
prediction to patients, we used a domain alignment method called Mean Maximum Discrepancy
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(MMD) 15. Specifically, the model tries to align to with the goal of making the cell line latent 𝑧
𝑐

 𝑧
𝑡

space more similar to the primary tumor latent space by minimizing the following loss:
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where denotes the universal Gaussian kernel. Each and represent the same𝑘  𝑧
𝑐

 𝑧
𝑡

tissue-of-origin during training. Thereby, the model implicitly aligns CL and primary tumors in a
tissue driven manner.

MorganFP Representation of Drugs. We used the python library RDKit to generate Simplified
Molecular Input Line Entry System (SMILES) strings, which describe the structure of a molecule
using a single line of text, and compute MorganFP for each molecule in our datasets 43. SMILES
strings are simple string annotations that describe the structure of the molecule. MorganFP is
part of the Extended-Connectivity Fingerprints (ECFPs) family and are generated using the
Morgan algorithm 44,45. These fingerprints represent molecular structures and the presence of
substructures by means of circular atom neighborhoods (bond radius). In this study we used
radius 2 and constructed a 2048 long bit vector for each molecule. A radius of 2 takes into
account neighbors up to two atoms away when constructing the bit vector (fingerprint) of the
molecule.

Graph Representation of Drugs. We used RDKit to generate SMILES strings for each drug.

Next, we represented the SMILES string for each compound as a graph{𝑐
𝑗
} ∈ 𝐶

, where represents the set of nodes (nodes here are atoms on the𝐺 = {𝑉, 𝑋} 𝑉 = {𝑣
𝑗
}

molecule). An adjacency matrix represents the topological structure of each molecule with𝐴
denoting a bond between two atoms, otherwise . indicates the𝐴

𝑖,𝑗
= 1 𝐴

𝑖,𝑗
= 0 𝑥

𝑖
∈ 𝑋

vector of features for each atom on the compound. The features (189 in total) used for each𝑣
𝑖

compound can be found in Table 2.

z

Table 2. Description of Atomic Features

Atom feature Size Description
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Atom symbol 19 [As, B, Br, C, Cl, F, Hg, I, K, N, Na, O, P, Pt, S, Sb, Se, V, Zn]
(one-hot)

Atomic Number 119 Atomic number of each atom (one-hot)

Chirality type 4 [UNSPECIFIED, R, S, OTHER]

Degree 11 Number of covalent bonds (one-hot)

Formal Charge 12 Electrical charge (one-hot)

Hydrogens 9 Number of connected hydrogens (one-hot)

Radical Electrons 5 Number of radical electrons (one-hot)

Hybridization 8 [UNSPECIFIED, sp, sp2, sp3, sp3d, sp3d2, OTHER] (one-hot)

Aromatic 2 Atom is an aromatic ring (one-hot)

Total 189 Total number of features

Drug Module (DM). The DM of the model aims at extracting highly informative features from
each molecule. This is done via either the MorganFP representation of the molecule, or the
graph representation of the molecule. For the former, the DM consists of one fully connected
layer, ReLU, BatchNormalization and Dropout. For the latter, we used the python library PyTorch
Geometric to produce data-driven molecular features using GCN 46. In particular, we used the
GCN architecture from 47. That architecture learns substructures of a given graph, and
relationships between graphs, which is crucial in this study as we aim to generate a general
embedding space for structurally diverse molecules presented in the drug response dataset.
This type of GCN falls under the spatial GCN category, which can generalize the learned
embedding to heterogeneous graphs 48,. We used one layer, followed by a pooling layer, which
aggregates highly informative nodes on the molecular graph 49. The DM consists of one layer
due to the small average size of the molecules (34 nodes). ReLU, BatchNormalization and
Dropout were applied here as well.

The purpose of the GCN is to map each to low dimensional vectors . The𝑣
𝑖

∈ 𝑉 𝑧
𝑖

∈ 𝑅
formal mapping is as follows:

,𝑓
𝐷𝑀

(𝐴, 𝑋; θ
𝐷𝑀

) → 𝑍

with for compound , where is the number of atoms, and is the dimension of𝑍 ∈ 𝑅𝑛×𝑑 𝑐
𝑗

𝑛 𝑑
the latent space produced by the GCN.
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Furthermore, to obtain a latent representation for graph , we computed both average and𝑧
𝑑

𝑐
𝑗

maximal features across and concatenated them with the following operation:𝑍
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∑ 𝑍
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, where and denotes the concatenation operator. The dimensionality is doubled𝑧
𝑑

∈ 𝑅𝑛×2𝑑 ‖
due to concatenation of both average and maximal features for each graph.

Prediction Module (PM). The PM of the model consists of one fully connected layer, and aims
at predicting log(IC50) using highly informative features derived from the EM and DM. As such,
the operation carried out by the PM is the following:

𝑓
𝑃𝑀

= 𝑧
𝑐
‖𝑧

𝑑
; θ

𝑃𝑀( )

Our model updates the weights of EM, DM, and PM by minimizing the mean squared error
(MSE),
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where is the number of samples,𝑁

between the observed and predicted log(IC50), denoted by and , respectively, and .𝑦 𝑦 𝐿
𝑀𝑀𝐷

Hence, the overall loss minimized by the model is:

𝐿
𝑃𝐴𝐶𝐸

= 𝐿
𝑀𝑆𝐸

+ λ· 𝐿
𝑀𝑀𝐷

where controls the tradeoff between the goals of aligning the CL latent space with the primaryλ
tumor latent space, and achieving an accurate predicted log(IC50).
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Training Procedure and Tuning. Our model was implemented in Python with the PyTorch
API50 using the Adam optimizer 51 for gradient descent optimization. The training was allowed to
proceed for a maximum of 200 epochs. To control for overfitting EarlyStopping was used to
monitor the training loss for overfitting. Training was terminated after 10 epochs if the training
loss was not further minimized after 10 consecutive epochs, with a delta of 0.05. Dropout was
applied on a random 35% of nodes to further prevent overfitting. We used the Adam51 optimizer
for gradient descent optimization with a learning rate of 1E-4. Given the stochasticity of the
training procedure, and that we wanted to achieve considerable robustness with our model
when predicting CDR of patients, we repeated the training 10 independent times.

Due to the computational expense of training, the number of layers for the DM and PM
were fixed to one, and the number of layers of the EM were fixed to 2. We experimented with

the , and with the number of drug nodes for the DM. We found that and 200 drugλ λ = 0. 01
nodes were the best parameters for distinguishing sensitive from resistant patients in the CDR
dataset

CDR prediction in TCGA patients. We obtained the clinical drug response (CDR) of 531
TCGA patients across 24 drugs from this study 17. Following the same filtering steps as Huang
et al. resulted in 12 drugs. Finally, after filtering for patients for which we had gene expression
information resulted in 506 patients. Patients with “clinical progressive disease” or “stable
disease” were labeled as resistant (R). Those with “partial response” or “complete response”
were labeled sensitive (S). These are categorical variables, whereas our model predicts
log(IC50) which is a continuous variable. To test how well our model can be extended to OOD
samples, we grouped the predicted log(IC50) of each patient in the corresponding R or S bin.
Then, we tested if the predicted log(IC50) of the R patients was significantly larger than that of
the S patients by performing a one-sided nonparametric Mann Whitney U test. A summary of
the number of R and S patients for each drug is shown in Table 3.
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Table 3. Number of Resistant and Sensitive Patients in TCGA CDR dataset

Drug Num
Resistance

Num Sensitive N of CL in
Training

Mode of Action

bicalutamide 3 14 525 Androgen
receptor

antagonist

bleomycin 4 46 470 DNA synthesis
inhibitor

cisplatine 25 108 524 DNA synthesis
inhibitor

docetaxel 17 55 524 Tubulin
polymerization

inhibitor

doxorubicin 7 52 479 Topoisomerase
inhibitor

etoposide 10 71 484 Topoisomerase
inhibitor

gemcitabine 43 37 509 Ribonucleotide
reductase
inhibitor

paclitaxel 27 66 470 Tubulin
polymerization

inhibitor

sorafenib 13 2 470 FLT3 inhibitor

tamoxifen 4 14 520 ESR1 inhibitor

temozolomide 83 10 520 DNA alkylating
agent

vinorelbine 6 23 513 Tubulin
polymerization

inhibitor
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Drug/CL exclusion experiment. For dropout analysis, we created random train splits in a
10-fold cross validation. After training on each fold 10 independent times, we tested the
generalizability potential of our model in the CDR dataset for each fold, thereby producing 10
p-values (see CDR prediction in TCGA patients). For drug-centered dropout analysis, we
created train sets by first removing all 12 CDR drugs (bicalutamide, bleomycin, cisplatine,
docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, sorafenib, tamoxifen, temozolomide,
and vinorelbine), and then retaining random 20%, 40%, 60%, and 80% of the remaining 298
drugs (310 drugs in total). Similar to the drug-centered dropout analysis, the CL-centered
dropout was carried out in a similar manner without removing the 12 CDR drugs.

Expression Datasets. We downloaded gene expression data of 1376 cell lines of the Cancer
Cell Line Encyclopedia (CCLE) project, along with their metadata 52, and 10,536 TCGA
pan-cancer tumors from the DepMap project 53 and UCSC Xena browser 54, respectively. All
expression values were represented as log2(TPM+1), where TPM denoted transcripts per million
reads of each gene in each sample. The gene space was intersected resulting in 31,501
common genes.

Drug Response Datasets. We downloaded release 8.1 of the GDSC project containing drug
response measured by the half maximal inhibitory concentration (IC50) from the DepMap project,
which has harmonized cell lines and drug names32,55. In total 974 cell lines tested across 398
drugs are included in this dataset, amounting to 387,626 cell line-drug-IC50 pairs (CDI pairs).
After intersecting for cell lines included in the CCLE RNA-seq compendium, selecting drugs for
which we could obtain SMILES string, removing CDI pairs representing combination therapies
and pairs with missing values for either drug name or IC50, 692 cell lines tested on 310 drugs
remained, amounting to 185,186 CDI pairs. All IC50 values were transformed to log scale
log10(IC50). After selecting for cell lines that represent the same tissue of origin as the TCGA
dataset (25 tumor types), 531 cell lines tested on 310 drugs amounting to 142,351 CDI pairs.
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4.2 Sparse data storage to support petabyte scale genomics

data analysis

During an internship at Coral Genomics Inc, I worked with Andres Manas and Atray

Dixit to develop an efficient data format in order to perform deep learning tasks using

petabyte scale genomics data. Large-scale genomics databases such as the UK BioBank

(UKBB) store millions of SNPs for thousands of individuals with several associated

phenotypes [Bycroft et al., 2018]. This source of information is promising in helping to

predict risk of developing certain diseases or even potential response to treatment using

one’s genetic information. Such task is called Polygenic Risk Score (PRS) prediction.

However, the scale of such database makes computational tasks challenging as it does

not readily fit into memory. We took advantage of the sparsity of such dataset and

developped a new genetics format on top of Tensorflow’s TFRecords to enable fast and

efficient machine learning applications on UKBB. I contributed to designing the codebase

for converting genetics data from other formats to our adaptation of TFRecords, as well

as testing the framework in tasks such as GWAS or PRS prediction using deep learning

models in Keras. This work has been recently submitted to BioRxiv.
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DNARecords: An extensible sparse format for petabyte scale genomics analysis 

 

Andres Manas1, Lucas Seninge1,2, Atray Dixit1 

 

Abstract: 

Recent growth in population scale sequencing initiatives involve both cohort scale and 

proportion of genome surveyed, with a transition from genotyping arrays to broader genome 

sequencing approaches. The resulting datasets can be challenging to analyze. Here we introduce 

DNARecords a novel sparse-compatible format for large scale genetic data. The structure 

enables integration of complex data types such as medical images and drug structures towards 

the development of machine learning methods to predict disease risk and drug response. We 

demonstrate its speed and memory advantages for various genetics analyses. These performance 

advantages will become more pronounced as it becomes feasible to analyze variants of lower 

population allele frequencies. Finally, we provide an open-source software plugin, built on top of 

Hail, to allow researchers to write and read such records as well as a set of examples for how to 

use them. 
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 2 

Introduction: 

Modern population scale sequencing projects involve sequencing hundreds of thousands to 

millions of individuals in which genetics data can be correlated with a broad assortment of 

healthcare data. The number of variants that can be analyzed has grown substantially from initial 

efforts with genotyping arrays to recent releases of whole genome sequencing (WGS) data from 

both the UK Biobank [1] and the All of Us initiative [2]. As the size of these datasets has grown, 

new methods have been developed to facilitate their analysis. Tools such as Hail [3] and 

REGENIE [4] are useful for performing genetic analysis, such as fixed or random effects GWAS 

efficiently on large patient cohorts in a distributed framework that can be deployed on the cloud. 

Other frameworks have been developed to enable GPU based operations on genetics datasets [5], 

including QTL analysis [6], for improved speed, but are oriented for variant-by-variant analysis. 

One goal of large population sequencing initiatives is the generation of novel precision 

medicine solutions to help stratify patients with respect to disease risk (including polygenic risk 

scores) and therapy selection. Currently, genetics informed clinical predictors are approaching 

clinical utility for certain complex diseases, including predictors of cardiac risk [7]. Healthcare 

outcomes are a result of genetic (G), environmental (E), sociodemographic (S), and random 

effects. There are additional clinical variables that can be informative. Most current approaches 

for  predicting healthcare outcomes using genetic data take into account simple numerical 

covariates (S and E) such as age or lipid levels. A modeling approach that can take into account 

other important, but harder to model data types (such as medical images or drug structure) is 

likely to result in improved predictors for critical outcomes such as hospitalization risk [8], [9]. 

The integration of these complex non-tabular datatypes is made possible by modern deep 

learning methods (including forms of convolutional neural network architectures), which operate 
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 3 

on datasets oriented in a sample-wise fashion. Lastly, there is significant evidence that there is a 

small, but significant non-additive component to the heritability of complex human traits [10], 

[11]. Modeling these nonlinearities is facilitated by data structures organized by sample. As such, 

there is a need for analysis frameworks that restructure genetics datasets in a machine learning 

compatible format (i.e. the transpose of traditional genetics data storage formats).  

Here we introduce DNARecords, a new genetics data format that has significant 

advantages for speed and novel machine learning applications. The format leverages sparsity in 

genetics datasets for faster computation and can be stored in a sample-wise manner for 

integrations of complex data types. Moreover, by working on top of existing frameworks 

including Tensorflow’s TFRecords and Apache Parquet, datasets can be distributed in the cloud 

for analysis as well as across GPUs or TPUs  [12].  

 

Results and Discussion: 

DNARecords stores genetic data in both sample-wise and variant-wise data structures in which 

sparsity is leveraged (Figure 1A). Specifically, entries where the genotypes are homozygous for 

the reference allele (or relatedly when genotype dosage is below a certain threshold) can be 

stored implicitly. We show that when using this format to perform genetics analysis like GWAS 

there are negligible losses in sensitivity or specificity to detect significant variants when the 

dosage threshold is less than 0.1 (Figure 1C). The performance advantages of DNARecords in 

memory footprint for several example datasets are described below (Table 1). These advantages 

become pronounced with larger WES and WGS datasets, in which progressively rare variants 

with lower population allele frequencies are considered for analysis.   
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Dataset  Number of 
samples 

Number of 
variants 

Average allele 
frequency 

HWE 
estimated 
sparsity factor3 

Genotyping array4 3,000 693,158 

 

0.1434 

 

3.8 

Imputed genotypes 
AF>0.0013 

490,030 13,000,000 0.081 6.4 

Imputed genotypes5 490,030 100,000,000 0.021 24 

WGS4 76,156 759,302,267 0.0043  116 

WES6 125,748 17,201,296 0.0016 312 

Table 1: Footprint comparison of DNARecords to other genetics datatypes as a function of 

genotyping assay. 

 

These dataset size advantages are propagated into faster analysis for operations like GWAS and 

PCA (see Table 2). 

Method GWAS  PCA  2-layer model with 
images 

Hail 1.11 23.73 N/A 

DNARecords (+1 P100 GPU) 0.55 1.16 1.15 

Table 2: CPU hours. Speed comparisons for basic genetics operations for 2.5M variant dataset 

with the 1,000 genomes dataset. Numbers extrapolated based on the UK Biobank dataset. 

 

 

 
3  !
"#$%#$!

 

4 based on 1,000 genomes 
5 based on UK Biobank 
6 based on gnomAD 
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 5 

Methods: 

The basic procedures for data generation are described here: https://dnarecords.readthedocs.io/. 

A python package for generating DNARecords for variant-wise analysis or sample wise machine 

learning is available here: https://pypi.org/project/dnarecords/. Open source code is available in 

Github here: https://github.com/amanas/dnarecords. DNARecords datasets for the 1kg dataset 

are hosted in Google Cloud storage (in both TFRecords and Parquet format) here: 

gs://dnarecords/1kg 
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Figures 

 

Figure 1: (A) DNARecords data format stores variant data separately in sparse sample oriented 

and variant oriented files to allow for efficient parallelism on standard genetics operations as 

well as new machine learning approaches. Sample-wise records can be linked to complex patient 

specific datatypes such as graph-encoded chemical structures and medical images (B) Data 

savings associated with thresholding variants above different allele frequency cutoffs. (C) 

Relationship between increasing sparsity (green) by adjusting the threshold for dosage and 

sensitivity (blue) /specificity (green) in a GWAS for height in the UK Biobank on chromosome 

22. 
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4.3 Minor contributions

I also had minor contributions to other work during my PhD work. I performed single-cell

analysis for [Sanders et al., 2020] and [Robinson et al., 2022]. I also contributed to some

of the codebase of [Speir et al., 2021].
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Appendix

A.0.1 Penalty in the ontology mapping score function

Here, we give a sense on how to regularize the ontology mapping score we developed in

the first chapter.

A.0.1.1 Bayesian approach to mapping

One simple way to regularize the score Si,j is to simply put a prior on the µj . We are

now interested in the ”posterior mapping score”:

Spost
i,j = logP (µj |Ci)− logP (B|Ci)

= logP (Ci|µj)− logP (Ci|B) + log
P (µj)

P (B)

Note that when we consider a uniform prior on the nodes of the ontology, the posterior

mapping score is similar to the non-regularized score.

A.0.1.2 Regularization via parent information

Another desirable property of a penalty term is to regularize for parent information.

Intuitively, mapping to a successor should only happen if the unique successor marker

genes bring enough additional information compared to its parents. Formally, the

regularized score has the form:
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SΩ
i,j = Si,j +Ω(

∑
k∈π(j)

wkSi,k)

where SΩ
i,j is the parent-regularized score, Ω is a regularization function, and Si,π(j) are

the scores of the parent nodes for node j.

We leave the exploration of such regularization approaches to further studies.
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