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1. Introduction

A variety of disorders are associated with mutations 
in the fragile X mental retardation 1 (FMR1) gene 
including fragile X syndrome (FXS) caused by a full 
mutation (> 200 CGG repeats in the 5' untranslated 
region of FMR1 gene) leading to absence or deficiency 
of the FMR1 protein (FMRP) and premutation (55 to 
200 CGG repeats) disorders characterized by elevation 
of FMR1 mRNA 2 to 8 times normal. Although these 2 
types of disorders are distinct in their phenotypes and 
molecular pathology, recent studies have demonstrated 
significant overlap that has been fertile areas for 
research. The term fragile X spectrum disorder (FXSD) 

has been developed to emphasize the continuity of 
clinical involvement from the gray zone (45 to 54 
repeats) throughout the premutation and into the full 
mutation range. FMR1 mutations are dynamic in that 
they usually expand between generations particularly 
when passed on by a female to her children when it can 
expand from a premutation to a full mutation (1) .
 FXS was the first identified disorder in this spectrum 
and it was discovered in association with the fragile 
site of the X chromosome in two brothers in 1969 by 
Lubs and colleagues (2). In retrospect the first X- linked 
pedigree of intellectual disability (XLID) reported by 
Martin and Bell in 1949 turned out to be a fragile X 
pedigree when tested by the FMR1 DNA test that was 
developed after the discovery of FMR1 in 1991 (3,4). 
The fragile site was characterized by not only the CGG 
expansion to > 200 repeats, but also methylation of the 
cytosine bases leading to silencing of translation and 
little or no production of FMR1 mRNA and FMRP. Since 
FMRP is a critical protein for regulation of translation 

Summary The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental 
retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene 
typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic 
mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) 
and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in 
the general population with approximately 1 in 130-250 females and 1 in 250-810 males, 
whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 
4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most 
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most common genetic form of ovarian failure, the fragile X-associated primary ovarian 
insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome 
(FXTAS, premutation). The premutation can also cause developmental problems including 
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unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered 
a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should 
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with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children 
with FXSD.
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for hundreds of mRNAs into their respective proteins, 
most of them involved with synaptic plasticity (5), the 
lack or severe deficiency of FMRP almost always leads 
to intellectual deficits as seen in males with FXS. In 
females with FXS the normal X produces FMRP so only 
25% will have an IQ below 70 and an additional 50% 
will have an IQ in the borderline range (6). 
 Premutation disorders were first identified with the 
discovery of an increased incidence of early menopause 
(prior to the age of 40) in female carriers in 1991 (7). 
This has been confirmed by multiple investigators 
and has now been named fragile X-associated primary 
ovarian insufficiency (FXPOI) (8). Approximately 20% 
of female carriers have FXPOI, although the rate varies 
in a curvilinear fashion with CGG repeat number; the 
greatest prevalence of FXPOI is between 70 to 100 
CGG repeats (9).
 The next premutation disorder identified was 
the fragile X-associated tremor ataxia syndrome 
(10,11) seen initially in older male carriers (> 50 
years) involving an intention tremor and cerebellar 
gait ataxia in addition to autonomic dysfunction, 
Parkinsonism, neuropathy, memory and executive 
function deficits followed by cognitive decline. 
This is a neurodegenerative disorder that occurs in 
approximately 40% of men and 16% of women with 
the premutation (12,13). FXTAS is hypothesized 
to be caused by mRNA toxicity from the elevated 
FMR1 mRNA levels (14) leading to the production of 
pathognomonic inclusion formation in neurons and 
astrocytes throughout the CNS, peripheral nervous 
system and even in some organs such as the adrenals, 
heart and pancreas (15).
 Currently there are numerous additional medical, 
neurological and psychiatric problems associated 
with the premutation both with and without FXTAS 
including depression (16), anxiety (17,18) , migraines 
(19) hypertension (20), immune mediated disorders 
including fibromyalgia and hypothyroidism (21,22), 
sleep apnea (23), restless legs syndrome (RLS) 
(24), and neuropathy (25,26) often associated with 
chronic pain symptoms. Since the prevalence of the 
premutation is much higher (1 in 130-250 females 
and 1 in 250-810 males) (27) than those with the full 
mutation (1 in 4,000-7,000) the impact of multiple 
medical and neurological problems in premutation 
carriers is far more significant in the population than 
the full mutation (28,29). The association of other 
disorders in adults with the premutation led to multiple 
studies in children and here we present a review of the 
manifestations in children with FXSD.

2. Full mutation - Fragile X syndrome

The FMR1 gene, which codes for the fragile X 
mental retardation protein (FMRP, a major negative 
translation regulator), is located at Xp27.3 from base 

pair 146,993,469 to base pair 147,032,647 (GRCh37/
hg19). The FMR1 gene is highly expressed in the brain 
and testis (30). FXS is associated with a variety of 
neurological, cognitive and behavioral deficits, and 
less frequent dysmorphic features. Males with the full 
mutation and full methylation have little to no FMR1 
mRNA and little to no FMRP contributing to the 
clinical phenotype of FXS. The range of involvement in 
females is determined by the X-chromosome activation/
inactivation ratio (the percentage of cells with active 
normal X chromosome) because this will determine 
how much FMRP is produced by the normal X 
chromosome depending on whether it is active or not.

2.1. Physical findings

The physical phenotype and dysmorphology of FXS 
include signs of a connective tissue disorder such as a 
long and narrow face, large and prominent ears, a high 
arched palate, hyperextensible finger joints, pectus 
excavatum, flat feet, soft skin and mitral valve prolapse. 
Other features include low muscle tone, and pubertal 
macroorchidism (31,32). Noteworthy approximately 
30% of young children with FXS will not have 
obvious dysmorphic features; the physical features are 
associated with the FMRP deficits. The most evident 
effects of lower levels of FMRP in both males and 
females are prominent ears and hypermobility of the 
metacarpal-phalangeal (MP) joints (33,34). In males 
FMRP deficits are associated with a narrow face and 
large ears, while in females the FMRP deficits are 
associated with increased ear prominence and jaw 
length (35). In about 5-10% of children with FXS a 
Prader-Willi phenotype is observed including severe 
obesity, hyperphagia, hypogonadism and in some 
cases delayed puberty (36,37) (Figure 1). The reduced 
expression of the cytoplasmic interacting FMR1 protein 
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Figure 1. A female adolescent with FXS Prader-Willi-like 
phenotype.
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30% of females with FXS have impaired speech (47). 
 In general, overall IQ declines with age in those 
with FXS because of the deficits in abstract reasoning 
which cannot keep up with the intellectual growth 
seen in typical children and adolescents (48). The 
adaptive skills also decline in FXS from adolescence 
into adulthood (49). This emphasizes the importance of 
early intervention with intensive behavioral/cognitive 
programs and targeted treatments early in life to 
improve or prevent cognitive decline.

2.4. Behavioral phenotype

FXS accounts for approximately 2-5% of all individuals 
diagnosed with FXS accounts for approximately 2-5% 
of all individuals diagnosed with ASD (50) . In FXS 
about 60% of males have an ASD (51,52). About 80% 
of males and 30% of females with FXS have symptoms 
of attention deficit hyperactivity disorder (ADHD) (53). 
Sleep disturbances, such as difficulty falling asleep and/
or interrupted sleep are also characteristic of individuals 
with FXS (54). Altered sleep patterns and dysregulated 
melatonin profiles were found in 13 boys with fragile 
X when compare with age-matched normal controls 
(55). Results showed greater variability in total sleep 
time, difficulty in sleep maintenance, and significantly 
greater nocturnal melatonin production in the boys with 
FXS.
 A hallmark feature of FXS that can also occur 
in some premutation carriers is social anxiety. 
This behavior leads to the characteristic "Fragile X 
handshake"; where the individuals may shake the 
interviewer's hand or acknowledge his/her presence 
but will avoid eye contact until the interviewer looks 
away (56). Additional behavioral features include 
stereotypies such as hand-flapping and hand-biting, 
shyness, perseveration, mood instability, aggression 
and impaired speech (52). Cross-sectional analyses 
suggest that dimensions of problem behavior, anxiety, 
and hyperactivity are age-related; thus, age should 
serve as an important control variable in behavioral 
studies in FXS. Measures of anxiety, attention, and 
hyperactivity are highly associated with other behavior 
problems (29). There is evidence that autism scores 
decreased with time, particularly in communication 
and social aspects of adaptive behavior (57). However, 
emotional symptoms, behavioral difficulties, problems 
with peers and social behaviors may remain relatively 
stable over time (58). These trajectories may be 
associated with variations of FMRP, which in turn can 
be related to epigenetic changes, but there have been 
no large longitudinal studies that assess the molecular 
variations and behavior/cognitive correlations. Further 
longitudinal studies are necessary to assess the 
developmental trajectories of FXS across the lifetime 
and relate the outcomes to molecular and environmental 
factors.

gene (CYFIP, located at 15q11-13) is believed to be the 
cause of this phenotype (37).

2.2. Neurological disorders

In a national survey of caregivers of individuals 
with FXS (1,394 individuals), 14% of males and 
6% of females were reported to have seizures (38). 
The seizures were easily treated, often partial and 
infrequent; however they were associated with more 
severe developmental and behavioral problems (38). 
Remarkably those with seizures are more likely to 
have ASD. The seizures may add to the severity of the 
phenotype because animal studies of early life seizures 
have shown that the FMRP leaves the dendrites and 
migrates to the perinuclear area during seizures, thereby 
depleting the dendrites of the regulatory effects of 
FMRP (39). Hypersensitivity to audiogenic stimuli 
and hyperarousal are also characteristics of children 
with FXS. These children have enhanced amplitude 
to sensory stimuli measured by electrodermal studies 
and a lack of habituation to repetitive stimuli (35). In 
addition, MEG studies also demonstrate an enhanced 
electromagnetic response to stimuli (36).

2.3. Cognition deficits

Male and female individuals with FXS present a wide 
range of learning disabilities in a context of normal, 
borderline IQ or mild to severe ID. The average IQ 
of males with the full mutation is 40 (40). Intellectual 
and developmental disability occurs in 85% of males 
and 25% of females. The level of FMRP correlates 
directly with IQ (41); males with the full mutation 
with unmethylated or only partially methylated alleles 
produce more FMRP than those with fully methylated 
alleles (35). The higher levels of FMRP explain the 
typically higher IQ (above 70) in high-functioning 
individuals with FXS. Similarly those individuals with 
"size-mosaicism" (full mutation plus premutation, 
gray zone or normal alleles) have a higher IQ than 
those without mosaicism. Therefore full mutation 
cells have a deficit of FMRP and the premutation cells 
produce an excess of FMR1 mRNA, leading to mRNA 
toxicity but relatively normal levels of FMRP ("dual 
mutation effects", pathological involvement from 
two different mechanisms). Higher rates of psychotic 
thinking have been observed in individuals with this 
type of mosaicism leading to dual mutation effects 
(42). In females with FXS the normal X typically 
produces 25% to 50% of the normal FMRP level and 
these females have IQ scores that range from normal 
to moderate intellectual disability (6). Working and 
short-term memory (43), executive function (44), visual 
memory, visual-spatial processing (45) and verbal 
deficits are common in FXS (verbal comprehension and 
vocabulary) (46). Almost all males and approximately 
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2.5. Genotypes

The unstable dynamic FMR1 mutation can result in 
"size-mosaicism", but cells of individuals who have 
only one size allele may also show different patterns 
of methylation (none, partial, and full methylation) 
referred as "methylation mosaicism". Some individuals 
may have the presence of three or more populations 
of cells with different size-alleles and methylation-
patterns. Therefore, the complex molecular mechanism 
and multiple possibilities of genotypes results in the 
wide variety of clinical characteristics of individuals 
with FXS and may also relate to different responses to 
standard and targeted treatments but this has not been 
well studied (59). 

2.6. Neurobiology 

At the cellular level, FXS is associated with immature 
dendritic spine morphology (60,61). FMRP is an 
essential protein for synaptic development and plasticity 
because it is a key negative regulator mRNA translation 
and subsequent protein synthesis that can down-
regulate and/or up-regulate their targets at the synapse 
(62). FMRP inhibits protein synthesis that is needed 
for internalizing the AMPA receptors leading to long 
term depression (LTD); thus without FMRP there is 
enhanced LTD in the hippocampus (63). The Fmr1-KO 
mouse shows enhanced protein translation and protein 
synthesis in the hippocampus (64), LTD is significantly 
increased and this leads to deficits in synaptic plasticity 
and weakening of synaptic connections (65). Protein 
synthesis promotes synaptic plasticity activation, which 
is thought to be mainly coordinated by the action of 
metabotropic glutamate receptors (mGluRs) (66). This is 
the basis of the "mGluR theory of fragile X syndrome" 
(63). The neurobiology and several symptoms of FXS 
were rescued when the mGluR heterozygous mouse was 
crossed with the Fmr1-KO mouse (63,67). 
 Currently there are many other pathophysiological 
mechanisms described that are thought to be the 
result of absence or low FMRP. The lack of FMRP 
can also up-regulate PI3K, an important signaling 
molecule downstream of the activation of mGluR (31). 
Recently Matic et al. (2014), showed a global down-
regulation of the MAPK/ERK pathway and decrease in 
phosphorylation level of ERK1/2 in the murine Fmr1 
KO. However, others show an increase in this system 
in patient fibroblasts (68). A differential expression of 
many proteins involved in the p53 pathway, Wnt and 
calcium signaling was also found and led to postulate 
that calcium imbalance is part of pathophysiology 
of FXS (69). Although FMRP is mainly a negative 
regulator, there is evidence that it can up-regulate the 
translation of some mRNAs, such as those encoding 
GABAA receptor subunits (α1, α3, α4, β1, β2, ɤ1, ɤ2, 
and δ), which were significantly reduced in neocortex 

and cerebellum of the Fmr1-KO mice (70). Other 
proteins required for GABA synthesis (Glutamate 
decarboxylase, GAD), transport (GABA transporter, 
GAT) and catabolism (GABA transaminase, GABA 
succinic semialdehyde) were also found to be reduced 
(71). A balanced GABA system is required for neuronal 
activation, network oscillations, neuronal synchrony and 
facilitation of movement and integration of information 
in many brain regions (72). The imbalance between the 
GABA and Glutamate systems is believed to contribute 
to the cognitive impairments, anxiety, hyperarousal, 
ASD, and epilepsy in children with FXS (73). 
 A novel FMRP target mRNA is the neuronal nitric 
oxide synthase (NOS1 or nNOS) in mid-fetal human 
neocortex. FMRP was found to be a positive regulator 
of NOS1 translation, controlling NOS1 protein levels 
in a dose-dependent manner in vitro and in vivo (74), 
and the NOS1 was severely reduced in the fetal and 
post-natal developing neocortex of FXS patients (74). 
The evidence of the multiple roles of nitric oxide 
(NO) in multiple neural processes such as synaptic 
developmental, retrograde signaling and synaptic 
plasticity (75-79) led to the hypothesis that the decrease 
expression of NOS1 and secondary depletion of NO 
in the developing FXS brain may contribute to the 
neuropathology of FXS (80). 
 The absence of FMRP also affects the Brain Derived 
Neurotropic Factor (BDNF) levels in early and late 
development in the murine hippocampus. In early 
development of the KO mouse brain, hippocampal 
expression of BDNF is increased compared to wild 
type (WT) (81,82), whereas by age 3-4 months, BDNF 
expression is reduced compared to the WT (82,83). 
The mechanism of regulation of BDNF remains to 
be described, but this evidence suggests dual FMRP 
effects in BDNF expression during brain development. 
FMRP may also positively regulate many other mRNAs 
including SOD1, ASCL1, Kcnd2, and DLG4 (84-86). It 
is estimated that FMRP regulates the translation of about 
4% of brain mRNAs (87,88). We have discussed the 
mechanisms of pathogenesis mediated by the absence 
of FMRP; however, the mechanism that causes the 
silencing of the FMR1 gene by the full mutation remains 
uncertain. There are many targeted treatments that focus 
on these pathways to reestablish the normal neurobiology 
in the KO mouse and these have led to clinical trials of 
targeted treatments in patients with FXS.

2.7. FMR1 silencing mechanism of the full mutation

It is intriguing that the premutation can lead to enhanced 
expression of the gene, whereas the full mutation leads to 
suppression of transcription. There are mechanisms that 
could explain the reduced transcription of the FMR1 gene 
in the full mutation; these mechanisms can be divided in 
two groups: DNA-mediated and RNA-mediated (89). A 
model in which hairpin aggregation by the CGG repeats 
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results in the DeNovo methylation has been suggested 
because tridimensional CGG-structures can trigger their 
own methylation by DNA methyltransferases in vitro 
(90); another suggested DNA-mediated model involves 
repeat-binding transcription factors which in turn can 
aggregate other proteins and prevent transcription. This 
model was hypothesized from the existing evidence of 
a similar mechanism in mice where the pericentromic 
repeats in mice are silenced by Pax3 and Pax9 
hybridization and recruitment of H3K9 trimethylase and 
Suv39h1 (91) that finally inactivate these regions. The 
FMR1 mRNA products are a variety of transcripts of 
different sizes and reverted sequences that result from 
a number of splicing sites and the transcription of both, 
the sense and anti-sense strands. Colak et al. (2014), 
suggested an RNA mediated mechanism of silencing, in 
which the FMR1 gene is silenced through a hybridization 
of the complementary CGG-repeat track of the FMR1 
mRNA (92). Other RNA-mediated mechanisms have 
been suggested to involve the formation of RNA hairpins 
subtracts of the enzyme Dicer, RNA-DNA hybrids 
for chromatin compaction and promoter antisense-
transcripts (89). The silencing mechanisms of FMR1 
are potential targets for drug therapy. Since the FMRP 
is a key transcription regulator of many neurobiological 
pathways, in theory targeted treatments to prevent 
the inactivation of the FMR1 gene may lead to more 
normal FMRP levels and reestablish the function of 
many neurobiological systems. Therefore silencing 
gene modifiers could be more efficient, although more 
difficult to translate into patients than specific-system 
treatments, such as the mGluR5 antagonist and GABAA 
agonists.

3. Premutation allele

As previously mentioned in adults the premutation is 
associated with FXTAS, FXPOI and a variety of other 
medical/psychiatric problems. Recently the studies of 
children with the premutation have demonstrated that 
some carriers can demonstrate limited physical features 
of FXS in addition to psychological or developmental 
problems whereas most carriers do not show any 
symptoms.

3.1. Physical findings

Premutation carries can present with facial dysmorphic 
features and the most common finding is prominent 
ears (89,90). Recently a study of premutation carriers 
found that 33% of postpubertal carrier males had 
macroorchidism (93). Those with macroorchidism 
had a lower verbal and full scale IQ and increased 
FMR1 mRNA levels compared to those without 
macroorchidism (93). This suggests that about one third 
of individuals with the premutation have significantly 
lowered FMRP leading to their macroorchidism and 

mildly lowered cognitive abilities. Premutation carriers 
can also have joint-laxity and smooth skin typical of 
those with FXS (94,95).

3.2. Neurological disorders

Chonchaiya et al. (2011) studied boys with the 
premutation and found an association between seizures, 
ASD, and ID. These problems are more common in 
premutation boys who present clinically compared to 
those who are identified through cascade testing. FXS 
children of premutation mothers with autoimmune 
disorders were found to have increased epilepsy and 
tics compared to children whose mothers did not have 
autoimmune problems (96).

3.3. Cognitive and behavioral phenotype

The cognitive effects of the premutation show variable 
results depending on the age of the carrier and whether 
they present as the proband or were identified through 
cascade testing. Not clinically referred children 
typically do not show differences compared to controls, 
particularly in girls (97). Probands who presented 
clinically usually have cognitive deficits compared 
to controls (97,98). ADHD is increased in carriers 
compared to controls (97) and in adulthood these 
symptoms can persist or present as executive function 
deficits (34,99,100). Myers et al. (2001), in a small 
study of 14 children with the premutation found a trend 
towards lower performance IQ (101). Boys with the 
premutation have higher rates of ADHD symptoms, 
shyness, social deficits, autism spectrum disorder 
(98,102) and, less commonly, intellectual disability (ID) 
compared to controls. Many case reports of premutation 
involvement and ASD have been published. Clifford et 
al. (2007) reported seven males with the premutation; 
two were probands, and one of these had ASD (104). 
Goodlin-Jones et al. (2004), reported four premutation 
boys and two girls with ASD, and their levels of FMRP 
were significantly lower than normal (103). In the 
Farzin et al. (2006) study, there were 14 boys with the 
premutation whose parents sought medical attention for 
their sons' behavior problems (probands), 13 boys with 
the premutation diagnosed by cascade testing (non-
probands), and 16 boys who were siblings without the 
premutation (controls). They found that 93% (13 of 14) 
of probands, 38% (6 of 13) of the non-probands and 
13% (2 of 16) of the controls had ADHD. In addition 
71% of probands (10 of 14) and 8% of non-probands 
(1 of 13) had ASD. In a screening study of individuals 
from families with FXS, about 14% of boys and 5% of 
girls with the premutation met diagnostic criteria for 
ASD (104). A web questionnaire of more than 1,000 
families demonstrated a prevalence of autism or ASD 
of 13% in boys with the premutation and 1% in girls 
with the premutation (105). 
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 Recently, the Rivera group at the MIND Institute 
(106) using a contrast-detection task found low-level 
visual processing deficits in infants with deficits in 
infants with FXS and with the premutation. In both 
groups of infants the contrast levels needed for detection 
of motion were significantly greater than those of 
typically developing infants. They concluded that early in 
life premutation infants can show visual or perhaps other 
deficits that are also observed in children with FXS.
 Psychiatric problems in adults, including depression 
and anxiety, occur in about 40% of premutation carriers 
(14). Although initial studies of psychiatric disorders 
in premutation carriers hypothesized that the mood 
disorders found were associated with the difficulties 
of caring for a child with FXS, these problems can 
occur independently from having an affected child 
(17). In the life-time of individuals with FXTAS, 65% 
met the clinical criteria for a mood disorder according 
to the DSM-IV, remarkably for anxiety in 52% of the 
cases (17). It has been found that adult females have 
more problems with attention, hyperactivity (105), 
sleep problems (23), autistic behaviors such as rigidity 
(107), perseverance and aloofness (108) and language 
dysfunction (109) compared to controls. 

3.4. Neurobiology

Hippocampal neurons with the premutation in culture 
(in vitro) showed reduced dendritic maturity with 
shorter dendritic lengths and fewer branches between 
7 and 21 days compared with WT neurons (110). The 
premutation neurons had elevations of stress proteins 
and their mRNAs, including heat shock proteins (Hsp27 
and Hsp70) and αB-crystallin. In addition premutation 
neuronal cultures die more easily in culture by 21 days 
compared with WT type neurons (110,111). Furthermore, 
altered embryonic neocortical development in the 
premutation mouse compared to WT has been reported 
(112). At 12 weeks early deficits in learning were 
observed in KO mice, the premutation mouse was unable 
to detect a change in the distance between two objects; 
and at 48 weeks, they could not detect a transposition 
of objects (113). This suggests that the premutation 
leads to a clear neuronal susceptibility that in addition 
to other genetic hits (93) or environmental toxicity (114) 
can result in a pathogenic neurobiology. Further studies 
are necessary to determine the neurobiology of affected 
individuals with the premutation.

3.5. Premutation genotypes

Initially FMR1 premutation carriers were thought to 
have normal FMRP levels, however recent research 
findings suggest that carriers have elevated levels of 
mRNA due to increased transcription, but decreased 
level of FMRP because the translation is less efficient 
(95,103). As the premutation increases from 55 to 200, 

the level of FMR1 mRNA increases and the levels of 
FMRP begin to decline (115,116). Reduced FMR1 
translation is observed in adult individuals with large 
size premutation alleles (> 110 CGG repeats) and these 
individuals can have cognitive deficits. Also recent 
animal studies of the premutation mouse demonstrate 
lowered levels of FMRP in addition to elevated FMR1-
mRNA in many brain areas, particularly the amygdala, 
hippocampus, and cortex, when compared with controls 
without the premutation (117). 
 The causative molecular mechanism of cognitive 
deficits and neurodevelopmental problems were 
thought to be related to silencing of the FMR1 gene 
("loss of function") and decreased amount of FMRP 
while the mechanisms involved in FXTAS and FXPOI 
are thought to be associated with abnormally increased 
levels of FMR1 RNA ("gain of function") and RNA-
toxicity. However recent evidence supports that both 
the FMRP deficits and elevated FMR1 RNA in carriers 
are associated with amygdala dysfunction, which causes 
cognitive deficits, anxiety, autism spectrum disorders, 
social avoidance, and aggressive behavior. 
 There are at least 3 mechanisms that could explain 
the elevation of FMR1 mRNA (89). One suggests 
that the observed increase of acetylated histones at 
the FMR1 promoter (118) could increase the FMR1 
gene transcription. Second, the long tracts of CGG-
repeats have been shown to exclude nucleosomes in 
vitro (119) and if this occurs in vivo it may increase the 
accessibility of transcription factors to the promoter. 
Third, the R-loops formed by the CGG-repeats (120,121) 
may lead to chromatin decondensation (122). The 
mechanism of FMR1 mRNA-toxicity remains to be 
established, and there are at least 3 models proposed. 
The "sequestration" model which proposes that the RNA 
expanded CGG repeats are pathogenic by sequestrating 
proteins, including Purα, Rm62, CUGBP1, hnRNP A2/
B1, SAM68, and DROSHA-DGCR8 (123-127) that 
in turn alter the transcription of many other proteins. 
A second model, "RAN translation", represents non-
canonical translation that results in expression of toxic 
polyglycine- and polyalanine-containing products 
(128,129). A third model, "antisense FMR1 (ASFMR1) 
toxicity", involves the expression of antisense transcripts 
products (130). Mitochondrial abnormalities have 
also been found in FXS and premutation carriers. The 
mechanism of mitochondrial dysfunction is unknown but 
this mechanism is another cause of premutation and full 
mutation involvement (131,132). 

4. Overlapping phenotypes, FMR1  spectrum 
disorders

The overlap between premutation disorders and full 
mutation disorders occurs when the full mutation is 
partially or completely unmethylated or there is a high 
level of mosaicism in FXS. This puts those with FXS at 
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risk for FXTAS and other premutation problems. In fact 
there have been a handful of individuals with FXS who 
have developed FXTAS and these individuals are high 
functioning and have unmethylated alleles or mosaicism 
(133-136). Even in the midrange of CGG repeats in 
premutation carriers there may be mild deficits of 
FMRP leading to behavioral problems or psychiatric 
phenotypes (137). 
 Another area of overlap occurs in the gray zone (45-54 
CGG repeats). The rate of FMR1 gray zone expansions 
in the general population is variable, but large population 
studies report rates of 0.8% to 3.0% for repeat sizes 
between 41 and 54 (138-140). In 2006, it was recognized 
that gray zone expansion carriers can also present with 
premature ovarian insufficiency at a higher rate that in 
the general population (141,142). In a screening study 
in 2011 a higher rate of Parkinsonism was found in the 
gray zone mutation carriers compared to controls without 
the gray zone. There have also been reports of FXTAS 
in those with a gray zone (143,144) because elevated 
FMR1 mRNA can also occur in this range (145). Other 
clinical associations with the gray zone in adults include 
anxiety (146) and cognitive decline (147). However 
other studies did not show this association (147-151). 
Pertinent to children, in 2000, a 5-year survey of boys 
who required special education showed an excess of 
gray zone expansions (152), however, this result has not 
been replicated (153). Further studies are necessary to 
study the association of the gray zone mutation and the 
mechanisms of disease in adults and children. 

5. Conclusion

Clinicians need to know that those with an FMR1 
mutation are at risk for a wide range of neurovelopmental 
and/or psychological disorders/neurological disease, 
referred as Fragile X Spectrum Disorders (Figure 2). It is 
also important to have a holistic model of understanding 
on how the phenotype is related to the number of CGG 
repeats and/or size-mosaicism, including epigenetic 
changes or methylation status (partial and full, as 
well as methylation mosaicism), genetic background 

(gene modifiers and second genetic hits which can be 
protective or pathogenic) and environmental exposures 
(environmental changes, exposures to toxins, and social 
interactions "socionome" among other factors). 
 Our understanding of FMRP deficits in the FXSD 
has been hampered by the limited technology available 
to assess quantitative FMRP levels. Although the 
immunocytochemical methodology demonstrated a 
strong correlation with IQ in those with a fragile X 
mutation (35,154), it was not sufficiently quantitative 
to show the remarkable variation that exists even 
in the normal population. This variation has been 
demonstrated by ELISA technology but the technique is 
difficult to replicate in subsequent samples (155). Newer 
techniques including the immunoassay utilizing time-
resolved Forster's resonance energy transfer (156) and 
also the Luminex immunoassay (157). These techniques 
will lead to a new understanding of FMRP deficits not 
only in FXSD, but also in other neurodevelopmental/ 
neuropsychiatric disorders. The recent publication of 
FMRP deficits in the brains of individuals with bipolar 
disorder, schizophrenia, depression and autism (156-
158) has opened our eyes to the importance of FMRP 
outside of the FXSD population. Even more remarkable 
is the finding that the age of onset and overall IQ in 
those with schizophrenia is correlated with FMRP 
deficits in peripheral blood (159). The advances in 
treatments for FXS may also be helpful for premutation 
carriers with low FMRP and perhaps in other disorders 
with low FMRP such as ASD. 
 An area of overlap that is in need of research is the 
aging process in FXS because many patients experience 
cognitive decline and the cause is not known, although 
occult mosaicism leading to a FXTAS-like picture is 
possible (160). Older patients with FXS also have a 
high risk for Parkinson's disease and it is uncertain if 
this is also related to occult mosaicism (161). These 
are important considerations for children with FXS 
because they are raised by mothers with the premutation 
who may experience a premutation disorder that could 
influence the development of their offspring. These 
intergenerational influences require more study. Certainly 
the development of effective targeted treatments aim 
to have a significant effect on the ultimate outcome for 
those with FXSD.
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