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Article https://doi.org/10.1038/s41467-024-47738-y

AMTA2-SATB2 chromatin complex restrains
colonic plasticity toward small intestine by
retaining HNF4A at colonic chromatin

Wei Gu 1,6,7 , Xiaofeng Huang 1,7, Pratik N. P. Singh2,3, Sanlan Li1, Ying Lan1,
Min Deng1, Lauretta A. Lacko1,4, Jesus M. Gomez-Salinero 1, Shahin Rafii 1,
Michael P. Verzi 5, Ramesh A. Shivdasani 2,3 & Qiao Zhou 1,4

Plasticity among cell lineages is a fundamental, but poorly understood,
property of regenerative tissues. In the gut tube, the small intestine absorbs
nutrients, whereas the colon absorbs electrolytes. In a striking display of
inherent plasticity, adult colonicmucosa lacking the chromatin factor SATB2 is
converted to small intestine. Using proteomics andCRISPR-Cas9 screening,we
identify MTA2 as a crucial component of the molecular machinery that,
together with SATB2, restrains colonic plasticity.MTA2 loss in the adultmouse
colon activated lipid absorptive genes and functional lipid uptake. Mechan-
istically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal
transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A
release from colonic chromatin, and accumulation on small intestinal chro-
matin. SATB2 similarly restrains colonic plasticity through an HNF4A-
dependent mechanism. Our study provides a generalizable model of lineage
plasticity in which broadly-expressed TFs are retained on tissue-specific
enhancers to maintain cell identity and prevent activation of alternative
lineages, and their release unleashes plasticity.

Cells in regenerative tissues can exhibit substantial phenotypic plas-
ticity upon injury1–3. Differentiated quiescent cells may dedifferentiate
along its lineage trajectory to become progenitors or stem cells, then
assume forward differentiation to produce progenies for tissue repair,
as reported in the lung, intestine, and skin4–7. Cells could also cross
lineage boundaries and switch fate. Examples of lineage plasticity
include conversion of hepatocytes to cholangiocytes in the liver,
alpha/delta to beta cells in the pancreas, and hair follicle stem cells to
epidermal stem cells in the skin8–12. Lineage plasticity must be tightly
regulated because undesirable plastic events, such as metaplasia, may
promote dysfunction or serve as precursors to tumorigenesis13,14.

Some of the signaling pathways, transcriptional mediators, and chro-
matin substrates of cellular plasticity have begun to emerge from
recent studies8,15–18. Nevertheless, our understanding of the molecular
complexes that safeguard cellular identity and mediate lineage plas-
ticity remains limited.

The small and large intestines are markedly different in cell
composition and function19. While the small intestine absorbs nutri-
ents through the enterocytes that line the mucosal surface, the colon
mainly absorbs electrolytes and water. Accordingly, enterocytes
express many transporters for lipids, amino acids, and carbohydrates
that the colonocytes lack20. Nevertheless, using genome-widemapping

Received: 5 December 2022

Accepted: 8 April 2024

Check for updates

1Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New
York, NY 10065, USA. 2Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue,
Boston, MA 02215, USA. 3Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
4Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA. 5Department of Genetics, Rutgers
University, 145Bevier Road, Piscataway,NJ08854,USA. 6Present address: BeiGene Institute, BeiGene (Shanghai) Research&Development Co., Ltd, Shanghai
200131, China. 7These authors contributed equally: Wei Gu, Xiaofeng Huang. e-mail: wei.gu@beigene.com; jqz4001@med.cornell.edu

Nature Communications |         (2024) 15:3595 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5958-2653
http://orcid.org/0000-0002-5958-2653
http://orcid.org/0000-0002-5958-2653
http://orcid.org/0000-0002-5958-2653
http://orcid.org/0000-0002-5958-2653
http://orcid.org/0000-0001-8571-4667
http://orcid.org/0000-0001-8571-4667
http://orcid.org/0000-0001-8571-4667
http://orcid.org/0000-0001-8571-4667
http://orcid.org/0000-0001-8571-4667
http://orcid.org/0000-0002-9024-2171
http://orcid.org/0000-0002-9024-2171
http://orcid.org/0000-0002-9024-2171
http://orcid.org/0000-0002-9024-2171
http://orcid.org/0000-0002-9024-2171
http://orcid.org/0000-0001-5605-1067
http://orcid.org/0000-0001-5605-1067
http://orcid.org/0000-0001-5605-1067
http://orcid.org/0000-0001-5605-1067
http://orcid.org/0000-0001-5605-1067
http://orcid.org/0000-0003-4082-4330
http://orcid.org/0000-0003-4082-4330
http://orcid.org/0000-0003-4082-4330
http://orcid.org/0000-0003-4082-4330
http://orcid.org/0000-0003-4082-4330
http://orcid.org/0000-0002-2828-1727
http://orcid.org/0000-0002-2828-1727
http://orcid.org/0000-0002-2828-1727
http://orcid.org/0000-0002-2828-1727
http://orcid.org/0000-0002-2828-1727
http://orcid.org/0000-0002-0099-3909
http://orcid.org/0000-0002-0099-3909
http://orcid.org/0000-0002-0099-3909
http://orcid.org/0000-0002-0099-3909
http://orcid.org/0000-0002-0099-3909
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47738-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47738-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47738-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47738-y&domain=pdf
mailto:wei.gu@beigene.com
mailto:jqz4001@med.cornell.edu


with the enhancer marker H3K4me1 and ATAC-seq (Transposase
Accessible Chromatin with high throughput sequencing), colonic
epithelial cells surprisingly harbor primed small intestine enhancers,
suggesting an intrinsic permissiveness for small intestine gene acti-
vation in colon21. Upregulation of small intestine genes has been
reported in the colon of patients with short bowel disease22, whereas a
more substantial colon to small intestine transcriptomic shift may
occur in some patients with inflammatory bowel diseases (IBD)23. The
colon thus displays various degrees of cellular plasticity.

We recently identified the colon-restricted chromatin factor,
SATB2, as a central regulator of colonic gene expression and lineage
plasticity24. Satb2 deletion converts colonic stem cells into small
intestine ileum-like stem cells, leading to the replacement of colonic
mucosa by ileum-like mucosa in the adult mouse colon. Loss of SATB2
in mature colonocytes also rapidly activates ileal genes. Despite these
observations, mechanisms of colonic plasticity remain largely
unknown.

We hypothesized that some SATB2-associated chromatin factors
may regulate colonic plasticity. Using Affinity Purification and Mass
Spectrometry (AP-MS), we identified SATB2-associated proteins in
colonic epithelium, including MTA2 (metastasis associated protein 2)
and multiple members of the NuRD (Nucleosome Remodeling Dea-
cetylase) complex. CRISPR (clustered regularly interspaced short
palindromic repeats)-mediated loss-of-function evaluation in colonic
organoids suggests that MTA2-containing NuRD complex could reg-
ulate colonic transcription. MTA2 expression is restricted to colono-
cytes.Mta2 deletion in the adult mouse colon activated small intestine
genes, including fat absorptive genes that enable lipid uptake by
colonocytes.Mechanistic studies indicate thatMTA2 andNuRDdo not
directly bind and silence small intestine genes, but rather MTA2 and
the intestinal TF HNF4A, extensively co-occupied colonic chromatin.
MTA2 loss led to HNF4A depletion at colonic enhancers and enrich-
ment at small intestine enhancers, indicating a critical function for
MTA2 in retaining HNF4A at colonic enhancers. Moreover, MTA2
physically interacts with SATB2, and both restrain HNF4A on colonic
chromatin, albeit at different strength, leading to different degrees of
plasticity in Mta2 vs. Satb2 mutant colon. Consistent with these find-
ings, Hnf4a deletion from Mta2-null or Satb2-null colonic organoids
abrogated small intestine gene activity. MTA2 loss led to stronger
interaction of SATB2 with the NuRD core subunits HDAC1 and HDAC2,
and HDAC1/2 inhibition suppressed small intestine genes, suggesting
that enhanced HDAC1/2 activities near SATB2 may weaken HNF4A
binding and activate small intestine genes. Together, our data reveal
that aMTA2-SATB2 chromatin complex at colonic enhancers performs
the dual functions of safeguarding transcriptional fidelity and reg-
ulating cell plasticity. By restraining HNF4A, a TF expressed in both
small and large intestines, at colonic enhancers, transcription of small
intestine genes is blocked in the colon and release of this block
unleashes cellular plasticity.

Results
MTA2-containing NuRD associates with SATB2 and regulates
colonic gene expression
SATB2 and its homolog SATB1 have been proposed as chromatin hubs
that orchestrate protein-protein and protein-DNA interactions25,26.
Reasoning that some of the SATB2-associated factors may regulate
colonic plasticity, we purified protein complexes that contain SATB2
frommurine colonic glands (Fig. 1a and Figure. S1a). Two independent
AP-MS experiments identified a total of 628 proteins with a false dis-
covery rate (FDR) < 1%. Of these, 78 proteins were significantly enri-
ched inboth samples (SATB2AP-MSsignal intensity andMScountover
IgG controls > 2-fold), with SATB2 itself being the most enriched
(Fig. 1b, Supplementary Data 1).

The top 40 candidate SATB2-associated proteins included an
abundance of histones, nuclear matrix proteins, and chromatin

remodeling factors, consistent with the proposed role of the SATB
family as chromatin organizers (Fig. 1b and Figure. S1b). Fourmembers
of the NuRD complex, including CHD4, MTA2, RBBP4, and GATAD2A,
were among the top 40 interactors, suggesting association of the
NuRD complex with SATB2 (Fig. 1b). Using co-immunoprecipitation
(co-IP), we observed interaction of both SATB2 with MTA2, and MTA2
with the NuRD core subunit CHD4 (Fig. 1c and Figure. S1c). We also
validated the interaction of SATB2 with SMARCD2 and SMARCA4, two
members of the SWI/SNF chromatin remodeling complex identified in
AP-MS (Figure. S1c).

To evaluate the functional importance of candidate SATB2-
associated factors in colonic transcription, we used CRISPR-CAS9 in
murine colonic organoids to disrupt nine chromatin remodeling genes
whose protein products were enriched in our AP-MS analysis (Fig-
ure. S1d); of these, seven achieved deletion efficiencies of 80-95% by
immunoblot analysis (Fig. 1, e and Figure. S1e). RNA-sequencing indi-
cated that deletion of Chd4, Mta2, or Gatad2a, but not the other fac-
tors, significantly altered colonic transcriptomes toward that of Satb2
knockout organoids (Fig. 1f–h and Figs. S1F and 1g, Supplementary
Data 2). These data suggest that the NuRD complex interacts with
SATB2 and is functionally important in regulating colonic
transcription.

Activation of lipid absorptive genes in MTA2-deficient
colonocytes
The colonic mucosa is a regenerative epithelium, with 4- to 7-day
cycles of self-renewal powered by LGR5+ intestinal stem cells (ISCs)
in the crypts of Lieberkuhn27. The colonic ISCs produce progenitors
(transient amplifying cells) which give rise predominantly to
absorptive colonocytes and secretory goblet cells (Fig. 2a). Immu-
nohistochemistry revealed prominent MTA2 expression in upper,
but not lower colonic glands, and in scattered sub-epithelial cells
(Figs. 2b, c and Figure. S2a). In contrast, the NuRD subunits CHD4
and GATAD2A were present throughout the colonic epithelium,
similar to SATB2 (Fig. 2b). The majority of MTA2+ cells (68.0 ± 7.6%)
were CA1+ colonocytes and conversely, nearly all CA1+ mature
colonocytes were MTA2+ (Figs. 2d and g). A minority subpopulation
of MTA2+ cells were goblet cells (6.5 ± 3.1%), recognized by Alcian
blue staining (Figs. 2f, g). LGR5+ colonic stem cells did not express
MTA2 (Figs. 2e and g). Thus, an MTA2-containing NuRD complex is
enriched in terminally differentiated colonocytes on the luminal
surface.

Intestinal mucosa specific Mta2 gene deletion in 2-month old
Villin-CreER;Mta2f/fmice (Fig. 3a, hereafter referred to asMta2cKO), led to
near complete absence of MTA2 (Fig. 3b). Onemonth after Tamoxifen
treatment, Mta2cKO mice showed no overt changes in colonic histology
or cell proliferation (Figure. S3a). RNA-sequencing of colonic glands
revealed 200 up-regulated and 68 down-regulated genes (log2 fold
change [LFC] > 1, adjusted p [padj] <0.05) (Fig. 3c, Supplementary
Data 3) in Mta2cKO vs. control colon. Mta2cKO colon was enriched for
functional pathways and gene sets in fat digestion and absorption,
thiamine metabolism, and chemokine signaling (Fig. 3d-f). Transpor-
ters for amino acids, carbohydrates, bile salts and vitamins also
exhibited a trend toward up-regulation in Mta2cKO colon (Figure. S3b).
In contrast, no pathway was significantly enriched among the down-
regulated genes (P < 0.001) (Fig. 3d). Immunohistochemistry showed
expression of FABP6 and MTTP, two lipid transport proteins, in the
upper glands of Mta2cKO colon (Figs. 3g, h). Alkaline phosphatase, a
small intestine brush border enzyme, was also activated and localized
to surface colonocytes (Fig. 3g). Consistent with these molecular
changes, BODIPY staining showed lipid accumulation in ileal villi and
the upper glands of Mta2cKO proximal colon, but not in control colon
(Fig. 3i). Thus, MTA2 loss in colonocytes activated many small intest-
inal genes, particularly those involved in lipid transport and
metabolism.
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MTA2 retains HNF4A on colonic enhancers and prevents HNF4A
from activating small intestine chromatin
MTA2 is part of the NuRD complex, which has been proposed to
suppress alternative transcriptional programs in several tissues by
direct binding and suppression of target genes28. To investigate how
MTA2 modulates small intestine gene expression in the colon, we

mapped genome-wide MTA2 binding by chromatin immunoprecipi-
tation sequencing (ChIP-seq). Duplicate MTA2 ChIP data from colonic
epithelia yielded highly concordant data with 23,557 peaks (q < 1 ×10−3,
using input DNA and Mta2cKO as controls) (Figure. S4a). Colonic MTA2
binding occurred at promoters (49.1%, <2 kb from transcription start
sites (TSSs)) and distal elements (50.9%, introns and intergenic
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regions) (Figure. S4b). Genes near MTA2 binding sites (<50kb) were
highly enriched for the colonic but not the small intestine signatures
(Fig. 4a, Supplementary Data 4). For instance, small intestine genes
activated inMta2 null colon, such as Lgals2,Npc1l1, Abcg8, and Pla2g2a
(Figs. 3c and f), lacked nearby MTA2 binding (Figure. S4c). These data
indicate that MTA2 does not directly bind and suppress small intes-
tine genes.

Using HOMER analysis, we identified the DNA-binding motif of
the intestinal transcription factor HNF4A as the top enriched motif
at distal MTA2 binding sites (Fig. 4b). HNF4A and its homolog
HNF4G are expressed in both small and large intestines, and shown
to be important in activating enterocyte gene transcription29. Thus,

we evaluated whether MTA2 could regulate HNF4A in the colon.
Indeed, 87.2% of the MTA2 binding sites on colonic chromatin
overlapped with binding of HNF4A (Fig. 4c). HNF4A expression was
unchanged after MTA2 loss but HNF4A binding was depleted at
2,065 sites and acquired at an additional 4379 sites in Mta2cKO colon
(log2FC > 1.0, q < 0.01) (Figs. 4d, e and S4d). About 80% of depleted
sites (1639 of 2065) and nearly all gained sites (4233 of 4379) were in
distal elements (Figure. S4e), indicating thatMTA2 regulates HNF4A
binding primarily at distal enhancers. Consistent with this notion,
the depleted and gained HNF4A sites corresponded to areas of open
chromatin enriched in the colon and ileum, respectively (Fig. 4d).
Moreover, loss and gain of HNF4A binding in Mta2cKO colon were
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strongly associated with down-regulation of colonic and up-
regulation of ileal genes, respectively (Figs. 4f, g and S4F, S4g).
Thus, MTA2 deletion led to HNF4A loss on colonic enhancers and its
relocation to small intestine enhancers, triggering activation of
small intestine genes in the colon. These data suggest that MTA2
retains HNF4A binding on colonic chromatin and prevents HNF4A
from activating small intestine genes.

Both SATB2 and MTA2 co-localize with HNF4A on colonic
chromatin but SATB2 restrains HNF4A more strongly
than MTA2
Both SATB2 andMTA2 can regulate colonic plasticity and our findings
indicate that they interact physically (Fig. 1a-c). Structural studies of
SATB1/2 proteins have identified five functional domains: a N-terminal
ubiquitin-like domain (ULD) thatmediates oligomerization, a CUT-like
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domain (CUTL) and two CUT domains (CUT1 and CUT2) that are cri-
tical for DNA binding, and a c-terminal HOX domain30 (Fig. 5a).
Although HOX domains often serve as a primary DNA binding domain,
this is not the case for SATB1/231. The primary function of the HOX
domain in SATB1/2 is unclear. We generated five SATB2 mutant pro-
teins, each lacking one of the five functional domains (Fig. 5a). Co-IP
studies with the mutant SATB2 proteins revealed that MTA2 interacts
with SATB2 primarily via the HOX domain (Fig. 5b).

The physical interaction of MTA2 and SATB2 suggests that both
proteins might co-localize with HNF4A on colonic chromatin. Because
both MTA2 and SATB2 regulate HNF4A primarily at distal genomic
sites (this study and reference 21), we assessed distal co-localization of
the three factors. Alignment of MTA2 peaks with published SATB2
ChIP data showed 44.5% co-occupancy at distal elements, whereas
36.8% of distal MTA2 sites were co-bound by both SATB2 and HNF4A
(Figs. 5c, d). Despite this extensive co-localization, SATB2 loss in the
colon activated more small intestine genes than MTA2 loss, and larger
numbers of HNF4A binding sites were lost and gained in Satb2cKO

(Villin-CreER; Satb2f/f) than in Mta2cKO colon. The lost and gained sites
correspond to sites of open chromatin in the colon and ileum,
respectively (Figs.5e, f, and 6a).

In Satb2-null colon, large numbers ofMTA2 genomic binding sites
shifted in parallel with those of HNF4A (Figs. 6a, b). In contrast, many
fewer SATB2 binding sites were depleted or gained inMta2-null colon
(Fig. 7a) and these alterations were not associated with dysregulation
of colonic or ileal genes (Figs. 7b, c). Thus, SATB2 regulates genomic
binding of MTA2, but not vice versa. Altogether, these data imply that
both MTA2 and SATB2 restrain HNF4A at colonic chromatin, but
SATB2 regulates MTA2 and more robustly retains HNF4A binding.

Small intestine gene activation in both Mta2cKO and Satb2cKO

colon depends on HNF4A
Our chromatin mapping data implicated HNF4A as a key mediator of
colon-small intestine plasticity. Gain of HNF4A binding on small
intestine chromatin is tightly associatedwith transcriptional activation
of small intestine genes in Mta2cKO or Satb2cKO colon (this study and
reference21). If this association is causal, then removingHNF4A should
block colonic transcriptional plasticity. To evaluate this hypothesis, we
differentiated murine colonic organoids into colonoids enriched for
CA1+ colonocytes (Figs. 8a and b). We used CRISPR-Cas9 to delete
Hnf4a from either Mta2cKO or Satb2cKO colonoids, achieving deletion
efficiencies > 90% (Figs. 8c and e). qPCR analysis of representative
small intestine genes showed that their activation was strongly atte-
nuated in both mutants (Figs. 8d and f). Thus, small intestinal gene
activation in both Mta2cKO and Satb2cKO colon depends on Hnf4a.

Increasing HNF4A dosage in the colon activates small intestine
gene transcription
Given that colonic enhancers are occupiedbyHNF4Awhereas the small
intestine enhancers are primed but lack HNF4A binding in colon, we
reasoned that “excess”HNF4A, provided by ectopic expression, should
engage small intestine enhancers in colon and activate transcription.
To test this hypothesis, we over-expressed HNF4A in cultured mouse
colonic organoids. RNA-seq showed 89 up-regulated and 7 down-

regulated genes (log2 fold-change >1, p <0.05, Figs. 9a, f). Gene sets
characteristic of small intestine functions, such as cholesterol meta-
bolism, fat and protein digestion and absorption, and retinol metabo-
lism, were enriched among the up-regulated genes (Fig. 9b). We next
over-expressedHNF4A in 5 independent human colonic organoid lines.
RNA-seq studies revealed 90 up-regulated and only 2 down-regulated
transcripts (log2 fold-change >1, p <0.05, Figs. 9c, d, f). Small intestine
functional pathways, including fat, protein and carbohydrate digestion
and absorption, were activated (Figs. 9e and f). Thus, loss- and gain-of-
function studies implicate HNF4A as amediator of small intestine gene
activity in colonic plasticity, conserved across species.

HDAC activity is required for small intestine gene activation in
MTA2cKO colon
We hypothesized that Mta2 loss may lead to compositional and/or
conformational changes of the SATB2-NuRD complex, resulting in
altered HNF4A binding at colonic enhancers and activation of small
intestine genes. Indeed, AP-MS of the SATB2 complex from Mta2cKO

colon showed 71 enriched and 25 depleted proteins, compared with
wild-type colon (signal intensity >2-fold or <2-fold inmutant vs. control
samples, Supplementary Data 5). Immunoblots of colonoids showed
less of the NuRD core subunit HDAC2 (P=0.018) in Mta2 mutants
whereas other core subunits, CHD4 and HDAC1, were no different
(Fig. 10a). Co-IP studies, however, revealed stronger interactions of
SATB2withbothHDAC1 andHDAC2, but notwithCHD4, afterMta2 loss
(Fig. 10b). TreatmentofMta2mutant colonoidswithHDAC1/2 inhibitors
4-phenylbutyric acid (4PBA) and SAHA strongly attenuated expression
of small intestine genes, including Abcg8, Lgals2, Pla2g2a and Slc43a1
(Fig. 10c), suggesting that enhancedHDAC1/2 activities near SATB2may
weaken HNF4A binding and drive small intestine gene activation. The
active enhancer mark H3K27ac was not reduced at genomic sites
depleted of HNF4A in Mta2cKO colon, indicating that H3K27ac is not a
primary target of HDAC1/2 at colonic enhancers (Figure. S5).

Collectively, our data support amodel in which chromatin factors
MTA2-NuRD and SATB2 form a complex to retain HNF4A at colonic
chromatin and the degree of plasticity relates to the amount of HNF4A
released from that retention. If relatively little HNF4A is liberated, as
with MTA2 loss, then the increase in small intestine gene activity is
modest; if more HNF4A is released, as occurs with SATB2 loss, then a
larger transcriptomic shift ensues, with overt phenotypic tissue con-
version (Fig. 10d).

Discussion
To perform specialized functions, distinct cell types must maintain
unique identities, including cell type-specific transcriptomes. They
also need to adapt to changing environments by deploying plasticity in
transcription or even cell identity32–34. The molecular control of cell
identity and plasticity is a fundamental question, with scant mechan-
istic insights.

We previously uncovered surprising plasticity between the adult
colon and ileum, controlled by the colon-restricted chromatin factor,
SATB2. SATB2 deletion causes drastic cell fate switch, converting
colonocytes to enterocytes. In this study, we identified MTA2 as a new
component of themolecularmachinery that preserves colonic identity

Fig. 3 | Activation of lipid transport and metabolism genes in adult mouse
colon afterMTA2 loss.Mta2was deleted from2-month old VilCreER;Mta2f/f (Mta2cKO)
mice by applying tamoxifen (a), leading to near complete absence of MTA2 in
colonic epithelium (b). Three independent experiments were repeated with similar
results. Scale bar = 100μm (b). RNA-seq of control and Mta2cKO colonic glands
identified 200 up-regulated and 68 down-regulated genes ([LFC] > 1, adjusted p
[padj] <0.05) (c, volcano plot). P value calculated by Wald test and adjusted by
Benjamini-Hochberg method. Although no molecular pathways were significantly
enriched among the down-regulated cohort, genes involved in lipid absorption,
transport, and metabolism were prominently enriched among the up-regulated

cohort, as illustrated by KEGG pathway gene set enrichment analysis (d, e) and in
the heatmap representation (f). P value calculated by a phenotype-based permu-
tation test and adjusted by Benjamini-Hochberg method. d Source data are pro-
vided as a Source Data file. g, h Histology and immunofluorescence staining
showed activation of lipid transport proteins FABP6 and MTTP and small intestine
brush border enzyme Alkaline Phosphatase in the surface colonocytes of Mta2cKO

colon. Three independent experimentswere repeatedwith similar results. Scale bar
= 100μm. i BODIPY stain revealed presence of lipid accumulation in villi of ileum
and surface glands of Mta2cKO proximal colon, but not control colon. Two inde-
pendent experiments were repeated with similar results. Scale bar = 100μm.
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and mediates plasticity. MTA2 loss led to activation of a subset of ileal
genes and modest down-regulation of colonic genes. Thus, MTA2 and
SATB2 regulate colonic plasticity to different degrees. Nevertheless, a
common underlying mechanism is the ability of MTA2 and SATB2 to
retain HNF4A on colonic chromatin. SATB2 appears able to strongly
“tether” HNF4A to colonic enhancers, and thus its loss leads to
transcriptome-wide changes. MTA2, however, tethers a fraction of
HNF4A to colonic enhancers, and its loss causes modest transcrip-
tional changes. Notably, small intestine gene activation in both MTA2
and SATB2 knockout colon is blocked by removing HNF4A, high-
lighting the key role of HNF4A in mediating colonic plasticity. SATB2
regulates genomic binding of both MTA2 and HNF4A, but not vice
versa, highlighting the central importance of SATB2 in regulating
colon-ileum plasticity.

MTA2 is part of the NuRD complex, which alters nucleosome
spacing and deacetylates histones and other proteins35–38. Incapaci-
tating NuRD inmultiple tissues, including lymphoid cells andmuscles,
activates alternative lineage programs39,40. However, in these cases,
NuRD is proposed to directly bind and silence alternative lineage
genes, a mechanism distinct from the one we observed in colonic to

ileal plasticity. Our data suggest that MTA2 loss leads to conforma-
tional changes that bring HDAC1/2 of the NuRD complex closer to
SATB2. These HDACs may then modify proteins around the SATB2
complex, making the local chromatin milieu less favorable for HNF4A
binding. This notion is consistent with studies in embryonic stem cells,
where NuRD binding at active enhancers is reported to modulate TF
binding in different contexts41, but NuRD targets on colonic chromatin
have yet to be identified. In sum, our study reveals a chromatin com-
plex that serves the dual purpose of preserving colonic identity while
allowing plasticity. This model of cellular plasticity may apply broadly,
that is, chromatin complexes restrain certain TFs at tissue-specific
chromatin to prevent them from activating genes for alternative
lineages and the measured release of these factors elicits different
degrees of cellular plasticity.

Methods
Mouse strains
TheMTA2loxp/loxp (MTA2f/f) strain was a gift fromDr. Robert G42. Roeder
of the Rockefeller University and Dr. Yi Zhang of Harvard Medical
School who originally made the strain. Vil-CreERT2 strain was a gift

SATB2-Flag-HA

MTA2-V5
+

Ctrl M1 M2 M3 M4 M5 -

-

HA

V5

β-ACTIN

WB: HA

WB: V5

IP: Flag

WB Input

d

SATB2
ULD CUTL CUT1 CUT2 HOX
1 2 3 4 5Ctrl

M1

M2

M3

M4

M5

2 3 4 5

1 3 4 5

1 2 4 5

1 2 3 5

1 2 3 4

a b

c

0

-3kb 3kb
MTA2 Center

HNF4ASATB2MTA2
ChIP

R
an

ke
d 

by
 d

es
ce

nd
in

g 
M

TA
2 

oc
cu

pa
nc

y

16 0 25 0 40

SATB2-ChIP (24,028)

HNF4A-ChIP (30,515)
MTA2-ChIP (14,009)

11,947

12,819

5,840

1,0731,080 6,695

5,161

e

f

0

15
0

15
0

15

0

10
0

10
0

10

H
N

F4
A-

C
hI

P

Ctrl 

Satb2cKO 

Mta2cKO 

Fabp6 Sis

Fabp6 2.5 Kb

0

15
0

15
0

15

0

10
0

10
0

10
Bcl2l15

Car1 10 KbBcl2l15 5 Kb Sis 10 Kb

Car1

0.0

0.5

1.0

1.5

Ctrl
M1 M2 M3

M4 M5

R
el

at
iv

e 
in

te
ns

ity
 o

f 
pr

ot
ei

n 
st

ai
ni

ng
 to

 β
-A

C
TI

N

SATB2-FLAG-HA MTA2-V5

IP: FLAG

Ctrl
M1 M2 M3

M4 M5

SATB2 MTA2

UTD
CUTL

CUT2

CU
T1

H
O
X

15
20

5

5

15

10

0

17.5

C
3:

 8
,5

31
 p

ea
ks

G
ai

ne
d

Ctrl Satb2cKO

HNF4A-ChIP
Mta2cKO

-3kb 3kb
Peak Center

10

12.5

7.5

2.5

15

25

5

5

15

10

0

20

C
2:

 5
,8

35
 p

ea
ks

D
ep

le
te

d
R

PK
M

Ctrl Satb2cKO

HNF4A-ChIP
Mta2cKO

-3kb 3kb
Peak Center

KDa

KDa
95
95
55

95
95

Tspan33

0

10
0

10
0

10

Tspan33 10 Kb

Fig. 5 | SATB2 and MTA2 co-bind HNF4A on colonic chromatin but SATB2
retains HNF4A more strongly than MTA2. a, b We generated 5 mutant SATB2
proteins (M1-5) with each lacking one of the 5 functional domains. a Co-IP of the
SATB2 mutants and MTA2 showed that the SATB2 HOX domain was required for
SATB2 interaction with MTA2; without the HOX domain, the interaction was
abrogated. M: mutation form. bMean ± S.D. n = 6. All the different gels/blots were
derived from the same experiment and were processed in parallel. Source data are
provided as a Source Data file. Overlap of SATB2,MTA2, andHNF4A distal genomic
binding sites in colonic tissues as shown in the Venn diagram (c) and the DNA

binding profiles (d). Peaks were ranked by descending MTA2 occupancy. e DNA
binding profiles of HNF4A sites that were either reduced (left panel, 5835 sites) or
gained (right panel, 8531 sites) in Satb2cKO colon. In comparison, HNF4A loss or gain
at these sites weremodest inMta2cKO colon, but nonetheless statistically significant
by Kolmogorov-Smirnov test (K-S D values shown in the density plots). Peaks
centered on HNF4A binding sites in 6 kb windows. f Genome Browser tracks of
HNF4A binding at genomic loci of the small intestine genes Fabp6, Bcl2l15, and Sis
and the colonic genes Car1 and Tspan33 in Mta2cKO and Satb2cKO colon. SATB2 can
more strongly influence HNF4A binding than MTA2.

Article https://doi.org/10.1038/s41467-024-47738-y

Nature Communications |         (2024) 15:3595 8



from Sylvie Robine (Institute Pasteur)43. To confer conditional deletion
of MTA2, 4mg per 25 g of body weight of tamoxifen (TAM, 10mg per
ml in corn oil) was intraperitoneally injected into both Mta2cKO (Vil-
CreERT2; Mta2f/f) and Ctrl (Mta2f/f) mice (male and female equally, at
2 months old) once every 2 days for a total of 3 times. Mice were
housed and bred in an ambient temperature (18 °C–22 °C) - and
humidity (50–60%)- controlled environment with 12 hours light/dark
cycle and food/water supplement.

Mouse colonic crypt isolation, colonoid culture, and
differentiation
Mouse colonoid line establishment and culture were performed as
previously described with modification21,44. All the experiments were
performed on ice or at 4 °C unless specified. Briefly, proximal colon
top glands were scraped by glass slides and then the tissues were cut
into approximately 0.3 cm size pieces and incubated in 10mM EDTA
for 30min. The tissues were transferred to 15mL cold PBS solution.
After vigorous pipetting with 1% BSA pre-coated 10mL serological

pipettes, epithelium cell clumps were collected by centrifugation at
300 g for 5min. Crypts were further isolated by filtering through a
70 µm cell strainer. 25–100 Crypts (P0) per 12 µl MatrigelTM droplet
were cultured inWENRmedium (Supplementary Table 1) in humidified
chambers containing 5% CO2 at 37 °C for 4−5 days with one-time
medium change at day 2. After one passage, the P1 colonoids were
differentiated into colonocyte-enriched colonic organoids by cultur-
ing in differentiation medium (DEM) (WENR medium without WRN
conditioned medium and with the addition of 1 µg/mL RSpondin and
10 µM L-161,982, Supplementary Table 1) at day 2. Three days after
differentiation, the organoids were either directly lysed in RNA lysis
buffer (ZYMO) for RNA exaction, or incubated with cell recovery
solution on ice, to remove Matrigel, for immunofluorescence, immu-
noblotting, and immunoprecipitation analyses.

CRISPR-mediated gene knockout in colonoids
Murine Mta2, Chd4, Gatad2a, Smarca4, Smarca5, Smarcd2 and Ctbp2
sgRNAs were designed with the Synthego CRISPR design tool
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(Supplementary Table 2) and cloned into a LentiCRISPRv2 vector
(Addgene plasmid #52961). The lentiviruses were packaged with
second-generation helper plasmids by transfection with lipofectamine
3000. Each virus titer was determined by counting puromycin-
resistant clones in HEK293FT cells 5 days after infection.

To generate the colonoids with gene ablation, a total of 105 cells
suspensions (TrypLE digested small colonic fragments with 1 to10 cells

per fragment) in 200 µL WENR with 10 µg/mL polybrene were mixed
with 20 µL of 108 TCID50/ml of virus in one well of a non-tissue culture
treated 24 well plate, and centrifuged at 1100 g at 37 °C for 30mins to
facilitate infection. After centrifugation, 200 µL of WENR was added
and the plate was further incubated for 4 hours at 37 °C. Cells were
then resuspended, pelleted, and embedded in MatrigelTM as described
in colonoids culture method section. Puromycin selection (1 µg/mL)
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was initiated 3 days post-infection and lasted for 4 days. After pur-
omycin selection, colonic organoids were sub-cultured into new
Matrigel drops and differentiated in DEM for 3 days. The CRISPR-
mediated deletion efficiency was analyzed with immunoblotting by
using specific target antibodies (Supplementary Data 6).

Affinity Purification Mass Spectrometry (AP-MS)
All the experiments were performed on ice or at 4 °C unless speci-
fied. Murine proximal colon tissues (half of colon length, about
40mm) were flushed clean by cold PBS and cut into approximately
3mm size pieces. The tissues were incubated with 10mM EDTA/PBS
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in 50mL tube for 30min and then transferred to 20mL cold PBS.
After vigorous pipetting with 1% BSA pre-coated 10mL serological
pipettes, the colon tissues were removed to a new tube containing
10mM EDTA/PBS and incubated for another 30mins. Epithelium
glands in suspensions were collected by centrifugation at 300 g for
5min as fraction one, followed by resuspending in 10mL PBS con-
taining 10 µM Y-27632. The second fraction of epithelium glands
was collected in the same procedure as fraction one. Two fractions
of EDTA-stripped epithelium glands were combined, pelleted, and
cross-linked with 2mM disuccinimidyl glutarate (DSG, Thermo
Fisher Scientific, 20593) in PBS at room temperature (RT) for
45mins. Pellets of epithelial cells were incubated with 0.3M RIPA
buffer (Supplementary Table 3) supplied with Protease Inhibitor
Cocktails and sonicated at 20% amplification for 1 min (20 sec on
and 20 sec off, 3 cycles). After 10mins of centrifugation at 18,000 g,
supernatants were collected and incubated with anti-SATB2

(Supplementary Data 6) overnight with a rotation speed of 10 RPM.
After adding 30 µl protein A/G magnetic beads for 90mins on the
next day, the protein and beads complex was pulled down by a
magnetic stander. Total 6 wash of 0.3M RIPA buffer was performed.
Then the DSG-crosslinked SATB2 interaction protein complexes
were cleaved from Protein A/G beads by boiling in Laemmli Sample
Buffer from Bio-Rad without adding reducing reagents (DTT or 2-
Mercaptoethanol) and separated by SDS-PAGE. Proteins in gel were
visualized with sliver staining kit from Sigma. The gels over 100 KDa
(SATB2 molecular weight) for each sample were cut and digested
with trypsin, followed by desalting and LC-MS/MS for protein
identification and quantification. The data were processed by
MaxQuant and searched against Uniport mouse database with a 1%
false discovery rate. Significantly enriched genes were filtered by
the quadrilaterals that both samples have SATB2 AP-MS signal
intensity and MS count over IgG controls >= 2 fold changes.
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units showed a slight decrease of HDAC2, but no change in HDAC1 or CHD4 in
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Dual Cross-linking ChIP-Seq for transcription factors
ChIP for Transcription Factors (TFs) SATB2, HNF4A, and MTA2, was
performed as described45. EDTA-stripped primary colon glands from
Ctrl, MTA2CKO, and SATB2CKO were pelleted and cross-linked with 2mM
DSG at RT for 45mins, followed by 1% formaldehyde fixation for
10mins. For each experiment, about 50 µl of pelleted cross-linked cells
were resuspended in 350 µl sarkosyl lysis buffer (0.25% sarkosyl, 1mM
DTT and Protease Inhibitor Cocktails in 0.3M RIPA buffer and soni-
cated at 60% amplification by a tip sonicator (125W) for 6min (45 sec
on and 45 sec off, 8 cycles) to obtain 200bp to 800bp chromatin
fragments. Lysates were spun down at 20,000 g at 4 °C to remove
insoluble fractions. The supernatant was further diluted in 0.3M RIPA
buffer with Protease Inhibitor Cocktails in a final 2ml volume. Diluted
lysates were incubated with TFs antibodies (Supplementary Data 6) at
4 °C overnight and were additionally incubated with 30 µl protein A/G
magnetic beads for 90mins the next day. A total of 6 washes with cold
0.3M RIPA buffer and a final rinse with TE buffer (PH 7.5) were per-
formed to remove nonspecific binding. Dual cross-links were reversed
overnight by incubating at 65 °C in 1% SDS and 0.1M NaHCO3. Any
remaining proteins were digested by Proteinase K for 1 hour at 37 °C.
Pulled-downgenomicDNAwas purifiedwith aMinElute purification kit
and quantitated by Qubit. The libraries were prepared using the
ThruPLEX DNA-Seq Kit, followed by a size selection and purification
(200 bp to 800bp, including index) with AMPure XP beads. The final
libraries were quality controlled and pooled for sequencing.

ChIP-Seq analyses
ChIP-seq libraries (MTA2, HNF4A, and SATB2) were sequenced on an
Illumina 4000 instrument to obtain 50-bp pair-end reads. All reads
were trimmed by Trim Galore! (0.6.5) (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/), and subject to quality control
with FastQC (0.12.0) before and after adapter trimming. Briefly, Reads
were mapped using Bowtie246 (2.4.1) to mm10 genome; Peaks were
called using callpeak function in theMACS247 package (2.2.7.1) with the
following parameters (callpeak -t ChIPfile.bam -c Inputfile.bam --for-
mat Paired-end BAM --gsize M.musculs(1.87e9) -m 10 30 -q 0.001-bw
300); Bam files were converted into signal files (bigWig) using deep-
Tools v3.4.346,48. Signals (bigWig) across samples were quantile nor-
malizedwith haystack v 0.5.549 using 50-bpwindow across the genome
to visualize readdistribution on IntegratedGenomics Viewer v 2.16.250;
BETA -p ChIP_file.bed -e gene_exp.diff -g mm10 -d 50000. We used
peaks showing q-val <0.001 and mfold enrichment 10 to 30 and used
ChIP-seq from Inputs or knockouts as controls. BETA (1.0.7) was used
to associate genes with HNF4A-ChIP depleted or gained bound sites
and quantify these associations using peaks within 50-kb from TSS, a
significance threshold of FDR-adjusted P < 0.01 for differential gene
expression in wild-type ileum vs. colon or Mta2cKO vs. Ctrl colon, and
other default parameters.

H3K27ac ChIP-seq
Colon was harvested from euthanized mice and rinsed in PBS. To
isolate epithelial cells, colon pieces were rotated in 5mM EDTA (pH
8.0) in PBS at 4 °C for 30min with vigorous shaking manually every
10min. Isolated epithelial cells were fixed at room temperature in 1%
formaldehyde (Sigma, F8775) for 15min. ~1 × 106 cells were lysed in
ChIP sonication buffer (50mMTris-HCl, 0.1% SDS, 10mMEDTA, and 1x
Roche EDTA-free protease inhibitor) and chromatin was sheared in a
Covaris E210 sonicator at 4 °C for 50min with 5min on/off cycles to
obtain 200–00bp DNA fragments. Sheared chromatin was incubated
overnight with H3K27ac antibody (Active Motif, 39135) at 4 °C.
Antibody-bound chromatin complex was incubated with a mixture of
15 µl Protein A and 15 µl Protein G magnetic beads (Thermo Fisher,
10002D and 10004D) for 4 h at 4 °C, washed sequentially twice in low-
salt buffer (20mM Tris-HCl pH 8.1, 2mM EDTA, 150mM NaCl, 0.1%
SDS, 1% Triton X-100), once in high-salt buffer (20mMTris-HCl pH 8.1,

2mM EDTA, 0.5M NaCl, 0.1% SDS, 1% Triton X-100), followed by
lithium chloride buffer (10mM Tris-HCl pH 8.1, 1mM EDTA, 0.25M
LiCl, 1% IGEPAL and 1% deoxycholic acid) and TE buffer (10mM Tris-
HCl pH 8.1, 1mM EDTA). Chromatin-Antibody complexes were eluted
using 100 µl elution buffer (0.1M NaHCO3, 1% SDS). Cross-links were
reversed using 5M NaCl solution for 6 h at 65 °C in, samples were
treated with proteinase K (Thermo Fisher Scientific, 26160) for 1 h at
55 °C, and DNA was purified using QIAQuick PCR purification kits.
Libraries were prepared using ThruPLEX DNA-seq kits (Rubicon
Genomics, R400427), and 150bppair-end readswere sequenced using
Novogene services.

Edu labeling and Immunostaining
A Click-iTTM EDU Cell Proliferation Kit with Alexa Fluor® 555 (C10338)
was used to evaluate proliferation. Briefly, 50 µg EDU per gram ofmice
bodyweight were intraperitoneal injected for 24 hrs. Mice were
euthanized and then intestinal tissues were harvested and flushed
clean with cold PBS. The tissues were cut into 1 cm pieces and fixed
with 4% paraformaldehyde immediately at 4 °C for 1 hour (Organoids
were fixed for 20mins). After washing with PBS, the tissues were
dehydrated by 30% sucrose solutionovernight and embedded inO.C.T
for a Cryostat sectioning.

Immunofluorescence was performed using a standard procedure,
incubating with primary antibodies (Supplementary Data 6) at 4 °C
overnight, followed with secondary antibodies at RT for 1 hr. The
imageswere capturedusingeither a confocalmicroscope (710Meta) or
aNikonfluorescencemicroscope. For immunohistochemistry, samples
were processed through heat mediated antigen retrieval in Citric Acid
buffer (pH 6.0) for 15mins. Samples were then stained with Anti-MTTP
orMTA2antibodies, followedbyGoat anti-RabbitHRP incubation at RT
for 1 hr, and finally, developed with DAB (Brown color, Vector
Laboratories, SK-4103) HRP Substrate. Alkaline phosphatase enzyme
was detected by Stemgent AP staining kit 2 (Pink color). An Alcian Blue
Stain Kit (Vector Laboratories, H-3501) was used to stain goblet cells.

Western Blot
For Western blot analysis, monoclonal rabbit anti-SATB2 and
SMARCD2, monoclonal mouse anti V5 and FLAG, polyclonal rabbit
anti-CHD4, MTA2, CTBP2, SMARCA4, SMARCA5, GATAD2A, HDAC1,
and HDAC2 antibodies were used to bind target protein, followed by
an incubation with a secondary anti-Rabbit Peroxidase (HRP) or anti-
Mouse HRP. Protein bands were visualized using enhanced chemilu-
minescent substrate (Pico from Thermo fisher) and recorded by a Li-
COR C-Digit blot scanner. The relative signal intensity was quantified
by Image J (v1.51 (100)).

Bulk RNA sequencing analysis
Bulk RNA-seq was performed as previously described except for
mapping to the mouse (mm10) or human (hg38) reference genome
respectively51. Briefly, reads alignmentwasperformedby STAR (2.7.5b)
package52. The raw count tables were generated by featureCounts
(2.0.1)53. The DEseq2 package was used for differential expression
analysis54. In DESeq2 (1.28.1), the p-values attained by theWald test are
corrected for multiple testing using the Benjamini and Hochberg (BH)
method. The Limma (3.44.3) package55 was used to remove donor-
donor variance and batch-effect. Differentially expressed genes were
generally determined using parameters of adjusted p-value < 0.05 and
LFC > 1 or < −1 unless specified in figure legends. The heatmaps were
plotted using the R package, pheatmap (1.0.12). GSEA KEGG analysis
and GSEA analysis were conducted with the clusterProfiler pack-
age (4.8.1)56.

BODIPY staining
Both Mta2cKO and Ctrl mice were under high-fat diet treatment for
3weeks. Themice were euthanized, about 2 cm size of colon segments
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were cut open and flushed with cold DPBS. Colon segments were then
incubated with (10 µg/mL) BODIPY in DPBS at RT for 30mins and fol-
lowed with 3 times DPBS wash to remove excess BODIPY. Tissues were
fixed with 4% paraformaldehyde immediately at 4 °C for 1 hour. After
washing with DPBS, the tissues were dehydrated by 30% sucrose
solution at 4 °C for 3 hours and embedded in O.C.T for a Cryostat
sectioning.

SATB2 domain deletion
pENTR-3xFlag-3xHA-mSATB2 and overlap PCR primers information
were provided in Supplementary Table 2. Each domain deletion
PCR amplification was performed by TAKARA-HIFI Tag by following
the manufactory guides. PCR fragments were then treated with
Dpn1 at 37 °C for 1 hour to remove plasmid template. After gel
purified, the fragments were further phosphorylated by T4 PNK and
self-ligated by Quick ligase. Each domain deletion cloning vector
was confirmed by sequence analysis and recombined into a Dox-
inducible Destination vector (Plx403) using Gateway LR Clonase II
enzyme kit.

pENTR-mMTA2-V5 was cloned and recombined into Pinducer20.
Plx403-SATB2 or each domain deletion expression vector was co-
transfected with Pinducer20-MTA2 into HEK293FT cells for 48 hours.
Doxycycline (1 µg/mL) was added at 8 hours after transfection to trig-
ger target gene expression.

Culture of mouse and human colonic organoids and Lentiviral
overexpression of HNF4A
The lentiviral backbone plasmid N174-MCS-Puro was a gift from Adam
Karpf (Addgene plasmid # 81068). Murine Hnf4a CDS was cloned into
the backbone for constitutive expression. The culture of mouse and
human primary colon organoids was described previously21. For
HNF4A overexpression, cultured organoids were dissociated with
TrypLE for 3min at 37 °C and pipetted thoroughly to disperse the
organoids into single cells or small clusters (2-3 cells). The dissociated
cells were thenmixed with appropriate control lentivirus (pLenti-EF1a-
Puro-2a-mCherry) or lentivirus overexpressing HNF4A (pLenti-EF1a-
Hnf4a-2a-Puro-2a-mCherry) at MOI of 10 and spinfection was per-
formed at 37 °C, 1000 g for 30min. The cell-virus mixture was further
incubated for another 2.5 hours at 37 °C and the cells were then
embedded into 3D Matrigel domes. 72 hours after virus infection,
puromycin (1ug/mL) was added to culture medium for selection. The
selected organoids were differentiated for another 3-5 days and cells
were then collected for RNA profiling. All studies involving human
samples were approved by ethnic committees at Weill Cornell Medical
College.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The high-throughput sequencing raw and processed data have been
deposited to Gene Expression Omnibus (GEO). Bulk RNA-Seq:
GSE213879, GSE213878 and GSE245288. ChIP-Seq: GSE213877 and
GSE245751. We also analyzed our previously published GEO datasets:
GSE148690, GSE167283, GSE167287, and GSE167284. Human (hg38) or
mouse (mm10) reference genome sequences used in our study can be
found at Gencode GRCh38_v29 or GRCm38_vM20 respectively. All
data are available in the main text or the supplementary materi-
als. Source data are provided with this paper.

Code availability
Code for the data analysis is available at https://github.com/stevehxf/
MTA2_NC2024.
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