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ABSTRACT OF THE DISSERTATION

An Integrated Approach to Modeling Methylation Dynamics

by

Colin Farrell

Doctor of Philosophy in Human Genetics

University of California, Los Angeles, 2021

Professor Matteo Pellegrini, Chair

DNA methylation, the addition of a methyl group at the fifth carbon of the pyrimidine

ring resulting in 5-methylcytosine (5MC), is influenced by the cellular environment; contin-

ued exposure to environmental stimuli will result in detectable DNA methylation changes.

These detectable changes have been leveraged to develop DNA methylation based predictive

models for age and health. DNA methylation is commonly assayed through the use of bisul-

fite conversion, where unmethylated cytosine is deaminated to form uracial while 5MC is

unchanged, followed by high throughput sequencing. Processing of bisulfite sequencing data

is computationally demanding due to the asymmetrical nature of bisulifte sequencing data.

Chapter 1 introduces a bisulfite sequencing processing platform, BSBolt, that is a signficant

improvement over previous tools in terms of processing time and alignment accuracy. BSBolt

and targeted bisulfite sequencing are utilized in chapter 2 to look into epigenetic suppression

of transgenic t-cell receptor (TCR) expression in adoptive cell transfer therapy. The chapter

2 study shows that accumulation of DNA methylation over the viral vector promoter used

to introduce the TCR sequence is associated with decreased expression despite persistence

of the TCR sequence over time. Chapter 3 introduces an evolutionary framework, the epi-

ii



genetic pacemaker (EPM), for modeling epigenetic aging. The EPM is a departure from

the penalized regression based approaches broadly used in the field. The EPM attempts

to minimize error across the observed methylation profiles rather than age prediction error.

This approach allows the EPM to model nonlinear epigenetic aging across human lifespan as

shown in chapter 4. Chapter 5 compares the EPM to penalized regression approaches and

shows the EPM is more sensitive for detecting biological signals associated with epigenetic

aging.
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CHAPTER 1

Introduction

DNA methylation refers to a methyl group being added to a DNA base. Two of four DNA

bases can be methylated, cytosine and adenine. Cytosine and adenine can both be methy-

lated by the addition of a methyl group to their amino group, N4-methylcytosine and N6-

methyladenine respectively. Cytosine can also be methylated in at the fifth carbon of the

pyrimidine ring resulting in 5-methylcytosine (5MC). DNA methylation, as used colloqui-

ally, refers to 5MC specifically. In mammals, DNA methylation primarily occurs in a CpG

(Cytosine-phosphate-Guanine) context, but can also occur in a CH (H=A,T,C) context less

frequently[7, 13]. DNA methylation is associated with the topological organization of the

cell[16, 21]. Specific cell types carry identifiable methylation patterns and loss of function

mutations in cDNA Methylase genes prevents cell differentiation[20]. DNA methylation is

also influenced by the cellular environment; continued exposure to stimuli will result in de-

tectable DNA methylation changes[17, 11, 10, 5]. These detectable changes are leveraged to

develop DNA methylation based predictive models for age[8, 6] and health[12, 14, 2].

DNA methylation is commonly assayed using bisulfite conversion, where unmethylated

cytosine is deaminated to form uracial while 5MC is unchanged[4]. Following, PCR ampli-

fication, during which uracil is converted to thymine, the amount of DNA methylation at a

genomic location can be quantified by calculating the total number of cytosines (methylated

bases) to the total number of bases observed at a given genomic location. Bisulfite converted

DNA is primarily assayed using two methods, hybridization arrays and parallel sequencing.

Hybridization arrays utilize capture probes to assay DNA methylation at a large number of
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predetermined locations[1, 19]. The measurements made by hybridization arrays are very

precise, with thousands of observations per site. However, while hybridization arrays provide

precise measurements at a large number of sites they are costly and assaying sites outside the

targeted regions is not feasible. Sequencing based approaches in contrast offer greater flexi-

bility to assay regions of interest at a reduced cost, but generate less precise measurements.

Additionally, processing of bisulfite sequencing data is computationally demanding due to

the asymmetrical structure of bisulfite sequencing data. Following bisulfite conversion the

sense and antisense strands are no longer complementary. A bisulfite converted sequencing

read must be mapped to the correct genomic location and origin strand.

Regardless of the assay method, once acquired, DNA methylation measurement can be

utilized to fit models of aging[8, 6] and health[12, 14, 2]. The first DNA methylation based

predictive models were generated to predict age and are referred to as epigenetic clocks.

Epigenetic clocks can accurately predict the age of an individual, and the difference between

the predicted and expected epigenetic age has been interpreted as a form of age acceleration.

Epigenetic age acceleration has been associated with a number of health related outcomes[3,

9], including mortality[15, 18]. Most work in the area to date, has followed a common work-

flow where a trait of interest is modeled in DNA methylation data using penalized regression.

The goal of penalized regression is to minimize the difference between the observed and pre-

dicted value of the modeled trait. This approach can generate highly predictive models, but

can minimize informative biological signals.

Chapters 2 - 5 are reformatted versions of published works. Chapter 2 introduces a

bisulfite sequencing processing platform, BSBolt, that is a generational improvement over

previous tools. Chapter 3 is a study looking into epigenetic suppression of transgenic t-cell

receptor expression in adoptive cell transfer therapy. Chapter 4 introduces a novel framework

for modeling epigenetic aging, the Epigenetic Pacemaker, (EPM). Chapter 5 investigates non-

linear epigenetic aging utilizing the EPM model. Chapter 6 compares the EPM to penalized

regression methods that are broadly used in the field to fit epigenetic biomarkers.
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CHAPTER 2

BiSulfite Bolt: A BiSulfite Sequencing Analysis

Platform

Colin Farrell1, Michael Thompson2, Anela Tosevska2, Adewale Oyetunde2, Matteo Pellegrini2,3

1Department of Human Genetics, University of California, Los Angeles, CA, USA;

2Dept. of Molecular, Cell and Developmental Biology; University of California, Los Angeles, CA 90095,

USA;

3Corresponding Author, matteop@mcdb.ucla.edu

Background: Bisulfite sequencing is commonly employed to measure DNA methylation.

Processing bisulfite sequencing data is often challenging due to the computational demands

of mapping a low complexity, asymmetrical library and the lack of a unified processing

toolset to produce an analysis ready methylation matrix from read alignments. To address

these shortcomings, we have developed BiSulfite Bolt (BSBolt); a fast and scalable bisulfite

sequencing analysis platform. BSBolt performs a pre-alignment sequencing read assessment

step to improve efficiency when handling asymmetrical bisulfite sequencing libraries.

Findings: We evaluated BSBolt against simulated and real bisulfite sequencing libraries.

We found that BSBolt provides accurate and fast bisulfite sequencing alignments and methy-

lation calls. We also compared BSBolt to several existing bisulfite alignment tools and found

BSBolt outperforms Bismark, BSSeeker2, BISCUIT, and BWA-Meth based on alignment ac-

curacy and methylation calling accuracy.
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Conclusion: BSBolt offers streamlined processing of bisulfite sequencing data through

an integrated toolset that offers support for simulation, alignment, methylation calling, and

data aggregation. BSBolt is implemented as a python package and command line utility for

flexibility when building informatics pipelines. BSBolt is available at https://github.com/

NuttyLogic/BSBolt under a MIT license.

2.1 Findings

Background

DNA methylation, the epigenetic modification of cytosine by the addition of a methyl group

to the fifth carbon of the cyclic backbone, is a widely studied epigenetic mark associated

with gene regulation[24, 25] and numerous biological processes [7, 18, 23]. High throughput

sequencing combined with bisulfite conversion is a broadly used method for profiling DNA

methylation genome wide[16][17]. Treatment of DNA with sodium bisulfite results in un-

methylated cytosines being deaminated to uracil, and converted to thymine through PCR

amplification, while methylated cytosine, guanine, thymine, and adenine remain unchanged

[4]. The methylation status of an individual site or region can be assessed by looking at the

number bisulfite converted bases relative to the total number of observed bases. Amongst

eukaryotic organisms the majority of genomic cytosines are unmethylated [4, 3, 15]. As a con-

sequence, bisulfite sequencing reads originating from the same location but opposite strands

are generally no longer complementary. Additionally, when the PCR product of the origi-

nal bisulfite converted sequence is considered, sequencing reads can be aligned in different

orientations within the same strand. Given the asymmetrical nature of bisulfite sequencing

libraries and the large number of potential mismatches between the read sequence and the

reference the use of a traditional alignment tool would produce low quality alignments.
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Bisulfite sequencing alignment tools Bismark[9], BS-Seeker2[9, 6], and BWA-Meth[19]

successfully adopted a three-base alignment strategy wrapped around established read align-

ers such as Bowtie2[11, 10] and BWA-MEM[11], to accurately align bisulfite sequencing reads.

In this strategy, an alignment index or multiple alignment indices are generated against each

bisulfite converted reference strand. Relative to the reference, the bisulfite sense strand

is the reference with all cytosines converted to thymine and the antisense strand is the

reference sequence with all guanines converted to adenine. Before alignment, input reads

are in silico bisulfite converted so any methylated or incompletely converted bases are con-

verted to remove mismatches relative to the bisulfite reference. Reads are then aligned using

the wrapped read alignment tool and the output alignments are integrated together with

the original read sequence to form a consensus alignment file. During the generation of a

consensus alignment file BS-Seeker2 and Bismark call contextual methylation, where CG

methylation is reported distinctly from CH (H=A,C,T) methylation, for every aligned base

within an alignment. The regional methylation information provided within alignment calls

can provide important context about the epigenetic organization of a genome and the reor-

ganization that occurs in response to disease [8, 5, 14]. Methylation calls from aligned reads

can also be leveraged to assess the bisulfite conversion status of a read. A high proportion

of observed methylated CH sites relative to the total number of observed CH indicates a

read that was incompletely bisulfite converted as the majority of CH sites are expected to

be unmethylated.

The three base alignment strategy as implemented by BSSeeker2 and Bismark has several

limitations. Both tools carry out multiple intermediary alignments to separate alignment

indices representing different reference conversion patterns and then integrate intermediate

alignments together into a consensus alignment file. Reads with multiple alignments within

an intermediate alignment file or across multiple intermediate alignment files are discarded;

only reads that align uniquely within a single intermediate alignment are reported. In an

effort to reduce the number of reads that align across alignment indices both BSSeeker2 and
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Bismark have strict default alignment parameters. In addition to being computationally

demanding, this implementation can also reduce the number of valid alignments reported,

as only the highest quality, unique alignments are output. BWA-Meth resolves this issue by

performing alignment to a single bisulfite converted alignment index and processing reads on

the fly; but, does not return the read level methylation calls or bisulfite conversion assessment

provided by Bismark and BSSeeker2. Additionally, when performing bisulfite sequencing

alignment the read conversion pattern is dependent on whether the sequenced DNA fragment

is representative of the original DNA sequence or its PCR product. In a directional bisulfite

sequencing library only DNA representative of the original DNA fragment is sequenced so

the bisulfite conversion pattern is known. In an undirectional library, DNA representative

of the original DNA fragment and its PCR product is sequenced so a cytosine to thymine or

a guanine to adenine conversion is possible. BS-Seeker2 and Bismark handle undirecitonal

libraries by converting input reads using both conversion patterns. This approach doubles the

number of reads that must be aligned and generates input reads that will not be represented

in the alignment index. BWA-Meth does not support alignment of undirectional libraries.

Here we present BiSulfiteBolt (BSBolt), a bisulfite sequencing platform designed to be

fast and scalable while als providing the same read-level methylation calls and quality metrics

of BS-Seeker2 and Bismark to preserve compatibility with existing analysis tools. BSBolt

alignment is built on a forked version of BWA-MEM[13, 11] and HTSLIB[13] with bisulfite

specific sequencing logic integrated directly into the alignment process. BSBolt incorporates

a pre-alignment read assessment step to assess the correct conversion pattern when aligning

undirectional libraries. This eliminates the needs to perform multiple alignments for the same

read, improving performance. Additionally, as the output alignment structure is slightly dif-

ferent between each bisulfite alignment wrapper, each tool implements its own methylation

calling utility and output format. BSBolt includes a rapid and multi-threaded methyla-

tion caller, that outputs methylation calls in CGmap or bedGraph format implemented by

BSSeeker2 and Bismark respectively. We show that BSBolt alignments and methylation
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calling is considerably faster and more accurate than these other bisulfite sequencing align-

ment wrappers. Additionally, we compare BSBolt to another high performance bisulfite

sequencing platform BISCUIT[2]. BISCUIT also incorporates bisulfite specific alignment

logic directly into the alignment process, but doesn’t support read level methylation calling

or bisulfite conversion assessment during alignment. Despite this, we show that BSBolt of-

fers comparable, or faster, performance. Additionally, to facilitate end to end processing of

bisulfite sequencing data BSBolt includes utilities for read simulation utility and aggregation

of methylation call files into a consensus matrix.

2.2 Methods

BSBolt Workflow

BSBolt Alignment

BSBolt incorporates bisulfite alignment logic directly within a forked version of BWA-MEM.

BSBolt is designed around a single Burrows-Wheeler Transform (BWT) FM-index con-

structed from both bisulfite converted reference strands. BSBolt utilizes a three base align-

ment strategy where input reads sequences are fully in silico converted before alignment.

In this case of undirectional libraries, where a cytosine to thymine or guanine to adenine

conversion if possible, BSBolt first analyzes the read base composition. A read, or read pair,

with a low proportion of observed cytosines compared to guanine (0.1 by default) will be

preferentially aligned with a cytosine to thymine conversion pattern and vice versa. If it is

unclear what conversion pattern should be used, both conversion patterns are aligned and

the conversion pattern with the highest total alignment score is output. The converted read

sequence is aligned using BWA-MEM to the bisulfite FM-index. The resulting alignments

are then modified so reads mapping to the sense reference strand are reported as sense reads

and the anti-sense reference reported as antisense reads regardless of mapping orientation.
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The mapping quality of an alignment is assessed by mapping uniqueness using standard

BWA-MEM scoring criteria. Additionally, an alignment with alternative alignments on a

different bisulfite reference strand is further penalized for being bisulfite ambiguous. Read

variation and methylation calls are then made for alignments meeting scoring thresholds us-

ing the original read sequence and an unconverted reference sequence. If a difference between

the alignment and reference is explainable by bisulfite conversion a methylation call is made

for the aligned base; otherwise, reference variation is reported. When calling methylation

values, the context of the methylatable base is considered by capturing the local reference

context (ie CG or CH). The methylation calls are output as a Sequence Alignment/Map

(SAM) flag mirroring the BWA-MEM MD flag. Typically, the majority of CH sites are

unmethylated so the expectation is that the majority of CH sites within a read, or read pair,

are bisulfite converted. After calling read level methylation this information is leveraged to

assess the bisulfite conversion status of the read across all aligned bases within the read,

or read pair. The conversion status of the read is conveyed as a SAM flag in the output

alignment. Output alignments are then compressed and written to a bam file natively.

BSBolt Methylation Calling

BSBolt includes an optimized methylation calling utility that takes advantage of the BSBolt

alignment file structure to rapidly call site methylation. The calling procedure proceeds as

follows. A read pileup is created using samtools[13], and initialized using pysam[21], for each

reference contig with aligned reads. Methylation calls are made for all methylatable bases, or

only CG sites, using all reads that pass user specified quality metrics. Methylation values for

reference guanine nucleotides are made for reads aligned to the antisense strand and calls for

reference cytosine nucleotides are made for reads aligned to the sense strand. This call strat-

egy decreases methylation calling time, as information about the origin strand can be quickly

interpreted. Methylation calls are then output in the CGmap file format implemented by

BSSeeker2. To aggregate several call files together into a consensus matrix BSBolt includes a
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rapid and efficient matrix aggregation utility. Bisulfite sequencing techniques often capture

methylation sites unevenly, so making a combined matrix of all sites observed across every

call file can be inefficient and produce large sparse matrices. BSBolt utilizes an iterative

matrix assembly method where individual CGmap files are iterated through to count how

often individual sites appear at or above a user specified coverage threshold. If a site is

observed in a set proportion of the CGmap files the site is included in the consensus matrix.

This process is parallelizable across several threads for efficiency. BSBolt supports output

of matrices containing methylation values and counts of methylated and total bases at each

site.

BSBolt Simulation

BSBolt Simulate utilizes a modified version of WGSIM[12] wrapped with python to simu-

late bisulfite converted reads with site specific methylation information incorporated across

reads. Given a reference sequence global methylation values are set by randomly selecting a

methylation value for all methylatable bases depending on context (CG or CH) or by passing

a methylation profile in the form of a CGmap file. Reads are then simulated by randomly

selecting a genomic position within a reference sequence, sampling the reference sequence

at set read length, and insert size for paired end reads, then incorporating sequencing error

and genetic variation. The origin strand, and conversion pattern if simulating undirectional

reads, is then randomly selected. At every methylatable base within a read the methylation

status of the base is set by the probability of observing a methylated base given the reference

methylation value. The mapping location, methylation status, and origin bisulfite strand are

attached as a fastq comment and output along with the bisulfite converted read sequence

and base call qualities. The number of methylated and unmethylated bases covering each

methylation site are output as a serialized python object at the end of the simulation.
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Tool Comparisons

BSBolt (v1.4.4), BISCUIT (v0.3.16.20200420), BSSeeker2 (v2.1.8), BWA-Meth (v0.2.2), and

Bismark (v0.22.3) were used for comparisons with both real and simulated bisulfite sequenc-

ing data. All comparisons were performed on a compute node with XEON X5650 six core

(twelve thread) processor (48GB ram) running centos (v6.10). Each tool was provided with

12 compute threads if supported. Default alignment parameters were used unless library

specific alignment options were necessary to support the simulated library type. Uncom-

pressed alignment outputs were compressed using samtools (v1.9) before being written to

disk. Samtools and BSBolt were provided with two compression threads to minimize any

alignment bottlenecks (S. Figure 1). If supported, methylation calls were only made using

reads with a mapping quality higher than 20.

Simulated Bisulfite Library Comparisons

A simulation reference genome was created by sampling approximately 2Mb from each chro-

mosome in the human reference genome (hg38) excluding alternative and sex chromosomes.

Briefly, 50bp tiles were randomly sampled from a reference chromosome and included in the

simulation reference if the tile contained less than 10 ambiguous bases. The first 10kb of

the simulated chr1 was duplicated and added as an additional contig. A series of directional

and undirectional bisulfite sequencing libraries were then simulated using BSBolt at various

read lengths, read depths, and read qualities with random methylation profiles (Table 1).

Alignment and methylation calling tools for each package were compared by aligning a sim-

ulation library, sorting the alignment file if necessary, and calling methylation values. Each

simulation library was processed by each comparison package sequentially in random order

on the same compute node. Read alignments were evaluated by the alignment location and

strand. An on-target alignment was defined as a read where 95% of the aligned bases were

mapped within the simulated region and mapped to the correct origin strand. An alignment
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was considered off-target if fewer than 5% of the aligned bases were mapped to the simula-

tion region, the aligned strand of origin was incorrect or flagged as a quality control failure.

Accuracy of the CpG methylation calls were evaluated by comparing the called methylation

value with the simulated value.

Targeted Bisulfite Library Comparisons

We next utilized publicly available targeted bisulfite sequencing data (GSE152923) gener-

ated from peripheral blood mononuclear cells of four individuals [Citation error].The libraries

were generated using the SureSlectXT Methyl-Seq (Aligent) kit and three sequencing libraries

were generated for each individual with varying levels of input DNA (1000ng, 300-1000ng,

and 150ng-300ng). Each library was sequenced (100bp, paired end) on an Illumina NovaSeq

generating an average of 144.1 million (118.5 - 230.5) paired end reads. In addition to the

sequencing data, methylation measurements were generated using the Infinium Methyla-

tionEPIC array (Illumina) for all four individuals. Whole genome bisulfite alignment indices

were generated using hg38 for each bisulfite sequencing package. Every sequencing library

was aligned and processed using the same workflow. Alignment files were generated, du-

plicate reads were marked using samtools (v1.9), and methylation values were called. Each

alignment and methylation calling workflow was given a maximum runtime of 288 hours. If

an alignment was incomplete at the end of 288 hours, duplicate read marking and methy-

lation calling was performed on the reads aligned during the 288 hour limit. Methylation

calls made for CpG sites with more than five reads covering a site were then compared with

array methylation values from the same biological sample.

2.3 Results

BSBolt was the fastest alignment tool across all simulation conditions, aligning close to 2.29

million reads per minute on average (Figure 2A). BSBolt was approximately 40% faster than
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the next fastest alignment tool, BISCUIT. When looking at alignment performance by library

type, BISCUIT exhibited similar performance to BSBolt when aligning directional reads,

but was approximately 229% slower aligning undirectional libraries (Figure 2A). BSSeeker2,

BWA-Meth, and Bismark were slower than both BSBolt and BISCUIT when aligning all

library types (Figure 2A). BSBolt and BISCUIT aligned the majority of simulated reads

across all conditions (>99%) with high accuracy (>99%). BWA-Meth aligned the majority

of reads accurately for directional libraries, but as undirectional libraries are unsupported,

BWA-Meth undirectional alignments had low mappability (µ = 0.724) and a low proportion

of aligned reads were on target (µ = 0.706). BSSeeker2 and Bismark exhibited the lowest

average mappability across all simulation conditions at 93.6% and 86.9% respectively but the

output alignments were generally accurate (Figure 2B). Moreover, BSSeeker2 and Bismark

aligned a low percentage of the simulated reads, 65.3% and 42.4% respectively, when the

simulated sequencing error and genetic variation was increased from 0.05% to 2% (S. Table

1). Bismark and BSSeeker2 both discard base call quality information when aligning reads

so the low mappability with error prone reads is expected.

BSBolt methylation calling was significantly faster than all other tools, with a roughly 11

fold performance advantage over the next fastest tools, BISCUIT and BWA-Meth. BSeeker2

and Bismark were considerably slower and exhibited a strong relationship between call time

and the number of simulated reads (Figure 2C). We also looked at the mean absolute error

(MAE) between the number of reads simulated at a given position and the number of reads

utilized by each tool to call methylation. BSBolt had the lowest average MAE (0.11 reads)

followed by BISCUIT (0.70 reads) and Bismark (0.76 reads). BWA-Meth and BSSeeker2

exhibited high coverage MAE at 6.12 and 8.69 reads respectively. While the BSSeeker2

coverage MAE was high it was not strand biased and the methylation level MAE was small,

0.024. By contrast, the methylation calls made by BWA-Meth were strand biased as shown

by the methylation value MAE, 0.255. Overall, BSBolt had the lowest observed methylation

level MAE (0.002) followed by BISCUIT (0.013) and Bismark (0.024) (Figure 2D).
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The performance of each tool with the targeted bisulfite sequencing libraries largely

mirrored the results with the simulation data. However, even though the targeted libraries

are directional, BSBolt outperformed BISCUIT aligning an average of 663k reads per minute

compared with 637k (Figure 3A). BSSeeker2 failed to align three sequencing libraries within

the 288 hour alignment limit, aligning only 78% of reads on average. BSBolt was the fastest

methylation calling tool, calling CpG methylation in just 4.35 minutes on average (Figure

3B). We then compared the absolute differences between the sequencing and Illumina EPIC

array calls made for the same biological sample, excluding BSSeeker2 alignments as three

alignments were incomplete. The absolute differences for all comparisons were combined by

tool and binned by effective read coverage, or the number of reads used to call the methylation

value (Figure 3C). The called methylation values were highly correlated with the sites called

on the EPIC array across all alignment tools (Pearson’s r=.92-98, S. Table 2), as previously

reported [22]. Unsurprisingly, as sequencing depth increases the observed mean absolute

deviation decreases for all tools. At sequencing depths above 40 reads per CpG BSBolt has

the smallest absolute deviation between the sequencing and array calls. Note, due the design

of the targeted bisulfite libraries, DNA from one origin strand is preferentially captured over

a given region. As a result, the strand bias of the BWA-Meth methylation caller didn’t

noticeably impact the methylation calls.

2.4 Discussion

Both BSBolt and BISCUIT are significantly faster at bisulfite read alignment while also

being more accurate on average than BSSeeker2, Bismark, and BWA-Meth. BSBolt offered

marginal performance improvement over BISCUIT with real directional bisulfite libraries,

but a large performance gain for the simulated undirectional libraries due to the implemen-

tation of a pre-alignment sequencing assessment step. In addition to aligning each read,

BSBolt calls contextual read level methylation and assesses read bisulfite conversion, gener-
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ating alignment information similar to Bismark and BSSeeker2. Importantly, as Bismark and

BSSekeer2 have been widely adopted by the community at large it is important to provide the

same alignment information to preserve compatibility with downstream tools. BISCUIT of-

fers support for read bisulfite conversion assessment but it is implemented as post-alignment

utility.The BSBolt methylation caller was significantly faster than other tools while also pro-

viding more accurate methylation calls. Much of this improvement can be attributed to the

structuring read alignment before output; by modifying the alignment strand to reflect the

bisulfite origin strand methylation calls can be made rapidly without the need to perform

additional formatting.

BSBolt is implemented as a python package installable through the python package in-

dex[20] and the Anaconda package manager[1]. In addition to a fully command line interface

each BSBolt module can be executed natively as an object in a python (>3.6) environment;

providing flexibility for informatics pipelines. BSBolt is available at https://pypi.org/project/BSBolt/

and is released under the MIT license.

2.5 Availability and requirements

Project Name: BSBolt

Project Home Page: https://github.com/NuttyLogic/BSBolt

Operating system(s): Platform Independent

Programming language: Python ≥ 3.6

Other requirements: numpy≥1.16.3, tqdm≥4.31.1

License: MIT

RRID: SCR019080
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Figure 1: BSBolt Workflows

BSBolt is implemented as a series of discrete modules for read simulation, index generation, read

alignment, methylation calling, and matrix aggregation. All BSBolt modules can be run using a

command line interface or within a python (> 3.6) environment natively.

man2 Shared Cluster provided by UCLA Institute for Digital Research and Ed-

ucation’s Research Technology Group.

19



*

Table 1: Simulated Bisulfite Sequencing Library Parameters:

The parameters used to simulate libraries using BSBolt for tool comparisons. All

simulations were carried out at read lengths of 50, 100, and 150 base pairs.

Average

Read

Depth

Mutation

Rate

Sequencing

Error

Sequencing

Type

Library

Type

30 0.005 0.005 Paired End Undirectional

30 0.005 0.005 Single End Undirectional

20 0.005 0.005 Paired End Directional

20 0.005 0.005 Single End Directional

8 0.005 0.005 Paired End Directional

8 0.005 0.005 Single End Directional

8 0.01 0.02 Paired End Directional
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Figure 2: Simulated Bisulfite Sequencing Library Performance

(A) Reads aligned per minute for each bisulfite alignment tool. (B) Proportion of simulated reads

mapped during alignments. Note, BWA-Meth does not support undirectional library alignment

resulting in low mappability for undirectional libraries. (C) Methylation call time (min) for each

alignment tool. (D) Mean Absolute Error (MAE) observed between the simulated and called

methylation value.
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Figure 3: Targeted Bisulfite Sequencing Library Performance

(A) The number of read pairs aligned per minute for each bisulfite alignment tool. (B) Total

methylation calling time (min) for each alignment file. (C) The absolute difference between array

methylation values and sequencing methylation values for overlapping calls, binned by effective

read depth.
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S. Figure1: Alignment times for 150 base pair simulated libraries by the number of threads used

for SAM to BAM conversion.
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S. Figure2: (A) Total alignment time (min) and (B) Maximum memory utilization (mb) for

simulated 150 bp bisulfite sequencing libraries by the number of alignment threads provided to

BSBolt.
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Epigenetic Suppression of Transgenic T-cell Receptor

Expression via Gamma-Retroviral Vector Methylation
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Transgenic T-cell receptor (TCR) adoptive cell therapies recognizing tumor antigens are

associated with robust initial response rates, but frequent disease relapse. This usually

occurs in the setting of poor long-term persistence of cells expressing the transgenic TCR,

generated using murine stem cell virus (MSCV) γ-retroviral vectors. Analysis of clinical

transgenic adoptive cell therapy products in vivo revealed that despite strong persistence

of the transgenic TCR DNA sequence over time, its expression was profoundly decreased

over time at the RNA and protein levels. Patients with the greatest degrees of expression

suppression displayed significant increases in DNA methylation over time within the MSCV

promoter region, as well as progressive increases in DNA methylation within the entire

MSCV vector over time. These increases in vector methylation occurred independently of

its integration site within the host genomes. These results have significant implications for

the design of future viral-vector gene engineered adoptive cell transfer therapies.

3.1 Introduction

Genetically engineered adoptive cell therapy (ACT) is revolutionizing cancer treatment, with

sustained clinical responses seen in a variety of malignancies. Current approaches utilize

retroviral or lentiviral vectors for ex vivo transduction of a patient’s T-cells to express either

a cancer antigen-specific T-cell receptor (TCR) or a chimeric antigen receptor (CAR). These

reinfused cells then create a focused anti-tumor response in a variety of cancer subtypes [25,

12]. However, while these treatments lead to durable clinical responses in many patients,

a significant number of patients remain who do not respond, or who eventually relapse.
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Previous ACT clinical trials conducted by our group and others against the tumor antigens

MART-1 (in melanoma) and NY-ESO-1 (in sarcoma and melanoma) have demonstrated

that detectable surface expression of the transgenic TCR is rapidly lost in circulating T-cells

following infusion [17, 3, 18, 21]. The transduction of these cells relies on retroviral vectors,

most commonly the murine stem cell virus (MSCV), a γ-retrovirus which has been optimized

for highly efficient transgene expression, and has been used for a variety of such applications

in vivo [10]. However, it has subsequently been shown to be vulnerable to epigenetic silencing

via DNA methylation of CpG loci which are clustered within its 5’ long tandem repeat (LTR)

promoter region [23, 27].

Given our observation of this phenomenon of rapid loss of surface expression of the trans-

genic TCR in circulating T-cells in vivo, along with the vulnerability of the MSCV vector to

epigenetic silencing via DNA methylation, we hypothesized that acquisition of DNA methy-

lation within the retroviral 5’LTR promoter was associated with loss of expression of the

transgenic TCRs in these clinical samples. Herein we describe the analysis of clinical trans-

genic ACT samples for persistence of the transgenic TCR DNA sequence and accompanying

expression of the TCR itself, as well as characterizing the DNA methylation status of the

MSCV vector over time, and the relationship between vector methylation and suppression

of transgenic TCR expression.

3.2 Results

Trial conduct, patient characteristics, and outcomes

16 patients from our previous transgenic TCR ACT trials directed against MART-1 [3] and

NY-ESO-1 [18] were selected for analysis. Patient demographics, clinical characteristics, and

outcomes are summarized in Table 1. Following conditioning chemotherapy, patients were

all treated with up to 1x109 autologous transgenic TCR T-cells, which were generated via

ex vivo transduction using the MSCV γ-retrovirus encoding for the F5-MART-1 TCR or
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the NY-ESO-1 TCR (Figure S1). Of the 16 patients selected, seven out of eight patients

treated with F-5 MART-1 TCR transgenic T-cells, and six out of eight patients treated with

NY-ESO-1 TCR transgenic T-cells, demonstrated a transient objective response to therapy.

Transgenic TCR-engineered T-cells display strong persistence of the transgene

DNA sequence, but with greatly reduced expression of the RNA and surface

protein over time

The above 16 patients had peripheral mononuclear blood cell (PBMC) samples from both

their infusion (day 0) and 70 days after treatment (in peripheral circulation) analyzed for per-

sistence of the transgenic TCR and RNA and surface TCR protein expression. All infusion

products demonstrated robust presence of the transgenic TCR gene and its RNA and surface

protein expression. However, we observed that despite largely decreased expression of the

RNA transcript and the surface protein at day +70, persistence of the transgenic TCR still

accounted for the vast majority of circulating TCR DNA clonotypes as measured by TCR

sequencing (Figure 1A, Figure S1, S2, S3). Six of these patients with surface TCR protein

expression <0.5% of circulating CD3+ cells, the established threshold of a highly expanded

clone (HEC) [13], were designated as an “expression-low” cohort for further analyses, while

the remaining ten patients were designated as “expression-high.” While the degree of RNA

and surface protein expression of the transgenic TCRs were significantly lower at day +70

in the expression-low group compared to the expression-high group, there were no statisti-

cally significant differences between the two cohorts’ proportion of transgenic TCR DNA in

circulating PBMCs at day +70, which still accounted for the majority of circulating TCR

clonotypes (Figure 1B-D, Figure S4, S5). There were also no statistically significant differ-

ences between the two groups’ transgenic TCR proportions and surface protein expression

at day 0 (Figure S6).
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Increased MSCV 5’LTR methylation is associated with decreased expression of

the transgenic RNA and protein, despite persistence of the transgenic DNA

Given the overall strong predominance in transgenic TCR’s representation within the TCR

repertoire of circulating T-cells despite profound loss of its expression, we explored the degree

of CpG methylation within the MSCV 5’ LTR promoter region, which contains a CpG island

characterized by a high concentration of clustered CpG loci over a relatively small region

of DNA (Figure 2A). Genomic DNA was isolated from PBMCs of each patient sample at

baseline (day 0) and 70 days post-infusion, and bisulfite converted. The area of DNA within

the MSCV 5’LTR containing the CpG island was amplified by PCR, purified, and sequenced.

We found that while all day 0 infusion products contained relatively little CpG methylation

within the 5’LTR promoter region of the MSCV vector, the six patients in the expression-

low cohort individually demonstrated significantly increased levels of CpG methylation at

day +70 (Figure 2B-C, Figures S7, S8). The average proportion of promoter methylation

was anticorrelated with transgenic TCR surface protein expression among all patients at

day +70 (Figure S9). Furthermore, when the two cohorts were compared with one another,

the expression-low cohort displayed significantly greater CpG methylation within the 5’LTR

promoter region when compared to the expression-high cohort at day +70 (Figure 2D).

While there were no differences in progression-free survival or overall survival between the

two cohorts, the expression-low cohort displayed inferior decrease in tumor burden compared

to the expression-high cohort, which nearly achieved statistical significance (p = 0.07, Figure

S10).
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CpG methylation is increased across MSCV vector over time in all patients, and

is significantly greater in those with decreased transgenic TCR expression over

time

In order to expand our ability to characterize CpG methylation across the entire MSCV

vector over time, we performed bisulfite conversion on genomic DNA library preparations

isolated from all patients’ PBMC samples at day 0 (infusion), day +30, and day +70. We

then carried out target enrichment using RNA probes to capture the MSCV vector. Bisulfite-

converted libraries were then aligned against the human genome version 38 (hg38) with

MSCV transgenic TCR vector reference sequences utilizing BSBolt, an integrated alignment

and analysis platform for bisulfite-converted DNA. Each patient sample demonstrated overall

progressive increases in CpG methylation across the transgenic TCR MSCV vector sequence

over time (Figure 3A-B). When all patient sample data were aggregated, the increases in

MCV vector CpG methylation were statistically significant at day +30 compared to day

0, and day +70 compared to day +30 (Figure 3C). When the data were further stratified

to compare the expression-high and expression-low patient cohorts, we observed that while

there were no significant differences between baseline levels of CpG methylation at day 0,

the day +30 and day +70 methylation ratios, which progressively increased over time in

both cohorts, were significantly higher in the expression-low cohort when compared to the

expression-high cohort, consistent with what was observed in the targeted analysis of the

5’LTR promoter region (Figure 3D).

MSCV-TCR vector integration occurs sporadically throughout the host genome

relative to transcription start sites

While capturing the MSV vector fragments, we also obtained fragments that spanned the

junction of the insertion site between the vector and the genome. These reads allowed

us to explore the integration patterns of the MSCV vector within the patients’ genomes.
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Specifically, we utilized BSBolt to map discordant paired reads, where individual reads from

the pair map to both the human genome and the MSCV transgenic TCR vector. Integration

sites were characterized by their relative and absolute distance to transcription start sites

(TSS). We observed that the MSCV vector integration sites occurred at sites generally

distal to gene TSS (Figure S11). Furthermore, when we compared the proportions of vector

integration sites by their relative distance to TSS, we observed no significant differences

between the expression-low cohort (i.e. those with high CpG methylation levels) and the

expression-high cohort (i.e. those with low CpG methylation levels), suggesting that the

integration site relative to TSS did not impact the degree of CpG methylation observed

within a given vector read.

3.3 Discussion

TCR transgenic ACT has established itself as a potent form of cancer immunotherapy for

a wide variety of tumor subtypes. However, despite frequent early responses and reduction

in tumor burden, the durability of these responses is often poor, and tumors often progress

within several months. Our clinical experiences with transgenic TCR ACT generated with

γ-retroviral vectors, as well as those of other groups, have consistently demonstrated that

the presence of detectable circulating transgenic TCR surface expression rapidly diminishes

within 1-2 months following cell transfer, in keeping with the timeline of disease progression

after the initial transient response to therapy [17, 3, 18, 21]. This is in stark contrast to

ACT using autologous cancer-antigen-specific TCR clones, which are isolated, expanded ex

vivo, and reinfused to the patient without the aid of any viral vectors to transduce and

generate these cells in large numbers. Previous ACT studies utilizing such endogenous TCR

clones have shown remarkably strong persistence of cancer-antigen-specific TCR clones in

circulation following cell transfer [8, 11]. This discrepancy implies that genetically engineered

ACT products have a fundamental vulnerability in the suppression of their transgenic TCR.
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Given the known vulnerability of the MSCV vector to epigenetic silencing via CpG

methylation, as well as the observed discordance between the strong persistence of the TCR

transgenes and their poor expression in circulation, we hypothesized that increases in DNA

methylation within the vector were associated with this phenomenon. While one small series

of patients previously found no significant retroviral promoter methylation to cause suppres-

sion of transgenic TCR expression [2], that study only examined the methylation status of

the MSCV vector promoter in a total of four patients. Our examination of 16 samples from

patients receiving transgenic ACT demonstrated that samples from only six of these patients

displayed significantly discordant, profound decreases in expression of the transgenic TCR

which was associated with significant increases in MSCV vector methylation. This suggests

that the phenomenon occurs in a minority of patients, and could be missed by sampling too

small a cohort. Indeed, there may be cell phenotype-specific or patient-specific predisposi-

tions to rapid acquisition of CpG methylation of γ-retroviruses which would not be present

in every subject studied. While further detailed studies of factors such as patient-specific

polymorphisms in DNA methyltransferase enzymes would be needed to derive even specu-

lative inferences into such predispositions, our studies did not demonstrate any significant

association with the MSCV integration site’s distance to a given TSS at infusion and its

propensity to acquire CpG methylation over time. Furthermore, our characterization of

the MSCV vector integration sites was consistent with previously published studies dealing

with the γ-retroviral vector murine leukemia virus (MLV), which showed that only 25% of

γ-retrovirus integration sites are within ±2.5-kb around the TSS [7] in human cells, consis-

tent with our results. While MSCV has previously shown increased integration near TSS in

murine bone marrow cells [1], it may be that there are species-specific factors which influence

integration site, as our data are consistent with previously published data in humans.

The vulnerability of retroviral vectors to epigenetic suppression in transgenic TCR ACT

products seen here raises an important question about how to overcome this potential weak-

ness in clinical practice. One possibility would be to utilize dual therapy with systemic
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hypomethylating agents such as decitabine to prevent the acquisition of CpG methyla-

tion within the retroviral vector encoding the transgenic TCR. Such agents have also been

shown in murine models to increase the expression of tumor antigens commonly targeted

by transgenic TCR ACT, such as NY-ESO-1 [4, 20], theoretically further enhancing the

immunotherapeutic effect of the transgenic T-cells. However, DNA methylation is often

followed by histone recruitment and modification (acetylation and/or methylation), which

further contribute to epigenetic suppression. Therefore, such pharmacologic interventions

would potentially be insufficient to fully reverse epigenetic suppression, as it would not have

an effect on the histone modifications and recruitment. Stimulation of T-cells with IL-2

and anti-CD3/CD28 beads has previously been shown to partially restore transgenic TCR

expression in vitro in some patients, likely due to nonspecific modulation of these epigenetic

factors [2]. New non-viral approaches to generating transgenic TCR T-cells using CRISPR-

Cas9 to deliver constructs under control of the native TCR promoter (rather than a viral

promoter) would also potentially avoid this risk of epigenetic suppression of viral vector-

encoded products [22]. Furthermore, there may be utility in new modalities that provide

a continuous supply of transgenic T-cells to the patient. Preclinical models have demon-

strated that CD34+ hematopoietic stem cells encoding a transgenic TCR can endogenously

differentiate into fully functional T-cells expressing the TCR [26, 24]. We currently have

recently an open phase I clinical trial which utilize this approach against NY-ESO-1 in solid

tumors (NCT03240861), utilizing a lentiviral vector for stem cell transduction for long-term

expression.

One major limitation of our study is that we only examined transgenic TCR ACT prod-

ucts generated using the MSCV γ-retrovirus, which is known to be potentially vulnerable to

epigenetic silencing via CpG methylation. Other types of cell therapy products, including

the CD19 CAR-T product KymriahTM (tisagenlecleucel), utilize lentiviral vectors, which

have previously demonstrated remarkable persistence of transgene expression in vivo and do

not appear vulnerable to CpG methylation [19], which may limit the broader applicability of
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our findings. Indeed, transgenic TCR ACT products manufactured using lentiviral vectors

have been shown to have far superior persistence of detectable surface expression of the TCR

[6]. While the other commercially available CD19 CAR-T product Yescarta™ (axicabtagene

ciloleucel) does utilize a γ-retroviral vector for its manufacture, its rates of durable com-

plete and partial remission are far superior to any published transgenic TCR product [12].

This is likely due to the rapid systemic clearance of lymphoma cells seen when using these

ACT products, implying that long-term persistence of the transgenic T-cells in this setting

is potentially less important than in treating refractory solid tumors with such therapeutics.

Indeed, our examination of patient samples at day +70 was chosen due to this being the

average point of circulating transgenic T-cell nadir in our previously published trials [3, 18].

We were unable to determine any association of γ-retroviral vector methylation with patient

survival, likely owing to the overall small number of long-term responders inherent to this

therapy in solid tumors.

In summary, we have shown that progressive increases in CpG methylation within the

MSCV γ-retroviral vector are associated with rapid suppression of transgenic TCR expression

over time in clinical transgenic ACT, despite strong persistence of the transgene itself. This

phenomenon did not appear to have any correlation with the vector integration site within

the host genome. These findings have significant implications in how the cellular therapeutics

community should approach the design of future generations of these products.

3.4 Materials and Methods

Clinical trial, patients, and manufacturing of MART-1 and NY-ESO-1 TCR

engineered T-cells

For the F5-MART-1 transgenic TCR adoptive cell therapy clinical trial, patients posi-

tive for HLA-A*0201 with a MART-1-positive metastatic melanoma were enrolled under

NCT00910650 (UCLA IRB #08-02020 and #10-001212) from April 2009 to September 2011,
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under investigational new drug (IND) #13859 [3]. For the NYESO-1 transgenic TCR adop-

tive cell therapy clinical trials, patients positive for HLA-A*0201 with an NYESO-1-positive

sarcoma or melanoma were enrolled under NCT02070406 or NCT01697527 (UCLA IRB #12-

000153 and #13-001624, respectively) under IND#15167 [18]. Clinical trial design and man-

ufacturing of the MART-1 and NYESO-1 TCR transgenic T-cells are previously described [3,

18]. Briefly, non-mobilized autologous PBMCs were stimulated in culture with IL-2/OKT3

and transduced with clinical grade MSCV retrovirus vector expressing the MART-1 F5

TCR or the NYESO-1 TCR on two consecutive days, then continually expanded ex vivo

for 6-7 days. Up to 1x109 transgenic TCR transgenic lymphocytes were administered to

each patient following conditioning chemotherapy with cyclophosphamide and fludarabine,

along with post-infusion systemic IL-2 for 7-14 days, and d endritic cell vaccine boosts, as

previously described [3, 18].

Quantification of transgenic TCRβ genomic DNA persistence

Genomic DNA and RNA was isolated from patient-matched infusion products and post-

infusion PBMCs recovered at day +70 (+/- 10 days), with an AllPrep DNA/RNA isolation

kit according to the manufacturer’s instructions (Qiagen). TCRβ alleles were sequenced at

100,000 reads by Adaptive Biotechnologies (Seattle, WA). Briefly, this process utilizes a syn-

thetic immune repertoire, corresponding to every possible biological combination of Variable

(V) and Joining (J) gene segments for each T-cell receptor locus, spiked into every sample

at a known concentration. These inline controls enable rigorous quality assurance for every

sample assayed and allow for correction of multiplex PCR amplification bias, providing an

absolute quantitative measure of T-cells containing the transgenic TCR relative to the other

endogenous TCR clonotypes, with no difference in amplification efficiency [6]. Productive

TCRβ sequences, i.e. those that could be translated into open reading frames and did not

contain a stop codon, were reported. The transgenic F5-MART-1 and NY-ESO-1 TCR

sequences’ persistence were identified based on comparison of reads with the known TCRβ
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sequence for the transgenic product, and expressed as a percentage of total productive TCRβ

sequences present within a given sample/timepoint.

qRT-PCR

Total RNA isolated from patient samples (as described above) was used for analysis of

relative abundance of the transgenic F5 MART-1 TCR or the NYESO-1 TCR. Samples

were converted to cDNA using iScript TM Reverse Transcription Supermix for RT-PCR

(Bio-Rad), then cDNA was amplified and quantified using iTaq TM Universal SYBR Green

Supermix (Bio-Rad) on an Applied Biosystems 7500 Fast Real-Time PCR System (Applied

Biosystems). PCR conditions were 1 cycle of 1 min at 95°C, 35 cycles of 15 sec at 95°C and 60

sec at 60°C, and 5 min incubation at 72°C. Replicate samples were run with test primer sets

for the F5-MART-1 TCR, the NYESO-1 TCR, or the endogenous control glyceraldehyde-

3-phosphate dehydrogenase (GAPDH); primer sequences are available upon request. Data

were analyzed according to the comparative Ct method.

MHC dextramer immunologic monitoring for surface expression of transgenic

TCRs

Detection and quantification of F5 MART-1 TCR or NY-ESO-1 TCR expression using flu-

orescent MHC dextramer analysis for MART-1 or NY-ESO-1 (Immudex) was performed on

patient-matched infusion products and post-infusion PBMCs recovered at day +70, as pre-

viously described [3, 18, 5]. Our definitions for a positive or negative immunologic response

using standardized MHC multimer assays were used, which are based on assay performance

specifications by defining changes beyond the assay variability with a 95% confidence level

[5].
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Bisulfite sequencing of MSCV retroviral promoter in patient samples

Genomic DNA isolated from patient PBMC samples was bisulfite converted using the EZ

DNA Methylation-Gold Kit (Zymo Research) according to the manufacturer’s instructions.

A CpG island within the MSCV 5’LTR promoter U3/R/U5 region, defined as an area

>100bp, with a GC content of >50%, and possessing an observed:expected CpG ratio of

>0.6, was determined using MethPrimer software [16], which also designed PCR primers ca-

pable of amplifying the methylated and non-methylated bisulfite-converted DNA sequence of

interest. CpG islands were PCR amplified, purified, and subjected to DNA Sanger sequenc-

ing (Laragen). The methylation status of each CpG locus within the individual amplicons

was determined using QUMA software [14].

Targeted bisuflite sequencing library preparation and sequencing

Purified genomic DNA from patient samples (isolated as described above) was quantified us-

ing the Qubit dsDNA BR Assay (Thermo Fisher Scientific). For each sample, 250ng of DNA

was sonicated using a Bioruptor Pico (Diagenode) for 15 cycles (30 sec ON; 60 sec OFF).

Libraries were prepared using the NEBNext Ultra II DNA kit (NEB) according to manufac-

turer instructions with few modifications. Briefly, sonicated DNA was subjected to EndPrep

(End Repair and A-tailing), followed by Adapter Ligation using 2.5µL of Illumina TruSeq

pre-methylated Adapters (Illumina). Samples were purified using 0.85x NEB Purification

Beads and eluted in 15µL of 10mM Tris-HCl, pH 8. Samples were mixed in 16-sample pools

and column purified using a DCC-5 (Zymo Research). Elution was performed with 10µL of

60℃ 10mM Tris-HCl, pH 8. Each sample pool was subject to hybrid capture with custom

biotinylated RNA probes designed to tile the MSCV vector (MyBaits Arbor Bioscience - Hu-

man 6K and Human patch2) according to the manufacturer’s protocol. The hybridization

was carried out for 20 hours overnight at 65℃. Captured DNA was eluted by heating in 20µL

of 10mM Tris-HCl pH 8+0.05% Tween-20. The eluted DNA was then subject to bisulfite
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conversion using the DNA Methylation Lightning kit (Zymo Research). Converted DNA

was then amplified using xGen Library Amplification Primer Mix (IDT) and Kapa Uracil+

Ready Mix using the following conditions: 98℃ for 2 min; 20 cycles of 98℃-20 sec, 60℃-30

sec, 72℃-30 sec; Final Extension 72℃-5 min; hold 4℃. PCR products were purified using 0.9

volumes of NEBNext Purification Beads and eluted in 15µL of 10mM Tris-HCl, pH 8. Final

libraries were then quantified using the Qubit dsDNA BR Assay (Thermo Fisher Scientific)

and visualized using a D1000 ScreenTape (TapeStation 2200 system - Agilent Technologies).

Each pool was then sequenced at 150bp PE on a HiSeq3000 instrument (Illumina).

Targeted Bisulfite Sequencing Alignment and Methylation Calling

Paired end, 150bp targeted bisulfite sequencing reads were aligned to the combined hg38 and

MSCV transgenic TCR vector sequence bisulfite converted references using BSBolt v0.1.2 [9]

local alignment. Alignments with ¡5 mismatches and an alignment score ¿160 were considered

valid, up to 10 alignments per read pair were considered. Alignments where read pairs did

not meet expected paired end constraints, an insert size ¿500bp or alignments on separate

chromosomes, were reported as discordant. Reads pairs with only one valid alignment were

reported as mixed. Duplicate reads were removed using SAMtools v1.9 [15]. Following

duplicate removal methylation values were called for all observed cytosines with ≥5 reads

with a base call quality above 25 using BSBolt v0.1.2 [9].

Vector Integration Site Detection

Discordant reads pairs with a vector alignment and a genome alignment were evaluated as

potential integration sites. Discordant read pairs were further filtered by removing reads

that aligned to genomic regions homologous with the vector sequence or aligned outside the

expected integration region within the vector sequence. Alignments with an alignment score

greater than 160 and with secondary alignments that repeated no more than 10% of the pri-
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mary alignment sequence were considered integration site supporting alignments. Integration

sites were reported as the closest genomic base to vector alignment or the average integration

site position for sites with multiple supporting reads. The integration site selection pipeline

was implemented using custom python code (https://github.com/NuttyLogic/Epigenetic-

suppression-of-transgenic-TCR-expression-in-ACT). The vector integration detection pipeline

was validated against simulated 150bp, paired end bisulfite converted vector integration li-

braries; see Supplemental Methods for further details.

Statistical analysis

Graphing and descriptive statistical analyses were carried out with GraphPad Prism version

7.0 (GraphPad). Where indicated, Mann-Whitney U test or Wilcoxon matched-pairs signed

rank test were used for comparison of two groups, and correlations between CpG promoter

methylation and transgenic TCR expression were compared using Spearman rank correlation.

P values of ¡0.05 were considered statistically significant.
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Supplemental Methods

Insertion Site Search Validation

Vector insertion events were simulated by randomly sampling positions from the human

genome (hg38), excluding alt contigs and sex chromosomes, between 20 - 30 times per sim-

ulation library. Bisulfite sequencing reads (125bp, paired-end) were then simulated from

the vector insertion contigs and mapped to a combined hg38 and MSCV transgenic TCR

reference (BSBolt v0.1.2). Six simulation libraries, three MART-1 TCR and three NY-ESO-

1 TCR, were created. The vector insertion detection pipeline was then validated against

the known integration positions from the simulated reads. Correct identification of align-

ments that spanned the genome or vector sequence as a split (1 or more spanning bases) or

discordant (complete read end mapped) was assessed for each library for various minimum
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Table 1: Patient Demographics and Outcomes

Abbreviations: F: female; LN: lymph nodes; M: male; PFS: progression-free survival; OS: overall sur-

vival; EOS: end of study; DC: dendritic cells; TCR: T cell receptor; IL-2: interleukin-2; mo: months
Patient
study
num-
ber

Sex Ethnicity Age Type of
Cancer

Active Dis-
ease Sites

Stage Number
of TCR
trans-
genic
cells

IL-2
doses

DC
doses

Evidence
of tran-
sient
tumor
re-
sponse

Response
at EOS
(day 90)

PFS
(mo)

OS
(mo)

Current
Status

F5-1 M Caucasian 60 Melanoma Lung, Stom-
ach, Liver,
Pancreas,
Peritoneum,
Soft tissues

M1c 1x109 12/14/21 03/03/21 Yes by
PET/CT

PD 3.0 5.0 Died of
disease

F5-3 M Caucasian 61 Melanoma Lung, Liver M1c 1x109 13/14 03/03/21 Yes by
PET/CT

SD 7.0 86.0 Died of
disease

F5-6 M Caucasian 59 Melanoma Lung, LN M1b 1x109 13/14 03/03/21 Yes by
PE

SD 3.0 4.0 Died of
disease

F5-7 M Caucasian 48 Melanoma SC, Bone M1c 1x109 09/14/21 03/03/21 Yes by
CT

SD 4.0 11.0 Died of
disease

F5-8 M Caucasian 44 Melanoma LN, Liver M1c 1x109 11/14/21 03/03/21 Yes by
PET/CT

SD 4.0 11.0 Died of
disease

F5-9 F Caucasian 46 Melanoma Skin, LN M1a 1x109 11/14/21 03/03/21 No PD 3.0 20.0 Died of
disease

F5-12 M Caucasian 40 Melanoma Lung, LN MIVb 3.9x109 06/09/21 03/03/21 Yes by
PET/CT

SD 5.0 8.0 Died of
disease

F5-13 M Caucasian 60 Melanoma Lung, Ab-
domen, SC

MIIIb 4.41x109 04/09/21 03/03/21 Yes by
PET/CT

SD 3.0 8.0 Died of
disease

ESO-1 M Hispanic 47 LiposarcomaRight Re-
nal Fossa;
Liver left
Lobe; Hep-
atic Segment;
Peritoneal,
Perihepatic
Nodule

IV 7.7x108 28/28 03/03/21 No PD 2.6 16.0 Died of
disease

ESO-3 F Caucasian 24 Synovial
Sarcoma

Right Lung;
Multiple
pulmonary
Nodules

IV 1x109 19/28 01/03/21 Yes by
PET/CT

PR 67.0 67.0 Alive
with CR

ESO-4 M Caucasian 41 Synovial
Sarcoma

Left Infra-
clavicular
Mass; Left
Pectoralis
Mass

III 1x109 18/28 03/03/21 Yes by
PET/CT

PD 3.0 25.0 Died of
disease

ESO-5 F Caucasian 43 Synovial
Sarcoma

Right
popliteal
fossa; Lung

IV 1x109 14/14 03/03/21 Yes by
PET/CT

PR 9.0 41.5 Died of
disease

ESO-6 M Caucasian 26 OsteosarcomaLung IV 1x109 14/14 03/03/21 Yes by
PET/CT

PD 2.5 19.0 Died of
disease

INY-2 M Caucasian 66 Melanoma LN, Liver IV 1x109 21/28 02/03/21 Yes by
PET/CT

PD 3.0 6.0 Died of
disease

INY-3 F Caucasian 44 Synovial
Sarcoma

Right
popliteal
fossa; Lung

IV 1x109 14/14 03/03/21 Yes by
PET/CT

PD 3.0 31.0 Died of
disease

INY-4 M Hispanic 24 Melanoma Lung, LN,
adrenal gland,
liver, trachea,
brain

IV 1x109 10/14/21 03/03/21 No PD NaN 3.0 Died of
disease
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Figure1: Persistence of transgenic TCR DNA and RNA/protein expression of TCR-engineered

T-cells over time

A) Comparison between infusion products (day 0) and post-infusion recovery products 70 days

later from patients on NYESO-1 TCR-engineered cell therapy trials (ESO and INY) or F5-MART-

1 TCR-engineered cell therapy trial (F5). Data displayed are percentage of cells containing the

transgenic TCR DNA sequence (red, left axis), the percentage of cells expressing the TCR protein

(green, left axis), and the relative level of RNA transcript (blue, right axis). Inset boxed patients

represent those with surface TCR expression ¡0.5% at day +70. B, C, D) Statistical comparisons

between expression-high and expression-low patient cohorts demonstrating no significant differences

between day +70 transgenic TCR DNA (B), while surface protein expression (C) and relative RNA

level (D) at day +70 are significantly lower in the expression-low cohort (** p < 0.01, ***p < 0.001,

Mann-Whitney U test).
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Figure2: Increased MSCV 5’LTR methylation is associated with decreased expression of the trans-

genic RNA and protein, despite persistence of the transgenic DNA.

A) CpG island within the MSCV 5’ LTR, where each CpG loci is represented by a filled circle.

Numbering is relative to the transcription start site. B) Bisulfite conversion was performed on

genomic DNA from patient PBMCs at day 0 (infusion) and day +70, and the CpG island within

the MSCV 5’LTR promoter region was PCR amplified and purified; two representative patients are

shown. Each row represents sequencing of an individual experiment, with methylated cytosine loci

indicated by red boxes and unmethylated loci by blue boxes. CpG loci positions are listed at the

top of the graph relative to the TSS for the transgenic TCR. C) Percentage of CpG methylation

within 5’LTR at day 0 and day +70 in individual expression-low (red) and expression-high (blue)

patients (** p < 0.01, Wilcoxon matched-pairs signed rank test); comparison between aggregate

percent CpG methylation within the 5’LTR between all expression-high and expression-low patients

at day 0 and day +70 is shown in D (**** p < 0.0001, Mann-Whitney U test).
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Figure3: CpG methylation is increased across MSCV vector over time in all patients, and is

significantly greater in those with decreased transgenic TCR expression over time.

Mean methylation ratio across MSCV vector at day 0, day +30, and day +70 for each patient

treated with NY-ESO-1 TCR (A) and F5-MART-1 TCR (B) transgenic T-cells. C) Statistical

comparisons between methylation values in all patients at day 0, day +30, and day +70; data are

stratified to compare the increases in methylation values over time between the expression-high and

expression-low patients in D (*, p¡0.05, **** p¡0.0001, Mann-Whitney U test).
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S.Figure1: Graphical representation of the MSCV retroviral vector which encodes the transgenic

F5 MART-1 TCR and the NY-ESO-1 TCR used in our adoptive cell therapy clinical trials.

alignment scores (40, 80, 120, 160, 200, 240, 280). With a minimum alignment score of

160, 29.2% (STD 1.41%) of MART-1 TCR and 36.6% (STD. 2.17%) NY-ESO-1 alignments

were called correctly as vector spanning reads with correct mapping coordinates, and 0.183%

(STD 0.0947%) and 0.301% (STD 0.0141%) alignments were called incorrectly. At minimum,

a minimum alignment score of 160 at least 80 read bases must map for a valid alignment.

Simulated split reads with fewer than this threshold are undetectable, resulting in a large

proportion of simulated reads being unobserved. However, when a vector spanning is called

the vast majority are called correctly. The complete simulation and validation pipeline can

be found at https://github.com/NuttyLogic/Epigenetic Suppression of

Transgenic T-cell Nowicki.2020/tree/master/VectorInsertionValidation.
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S.Figure2: Representative TCR sequencing plots showing the relative proportion of transgenic

F5-MART-1 TCR (Figure S2) and NY-ESO-1 TCR (Figure S3) at day 0 (infusion product) and

day +70. T he transgenic TCR is indicated in blue, and each pie chart slice represents another

individual TCR clonotype.
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S.Figure3: Representative TCR sequencing plots showing the relative proportion of transgenic

F5-MART-1 TCR (Figure S2) and NY-ESO-1 TCR (Figure S3) at day 0 (infusion product) and

day +70. The transgenic TCR is indicated in blue, and each pie chart slice represents another

individual TCR clonotype.
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S.Figure4: Representative fluorescent dextramer plots and gating strategies for the MART-1

(Figure S4) and NY-ESO-1 (Figure S5) TCRs at day 0 (infusion product) and day +70, and

negative controls (scramble peptide).
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S.Figure5: Representative fluorescent dextramer plots and gating strategies for the MART-1

(Figure S4) and NY-ESO-1 (Figure S5) TCRs at day 0 (infusion product) and day +70, and

negative controls (scramble peptide).
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S.Figure6: Statistical comparisons between expression-high and expression-low patients’ trans-

genic TCR DNA (A) and surface protein expression (B) as percentage of total cells at day 0 (base-

line infusion product). Non-significant p-values are inset within each comparison (Mann-Whitney

U test).
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S.Figure7: Targeted bisulfite sequencing data of the CpG island within the MSCV 5’LTR promoter

from all patients studied at day 0 (infusion product) and day +70. Patients treated with NY-ESO-1

TCR products are detailed in Figure S3, while patients treated with F-5 MART-1 TCR products

are summarized in Figure S4. Each row represents sequencing of an individual experiment, with

methylated cytosine loci indicated by red boxes and unmethylated loci by blue boxes. CpG loci

positions are listed at the top of the graph relative to the TSS for the transgenic TCR.
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S.Figure8: Targeted bisulfite sequencing data of the CpG island within the MSCV 5’LTR promoter

from all patients studied at day 0 (infusion product) and day +70. Patients treated with NY-ESO-1

TCR products are detailed in Figure S3, while patients treated with F-5 MART-1 TCR products

are summarized in Figure S4. Each row represents sequencing of an individual experiment, with

methylated cytosine loci indicated by red boxes and unmethylated loci by blue boxes. CpG loci

positions are listed at the top of the graph relative to the TSS for the transgenic TCR.
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S.Figure9: Spearman correlation between percentage of CpG loci methylation within retroviral

promoter region and surface expression of transgenic TCRs in day +70 samples for all patients.
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S.Figure10: A) Waterfall plot demonstrating percent change in tumor burden in each patient

at end of study period. B) Comparison of change in tumor burden between expression-low and

expression-high patient cohorts (Mann-Whitney U test).
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S.Figure11: MSCV-TCR vector integration occurs sporadically throughout the host genome rel-

ative to transcription start sites. A) Proportion of MSCV-TCR vector integration sites sorted

by distance to gene transcription start sites (TSS) compared between patients with high vs. low

MSCV methylation values; data are sorted by absolute distance to TSS in B.
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Epigenetic rates of change, much as evolutionary mutation rate along a lineage, vary during

lifetime. Accurate estimation of the epigenetic state has vast medical and biological impli-

cations. To account for these nonlinear epigenetic changes with age, we recently developed

a formalism inspired by the Pacemaker model of evolution that accounts for varying rates

of mutations with time. Here, we present a python implementation of the Epigenetic Pace-

maker (EPM), a conditional expectation maximization algorithm that estimates epigenetic

landscapes and the state of individuals and may be used to study nonlinear epigenetic aging.

The EPM is available at https://pypi.org/project/EpigeneticPacemaker/.
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4.1 Introduction

Methylation of cytosine plays an integral role in the regulation of gene expression and mam-

malian development[7, 10][9, 18]. During the mammalian life cycle, age associated changes

in DNA methylation proceed predictably and nonlinearly with time[14]. The systematic

changes of DNA methylation with age have led to the development of several epigenetic

clocks[4, 3]. Most of these models assume that the change in methylation is linear with

age, and as such are reminiscent of the molecular clock concept in molecular evolution. The

predicted age from these models can be interpreted as a physiological or epigenetic age, and

the residual error between the expected and predicted epigenetic age has been associated

with several health outcomes[5, 6, 12]. However, these approaches make a priori assump-

tions about the functional relationship between epigenetic changes and age (e.g linearity)

and hence may fail to adequately capture nonlinear changes in methylation with age. This is

important because there is substantial evidence to suggest that epigenetic changes are much

more rapid early in life and progressively slow as we age across tissue type [14].

To overcome the limitations of prior approaches we developed an evolutionary based

approach - the Epigenetic Pacemaker (EPM) - for modeling epigenetic states as evolving

entities[16, 15]. The EPM borrows from the Universal Pacemaker formalism (UPM)[17]

under which the evolutionary rate of genes remains constant relative to one another but the

absolute rate can change arbitrarily by factors affecting the evolving lineage. In contrast to

the EPM, most previous epigenetic clocks resemble the molecular evolutionary concept of the

Molecular Clock[21], where the evolutionary rate of genes remains constant with time. In the

EPM, given a set of i methylation sites and j individuals, the observed methylation status,

m̂ij, is given as m̂ij = m0
i + risj + εij, where m0

i is the initial methylation value, ri is the rate

of methylation change, sj is the epigenetic state, and εij is a normally distributed error term.

Given an input matrix M̂ = [m̂ij] the goal of the EPM is to find the optimal values of ri, m
0
i ,

and sj to minimize the error between the measured and predicted methylation values. Our
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approach is distinct from previous epigenetic clock methods that attempt to minimize the

difference between observed and predicted age, thus implicitly constraining the functional

form of that relationship.

The EPM optimization is accomplished through an implementation of a fast conditional

expectation maximization algorithm that we have previously shown maximizes the model

likelihood by minimizing the residual sum of squares error(Snir et al. 2016). When fitting

the EPM each methylation site is assigned an independent rate of change, and starting

methylation value, and each individual is assigned an epigenetic state. We use chronological

age as an initial guess for the epigenetic state, which is then updated through each iteration

to minimize the error across the observed epigenetic landscape (i.e. the parameter set of

our model). Because we model methylation and not age, the EPM relaxes the condition of

linearity between a trait of interest (e.g. age) and the observed methylation values. This

allows the EPM to model non-linear relationships between our state, sj, and the trait,

without needing to transform the trait of interest (as is done in certain epigenetic clocks).

4.2 Epigenetic Pacemaker

To highlight the utility of the EPM, we fit EPM and linear regression models using publicly

available Illumina HumanMethylation450 (450k) microarray data [13] generated from human

brain tissue samples (n = 675, 0− 96years) [7]. Briefly, we performed stratified sampling by

age to select 270 brain tissue samples for site selection and model training. CpG sites were

selected for model inclusion using the absolute value of the Pearson correlation coefficient

between the training methylation values and chronological age, (PCC ≥ |0.85|, n = 254).

We then fit the EPM and regression models[13, 2, 11] using the selected sites and training

methylation data. Age and epigenetic state predictions were made for the remaining brain

tissue samples (n = 405) left out of model training.The EPM model shows the non-linear

relationship between epigenetic state and chronological age (Figure 1A) that is lost in the
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regression model (Figure 1B). We then used the brain EPM and linear models to predict

the epigenetic state of 450k data (n = 732, 14− 96years) generated from whole blood tissue

[8]. Samples with missing methylation values for the CpG sites used in model generation

were dropped, resulting in 634 analysis samples. The brain EPM model captures aging in

the whole blood samples with minimal error (Figure 1C), while the aging signal is largely

lost in the linear model (Figure 1D).

We have developed an optimized version of the EPM algorithm implemented as a python

package[20][19][1] that adopts Scikit-Learn[11] style syntax for easy incorporation into cur-

rent workflows with support for cross validation. The EPM is available through the python

package repository, https://pypi.org/project/EpigeneticPacemaker/, under a MIT license.

Full documentation, including tutorials, and source code can be found at https://epigeneticpacemaker.readthedocs.io

and https://github.com/

NuttyLogic/EpigeneticPacemaker respectively

4.3 Availability and requirements

Project name: Epigenetic Pacemaker

Project home page: https://github.com/NuttyLogic/EpigeneticPacemaker

Operating system(s): Platform independent

Programming language: Python ¿= 3.6

Other requirements: numpy¿=1.16.3, tqdm¿=4.31.1, scipy¿=1.3.0

License: MIT

Acknowledgments and Funding

This work was supported by the National Institutes of Health ( T32CA201160 to C.F.).
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Figure1: Epigenetic state predictions for (n = 405) test samples compared to the chronological

age of each sample with a line of best fit for the EPM (A) and linear regression (B) models. The

non-linear trend observed in the EPM model better captures the observed aging trend and reduces

observed error as measured by mean absolute error (MAE). (C) Epigenetic state predictions made

for whole blood samples using the EPM and (D) linear model.
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Epigenetic changes during aging have been characterized by multiple epigenetic clocks,

that allow the prediction of chronological age based on methylation status. Despite their

accuracy and utility, epigenetic age biomarkers leave many questions about epigenetic aging

unanswered. Specifically, they do not permit the unbiased characterization of non-linear

epigenetic aging trends across entire life spans, a critical question underlying this field of

research. Here we a provide an integrated framework to address this question. Our model,

inspired from evolutionary models, is able to account for acceleration/deceleration in epige-

netic changes by fitting an individual’s model age, the epigenetic age, which is related to

chronological age in a non-linear fashion. Application of this model to DNA methylation data

measured across broad age ranges, from before birth to old age, and from two tissue types,

suggests a universal logarithmic trend characterizes epigenetic aging across entire lifespans.
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5.1 Introduction

Cell type specific differences in gene expression are partially controlled by chromatin ac-

cessibility and specific covalent modifications. These include modification to histones and

DNA [35, 4]. Among these, DNA methylation has been one of the most extensively studied

components of cell type specification [16, 8]. The covalent attachment of a methyl group to

cytosine is catalyzed by either de novo or maintenance methyltransferases, and in mammals

is primarily targeted to CpG dinucleotides. Most CpGs in mammalian genomes are methy-

lated, but pockets of hypomethylation exist, largely at promoters and enhancers. It has

been shown that the absence of DNA methylation is closely associated with the presence of

H3K4 methylation, which is also a hallmark of enhancers and promoters [23]. As stem cells

differentiate along myriad lineages, each cell type tends to have distinctive DNA methylation

profiles, mostly due to differential activation of enhancers [12].

Once an organism reaches its adult stage, these cell types and their respective epigenomes,

have been largely determined. While these developmental epigenetic changes are believed

to be rapid and extensive, in the past few years it has become ever more apparent that

epigenetic changes continue to occur as an organism ages [29]. This observation has led to

the development of multiple epigenetic clocks, that is, biomarkers that accurately predict

the chronological age of an animal based on its DNA methylation profile [13, 11]. These

epigenetic clocks have been extensively used in aging research and have proven to be more

accurate than previous aging biomarkers, such as the length of telomeres [20]. Using these

epigenetic clocks, much has been learned about the effects of the environment on aging. For

example, it is well known that the restriction of calories in mice slows down aging, increases

lifespan as well as the rate of the epigenetic clock [32]. Similar conclusions have been found

in humans, where individuals with more rapid epigenetic aging tend to suffer from higher
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all-cause mortality rates [1].

While these epigenetic clocks have proven to be useful for aging research, they are con-

structed using machine learning methods that provide limited insights into the underly-

ing processes that are driving these changes. For example, the Horvath epigenetic clock

biomarker is constructed by selecting 354 CpG sites using penalized lasso regression, that

optimally predict the chronological age of an individual. This biomarker also sets a hardcoded

boundary of 20 years, where childhood ages are transformed using a logarithmic function

up to this boundary, while adult aging (above the 20 boundary) is kept linear [13]. This

biomarker generates very accurate predictions of chronological age, typically within a couple

of years, but leaves many questions unanswered. Is there truly a change in the rate of epi-

genetic aging, from logarithm to linear trends, at 20 years? Does the linear fit of epigenetic

age persist indefinitely, even for older individuals? Do non-linear trends in epigenetic aging

vary across populations? As the biomarkers are species specific, they also do not allow one

to directly address whether epigenetic aging trends vary across species.

To address some of these questions, we have previously proposed a common framework by

borrowing from the field of evolution. The universal pacemaker (UPM) of genome evolution

was devised in the setting of molecular evolution in order to relax the time-linear evolution

(i.e. rate constancy ) imposed by the molecular clock hypothesis [25, 34, 24], to account

for correlation between rate changes in the genes of an evolving organism. The UPM is a

statistical framework under which the relative evolutionary rates of all genes remain nearly

constant whereas the absolute rates can change arbitrarily. In [27] we first proposed the

adaptation of the UPM to the epigenetic setting, named the epigenetic pacemaker (EPM),

and showed its application to simulation and small scale biological data. To the best of our

knowledge, the EPM is the first model based framework for epigenetic aging, where the rates

of change with time of individual CpG sites are parametrized, along with the epigenetic age

of the individual. In [26] we devised a fast, conditional expectation maximization (CEM)

algorithm that is capable of processing inputs of several thousands of sites and individuals.
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In this work we set out to address some of the questions mentioned above, regarding

the non-linear trends of epigenetic aging across populations. First we show that the EPM,

which lacks any predefined regimes of age intervals, can be used to model and identify

epigenetic aging trends over the entire lifespan of a population. We first apply our approach

to a synthetic model simulating a non-linear aging process and show that our framework is

capable of capturing the trend built into this model. Next we apply our model to publicly

available sets of DNA methylation collected across broad age ranges and diverse tissues. Our

results suggest unambiguously that a logarithmic trend across the entire lifespan is a better

description of epigenetic aging than linear or polynomial trends.

5.2 Methods

The Evolutionary Models

Our basic objects are a set of m individuals and n methylation sites in a genome (or simply

sites). Each individual has an age, forming the set t of time periods {tj} corresponding to each

individual j’s age. Henceforth we will interchangeably refer to individuals with their age.

Each individual has a set of sites si undergoing methylation changes at some characteristic

rate ri. Each site si starts at some methylation start level s0i . All individuals have all the

sites si. As ri and s0i are characteristic of the site si, by the model they are the same at all

individuals. The latter fact, links the same sites across different individuals, but also within

individuals by the fact that sites generally maintain the same characteristic rates across the

whole population. Henceforth, we will index sites with i and individuals with j.

Now, let si,j measure the methylation level at site si in individual j after time (i.e. age)

tj. Hence, under the molecular clock model (MC), where rate of change is relatively constant

over time, we expect: sij = s0i + ritj. However, in reality we have a noise effect εi,j that is

added and therefore the observed value ŝij is ŝij = s0i + ritj + εi,j.

Our goal is to find, given the input matrix Ŝ = [ŝi,j], the maximum likelihood (ML) values
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for the variables ri and s0i for 1 ≤ i ≤ n. For this purpose, we assume a statistical model

for εi,j by assuming that it is normally distributed, εi,j ∼ N(0, σ2). In [27] we showed that

minimizing the following function, denoted RSS, is equivalent to maximizing the model’s

likelihood

RSS =
∑
i≤n

∑
j≤m

(ŝi,j − (s0i + ritj))
2. (5.1)

We also showed that there is an efficient and precise linear algebra solution to this problem,

that we describe in more detail in the supplementary text.

In contrast to the MC, under the EPM model, sites may arbitrarily and independently

of their counterparts in other individuals, change their rate at any point in life. However,

when this happens, all sites of that individual change their rate proportionally such that the

ratio ri/ri′ is constant between any two sites i, i′ at any individual j and at all times. In [27]

we showed that this is equivalent to extending individual j’s age by the same proportion of

the rate change. The new age is denoted as the epigenetic age. Therefore here we do not

just use the given chronological age but estimate the age of each individual. Hence under

the EPM we must find the optimal values of s0i , ri, and tj (where tj represents a weighted

average of the rate changes an individual has undergone through life). The solution to this

optimization problem is described in detail in our previous publications [27, 26]. We note

that the deviation between the chronological age and the estimated epigenetic age is an age

difference which, when positive, is denoted as age acceleration, and deceleration - otherwise.

To compare between the two models - MC and EPM, we note the following. The MC

model is restricted to linearity with time by estimating a constant rate of methylation at each

site, and using the given chronological age of each individual. The competing, relaxed, model

(EPM) has no such restriction, and we estimate an ”epigenetic” age for each individual. By

definition, the ML solution under the relaxed model cannot be worse than the constrained

model. For that specific case, when one hypothesis generalizes another, there is a special test,

the likelihood ratio test (LRT), in which the specific hypothesis serves as the null hypothesis

73



and the goal is to reject it in favor of the alternative one. In the supplementary text we

provide a more detailed explanation of this test and its application in our case.

Selecting Informative Methylation Loci

DNA methylation platforms usually measure several hundreds of thousands of sites. It has

been observed that many of these sites are invariant and do not change with age. It is

desirable to restrict the analysis only to the most informative sites. Nevertheless, among the

sites that do change it is necessary to set a criterion for site selection as it is inefficient to

analyze all of the sites. There are several alternatives that we now describe.

The first and most basic and intuitive criterion for site selection is site variance - simply

choose the sites that exhibit the largest variability. Figure 1(L) depicts the resulted analysis

based on this criterion. This criterion is crude in the sense that it entirely ignores the rela-

tionship between time (age) and methylation. Therefore the next criterion to be examined is

the covariance between age and methylation status at the site. The covariance metric selects

sites that have a large change in methylation with age. We note that this criterion will not

necessarily yield a significant linear fit between age and methylation status, the sites may

still have a significant scatter, as is shown in Figure 1(M).

Therefore the third criterion is the (absolute) Pearson correlation coefficient (PCC) defined

as ρX,Y = Cov(X, Y )/σX/σy. In contrast to the covariance, PCC selects sites that have a

tight fit to a linear relationship between methylation and age, although some of them show

small changes in methylation across the range. Figure 1 (R) shows the results based on

sites selected by the PCC criterion. It is noticeable that using this criterion a much tighter

relationship between epigenetic and chronological age is obtained. Hence we use PCC to

select the sites to be modeled for all our data sets as it provided the clearest trends between

epigenetic and chronological age.
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(a) - Max Variance (b) - Max Covariance (c) Max PCC

Figure 1: Site Selection Criterion

Scatter plots of inferred epigenetic age (e-age, y-axis) as a function of the chronological age (c-

age, x-axis) as a result of applying the EPM algorithm to blood samples from data set GSE60132

(see more details in the Results sec.). Each point represents an individual. 1000 best sites were

selected by the following three criteria. (A) Sites are selected based on their variance, regardless of

correlation to age. (B) Sites are selected based on their covariance with age. (C) Sites are selected

by the (absolute) Pearson correlation coefficient.
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Determining the trend line of epigenetic age

To determine the trend line between epigenetic and chronological age we employed both

coarse and fine grained procedures based on the individual e-age inferred initially by the

pacemaker criterion. Recall though that a first stage test is whether the pacemaker criterion,

stating that rates and starting states are statistically correlated across individuals, and sites

at any individual are also correlated, holds. This, is done by comparing to the molecular

clock to the pacemaker model, as was described in the model description. Indeed, in the

supplementary text we show the results of this test, along with the specific values obtained.

The values depict that the pacemaker alternative is always superior with p-value smaller

than 10−6.

We start by describing the two-stage procedure for determining the type of trend in the

population. The mutual independence of the stages, along with lack of any prior assumption

of any trend in the population, guarantees that the trend inferred is objective and unbiased.

The EPM procedure is applied to the data in order to find optimal values for rates, starting

states, and epigenetic age for all sites and individuals. Note that except for that pacemaker

principle, that enforces uniformity of site rate and starting state across all individuals, there

is no mechanism imposing correlation between any two individuals. Therefore, the EPM

assigns every individual the optimal epigenetic age.

Once the EPM procedure is done, each individual is assigned its own epigenetic age. At

the second stage, we seek a function that best fits the relationship between epigenetic and

chronological age across the entire age range. Our prime criterion for goodness of fit for a

trend of this relationship between epigenetic and chronological age, is the R2 coefficient from

the trend line. In all our data sets we parametrized three functional forms for the trend

line: linear, quadratic and exponential, and we used Excel to fit the best coefficients for each

type. In the Results section we provide a more detailed description on this process.

We now describe a second approach that we devised and utilized. In age ranges where

the trend is not conspicuous, that is, near linear, such that it cannot be distinguished con-
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vincingly using the above functional forms, we note the following. For a person j with age tj

and inferred e-age pj we define ρj = tj/pj. Now, assume the increase in e-age is decreasing

with time, then we observe that if we order the ρjs by increasing tj, we obtain a monotonic

increasing series (of ρj). We denote that series [ρj]. However, due to biological and statistical

noise we never expect to find strict monotonicity at [ρj] and we are bound to test only a trend

of monotonicity. Now, we note that by the definition of ρj also the variance of ρj is changing

in time. However, we note the following. For any two indices j1 and j2 such that j1 < j2, if

[ρj] is monotonically decreasing, then ρj1 < ρj2 . Moreover, suppose we randomize the order

of [ρj]. Then for any two indices j1 and j2 the probability ¶[ρj1 > ρj2 ] = 1/2 and hence the

expected number of j1 < j2 such that ρj1 < ρj2 is
(
n
2

)
/2. Now, since the variables ρj might

be dependent, we cannot use standard bounds on deviations to calculate the probability of

seeing that many pairs j1 < j2 such that ρj1 < ρj2 by chance. This forces the use of a non

parametric test of the hypothesis. For this purpose we can use the Mann-Kendall test for

monotonic trend [Kendall-1975, 19, 10]. According to this method, given a random vector

v, all pairs of indices (i, j) such that i < j are checked whether vi < vj. Let p be the number

of pairs (i, j) for i < j, such that vi < vj and let q be the number of such pairs such that

vi > vj. Now let S = p − q, representing first the direction of trend with S > 0 when the

series is increasing, and vice versa for S < 0. However, S also indicates on the intensity of

the trend, and we note that under h0 (no monotonicity), we have E(S) = 0. Now we also

need to compute the variance of S, Var(S) = n
18

(n − 1)(2n + 5). The statistic z defined

z = S−1√
Var(S)

follows approximately the standard normal distribution, hence allowing us to

obtain conveniently a p-value for the trend indicated by S.
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5.3 Results

Identifying Trends in a Cohort

Methylation trends of the relationship between epigenetic and chronological time in a cohort

provide useful information of how a group, as opposed to an individual, ages epigenetically

with time. The Horvath model [13] has a rigid assumption of linearity of e-age in time for

adults by using a linear combination of an individual’s methylation states of several hundreds

of sites. For kids (age less than 20), the model corrects for non linearity using a logarithmic,

yet fixed, function. The EPM model has no such assumption and therefore has the freedom

to assign each individual its own e-age, as long as it complies with the EPM universality law,

that is, that this age affects all the individual’s sites. We now demonstrate on synthetic data,

the ability of our procedure to infer correct times (e-ages) and in particular trends throughout

a whole population. For this purpose we have devised the following age related function that

appears to encompass the characteristics of e-aging as they emerge from existing knowledge,

in particular by the Horvath model:

p = ctr ∗ h

htr
(5.2)

where p holds the e-age, c is the chronological age (c-age) of a person, h is some upper limit

on a person’s age, and tr is a trend parameter to the function. The trend function has few

desired characteristics. First, it satisfies a monotonic decrease in rate through time (c-age)

and that decrease is proportional to the trend parameter. Also, at c-age that equals the

upper limit h, the epigenetic and chronological ages coincide: c = p. Finally, for tr = 1 the

trend function is linear with p = c for every c, as h
htr

= 1. Figure 2(L) illustrates pictorially

the behavior of the trend function for several values of trend tr = 1, 0.8, 0.5, 0.1 and for

upper limit age h = 100. Indeed we see that all trend lines depart from the origin and

converge towards the point c = h. We also see that the larger tr is (with maximum tr = 1),

the more straight the trend line is, and in particular, for tr = 1 a straight line with slope 1

is exhibited.
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Figure 2 The Trend Function

(Left) Trend lines for four tr values tr = 0.1, 0.5, 0.8, 1 in blue, red, green, and olive green colors

respectively. (Middle) Simulated actual noisy PM - Actual noisy e-ages (blue dots) values around

the trend line (red) with specific tr = 0.5 and σp = .8. The (green) 45◦ line represents the c-age

of each individual. (Right) The values inferred by the EPM-CEM algorithm - green dots represent

the inferred e-age by the algorithm. It should be compared to the real e-age (blue). While there is

a gap, linear with time, between actual and inferred e-ages, the trend is captured.

In order to simulate realistic e-ages, we allow for each individual, some stochastic devi-

ation of her/his e-age from the (or population’s) trend line, and that deviation depends on

some variance σp. To show that, we set a specific tr and σp. Figure 2(M) shows simulated

e-ages around the trend function with specific trend tr = 0.5 and σp = .8. For illustration,

the straight 45◦ line, representing the c-age, appears in green the figure.

Finally, for every such e-age produced, our simulation procedure generates the methyla-

tion status ŝij for every site i and and individual j, according to the model: ŝij = s0i+ritj+εi,j.

Figure 2(R) shows the result of applying the EPM-CEM procedure to such synthetic data.

Green dots represent the inferred e-age by the algorithm and should be compared to the real

(model) e-age (blue, same as in the middle box). We can see that EPM-CEM is capable of

capturing the trend imposed by the simulation however it lags below the trend line by a gap

that is linearly (inversely) correlated with age (red-green dots). This gap, returned by the

procedure is due to the degeneracy of the likelihood surface that allows for multiple points

in the surface to attain the same likelihood and in particular the maximum likelihood.
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Analysis of Human Data

We have shown above the ability of our technique to identify the correct trend in aging in

simulated data, and we now move to analyze human methylation data from various types

of data sets. The general procedure we have taken to identify and assess a trend is as

follows. We applied the EPM approach to the real methylation data, all taken from the

Gene Expression Omnibus (GEO) repository, using the procedure in the simulation section

above ??. The EPM, allows us to determine whether the MC hypothesis is rejected by the

pacemaker, and also infers for each individual its epigenetic age. We remark that for all the

real datasets we analyzed here, the pacemaker hypothesis was found superior to the linear

approach with p-values always smaller than 10−6. As these information is not essential to

the main subject of this study, it appears in details in the supplementary text.

Similarly to the simulation study, in a subsequent stage to the EPM, we plot for each

individual its two ages. Here however, as these points were not synthetically generated by a

function, we attempt to fit a trend function best describing these points. We focus on two

families of functions - linear and logarithmic, as they are very general with a single explaining

variable. These families are indeed the most common for trend approximation. However,

to obtain additional insights on the functional form of the trend, we also accompany the

logarithmic and the linear approximations with a quadratic best approximation line. In

the results below, we demonstrate how we exploit the added information provided by the

quadratic approximation. We note that any linear line is a special case of a quadratic family,

simply with quadratic coefficient equals zero, and hence by definition its fit is always inferior

to the quadratic approximation.

Our analysis is divided to age range based analysis, and also to tissue based analysis. All

data sets required a preprocessing step of selecting the most informative (1000) sites, and

based on our conclusions above, we used the Pearson correlation coefficient (PCC) criterion.
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5.3.0.1 Epigenetic Aging in Adults

Our first data set is from GSE40279, consisting of 656 blood samples from adults [11]. Their

ages range from 19 years to 101. The results are depicted in

In the top two graphs of Figure 3 we show scatter plots with the three trend lines where

the one with the best fit appears in the left and the two suboptimal ones in the right scatter

plot. For each trend line, we also depict its exact formula, the R2 and the adjusted R2 for

polynomial trend lines. It is quite evident that the linear trend is superior here to the other

two, with negligible increase in R2 for the quadratic trend. Therefore, in order to check if

there is still a trend of non linearity, we applied the Mann-Kendall test as described in the

Methods section. The lower part of Figure 3 shows the values of ρi ordered by chronological

age. We set to test if there is an increasing trend in this series. The value obtained for S was

1619, under this size of data, we have a huge variance with V ar(S) = 31438253.33 yielding

z-score of 0.28856 which is not significant.

Our second data set is the GSE87571, also from human blood taken from 366 individuals

of ages from 14 to 94 years old. The results of applying the EPM-ECM to this data are

depicted inFigure 4. The top two graphs show the scatter plot of e-age versus c-age with the

three trend types - linear, quadratic, and logarithmic. The difference between the linear and

the quadratic is negligible, with a R2 = 0.612 and R2 = 0.613 respectively. Nevertheless,

we see a bend in the points corresponding to younger ages. In general, the entire collection

of points here allude to a concave shape, i.e. a decreasing function, as can be seen by the

negative coefficient (−0.0045) of the quadratic term in the quadratic trend line. This should

be contrasted to the convex trend of the quadratic trend in the previous case (Figure 3)

where the first coefficient equals 0.0024.

To verify this decreasing trend, as in the previous data set, we apply the test of monotonicity

- the Mann-Kendall Test - to this data. The value obtained for S was 4225 implying that

we have an increasing trend in ρ and therefore epigenetic aging is decreasing in time also
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Figure 3: GSE40279 - Human Blood Data Results I

(Top) e-age vs c-age in adults. Age is plotted in years. The left graph shows the best approximation

to the data. The linear line is slightly and insignificantly inferior to the quadratic approximation

and therefore is the best fit.(Bottom) Mann-Kendall Test for monotonicity Trend: c-age vs e-age

ratio ordered from left to right according to c-age. If rate of aging is decreasing, we expect to

see monotonic increase in the function. Indeed the function is increasing but not in a significant

manner.

for this data set. The variance here is V ar(S) = 5469768 yielding a z-score of 1.806 and a

p-value smaller than 0.04 and is therefore significant.
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Figure 4: GSE87571 - Human Blood Data Results II

(Top) e-age vs c-age in adults. Age is plotted in years. The left graph shows the best approximation

to the data. The linear line is slightly and insignificantly inferior to the quadratic approximation.

(Bottom) Mann-Kendall Test for monotonicity Trend: c-age vs e-age ratio ordered from left to

right according to c-age. If rate of epigenetic aging is decreasing with time, we expect to see a

monotonic increase in the
c-age
e-age-ratio function. Indeed the function is significantly increasing.

Epigenetic Aging in Children

After analyzing the data collected from adults, we turned to analyze data from children.

We analyze the GSE36064 data set of blood samples taken from 78 children of ages ranging
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from one year to 16. The ages here, as well as in the figure describing it, are represented

in months. The results are shown in Figure 5. Here, the linear trend is clearly inferior to

the quadratic and the logarithmic trends. We find that the logarithmic trend is the best

approximation and show it in the left side of Figure 5.

Figure 5: GSE36064 - Children Blood Data Results

e-age vs c-age in young humans. Age is plotted in months. The left graph shows the best approxi-

mation to the data. The logarithmic approximation provides the best explanation.

Combined Age Analysis

In the previous data sets we restricted the analysis to specific age ranges, such as children

or adults. In the next two data sets we analyze blood samples from individuals with age

ranges from childhood to old age. The first data set - GSE60132 - was taken from peripheral

blood samples of 192 individuals of Northern European ancestry [2]. Ages range from 6 to

85 years. The results are shown in Figure 6. As can be noticed, the logarithmic trend line

provides better R2 than the linear trend line, 0.912 versus 0.899. The concavity of the spread
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Figure 6: GSE60132 - Human, All Ages, Blood Data Results I

e-age vs c-age in a wide age range. Age is plotted in years. The left graph shows the best trend

line approximation to the data, which is the logarithmic trend function. At the right, the inferior

trends - the quadratic and linear. The quadratic line is slightly and insignificantly inferior to

the logarithmic approximation, buy also portrays a concave line due to negative first coefficient

−0.0078.

of the points is fairly noticeable and this is confirmed by the negative first coefficient of the

quadratic trend function - −0.0078.

The Next data set - GSE64495 - is also from blood samples of 113 individuals [31]. Here,

while there is a scarcity of samples from the age range 12-35, the entire age range of the

study begins at even younger ages than the previous data set: 2.3 years versus 6. Our results

for this dataset are depicted in Figure 7. Here the advantage of the logarithmic trend line

over the linear is the most significant among the adults containing data sets analyzed so far,

R2 = 0.924 versus R2 = 0.866, and is even significant over the quadratic - R2 = .902. The

decrease in the rate is evident as well as the fit to the logarithmic trend line.
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Brain Development and Aging

Our last data set is from GSE74193, consisting of 675 samples from brain tissues from before

birth to old age [Jaffe-Natneuro-2016]. The advantage of this data set is two-fold. First,

the broad range of ages - from half a year before birth to 85 years, which represents a broader

age range than that found in the the previous data sets, and allows us to track epigenetic

aging across the entire span of life, starting from before birth. Second, all the samples from

the previously analyzed data sets came from blood. This data set, from brain tissues, allows

us to contrast our results from blood tissues to another tissue type. Our results are depicted

in Figure 8. The logarithmic approximation, appears on the left graph, not only provides

a significantly better fit to the data, with R2 = 0.975 versus R2 = 0.864 and R2 = 0.707

for the quadratic trend line and the linear trend line respectively. Moreover, the high R2

Figure 7: GSE64495 - Human, All Ages, Blood Data Results II

. e-age vs c-age in kids and adults. Age is plotted in years. The left graph shows the best approx-

imation to the data, obtained by the logarithmic trend line with R2 = 0.924. On the right, the

inferior trend lines, the linear line with R2 = 0.866 and the quadratic line with R2 = 0.902.
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provides an almost perfect fit to the data.

Brain Development GSE74193 - Brain Development// e-age vs c-age in young humans. Age

is plotted in years. The left graph shows the best approximation to the data. The logarithmic

approximation provides the best explanation.

EPM Comparison to the Horvath and Hannum Epigenetic Clocks

Next we wanted to evaluate the EPM in context of the well known Horvath [13] and Han-

num [11] epgienetic clocks. To generate sufficiently large experimental data we combined

Human Illumina methylation 450K Beadchip data generated using whole blood across several

experiments [3, 22, 14, 30, 15, 5, 9, 17, 6] from GEO. To facilitate cross experiment compar-

isons, we performed stratified quantile normalization for different probe technologies used

in the Illumina 450k Beachip Array as previously reported [13]. Comparisons of the EPM

model to the Horvath and Hannum models of epigenetic aging were performed as follows.

The combined methylation data was subset to include CpG sites reported in the Horvath or

Hannum models. Samples with missing data for any of the CpG sites were dropped. The
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methylation subsets consisted of 354 CpG sites and 614 samples and 71 CpG sites and 1117

samples for the Horvath and Hannum comparison datasets respectively. We then calculated

the Horvath and Hannum epigenetic ages for each sample. The EPM produced a similar

estimate of epigenetic age for both the Horvath (R2 = 0.901) and Hannum (R2 = 0.957)

models when the min-max scaled [scikit] estimates of epigenetic age were compared to the

scaled EPM ages. Both the Horvath and Hannum models showed a non-linear epigenetic

aging trend as shown in Figure 9. However, the computed Horvath epigenetic age represents

a log transformed age under 20 years and linear age thereafter. While the raw output of

the Horvath clock displayed a better fit to a logarithmic epigenetic aging trend than the

transformed Horvath epigenetic age estimate, R2 = 0.859 vs R2 = 0.785.

Figure 9: EPM Hannum Horvath Trend Comparison

(Left) EPM and Horvath aging trend. (Middle) EPM and Horvath (transformed ages) aging trend.

(Right) EPM and Hannum aging trend.

To assess the relative importance of individual CpG sites in the Horvath and Hannum

models to the EPM, we compared the EPM rate for each CpG site to the respective regression

coefficient in Horvath and Hannum models as shown in Figure 10. EPM rates were correlated

with the regression coefficients in both the Horvath (ρ = 0.565, p = 3.19e−31) and Hannum

(ρ = 0.519, p = 3.4e− 6) models. Interestingly, the relative importance of many CpG sites
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appears to differ between the EPM and Horvath and Hannum models; particularly in the case

of the Horvath model. Many of the CpG sites assigned high coefficients in the Horvath model

have a rate close to zero in the EPM model and sites with large absolute EPM rates have

coefficients near zero in the Horvath model. This trend appears to be associated with the

methylation state of the individual CpG sites. Hypomethylated sites are assigned coefficients

with greater magnitude in the Horvath model, while intermediate sites (0.3 < β < 0.7) are

assigned higher magnitude rates in the EPM model. A similar relationship isn’t observed

when comparing the Hannum model coefficients and EPM rates.

Figure 10 EPM Hannum Horvath Rate Coefficient Comparison

Horvath and Hannum site coefficients compared to the EPM initial methylation values s0i and EPM

rates ri for the CpG sites used in the Horvath and Hannum models respectively. (Left) EPM and

Horvath (Right) EPM and Hannum
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5.4 Discussion

During the past few years several studies have shown that DNA methylation patterns con-

tinue to change as individuals age. These observations have been leveraged to construct

epigenetic clocks that predict the age of an individual based on their methylation profile.

While these tools have proven to be very useful for aging studies, they are based on a priori

assumptions about the relationships between epigenetic and chronological age. For example,

the Hannum age clock assumes that epigenetic age and chronological are linearly related,

and using multivariate penalized regression identifies 71 CpG sites whose methylation values

can be combined using a weighted sum to predict the actual age of the individual. The Hor-

vath clock uses a more complex set of assumptions to derive its predictions of chronological

age: it applies a logarithmic transformation to ages below 20 and a linear relationship for

ages greater than 20. He then identifies 354 CpG sites using elastic net regression to very

accurately predict the transformed age. These biomarkers have been widely used to study

aging, as is evident by the hundreds of studies that have utilized them. However, because

of their underlying assumptions, they are not ideal tools to infer trends in epigenetic aging

rates across life spans in an unbiased fashion. Nevertheless, correctly modeling potential

nonlinearities in epigenetic aging is critical to advance the field and generate an even more

robust understanding of epigenetic aging and its impact on human health and mortality.

To address this question, we have developed an unbiased approach to measure the trends

in epigenetic aging within a cohort of individuals of varied ages. Our approach is distinct

from the Hannum and Horvath epigenetic clocks in that it is not designed to optimally

predict the age of an individual, but rather to model the non-linear trends in epigenetic

aging over time without making any a priori assumptions about what these may be. The

method is inspired by evolutionary models that attempt to model mutation rate changes

over time. This lead to the development of our epigenetic universal pacemaker model, which

we have presented in previous studies [27, 26].
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To attempt to identify rates of epigenetic aging over the entire life span of humans we

apply the epigenetic pacemaker to multiple datasets that measure DNA methylation in large

cohorts of individuals of varying ages. In the first few cohorts the methylation is profiled

from blood, while in the last cohort the methylation is measured in brain tissue. In all cases

methylation is profiled using an Illumina microarray that measures the methylation across

approximately 450,000 sites. While all cohorts sample individuals from early adulthood

to old age, the second set also include samples from individuals from early childhood to

adulthood, and in the last case of the brain study, also samples from fetuses obtained before

birth.

By applying our epigenetic pacemaker model to this data we observe consistent and

robust trends across these datasets. The first is that from early adulthood (around age

20) to old age (well into the 90s), DNA methylation changes in a roughly linear fashion,

yet with a slight but significant tendency for rate decrease. However, in contrast to the

adults, we find that DNA methylation changes are strongly nonlinear from late fetal stages to

adolescents. In both the blood and brain datasets that measure these stages we observe that

the epigenetic age inferred by our model is related to the chronological age by a logarithmic

transformation across the entire span of life, from before birth to old age. Thus, DNA

methylation changes are very rapid initially, and then gradually decrease with age. This

implies that the rate of change of epigenetic ages (i.e. the slope of our trend line) is roughly

the inverse of the chronological age. The fact that we consistently observed these trends

across multiple datasets, and two different tissues, suggests that the logarithmic relationship

between epigenetic and chronological age may be a universal property of human aging.

This universal logarithmic trend may help explain some interesting observations that

have been reported in the literature regarding epigenetic aging. For example, one recent

study found that the Horvath epigenetic clock ”systematically underestimates ages in tissues

from older people,” and that ”a decrease in slope of the predicted ages were observed at

approximately 60 years, indicating that some loci in the model may change differently with
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age, and that age acceleration measures will themselves be age-dependent”[7]. A second

study also found that ”epigenetic age increases at a slower rate than chronological age across

the life course, especially in the oldest population”[21]. These results suggest that the

underlying assumptions about the relationships between epigenetic age and chronological age

impact the performance of the Hannum and Horvath epigenetic clocks, and that deviations

are most notable in old age. We speculate that if the logarithmic epigenetic aging trend

that we observe is in fact universal, that this could lead to improved biomarkers that show

more robust performance at the extremes of the age distributions, leading to more accurate

associations between epigenetic aging and human health and longevity.

Moreover, we believe that the observation that epigenetic aging is logarithmic over the

entire life span opens up new avenues for epigenetic research in the future. What mechanisms

lead to the gradual reduction in epigenetic rates from late fetal stages to centenarians? Is the

logarithmic trend related to prior observations that epigenetic aging is a measure of epigenetic

entropy? The answers to these questions will undoubtedly influence our understanding of

human aging and longevity and will most likely apply to a broad range of organisms. By

quantitatively demonstrating these trends in an unbiased fashion, we believe we have laid

a solid foundation for the development of improved aging biomarkers and the investigation

of the underlying mechanisms of epigenetic aging, and ultimately to the answers to these

important questions that are fundamental to the biology of development and aging.

In response to our first question about mechanisms of epigenetic age we speculate that

epigenetic aging is partially driven by entropic forces. Under this assumption, epigenomes are

set early in life and during aging the methylation levels of promoters and enhancers drift away

from their original state towards a level of intermediate methylation, which represents more

disordered states. Thus, we hypothesize that if methylation profiles were generated at the

single cell level, we would find that ensembles of cells of the same type are more epigenetically

similar early in life than later in life. Moreover, we speculate that the logarithmic trend

between epigenetic age and time is reminiscent of the relationship between entropy and the
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number of states accessible to a system, that are also related by a logarithmic relationship in

Boltzmann’s formula. Thus, if we hypothesize that Epigenetic age is a measure of entropy,

then we would conclude that the number of epigenetic states accessible to an individual

increase linearly in time.

Supplementary Text

Solving the MC Model

Under the statistical framework defined above minimizing RSS is equivalent to maximizing

the likelihood function L. In particular the ML RSS, R̂SS, is used for computing χ2. RSS

is a polynomial over the variables ri and s0i where every monomial in the RSS stands for an

entry in the input matrix Ŝ, that is ŝi,j, and is of the form:

ε2i,j = (ŝi,j − tjri − s0i )2, (5.3)

where in our case the inputs are the ŝi,j and tj and the variables sought are ri and s0i , for

every i ≤ n (our set of sites).

Normally, critical points of the RSS are found through partial derivatives of the RSS with

respect to every such variable. The critical points are the points in the 2n space where all

these partial derivatives simultaneously vanish [28]. Finding these points is normally carried

out using some numerical method.

In our case however, the special structure of the problem allows us a more efficient solution.

When the residuals are linear in all unknowns, a solution can be found using linear algebra

tools which have a closed form solution (given that the columns of the matrix are linearly

independent). Under this formalization the optimal (ML) solution is given by the vector β̂

as follows:

β̂ =
(
XTX

)−1
XTy, (5.4)

93



where X is a matrix over the variable’s coefficients in the problem, y is a vector holding

the observed values - in our case the entries of Ŝ, and the RSS equation can be written

such that for every row i in X, yi −
∑

j Xi,jβj is a component in the RSS. Equation (5.4) is

solved precisely by standard linear algebra operations, however quite computation intensive

for the sizes of our problem. Recall that for m individuals and n sites, our RSS contains

mn components each of which corresponds to an entry in Ŝ in the form ŝi,j − tjri− s0i where

ŝi,j and tj are input parameters. This leads to the following observation (stated in [27]): [27]

Let X be a mn × 2n matrix whose kth row corresponds to the (i, j) entry in S, the first n

variables of β are the ri’s and the second n variables are the s0i ’s, and the im + j entry in

y contains si,j (see Figure S1). Then, if we set the k row in X all to zero except for tj in

the i’th entry of the first half and 1 in i’th entry of the second half, we obtain the desired

system of linear equations (see again illustration for row setting in Figure S1).

The likelihood score is calculated by plugging in the values obtained for β̂ in (5.4) to the

likelihood function (or alternatively into the RSS).

Likelihood Ratio Test

The likelihood ratio test (LRT) [33] is a statistical test used to compare the goodness of fit

of two competing models, one of which (the null model) is a special case of the other, more

general, one. The log of the ratio of the two likelihood scores distributes as a χ2 statistic

(where the degree of freedom (DF) is the difference in the number of free variables between

the two models) and therefore can be used to calculate a p-value. This p-value is used to

reject the null model in the conventional manner. Specifically, let Λ = L0/L1 where L0 and

L1 are the maximum likelihood values under the restricted and the more general models

respectively. Then asymptotically, −2 log(Λ) will distribute as χ2 with degrees of freedom

equal the number of parameters that are lost (or fixed) under the restricted model.

In our case, we first set the two RSS, R̂SSMC and R̂SSPM for the ML values for RSS under
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X =



t1 0 · · · 0 | 1 0 · · · 0

t2 0 · · · 0 | 1 0 · · · 0
... | ...

tm 0 · · · 0 | 1 0 · · · 0

0 t1 · · · 0 | 0 1 · · · 0

0 t2 · · · 0 | 0 1 · · · 0
... | ...

0 tm · · · 0 | 0 1 · · · 0
... | ...
... | ...

0 · · · 0 t1 | 0 · · · 0 1

0 · · · 0 t2 | 0 · · · 0 1
... | ...

0 · · · 0 tm | 0 · · · 0 1





r1
...

rn

−

s01
...

s0n


=



ŝ1,1

ŝ1,2

...

ŝn,m



(5.5)

Figure S1: The mn×2n matrix X that is used in our closed form solution to the MC case. Every

row corresponds to a component in the RSS polynomial and the corresponding entries (ith and

i+ nth) in that row are set to tj and 1 respectively.

MC and PM respectively as obtained by the algorithm.

RSS =
∑
i≤n

∑
j≤m

(ŝi,j − (s0i + ritj))
2. (5.6)

Now, it is easy to see that

log (Λ)) = −nm
2

log
R̂SSMC

R̂SSPM
. (5.7)

Hence we set our χ2 statistic as

χ2 = nm log

(
R̂SSMC

R̂SSPM

)
. (5.8)
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Detailed Statistics of the Datasets’ Analysis

The following table provides statistics for each of the datasets analysed in the Results section

in the main text. As can be seen, all data sets attained p-value significantly smaller than

10−6 implying the pacemaker hypothesis is significantly superior to the molecular clock.

S.Figure 2:Datasets error statistics and p-values for rejecting the molecular clock hypothesis.

EPM Model Fit, M-Values to β-Value Comparison

We evaluated the performance of the EPM model on a matrix of M-values by logit trans-

forming, Mi = log2(
βi

1−βi ), all beta values in the Horvath comparison methylation dataset. A

five-fold cross validated EPM model was then fit using the matrix of M-values and using a

matrix of beta values. The fit trend lines for the M-value EPM performed worse at modeling

aging over time than the fit lines to the beta value EPM by R2 and root mean squared error

(RMSE), see Figure S2.

Functional Annotation of Horvath, EPM Comparison

We explored the relationship between the Horvath coefficients and EPM rates of the same

CpG sites by annotated each site with function information previously reported [18]. We

were unable to find a clear connection between CpG Horvath site coefficients and EPM rates,

see S.Figure 4.

96



S.Figure3: EPM Model, M-values (Left) and β-Values (Right).

Figure S.4: EPM rates, Horvath coefficients, annotated with functional information from Malousi

et al. 2018.
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DNA methylation based chronological age prediction models, epigenetic clocks, are com-

monly employed to study age related biology. The error between the predicted and observed

age is often interpreted as a form of biological age acceleration and many studies have mea-

sured the impact of environmental factors on epigenetic age. Epigenetic clocks are fit using

approaches that minimize the error between the predicted and observed chronological age.

As a result, epigenetic clocks remove potentially informative signals that could be caused by

external factors such as disease states. We compare the methods used to construct epigenetic

clocks to an evolutionary framework of epigenetic aging, the epigenetic pacemaker (EPM).

In contrast to epigenetic clocks, the EPM minimizes error across a set of methylation sites
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to find an optimal epigenetic state. We show that the EPM is more sensitive to simulated

age accelerating traits. We also show that the EPM is more sensitive at detecting sex and

cell type effects in a large aggregrate dataset assembled from publicly available data. Thus

we find that the epigenetic pacemaker is more suited to the study of factors that impact age

acceleration than traditional epigenetic clocks based on linear regression models.

6.1 Introduction

Epigenetic clocks, accurate age predictions models made using DNA methylation, are promis-

ing tools for the study of aging and age related biology. The difference between the observed

and expected epigenetic age can be interpreted as a measure of biological age acceleration

[20]. Age acceleration observed using the first generation of epigenetic clocks [18, 15] has

been associated with a variety of health outcomes including mortality risk[34, 38], cancer

risk [12], cardiovascular disease[24] and other negative health outcomes[1, 21, 22]. However,

as epigenetic clocks become more accurate epigenetic age acceleration is no longer associated

with mortality [54]. This has led to the development of a second generation of epigenetic

clocks[30, 32, 5] fit against an integrated measure of health rather than chronological age.

Generation one and two clocks were fit following the same procedure. A penalized re-

gression model is fit against a trait of interest, whether it is age or a measure of biologi-

cal age. Given an elastic net model of form y = βX, the goal of penalized regression is

to maximize the likelihood by reducing the prediction error of the model, L(λ1, λ2, β) =

|y − Xβ|2 + |λ2β|2 + |λ1β|. In the case of epigenetic clocks, the likelihood is maximized

by minimizing the difference between the observed and predicted age subject to the elastic

net penalty. The error minimization assumes that the dependent variable can be modeled

linearly using the underlying DNA methylation data. Methylation sites that are non-linear

with respect to the signal of interest or that increase modeled error will be preferentially ex-
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cluded. Consequently, biologically meaningful information may be discarded during model

fitting. This problem is magnified in the case of epigenetic clocks where the relationship be-

tween methylation and time is nonlinear[41]. Rather than determining how well a signal of

interest can be modeled using epigenetic information, an alternative and complementary ap-

proach to studying epigenetic aging is to model how methylation changes for a predetermined

collection of sites with respect to age.

To this end, we have developed the epigenetic pacemaker (EPM) [42, 13] to model methy-

lation changes with age. Given j individuals and i methylation sites, under the EPM an

individual methylation site can be modeled as m̂ij = m0
i +risj+εij where m̂ij is the observed

methylation value, m0
i is the initial methylation value, ri is the rate of change, sj is the epi-

genetic state, and εij is a normally distributed error term. The ri and m0
i are characteristic

of the sites across all individuals and the epigenetic state of an individual sj is set using

information from all modeled sites. Given an input matrix M̂ = [m̂i,j] the EPM utilizes a

fast conditional expectation maximization algorithm to find the optimal values of m0
i , ri,

and sj to minimize the error between the observed and predicted methylation values across

a set of sites. This is accomplished by first fitting a linear model per site using age as the

initial sj. The sj of the modeled samples is then updated to minimize the error between

the observed and predicted methylation values. This process is performed iteratively until

the reduction in error is below a specified threshold or the maximum number of iterations

is reached. Under the EPM, the epigenetic state has a linear relationship with the mod-

eled methylation data, but not necessarily with respect to time. This allows for non-linear

relationships between time and methylation to be modeled without prior knowledge of the

underlying form. Additionally, after model training each site has characteristic m0
i and ri

that describe the site in relation to other modeled sites and the output epigenetic states.

Importantly, sites with different functional relationships between methylation and time are

modeled collectively.

In the current work, we extend the EPM model using a simulation framework to simu-
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late methylation matrices associated with age and phenotypes that drive age acceleration.

Utilizing this simulation framework we evaluate the ability of penalized regression and EPM

models to detect simulated traits that have linear and nonlinear associations with age and

age accelerating traits. We then validate the simulation results utilizing a large aggregate

dataset compiled from publicly available data.

6.2 Results

Simulation of Trait Associated Methylation Matrix

Under the EPM the epigenetic state for individual j, Sj, can be interpreted as a form

of biological age that represents a weighted sum of aging associated phenotypes Sj =∑n
k=1 α1p1,j + ... + αkpk,j. Under this model αk is the weight for phenotype k and pk,j

is the value of phenotype k. Phenotypes may contribute to increased or decreased aging

respectively that when considered as a whole contribute to the overall aging rate observed

for an individual.

As shown in our previous work[41], the relationship between pk,j and time is not necessar-

ily linear. When simulating age associated phenotypes, each phenotype can be represented

as pk,j = Ageγkj qk,j, where γk is a phenotype specific learned parameter shared among all in-

dividuals. In the formulation of a phenotype, qj,k is representative of exposure. The observed

phenotype is modeled as an interaction between age and an exposure of varying magnitude

among individuals. This formulation is flexible as non-age dependent traits can be easily

simulated by setting γk = 0, pk,j = Age0jqk,j = qk,j.

The objective of the EPM is to find the optimal values of m0
i , ri, and sj to minimize the

error between the predicted and observed methylation values across a system of methylation

sites. The optimal values of sj represent a composite metric representative of each modeled

site. Individual sites can be described as a linear model where m̂i,j = m0
i + riPi,j + εi,j. Pi,j

is a weighted sum of phenotypes influencing the methylation status of an individual site,
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Pi,j =
∑n

k=1 υ1p1,j + ...+ υkpk,j. Additionally, while individuals will have varying Pi,j values,

the contribution of each phenotype, but not magnitude of the exposure, is shared among all

individuals.

To assess the sensitivity of the EPM and penalized regression approaches at detect-

ing the influence of epigenetic state associated traits we simulated a methylation matrix

containing linear and nonlinear age associated traits of form pk,j = Age
N (0.5,0.01)
j qk,j and

pk,j = Age
N (1,0.01)
j qk,j. The trait γ parameter was generated by sampling from a normal

distribution N (0.5, 0.01) to generate traits with varying relationships with time (Figure 1).

Simulated traits included binary phenotype (P = 0.5), continuous phenotypes influenced by

age and sample health, or a continuous trait influenced by age only (Table 1). Samples were

simulated by assigning an age from a uniform distribution, U(0, 100) and sample health from

a normal distribution. The effect, q, of carrying a binary trait was varied from 0.995 to 1.0

over 5 equally spaced intervals. Given a binary trait form of pk,j = Age0.5j qk,j a 0.001 decrease

in q corresponds to a 1 percent decrease in epigenetic state by age 100 relative samples not

assigned the binary trait. Within each interval the standard deviation of the sample health

sampling distribution was varied from 0.0 to 0.01 over 5 equally spaced intervals. The simula-

tion was repeated 50 times for each binary, continuous trait combination with 500 simulated

samples. Additionally, at a binary q of 0.995 the range of continuous traits was expanded

over a broader range to assess the model sensitivity at detecting the continuous trait. Five

methylation sites for all continuous traits were then simulated and 50 methylation sites for

the binary trait. Additionally, 50 sites were simulated that were equally influenced by a

mixture of four continuous traits and the simulated binary trait. The resulting simulation

matrix contains 450 methylation sites and 500 samples per simulation.

Given a simulation dataset the samples were split randomly and 50% of data used for

training and testing respectively. EPM and penalized regression models were fit to each

simulation training matrix to predict the epigenetic state and age respectively. To assess

the sensitivity of each model to detect a trait influencing the epigenetic age or state with
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the testing data we fit a regression model where the epigenetic age or state is dependent

on the age, square-root of the age, the health status, and binary trait status of the sample

(Sj = Age +
√
Age + healthj + binaryj). The square-root of the age is included in the

regression model to account for the non-linear relationship between the simulated age and

methylation data.

As the exposure size of the binary trait is decreased from 1.00 to 0.995 the ability of the

EPM and regression models to detect an influence on epigenetic state is improved (Figure

2 A and B). At an effect size of 0.995 the estimated effect of the binary trait is significant

(µ = 0.041, σ = 0.121) while in the penalized regression model it is not (µ = 0.271, σ =

0.278). At an exposure size of 1.0, equivalent to no effect of the simulated binary trait,

the distribution for the EPM and linear models is randomly dispersed. The binary trait

model coefficients for the EPM are proportional to the effect size and the distributions are

clearly defined given an increase in simulated exposure size (S.Figure 2 A). By contrast, the

assigned model coefficients for the epigenetic age models are not clearly defined by exposure

size (S.Figure 2 B.).

The ability to observe the health effect through the simulated continuous traits improves

in both the linear and EPM models as the standard deviation of the sample health sampling

distribution is increased (Figure 2 A and B). At an exposure size of 0.002 and 0.0025 the

average EPM model is significant (µ = 0.0269, σ = 0.0875) while the average linear model

is not (µ = 0.108, σ = 0.209). At a continuous trait standard deviation above 0.005 both

models produce significant results. Additionally, EPM and penalized regression models were

generated against a matrix of 60 sites, where ten of the sites are influenced by the binary

trait (q = 0.995) and 50 sites were randomly selected that were influenced by sample health

or only sample age. The proportion of age only to health associated sites was varied from 1

to 0.5. As the proportion of age-only sites is decreased the ability to observe the continuous

trait improves for both the EPM and penalized regression models (Figure S. 2 C and D) but

the ability to observe the effect is dependent on the continuous standard deviation. The EPM
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shows improved performance at detecting the continuous traits at the same distribution given

a continuous trait standard deviation relative to the penalized regression model (Figure S. 2

C and D). Additionally, as expected the penalized regression models predominantly selected

sites associated with linear traits, pk,j = Age
N (1,0.01)
j qk,j, (S. Figure 2 A and B)

Universal Blood EPM and Penalized Regression Models

To compare the performance of the EPM and linear models in real data we assembled a

large aggregate dataset of Illumina 450k array data[33, 48, 44, 27, 50, 43, 9, 19, 28, 53,

6, 11, 46] deposited in the Gene Expression Omnibus[3] (GEO). The combined datasets

represented 6,251 whole blood tissue samples across 16 GEO series. We trained EPM and

penalized regression models using a subset of the total aggregate data assembled from four

GEO series[26, 31, 7, 10] (n = 1605) with samples spanning a wide age range (0.01 - 94.0

years). The training set was split by predicted sex and then was stratified and split by age,

80% of the samples from each sex were combined (n = 1283) for model training and the

remaining samples (n = 322) for model evaluation. Methylation values for all samples were

quantile normalized by probe type[18] using the median site methylation values across all

training samples for each methylation site.

We then fit a penalized regression model to the training matrix as follows. The normalized

training methylation matrix was first filtered to remove sites with a variance below 0.001,

resulting in a training matrix with 183,114 sites down from the 485,512 sites in the unfiltered

matrix. A cross validated elastic net model was trained against training sample ages using

the filtered methylation matrix. The trained model performed well on the training and

testing datasets (S.Figure 3).

In contrast to penalized regression based approaches, site selection for the EPM model

is performed outside of model fitting. Methylation sites were selected for model training

as follows. Sites were initially selected for modeling if the absolute Pearson correlation

coefficient between methylation values and age was greater than 0.45 (n = 9937). A per site
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regression model was fit using the observed methylation value as the independent variable

and age as the explanatory variable. Sites with a mean absolute error (MAE) less than 0.025

between the predicted and observed methylation values were retained for further analysis

(n = 3832). An EPM model was then fit to using these sites (Figure 3A). We then sought to

identify subsets of sites that had functionally similar forms between age and methylation, that

were represented in a sufficient number of sites to model. This was done to filter sites that

were associated with age by chance and to select cluster with low with low prediction error.

Subsets of sites with similar functional form were clustered[14] by the euclidean distance

between the single site regression model residuals using affinity propagation [14]). Cross

validated EPM and penalized regression models were trained for all clusters with greater

than ten sites (n = 34). The cluster EPM models show varying association between the

epigenetic state and age relative to the EPM model fit with all sites used during clustering

(Figure 3B). This resembles the simulated methylation matrices where sites with differing

functional forms are modeled collectively. Clusters with an observed EPM and penalized

regression MAE less than 6 (n = 3) were combined to fit final EPM and penalized regression

models. The combined cluster EPM and combined cluster regression model performed well

on the training and testing datasets (S.Fig 2). Additionally, principal component analysis

(PCA) was performed on the cell type abundance estimates made for the training data. The

trained PCA model was used to predict the cell type PCs for the testing and validation

datasets.

We evaluated the combined cluster EPM, combined cluster penalized regression, and

the full penalized regression models against a validation data set comprising 14 GEO series

experiments representing 4,600 whole blood tissue samples. Each model accurately predicted

the epigenetic state or epigenetic age of the validation samples (Figure 4). We then fit

a ordinary least squares regression model for every validation experiment individually to

predict the observed epigenetic age or state using the sample age, the square root of age, cell

type PCs, and predicted sex (Sj = Age+
√
Age+ PC1 + PC2 + PC3 + Sex+ Intercept).
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If the proportion of female samples to the total number of sample was greater than 0.7

the sex term was dropped from the experimental regression model. Significant cell type

PC2 coefficients were observed for all EPM models and the majority of the cluster and

full penalized regression models (Figure 5A). Significant cell type PC1 and PC3 coefficients

were observed for the majority of the EPM models but not for the cluster or full penalized

regression models. Significant sex effects (p < 0.0038) were observed for 9, 4, 0 out 15 models

for the EPM, cluster penalized regression, and full penalized regression respectively (Figure

5B).

6.3 Discussion

The epigenetic state of an individual is dynamic, with methylation sites dispersed throughout

the genome influenced in context specific ways. This is supported by the array of epigenetic

clocks, fit to age and aggregate measures of health, and to the emergence of other DNA

methylation based biomarkers[36, 52, 16]. Given a large enough matrix, penalized regression

will select sites that minimize the prediction error given a modeled trait. Utilizing this

approach will generate a model where sites that are strongly associated with the modeled

trait are preferentially selected which can remove biological signals from other factors that

may influence methylation. Depending on the context this approach is both more and

less effective than the EPM. The penalized regression models provide more accurate age

predictions (R2 = 0.875, 0.911) than the EPM model (R2 = 0.821), and the model output

can be directly related to the age of a sample. By contrast, the predictions made by the

EPM provide results as an epigenetic state that can’t be directly interpreted as an age.

However, while the penalized regression models were more accurate for predicting age,

the EPM was more sensitive to cell type and sex effects with real data and more sensitive to

the simulated traits. The EPM also captures the nonlinear relationship between the modeled

methylation data and time. Naturally, as a penalized regression model fit to age improves,
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the influence of other factors on epigenetic age predictions will be minimized. By contrast,

the EPM minimizes the difference between the predicted and observed methylation values.

The output epigenetic state will be influenced by the modeled methylation data, even if the

modeled sites introduce prediction error. If the introduced error is biologically meaningful

then the resulting model can be less accurate but more informative. This idea has been

recently supported by two studies looking at epigenetic aging in marmots[39] and zebras[29].

EPM models showed an association between hibernation and slowed epigenetic aging in

marmots and increased epigenetic age associated with zebra inbreeding; no such associations

were observed with penalized regression epigenetic age models.

Ultimately, EPM and penalized regression approaches are complementary to one another.

While penalized regression approaches can generate highly accurate models to predict age,

these approaches naturally reduce the influence of other factors on age related biology. By

contrast, the EPM models a collection of sites and is sensitive to environmental and physi-

ological factors that influence epigenetic aging .

6.4 Methods

Simulation

The simulation framework is implemented a as python package with numpy(≥v1.16.3)[17]

and scikit-learn(≥v0.220)[37] as dependencies. A simulation run results in trait associated

methylation matrix and samples with assigned traits. The amount of noise added per methy-

lation site is also retained for downstream use. The simulation procedure is implemented as

follows:

1. Traits are initialized that contain the information about the trait relationship with

age and a simulated sample phenotype. Given the structure pk,j = Ageγkj qk,j, and k

samples and j traits γ is characteristic of the trait. When a sample is passed to a
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trait a value of q is generated for the sample by sampling from a normal distribution

with a variance characteristic of the simulation trait. Additionally, each trait can be

optionally influenced by a characteristic measure of health, hj, for the sample. Given,

a normally distributed trait N (µ, σ2) and a health effect hj, the sampled distribution

for individual j is N (µ+ hj, σ
2). Continuous and binary traits can be simulated. If a

binary trait is simulated a q other than 1 is assigned at a specified probability.

2. Samples are simulated by setting the age by sampling from a uniform distribution

over a specified range and by setting a sample health metric h by sampling from a

normal distribution centered on zero with a specified variance. Traits passed to a

sample simulation object are then set according to the age and health of the sample.

Simulated samples retain all the set phenotype information for downstream reference.

3. Methylation sites are simulated by randomly setting the initial methylation value,

maximum observable methylation value, the rate of change at the site, and the error

observed at each site. Sites are then assigned traits that influence the methylation

values at each site.

4. Methylation values are simulated for each site for every individual given the simulated

phenotypes with a specified amount of random noise

Simulation EPM and Penalized Regression Models

Simulation data was randomly split in half into training and testing sets. EPM models

were fit using the simulated methylation matrix against age. Penalized regression models

were fit using scikit-learn ElasticNet (alpha=1, l1 ratio=0.75, and selection=random). All

other parameters were set to their default values. Ordinary least squares regression as

implemented in statsmodels (0.11.1)[40] was utilized describe the epigenetic state or age

with the following form (Sj = Age +
√
Age + healthj + binaryj). Full analysis is found in

the EPMSimulation.ipynb supplementary file.
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Methylation Array Processing

Metadata for Illumina methylation 450K Beadchip methylation array experiments deposited

in the Gene Expression Omnibus (GEO) [3] with more than 50 samples were parsed using

a custom python toolset. Experiments that were missing methylation beadchip array inten-

sity data (IDAT) files, made repeated measurements of the same samples, utilized cultured

cells, or assayed cancerous tissues were excluded from further processing. IDAT files were

processed using minfi[2] (v1.34.0). Sample IDAT files were processed in batches according to

GEO series and Beadchip identification. Methylation values within each batch were normal-

exponential normalized using out-of-band probes[45]. Blood cell types counts were estimated

using a regression calibration approach[23] and sex predictions were made using the median

intensity measurements of the X and Y chromosomes as implemented in minfi. Whole blood

array samples were used for downstream analysis if the sample median methylation probe

intensity was greater than 10.5 and the difference between the observed and expected me-

dian unmethylation probe intensity is less than 0.4 given the observed median methylation

intensity where the expected unmethylated signal as described by (y = 0.66x+ 3.718).

Universal Blood EPM and Penalized Regression Models

Methylation sites with a Pearson correlation coefficient against age greater than 0.45 (n =

9937). A linear model was generated using numpy polyfit with age and the independent

variable and methylation values as the dependent variable. Mean absolute error (MAE) was

calculated as the mean absolute difference between the observed and predicted meth values

according to the site linear models. A vector of residuals generated using this model was

utilized for clustering by affinity propagation using scikit-learn AffitinityPropogation using a

random state of 1 and a cluster preference of -2.5. All other parameters were set to default.

Cross validated (n = 10) EPM models were generated for all training subsets.

Penalized regression models were fit using scikit-learn ElasticNetCV (cv=5 alpha=1,
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Table 1: Simulated Bisulfite Sequencing Library Parameters:

The parameters used to simulate libraries using BSBolt for tool comparisons. All

simulations were carried out at read lengths of 50, 100, and 150 base pairs.

Trait Type γ Health Effect Age Only Generated Phenotypes

Continuous N (0.5, 0.01) Yes No 10

Continuous N (1.0, 0.01) Yes No 10

Continuous N (0.5, 0.01) No Yes 20

Continuous N (1.0, 0.01) No Yes 20

Binary 0.5 Yes No 1

l1 ratio=0.75, and selection=random). All other parameters were set to their default val-

ues. Principal Component Analysis as implemented in scikit-learn was utilized with default

parameters to perform PCA on training sample sample cell type abundances. The trained

PCA was utilized to calculate cell type PCs for the testing and validation samples. Ordi-

nary least squares regression as implemented in statsmodels (0.11.1)[40] was utilized describe

the epigenetic state or age with the following form (Sj = Age +
√
Age + CellTypePC1 +

CellTypePC2 + CellTypePC3 + Sex + Intercept). Full analysis is found in the EPMUni-

versalClock.ipynb supplementary file.

Analysis Environment

Analysis was carried out in a Jupyter[4] analysis environment. Joblib[47], SciPy[49], Mat-

plotlib[25], Seaborn[51], Pandas[35] and TQDM[8] packages were utilized during analysis.
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Figure 1: Simulated trait forms where the shaded area represent one standard deviation away

from the mean γ, given pk,j = Ageγkj qk,j .
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Figure 2: The distribution binary coefficient p-values for (A) EPM and (B) penalized regression

models. The distribution of p-values given a simulation health standard deviation for (C) EPM

and (D) penalized regression models
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Figure 3: (A) EPM model fit with 3832 methylation sites with a MAE below 0.025. (C) The fit

trend line for EPM clusters with more than 10 sites and an R2 ≥ 0.4.

*

Figure 4: Whole blood tissue validation (A) EPM, (B) cluster penalized regression and (C) full

penalized regression models.
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Figure 5: (A) Cell type principal component and (B) predicted sex regression coefficient p-values.
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S. Figure 1: Binary trait coefficients in epigenetic state regression Models for EPM (A) and pe-

nalized regression (B) by binary exposure size q. Continuous health associated traits were mixed

with non-health associated continuous traits at set proportions. As the proportion of health asso-

ciated sites increases relative to the non-health associated sites the (C) EPM and (D) penalized

regression models become more sensitive. The ability of both models to detect the simulated effect

is dependent on the magnitude of the simulation effect q.
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S. Figure 2: Proportion of sites, by type, selected for the simulated penalized regression models

by (A) binary trait q and (B) sampling health standard deviation
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S. Figure 2: (A - C) Train, testing, and validation EPM model. (D-E) Train, testing, and

validation cluster penalized regression model. (G-J) Train, testing, and validation full penalized

regression model.
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