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Abstract

In this paper, the inviscid two-invariant cap model and a viscoplastic
rate-dependent generalization are considered. The algorithmic implementation
of the model is first considered in detail. For the inviscid case, a new algo-
rithm is proposed based on the notion of closest point projection. Exact satis-
faction of the consistency condition is shown to reduce to a single scalar equa-
tion that may be solved by iterative methods. Special attention is given to the
singular corner region at the intersection of cap and failure surfaces. For this
situation, it is shown that existing procedures may lead to errors of more than
50%, even for moderate strain increments. Iso-error maps for the "Colorado
concrete” data are developed to demonstrate the good accuracy of the pro-
posed closest point projection procedure, even for large strain increments
compared with characteristic strains at yielding.

A viscoplastic extension of the cap model of the Perzyna type is also
presented, and the appropriate extension of the closest point algorithm
developed for the inviscid case is considered. This algorithm is considerably
simpler than viscoplastic algorithms initially proposed by Hughes and Taylor
and subsequently employed by Katona for the cap model.

The predictive capabilities of the cap model are assessed through exten-
sive simulation based on well-documented "Colorado” experimental data. To
systematically fit the model to experimental data, an optimization procedure
based on the Marquardt-Levenberg algorithm is developed.
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An Assessment of the Cap Model: Consistent Return
Algorithms and Rate-Dependent Extension

JUAN C. SIMO JIANN-WEN JU
KARL 5. PISTER ROBERT L. TAYLOR

Department of Civil Engineering
University of California, Berkeley

i. Introduction

Current numerical simulations employing the inviscid, two-invariant associative cap
model originally proposed by DiMaggio and Sandler [1,2] are based on the algorithm
developed by Sandler and Rubin [3]. This algorithm allows for considerable flexibility in the
choice of functional forms for the vield condition and hardening law with minor coding

changes. Thus, it is applied to a wide range of geomaterials.

It has been shown [4-6] that the notion of operator split can be efficiently used to
develop algorithms which are a) consistent with the "continuum” elastoplastic constitutive
equations and b) unconditionally stable with respect to step sizes. These algorithms are often
referred 1o as closest point projections or return mapping algorithms, and include, as a partic-
ular case, the well-known radial return method of Wilkins [7]. It is shown below that the
algorithm proposed by Sandler and Rubin, although within the class of return mapping pro-
cedures, is not fully consistent with the notion of closest point projection, thus violating the
normality condition of the plastic flow rule. It is further shown that the integration procedure
advocated by these authors in the singular corner region lying in the vicinity of the intersec-
tion of the failure envelope and cap, prevents plastic dilatancy and may lead to errors of more
than 50%. These shortcomings motivate the present proposal of a "revised” cap algorithm
which is fully consistent with the notion of closest point return mapping, thus preserving nor-
mality of the plastic flow, and furnishing the correct procedure in the singular corner region.
The accuracy of the proposed procedure is assessed by means of iso-error maps which illus-
trate the good accuracy of the algorithm even for large strain increments compared with
characteristic strains at yielding. Comparisons between the "original” and the "revised" cap
model algorithms are also given.

The original inviscid cap model is extended to account for rate effects by means of a
viscoplastic regularization of the type proposed by Perzyna [8]. Viscoplastic extensions of
this type have a long history in the computational literature (see e.g. Zienkiewicz and Cor-
meau [9], Hughes and Taylor [10], Pinsky, Ortiz and Pister [11], Simo, Hjelmstad and Taylor
[12]). For the cap model, a viscoplastic extension of this type has recently been considered by
Katona [13]. The algorithmic treatment advocated by Katona relies heavily on the implicit



procedure developed by Hughes and Taylor [10], which involves the solution of a nonlinear
system of equations for each iteration within a given time step. The procedure developed
here, on the other hand, is based on the notion of operator split and closest point projection,
as proposed in Simo and Ortiz 5], and results in the solution of a single nonlinear scalar
equation. Preliminary numerical simulations of the viscoplastic cap model developed in this

paper are also given.

To assess the predictive capabilities of the inviscid cap model, the extensive and well-
documented data obtained in the experimental program at the University of Colorado [16]
has been selected. A characteristic of this experimental work is the exercise of truly three
dimensional non-conventional stress paths. Due to the non-conventional nature of the experi-
mental data, standard fitting procedures based on the use of conventional tests to indepen-
dently fit cap, failure envelope and hardening law (see e.g. [17,18]) cannot be used. Hence, to
obtain an optimal fit for the cap parameters an alternative constrained optimization pro-
cedure which employs a modified Marquardt-Levenberg algorithm 1s developed. This
approach makes the fitting process completely systematic and renders the optimal values of

the parameters in a least square sense.

In the simulations reported herein, six (6) tests are used to fit the seven parameters of
the cap model, and the resulting model is exercised to predict the remaining sixty-one (61)
tests. The resulting predictions agree remarkably well with the experimental resulis.

2. Original (inviscid) cap model algorithm

In this section, we first summarize the basic constitutive eguations governing the two-
invariant rate-independent model as originally proposed by DiMaggio and Sandler [1]. Subse-
quently, we discuss the algorithmic treatment of this model advocated by Sandler and Rubin

31

2.1 Basic formulation

The two-invariant, rate-independent elastoplastic associative cap model is characterized

by the following constitutive equations:
ce=¢€ +¢&
o = o () (elastic response)

& = A ijﬁ)— (associative flow rule) 2.

ole, k) <0 (yield condition)

where ¢, €%, and ¢’ denote the total, elastic and plastic strain tensors; & denotes the stress ten-
sor and ¢(e,x) = 0 is the yield surface in stress space. In addition, « is the hardening parame-
ter which for the cap model is related to the plastic volume change by a hardening law as



described below. Loading/unloading conditions may be expressed in a compact manner by

requiring that

de.) <0, A20, Ao(e,x)=0 (2.2)

This is the so-called Kuhn-Tucker form of unilateral constraint conditions. Note that if ¢ < 0
then A = 0 and the process is elastic. On the other hand, for foading, A>0and ¢ =0. In
this latter case, A is determined by requiring that é = 0; the so-called consisiency condition
leads to the classical elastoplastic tangent moduli.

The basic characteristic of the cap model is the form of the yield function ¢{e,x) which
is specified in terms of two functions F, and F,. The function F, denotes the so-called failure
. envelope surface whereas the function F. is referred to as the hardening cap. Functional
forms for F, and F, are (see Fig. 1)

Viap = F.(J) <0 (failure envelope)
#e,x) = VIop - FJ,x) <0 (cap surface) (2.3)
where J, = tre , Jop = Y2s:s (s : stress deviator) and
F(J)=a-vexp(-8J1) +8J,
] ; 5 ,
FelJ1,0) = VX (0)-LWP -1/, -L(0P (2.4)

k if «>0
L) =<k> =], if k<0 ( <McAuley bracket> )

Finally, the hardening parameter « is related to the plastic volume change ¢ = tr ¢ by

the hardening law

PX)=W {1 -exp[-D X()]) (2.5)

where X (x) is defined by
X&)=« + R F.(x) (2.6)

In the above expressions, «,8,v,0, W , D, and R are material parameters which characterize

the two-invariant cap model considered here.

In the original version of the cap model algorithm, four basic response modes are con-
sidered: (a) elastic mode, (b) tension cutoff mode, (¢) failure envelope mode, and () cap mode.
The inconsistency in the algorithm proposed in [3] arises in the failure envelope mode where
consistency is only enforced in a linearized sense and normality of the plastic flow is violated.



2.2 Analysis of the existing algorithm

It is shown below that the derivation for the failure envelope mode given in [3] is only
the first step of an iterative return mapping algorithm proposed in [5] and further analyzed in
[6]. To see this, it suffices to determine the evolution of the governing quantity,
Ael = tr Alef ., — €], as follows. The associative flow rule (2.1); is integrated over a typical
time step {¢,, f,+1] by an implicit (backward difference) scheme leading to

- R $ drF,
Aefl,y = Atel | = ANAI— — -
€pn+1 €41 de D) JZD dJ[

= AA i

n+l

2.7

n+1

where use has been made of (2.3). The deviatoric and volumetric parts of the plastic strain

tensor at ¢, are thus given by

5
Aef 1 = AX T
" 2\/‘[2D n+l
(2.8)
dF,
Al | poy = =3AM, 4 'Z]'f' 7
lnrl

Here, e = € — 1/31r € 1 designates the strain deviator, and Ae},; = e/, — eZ the incremental
plastic strain deviator. By assuming linear isotropic stress- elastic strain relations, and intro-
ducing the additive decomposition (2.1),, the stress tensor at ¢,,; may be expressed as

Fpil = Klre,‘,’Hl + 2G e:+1

=of - Ktroel, 1 - 2G Ae?,, (2.9)
where & is the so-called elastic trial stress or elastic predictor defined as:

of = o, + (K—2—3G—)trAe,,+l 1+ 2G Ae,.,y (2.10)

Substitution of (2.8) into (2.9), yields

] dF,
@y, - aF = A)xn+l[3K-—e-l~2G (2.11)

5
dJl 2VJ2D ]

It remains to determine A\, .; by enforcing the consistency condition at ¢,,,, i.e. ¢(e,.;) = 0.
However, instead of imposing this condition exactly, the yield function ¢ is linearized about

n+l

the elastic predictor, &, to obtain

olen.) = p(e) + 2L
ow

oy 1—a") =0 (2.12)
Jf

where J¥ is the first invariant of the trial elastic stress given from (2.9) as

JE =Ji,, +3KA (2.13)

+1



Consistent with the linear expansion (2.12), the following first order approximation is intro-
duced

drF,
aJ,

4R,
Jln+| - dll

(2.14)

It

By substituting of (2.11) and (2.14) into (2.12), A\, can be solved for to obtain a first order

accurate expression

A o 17 2.15
n+l = ox dF(, ] ] (2.15)
2 + G P
where
I = a(e) = V5 ~ FoU%) (2.16)

Finally, inserting (2.14) and (2.15) into (2.8), and solving for A<? we obtain

bl

1

dF,
i,

Ael | oy = =3/F (2.17)

JE JE

Equations (2.15) and (2.17) are in agreement with the expressions obtained in Ref. [3] (see
Eqg. (33) and (34)). It then follows from the foregoing analysis that in the procedure advo-
cated in Ref. [3] consistency is enforced on the basis of the linearized yield function about the
elastic predictor ¢©. As a result of this /inear approximation, the return path is normal to the
tangent at ¢ and not the failure envelope at @,,,. Hence, in a strict sense, the normality
condition is violated. A more fundamental lack of consistency arises in the treatment of the
"singular corner region” in the vicinity of the intersection of cap and failure surface. This

guestion is examined in some detail next.

2.3 Treatment of the singular corner region
In the following discussion, a stress state is envisioned as a point in the two dimensional
stress space (J;, vJ,p). In regard to the position of the elastic predictor, (J£, VJ%p), two
basic situations may arise.
Case 1 The elastic predictor falls in the corner region corresponding to the previous
time step. That is
drF,

< J¥ < L, (2.18
Iy |- Li ] (k) :

Lxy) ~ WIEp = FoAL(x,))]

The procedure advocated in [3] then leads to a final value J, > L(x,), due to the use of a

1
linearized normality rule, see Fig. 2. Since this violates the construction associated with the
failure envelope mode, the solution proposed in [3] is simply to set Ji,,, = L(k,), and
k1 E &, (see Eq. (36) in [3]). We now show that this procedure results in open violation of

the basic cap model behavior.



To see this we note that, since « remains constant, the cap can neither contract nor
expand. Due to the one-to-one correspondence between plastic volume change and hardening
of the cap, it follows that no plastic volume change is allowed to take place; i.e.,
Aef = tr & = 0. However, Eq. (2.13), which connects changes in plastic volume and

predicted as well as final values of J|, must always hold

Ji., =JF - 3K A (2.19)

Thus, since Ae¢f = 0 it follows that J, = J% which is in manifest contradiction with the
assumption that J; = L(x,).

Case 2 Let us denote by (JP/JL,) the projection onto the failure surface,
VJsp~F, =0 , of the elastic predictor. This case is concerned with the situation that
[L(x,) — JT) is less than [J{ — J¥], see Fig. 3. Since there is a one-to-one correspondence
between cap contraction and plastic volume change, in view of Eq. (2.19) the cap contraction

must be large enough to satisfy

Al = (JE —J)/3K (2.20)

It is clear, however, that for large enough values of [J§ - J,] the difference between JE
and L(x,) may become too small to furnish the A¢f required by (2.20). When this situation
occurs, the procedure advocated in [3] (Eg. (37)), simply imposes «,, =JV =J, . This treat-

ment again violates Eq. (2.20).

3 Closest point projection algorithm. Inviscid case

In this section we show that, for the inviscid cap model, exact enforcement of the con-
sistency condition, ¢(e,,)=0 , reduces to a single scalar nonlinear equation involving the
hardening parameter « . In addition, the proper treatment of the singular corner region is also
addressed.

3.1 Formulation of the algorithm

To formulate the scalar nonlinear equation governing the consistency condition, we start

by rephrasing Eq. (2.8), in Section 2.2 as

Aef
ANpyy = — 30 | (31)
n+
where
JF,
- cap mode
aJl Jlnﬂx’(nﬂ ( P )
Qs = dF (3.2)
€

el (failure mode)
1 1

n+l




By definition we have

I
AC’,{_H =] A€£+1 - ?Aegwll (33)

Substitution of (2.7),(3.1) and (3.2) into (3.3), yields

§ AP

e (3.4)
6V ap | n4

Aer!17+] =
In addition, from (2.9), we have the following relation between elastic predictor and final
values

[s + ZGAcr['IJH] n+l = st (3.5)

Combining (3.4) and (3.5), we obtain

Ael
s[l——-—-ﬁé—i‘:} - s (3.6)

n+l

After squaring (tensor contraction) both sides of (3.6) and taking the square root, we obtain

the following governing equation

: |
— G Al S
/J _ M:_] = \/JI:
[V 2D 3Q el 2D

Consequently, it is seen that the closest point procedure reduces to the single nonlinear scalar
equation (3.7) in terms of the hardening parameter «. Since the derivative of (3.7) results in a
rather cumbersome expression, an iterative procedure employing a secant method is employed
in lieu of Newton’s method.

Remark 3.1 Eq. (3.7) is a scalar nonlinear equation. A secant-type scheme with super-
linear rate of asymptotic convergence furnishes an economical solution procedure that avoids

explicit evaluation of derivatives. [J

Remark 3.2 In the original cap algorithm, the derivative Q given by (3.2) is computed by
a finite difference scheme. Here, the exact expression is used to evaluate Q. [

3.2 Consistent treatment of the singular corner region

The basic procedure for the consistent treatment of the singular corner region is essen-
tially the same as the one discussed in detail in Section 3.1, and summarized in Box 1. The
only crucial difference lies in the form taken by Q. From the discussion in Section 2.3 it is
clear that for cases 1 and 2 the final value of J, can neither coincide with the value at the
corner point of previous time step, nor remain at the current elastic predictor value J¥. The

final value J, must lie between L («,) and J%: ie..



JE <J) < Lky) (3.8)

Appropriate satisfaction of the flow rule in the corner region then leads to the following
expression for Q that replaces (3.2),

Knsl = Jy (kn .1 = 0) (3.9a)

n+l

G (,In«l - Jf
K \Jt, - F.(J, )

Qpiy =

Equations (3.92),(3.9b) together with (2.3),(2.13), and (3.7) furnish the consistent treatment of
the singular corner region for the cases 1 and 2 discussed in Section 2.3. See Figures 2 and 3
for a geometric interpretation. Note that the elastic predictor falls within a new corner region
where the vertex is the final stress point. A flowchart for the overall update procedure of the
inviscid cap algorithm is listed in Box 1, where compression is taken to be positive.

Remark 3.3 If the so-called von Mises transition 1s adopted in the cap algorithm when
kn+1 =0, then Eq. (3.8) and (3.9) may be modified in the following fashion:

kno1 =0, Ad = € o e (3.10)

In addition, J, . VJ,p are computed through Eq. (2.4) and (2.13). O

3.3 Accuracy analysis. Iso-error maps

The accuracy properties of the closest point algorithm are examined next. A precise
assessment of accuracy for finite strain increments may be obtained by computing the iso-
error contours. The initial and subsequent yield surfaces as well as various initial loading
points are shown in Fig. 4. Figures 5-7 display the computed iso-error contours for the invis-
cid cap model under various loading conditions. The measure of numerical error (percentage)

1s defined as

ERROR = 100*\/(""’”“"j)fif:j’_x‘?_):(wx*)z (3.11)
\/G,: 0’,';+K*"
where (o;;, «) , (a,-j«, ) are the computed and exact values of stresses and hardening parame-
ters, respectively. The value of the material parameters used in the computations are the fol-
lowing : K=2100ksi, G=1700ksi, «=3.86ksi, O=11, y=1.16ksi, 8=44ksi”', R=4.43,
D=0032ksi™', W=.42, X°=16ksi. This choice of parameters represents the "Colorado con-
crete” data [16].

Fig. 5 is concerned with the case in which plastic loading takes place from the hydros-
tatic axis. It is seen that the magnitude of the numerical error remains within reasonable



BOX 1. Inviscid Cap Model Algorithm

(i) Strain update:
€141 = €n + Deyy

(1) Elastic predictor (trial elastic stress):
JE =J, +3K1rhe,,, ; s£ =3, +2GAe,,,

£ L F._E. E
\/J213=“2"S ET L KT =Ky

(inn) Check modes: o
7i JE - K
I = L) = VT 5p = Fe(L(sn))] "5 2

(a) Tension cutoff mode: if J¥ < T
Set J\, =T ; \Jp, =0; GOTO ()
(b) Cap mode: if J¥ > L(x,) and VJ5, > F.(JE x,)
3F,

(JI ‘],‘Kn-»l) ; GO TO (IV)

Ser Q. E“é".-]—l-“ .,

€

'gjl-(./] ); GO TO (lAv)

w0 =Jy,, ,set Q,,; as in mode (d) next.
(d) Corner region: if J{" < J¥ < L(x,) and VJ5p > F,(JE)
G Ji,. It
9K \JTE, ~F.Uh,.)
(e) Elastic mode: if none of the above is invoked. Use elastic predictor.

Set i, =JE . N, =I5 GOTO W)

S(?t Q”J, 1 =

e+l

Set Knil = Jlml ; Qn+l = N GO TO (IV)

(1v) Plastic correction: for modes (b), (¢), and (d)
Solve by local iteration:
Ji,, +3KAad = Jf

Vb, + G ANy = VIS

where

¥4 D, D, . G‘I):H

Afvni, = ev(Kn-fl) . fv(Kn) s A>\n+l = = 30 1

n+

(v) Stress update:
VI o+ 2y T
$pe1 = === &7 | &p41 = Sp,| ;
VIE, 3

bounds even for strain increments that are relatively large compared with characteristic
strains at yieiding. Similar behavior is observed when plastic loading takes place from the

corner point {Fig. 6) or the intermediate point (Fig. 7).



10

As we indicated in the previous sections, the major difference between the consistent
algorithm proposed here and the original algorithm in [3] concerns the return path in the
failure envelope mode. To assess the difference, one needs to compare the corresponding iso-
error maps in the failure mode. However, for large volumetric strain increments, the tension
cutoff mode appears instead of failure modes. This is due to the construction of the tension
cutoff procedure. Nevertheless, one can still obtain results for large deviatoric strain incre-
ments coupled with small volumetric strain increments, see Figures 8 and 9. The numerical
error for the closest point procedure ranges from 0.3 to 10%, while that of the original cap
algorithm ranges from 1 to 82%. The source of the largest error in the latter arises from the
inconsistent treatment of the singular corner region previously discussed in Section 2.3. The

good accuracy of the proposed closest point procedure is demonstrated.

4. Viscoplastic ( rate-dependent ) extension
In this section, a rate-dependent extension of the basic cap model within the context of
Perzyna type viscoplasticity is developed [8]. Numerical simulations exhibiting the basic

behavior of the model will be considered in Section 5.

4.1 Basic formulation and algorithm
Basic formulation of the viscoplastic cap model is similar to its inviscid counterpart.
The inviscid failure envelope and cap surface now play the role of loading surfaces. In addi-

tion, one postulates an associative viscoplastic flow rule of the form

& = A<olf)> g:; (4.1)

where &? denotes the viscoplastic strain rate tensor and A the fluidity parameter. The dimen-
sionless scalar function ¢(f) represents the viscous flow function, f the viscoplastic loading
function, and < > the McAuley bracket. For the two-invariant constitutive model, two com-

monly assumed forms of viscoplastic flow function are:

Vim |
o(f) = ”_qu —1l (4.22)

— N

J5
$(f) = exp[‘/;ib -1 -1 (4.2b)
where NelR"* and for the cap model [ is expressed as
f=vIp - F (4.3)
F, failure surface

F= F, cap surface (4.4)

In parallel to the development of the inviscid cap model algorithm given in Section 3.1,

we have the following equations under loading condition:
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Ae?

AAL = AN = ‘W (similar to Eq.(3.1)) (4.52)
()> = Ae)FP 4

<o(f)> = ~ T0AN (4.5b)

VI = + F (/>0 when loading) (4.6)

In the above expressions, the subscript # +1 has been dropped for simplicity.

The return mapping algorithm summarized in Box 1 can be readily extended to accom-
modate rate-dependent viscoplastic behavior. For this purpose we note that in the viscous
case the loading stress point is allowed to be outside the static yield surface \J,p - F = 0;
i.e., f >0 for rate-dependent behavior. The algorithmic implication is that relaxation
towards the yield surface 1s not compieted. The final position of the stress point on the load-
ing surface is then determined by a condition that plays an analogous role to the consistency
condition in the inviscid case. The basic algorithm in Box 1 still applies with the exception
of step (iv), which is replaced by the procedure summarized in Box 2 below.

BOX 2. Viscoplastic Correction for Modes (b), (c) and (d)

Step (1v):

Solve by local iteration:
Ji ., +3KAY = Jf
VI, + Gy = VIEp

where
Ae)?

Vit
Ay =Ny A = -
n+l n+1 3Qn%i<¢(./f)>

vp
Yaul
e Aef
3Qn + IA)‘n +1

e ff("nﬂ) - fg(xn)

<o(f)> =

Remark 4.1 Note that in the viscoplastic case the static yield surface lags behind the
loading stress state. This could produce an "apparent” softening stress-strain behavior. How-

ever, this is in fact only a time-dependent phenomenon. [

Remark 4.2 The algorithm presented above provides a unified treatment for both invis-
cid and rate-dependent cap models within the framework of the closest point procedure.
Furthermore, the solution procedure requires only the solution of a single scalar equation.
This is in contrast with the recent development of a viscoplastic cap model considered by
Katona [13]. The approach advocated by Katona relies heavily on the implicit procedure
developed by Hughes and Taylor [10], which involves the solution of a system of nonlinear
equations for each iteration within a given time step. By contrast, the simplicity and econ-

omy of the present algorithm is noted. [
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5. Parameter estimation and numerical simulations

In order to assess the capability of the two-invariant cap model in predicting response
hehavior for actual materials such as concrete, model parameters need to be estimated from
available experimental data. In this section, a parameter estimation procedure and assess-
ment of the predictive capability of the cap model are presented. This is followed by exten-
sive numerical simulation of both the inviscid and rate-dependent models for concrete data.

5.1 Parameter estimation. Marquardt-Levenberg algorithm

It is characteristic of currently employed parameter estimation procedures for the cap
model (see e.g. [17,18]) to fit separately the failure envelope, cap surface, and hardening
parameters. Typically, asymptotic failure points from TE, TC, 8S, CTC, CTE, RTE, RTC
and PLT are used with a least-square fit procedure to estimate the failure parameters; whereas
iso-plastic volumeiric sirain contours are employed to estimate the cap shape parameter R.
The hardening parameters D and W are fitted from HC tests.t Although this procedure pro-
vides a parameter fitting inspired by the physical construction of the cap model, it has the fol-
lowing two major drawbacks: (a) a large amount (more than 20 tests) of conventional experi-
mental data are required (e.g. CTC, CTE etc.), and (b) it is not possible to utilize some exist-
ing nonconventional experimental work; e.g., the results from the "Colorado” experimental
program [16]. Hence, a more flexible and systematic parameter estimation procedure is
needed. This is the objective of the following section.

Optimization algorithm The basic idea of the procedure advocated here is to regard the
optimal fitting process for given experimental data as a least-square constrained optimization
problem. In this context, the objective function II: RY R is simply the sum-of-squares

error function defined as

N
(%) = 2, ||e; (¥.e;) - o] (5.1a)
[=1

where
N : number of observations
@ © stress response from constitutivemodelconsidered
a; . observed stress response
W : parameter vector (in R for cap model)

I : 1" data point

+ TF stands for triaxial extension, TC triaxial compression, SS simple shear, CTC conventional triaxial
compression, CTE conventional triaxial extension, RTE reduced triaxial extension, RTC reduced triaxial
compression, and PL proportional leading. ’

t HC represents hydrostatic compression test,
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The constraints imposed on the optimization problem emanate from physical restrictions
placed on the cap parameters. For example, for a physically meaningful model one should
have >0, vy>0,a>v,0>0,6>0,R>0,D >0, W>0. These constraints define a feasible
domain ECR’, which is a convex polygon. The resulting constrained optimization problem is

then expressed as

Find : min II(¥) subjectto ¥eE (5.1b)

There exists a wide variety of algorithms for solving the standard convex optimization
problem (5.1b) (e.g., see [21] for a review). The algorithm employed here is the well-known
Marquardi-Levenberg algorithm together with the Armijo step-size rule [19-20]. This algorithm
is essentially a hybrid of Newton and steepest descent (gradient) methods. It combines the
ability of the steepest descent method to converge from an initial guess, which may be outside
the region of convergence of other methods, with the rapid convergence characteristics of
MNewton’s method near the solution. The Marquardi-Levenberg algorithm can be summarized

in the following form:

¥, =¥ + \h, (5.2)
h, = -[H, +», D, v;11 (5.3)
H, = 2Q/Q, (approx. Hessian) (5.4)
Q; = o (sensitivity matrix) (5.5)

¥,

n, = Margquardt parameter

D, = diagonal matrix of H, or simply 1
- ; k =
A1 - wg(ggl’)nklg\l W l ‘i’zﬂ €=, H(‘I’wrl) < II(WI) (56)

i = i" jteration

The algorithm summarized above can be systematically applied to any set of experimental
data to obtain the optimal fit for the constitutive model under consideration in a least square

sense.

Error measuremen! During the optimization process, a root-mean-square (RMS) type of
error measurement is adopted. The optimization process is considered to reach its optimum
when the RMS measure is minimized. The relevant measures are defined as follows:

11

Av = | & (RMS of error) (5.7)
1 N , & s .]_
Hesll” |2 . ‘
Ty = |2 N (RMS of observed responses) (5.8)
[ J=1 A
Ay , : . v
Oy = T (normalized relative RMS error) (5.9)
N
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Remark 5.1 It is interesting to examine the sensitivity of the response under perturba-
tions in cap model parameters. A finite difference sensitivity matrix Q is defined in dimen-
sionless form:

AUi /(fz

“Sm* (5.10)

Qi =
where ¢; is a stress component (i = ,...,6) and ¥, is a parameter component (j = 1,...7),
respectively. A standard sensitivity analysis reveals that the response of the cap model is rela-
tively insensitive to changes in the model parameters. By ordering the model parameters

according to relative sensitivity in the response, one obtains in decreasing order of sensitivity

W-aD-sR—>a>0-»y-—=f (5.11)

In summary, one obtains the following relative degree of sensitivity (from large to smali):

hardening parameters — cap parameters - failure parameters

5.2 Inviscid case. "Colorado” concrete data

In this section, we first examine the consistency of the "Colorado concrete” data {16},
next we estimate the model parameters by exercising the procedure described above, finally

assess the predictive capability for the inviscid cap model.

Colorado concrete data This program on concrete was performed at the University of
Colorado (1983) and is well-documented. The program consists of six major series of non-
conventional multiaxial stress-strain curves. The total number of experiments is 67. The data
are characterized by the following properties: (a) characteristic strength f, = 4 KSI, (b) mean
pressure < 8 K5I (¢) rruly rriaxial states of stress for concrete, (d) nonconventional compli-

cated stress paths, and () guasi-static loading.

Assessment of data consistency Basically, the measures employed here are the same as
those discussed in the previous section, For convenience, these measures are summarized as

follows:
i

N A 2 7

Ay = s Haerd]” (see(5.7)) (5.12)
i N
ENRE

ry = | 3L (see(5.8)) (5.13)
N
Sy

vz =Y (see(5.9) (5.14)

r N

Here ¢f' refers to a strain measurement of test A’. An assessment of consistency for the
"Colorado” concrete data may be obtained from the replicates of experiments available in the
reported results [16]. The present analysis generally indicates reasonable consistency of the
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data. However, some serious discrepancies between replicates are also observed. See Table 1
below. ‘

Table 1. Consistency of the Colorado concrete data [16)

Tests 8 % Major Path
-1 & 1-10 13.5 CTC
1-4 & 1-7 31.1 TC
1-6 & 1-9 51.3 TE
2-3 & 2-4 9.6 S8
2-7 & 2-8 13.5 SS
3-1 & 3-2 2443 Circular
3-3 & 3-4 47.2 Circular
3-10 & 3-11 92.9 Circular
4-1 & 4-2 10.9 | Axisymmetric
4-6 & 4-7 54.2 | Axisymmetric

Model parameter estimation procedure The actual data employed in the optimization
process based on the Marquardt-Levenberg algorithm are obtained by arbitrarily selecting one
test out of each of the six major series. Thus, a total number of 6 tests is used in the actual fit
of the model. The quality of the fitting is satisfactory. Typical values of the RMS error found
from back-prediction are 6 = 16% for test 1-1 (CTC), & = 8.5% for test 2-3 (SS), etc.. From this
optimization procedure, we obtain the following set of parameters which best fits the observed
experiments: « = 3.86ksi, © =11, y=1.16ksi, f=44ksi"', R=443, D=.0032ksi ',
W=42 X°=16ksi.

Predictive capability After the optimal model parameters are obtained, the resulting cap
model is used to predict the response of every other Colorado test which is not included in the
optimization process (total number = 61). It is emphasized that the "prediction” here has
nothing to do with optimal fitting, but is obtained by exercising the cap model using previ-
ously estimated parameters. In general, considering the experimental data scatter, the
predicted response is in good agreement with the experimental results. Values of the RMS
error corresponding to a selected sample of simulations are summarized in Table 2 below.
The overall RMS and standard deviation of error for 61 tests are 26.6% and 14%, respec-
tively. A comparison between experimental and predicted stress-strain curves is contained in
Figures 10-19.

Assessment and evaluation From the above fitting and prediction exercises, it may be
concluded that for the Colorado concrete data the inviscid cap model generally exhibits good
fitting and predictive capabilities. The simulations reported herein capture the overall qualita-

tive behavior of the experimental response.
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Table 2. Results of prediction. Inviscid case

Tests | 6% Major Path
1-2 12.4 58

-3 14.1 TE

2-2 17. TE

2-4 11.7 58

3-5 15. Circular
3-17 11.6 Circular
4-7 14. Axisymmetric
4-12 11.4 | Axisymmetric
5-1 i4. Unsymmetric
5-2 17. Unsymmetric

5.3, Some rate-dependent simulations

Unlike the static tests, there are only limited amount of dynamic (high rate) tests avail-
able for concrete materials. In this section, simulations with the rate-dependent model are
performed on the basis of two recent dynamic concrete tests. These preliminary simulations
appear to substantiate the good fitting capabilities of the viscoplastic cap model. As in the
inviscid case, the model parameters are identified by the optimization procedure discussed in

Section 5.1, based on a modified Marquardt-Levenberg algorithm.

SRI Dynamic Concrete Test (1979) [14] First, the elastic bulk modulus K and shear
modulus G are independently determined to be K=2100ksi, G=1700ksi. By using the
optimization algorithm, the cap model parameters are identified to be: «=0.7ksi, 6=0.1,
v=0.2ksi, B=1.473ksi ', R=10.8, D=0.00154 ksi U W =0884, X°=18ksi (the initial cap
surface location), N=1.62, and A=0.0000142sec™!. The error § obtained by the viscoplastic
cap model, based on the above parameters, is only 4.8% , see Fig. 20. The correlation
between the modei’s performance and the experimental data is quite satisfactory.

TerraTek Research Dynamic Concrete Test #32 (1984) [15] This test is concerned with a
concrete material composed of limestone coarse aggregate, with sample size of 4-in diameter
and 4-in length. The elastic parameters are independently determined to be: K=3571.43 ksi,
G =2459ksi. Within the reliable testing region, the model parameters are identified to be:
a=2.1ksi, ©=0.116, v=1.3ksi, B3=03ksi"', R=9.7, D=0.006ksi~!, W=0.2, X°=56ksi,
N =1.61, and A=0.00036sec”!. The error § obtained by the viscoplastic cap model, based on
the above parameters, is only 3% within the reliable experimental region, see Fig. 21.

The good agreement between predicted and experimental response for the two prelim-
inary examples considered above appears to confirm the suitability of the viscoplastic model
proposed in the present work for modeling rate-dependent behavior in concrete materials.
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6. Clogwe

The algorithmic implementation of the cap model has been considered in detail. An
existing stress point algorithm for the numerical integration of the inviscid cap model has
been reviewed, and shown to be in conflict with the basic constitutive equations governing the
response of the model. This inconsistency applies to the failure envelope model and is partic-
ularly important in the singular cone whose vertex is the intersection of cap and failure sur-
faces. An alternative closest point algorithim for the inviscid cap model, which is free from
these shortcomings, has been proposed. Its accuracy has been precisely assessed by means of
iso-error maps for the "Colorado concrete” data. It is concluded that the numerical error of

the proposed algorithm remains reasonable even for relatively large strain increments.

To account for raie-dependent behavior, a viscoplastic extension of the basic cap model

“has been developed based on the notion of viscoplastic behavior as proposed by Perzyna. An

efficient algorithm for this rate-dependent model has been developed, which, as opposed to
popular existing methods, only requires the solution of a scalar nonlinear equation. The good
predicting capabilities of the model have been demonstrated in two dynamic experimental

tests of concrete furnished by SRI and TerraTek.

A systematic estimation procedure for the parameters involved in the cap model to
given experimental data has been developed, based on a modified Marquardt-Levenberg
optimization algorithm. This procedure has been applied to the extensive experimental pro-
gram carried out at the University of Colorado and reported in [16]. It is emphasized that
due to the nonconventional character of this experimental data, standard fitting procedures
(e.g., Desai [17,18]) based on conventional tests can not be employed. The numerical simula-
tions performed on the basis of these data support the good predictive capabilities of the cap

model for concrete tnaterials.
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ELASTIC REGION

Figure 1. The yield surface for cap model. F, and F. denote the failure envelope and
the hardening cap surface, respectively. The shaded area is the "singular corner region”.



Figure 2. Case 1 of the singular corner mode. The elastic predictor falls in the corner
region corresponding to the previous time step. o, signifies the elastic predictor, while o,
represents the improper return stress point proposed in [3]. Note that o,,; is the correct
return mapping point.
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Figure 3. Case 2 of singular corner mode. The contraction of the cap catches up the
return stress point on F,. Note that ¢/, is the orthogonal projection of ef,, on F,. The
correct return stress point is a4y, i.e. J, = . Note that o, is the vertex of the newly
formed corner region which contains the elastic predictor ok, ‘
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Figure 4. The initial and subsequent yield surfaces. Points (A), (B), and (C) represent
three different initial loading points on the initial yield surface.
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Figure 3. Percent iso-error contour for the closest point algorithm with compressive
ioading from the hydrostatic axis, point (A) in Fig. 4. The characteristic yield strains are
)(0 T,

defined as : “y=3E ~é— , where x° is the initial cap position on J,-axis and 7, the
shear yield stress. Errors are shown for increasing volumetric and shear strain increments Ae,
and Ay .

and v, =

24,
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Figure 6. Percent iso-error contour for the closest point algorithm with compressive
loading from the corner point (B), Fig. 4.
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Figure 7. Percent iso-error contour for the closest point algorithm with compressive
loading from the intermediate point (C), Fig. 4.
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