
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Improved Physical Design for Manufacturing Awareness and Advanced VLSI

Permalink
https://escholarship.org/uc/item/0jc9v9rt

Author
Wang, Lutong

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0jc9v9rt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Improved Physical Design for Manufacturing Awareness and Advanced VLSI

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Lutong Wang

Committee in charge:

Professor Andrew B. Kahng, Chair
Professor Chung-Kuan Cheng
Professor Puneet Gupta
Professor Rajesh K. Gupta
Professor Farinaz Koushanfar
Professor Bill Lin

2020

Copyright

Lutong Wang, 2020

All rights reserved.

The dissertation of Lutong Wang is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xi

Acknowledgments . xiii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 New Challenges . 1

1.1.1 Manufacturing-Aware Design Technology Co-Optimization 2
1.1.2 Advanced Node Design-Based Equivalent Scaling 3
1.1.3 The Widening Academia – Industry Gap 5

1.2 This Thesis . 5

Chapter 2 General Flow Optimizations . 9
2.1 Improved Flop Tray-Based Design Implementation for Power Reduction . . 10

2.1.1 Related Work . 14
2.1.2 Methodology . 16
2.1.3 Experiments . 27
2.1.4 Conclusion . 31

2.2 MILP-Based Optimization of 2D Block Masks for Timing-Aware Dummy
Segment Removal in Self-Aligned Multiple Patterning Layouts 32
2.2.1 Related Work and Preliminaries . 35
2.2.2 MILP-based 2D Block Mask Optimization 41
2.2.3 Overall Flow . 53
2.2.4 Experiments . 56
2.2.5 Conclusion . 64

2.3 Acknowledgments . 64

Chapter 3 Improved Physical Design Methodologies in Placement 66
3.1 Enhanced Optimal Multi-Row Detailed Placement for Neighbor Diffusion

Effect Mitigation in Sub-10nm VLSI . 67
3.1.1 Related Work . 71
3.1.2 Single-Row Optimization . 73
3.1.3 Double-Row Optimization . 79
3.1.4 Multi-Row Optimization . 84

v

3.1.5 Experiments . 88
3.1.6 Conclusion . 100

3.2 Vertical M1 Routing-Aware Detailed Placement for Congestion and Wirelength
Reduction in Sub-10nm Nodes . 101
3.2.1 Related Work . 105
3.2.2 MILP-based Optimization . 107
3.2.3 Overall Flow . 111
3.2.4 Experiments . 115
3.2.5 Conclusion . 119

3.3 Acknowledgments . 120

Chapter 4 Open Source Physical Design Methodologies in Routing 121
4.1 Pin Access Analysis Framework for Detailed Routing 122

4.1.1 Preliminaries . 123
4.1.2 Methodology . 126
4.1.3 Experiments . 133
4.1.4 Conclusion . 138

4.2 TritonRoute: The Open Source Detailed Router 138
4.2.1 Related Work . 141
4.2.2 Database . 142
4.2.3 Flow . 146
4.2.4 Detailed Routing Worker . 150
4.2.5 Experiments . 160
4.2.6 Conclusion . 164

4.3 Acknowledgments . 165

Chapter 5 Conclusion . 166

Bibliography . 170

vi

LIST OF FIGURES

Figure 1.1: Roadmap of future technology [37]. 2
Figure 1.2: Design capability gap [49]. 3
Figure 1.3: Scope and organization of this thesis. 6

Figure 2.1: Two inverters for the clock signal are shared between the two flops in a 2-bit flop tray. 11
Figure 2.2: Wirelength and power overheads on datapaths due to flop tray-based implementations

compared to implementations using only single-bit flops. Technology: 28FDSOI.
Designs are from OpenCores [124]. 12

Figure 2.3: Overall optimization flow of flop tray generation. 17
Figure 2.4: Example of min-cost flow with K-bit flop trays. 19
Figure 2.5: Clustering solutions into 64-bit flop trays (i) without awareness of flop tray aspect

ratio and dimensions, and (ii) with awareness of flop tray aspect ratio and dimensions.
Design: AES (530 single-bit flops). Technology: 28FDSOI. 20

Figure 2.6: Best clustering solution (i.e., func(hl) (left) and displacement (right)) with multiple
runs (numbers of runs are shown in the x-axis). 21

Figure 2.7: Example of our ILP-based optimization. 22
Figure 2.8: Illustration of the timing impact due to relative displacement between timing-critical

start-end flop pairs. 23
Figure 2.9: Number of flop trays and average displacement of flops change with different α values.

Design: JPEG. Technology: 28FDSOI. 25
Figure 2.10: Power change with various β values. Designs: AES, JPEG. Technology: 28FDSOI. . 26
Figure 2.11: Layout comparison between implementations with only single-bit flops and with

optimized flop trays. In the flop tray-based solutions, the candidate flop tray sizes are
4-bit, 8-bit, 16-bit, 32-bit and 64-bit. 29

Figure 2.12: Flop (tray) power and clock power of designs with various flop tray sizes. Candidate
tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit. 31

Figure 2.13: Datapath leakage power results, normalized to implementations with only single-bit
flops. 32

Figure 2.14: SAMP process: (a) post-route layout; (b) cut mask application; (c) layout after cut
mask application; (d) block mask application; and (e) final layout after block mask
application. 33

Figure 2.15: Block mask rules: (a) minimum width and length rules; (b) minimum overlap rule; (c)
minimum U-shape rule; and (d) minimum L-shape rule. 36

Figure 2.16: Illustration of the material selectivity-based block approach. 38
Figure 2.17: Comparison between selective block and non-selective block: (a) selective block mask

in red removes only red segments; (b) selective block mask in green removes only
green segments; and (c) a complex non-selective block mask is required to remove the
same dummy segments. 38

Figure 2.18: Cut mask rules: minimum spacing. 39
Figure 2.19: Comparison between selective cuts and non-selective LELE cuts. (a) Selective cut

mask in red (resp. green) realizes EOL only for red (resp. green) segments, and is
transparent to green (resp. red) segments. (b) Non-selective LELE cuts realize EOL
for both colors. 40

vii

Figure 2.20: Shapes and block candidates for Shape 2. 43
Figure 2.21: Illustration of a U-shape block mask rule violation. 45
Figure 2.22: Cut and block mask co-optimization: (a) block candidates; (b) cut candidates; and (c)

a possible final layout. 47
Figure 2.23: Illustration of binary variable e′: cut candidate c1,1 and block candidate v1,3 are selected. 50
Figure 2.24: Gate delay vs. net capacitance for a specific gate instance. 52
Figure 2.25: Comparison of timing results from Tempus (Golden) and our estimation (Estimated).

(a) Path delay and (b) stage delay comparisons. The maximum errors are -4ps and
-23ps for stage delay and path delay, respectively. 53

Figure 2.26: Illustration of conflict list enumeration for minimum spacing constraint, showing
horizontally and vertically conflicting pairs. 54

Figure 2.27: Distributed optimization: (a) – (d) respectively illustrate the first, second, third and
fourth iteration in our approach. Since target clips (yellow) for an iteration do not
share their boundaries with each other, each target is independently optimizable. . . 55

Figure 2.28: Overall optimization flow. 56
Figure 2.29: Sensitivity study results: sensitivity of dummy removal rate to (a) block candidate

length and (b) clip size. 60
Figure 2.30: Layouts of M4 layer before and after dummy fill removal: (a) initial layout with

dummy fill; (b) layout covered by the selective block mask (red); (c) layout covered by
the selective block mask (blue); and (d) layout after timing-aware dummy fill removal
with optimized selective block masks. 64

Figure 3.1: (a) Diffusion step and fin spacing, (b) desired pattern, (c) actual diffusion region
showing corner rounding, and (d) diffusion breaks (after diffusion cuts applied). . . 68

Figure 3.2: Initial (Init.) and projected (Opt.) yield assuming 90% inter-cell step reduction for
various base failure rates. 69

Figure 3.3: Filler insertion between cell A and B, given different spacings. 74
Figure 3.4: Illustration of six placement solutions with three legal states given i = 4 and r = 1. 77
Figure 3.5: Illustrations of double-height cells in placement rows. (a) Separable pairs of cell

rows, reflecting power rail design of double-height cells in current N10 libraries. (b)
Non-separable pairs of cell rows. 81

Figure 3.6: An example of multi-row cell ordering. Cells are sequentially ordered (c1 to c6)
according to the x coordinate of their right boundary. Cells c4 and c5 have the same
right boundary x coordinate, and thus could be switched in the ordering. 85

Figure 3.7: Illustration of the Assumption. 86
Figure 3.8: Illustration of DP in multi-row placement with m = 4. 86
Figure 3.9: Sensitivity of runtime to (x∆, r, f) parameters. 90
Figure 3.10: Sensitivity of #steps to m in MR optimization. 91
Figure 3.11: Sensitivity of #steps to (x∆, r, f) parameters. 91
Figure 3.12: Sensitivity of HPWL to (x∆, r, f) parameters. 92
Figure 3.13: Sensitivity of RWL to (x∆, r, f) parameters. 92
Figure 3.14: Impacts of weighting factors (α, γpenalty) on the tradeoff between HPWL and #steps. 93
Figure 3.15: Impact of weighting factor γ on the tradeoff between HPWL and #steps. 94
Figure 3.16: Layouts of placements before (Init) and after (MR) our MR optimization. Red color

indicates cell instances with diffusion steps and blue color indicates cell instances
without diffusion steps. 95

viii

Figure 3.17: #steps (normalized) and HPWL (normalized) vs. #iterations in metaheuristic opti-
mization. 97

Figure 3.18: #steps vs. HPWL in metaheuristic optimization. Red (resp. green and blue) dots
represent metaheuristic iterations that start with configuration A (resp. configuration
B and configuration C). 98

Figure 3.19: Comparison of #filler-induced steps and total #steps for all design blocks before
(orig.opt, δ = 0) and after (time.opt, δ = −0.3) using intentional steps. 99

Figure 3.20: Sensitivity of filler-induced steps to δ. Testcase: AES. 100
Figure 3.21: New cell architectures to gain additional routing resources. (a) Conventional 12-track

INV; (b) ClosedM1 7.5-track INV; (c) OpenM1 7.5-track INV. 102
Figure 3.22: Direct vertical M1 routing examples: (a) ClosedM1 and (b) OpenM1. 104
Figure 3.23: Illustration of distributable optimization. 112
Figure 3.24: HPWL calculation for two cases. (a) Target windows with intersecting projections

on the y-axis. (b) Windows with disjoint projections. In the case of (a), the total
∆HPWL is not equal to the sum of ∆HPWL values that are calculated from each
window. 113

Figure 3.25: Scalability test with various window sizes and perturbation ranges. 116
Figure 3.26: Sensitivity of total routed wirelength (RWL) and the number of direct vertical M1

routings (#dM1) to α. 116
Figure 3.27: Results of various optimization sequences. 117
Figure 3.28: #DRCs after optimization for AES design with various utilizations. Also shown: the

number of direct vertical M1 routings. 118

Figure 4.1: Illustration of two different unique instances that have the same cell master and
orientation, but different offsets to track patterns. 124

Figure 4.2: Illustration of access points. 124
Figure 4.3: Illustration of four y-coordinate types, overlaid with same-layer up-via enclosure

at the access point: (a) on-track; (b) half-track; (c) shape-center; and (d) enclosure
boundary. Only (c) and (d) are DRC-clean. 126

Figure 4.4: Iterative access pattern generation flow. 128
Figure 4.5: Pin ordering. 129
Figure 4.6: Graph for dynamic programming-based access pattern generation. 130
Figure 4.7: Illustration of (a) ordered cell instances and (b) corresponding graph. 133
Figure 4.8: Comparison of pin access between Dr. CU 2.0 and PAAF: (a) Dr. CU 2.0 (Case 1), (b)

PAAF (Case 1), (c) Dr. CU 2.0 (Case 2), and (d) PAAF (Case 2). Dashed red boxes
are DRCs. Testcase: ispd18 test5. 137

Figure 4.9: Illustration of pin accesses in 14nm. Note that off-track pin access is enabled auto-
matically in PAAF. 138

Figure 4.10: Major database structures. 143
Figure 4.11: Overall flow. 146
Figure 4.12: Illustrations of ordered viadefs: (a) preferred viadef for detail routing; (b) additional

viadef for pin access analysis; and (c) non-preferred viadef. 147
Figure 4.13: Preprocessing: (a) initial route guides; (b) splitting; (c) merging; (d) bridging; and (e)

preprocessed guides. The preferred direction for M1 is vertical, and for M2 is horizontal.147
Figure 4.14: DRC LUT: (a) via to jog (vertical); (b) via to jog (horizontal); (c) via to via (vertical);

(d) via to via (horizontal); (e) jog to jog (vertical); and (f) jog to jog (horizontal). . . 148

ix

Figure 4.15: Grid graph: (a) preferred-direction grid lines on Metal1; (b) preferred-direction grid
lines on Metal2; (c) preferred-direction grid lines on Metal3; and (d) overlay of grid
lines (3D grid graph projected onto the x-y plane). 150

Figure 4.16: Object cost from parallel run length spacing: (a) expanding region; and (b) shadow
object. 153

Figure 4.17: Object cost from end-of-line spacing: (a) expanding region; and (b) shadow object.
The preferred routing direction is horizontal. 154

Figure 4.18: Local netlist construction: two disjoint subnets constructed in the detailed routing
worker from one global net. 155

Figure 4.19: Minimum area patch metal: (a) patch metal considering area outside of standard box;
and (b) patch metal always along the preferred routing direction even if the routing
ends in the non-preferred direction. 158

Figure 4.20: Illustration of tradeoff between runtime and final DRC count with various DRWorker
standard box sizes in unit of GCell. 164

x

LIST OF TABLES

Table 2.1: Description of notations used in our formulation. 18
Table 2.2: Testcase parameters. 27
Table 2.3: Normalized flop tray area and power, and layout AR. 27
Table 2.4: Experimental results. 29
Table 2.5: Preliminary cut and block mask rules. 37
Table 2.6: Notations. The notations from the twelfth row to the eighteenth row (i.e., beginning

with cfi,j) are used for cut and block co-optimization. 42
Table 2.7: Normalized capacitance increase for (grounded) EOL extension and (floating) dummy

fill, using a Cadence Innovus-based extraction flow provided by our collaborators at a
leading technology consortium. 51

Table 2.8: Summary of testcases. 58
Table 2.9: Parameter settings for the experiments. 59
Table 2.10: Timing and switching power of best and worst cases for ExptA. The units are ns, ns

and µW for WNS, TNS and Psw, respectively. 59
Table 2.11: Overall experimental results. Values in parentheses denote percentage improvements

(reductions) with respect to the worst case as described in Table 2.10. Note that ExptA
and ExptB use cut-aware (from commercial tool) and cut-unaware post-route layout,
respectively. 62

Table 3.1: Cost for one diffusion step. 73
Table 3.2: Notations. 75
Table 3.3: Design information. 89
Table 3.4: Experimental results for all design blocks using multi-row optimization. 94
Table 3.5: Comparison of diffusion steps with SR (to match [21][67]), ODR (to match [66]) DR,

MR and metaheuristics (Meta). DH% = % of double-height cells. 96
Table 3.6: Comparison of routed wirelength (RWL) with SR, ODR, DR, MR and metaheuristics

(Meta). 96
Table 3.7: Comparison of runtime (seconds) with SR, ODR, DR, MR and metaheuristics (Meta). 97
Table 3.8: Design information and experiment results for ICCAD-2017 benchmark [11]. Distribu-

tion of single-height, double-height, triple-height and quadruple-height cells are shown
in columns 1×H, 2×H, 3×H and 4×H, respectively. 101

Table 3.9: Notations. 109
Table 3.10: Results of Expt2. 117

Table 4.1: Testcase information [73]. 134
Table 4.2: Results for Experiment 1: comparison between the original TritonRoute (TrRte) and

our pin access analysis framework (PAAF) for all unique instance pins (without consid-
ering intra-cell or inter-cell pin access compatibility) in terms of total #access points
generated (Total #APs), #access points with DRCs (#Dirty APs), and runtime. 135

Table 4.3: Results for Experiment 2: comparison between the original TritonRoute (TrRte) and
our pin access analysis framework (PAAF) for all instance pins (considering intra-cell
and inter-cell pin access compatibility) in terms of #pins without a DRC-clean access
point (#Failed Pins), and runtime. Total #pins means the total number of all instance
pins (with net attached). 136

xi

Table 4.4: Database objects from LEF. 142
Table 4.5: Database objects from DEF. 144
Table 4.6: Design rules. 145
Table 4.7: Edge properties. 151
Table 4.8: Vertex properties. 152
Table 4.9: Comparison of total wirelength, total via count, memory usage and runtime between

TritonRoute (column A) and Dr. CU (column B). 163
Table 4.10: Comparison of number of minimum width (MinWid), non-sufficient-metal overlap

(NSMet), minimum area (MAR), metal short (Short), cut short (CShort), metal parallel
run length spacing (MetSpc), metal end-of-line spacing (EOLSpc), cut spacing (CutSpc)
and total design rule violations between TritonRoute (TR) and Dr. CU (CU). 164

xii

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Professor Andrew B. Kahng for his continuous

guidance and support throughout my Ph.D. study. I have learned a lot from his enormous amount of

knowledge, passion and responsibility in the research process.

I would like to thank my fellow labmates in the UCSD VLSI CAD Laboratory (Minsoo Kim,

Hsin-Yu Liu, Zhiang Wang, Mingyu Woo and Bangqi Xu) and former lab members (Dr. Wei-Ting (Jonas)

Chan, Ahmed Taha Elthakeb, Dr. Kwangsoo Han, Chia-Tung Ho, Dr. Hyein Lee, Dr. Jiajia Li, Mulong

Luo, Uday Mallappa, Dr. Siddhartha Nath, Tushar Shah, Dr. Vaishnav Srinivas, Yaping Sun and Sriram

Venkatesh) for their assistance and enthusiastic discussions. I would also like to thank Dr. Tuck-Boon

Chan and Dr. Ilgweon Kang for their guidance through countless discussions.

I would also like to thank my industrial collaborators (Peter Debacker, Changho Han, Sun ik Heo,

Soowan Hong, Chunghee Kim and Dr. Praveen Raghavan) for their invaluable guidance and feedback in

many of my research projects.

My sincere thanks go to my thesis committee members Professor Chung-Kuan Cheng, Professor

Puneet Gupta, Professor Rajesh Gupta, Professor Farinaz Koushanfar and Professor Bill Lin for their time,

encouragement and insightful comments.

Last, but not least, I would like to thank my family. This journey would not have been made

possible without their continuous support and sacrifice.

The material in this thesis is based on the following publications.

Chapter 2 contains the reprints of Andrew B. Kahng, Jiajia Li and Lutong Wang, “Improved Flop

Tray-Based Design Implementation for Power Reduction”, Proc. IEEE/ACM International Conference

on Computer-Aided Design, 2016; and Peter Debacker, Kwangsoo Han, Andrew B. Kahng, Hyein Lee,

Praveen Raghavan and Lutong Wang, “MILP-Based Optimization of 2D Block Masks for Timing-Aware

Dummy Segment Removal in Self-Aligned Multiple Patterning Layouts”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 36(7), 2017. The dissertation author is a main contributor

to, and a primary author of, the second paper.

xiii

I would like to thank my coauthors Peter Debacker, Kwangsoo Han, Andrew B. Kahng, Hyein

Lee, Jiajia Li and Praveen Raghavan for their support and work.

Chapter 3 contains reprints of Changho Han, Kwangsoo Han, Andrew B. Kahng, Hyein Lee,

Lutong Wang and Bangqi Xu, “Optimal Multi-Row Detailed Placement for Yield and Model-Hardware

Correlation Improvements in Sub-10nm VLSI”, Proc. IEEE/ACM International Conference on Computer-

Aided Design, 2017; Changho Han, Andrew B. Kahng, Lutong Wang and Bangqi Xu, “Enhanced Optimal

Multi-Row Detailed Placement for Neighbor Diffusion Effect Mitigation in Sub-10nm VLSI”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(9), 2019; and Peter De-

backer, Kwangsoo Han, Andrew B. Kahng, Hyein Lee, Praveen Raghavan and Lutong Wang, “Vertical M1

Routing-Aware Detailed Placement for Congestion and Wirelength Reduction in Sub-10nm Nodes”, Proc.

ACM/EDAC/IEEE Design Automation Conference, 2017. The dissertation author is a main contributor to,

and a primary author of, each of these papers.

I would like to thank my coauthors Peter Debacker, Changho Han, Kwangsoo Han, Andrew B.

Kahng, Hyein Lee, Praveen Raghavan and Bangqi Xu, as well as the research support from Samsung

Electronics.

Chapter 4 contains reprints of Andrew B. Kahng, Lutong Wang and Bangqi Xu, “The Tao of PAO:

Anatomy of a Pin Access Oracle for Detailed Routing”, Proc. ACM/IEEE Design Automation Conference,

2020. Chapter 4 also contains the draft of Andrew B. Kahng, Lutong Wang and Bangqi Xu, “TritonRoute:

The Open Source Detailed Router”, in submission to IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2020. The dissertation author is a main contributor to, and a primary

author of, each of these papers.

I would like to thank my coauthors Andrew B. Kahng and Bangqi Xu for their support and work.

My coauthors (Mr. Peter Debacker, Mr. Changho Han, Dr. Kwangsoo Han, Professor Andrew

B. Kahng, Dr. Hyein Lee, Dr. Jiajia Li, Dr. Praveen Raghavan and Mr. Bangqi Xu, listed in alphabetical

order) have all kindly approved the inclusion of the aforementioned publications in my thesis.

xiv

VITA

2014 B. Eng., Microelectronics,
Tsinghua University, Beijing, China

2015 M. S., Electrical Engineering (Computer Engineering),
University of California, San Diego

2018 C. Phil., Electrical Engineering (Computer Engineering),
University of California, San Diego

2020 Ph. D., Electrical Engineering (Computer Engineering),
University of California, San Diego

All papers coauthored with my advisor Professor Andrew B. Kahng have authors listed in alpha-

betical order.

PUBLICATIONS

Andrew B. Kahng, L. Wang and B. Xu, “The Tao of PAO: Anatomy of a Pin Access Oracle for Detailed
Routing”, Proc. ACM/IEEE Design Automation Conference, 2020, to appear.

C.-K. Cheng, A. B. Kahng, I. Kang and L. Wang, “RePlAce: Advancing Solution Quality and Routability
Validation in Global Placement”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38(9) (2019), pp. 1717-1730.

C. Han, A. B. Kahng, L. Wang and B. Xu, “Enhanced Optimal Multi-Row Detailed Placement for
Neighbor Diffusion Effect Mitigation in Sub-10nm VLSI”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 38(9) (2019), pp. 1703-1716.

T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim, J. Lee, U. Mallappa,
M. Neseem, G. Pradipta, S. Reda, M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L.
Wang, Z. Wang, M. Woo and B. Xu, “Toward an Open-Source Digital Flow: First Learnings from the
OpenROAD Project”, Proc. ACM/IEEE Design Automation Conference, 2019, pp. 76:1-76:4.

S. Heo, A. B. Kahng, M. Kim, L. Wang and C. Yang, “Detailed Placement for IR Drop Mitigation by
Power Staple Insertion in Sub-10nm VLSI”, Proc. Design, Automation and Test in Europe, 2019, pp.
824-829.

M. Fogaça, A. B. Kahng, R. Reis and L. Wang, “Finding Placement-Relevant Clusters With Fast
Modularity-Based Clustering”, Proc. Asia and South Pacific Design Automation Conference, 2019,
pp. 569-576.

S. Heo, A. B. Kahng, M. Kim and L. Wang, “Diffusion Break-Aware Leakage Power Optimization and
Detailed Placement in Sub-10nm VLSI”, Proc. Asia and South Pacific Design Automation Conference,
2019, pp. 550-556.

xv

A. B. Kahng, L. Wang and B. Xu, “TritonRoute: An Initial Detailed Router for Advanced VLSI Technolo-
gies”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2018, pp. 81:1-81:8.

A. B. Kahng, C. Moyes, S. Venkatesh and L. Wang, “Wot the L: Analysis of Real versus Random Placed
Nets, and Implications for Steiner Tree Heuristics”, Proc. ACM International Symposium on Physical
Design, 2018, pp. 2-9.

C. Han, K. Han, A. B. Kahng, H. Lee, L. Wang and B. Xu, “Optimal Multi-Row Detailed Placement for
Yield and Model-Hardware Correlation Improvements in Sub-10nm VLSI”, Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2017, pp. 667-674.

P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang, “MILP-Based Optimization
of 2D Block Masks for Timing-Aware Dummy Segment Removal in Self-Aligned Multiple Patterning
Layouts”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36(7) (2017),
pp. 1075-1088.

P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang, “Vertical M1 Routing-Aware
Detailed Placement for Congestion and Wirelength Reduction in Sub-10nm Nodes”, Proc. ACM/IEEE
Design Automation Conference, 2017, pp. 1-6.

K. Han, A. B. Kahng, H. Lee and L. Wang, “Performance- and Energy-Aware Optimization of BEOL
Interconnect Stack Geometry in Advanced Technology Nodes”, Proc. International Symposium on Quality
Electronic Design, 2017, pp.104-110.

A. B. Kahng, J. Li and L. Wang, “Improved Flop Tray-Based Design Implementation for Power Reduction”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2016, pp. 20:1-20:8.

K. Han, A. B. Kahng, H. Lee and L. Wang, “ILP-Based Co-Optimization of Cut-Mask Layout, Dummy Fill
and Timing for Sub-14nm BEOL Technology”, Proc. SPIE Photomask Technology, 2015, pp. 96350E:1-
96350E:14.

xvi

ABSTRACT OF THE DISSERTATION

Improved Physical Design for Manufacturing Awareness and Advanced VLSI

by

Lutong Wang

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2020

Professor Andrew B. Kahng, Chair

Increasing challenges arise with each new semiconductor technology node, especially in advanced

nodes, where the industry tries to extract every ounce of benefit as it approaches the limits of physics,

through manufacturing-aware design technology co-optimization and design-based equivalent scaling.

The increasing complexity of design and process technologies, and ever-more complex design rules, also

become hurdles for academic researchers, separating academic researchers from the most up-to-date

technical issues.

This thesis presents innovative methodologies and optimizations to address the above challenges.

There are three directions in this thesis: (i) manufacturing-aware design technology co-optimization; (ii)

advanced node design-based equivalent scaling; and (iii) an open source academic detailed routing flow.

xvii

To realize manufacturing-aware design technology co-optimization, this thesis presents two

works: (i) a multi-row detailed placement optimization for neighbor diffusion effect mitigation between

neighboring standard cells; and (ii) a post-routing optimization to generate 2D block mask layout for

dummy segment removal in self-aligned multiple patterning.

To achieve advanced node design-based equivalent scaling, this thesis presents two improved

physical design methodologies: (i) a post-placement flop tray generation approach for clock power

reduction; and (ii) a detailed placement approach to exploit inter-row M1 routing for congestion and

wirelength reduction.

To address the increasing gap between academia and industry, this thesis presents two works

toward an open source academic detailed routing flow: (i) a complete, robust, scalable and design rule-

aware dynamic programming-based pin access analysis framework; and (ii) TritonRoute – the open source

detailed router that is capable of delivering DRC-clean detailed routing solutions in advanced nodes.

This thesis concludes with a summary of its contributions and open directions for future research.

xviii

Chapter 1

Introduction

The past decade has seen tremendous changes in information technology, such as (i) rapid transition

from 2G/3G to 4G/5G cellular network technologies; (ii) explosion of the Internet of Things (IoT); and (iii)

massive deployment of cloud computing and fast networking. The semiconductor industry sits at the heart

of technology. Even though Moore’s Law scaling has become more costly and difficult, major players have

all been keen to race toward the limits of physics, at the cost of increasing complexity in both design and

manufacturing. To compensate for the slowdown of Moore’s Law, extra efforts are made to extract the last

drop of benefit from new technologies, making design and manufacturing even more complicated. Given

such a scenario, this thesis presents several physical design methodologies and optimizations to address

existing and future challenges in advanced VLSI.

1.1 New Challenges

Increasing challenges arise with each new semiconductor technology node, especially in advanced

nodes, where the industry tries to extract every ounce of benefit as it approaches the limits of physics,

through manufacturing-aware design technology co-optimization and design-based equivalent scaling.

The increasing complexity of design and process technologies, and ever-more complex design rules, also

become hurdles for academic researchers, separating academic researchers from the most up-to-date

technical issues.

1

1.1.1 Manufacturing-Aware Design Technology Co-Optimization

In advanced technology nodes, aggressive device scaling, lithography limitations and process

complexity bring new challenges in the physical design implementation flow. Figure 1.1 shows a roadmap

of recent and future technology advancements.

Figure 1.1: Roadmap of future technology [37].

In the front end, devices have made a transition from planar to FinFET and nanowire structures.

The shrinking dimension approaches the fundamental limits of physics. Therefore, device behavior no

longer depends on pre-characterized, independent geometrical parameters. Layout-dependent effect (LDE)

arises from the proximity of devices, and significantly affects device performance. Pre-characterized

libraries have difficulty considering such effects, causing model-hardware miscorrelation issues and

resulting in yield loss. Improved physical design methodologies that consider and reduce the variability

of front-end devices are critical in claiming the potential product quality and cost benefits at each new

technology node.

In the back end, lithography limitations significantly complicate the manufacturing process. The

industry has transitioned from single patterning (LE), and double patterning (LELE) to self-aligned double

patterning (SADP) and self-aligned quadruple patterning (SAQP). New and complicated interconnects

result in more gridded and limited layout patterns, leading to increased capacitance (resistance). To achieve

2

the full node scaling benefit, additional manufacturing steps are introduced to redistribute wire cuts, and to

remove redundant metals. New physical design methodologies for the additional manufacturing steps are

critical to achieve a better quality of result.

1.1.2 Advanced Node Design-Based Equivalent Scaling

Power, performance and area (PPA) are always the ultimate goals of the semiconductor industry.

For decades, due to Moore’s Law scaling, the semiconductor industry has enjoyed all of power, performance

and area benefits without the need to trade off one for another. However, as billions and tens of billions

of transistors are packed onto a tiny die, the 2013 ITRS roadmap [117] notes an increasing gap of design

capability, as shown in Figure 1.2. While Moore’s Law continued (at least until the year 2013) to deliver

“available” scaling (i.e., geometric pitch scaling) of 2× per technology node, designers were only able to

actually “achieve” a transistor density scaling of 1.6× since ∼2008. In addition to the design capability

gap, there is an intrinsic trend of slowdown in geometric pitch scaling, and each new node provides only a

limited amount of PPA improvements. Therefore, there is an increasing need and practice to extract more

benefits from each technology node by design-based equivalent scaling. Design-based equivalent scaling

refers to better physical design optimization methodologies, such as exploration of new cell architecture,

and additional stages in the flow, etc. – without reliance on any change to the device, interconnect or

manufacturing technologies that underlie the design enablement.

Figure 1.2: Design capability gap [49].

3

One of the major challenges is to directly reduce power consumption. Low-power design method-

ologies are vital to enable reduced power consumption at the same performance, or increased performance

at the same power. In advanced nodes, physical scaling cannot provide the anticipated full scale of power

benefits: (i) VDD and threshold voltage (Vth) essentially stop to scale; and (ii) leakage becomes worse with

the shrinking channel length. Various types of flow optimizations – gate sizing and swapping, clock and

power gating, etc. – have already been widely adopted. However, demands for mobile and IoT (Internet of

Things) continue to drive the growth of integrated circuits (IC), creating more and stricter requirements for

physical design that require innovative solutions.

One example is clock network power reduction, since the clock network typically has large power

consumption due to its high switching activity, multi-level buffering and long wirelength. An application

of flop trays (i.e., multi-bit flip-flops) can significantly reduce the number of sinks in a clock network, thus

reducing the number of clock buffers, clock wirelength, and clock network power. Shared inverters within

flop trays also reduce power at the flip-flop level. Further, careful design of the internal routing within a

flop tray prevents hold buffer insertion between flops within the tray, especially along scan chains. This

reduces the number of hold buffers, DFT (Design for Test) overheads, and potential placement congestion.

However, large-size flop trays typically induce placement and routing congestion, and impose additional

placement constraints on their fanin/fanout logic cones; this results in power overheads on datapaths. The

“chicken-and-egg” loop between flop tray generation and placement optimization is a further challenge to

flop tray-based design.

Another major challenge is to maintain sufficient density scaling by area shrinking. In advanced

nodes, geometric scaling encounters the limitations of physics – neither devices nor the back-end-of-line

stack can scale linearly with Moore’s Law. To address these challenges, the industry has seen rapid

innovation in standard-cell architecture starting at the foundry 10nm (N10) node, and accelerating into the

N7/N5 enablement. As examples of cell architecture evolution, metal layers below M1 are used for internal

routing within a standard cell, or horizontal M1 power/ground pins are removed to gain additional routing

resources for inter-cell routing. These new cell architectures, wherein inter-row M1 routing is allowed,

force new consideration of vertical alignment of cells.

4

1.1.3 The Widening Academia – Industry Gap

New technology nodes come with smaller feature sizes, while fundamental physical (lithographic

patterning, CMP, reliability, variability, etc.) and circuit (crosstalk, delay, etc.) limitations remain. As

a result, ever-more complex design rules must be comprehended and satisfied at various stages of the

physical implementation flow.

One major challenge is detailed routing. Detailed routing is a dead-or-alive critical element of

advanced node enablement, but only a few academic works even attempt to present an end-to-end detailed

routing flow, and almost no works make claims to viability in the real-world IC physical design (P&R)

context. Therefore, most detailed routing research works focus on incremental improvements, such as

crosstalk or a specific part of new-technology contexts. Also, comparison between these works is difficult,

since there is a lack of any common platform that each work can be based on. Further, lack of a basic

platform results in near-impossibility of the direct application of academic codes, especially given that

commercial tools and industrial designs satisfy far more, and more complex, design rules than any academic

tool.

Given the above, there is a widening gap between academic research and industry. This widening

gap, in turn, prevents academic researchers from making future practical innovations.

1.2 This Thesis

This thesis presents innovative optimizations and design methodologies to address various chal-

lenges in physical design. Figure 1.3 illustrates the scope and organization of this thesis.

To realize manufacturing-aware design technology co-optimization, this thesis presents two

works: (i) a multi-row detailed placement optimization for neighbor diffusion effect mitigation between

neighboring standard cells; and (ii) a post-routing optimization to generate 2D block mask layout for

dummy segment removal in self-aligned multiple patterning.

To achieve advanced node design-based equivalent scaling, this thesis presents two improved

physical design methodologies: (i) a post-placement flop tray generation approach for clock power

reduction; and (ii) a detailed placement approach to exploit inter-row M1 routing for congestion and

wirelength reduction.

5

To address the increasing gap between academia and industry, this thesis presents two works

toward an open source academic detailed routing flow: (i) a complete, robust, scalable and design rule-

aware dynamic programming-based pin access analysis framework; and (ii) TritonRoute – the open source

detailed router that is capable of delivering DRC-clean detailed routing solutions in advanced nodes.

The remainder of this thesis is organized as follows.

Figure 1.3: Scope and organization of this thesis.

• Chapter 2 presents two physical design methodologies that can be incorporated into the conventional

place-and-route flow. First, we present a post-placement flop tray generation approach for clock

power reduction. Our approach consists of a capacitated K-means iterative optimization and a

Silhouette-based flop clustering evaluation and selection method. The capacitated K-means clustering

includes a min-cost flow clustering, and a linear programming-based placement optimization, that

considers flop tray aspect ratios and relative location displacement of timing-critical start-end pairs.

Our optimization is able to convert more single-bit flops into flop trays, with smaller datapath power

overhead as compared to a logical clustering flow implemented with commercial tools, and is aware

of useful skew. We achieve up to 32% and 90% reductions of total block power and clock power

as compared to implementations using only single-bit flops; and up to 16% and 40% reductions

of total block power and clock power as compared to a commercial tool-based flow with logical

clustering. Our optimization also achieves 13% clock power reduction on average as compared to

previous works. Second, we present a post-routing optimization to generate 2D block mask layout

6

for dummy segment removal in self-aligned multiple patterning. We develop a mixed integer linear

programming-based methodology to optimize 2D block mask layout that considers realistic block

mask rules, timing impact of dummy fills and metal density constraints. Our optimization includes

a timing model to evaluate the performance impact on a per-segment basis, and a co-optimization

technique for both cut and block masks. We perform experiments using different sets of block mask

rules and verify our optimization using different clip sizes. We further perform experiments with

different metal density constraints and show the performance impact.

• Chapter 3 presents two methodologies targeted to the placement stage of physical design. First,

we present a detailed placement methodology for neighbor diffusion effect mitigation and better

model-hardware correlation. Our methodology consists of optimal dynamic programming-based

single-row/double-row and multi-row detailed placement optimizations that considers displacement

and HPWL. Our optimization supports movable and fully-reorderable multi-height cells, including

reordering between multi-height cells and inter-row cell movements. Our optimization maximizes the

diffusion step reduction to mitigate the neighbor diffusion effect in order to reduce model-hardware

miscorrelation and yield loss, with up to 98% inter-cell diffusion step reduction. Our formulation is

further extended for a potential timing-aware optimization that leads to 6× increase in intentional

steps around timing-critical cells. Second, we present a detailed placement methodology to reduce

congestion and wirelength. Our methodology consists of a mixed integer linear programming-based

optimization for two cell architectures that are relevant in sub-10nm process nodes, and considers

and exploits inter-row M1 routing. We adopt a distributed, window-based optimization to overcome

the runtime limitation, achieving up to 6.4% total routed wirelength reduction, and up to 14.4%

#via12 reductions, with no adverse timing impact.

• Chapter 4 presents two works towards a complete, end-to-end academic detailed routing flow

targeting advanced nodes. First, we present a multi-level, standard cell- and instance-based, complete,

robust, scalable and design rule-aware pin access analysis framework. The proposed framework

includes pin-based access point generation, boundary conflict-aware access pattern generation and

cluster-based access pattern selection based on dynamic programming. The work achieves 100%

7

DRC-clean pin access and demonstrates a superior final detailed routing solution as compared

to the best known results using the ISPD-2018 initial detailed routing benchmark suite. Second,

we present a complete, end-to-end academic detailed router, TritonRoute. Our router is capable

of comprehending connectivity and design rule constraints using industry-standard formats. Our

router consists of an in-memory router database that complies with the LEF/DEF data models, a

pin access analysis engine, a track assignment engine, a detailed routing engine, and a design rule

checking engine. The detailed routing engine includes a ripup-and-reroute-based path search engine,

capable of avoiding potential design rule violations, as well as working around existing design rule

violation markers. The router is evaluated using the official ISPD-2018 contest benchmark suite,

demonstrating an extremely low level of DRCs. Overall, TritonRoute improves wirelength by up to

0.8% (avg. 0.4%), via count by up to 16.1% (avg. 9.3%) and DRCs by up to 100% (avg. 92.0%) as

compared to the known best detailed routing solutions.

• Chapter 5 concludes the thesis and gives future directions in physical design methodologies.

8

Chapter 2

General Flow Optimizations

This chapter presents two physical design methodologies that can be incorporated into the conven-

tional place-and-route flow. First, we present a post-placement flop tray generation approach for clock

power reduction. Our approach consists of a capacitated K-means iterative optimization and a Silhouette-

based flop clustering evaluation and selection method. The capacitated K-means clustering includes a

min-cost flow clustering, and a linear programming-based placement optimization, that considers flop tray

aspect ratios and relative location displacement of timing-critical start-end pairs. Our optimization is able

to convert more single-bit flops into flop trays, with smaller datapath power overhead as compared to a

logical clustering flow implemented with commercial tools, and is aware of useful skew. We achieve up to

32% and 90% reductions of total block power and clock power as compared to implementations using only

single-bit flops; and up to 16% and 40% reductions of total block power and clock power as compared to

a commercial tool-based flow with logical clustering. Our optimization also achieves 13% clock power

reduction on average as compared to previous works. Second, we present a post-routing optimization

to generate 2D block mask layout for dummy segment removal in self-aligned multiple patterning. We

develop a mixed integer linear programming-based methodology to optimize 2D block mask layout that

considers realistic block mask rules, timing impact of dummy fills and metal density constraints. Our

optimization includes a timing model to evaluate the performance impact on a per-segment basis, and a

co-optimization technique for both cut and block masks. We perform experiments using different sets of

9

block mask rules and verify our optimization using different clip sizes. We further perform experiments

with different metal density constraints and show the performance impact.

2.1 Improved Flop Tray-Based Design Implementation for Power Reduc-

tion

Clock network optimization is critical in modern SoC designs due to the following reasons: (i)

clock network typically has large power due to its high switching activity; (ii) clock skew and latency

(with on-chip variation) have significant impact on design performance; and (iii) clock network routing

consumes routing resources and can cause routing congestion. In this work, we study design optimization

with flop trays1 (i.e., macro cells of multi-bit flip-flops), where the application of flop trays can significantly

reduce the number of sinks (similar to [4]) and thus can result in an improved clock network. Further,

careful design of the internal routing within a flop tray prevents hold buffer insertion between flops within

the tray, especially along scan chains. This reduces the number of hold buffers, DFT (Design for Test)

overheads, and potential placement congestion.

Flop tray potential benefits. It is intuitively reasonable that more clock power reduction can

be achieved by using larger sizes (i.e., greater number of bits) of flop trays. As a motivating “thought

experiment”, consider a clock tree with N sinks and fanout of f at each level: the total number of (internal)

clock buffers between the clock root and the clock pins of sinks (i.e., flops, flop trays) is ≈ N−1
f−1 . If we

could replace all single-bit flops with K-bit flop trays, the number of clock buffers would reduce to only

≈ N/K−1
f−1 (e.g., using 64-bit flop trays to replace single-bit flops could reduce the number of clock buffers

by up to 98.4% (= N−N/64
N−1 ≈ 63

64)). Furthermore, Figure 2.1 illustrates how inverters for clock signals

can be shared among flops in a flop tray, resulting in power and area reduction as compared to multiple

single-bit flops. These power and area reductions would also increase with flop tray sizes.

Current approaches and their limitations. Flop tray-based implementation is very challenging

due to the following reasons. (1) In advanced nodes, flops (including single-bit flops and flop trays)
1Terminology: A flop tray is synonymous with a multi-bit flip-flop (MBFF); we use “flop” as a synonym for “flip-flop”.

10

Figure 2.1: Two inverters for the clock signal are shared between the two flops in a 2-bit flop tray.

typically occupy a large portion of the entire block area due to their large sizes.2 Moreover, flop trays can

have high aspect ratios (e.g., a 64-bit flop tray may be implemented as a 4 × 16 array of flops, with much

greater width than height); flop tray size and shape have been ignored by previous literature on multi-bit

flop optimization [65][70][96] and flop clustering [13][82]. Flop trays with large area and high aspect ratio

make placement optimization very difficult [17][76]. (2) Clustering of flops imposes additional placement

constraints on their fanin and fanout logic cones, which is highly likely to degrade the placement solution

quality [76]. (3) Usage of flop trays can easily cause routing congestion. (4) Clustering of single-bit

flops into flop trays has a large impact on timing and limits the application of useful skew optimization.

Most previous works study small-size flop trays, and do not fully address the above challenges in their

optimization approaches. Crucially, further achievable benefits of using large-size flop trays are not

exploited by previous works. To maximize obtained benefits from flop tray deployment, our present work

proposes a flop tray-based optimization that comprehends arbitrary flop tray sizes. (Below, we show results

with flop tray size up to 64 bits.)

A common practice for flop tray-based implementation is to cluster flops during the synthesis stage

based on logic functions of the design, along with clock domain and clock gating information. We refer

to this as logical clustering in the following discussion. However, flop tray generation without physical

information can result in placement and routing congestion and degrade place-and-route (P&R) solution

qualities. Figure 2.2 shows examples where flop tray-based implementations with logical clustering during
2As an example, a minimum-size inverter occupies two placement sites; a single-bit flop occupies 18 sites; and a 64-bit flop

tray can occupy 244 sites in width and four cell rows in height. Due to their large sizes, flops and flop trays can consume a
substantial fraction of overall cell area (e.g., VGA from OpenCores [124] has 30% of its instances as flops, which accounts for
51% of the total cell area).

11

Figure 2.2: Wirelength and power overheads on datapaths due to flop tray-based implementations
compared to implementations using only single-bit flops. Technology: 28FDSOI. Designs are from

OpenCores [124].

synthesis stage can result in 8% – 39% wirelength overhead and 5% – 16% power overhead on datapaths

after detailed routing even at a low conversion ratio from single-bit flops to flop trays. (In the example,

numbers of flops and flop trays in flop tray-based implementations, as percentages of flop numbers in

implementations with single-bit flops, are 43%, 37%, 41% and 45% for AES, JPEG, MPEG and VGA,

respectively.) This degrades power benefits from flop tray deployment. Therefore, feedback loops and

iterations are required between early-stage flop clustering and P&R optimization, which can significantly

increase design time [17]. Furthermore, although splitting large flop trays into smaller trays or single-bit

flops during placement and/or routing can mitigate the congestion and power penalty, benefits of applying

flop trays then become limited. In addition, the capability of logical clustering to realize flop tray benefits

can be limited according to attributes of the given design. Designs with few multi-bit signals may not

derive substantial benefits from flop tray deployment. On the other hand, designs with many multi-bit

signals might use flop trays aggressively, with large-size flop trays in particular causing placement and

routing congestion.

Our approach. In this work, we focus on post-placement flop tray optimization.3 We first place

the design with all single-bit flops, where the placement solution is considered to give ideal locations
3Other low-power clocking styles and methodologies (e.g., pulsed-latch, register arrays, and rotary clock) are not the focus of

this work.

12

of individual flops and combinational cells (given that there are no additional constraints induced by

flop clustering). We then cluster flops based on the placement solution. In this way, we resolve the

“chicken-and-egg” loop between early-stage flop tray generation and placement optimization of flop trays.

However, post-placement flop tray generation such as ours must carefully comprehend different flop tray

sizes and aspect ratios; it must also minimize perturbation on datapath placement and timing degradation

(otherwise, the assumption of “ideal” combinational cell placement does not hold).

To maximize the benefits of applying flop trays while minimizing the perturbation on the initial

placement solution, we propose a capacitated K-means optimization which iteratively executes min-cost

flow to cluster single-bit flops into flop trays, and a linear programming-based optimization to place flop

trays. Based on the proposed capacitated K-means optimization, we achieve a solution (including flop

clustering and flop tray placement) for each given flop tray size and AR. We then formulate an integer

linear program (ILP) to select the best combination of flop tray solutions. In addition to minimization of

displacement of flops (i.e., from the initial single-bit flop location to the flop location in a flop tray), our

optimization is also aware of timing-critical start-end flop pairs. Specifically, we minimize the relative

location displacement of timing-critical start-end pairs to minimize the timing impact from flop tray

insertion.

The contributions of this work are as follows.

• We propose a capacitated K-means iterative optimization that applies (i) min-cost flow based

clustering, and (ii) LP-based placement optimization to generate flop trays with various sizes (e.g.,

4-bit, 16-bit and 64-bit) at the post-placement stage.

• Our optimization is aware of flop tray aspect ratios and relative location displacement of timing-

critical start-end pairs.

• We apply a new Silhouette-based metric in addition to displacement distance to evaluate flop

clustering solutions.

• Our optimization is able to convert more single-bit flops into flop trays, but with smaller datapath

power overhead, as compared to a logical clustering flow implemented with commercial tools.

13

• We achieve up to 32% and 90% reductions of total block power and clock power as compared to

implementations using only single-bit flops; and up to 16% and 40% reductions of total block power

and clock power as compared to a commercial tool-based flow with logical clustering. We also

achieve 13% clock power reduction on average as compared to the previous work in [48].

• We evaluate the benefit (i.e., leakage reduction) of useful skew optimization on flop tray-based

design and propose a useful skew-aware clustering to maximize such benefit.

The remainder of this section is organized as follows. Section 2.1.1 reviews related works on flop

tray optimization. Section 2.1.2 describes our capacitated K-means optimization flow. In Section 2.1.3,

we describe our experimental setup and results. Section 2.1.4 concludes and gives directions for ongoing

work.

2.1.1 Related Work

In this section, we review flop clustering and flop tray (multi-bit flop) generation approaches

proposed in previous works. We classify these approaches into two categories: (i) early-stage flop tray

generation, and (ii) flop tray generation during and/or after placement.

Several early works propose flop tray generation at early design stages. Kretchmer et al. [56]

propose register banking during logic synthesis. They create Liberty models of flop trays, which can be

used by logic synthesis tools. But, flop tray generation during synthesis has only logic topology as its main

lever, and the lack of physical information can result in a sub-optimal clustering solution, with degraded

timing and larger power. To address this, Hou et al. [45] further propose register banking removal based on

routing congestion and timing information. However, such a “(flop) clustering at early stage and (flop tray)

removal at late stage” flow is not able to effectively exploit the benefits of flop tray usage. Thus, many

other works propose flop tray generation during and/or after placement.

Yan et al. [103] generate flop trays at the post-placement stage. They first construct an intersection

graph based on routing length and congestion constraints derived from an initial placement solution with

single-bit flops. They then perform minimum-clique partitioning to reduce the number of flop trays. Lin

et al. [64] use progressive window-based optimization to improve the methodology proposed in [103] by

14

considering given flop tray sizes. They solve the clustering problem by finding K-cliques and maximum

independent sets in a merging graph constructed based on feasible-location regions of flops. Similarly,

Wang et al. [96] use clique partitioning to identify a set of non-conflicting cliques. Jiang et al. [48] propose

an efficient post-placement flop tray generation technique using interval graphs and a pair of linearized

sequences. Liu et al. [70] also propose flop clustering based on an intersection graph. In addition to

reducing the number of flop trays, they apply agglomerative clustering to minimize displacements of flops,

wirelength and clock power. More recently, Lin et al. [65] develop a clock tree-aware in-placement flop tray

generation technique. They build an intersection graph considering clock latency, wirelength and timing,

then iteratively perform flop tray generation and timing-driven incremental placement. Xu et al. [101]

propose an analytical clustering score for flop tray generation, permitting seamless integration with the

traditional wirelength objective. Tsai et al. [94] propose to generate flop trays during placement. During

analytical global placement, they guide placement of flops (to enable flop tray generation) with additional

bonding force (resembling ionic bonds in chemistry). Other works optimize flop trays with awareness of

crosstalk [46], clock gating [71], etc.

In addition to flop tray-based design, flop and/or latch clustering optimizations have been widely

applied in previous works for clock tree and latch placement optimization. Mehta et al. [74] propose a

clustering algorithm to obtain approximately load-balanced clusters and construct clock trees so as to

minimize skew. Papa et al. [82] apply K-means clustering algorithm to minimize latch displacement during

a physical synthesis optimization. Deng et al. [13] propose a register clustering methodology in generating

the leaf-level topology of the clock tree to reduce clock power consumption.

We summarize our algorithmic and methodological improvements, as compared to previous works,

as follows.

• None of the previous in-placement and post-placement approaches study flop tray optimization with

large-size flop trays (e.g., 64-bit flop trays). The ARs of flop trays are ignored (indeed, many previous

works treat flop trays essentially as points in their optimizations). By contrast, our optimization

considers arbitrary flop tray sizes and is aware of flop tray ARs.

15

• Most previous works assume a feasible displacement region for each flop. However, such an as-

sumption does not comprehend the movements of fanin/fanout flops, which can be either pessimistic

or optimistic. In addition, such an assumption essentially precludes exploiting benefits of useful

skew. By contrast, our approach considers timing path-aware timing impact of flop displacement;

specifically, we minimize the relative location displacement of timing-critical start-end pairs. We

also propose a useful skew-aware optimization flow to maximize such benefit.

• Previous works use local search to cluster flops into flop trays. However, due to capacity constraints

of flop trays, such local search can result in outliers with large displacement distances. By contrast,

in this work we apply a more globally-aware optimization based on (i) a capacitated K-means

formulation (with iterative min-cost flow-based clustering and LP-based placement optimization),

and (ii) a practically scalable ILP-based matching and selection of flop tray solutions to globally

optimize flop clustering with given capacity constraints (i.e., flop tray sizes).4

2.1.2 Methodology

We now describe our optimization methodology for flop tray generation and placement. Figure 2.3

illustrates our overall optimization flow, where we integrate our flop tray optimization (steps in blue boxes)

into a conventional SP&R (synthesis, place, and route) flow. To address the “chicken-and-egg” loop

between flop tray generation and placement optimization, we first perform an initial placement with only

single-bit flops, where the placement is considered to be “optimal” with no placement constraints induced

by flop clustering. We note that since the initial placement is timing- and congestion-aware, minimizing

subsequent perturbations can mitigate potential congestion due to flop trays, as well as minimize timing

impacts. Further, to comprehend multiple flop tray sizes and ARs, we perform flop tray optimization for

each flop tray choice (i.e., a {size, AR} combination). Last, we perform an integer linear programming

(ILP)-based optimization to select the optimal combination of flop trays and their placement solutions.5

4Our ILP runtime (CPLEX 12.6) is less than one minute on the VGA testcase [124] (with 17K flops and 1000 timing-critical
paths) with five candidate flop tray sizes studied in Section 2.1.2 and Section 2.1.3 below, using 20 threads on a 2.5GHz Intel
Xeon server.

5Our separate study shows that due to high runtime complexity, it is practically infeasible for our current approach to optimize
flop clustering and flop tray placement considering all possible flop tray candidate sizes simultaneously. We therefore perform a
two-step optimization in this work.

16

Figure 2.3: Overall optimization flow of flop tray generation.

We state our post-placement flop tray generation problem as: Given an initial placement solution

with only single-bit flops, flop tray choices, and timing constraints, cluster single-bit flops into flop trays

and determine the placement location of each flop tray, such that total block power (including clock

power and power of sequential cells (i.e., flops and flop trays) and combinational cells) is minimized after

routing.

The following subsections describe our capacitated K-means clustering and our ILP-based selection

of flop tray solutions. Table 2.1 lists the notations used in our discussion.

Capacitated K-Means Clustering

We first address the following, narrower problem: Given an initial placement solution with

all single-bit flops (i.e., N single-bit flops), and dN/Ke K-bit flop trays with fixed AR, cluster the

single-bit flops into flop trays and determine the placement location of each flop tray, such that the total

displacement of flops is minimized.

17

Table 2.1: Description of notations used in our formulation.

Term Meaning
ti ith flop tray
ei binary indicator whether ti is used
wi cost of using tray ti
fij jth flop of ti
hl lth single-bit flop
bl,ij binary indicator whether hl is matched to fij

(Xi, Yi) center location of ti
(x′ij , y

′
ij) relative center location of fij w.r.t. the center of ti

(xl, yl) optimal location of hl
(dl,ij , dl,ij) Manhattan distance between hl and fij

To address this problem, we propose a capacitated K-means algorithm [55]. (As noted above, K-

means clustering algorithms have also been applied to flop (or latch) clustering in previous works [13][82].)

There are two steps in a standard K-means algorithm: (i) clustering, and (ii) updating the center location of

each cluster. We associate these two steps with: (i) matching of single-bit flops to flop slots in flop-trays,

and (ii) updating the locations of flop trays. We propose a min-cost flow to address (i), and a linear

programming (LP)-based optimization to address (ii). We iterate between these two steps until convergence

(i.e., no further displacement reduction can be achieved, or a maximum number of iterations (= 35 in our

experiments below) is reached).

In our capacitated K-means clustering, we use an algorithm that is similar to K-means++ [5] to

select the starting points. Selection of dN/Ke starting points for clustering is described in Algorithm 1. In

Algorithm 1 we calculate center-to-center distances between single-bit flops. To comprehend the aspect

ratio of flop trays, we scale the horizontal distance by (1/AR) (= height/width) of the given flop tray.

Algorithm 1 Selection of starting points.
1: Randomly select one flop among single-bit flops
2: For each flop hl, calculate the total Manhattan distance (dl) from hl to all selected flops
3: Randomly select one new flop with probability dl
4: Repeat Steps 2 and 3 until dN/Ke flops are selected

These selected starting points serve as initial locations of flop trays. We then apply a min-cost

flow to achieve capacitated clustering of flops. Our min-cost flow is illustrated in Figure 2.4. To construct

18

the flow instance, we create a node for each single-bit flop hl. For each flop tray ti, we further create K

nodes for its K slots, fi1 . . . fiK . For each edge between a pair of hl and fij , we set its capacity as 1 and

its cost as the Manhattan distance between hl and fij . Here, we directly calculate the Manhattan distance

between single-bit flops and flop slots without any scaling. Finally, we create one source and one sink, and

assign edges connected to them with capacity as 1 and cost as 0, as illustrated in Figure 2.4. Notice that by

considering the distances between the locations of single-bit flops and flop slots in flop trays, our min-cost

flow optimization is explicitly aware of physical information (in particular, dimensions and ARs) of the

given flop trays.

Figure 2.4: Example of min-cost flow with K-bit flop trays.

Based on the capacitated K-means clustering solution from the min-cost flow, we formulate a linear

program (shown as follows) to determine the flop tray locations that achieve minimum total displacement

of flops. These placement locations of flop trays will serve as starting points for the next iteration of

clustering.

Minimize D (2.1)

Subject to |Xi + x′ij − xl|+ |Yi + y′ij − yl| = dl ∀hl (2.2)∑
l

dl = D (2.3)

Constraint (2.2) calculates the displacement for each flop (dl), and the objective (2.3) seeks to

minimize the total displacement over all flops.

19

We iterate between the min-cost flow-based clustering and the LP-based flop tray placement

until no further displacement reduction is achievable (i.e., no flop trays move between two consecutive

iterations).

To confirm benefits from awareness of flop tray ARs, we show in Figure 2.5 representative

clustering solutions from (i) the classic K-means approach, which treats each flop tray as a point, and

(ii) our min-cost flow-based clustering, which is aware of flop tray ARs. We observe that our clustering

solution more closely matches the AR of given flop trays. Further, classic K-means without awareness of

flop tray AR can result in 2× increase in average displacement from the “ideal” single-bit flop placement;

this is likelier to incur datapath power and timing overheads.

Figure 2.5: Clustering solutions into 64-bit flop trays (i) without awareness of flop tray aspect ratio and
dimensions, and (ii) with awareness of flop tray aspect ratio and dimensions. Design: AES (530 single-bit

flops). Technology: 28FDSOI.

In our capacitated K-means algorithm, as with K-means approaches in general, the selection of

starting points has a strong impact on the final solution quality. We adapt the Silhouette metric [86] and

use Equation (2.4) to evaluate the solution quality of generated starting points.6

func(hl) =
mini′ 6=i,j′(dl,i′j′)− dl,ij

max(dl,ij , mini′ 6=i,j′(dl,i′j))
(2.4)

6As presented in [86], the Silhouette value is a measure of how similar an object is to its own cluster, compared to other
clusters. A general Silhouette value is defined as s(i) = b(i)−a(i)

max(a(i),b(i))
, where a(i) is the average dissimilarity (e.g., average

distance) of i with all other data within the same cluster, and b(i) is the lowest average dissimilarity (e.g., minimum average
distance) of i to the data in any other cluster other than its own. By definition, −1 ≤ s(i) ≤ 1, and a larger Silhouette value
indicates a better clustering solution. In this work, data are slots of flop trays, and dissimilarities are measured by distances.

20

where hl is matched to fij . The dissimilarity within a cluster is measured by the displacements of each of

the cluster’s assigned flops hl. The dissimilarity between a given cluster and other clusters is measured by

the distances between assigned flops hl and the nearest flop-tray slot in another cluster to which hl is not

assigned.

Figure 2.6: Best clustering solution (i.e., func(hl) (left) and displacement (right)) with multiple runs
(numbers of runs are shown in the x-axis).

We apply a multistart strategy to improve the selection of starting points. Multiple runs (five

in our experiments) of the procedure in Algorithm 1 are each followed by a small number (15 in our

experiments) of iterations between the min-cost flow and LP-based placement optimization. We then select

the solution with the highest average func(hl) value and proceed with capacitated K-means iterations

until convergence. Figure 2.6 shows a typical improvement of the average value of func(hl) (left) and the

average displacement (right) with increased number of runs. In our studies, the improvement of func(hl)

and displacement typically saturates after five runs. Thus, the experiments reported below apply five

multistarts to mitigate the impact of starting point selection.

ILP-Based Matching Optimization

The next step of our optimization approach addresses the following problem: Given candidate

flop trays with various capacities, each with a fixed placement location, select the optimal subset of the

candidate flop trays, and determine a mapping of single-bit flops into slots of selected candidate flop trays,

such that (i) every single-bit flop is mapped to a slot of a selected flop tray (including flop trays with one

21

bit, i.e., no clustering), and (ii) a weighted sum of the total displacement of flops, relative displacement of

timing-critical start-end pairs, and total flop tray costs is minimized.

Figure 2.7: Example of our ILP-based optimization.

As discussed in Section 2.1.2, we run capacitated K-means clustering with different flop tray sizes

and ARs, and use these flop trays together with their optimized placement locations as inputs (“candidates”)

for an ILP-based matching optimization. Our ILP-based optimization selects an optimal subset of candidate

flop trays with various flop tray sizes as our final solution. As an example, Figures 2.7(a) – (c) show

solutions of flop trays with fixed sizes and ARs on the AES testcase. Specifically, Figures 2.7(a) – (c)

respectively show solutions with only 4-bit flop trays (flop trays are in red, #flop trays = 133, average

displacement = 2µm), only 16-bit flop trays (flop trays are in green, #flop trays = 34, average displacement

= 3µm), and only 64-bit flop trays (flop trays are in orange, #flop trays = 9, average displacement =

5µm). Figure 2.7(d) shows the final solution, i.e., solution with a combination of single-bit flops and 4-bit,

16-bit and 64-bit flop trays (#flops + #flop trays = 81, average displacement = 2µm). Our objective is to

minimize a weighted sum of total displacement of flops, relative displacement of timing-critical start-end

flop pairs, and total flop tray cost. Relative displacement of a timing-critical start-end flop pair is illustrated

in Figure 2.8. As an improvement to previous approaches, we comprehend timing impact of flop tray

22

generation considering timing-critical paths (i.e., start-end pairs). Specifically, if the flop tray generation

moves two flops towards each other, combinational cells in the logic cone between the flops are forced to be

placed in a more compact region, which results in congestion and distortion of the placement and routing.

Alternatively, if the flop tray generation moves two flops away from each other, timing paths between the

two flops will tend to have longer wirelength, degrading timing. We therefore seek to minimize the relative

displacement of flops that are timing-critical start-end pairs.

Figure 2.8: Illustration of the timing impact due to relative displacement between timing-critical start-end
flop pairs.

Our ILP to select the optimal combination of flop tray solutions with various sizes and ARs is

given below.7

7Note that our ILP can be extended to be aware of clock gating, clock domain and useful skew optimization, etc. with
additional constraints. Section 2.1.3 briefly describes a useful skew-aware extension and corresponding benefits.

23

Minimize α ·W +D + β · Z (2.5)

Subject to |
∑
ij

(Xi + x′ij − xl) · bl,ij |

+|
∑
ij

(Yi + y′ij − yl) · bl,ij | = dl ∀l (2.6)

∑
l

dl = D (2.7)

dl ≤ dmax ∀l (2.8)

|
∑
ij

(Xi + x′ij − xl) · bl,ij −
∑
i′j′

(Xi′ + x′i′j′ − xl′) · bl′,i′j′ |

+|
∑
ij

(Yi + y′ij − yl) · bl,ij −
∑
i′j′

(Yi′ + y′i′j′ − yl′) · bl′,i′j′ |

= zll′ ∀(hl, hl′) ∈ timing-critical paths (2.9)∑
(hl,hl′)∈cri paths

zll′ = Z (2.10)

zll′ ≤ dmax ∀(hl, hl′) ∈ timing-critical paths (2.11)

bl,ij ≤ ei ∀l, j (2.12)

ei ≤
∑
lj

bl,ij ∀i (2.13)

∑
i

wi · ei = W (2.14)

∑
l

bl,ij ≤ 1 ∀j (2.15)

∑
i,j

bl,ij = 1 ∀i (2.16)

Here, W is the total cost of selected flop trays, which is determined based on their power

consumption and sizes (i.e., number of bits); D is the total displacement over all flops; Z is the total

relative displacement over all timing-critical start-end flop pairs; and α and β are weighting parameters.

Constraints (2.6) and (2.7) calculate the total displacement of all flops. Constraint (2.8) bounds the

24

maximum displacement of each flop. Constraints (2.9) and (2.10) calculate the total relative displacement

of timing-critical start-end flop pairs (i.e., (hl, hl′)). Constraint (2.11) bounds the maximum relative

displacement of each timing-critical start-end flop pair. Constraints (2.12) and (2.13) force the binary

indicator variable ei to be 1 if the corresponding flop tray is used, and 0 otherwise. Constraint (2.14)

calculates the total cost of selected flop trays. Constraints (2.15) and (2.16) ensure that each flop is matched

to exactly one slot, and that each slot is matched to at most one flop. We note that additional mutual

exclusion constraints can avoid placement overlaps between pairs of flop trays (e.g., ei + ej ≤ 1 if there

is overlap between the ith and jth flop trays). However, such mutual exclusion constraints might limit

the solution space and thus degrade the solution quality. We therefore perform placement legalization

in the commercial P&R tool to remove overlaps among flop trays.8 We also note that although an ILP-

based optimization typically has large runtime, in our formulation, the number of binary variables is only

O(N ·Q), where N is the number of flops and Q is the number of candidate flop tray choices (i.e., sizes

and dimensions). In practice, our method exhibits practical and reasonable runtimes (see Footnote 4 above).

Figure 2.9: Number of flop trays and average displacement of flops change with different α values.
Design: JPEG. Technology: 28FDSOI.

To give an understanding of how the weighting parameters α and β affect solution quality,

Figure 2.9 shows the number of flop trays and the average flop displacement resulting from optimization

with various α values. In the figure, each column is an implementation with corresponding α. The

black-dotted curve indicates the total number of flops and flop trays. The orange curve indicates the
8Our experimental results show no more than three sites displacement on average per flop tray during the placement legalization.

25

average displacement over all flops. (Small) numbers of 16- and 32-bit flop trays are omitted for figure

clarity. We observe that more large-size flop trays are selected with an increased value of α, so as to

minimize the total tray costs. Such selection of large-size flop trays will reduce power of flop trays as well

as the clock power. However, the average flop displacement increases with the value of α, and this can

incur datapath power overhead. Therefore, the choice of α determines a tradeoff point between (i) clock

power reduction and power reduction of flop trays, versus (ii) the power overhead on datapaths. In our

experiments, we empirically set α = 20, 40, 60 and 80. We then select the solution with the minimum total

block power from these four runs.

Figure 2.10: Power change with various β values. Designs: AES, JPEG. Technology: 28FDSOI.

To evaluate the impact of β, we uniformly place flop trays within the block area and fix their

locations. The number of flop trays is determined by the number of flops; no flop tray can be empty,

which eliminates the impact of W in our objective function. We then perform an ILP-based matching

optimization to cluster flops into flop trays. Figure 2.10 shows the total block power of the AES and

JPEG testcases implemented with various β values. We observe reduced block power with β > 0, where

our optimization minimizes the relative displacement between timing-critical start-end flop pairs. This

confirms the benefits of minimizing the relative displacement between timing-critical start-end flop pairs.

We also observe increased block power with a large β value. This is because with a large β value, relative

displacements between timing-critical start-end flop pairs dominate our objective function. The resultant

large displacements of non-timing critical flops incur datapath power penalty. We empirically use β = 1 in

our experiments.

26

2.1.3 Experiments

We perform experiments in a 28nm FDSOI foundry technology with dual-Vth libraries. We

use four design blocks (AES, JPEG, MPEG, VGA) from the OpenCores website [124] as our testcases.

Parameters of these four testcases are shown in Table 2.2. We scale flop tray power and area based on the

ratios shown in Table 2.3. Layout ARs of flop trays are also shown in Table 2.3. We synthesize designs

using Synopsys Design Compiler vI-2013.12-SP3 [129] and then place and route using Cadence Innovus

Implementation System v15.2 [112]. We set the placement density at the floorplan stage as 70%. We also

perform timing and power analyses using Cadence Innovus Implementation System v15.2. We perform

vectorless power simulation with a default switching activity of 10% at primary inputs. Our optimization

flow is implemented in C++. We use CPLEX v12.6 [115] as our ILP solver and LEMON [121] as our

min-cost flow solver. Functions used in P&R tools are implemented in Tcl. We conduct our experiments

on a 2.5GHz Intel Xeon server.

Table 2.2: Testcase parameters.

Design #Inst #Flops Clock period
AES ∼12K 530 600ps

JPEG ∼47K 4512 600ps
MPEG ∼13K 3181 500ps
VGA ∼56K 17053 700ps

Table 2.3: Normalized flop tray area and power, and layout AR.

Tray size 4-bit 8-bit 16-bit 32-bit 64-bit
Norm. area/power per bit 0.875 0.854 0.854 0.844 0.844

AR (#rows×#columns) 1×4 2×4 4×4 4×8 4×16
AR (#rows×#sites) 1×63 2×62 4×62 4×122 4×244

Comparison to Logical Clustering

To evaluate the performance of our proposed methodology, we compare our solutions to three

reference flows: (i) the conventional implementation flow with only single-bit flops (ref 1b), (ii) a flop

27

tray-based implementation flow which generates flop trays during commercial synthesis based on logical

clustering, followed by conventional commercial P&R optimization (ref mb1), and (iii) a flop tray-based

implementation flow which generates flop trays at the post-placement stage using the method proposed

in [48], followed by clock tree synthesis and routing (ref mb2). No value judgment or “benchmarking”

regarding any commercial tool is intended by, or should be inferred from, our present discussion.

Table 2.4 shows the results evaluated at the post-routing stage. Figure 2.11 shows the layouts

of placement solutions with single-bit flops and optimized flop trays. We observe that our proposed

optimization (opt mb) is able to significantly reduce the number of sinks with application of flop trays

(e.g., we reduce the number of sinks by 98% on the VGA testcase as compared to the implementation using

only single-bit flops). The reduction in number of sinks results in smaller clock power: our optimization

reduces clock power by up to 90% and 40% compared to implementations with single-bit flops and flop

trays generated by logical clustering, respectively. Our flop tray generation also results in reduced power

on flops. Moreover, we observe that although our optimization has a large conversion ratio from single-bit

flops to flop trays, the incurred datapath power and wirelength penalties are small as compared to the

implementation with logical clustering. This strongly suggests that our approach of optimization with

minimum perturbation from a “good” initial placement solution forestalls placement and routing congestion

while also minimizing the datapath power penalty from application of flop trays. For the MPEG testcase,

our optimization actually results in smaller datapath power as compared to the “ideal” implementation

with single-bit flops; we believe this is likely due to a reduced placement density (i.e., usage of flop trays

reduces the total area of flops).

Our optimization (opt mb) also achieves up to 7% total block power reduction as compared to the

previous work [48] (ref mb2). Since ref mb2 only uses up to 8-bit flop trays, we limit the flop tray options

to 4-bit and 8-bit flop trays in opt mb for a fair comparison. Table 2.4 shows that with the same set of flop

tray options, our optimization achieves 13% clock power reduction on average compared to opt mb’, along

with smaller datapath power for most of the testcases (the exception is the JPEG testcase with < 1% power

overhead).

28

Table 2.4: Experimental results.

Design Flow Power (mW) #Flops #Clk WNS Area WL #Instcomb seq clk sum (norm) 1 4 8 16 32 64 bufs (ps) (µm2) (µm)
ref 1b 8.11 4.37 1.53 14.02 (1.00) 530 0 0 0 0 0 11 -11 10362 140 12002

ref mb1 8.64 4.00 0.72 13.35 (0.95) 198 5 19 2 2 1 0 9 10606 153 11730
AES ref mb2 8.14 4.05 0.43 12.62 (0.90) 34 56 34 0 0 0 3 -4 10122 140 11595

opt mb 8.15 3.94 0.46 12.56 (0.90) 59 22 46 1 0 0 4 -5 10171 139 11619
opt mb’ 8.09 3.98 0.54 12.60 (0.90) 80 41 36 0 0 0 4 -2 10160 137 11598
ref 1b 35.13 36.04 13.37 84.54 (1.00) 4512 0 0 0 0 0 115 1 47595 420 47567

ref mb1 36.88 33.21 6.10 76.20 (0.90) 1388 109 84 70 0 14 59 0 46374 531 44246
JPEG ref mb2 35.45 32.06 4.56 72.07 (0.85) 308 457 297 0 0 0 40 -1 45888 437 44094

opt mb 35.68 31.28 2.28 69.24 (0.82) 274 77 110 2 9 43 25 1 45535 460 43545
opt mb’ 35.64 31.85 3.12 70.62 (0.84) 83 37 537 0 0 0 28 1 45898 428 43607
ref 1b 5.88 28.93 10.72 45.53 (1.00) 3181 0 0 0 0 0 92 -17 18169 149 12291

ref mb1 6.52 26.99 5.19 38.70 (0.85) 1225 27 17 15 18 14 53 -34 17757 195 10079
MPEG ref mb2 6.03 25.62 3.30 34.95 (0.77) 161 381 187 0 0 0 29 -11 17136 159 9849

opt mb 5.66 25.12 0.98 31.76 (0.70) 120 9 2 3 1 46 15 -3 16666 176 9183
opt mb’ 5.65 25.33 2.24 33.22 (0.73) 77 16 382 0 0 0 21 -23 16780 149 9531
ref 1b 14.32 108.34 42.19 164.84 (1.00) 17053 0 0 0 0 0 361 -5 88015 960 56039

ref mb1 16.63 101.63 20.73 138.99 (0.84) 7325 42 77 75 50 96 215 -2 84537 1337 45793
VGA ref mb2 14.60 94.51 10.24 119.35 (0.73) 129 1299 1466 0 0 0 110 -2 80710 1032 41656

opt mb 15.29 93.99 2.04 111.32 (0.68) 33 1 6 0 2 266 28 3 80083 1132 39129
opt mb’ 14.33 94.29 8.41 117.03 (0.71) 56 51 2114 0 0 0 89 -13 80538 1001 40909

Figure 2.11: Layout comparison between implementations with only single-bit flops and with optimized
flop trays. In the flop tray-based solutions, the candidate flop tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and

64-bit.

29

Optimization with Various Flop Tray Sizes

We further perform flop tray optimization with various combinations of flop tray sizes. More

specifically, we implement designs with (i) single-bit flops only, (ii) {4-bit} flop trays, (iii) {4-bit, 8-bit}

flop trays, (iv) {4-bit, 8-bit, 16-bit} flop trays, and (v) {4-bit, 8-bit, 16-bit, 32-bit, 64-bit} flop trays with

various α values (i.e., 20, 40, 60, 80). We note that setups (ii) – (v) can also use single-bit flops. For

each setup, we select the minimum total block power solution with < 5% power penalty on datapaths as

compared to the case with only single-bit flops. Figure 2.12 shows flop power and clock power, normalized

to implementations using only single-bit flops. We observe that with only 4-bit flop trays, our optimization

achieves > 7% power reduction on flops and flop trays. However, including larger flop trays does not

afford much further reduction of flop power. (This may be due to our conservative assumptions regarding

power-per-bit in larger flop trays, as shown in Table 2.3). On the other hand, application of large-size

flop trays can effectively reduce clock power. For example, optimizations with {16-bit, 32-bit, 64-bit}

flop trays achieve 11% more clock power reduction on average as compared to the cases with only {4-bit,

8-bit} flop trays.

Study of Useful Skew Optimization with Flop Trays

Last, we evaluate the benefits of useful skew optimization in terms of leakage power reduction

on (i) designs with only single-bit flops (reflocal 1b), and (ii) flop tray-based designs (opt mb as shown

in Figure 2.13.9 Based on the approach proposed in [2], we formulate the useful skew optimization as a

maximum mean weight cycle problem and apply iterative shortest path search to maximize the average

endpoint slack. We then perform leakage power optimization using a commercial tool [112], i.e., we

exploit the increased timing slacks for leakage power reduction. We observe from Figure 2.13 that due

to the clustering of endpoints, flop tray-based designs have 9% less leakage power reduction on average

across four designs as compared to cases with only single-bit flops. To reduce the impact of flop tray

generation on benefits from useful skew optimization, we study skew-aware flop tray generation that only

allows clustering of flops with desired skew less than θ (we use θ = 20ps in our experiments). Figure 2.13
9In the technology we use, we do not observe significant dynamic power benefits from useful skew optimization. We therefore

study leakage power reduction from useful skew optimization in this experiment.

30

Figure 2.12: Flop (tray) power and clock power of designs with various flop tray sizes. Candidate tray
sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit.

shows that the skew-aware clustering (opt mb (skew aware)) can achieve similar leakage power reduction

as compared to the cases with only single-bit flops (green vs. blue bars), but at the cost of more sinks (i.e.,

an average of 21% less reduction in number of sinks than opt mb).

2.1.4 Conclusion

In this work, we present a novel flop tray-based optimization for improved design power reduction.

We propose a capacitated K-means algorithm which iteratively applies a min-cost flow-based clustering

and a LP-based flop tray placement. We also propose an ILP-based matching optimization to generate

flop trays while minimizing the perturbation to the initial placement solution. Our work achieves several

improvements as compared to previous works: (i) awareness of flop tray aspect ratio and (large) size;

(ii) explicit minimization of relative displacement of timing-critical start-end flop pairs; and (iii) global

optimization instead of local search. The proposed techniques allow us to achieve up to 32% total block

power reduction as compared to designs with only single-bit flops, and up to 16% total block power

reduction over designs with flop trays generated by logical clustering during synthesis. We also achieve

31

Figure 2.13: Datapath leakage power results, normalized to implementations with only single-bit flops.

13% clock power reduction on average as compared to the previous work in [48]. We further study the

impact of flop tray sizes on optimization solution quality, as well as the useful skew optimization in the

context of our flop tray-based designs.

2.2 MILP-Based Optimization of 2D Block Masks for Timing-Aware Dummy

Segment Removal in Self-Aligned Multiple Patterning Layouts

Self-aligned multiple patterning (SAMP), due to its low overlay error, has emerged as the leading

option for 1D gridded back-end-of-line (BEOL) layers in sub-14nm nodes. To form actual routing patterns

from a uniform “sea of wires”, keep10 or block11 approaches can be used. The work of [28] demonstrates

that mask shapes used to keep signal wire segments (M2 pitch = 32nm [85][87]) are not patternable with

single-exposure lithography, even if we assume aggressive optical proximity correction (OPC). To address

this problem, the block approach is used, wherein both 1D cut masks and 2D block masks are required. 1D

cut masks are needed for line-end cutting or realization of space between routing segments, resulting in

end-of-line (EOL) extensions and non-functional (i.e. dummy fill) patterns.12

10Keep refers to a mask to keep signal wire segments.
11Block refers to a mask to erase dummy wire segments.
12In terms of layout patterns, cut mask and block mask would act the same since both masks remove unnecessary metal patterns.

Indeed, the terms cut and block are used interchangeably in many previous works. In this section, we use the term cut mask to

32

Despite previous works [14][22][40][109] proposing cut mask optimizations to minimize the EOL

extension, such effects as increased capacitance, degraded timing and power are inevitable due to dummy

fill patterns. Therefore, extra 2D block masks can be used to remove dummy fill patterns. However, using

only 2D block masks cannot realize line ends due to required complex shapes, particularly with metal pitch

≤ 32nm in N7 / N5 nodes, which is our focus in this section. [28] shows that 2D block mask shapes fail

to realize ≤ 80nm tip-to-tip spacing between line ends while a 1D cut mask strategy can realize 56nm

tip-to-tip spacing. Thus, 1D cut masks are needed to define clean line ends with small tip-to-tip spacing. In

this section, we assume that the cut mask is used to define EOL, and the block mask is used to remove

dummy fill patterns or define EOL with a margin.

Figure 2.14: SAMP process: (a) post-route layout; (b) cut mask application; (c) layout after cut mask
application; (d) block mask application; and (e) final layout after block mask application.

Figure 2.14 illustrates 1D SAMP patterning with cut and block masks. For a given post-route

layout, a “sea of wires” is generated and line ends are defined by a cut mask, as shown in Figures 2.14(a)

and (b). After the cut process, Figure 2.14(c) shows one EOL extension and three non-functional dummy

segments. 2D block mask application is shown in Figure 2.14(d), and Figure 2.14(e) shows the final layout

with one EOL extension and one dummy segment. Compared to the layout in Figure 2.14(c), (e) is superior

with smaller capacitance, lower power, and better timing, due to fewer dummy segments.

For printability, 2D block masks must satisfy given design rules from a particular patterning

technology. Possible patterning technology options include single-exposure (SE) 193i, SE 193d, and EUV.

Except in the case of EUV, the critical dimension (CD) for block mask shapes is ∼ 2× larger than the

refer to a 1D shaped mask, and the term block mask to refer to a 2D shaped mask.

33

minimum pitch of the 1D SAMP BEOL process. Thus, it is not possible to cover all dummy segments

using one block mask. For example, in Figure 2.14(e), the two dummy segments in the final layout cannot

be removed because of (i) the minimum spacing constraint between individual block mask shapes; and (ii)

the L-shape constraint. The first main contribution of this section is that we formulate and optimally solve

for 2D block mask shapes based on realistic design rules of SE 193i and SE 193d patterning technology

from industry [118], and with support for a “selective”13 variant of block-mask patterning technology.

In advanced nodes, minimum metal density is crucial to chemical-mechanical polishing (CMP) [32].

In the 1D SAMP manufacturing process, metal fills are generated intrinsically by the “sea-of-wires” with

cut process, and partially removed by the block mask, as opposed to a dedicated post-routing metal fill pro-

cess in the traditional physical design flow. Thus, block mask optimization must be metal density-aware.14

Another contribution of this section is that we consider the local minimum metal density constraint.

From a performance perspective, maximizing the block mask usage (dummy removal) is not

equivalent to minimizing timing impact of dummy fill patterns. In our preliminary study, a timing-oblivious

block mask optimization that simply maximizes dummy removal (design: M0) can only recover 14% of

the WNS degradation caused by non-functional dummy fill patterns. At the same time, timing-aware

block mask optimization can run much faster than timing-oblivious optimization since we do not need to

optimize non-functional dummy fills. Further, given minimum metal density constraints, a smart dummy

removal method is required to maximize timing recovery. Thus, it is important to capture timing impact

of dummy segments in block mask optimization. The second main contribution of this section is that we

incorporate into our optimization a timing model to evaluate dummy fill performance impact. Together

with our first main contribution, this enables quantified assessment of performance benefits from selective

block mask technology.

Lastly, we extend our MILP to a co-optimization of cut and block masks, opening up a broader

solution space. Compared to a sequential cut [40] and block mask optimization, where line-end realization

is performed with cut mask only, a cut and block mask co-optimization seeks to use both cut and block
13I.e., a block mask approach that selectively removes metal lines according to the colors of metal. See Section 2.2.1 for the

detailed description.
14Regarding the feasibility of the final pattern after dummy removal in terms of lithography, we note that [28] validates the cut

and block mask approach with lithography simulation. We also note that CMP effects from pattern density occur at relatively
large length scales compared to feature and pitch dimensions in N7/N5 Mx layer.

34

masks for realization of line ends: the block mask can complement the cut mask when a cut-only solution

may result in excessive EOL extensions.

To summarize, in this section we propose an MILP-based optimization for 2D block mask with

timing-aware dummy segment removal, while satisfying a given set of block mask rules (including for

selective block mask technology) and metal density constraints. We further provide what we believe to be

the first co-optimization of cut and block mask patterns. Our key contributions are as follows.

• To our knowledge, our work is the first to optimize 2D block mask layout considering realistic block

mask rules, timing impact of dummy fills and metal density constraints.

• We develop a timing model to evaluate performance impact on a per-segment basis.

• We develop a co-optimization of cut and block mask layout.

• We study the impacts of timing-awareness and patterning technology on optimization outcomes, and

we furthermore quantify the power and timing benefits of the “selective” approach.

• Our MILP formulation gives new insights into the fundamental limits of the benefits from emerging

(cut and) block mask technology options.

In the remainder of this section, Section 2.2.1 provides background of cut and block mask

technology, as well as related work. In Section 2.2.2, we describe our MILP-based optimization of 2D

block masks and our cut and block mask co-optimization. We also explain our model to capture the timing

impact of dummy segments. We describe our conflict list generation techniques, distributed optimization

strategy and overall flow in Section 2.2.3. Section 2.2.4 provides experimental results and analysis. We

give conclusions in Section 2.2.5.

2.2.1 Related Work and Preliminaries

In this section, we first describe block mask rules and the “selective” block approach. We then

review cut mask rules, the selective cut approach, and LELE cuts. Last, we review relevant related works.

35

Figure 2.15: Block mask rules: (a) minimum width and length rules; (b) minimum overlap rule; (c)
minimum U-shape rule; and (d) minimum L-shape rule.

Block Mask Rules / Selectivity

Block mask rules constrain each individual shape on the block mask, as well as sets of adjacent

block mask shapes. A set of essential rules for block mask shapes is shown in Figure 2.15. For each

rectilinear block mask shape, Figure 2.15(a) illustrates minimum width, minimum length, and minimum

spacing constraints. For a given rectilinear shape, we use “length” to refer to the extent (length) of edges

along the direction of metal lines, and “width” refer to the length of edges perpendicular to the direction

of metal lines. When two rectilinear shapes abut each other but are not perfectly aligned, as shown in

Figure 2.15(b), a minimum overlap rule applies. Figures 2.15(c) and (d) illustrate U-shape and L-shape

constraints. Table 2.5 shows preliminary block mask rule sets (R1 - R8) for 193i and 193d patterning

technologies.15

15We use the term “preliminary” since plan-of-record patterning strategies for mass production at N7 / N5 did not yet exist at
the time this research was performed. Values in Table 2.5 are from our collaborators at a leading technology development center /
consortium.

36

Table 2.5: Preliminary cut and block mask rules.

Rule Notation Meaning Values (nm)
193i 193d

R1 Wmin minimum width 60 120
R2 Smin minimum spacing 240 480
R3 Lmin minimum length 120 240
R4 Omin minimum overlap 240 480
R5 Wmin,U minimum width (U-shape) 120 240
R6 Wmin,L minimum width (L-shape) 60 120
R7 Cmin minimum cut spacing 80 N/A
R8 Cw cut width 20 N/A

A selective block approach [58] allows removal of some, but not all, segments covered by the block

mask. More precisely, similar to multiple patterning technology, the selective block approach selectively

removes dummy segments according to the color of the wire segment. There are two methodologies that

realize selectivity for block mask: (i) order selectivity and (ii) material selectivity. In [58], the selective

blocks for metal color A and metal color B are processed sequentially. In other words, the block A for

metal color A is processed right after the patterning of metal color A; then, metal B is patterned followed by

block color B. Given the process order, block A only blocks metal A, and block B only blocks metal B, due

to the order in which the process is assembled. By contrast, the material selectivity-based approach [41]

is particularly applied to SADP/SAQP, where there are two types of wires that are created by mandrel

and gap. Figure 2.16 illustrates the process of the material selectivity-based approach for SAQP. In this

SAQP process, spacer-is-dielectric is assumed. After 1st and 2nd spacers are generated, the region between

spacers is filled with material A. Then, two types of block masks are introduced: one for material A, and

the other for 1st spacers. The two block masks are used to perform the etch process which is selective to

material A or to 1st spacer.16 The final metal patterns are shown in blue color.

Figure 2.17 illustrates the difference between the selective block and non-selective block ap-

proaches. The red (resp. green) block mask in Figure 2.17(a) (resp. (b)) removes red (resp. green) dummy

segments, but acts as transparent to green (resp. red) segments. Note that without selectivity, the gray
16Indeed, there are 3 colors where each color defines the first spacer, the second spacer and the gap. However, after the second

spacer formation, the first spacer is already excavated on the hardmask, and there are only the second spacer and gap as the two
materials. Thus, the same color contrast that is used in SADP (e.g., two colors) can be used in SAQP as well.

37

Figure 2.16: Illustration of the material selectivity-based block approach.

block mask shape becomes complex (Figure 2.17(c)) and may not be patternable with single-exposure

(SE) in 193i/193d. Since the color of wire segments is assigned alternatively track by track, selective block

mask applies separately to odd and even tracks. With selectivity, as shown in Figures 2.17(a) and (b), block

mask shapes can extend to non-target tracks, which is equivalent to doubling the metal pitch.

Figure 2.17: Comparison between selective block and non-selective block: (a) selective block mask in red
removes only red segments; (b) selective block mask in green removes only green segments; and (c) a

complex non-selective block mask is required to remove the same dummy segments.

38

Cut Mask Rules / Selectivity / LELE cut

Cut mask rules constrain shapes on the cut mask. As in [14][22][28][40][109], we assume that cut

mask shapes are unit-size rectangular cuts, with width equal to the cut width. A cut mask must satisfy a

minimum cut spacing constraint, which is the center-to-center distance between two disjoint cuts. Two cuts

are exempt from the minimum cut spacing rule if they abut and are fully aligned. For two aligned merged

cuts, the minimum spacing rule is applied between each pair of unit-size cuts so that the edge-to-edge

distance is always guaranteed to be above a lower bound, as shown in Figure 2.18. Table 2.5 shows

preliminary cut mask rule sets (R7, R8) for 193i patterning technologies.

Figure 2.18: Cut mask rules: minimum spacing.

Similar to selective block, the selective cut approach realizes EOL only for the corresponding

color of wire segments. As another option, the non-selective LELE cut approach uses two cut masks

to realize EOL, regardless of the color of wire segments. Minimum cut spacing is checked within each

cut mask, because two cut masks do not interfere with each other. Figures 2.19(a) and (b) illustrate the

selective cut and LELE cut approaches, respectively. In Figure 2.19(a), similar to selective block, cuts can

extend to non-target tracks while not affecting segments of a different color. Thus, two green (resp. two

red) cuts are aligned and there is no need to check minimum cut spacing since the colors of the cuts are

different. Figure 2.19(b) shows LELE cuts. A minimum cut spacing rule is enforced separately for two

green (resp. two red) cuts.

Related Works

While selective block mask is a very recent concept [58], we may classify related works into four

categories: (i) 1D cut mask optimization, (ii) 2D block mask optimization, (iii) 1D cut mask-aware routing

optimization and (iv) 2D block mask-aware routing optimization.

39

Figure 2.19: Comparison between selective cuts and non-selective LELE cuts. (a) Selective cut mask in
red (resp. green) realizes EOL only for red (resp. green) segments, and is transparent to green (resp. red)

segments. (b) Non-selective LELE cuts realize EOL for both colors.

1D cut mask optimization. Zhang et al. [110] propose a shortest-path algorithm to resolve

lithography hotspots in cut masks. Du et al. [22] propose an integer linear program to minimize total

end-of-line (EOL) extension. Ding et al. [14] subsequently extend the methodology in [22] to reduce the

runtime. Han et al. [40] extend the MILP formulation in [14] and propose co-optimization of cut mask

layout, dummy fill and timing. Their objective incorporates awareness of design timing in minimizing

a weighted sum of EOL extensions, with weights determined by a grouping of timing slacks. [40] also

proposes a post-MILP optimization that iteratively removes dummy segments near timing-critical nets

while satisfying density and uniformity constraints. However, 2D block mask optimization is not supported,

and the grouping-based weights that are employed to achieve a timing-aware optimization may not be

accurate.

2D block mask optimization. Zhang et al. [109] propose a constrained shortest-path algorithm

to improve the printability of 2D block masks. Printability is assumed to be a function of the number of

polygon edges in the block mask. The authors of [109] show a tradeoff between printability and wirelength

increase, albeit without any hard design rule constraints. Ding et al. [14] propose an integer linear program

formulation, with support for limited design rules. By contrast, our formulation supports flexible design

rules, and we use recent, realistic design rules from collaborators from a leading technology consortium.

We also incorporate a more accurate model to minimize the timing impact of dummy fill patterns.

40

1D cut mask-aware routing optimization.17 Su and Chang [90] propose a nanowire-aware

router that considers cut mask complexity. They first estimate the line-end probability cost for each global

routing tile based on a pre-evaluation of line-end counts using minimum spanning trees. They then perform

global routing while minimizing the routing bends and considering hotspots with respect to the line-end

costs. After that, force-driven layer and track assignments are performed. At this stage, an attractive force

is established for wires that can share a cut. The authors of [90] also suggest detailed routing with a cost

function that considers cut sharing and EOL extension.

2D block mask-aware routing optimization. Fang [23] proposes an ILP-based wire planning

approach that considers block masks. The proposed ILP minimizes the generation of single track/wire

segments during track routing. She then performs detailed routing, which is based on A∗ search routing

with block mask-aware routing costs.

2.2.2 MILP-based 2D Block Mask Optimization

We now present our problem statement, our MILP formulation, as well as the timing model

used for each of our two optimizations: (1) 2D block mask optimization, and (2) cut and block mask

co-optimization.

Problem Statement

2D block mask optimization. Given a post-route layout with EOL extensions and legal EOL

cuts, timing information, minimum metal density constraint, and technology options (i.e., block mask

rules, selectivity), perform 2D block mask optimization considering block mask rules and metal density

constraints, such that timing impact of dummy segments is minimized.

Cut and block mask co-optimization. Given a post-route layout, timing information, minimum

metal density constraint, and technology options (i.e., cut mask rules, block mask rules, selectivity),

perform co-optimization of cut and block masks considering cut mask rules, block mask rules, and metal
17The co-optimization with routing is beyond the scope of our present work. We understand that a co-optimization of routing,

cut and block mask should result in the best performance. However, integration of a custom router and a commercial tool flow
with full N7 / N5 design rule support is extremely hard (and, not accessible to us); “hacks” possible for us in the academic setting
usually result in degraded performance.

41

density constraints, such that EOL of signal segments is realized by cut or block mask, and the timing

impact of EOL extension and dummy segments is minimized.

MILP Formulation for Block Mask Optimization

We now formulate the MILP problem for the block mask optimization problem. Table 2.6 shows

the notations that we use in our formulation.

Table 2.6: Notations. The notations from the twelfth row to the eighteenth row (i.e., beginning with cfi,j)
are used for cut and block co-optimization.

Notation Meaning
vi,j (0-1) indicator of whether the block candidate j

of shape i is used
tki,j delay increase due to dummy segments for net k

if vi,j = 0

li original dummy segment length of shape i
ri,j removed dummy segment length if vi,j = 1

L total length of signal wires
Kp set of nets in path p

Bq,a(Bq,b) qth set of typeA (typeB) conflicting block candidates
dmin minimum metal density constraint
sp initial timing slack of path p
mp timing degradation of path p
cfi,j (0-1) indicator of whether cut candidate j of shape i

is on cut mask f
ci,j (0-1) indicator of whether the cut candidate j

of shape i is used
Cq,a(Cq,b) qth set of typeA (typeB) conflicting cut candidates
jl (jr) location of left (right) edge of cut or block candidate j
ei,xl

(0-1) indicator of whether location x is the left (right) edge
(ei,xr) of any selected cut or block candidate of shape i
e′i,xl

(0-1) indicator of whether location x
(e′i,xr

) is the leftmost (resp. rightmost) of shape i
t′ki,xl

delay increase due to EOL extension for net k if e′i,xl
= 1

(t′ki,xr
) (resp. if e′i,xr

= 1)

Block candidates. We begin by describing how a block mask layout is represented within our

MILP formulation. In the block mask layout, we create a dedicated rectangular shape for every dummy

42

wire segment between signal segments. Figure 2.20 shows an example with three dummy wire segments,

covered by three rectangular block mask shapes in the block mask layout. The final block mask layout

may vary from the ones shown in Figure 2.20 since each shape may change according to the selected

block candidate. We define block candidates as subsegments of a rectangular block mask shape for a

dummy segment. We provide several block candidates for each rectangular shape. We do this by slicing

each rectangular shape according to a user-specified input length (120nm, in all results reported below)

into several subsegments that define block candidates.18 Because block mask cannot realize EOL with

small tip-to-tip spacing, for leftmost (or rightmost) block candidates, we add “EOL margin” between the

boundary of candidates and the signal EOL. The EOL margin is illustrated in Figure 2.22(a).

Figure 2.20 illustrates four block candidates v2,1, v2,2, v2,3, v2,4 for Shape 2. The block candidates

are indexed in ascending (resp. descending) order of x coordinate. The final block mask layout for Shape

2 is determined by selected block candidates. The height of the shape is determined by the metal pitch,

as shown in Figure 2.20. For the “selective” block approach, shapes can extend to the non-target tracks,

equivalent to doubling the metal pitch. The following MILP optimally selects block candidates of each

rectangular shape, while satisfying block mask rules.

Figure 2.20: Shapes and block candidates for Shape 2.

18We note that there is a tradeoff between solution quality and runtime depending on the user-specified input length, which
determines fine-grained or coarse-grained block candidate generation. Experimental results for various block candidate lengths
are reported in Section 2.2.4.

43

Minimize:
∑
p

mp (2.17)

Subject to: ∑
(i,j)∈Bq,a

(i′,j′)∈Bq,b

vi,j + (1− vi′,j′) < |Bq,a|+ |Bq,b|, ∀q (2.18)

L+
∑
i

(li −
∑
j

ri,j · vi,j) ≥ dmin (2.19)

∑
k∈Kp

∑
i,j

tki,j · (1− vi,j) ≤ sp +mp, ∀p (2.20)

mp ≥ 0, ∀p (2.21)

The objective is to minimize the total timing degradation arising from the final dummy fill patterns

for timing-critical paths. We extract (setup) timing-critical paths using Cadence Tempus Timing Signoff

Solution v15.2 [114] (dummy segments and EOL extensions do not worsen hold, as we do not touch the

clock distribution). A path is considered to be timing-critical if its slack is less than a prescribed threshold

for timing-criticality.19 For path p, the timing degradation mp is defined as the delay increase dp (induced

by dummy fills that affect path p) that exceeds the initial timing slack sp, i.e.,mp = max(dp − sp, 0).20 In

this way, we only count timing degradation that causes a negative timing slack. The value mp is calculated

from the sum of delay increases along path p, subtracted by the initial timing slack sp.

Constraints for block mask rule violation. Constraint (2.18) prevents block mask rule violations.

Given a set of close-by block candidates from neighboring shapes, we enumerate conflict sets where

selection (removal) of each block candidate in any given conflict set forms a violating block shape. In

Constraint (2.18),Bq,a (resp.Bq,b) represents conflict set q, which stores a (minimal) set of block candidates

that cannot be “selected” (resp. “removed”) simultaneously. More specifically, we define typeA candidates
19We use +200ps as the threshold for timing-criticality in our experiments. The numbers of timing-critical paths for initial

implementations are 8K, 0.9K and 18K for M0, AES and JPEG, respectively.
20For example, if sp = 10ps, and dp = 5ps, then mp = 0. If sp = − 10ps, and dp = 5ps, then mp = 15ps.

Constraints (2.20) and (2.21) enforce mp = max(dp − sp, 0). We note that we do not optimize for the timing degradation
within positive slacks. However, our formulation can be easily adapted by designers to preserve a given amount of positive slack
(i.e., timing guardband) by decreasing sp.

44

such that the inclusion of the candidates forms the violating shape, and store the candidates in Bq,a.

Similarly, we define typeB candidates such that the exclusion of the candidates forms the violating shape,

and store the candidates in Bq,b.

We create a constraint to forbid each block mask pattern that forms a block mask rule violation.

Figure 2.21 illustrates an example minimum width U-shape block mask rule violation on the right boundary

of v3,1. The figure shows typeA and typeB candidates that define a violating U-shape, with don’t-care

candidates that do not directly contribute to the formation of the U-shape violation. In this example, we

prevent the U-shape rule violation with the following constraint:

v2,1 + v2,2 + (1− v3,1) + v3,2 + v4,2 + v4,3 < 6 (2.22)

In Constraint (2.22), if any candidate in the typeA candidate set (e.g., v2,1, v2,2, v3,2, v4,2, v4,3) is

zero or any candidate in the typeB candidate set (e.g., v3,1) is one, the violating U-shape does not exist

anymore. In this case, the constraint is automatically satisfied. We note that we only enumerate “minimal”

sets of typeA and typeB candidates. For example, the inclusion of candidates v1,1, v1,2 and v4,1 in addition

to the typeA set above (and with the exclusion of the typeB set) forms an additional violating U-shape.

However, this case is forbidden by Constraint (2.22). Thus, v1,1, v1,2 and v4,1 are don’t-care candidates. In

light of this, we find that for the block mask rules that we have studied, relevant combinations will exist

within very small neighborhoods of any given block candidates. Thus, the complexity of enumeration of

block candidate combinations to determine set B is in practice linear to the number of block candidates.21

Figure 2.21: Illustration of a U-shape block mask rule violation.

21In our experiments, the total runtimes of conflict lists generation for M0 and JPEG are 36 and 184 seconds, respectively. The
number of segments (shapes) in JPEG is 257K, and the number of shapes in M0 is 63K.

45

Constraints for local minimum metal density. Constraint (2.19) enforces the local minimum

metal density. We obtain the total signal wire length L from the routed layout. Variable li,j is the removed

dummy segment length if vi,j = 1 for shape i.
∑

i li −
∑

j ri,j · vi,j calculates the total dummy wire

segment length. ri,j is the length of block candidate vi,j . The minimum metal density is enforced locally

within each clip; this is described in Section 2.2.3 below.

Constraints for timing-critical paths. Constraint (2.20) upper-bounds the timing degradation for

timing-critical paths. Variable tki,j is the delay increase for net k caused by the remaining dummy segment

if vi,j = 0. We sum up the delay increase of every stage (gate and wire) on timing-critical path p and

force this sum to be smaller than sp + mp. The initial path slack sp is calculated from an initial design

with no dummy segments. For each timing-critical path p, mp = 0 indicates that the delay increase is

not larger than the initial path slack sp and thus design WNS will not worsen;22 otherwise, mp > 0. Note

that we minimize mp for all timing critical paths p by the objective. Constraint (2.21) limits mp to be a

non-negative number. We also note that Constraint (2.21) is necessary to optimize WNS as well as TNS. If

we do not have such a constraint, the algorithm might keep removing dummy segments that are associated

with “less” timing critical paths instead of focusing on the most timing critical path. For example, let us

suppose that there are two paths with slacks s1 = 10 and s2 = 0. With Constraint (2.21), we optimize

m2 rather than m1 since constraints for m2 is tighter (i.e., the second path is more critical), and it is not

necessary to optimize m1 until the lower bound of m1 becomes negative in Constraint (2.20). However, if

we allow m1 to be negative, the algorithm could trade off m2 for a negative m1 to minimize the sum of m1

and m2.

MILP Formulation for Cut and Block Mask Co-Optimization

We extend the MILP in Section 2.2.2 by providing cut candidates. Figure 2.22 illustrates block

and cut candidates with one possible final layout after cut and block mask application. Figures 2.22(a)

and (b) show block candidates and cut candidates, respectively. We note that the leftmost block candidate

v1,1 is generated considering a given “EOL margin” to allow block mask to realize the EOL of signal wire

22Here, we assume the initial “WNS” is negative. For designs with positive WNS (i.e., worst slack), we can easily shift the
“zero slack” threshold to establish a guardband that preserves the worst slack of the original design. (See also Footnote 20 above.)

46

Figure 2.22: Cut and block mask co-optimization: (a) block candidates; (b) cut candidates; and (c) a
possible final layout.

segment. We use 10nm as the EOL margin in our experiments. To realize the EOL of the signal wire

next to the block mask, we must select at least one cut or block candidate from among the cut and block

candidates. Figure 2.22(c) shows the final layout when v1,3 and c1,2 are selected as the final block and cut

candidate solutions, respectively.23

We now formulate the MILP problem for the cut and block mask co-optimization. Table 2.6 again

shows notations that we use in our formulation. Analogous to the block mask MILP above, the objective is

to minimize the total timing degradation arising from EOL extensions and final dummy fill patterns for

timing-critical paths. sp and mp are calculated in the same way. However, for the delay increase dp, we

now consider the impact from both the EOL extensions as well as the dummy fills that affect path p.

We now describe constraints in our cut and block mask co-optimization with the exception of the

minimum metal density and timing constraints since these two constraints are the same as in the block

mask optimization.
23We note that a block candidate cannot replace a cut candidate due to the larger EOL margin for block mask shapes. I.e., cut

(resp. block) candidates cannot be replaced by block (resp. cut) candidates even though they might share their locations.

47

Constraints for LELE cuts. In the case of non-selective LELE cuts, Constraint (2.24) enforces

cut uniqueness. Binary variable cfi,j indicates whether the cut candidate j for shape i on cut mask f

is selected, as shown in Constraint (2.24). For non-selective LELE, we assume that two cut masks are

available, i.e., f = 1, 2. For the selective cut approach, we assume only one cut mask is available, i.e.,

f = 1.

Constraints for cut and block mask rule violation. Constraints (2.26) and (2.27) prevent cut and

block mask rule violations. Constraint (2.26) is the same as Constraint (2.18) in block mask optimization.

Similar to Constraint (2.26) for block candidates, we enumerate sets of conflicting cut candidates and

prevent them from co-existing with Constraint (2.27).

Constraints for EOL realization. Constraint (2.25) enforces EOL realization. We use index i′ to

indicate a shape which is the only existing shape between any two horizontally adjacent signal segments.

In other words, shape i′ is a dummy shape that connects two neighboring signal segments, and must be

split by a cut or a block to realize the EOL of the two signal segments. Thus, we enforce the rule that at

least one cut or block exists for shape i′.

48

Minimize:
∑
p

mp (2.23)

Subject to: ∑
f

cfi,j = ci,jl , ∀i, j (2.24)

∑
j

vi′,j +
∑
j

ci′,j ≥ 1, ∀i′ (2.25)

∑
(i,j)∈Bq,a

(i′,j′)∈Bq,b

vi,j + (1− vi′,j′) < |Bq,a|+ |Bq,b|, ∀q (2.26)

∑
(i,j)∈Cq,a

(i′,j′)∈Cq,b

ci,j + (1− ci′,j′) < |Cq,a|+ |Cq,b|, ∀q (2.27)

ei,xl(xr) ≥ vi,j , if jl(jr) = x, ∀i (2.28)

ei,xl(xr) ≥ ci,j , if jl(jr) = x, ∀i (2.29)

ei,xl(xr) ≤ vi,j + ci,j′

if jl(jr) = x, j′l(j
′
r) = x, ∀i (2.30)

ei,xl
−

∑
x′<x

ei,x′l − e
′
i,xl
≤ 0,

ei,xr −
∑
x′>x

ei,x′r − e
′
i,xr ≤ 0, ∀i, ∀x (2.31)

e′i,xl
≤ ei,xl

, e′i,xr ≤ ei,xr , ∀i (2.32)∑
xl

e′i,xl
≤ 1,

∑
xr

e′i,xr ≤ 1, ∀i (2.33)

L+
∑
i

(li −
∑
j

ri,j · vi,j) ≥ dmin (2.34)

∑
k∈Kp

(
∑
i,j

tki,j · (1− vi,j) +
∑
i,xl

t′
k
i,xl
· e′i,xl

+
∑
i,xr

t′
k
i,xr
· e′i,xr

) ≤ sp +mp, ∀p (2.35)

mp ≥ 0, ∀p (2.36)

49

Constraints for EOL definition. Constraints (2.28) – (2.30) find the leftmost (resp. rightmost)

edge for shape i from a selected cut or block candidate, since this candidate determines EOL for the

signal wire segment on its left (resp. right). Binary variable ei,xl
(resp. ei,xr) indicates whether location

x is the left (resp. right) edge of any selected cut or block candidates for shape i. Constraints (2.31) -

(2.33) describe the methodology to find the leftmost (resp. rightmost) selected cut or block candidate.

Constraints (2.31) – (2.32) ensure that e′i,xl(xr) = 1 if ei,xl(xr) = 1 and x is the location of leftmost

(rightmost) edge for shape i. Otherwise, e′i,xl(xr) = 0 is forced by checking whether e variables that

are associated with x′ are equal to one, where x′ < x (x′ > x) for e′i,xl
(e′i,xr

) in Constraint (2.31).

Figure 2.23 illustrates variable e′. In the figure, we assume that c1,1 = 1 and v1,3 = 1. e variables are

computed in Constraints (2.37) by Constraints (2.28) – (2.30). Constraints (2.38) – (2.40) correspond to

Constraint (2.31). Constraint (2.41) corresponds to Constraint (2.33). As a result, e′1,2l becomes equal to

one, which indicates that location x = 2 is the EOL, as shown in Figure 2.23.

Figure 2.23: Illustration of binary variable e′: cut candidate c1,1 and block candidate v1,3 are selected.

e1,1l = 0; e1,2l = 1; e1,3l = 1 (2.37)

e1,1l − e
′
1,1l ≤ 0 (2.38)

e1,2l − e1,1l − e
′
1,2l ≤ 0 (2.39)

e1,3l − e1,1l − e1,2l − e
′
1,3l ≤ 0 (2.40)

e′1,1l + e′1,2l + e′1,3l ≤ 1 (2.41)

50

Timing Model for Dummy Wire Segments

Dummy wire segments cause net capacitance increase (∆capacitance), and hence gate and wire

delay increase. This timing impact of dummy wire segments should be minimized so that the performance

and robustness of designs with dummy wire segments can be consistent with (or, better than) designers’

expectations at signoff. We now describe how we model ∆capacitance, along with resulting changes to

gate and wire delays, to capture timing impact of dummy wire segments in our optimization flow.

Capacitance model. To model the timing impact of floating dummy wire segments, we first

characterize capacitance increase of signal nets due to neighboring dummy segments. Fill-aware capaci-

tance extraction must comprehend various situations (e.g., upper / lower layers, and types of neighboring

wire segments of the dummy / signal wires) [32][52]. However, to obtain linear expressions that we can

incorporate into our MILP formulation, we study the impact of a dummy wire segment on capacitance of

a signal wire in four simplified situations (cases) according to the distance between a signal wire and a

dummy segment: (i) one track away (the dummy segment is on a neighboring track of the signal segment);

(ii) two tracks away; (iii) three tracks away; and (iv) four tracks away. For each case, we experiment with

different parallel run lengths of the dummy wire segment to a signal wire, and measure the capacitance of

the signal wire to extract the coefficients. We use Cadence Innovus Implementation System v15.2 [112] for

parasitic RC extraction with Cadence Quantus Extraction Solution v15.2 [113] techfiles provided by our

collaborators at a leading technology consortium. Table 2.7 shows normalized capacitance increase per

unit length for (grounded) EOL extension, and cases (i) - (iv) for (floating) dummy segments from this

section above.

Table 2.7: Normalized capacitance increase for (grounded) EOL extension and (floating) dummy fill,
using a Cadence Innovus-based extraction flow provided by our collaborators at a leading technology

consortium.

Case EOL (i) (ii) (iii) (iv)
∆cap 1270 342 53 5 1

Gate and wire delay model. We use linear gate and wire delay models. The linear delay models

are fast and easy to incorporate into an MILP formulation. Also, for the very small ∆capacitance values

51

y = 22.478x + 0.0454
R² = 0.9994

0.130

0.135

0.140

0.145

0.150

0.155

0.0038 0.004 0.0042 0.0044 0.0046 0.0048 0.005

G
at
e
de

la
y
(n
s)

Net capacitance (pF)

Figure 2.24: Gate delay vs. net capacitance for a specific gate instance.

caused by dummy wire segments, linear delay modeling shows good accuracy. We use Cadence Tempus

Timing Signoff Solution v15.2 [114] to extract delays for each gate and net given extracted SPEF files

of (i) layout design with dummy wire segments for only clock nets, and (ii) layout design with dummy

wire segments for all nets. We then use the linear delay model to extract coefficients. Timing coefficient

extraction is performed for each gate instance and driving net.24 Figure 2.24 shows an example of extracted

coefficients (i.e., determining a linear equation for gate delay vs. capacitance) of a specific gate instance.

Validation of our timing model. We validate our timing model by comparing with timing results

obtained from Cadence Tempus Timing Signoff Solution v15.2 [114]. We report stage and timing path

delays calculated based on our model (and, which are used in our ILP formulation) and compare them

with timing results from Tempus. We observe that estimated values and golden values from Tempus are

quite similar, as shown in Figure 2.25. The maximum errors are -4ps and -23ps (a negative value means

optimistic) for stage delay and path delay, respectively. To compensate for the errors, we add timing margin

of 50ps in our ILP formulation for all studies reported below.
24We note that for different instances of the same library cell (master), the coefficients are not the same since the instances’

output nets have different load capacitances according to the circuit structure. We do not separately model slew (transition time)
changes that are due to the ∆capacitance changes. This is because (i) we already achieve high accuracy by modeling each gate
and net separately, and (ii) fill-induced slew changes are very small, since the associated capacitance and delay changes are small.
Our implementation takes 20 minutes to extract coefficients for every gate in the JPEG testcase, using a single thread.

52

Figure 2.25: Comparison of timing results from Tempus (Golden) and our estimation (Estimated). (a) Path
delay and (b) stage delay comparisons. The maximum errors are -4ps and -23ps for stage delay and path

delay, respectively.

2.2.3 Overall Flow

We now describe the overall flow of our optimizations, including conflict list enumeration and

distributed optimization.

Conflict List Enumeration

Algorithm 2 Enumeration for minimum spacing constraint.

1: for each block candidate pair (vi,j , vi′,j′) ∈ V do
2: if S(vi,j , vi′,j′) < Smin then
3: Bq,a ← {vi,j , vi,j};
4: for each block candidate vk,l located between vi,j and vi′,j′ do
5: Bq,b ← Bq,b ∪ {vk,l};
6: end for
7: q ← q + 1;
8: end if
9: end for

Minimum spacing violation. Algorithm 2 describes the enumeration for minimum spacing

constraint. For each pair of block candidates (vi,j ,vi′,j′) within minimum spacing, we add the candidate

pair toBq,a (Line 3). They are typeA candidates, where the inclusion of each candidate (on the block mask)

results in a violation (see Section 2.2.2). We then enumerate all block candidates that are located between

53

vi,j and vi′,j′ and add them toBq,b (Lines 4-6). These candidates are typeB candidates, where the exclusion

of each candidate ensures that the candidate pair (vi,j ,vi′,j′) is separated. Figure 2.26 shows horizontal and

vertical minimum spacing violations. For the (v1,1,v4,1) pair, let us assume that the vertical spacing between

v1,1 and v4,1 is less than the minimum spacing. Then, Bq,a = {v1,1, v4,1}, and Bq,b = {v2,1, v3,1},

since v2,1 and v3,1 are located between v1,1 and v4,1. As an another example, for the (v1,1,v1,3) pair, let

us assume that the horizontal spacing between v1,1 and v1,3 is less than the minimum spacing. Then,

Bq,a = {v1,1, v1,3}, and Bq,b = {v1,2}.

Figure 2.26: Illustration of conflict list enumeration for minimum spacing constraint, showing
horizontally and vertically conflicting pairs.

Other design rules. The enumeration of conflict lists for other rules can be applied similarly by

collecting all typeA and typeB candidates.

Distributed Optimization

The most critical limitation of the MILP-based approach in practice is runtime. To achieve a

scalable approach, we adopt the distributable optimization approach that has been previously proposed by

Han et al. in [40].

We first partition the layout into small clips and optimize in four iterations. In each iteration, we

select clips that are not adjacent to each other and optimize the clips in parallel. For example, we optimize

all clips in the following sequence in our four iterations: (i) clips in odd rows and odd columns in the first

iteration; (ii) clips in odd rows and even columns in the second iteration; (iii) clips in even rows and odd

columns in the third iteration; and (iv) clips in even rows and even columns in the fourth iteration. With

this approach, as shown in Figure 2.27, the target clips (yellow) do not share their boundaries with each

other. Thus, each target clip can be optimized without creating any interference between clips. After each

54

iteration, we save block/cut solutions for optimized clips. The solutions are used in the following iterations

as boundary conditions. In our implementation, we set the clip size to be 8×8µm2 and the boundary width

to be 0.6µm. The local minimum metal density constraint is enforced within each clip. Note that with this

approach, speedup is effectively linear in compute resources. We report the results of our scalability test in

Section 2.2.4.

(a) First iteration (b) Second iteration

Target clip for the current optimization
Untouched clip
Optimized clip in previous iterations

(c) Third iteration (d) Fourth iteration

Figure 2.27: Distributed optimization: (a) – (d) respectively illustrate the first, second, third and fourth
iteration in our approach. Since target clips (yellow) for an iteration do not share their boundaries with

each other, each target is independently optimizable.

Overall Optimization Flow

Figure 2.28 shows our overall optimization flow. We start from a routed design and candidate

block (and cut) shapes that cover dummy segments. We then optimize in four iterations per metal layer.

In each iteration, we optimize small clips that are independently optimizable in parallel. In an iteration,

we (i) generate block (and cut) candidates for each shape, (ii) generate sets of conflict candidates with

our block (and cut) mask rule checker, and (iii) formulate and solve our MILP with pre-characterized

timing coefficients and local minimum metal density constraints. After four iterations, we obtain the

optimized block/cut mask layout and perform timing/power/capacitance evaluations with Cadence Innovus

Implementation System v15.2 [112] and Cadence Tempus Timing Signoff Solution v15.2 [114].

55

Routed layout

Optimization
for each clip

Solve multiple
clips in parallel

Optimized layout

Distributed Optimization

Block/cut mask optimization (for a layer)

List block (and cut) candidates

Generate block (and cut)
conflict list

- Timing slacks
- Density constraints

ILP solver
(CPLEX)

ILP
formulation

Four iterations

Figure 2.28: Overall optimization flow.

2.2.4 Experiments

Experimental Setup

We implement our optimizations in C++ with OpenAccess 2.2.6 [128] to support LEF/DEF [119],

and with CPLEX 12.5.1 [115] as our MILP solver.25 We evaluate our approach using two design blocks

(AES and JPEG) from OpenCores [124], and an Arm Cortex-M0 core (M0) without memories. We

synthesize the designs with Synopsys Design Compiler vH-2013.03-SP3 [129] from RTL netlists and then

perform placement and routing with Cadence Innovus Implementation System v15.2 [112] using an IMEC

N7 (i.e., 7nm foundry node) library [118]. All experiments are performed with 24 threads on a 2.6GHz

Intel Xeon dual-CPU server. (As noted above, runtimes will generally see linear speedup with added

compute resources.)
25We use one thread for each CPLEX instance. Based on our experiments, solving multiple MILP instances in a serial fashion

with CPLEX parallel optimization takes longer time than solving multiple MILP instances together with a single thread for each
instance. For JPEG design with the same total 24 threads, the runtime with CPLEX parallel optimization is 9010 sec, but the
runtime with our optimization method is 4146 sec.

56

Design of Experiments

We perform three types of experiments: ExptA studies the tradeoff between solution quality

and runtime. ExptB studies 2D block mask optimization. And ExptC studies cut and block mask co-

optimization. In ExptA, we apply our optimizer to layouts with various numbers of dummy segments and

clip sizes to show the tradeoff between solution quality and runtime. (We use the results to determine the

best setting for input parameters.) For ExptB on 2D block mask optimization, we use a cut mask-aware

post-route layout with EOL extension already defined by a commercial tool. For ExptC on cut and block

co-optimization, we perform cut and block optimization to define EOL and dummy removal using our

software. We describe details of our design of experiments as follows.26

• ExptA-1: Sensitivity study on the effect of block candidates. We trade off dummy removal rate and

runtime for different block candidate lengths. We vary the block candidate length from 40nm (1.2X

minimum metal pitch) to 160nm (5X minimum metal pitch) in steps of 20nm.

• ExptA-2: Sensitivity study on the effect of clip size. We trade off dummy removal rate and runtime

for different clip sizes. We vary the clip sizes from 2µm × 2µm to 10µm × 10µm. In both

experiments A-1 and A-2, we use non-timing-aware (i.e., “timing-oblivious”) optimization, which is

achieved by simply maximizing the removal of dummy fill.27

• ExptB-1: Comparison of timing-aware and non-timing-aware optimizations.

• ExptB-2: Comparison of the performance impact of 193i and 193d block mask rules (summarized

in Table 2.5). We use a loose 20% minimum metal density constraint to demonstrate the upper bound

of performance impact from patterning technology.
26We note that it is hard to make an apples-to-apples comparison between our work and previous works since the objectives of

our work and previous works are fundamentally different. The algorithms proposed in previous works are dedicated to solving
the problem formulations posed in those works; they are difficult to extend and adapt to handle our complex design rules. For
example, the work [109] simply minimizes the number of edges of each polygon of block mask patterns, and is not based on
explicit design rules. Additionally, timing constraints are not considered. Similarly, the work [110] applies very limited and
simple design rules, which gives a very different context from the detailed rules (obtained from our collaborators at a large
industry consortium) that we use in our work.

27Specifically, the non-timing-aware objective is to minimize
∑

i (li −
∑

j ri,j · vi,j), with notations as defined in Table 2.6.
In other words, the objective is to minimize ∆area of final block mask shapes, compared to a block mask layout covering all
dummy segments. Note that we disable timing-awareness by removing Constraint (2.20) in Section 2.2.2.

57

• ExptB-3: Comparison of the performance difference with selective and non-selective block ap-

proaches. We again use a loose 20% minimum metal density constraint to demonstrate the upper

bound of performance impact from patterning technology.

• ExptB-4: Comparison of the impact of metal density constraints. We study 20%, 30% and 40%

minimum metal densities.28

• ExptC-1: Comparison of cut and block mask co-optimization to a sequential cut and block mask

optimization. A cut mask only optimization is enabled without generating block shape candidates.

• ExptC-2: Comparison of selective cut and LELE cut approaches.

The testcases are summarized in Table 2.8. Table 2.9 summarizes parameter settings for each type

of experiment.

Table 2.8: Summary of testcases.

Expt type Design #Inst #Nets
A, B M0 11194 11457

B
AES 10010 10066
JPEG 52753 52778

C
M0 9884 9951
AES 13381 13656
JPEG 54012 54155

Experimental Results

Table 2.11 shows the experimental results of ExptB and ExptC. For ExptB, the Timing Impact

Recovery column shows timing improvements. The timing impact recovery is measured in ns against a

design with no dummy segments removed (worst case). The percentage shown indicates how closely our

optimizations can approach a design that assumes all dummy segments are removed (best, or ideal, case).29

28Without block mask, a SADP/SAQP-based uni-directional design implies ∼50% metal density, assuming metal width equal
to spacing.

29For example, if WNS is 0.000ns (resp. -0.100ns) for the best (resp. worst) case, and we achieve -0.030ns in WNS after
block mask optimization, we recover 0.070ns in WNS, with a recovery percentage of 70%.

58

Table 2.9: Parameter settings for the experiments.

ExptA
Expt Timing/non-timing Layers Clip width (µm) Block candidate length (nm)
A-1 non-timing M3 2 60 - 160
A-2 non-timing M3 2 - 10 120

Default setup
design = M0
density LB = 0%
non-selective block mask

ExptB
Expt Timing/non-timing 193i/193d selective/non-selective Density LB (%)
B-1 both 193i selective 40
B-2 timing both selective 20
B-3 timing 193i both 20
B-4 timing 193i selective 20, 30, 40

Default setup

design = M0, AES, JPEG
layers = M2, M3, M4, M5
clip size = 4µm × 4µm
block candidate length = 120nm

ExptC
Expt co-optimization/sequential selective/LELE cut
C-1 both selective cut
C-2 co-optimization both

Default setup

design = M0, AES, JPEG
layers = M2, M3, M4, M5
clip size = 4µm × 4µm
block candidate length = 120nm
density LB = 20%
193i mask, selective block mask

The best and worst cases serve as extreme, baseline data points for ExptB. Table 2.10 shows WNS, total

negative slack (TNS) and switching power (Psw) of the best and worst cases, At the worst case, WNS

(resp. TNS) degradation is up to 0.114ns (resp. 47.853ns) for testcase JPEG. The switching power is

increased by up to 3.4%. Dummy removal rate is calculated as the removed dummy segment length over

the sum of removed and remaining dummy segment length.

Table 2.10: Timing and switching power of best and worst cases for ExptA. The units are ns, ns and µW
for WNS, TNS and Psw, respectively.

Design Best case Worst case
WNS TNS Psw WNS TNS Psw

M0 -0.030 -1.737 4.06 -0.092 -23.86 4.17
AES -0.037 -1.417 10.77 -0.069 -5.827 11.08

JPEG -0.047 -9.583 39.18 -0.161 -57.436 40.53

59

ExptA-1: Sensitivity study on the effect of block candidates. Figure 2.29(a) shows dummy

removal rate and runtime results for various block candidate lengths. In the range of 60nm to 160nm, we

see that the block candidate length does not significantly affect the dummy removal rate. However, the

runtime increases proportionally to the block candidate length.

ExptA-2: Sensitivity study on the effect of clip size. Figure 2.29(b) shows dummy removal rate

and runtime results for various clip sizes. In the range of 2µm to 10µm, we see that the clip size does not

significantly affect the dummy removal rate. However, the runtime increases as the clip size increases.

0

5000

10000

15000

40%

45%

50%

55%

60%

2 4 6 8 10

Ru
nt

im
e

(s
)

Du
m

m
y

re
m

ov
al

 ra
te

Clip width ()

0

5000

10000

15000

20000

40%

45%

50%

55%

60%

60 80 100 120 140 160

Ru
nt

im
e

(s
)

Du
m

m
y

re
m

ov
al

 ra
te

Block candidate length (n)

Runtime Dummy removal rate

(a)

(b)

Figure 2.29: Sensitivity study results: sensitivity of dummy removal rate to (a) block candidate length and
(b) clip size.

ExptB-1: Comparison of timing-aware and non-timing-aware optimizations. We observe

that non-timing-aware optimization results in higher dummy removal rates than timing-aware. However,

60

timing-aware optimizations shows better timing impact recovery. Averaged over all three designs, timing-

aware optimization recovers 57% (resp. 69%) of ∆WNS (resp. ∆TNS), compared to 32% (resp. 35%)

recovered by non-timing-aware optimization. The results demonstrate that our timing-aware optimization

helps recover timing with less dummy removal. We also see that the runtime of timing-aware optimization

is 76% smaller on average than non-timing-aware.

ExptB-2: Comparison of 193i and 193d selective block mask rules. This experiment shows

the impact of patterning options. On average, application of 193i selective block mask recovers 75% (resp.

81%) of ∆WNS (resp. ∆TNS), while application of 193d selective block mask recovers 36% (resp. 48%)

of ∆WNS (resp. ∆TNS). For switching power, application of 193i selective block mask recovers 53%,

compared to 27% for 193d, on average. For dummy removal rate, 193i selective block mask improves by

up to 43% over 193d (JPEG, metal layer M4, 62% vs. 19%), with an average improvement of 21%.

ExptB-3: Comparison of selective and non-selective approaches. The selective block mask

approach affords better control of dummy removal, since the minimum width of a block mask shape for

a dummy segment is twice as large in the selective block mask case as in the non-selective block mask

case. This results in much greater overlay margin in the selective block mask case. The results show

that the selective block mask approach recovers up to 84% and on average 75% of ∆WNS, while the

non-selective block mask approach recovers up to 39% and 25% on average of ∆WNS. For ∆TNS, the

selective block mask approach recovers up to 86%, and 81% on average; the non-selective block mask

approach recovers up to 42% and 33% on average. Regarding ∆Psw, the average recovery rates are 53%

and 18% for selective and non-selective mask approaches, respectively. The timing and power benefits of

the selective block approach come from high dummy removal rates; we see that the dummy removal rates

are larger for the selective block approach in all designs.

ExptB-4: Comparison of different metal density constraints. As metal density lower bounds

increase, dummy segment removal becomes more restricted. We observe that the dummy removal rates

drop by up to 36% (JPEG, M4, 51% vs. 26%) with higher density constraints. With respect to timing and

power, our experimental results show the expected tradeoff between timing/power and density constraints.

We see that with higher density constraints, as dummy removal is more restricted, the final timing and

61

Table 2.11: Overall experimental results. Values in parentheses denote percentage improvements
(reductions) with respect to the worst case as described in Table 2.10. Note that ExptA and ExptB use

cut-aware (from commercial tool) and cut-unaware post-route layout, respectively.

Experiment Design Option Timing Impact Recovery (ns)
∆ Psw (µW) Dummy removal rate (%) Runtime (s)

∆WNS ∆TNS M2 M3 M4 M5

B-1

M0
Timing-aware 0.035 (56%) 17.307 (78%) -0.041 (36%) 24 32 31 22 823

Non-timing-aware 0.022 (35%) 8.945 (40%) -0.039 (34%) 59 36 33 27 4451

AES
Timing-aware 0.014 (43%) 2.516 (57%) -0.129 (42%) 30 40 38 29 716

Non-timing-aware 0.010 (31%) 1.569 (35%) -0.116 (37%) 60 43 41 30 4231

JPEG
Timing-aware 0.080 (70%) 34.194 (71%) -0.458 (33%) 28 29 26 15 4150

Non-timing-aware 0.033 (28%) 14.401 (30%) -0.372 (27%) 56 29 27 23 11773

B-2

M0
193i 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956
193d 0.035 (56%) 13.097 (59%) -0.034 (30%) 6 23 31 25 1963

AES
193i 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643
193d 0.008 (25%) 1.755 (39%) -0.095 (30%) 6 21 30 42 1307

JPEG
193i 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146
193d 0.030 (26%) 21.143 (44%) -0.247 (18%) 4 16 19 10 6751

B-3

M0
Selective 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956

Non-selective 0.024 (38%) 9.280 (41%) -0.023 (20%) 12 17 21 14 2992

AES
Selective 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643

Non-selective 0.007 (21%) 1.414 (32%) -0.076 (24%) 12 21 26 29 1319

JPEG
Selective 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146

Non-selective 0.018 (15%) 11.390 (23%) -0.121 (8%) 7 8 10 5 6347

B-4

M0
Density LB 20% 0.039 (62%) 17.681 (79%) -0.052 (46%) 24 39 40 25 956
Density LB 30% 0.041 (66%) 17.577 (79%) -0.054 (48%) 24 37 41 28 1005
Density LB 40% 0.035 (56%) 17.307 (78%) -0.041 (36%) 24 32 31 22 823

AES
Density LB 20% 0.025 (78%) 3.482 (78%) -0.170 (55%) 31 47 51 49 643
Density LB 30% 0.025 (78%) 3.487 (79%) -0.169 (55%) 31 46 51 49 748
Density LB 40% 0.014 (43%) 2.516 (57%) -0.129 (42%) 30 40 38 29 716

JPEG
Density LB 20% 0.096 (84%) 40.960 (85%) -0.759 (56%) 22 56 62 33 4146
Density LB 30% 0.092 (80%) 39.868 (83%) -0.702 (52%) 22 56 51 27 4375
Density LB 40% 0.080 (70%) 34.194 (71%) -0.458 (33%) 28 29 26 15 4150

Experiment Design Option Timing (ns)
Psw (µW) Removal rate (%) Runtime (s)WNS TNS M2 M3 M4 M5

C-1
M0

Co-optimization -0.139 -39.844 3.537 29 36 30 24 1947
Sequential -0.284 -136.515 3.815 12 21 18 20 1748

AES
Co-optimization -0.107 -21.567 18.685 29 37 35 24 1691

Sequential -0.132 -34.452 20.103 13 12 17 21 1460

JPEG
Co-optimization -0.014 -0.071 74.609 20 18 14 9 8015

Sequential -0.042 -0.404 70.772 9 12 12 11 8972

C-2
M0

LELE cut -0.139 -39.844 3.537 29 36 30 24 1947
Selective cut -0.103 -20.482 3.475 35 37 28 20 1180

AES
LELE cut -0.107 -21.567 18.685 29 37 35 24 1691

Selective cut -0.08 -17.515 18.341 32 37 33 22 1165

JPEG
LELE cut -0.014 -0.071 74.609 20 18 14 9 8015

Selective cut -0.067 -1.293 74.669 18 18 10 7 5730

power outcomes worsen.30 The average percentage recovery of ∆WNS is 75% (resp. 75%, 57%) for a

density lower bound of 20% (resp. 30%, 40%). The average percentage recovery of ∆TNS is 81% (resp.

81%, 69%) for a density lower bound of 20% (resp. 30%, 40%). And, the recovery of Psw impact is 53%
30We see that for M0, this trend is reversed between the 20% and 30% density lower bounds. The reason might be that the 20%

and 30% density lower bounds are already too loose for this design, such that the lower bounds do not constrain dummy removal.
Similarly, we do not see much difference in timing and power for the AES design.

62

(resp. 52%, 38%) on average for a density constraint of 20% (resp. 30%, 40%). For M0, we see that the

dummy removal rate for M4 and M5 at 20% density is slightly lower than at 30% density. This is because

different density constraints lead to different solutions for each iteration (clip), and our timing-aware

optimization does not target maximum dummy removal rate.

C-1: Comparison of co-optimization and sequential optimization. We observe that WNS from

co-optimization shows up to 0.146ns improvement compared to WNS from sequential optimization. For

TNS, we observe 96.671ns (71%) improvement for M0, 12.885ns (37%) for AES, and 0.333ns (82%) for

JPEG. We also achieve improved (reduced) switching power with our co-optimization. This is because

in the sequential approach, the EOL of all signal wire segments must be defined using only cut masks,

which increases EOL extensions. On the other hand, the co-optimization approach has more flexibility

with cut and block masks for the EOL realization of signal wire segments. Thus, better timing and power

are achieved with smaller EOL extensions. For dummy removal rate, we also observe higher removal

rate for the co-optimization, indicating that our co-optimization enables a broader solution space than

the sequential cut and block approach. We emphasize to the reader that the “removal rate” for ExptC is

different from “dummy removal rate” in ExptB. Removal rate is calculated as the quotient of (removed

dummy segment length) divided by (sum of EOL extension length, removed dummy segment length, and

remaining dummy segment length), since EOL extension is generated in ExptB.

C-2: Comparison of selective cut approach and LELE cuts. Our results indicate that the

selective cut approach achieves up to 36ps better WNS as compared to the LELE cut approach for M0 and

AES. This is because selective cuts can be merged when they are aligned on non-adjacent tracks that are

adjacent in the given color (e.g., cuts on first and third tracks) although signal segments exist in between,

while LELE cuts in the same color will violate the minimum spacing rule. However, for JPEG, the LELE

cut approach shows better WNS. We believe that the results can be highly dependent on the routing pattern

(e.g., if we have more alignment opportunity on neighboring tracks, LELE could align more cuts with the

same color cut). Therefore, it is very important for the router to understand the patterning technology for

the cut. Power and TNS follow the trend of WNS.

63

Figure 2.30: Layouts of M4 layer before and after dummy fill removal: (a) initial layout with dummy fill;
(b) layout covered by the selective block mask (red); (c) layout covered by the selective block mask (blue);

and (d) layout after timing-aware dummy fill removal with optimized selective block masks.

2.2.5 Conclusion

In this work, we present a scalable MILP-based optimization of 2D block masks that considers

block mask rules, minimum metal density constraints, and timing impact of dummy fills. We propose an

improved timing impact model for use in our MILP formulation. A distributed optimization flow enables

application of the MILP-based optimization to large design layouts. We evaluate our approach across

timing-awareness, different patterning technologies, and different minimum metal density constraints. Our

study shows up to 84% ∆WNS recovery, up to 85% ∆TNS recovery, and up to 56% ∆switching power

recovery, along with up to 62% dummy removal rate. We believe that our enablement of a timing-aware

optimization shows promising product-level benefits from use of 2D block masks, and furthermore sheds

light on the merits of various block mask optimization objectives. We have also studied the co-optimization

of cut and block masks. Our cut and block co-optimization opens up a broader solution space, with more

flexibility in EOL realization and attendant design quality benefits.

2.3 Acknowledgments

Chapter 2 contains the reprints of Andrew B. Kahng, Jiajia Li and Lutong Wang, “Improved Flop

Tray-Based Design Implementation for Power Reduction”, Proc. IEEE/ACM International Conference

on Computer-Aided Design, 2016; and Peter Debacker, Kwangsoo Han, Andrew B. Kahng, Hyein Lee,

Praveen Raghavan and Lutong Wang, “MILP-Based Optimization of 2D Block Masks for Timing-Aware

64

Dummy Segment Removal in Self-Aligned Multiple Patterning Layouts”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 36(7), 2017. The dissertation author is a main contributor

to, and a primary author of, the second paper.

I would like to thank my coauthors Peter Debacker, Kwangsoo Han, Andrew B. Kahng, Hyein

Lee, Jiajia Li and Praveen Raghavan for their support and work.

65

Chapter 3

Improved Physical Design Methodologies

in Placement

This chapter presents two methodologies targeted to the placement stage of physical design.

First, we present a detailed placement methodology for neighbor diffusion effect mitigation and better

model-hardware correlation. Our methodology consists of optimal dynamic programming-based single-

row/double-row and multi-row detailed placement optimizations that considers displacement and HPWL.

Our optimization supports movable and fully-reorderable multi-height cells, including reordering between

multi-height cells and inter-row cell movements. Our optimization maximizes the diffusion step reduction

to mitigate the neighbor diffusion effect in order to reduce model-hardware miscorrelation and yield loss,

with up to 98% inter-cell diffusion step reduction. Our formulation is further extended for a potential timing-

aware optimization that leads to 6× increase in intentional steps around timing-critical cells. Second,

we present a detailed placement methodology to reduce congestion and wirelength. Our methodology

consists of a mixed integer linear programming-based optimization for two cell architectures that are

relevant in sub-10nm process nodes, and considers and exploits inter-row M1 routing. We adopt a

distributed, window-based optimization to overcome the runtime limitation, achieving up to 6.4% total

routed wirelength reduction, and up to 14.4% #via12 reductions, with no adverse timing impact.

66

3.1 Enhanced Optimal Multi-Row Detailed Placement for Neighbor Dif-

fusion Effect Mitigation in Sub-10nm VLSI

In advanced technology nodes, device behavior no longer depends on independent geometrical

parameters [24]. Due to aggressive device scaling, lithography limitations and process complexity, layout-

dependent effect (LDE) arises from the proximity of devices, and significantly affects device performance.

An important type of LDE is neighbor diffusion effect (NDE) [8], where the horizontal spacing between

diffusion regions changes the performance of transistors. Figure 3.1(a) illustrates different diffusion

spacing caused by diffusion height changes between four transistors. If the heights of neighboring diffusion

regions are different, there is a diffusion step, e.g., transistor T2 has a diffusion step to each of T1 and T3.

More specifically, the drive strength (i.e., Ion) and the leakage power (i.e., Ioff) of a transistor

fin is a function of the horizontal spacing to the adjacent diffusion regions of the transistor fin. Since

NDE changes the electrical characteristics of transistors, it affects the power, performance and area of

designs [8]. For example, Figure 3.1(a) shows the transistor fins A and B with the spacings to their

neighboring diffusion area, i.e., dA and dB , respectively. As dA and dB are different, Ion and Ioff of the

two transistor fins are different (e.g., Ioff (A) = f(dA) 6= Ioff (B) = f(dB)) due to the change in Vth [8].

For example, given a single inverter with a diffusion step next to the PFET and a diffusion step next to the

NFET, the impacts to the two devices in combination result in higher leakage.

In this work, we use a bimodal assumption to simplify the NDE problem: for a given transistor,

either of two leakage values holds, depending on whether the diffusion region on the nearest neighboring

site of the transistor has full height (that is, same or larger height), or less height, compared to the

transistor’s diffusion height. The leakage difference for the above two cases is linear with #steps, e.g., a

diffusion height difference of two steps results in 2× leakage difference compared to that of one step. In

a conventional place-and-route flow, intra-cell NDE (i.e., NDE effect within a standard cell) is captured

by library characterization since the diffusion shapes within a cell are pre-determined. However, it is

difficult to capture inter-cell NDE since neighboring diffusion shapes are determined by detailed placement.

Thus, in general, library characterization always assumes existence of a full-height neighboring diffusion

region on standard cell boundaries, which causes miscorrelation between the model (i.e., library) and the

67

hardware (i.e., actual diffusion shapes at standard cell boundaries and their device leakage impacts) in a

design. Minimizing diffusion steps in detailed placement is a key idea toward reduction of model-hardware

miscorrelation.

Figure 3.1: (a) Diffusion step and fin spacing, (b) desired pattern, (c) actual diffusion region showing
corner rounding, and (d) diffusion breaks (after diffusion cuts applied).

With aggressive device scaling, the diffusion step not only causes NDE, but also induces a increase

in the process complexity due to the limited resolution of conventional 193i lithography. In advanced

nodes, the diffusion shapes of transistors are merged and patterned as a single polygon; the transistors are

then separated by using diffusion breaks (which are achieved by applying diffusion cuts) [99], as shown in

Figure 3.1(a). Figure 3.1(b) illustrates the desired pattern of a single polygon to generate the diffusion

regions of four transistors. The actual pattern of the polygon (showing corner rounding in lithography) is

shown in Figure 3.1(c). Figure 3.1(d) illustrates the final printed diffusion layout with diffusion cuts. At

the boundaries of diffusion where diffusion steps exist, fin shapes and diffusion shapes are distorted due to

the corner rounding phenomena. A distorted and/or sharp-angled end of a fin may cause an increase in

electrical field, resulting in gate oxide breakdown [92]. Further, such distorted diffusion shapes change

the diffusion height and fin length, which can cause dramatic shifts in threshold voltage (Vth), or even

device failure in sub-10nm nodes.31 This Vth shift has negative impact on design performance and quality.

For example, Vth variation can cause setup time and/or hold time violations in a design. As a result, the
31According to our collaborator [75], there can be > 150mV Vth shift in the 10LPE node.

68

maximum frequency that the design can achieve is reduced, or the design can even fail with hold time

violations due to ultra-low Vth which cannot be recovered.

For a motivating study, we define a (inter-cell NDE-induced) cell failure to occur if the boundary

transistor has a > 100mV Vth shift compared to the average Vth for all transistors. According to [75],

the failure rate of a transistor with a diffusion step is twice as high as a transistor without a diffusion step

(base failure rate). The solid lines in Figure 3.2 show the yield vs. (initial) number of diffusion steps

(∼ #cells) with different base failure rates. We assume #steps is approximately proportional to #cells,

which holds for testcases in Section 3.1.5. The dashed lines in Figure 3.2 show the projected yield for the

same chip if we can reduce 90% of diffusion steps. In our preliminary study, more than 60% of standard

cells (cell-boundary transistors) have inter-cell diffusion steps. For a relatively small design block VGA

(85% utilization in an N7 (foundry 7nm) design enablement, 69K cells and 50K diffusion steps initially),

we assume a base failure rate of 1ppm and can achieve 3.6% yield improvement by removing 90% of

diffusion steps. For a commercial design with multiple hundreds of millions of cells and diffusion steps,

if we assume a more realistic 1ppb base failure rate, then we can achieve ∼ 3% yield improvement by

removing 90% of diffusion steps.32 In light of this, minimizing diffusion steps helps to recover the yield of

designs by reducing Vth (and thus speed) variation of transistors.

Figure 3.2: Initial (Init.) and projected (Opt.) yield assuming 90% inter-cell step reduction for various
base failure rates.

32Based on guidance from our collaborator [75], after scaling to account for our small testcase sizes, we assume a base failure
rate of 1ppm for each step in our experiments with small design blocks. See Table 3.4 in Section 3.1.5.

69

Current limitations and our approach. In order to reduce diffusion steps, special non-functional

filler cells are instantiated between functional cells [79] as we elaborate in Section 3.1.2 below. However,

opportunities for step-reducing filler cell insertion are limited given a fixed layout, and this approach

(effectively similar to cell padding) is expensive in terms of area. Other works [21] [67][93][105] propose

graph-algorithmic or dynamic programming methods to resolve complex design rules in advanced nodes.

However, the solution spaces considered are typically limited due to the assumption of (ordered)-single-row

placement.33 Recent works [66][98] on multi-row detailed placement involve heuristic approaches, and

no advanced-node rules are considered. Han et al. [36] propose an optimal single-row and double-row

dynamic programming for detailed placement optimization, allowing cell reordering with support of

double-height cells.

In this work, we extend our previous single-row and double-row detailed placement framework [36]

with HPWL-awareness and with multi-row detailed placement optimization. Our main contributions are

summarized as follows.

• We extend the optimal single-row dynamic programming-based approach [36] to an HPWL-aware

version. The proposed approach minimizes and balances diffusion steps and HPWL cost. Our

proposed algorithm is capable of all types of cell movements – i.e., cell variants, relocating, and

reordering (specifically, P-reordering with P > 2).

• We propose a new multi-row dynamic programming, with support of movable, and fully-reorderable,

multi-height cells, including reordering between multi-height cells. Inter-row cell moving within

each optimization window (in multiple of rows) is intrinsically supported, and further improves

solution quality.

• We propose metaheuristics to use both single-row HPWL-aware optimization and multi-row opti-

mization to achieve better solution quality.

• We extend our formulation to a potential timing-aware optimization that leads to 6× increase in

intentional steps around timing-critical cells to improve the timing performance.
33Lin et al. [67] propose a P-reordering problem. However, only 2-reordering (i.e., neighbor cell switching) is presented. We

describe our methodology to handle the P-reordering problem in Section 3.1.2.

70

• We improve the solution quality over [36] by achieving up to 98% inter-cell diffusion step reduction

compared to 90% achieved in [36], while consuming similar runtime.

The remainder of this work is organized as follows. Section 3.1.1 reviews related works. Sec-

tion 3.1.2 describes the problem formulation and dynamic programming-based single-row detailed place-

ment methodology. Section 3.1.3 describes the double-row detailed placement flow. Section 3.1.4 describes

the multi-row detailed placement flow. In Section 3.1.5, we describe our experimental setup and results.

Section 3.1.6 gives conclusions and directions for ongoing work.

3.1.1 Related Work

We classify relevant previous works on detailed placement into three categories: (i) detailed

placement for advanced nodes, (ii) mixed cell-height placement, and (iii) NDE-aware detailed placement.

Detailed placement for advanced nodes. To support complex design rules introduced in ad-

vanced nodes, the objectives of detailed placement have changed from classical objectives (e.g., wirelength

reduction [44][47][50][53][61][81]) in recent years. The works of [67][93][105] resolve triple-patterning

issues. Yu et al. [105] propose shortest path and dynamic programming algorithms to solve the ordered

single row (OSR) placement. Tian et al. [93] develop a weighted partial MAX SAT approach to solve the

OSR problem. Lin et al. [67] propose a local reordered single row refinement (LRSR) and implement a

2-reordering (i.e., neighboring cell switching) approach using a unified graph model. Du and Wong [21]

apply a shortest-path algorithm supporting flipping and 2-reordering to address the drain-drain abutment

problem in FinFET-based cell placement. The works of [12][39] propose mixed integer linear programming

(MILP)-based methods to comply with drain-drain abutment, minimum implant area and minimum oxide

jog length rules, and to increase vertical M1 connections.

Mixed cell-height placement. Wu et al. [98] propose a pairing technique to handle double-height

cells for detailed placement. Their method simply groups or inflates cells so that all cells become double-

height cells, after which a conventional detailed placer can be used. Recently, Lin et al. [66] have proposed

a chain move scheme along with a nested dynamic programming-based approach to support multiple

cell-height placement. They first perform chain moves to save wirelength cost. On top of this, dynamic

71

programming is applied to solve the nested shortest path problem. Other techniques [18] are developed to

support non-integer-ratio (e.g., mixture of 8T and 12T cells) mixed cell-height placement.

NDE-aware placement. Ou et al. [80] perform NDE-aware analog placement by modifying and

integrating a compact model for NDE into an existing analog placement algorithm. Oh et al. [79] develop

special filler cells to mitigate NDE.

Han et al. [36] (which this work builds on) propose to resolve the NDE problem in the detailed

placement stage. Inter-cell diffusion steps are minimized by trying to match the diffusion heights of

neighboring cells. If two neighboring cells have different diffusion heights, special filler cells can be

inserted to reduce diffusion steps. [36] proposes single-row and double-row dynamic programming

optimizations that support cell relocating, reordering and flipping as well as double-height cells. They

support reordering between single-height cells, and between a single-height cell and a double-height cell,

but not between two double-height cells.

In summary, many works such as [21][67][93][105] propose graph or dynamic programming

models to resolve complex design rules in advanced nodes. However, their solution spaces are limited by the

assumption of (ordered)-single-row placement. Two recent works [66][98] on multi-row detailed placement

give heuristic approaches, but no advanced node rules are considered. Our previous work [36] proposes

dynamic programming-based methods to optimize single-row and double-row placements, systematically

supporting cell reordering and double-height cells. However, the dynamic programming formulation

cannot be extended to support more than two rows, and the formulation cannot support reordering between

two double-height cells. Notably, our present work advances over [36], and is distinguished from previous

approaches, in several ways. (i) We formulate an optimal (HPWL-aware) single-row and multi-row

dynamic programming-based approach to minimize a cost function that includes diffusion steps. (ii) We

support a richer set of cell movements than in previous works – i.e., flipping, relocating and reordering –

via a systematic methodology to handle P-reordering with P > 2. Specifically, our multi-row approach

intrinsically supports inter-row cell relocation. (iii) Our formulation supports multi-height cells with

movable, and fully-reorderable, multi-height cells.

72

3.1.2 Single-Row Optimization

In this section, we describe the problem statement and our dynamic programming formulation for

single-row detailed placement.

Single-Row Optimization Problem. Given an initial legalized single-row placement, perturb the place-

ment to minimize inter-cell diffusion steps.

Inputs: A legalized single-row placement, available cell variants, and cost function of a diffusion step.

Output: Optimized single-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum displacement range, maximum reordering range, availability of cell flipping.

Filler Cell and Step Costs

Table 3.1: Cost for one diffusion step.

Spacing (sites) 0 1 2 3 4+
Cost 1 +∞ 1 1 0

Table 3.1 describes inter-cell diffusion step cost. For each pair of adjacent cells, if there are zero,

two or three empty sites in between, the cost is equal to the number of inter-cell diffusion steps; if there

are at least four empty sites in between, the cost is always zero. That is, with four or more empty sites

we can always assume proper filler cell insertions resulting in no inter-cell diffusion steps. Figure 3.3

shows an example of filler cell insertion between two functional cells that have different diffusion heights

at edges that face each other. If the two functional cells have fewer than four empty sites in between, filler

cells can only match one of the diffusion heights. As a result, there always exists at least one diffusion

step that affects one of the two functional cells. However, with a spacing of four or more sites, a legal

diffusion height transition can always be achieved by one or more contiguous filler cell(s). Thus, the

filler cell(s) can match both the diffusion heights of the two functional cells. In a relevant advanced

technology, the minimum filler cell width is two placement sites due to process limitations. Therefore,

adjacent functional cells must abut, or have at least two empty sites between them, in order to insert a

73

Figure 3.3: Filler insertion between cell A and B, given different spacings.

filler cell [75]. In our implementation, we avoid single-site spacings by assigning infinite cost to such

scenarios, as indicated in Table 3.1. Even though our optimization does not explicitly allocate white space,

the dynamic programming (presented later in Sections 3.1.2, 3.1.3 and 3.1.4) itself can utilize/change the

local white space distribution by cell relocating and cell reordering within specified ranges. Filler cell cost

is explicitly included in our dynamic programming cost calculation, such that our optimization is aware of

both whitespace and filler insertion as it trades off between (i) abutting two cells without filler insertion at

the cost of diffusion steps, and (ii) leaving four placement sites for a proper filler insertion in an effort to

minimize the diffusion steps between neighboring cells.

74

Table 3.2: Notations.

Notation Meaning
C set of cells in a window of initial placement
ck kth cell in the left-to-right ordered initial placement, i.e., k is the cell index
v a cell variant
wk,v width of ck with a variant v

[−x∆, x∆] horizontal displacement range
xk absolute x coordinate of ck in the initial placement, in units of placement sites
l displacement from the initial placement, in units of placement sites

[−r, r] reordering range
i number of placed cells
j position shift from the initial placement
s placement status array

d[i][j][v][l][s] minimum cost when i cells are placed with case (j,v,l,s)
The notations below apply only to multi-row optimization

[−y∆, y∆] vertical displacement range
yk absolute y coordinate of ck in the initial placement, in units of rows
m number of rows in an optimization window
b row index in an optimization window
db for the bth row, db is the distance between the rightmost boundary of bth row,

and the rightmost boundary of all rows in the optimization window
D distance array of db in an optimization window (i.e. [d0...dm−1])
tb for the bth row, type of the rightmost cell (e.g., 2-fin, 3-fin or 4-fin)
T type array of tb in an optimization window (i.e., [t0...tm−1])

{D,T} boundary condition
[D][T] forming boundary condition {D,T}

d[i][j][v][l][s][D][T] minimum cost when i cells are placed, forming boundary condition {D,T}

Notations

Table 3.2 shows notations used in our formulation. For each cell ck, cell index k is its (left-to-

right) sequentially ordered position in the initial placement. Given a set of cells (C) in a row of an initial

placement, the leftmost cell is c1, and the rightmost cell is c|C|.

For each ck, we define cell variants (v) which correspond to different cell orientations and cell

layouts with the same functionality. To minimize #diffusion steps, we can use several variants of a cell

with the same functionality, for which layouts have different diffusion heights. In our experiments below,

v = 0 indicates the cell orientation in the initial placement, and v = 1 indicates the flipped (i.e., mirrored

75

about the y-axis) cell orientation. wk,v is the width of cell ck with variant v, in units of placement sites.

Flipping a cell does not change the set of sites that the cell occupies.

We define the displacement range [−x∆, x∆] as the constraint that a cell cannot move more than

x∆ sites from its initial placement. We use xk to denote the initial right x coordinate of ck, in units of

placement sites. Thus, ck can be placed with its right x coordinate in the interval [xk − x∆, xk + x∆]. We

use l to denote the displacement (in sites) from the initial cell placement (i.e., l ∈ [−x∆, x∆]). For the

cells on the boundary of the die, we make sure that the displacement range will not extend beyond the die

boundary.

We support cell reordering with a reordering range [−r, r], i.e., given r, in the placement solution

ck can have a new sequentially ordered position within the range k − r, k − r + 1, . . . , k + r.

In our dynamic programming, we place one cell at a time from left to right, and the index i is used

to indicate that i cells have been placed. Given a cell reordering range [−r, r], cells ck with k < i− r are

placed; those with i− r ≤ k ≤ i+ r may or may not be placed; and those with k > i+ r are not placed.

For the 2r + 1 cells such that i− r ≤ k ≤ i+ r, we use a binary array s to denote the placement status of

each cell. Here, s is a binary array of size (2r + 1), i.e., s ∈ {0, 1}2r+1. Each bit in the array indicates

whether the corresponding cell is placed or not. For example, if we have six cells c1 to c6, i = 4 and r = 1,

then s captures the placement status of the (2 · 1 + 1 = 3) cells c3, c4 and c5. s = [0, 1, 1] means that c3 is

not placed, while c4 and c5 are placed. Figure 3.4 illustrates six placement solutions with three legal states

when i = 4. In this example, c1 and c2 must be placed and c6 must not be placed. We note that the indices

of s correspond to k (position in the initial placement), but not the final position. For example, s[0] always

represents the status for c3, and s[2] always represents the status for c5, regardless of the actual sequence of

positions, as shown in Figure 3.4(b). Also, when we have placed i cells, since cells with index k < i− r

must be placed, we must have placed i− (i− r − 1) = r + 1 cells that have cell index i− r ≤ k ≤ i+ r.

Thus, at all times, a legal status array s has exactly r + 1 elements equal to 1. In the above example, s

always has 1 + 1 = 2 elements equal to 1.

Given i, to identify the last placed cell ck (that is, the ith cell to have been placed), we define the

position shift as j, where k = i+ j. For example, in Figure 3.4(c), given i = 4, the position shift j = −1

indicates that the last placed cell is c3, since 3 = 4 + (−1).

76

Figure 3.4: Illustration of six placement solutions with three legal states given i = 4 and r = 1.

At the heart of our dynamic programming recurrence, we use d[i][j][v][l][D][T][s] to represent the

minimum cost when i cells have been placed. Note that in single-row case, the dimensions of D and T are

both zero. Therefore, the dynamic programming array can be reduced to d[i][j][v][l][s]. From this array, we

can obtain the last placed cell ck, where k = i+ j. We can also tell the variant v in use, the displacement l,

and the status s for cell ck. We define the above as case (j, v, l, s), with i implicitly given, for simplicity.

Therefore, we complete the row placement once we reach i = |C|, and we obtain the optimal solution by

finding the minimum cost among all cases of i = |C|. In our implementation, we store a pointer for each

entry in the DP array so that the optimized placement can be traced back from d[|C|][j][v][l][s] all the way

to d[0][j][v][l][s].

Dynamic Programming Formulation

Algorithm 3 describes our dynamic programming (DP) procedure for single-row placement in

detail. Line 2 initializes the DP solution array. Lines 3 – 13 describe the main algorithm. Starting with

placing the first cell, the algorithm incrementally adds (places) cells next to the current partial placement

solution. Procedure getNext() returns a list of legal next cells and the respective status of each of these

cells. Along with legal (j′, s′) from Line 5, Line 6 checks all possible cases (v′, l′) considering placement

legality and displacement constraints, as shown in Equation (3.1). Lines 7 – 9 update the minimum cost for

77

the case (j′, v′, l′, s′) when we place the i′ = (i+ 1)st cell. In Lines 14 – 17, we obtain the minimum cost

among all legal cases when i = |C|, and Line 18 returns the minimum cost for the current row.

xi+j + l + wi+j,v ≤ xi′+j′ + l′ (3.1)

The function cost(i
′,j′,v′,l′

i,j,v,l) calculates the cost as a weighted sum of (i) diffusion step cost, (ii)

displacement cost, and (iii) cell variant cost, as shown in Equation (3.2). The diffusion step cost is

calculated as total #inter-cell diffusion steps between the ith and (i′)th placed cells. The displacement cost

is equal to the absolute value of l′. In this work, we assume that the given initial placement solution has

adequate quality in terms of various metrics, including but not limited to pin accessibility, global routability,

etc. Thus, we simplify other optimization objectives as one “displacement minimization” objective. As

noted above, in this work we assume two cell variants: original orientation and flipped orientation. We set

the variant cost to one if a cell is flipped (v′ = 1), and zero otherwise. Two weighting factors α and β (β

can be seen as supplementing α by capturing an equivalence between cell flipping and displacement) are

used to balance the three cost terms. We describe experiments regarding the impact of weighting factors in

Section 3.1.5.

cost(i
′,j′,v′,l′

i,j,v,l) = coststep + α · costdisp + α · β · costvar (3.2)

Algorithm 4 details our methodology to obtain next status. That is, given the binary status array for

i, we construct the status array for i′ = i+1. Line 2 initializes the list of next available (cellIndex, status)

combinations. In Line 3, we first shift the status array for i one bit to the left to obtain the cell placement

status for i′ = i+ 1. Then, Lines 4 – 9 check whether cell ci′−r must be placed as the (i′)th cell. If we do

not place ci′−r as the (i′)th cell, then cell ci′−r will be placed out of its reordering range. Thus, we set

s[−r] = 1 and return so that we make sure to choose ci′−r as the (i′)th cell. Lines 10 – 16 check whether

any binary indicator s[m] is equal to zero. If so, ci′+m could be the next legally placed cell. In such a case,

we add (m,nextStatus) to the list.

78

Algorithm 3 Dynamic programming (single-row)

1: Initialize for all legal cases (j, v, l, s)
2: d[0][j][v][l][s]← 0, d[i][j][v][l][s]← +∞, (0 < i ≤ |C|)
3: for all i = 0 to |C| − 1 do
4: for all d[i][j][v][l][s] 6= +∞ do
5: for all (j′, s′) ∈ getNext(s) do
6: for all (v′, l′) do
7: i′ = i+ 1
8: t← d[i][j][v][l][s] + cost(i

′,j′,v′,l′

i ,j ,v ,l)
9: d[i′][j′][v′][l′][s′]← min (d[i′][j′][v′][l′][s′], t)

10: end for
11: end for
12: end for
13: end for
14: finalCost←∞
15: for all (j, v, l, s), i = |C| do
16: finalCost← min (d[|C|][j][v][l][s], finalCost)
17: end for
18: Return finalCost

HPWL-Aware Optimization

We mitigate the wirelength impact of single-row step optimization by modifying the cost function.

Specifically, we add a ∆HPWL cost component to the function cost(i
′,j′,v′,l′

i ,j ,v ,l), as shown in Equation (3.3).

cost(i
′,j′,v′,l′

i,j,v,l) = coststep + α · costdisp + α · β · costvar + γ · cost∆HPWL (3.3)

We calculate the cost∆HPWL by summing up the ∆HPWL contribution of cell ck over all nets

incident to ck, in the same way as in [53]. cost∆HPWL captures the impact of a cell’s placement on

bounding box sizes of incident nets. We use a new weighting factor γ to balance the four cost terms. We

describe experiments regarding the impact of weighting factors in Section 3.1.5.

3.1.3 Double-Row Optimization

In this section, we describe the problem statement and the dynamic programming approach for

double-row detailed placement considering double-height cells as well as reordering, flipping and available

cell variants.

79

Algorithm 4 Procedure getNext (single-row)
1: Inputs: s
2: Initialize nextList← ∅
3: s← shiftLeft1Bit(s)
4: if s[−r] = 0 then
5: s[−r]← 1
6: nextStatus← s
7: nextList← nextList ∪ {(−r, nextStatus)}
8: Return nextList
9: end if

10: for all m ∈ [−r, r] do
11: if s[m] = 0 then
12: nextStatus← s
13: nextStatus[m]← 1
14: nextList← nextList ∪ {(m,nextStatus)}
15: end if
16: end for
17: Return nextList

Double-Row Optimization Problem. Given an initial legalized double-row placement with double-height

cells, perturb the placement within each row to minimize inter-cell diffusion steps.

Inputs: Legalized double-row placement, available cell variants, and cost function of a diffusion step.

Output: Optimized double-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum displacement range, maximum reordering range, availability of cell flipping.

Assumptions

We make the following assumptions with respect to this problem statement.

Assumption 1. Cell rows can be fully separated from each other every two consecutive rows. In

the case of placement rows that contain only single-height cells, the assumption is correct by definition.

However, for any cell row, a double-height cell that occupies sites in the row must span to either the upper

neighboring row or the lower neighboring row, but not both. Figure 3.5(a) shows such separable pairs of

cell rows, where rows 1 and 2 (with double-height cells A and B) do not interfere with rows 3 and 4 (with

double-height cells C and D). By contrast, in Figure 3.5(b), row 2 has double-height cells E and F which

interfere with both row 1 and row 3, violating our assumption. Given the interleaving of VDD/VSS power

80

rails in modern libraries, our assumption is normally satisfied. In other words, all double-height cells in the

current technology node tend to have the same power rail configuration. (In Figure 3.5(b), cell F has a

different type of power rail design (VDD-VSS-VDD) than the other double-height cells (VSS-VDD-VSS).)

We do not have such double-height library cells in the current technology node.34

Figure 3.5: Illustrations of double-height cells in placement rows. (a) Separable pairs of cell rows,
reflecting power rail design of double-height cells in current N10 libraries. (b) Non-separable pairs of cell

rows.

Assumption 2. The relative positions among double-height cells are fixed.35 For two double-

height cellsA andB, ifA is initially to the left ofB (xA < xB), then we require that in our final placement,

cA remains to the left of cB . We note that we still allow reordering between a single-height cell and a

double-height cell (thus, the double-height cells are partially reorderable) so as to maximize the steps

reduction.

Formulation

Given the above assumptions, our approach can provide optimal placement solutions for two

consecutive rows sharing common double-height cells as in Figure 3.5(a). Overall, double-row optimization

uses single-row optimization as a basic building block. From each double-height cell, we invoke separate

single-row optimizations that progress left-to-right in each of the two rows, and merge the solutions once
34Our collaborator [75] at a major advanced foundry indicates that all double-height cells have only one power rail configuration

in the 10LPE node. Cells with height of four or more rows account for less than 1% of all instances, and thus our formulation can
be easily adopted if we just assume that these very large (height ≥ four rows) cells are fixed.

35The double-height cell effectively breaks the two rows into separate optimization regions, wherein we invoke single-row
optimization separately for the two rows. The prerequisite is that we know exactly what instance is the “next double-height cell”,
which requires that relative positions be unchanged for double-height cells. This assumption will be lifted below in Section 3.1.4.

81

Algorithm 5 Dynamic programming (double-row)

1: Initialize DHCellList← getOrigDHOrdering()
2: Initialize costs for all legal CASES (v, l, j0, s0, j1, s1)
3: D[0][v][l][j0][s0][j1][s1]← 0

D[I][v][l][j0][s0][j1][s1]← +∞, (0 < I ≤ |DHCellList|+ 1)
4: for all I = 0 to |DHCellList| do
5: for all D[I][v][l][j0][s0][j1][s1] 6= +∞ do
6: for all legal (v′, l′, j′0, s

′
0, j
′
1, s
′
1) do

7: I ′ = I + 1
8: t← D[I][v][l][j0][s0][j1][s1] + Cost(

I′,v′,l′,j′0,s
′
0,j
′
1,s
′
1

I ,v ,l ,j0,s0,j1,s1
)

9: D[I ′][v′][l′][j′0][s′0][j′1][s′1]←
min (D[I ′][v′][l′][j′0][s′0][j′1][s′1], t)

10: end for
11: end for
12: end for
13: for all (v, l, j0, s0, j1, s1) when I = |DHCellList| do
14: sol← min (D[I][v][l][j0][s0][j1][s1], sol)
15: end for
16: Return sol

we encounter the next double-height cell. The merging is designed to preserve all optimal candidates,

while enabling movable and partially reorderable double-height cells. Our development is similar to that of

Algorithm 3, where we saw that given the minimum costs of all cases (j, v, l, s) for i, we could derive the

minimum costs of all cases (j′, v′, l′, s′) for i′ = i+ 1. Now, let us extend the definition of case to support

double-row placement when double-height cells span the two rows, row 0 and row 1. We define CASE

(v, l, j0, s0, j1, s1) given I , where I is the number of placed double-height cells. Subscripts 0 and 1 refer

to row 0 and row 1, respectively. In Algorithm 3, we obtain the last placed cell ck from i and j. Here, in

double-row optimization, we know exactly the last placed double-height cell because of Assumption 2,

and we would like to obtain i0 and i1 (number of cells placed in row 0 and row 1, respectively) since the

formulation allows reordering between a single-height cell and a double-height cell, i.e., a single-height

cell may be relocated to the left of the double-height cell even if that single-height cell was originally to the

right of the double-height cell. Given the double-height cell’s initial position k0 in row 0 and k1 in row 1,

we have i0 = k0 − j0 and i1 = k1 − j1. The values of v, l, s0 and s1 can be obtained directly from CASE.

We give a precise description of our double-row dynamic programming in Algorithm 5. Line 1

obtains the double-height cell sequence from the initial (i.e., input) two-row placement. We note that two

82

Algorithm 6 Cost (double-row)

1: Inputs: I, v, l, j0, s0, j0, s0, I
′, v′, l′, j′0, s

′
0, j
′
1, s
′
1

2: k0 ← getK(I, 0), k1 ← getK(I, 1)
3: k′0 ← getK(I ′, 0), k′1 ← getK(I ′, 1)
4: i0 ← k0 + j0, i1 ← k1 + j1
5: i′0 ← k′0 + j′0, i′1 ← k′1 + j′1
6: d0 ← optSR0(

i′0,j
′
0,v
′,l′,s′0

i0,j0,v,l,s0
)

7: d1 ← optSR1(
i′1,j
′
1,v
′,l′,s′1

i1,j1,v,l,s1
)

8: totCost← d0 + d1

9: Return totCost

virtual double-height cells are added to “pad” the input at the start and at the end of the placement rows,

respectively. Lines 2 – 3 initialize the DP solution array. The array only has entries for double-height cells,

and records all solutions (costs) D[I] when we have placed the Ith double-height cell. Lines 4 – 12 are

the heart of the algorithm. Starting with the (left) virtual double-height cell, the algorithm incrementally

places double-height cells and updates minimum costs from all CASES in D[I] to all CASES in D[I + 1]

assuming we have placed I double-height cells. In Lines 13 – 15, we obtain the minimum cost among all

legal CASES when we reach the ending (right) virtual cell (I = |DHCellList|), and Line 16 returns the

minimum cost for the two rows.

Algorithm 6 describes the cost function in our double-row DP. Line 2 retrieves the double-height

cell position in the initial placement for each of the rows. Line 3 gets the next double-height cell similarly.

Line 4 obtains the numbers of cells (i0 and i1) that have been placed for the two rows. And, Line 5 obtains

the numbers of cells (i′0 and i′1) that we must place by the time we reach the next double-height cell. For

example, for row 0, we need to place cells starting from the case (j0, v, l, s0) with i0, until we reach the

case (j′0, v
′, l′, s′0) with i′0. The above can be achieved by optSR – a modified version of the single-row

dynamic programming. In optSR, we make sure that we do not place any double-height cells other than

ci′0 . Thus, Assumption 2 is maintained. In Lines 8 and 9, we return the two-row sum of costs.

We highlight the fact that in our implementation, given the starting case (j, v, l, s) with i, optSR

calculates all minimum costs of case (j′, v′, l′, s′) with i′, where k′ = i′ + j′, within one functional call to

our single-row DP. With this, the number of calls to single-row DP is proportional only to #cases, rather

than to #CASES.

83

3.1.4 Multi-Row Optimization

In this section, we generalize from the single-row dynamic programming, and describe our

approach for multi-row detailed placement, with support of fully-reorderable multi-height cells and

inter-row cell relocating.

Multi-Row Optimization Problem. Given an initial legalized multi-row placement, perturb the placement

across the multiple rows to minimize inter-cell diffusion steps.

Inputs: Legalized multi-row placement, available cell variants, and yield cost function.

Output: Optimized multi-row detailed placement with minimized overall cost (including inter-cell

diffusion steps).

Constraints: Maximum horizontal displacement range, maximum vertical displacement range, maximum

reordering range and availability of cell flipping.

Preliminaries

Similar to double-row optimization, we optimize m consecutive rows together (as a single opti-

mization window) in multi-row optimization. In an optimization window, we move the cells according

to our algorithm assuming that cells outside the window are fixed. Different windows are optimized

separately. However, compared to the double-row optimization in Section 3.1.3, we do not require the

relative positions among double-height cells to be fixed. Instead, a double-height cell can be reordered

with another double-height cell as long as they are within the reordering range. Moreover, in contrast

to Section 3.1.3’s double-row optimization, where a cell cannot move outside its original cell row, here

we allow a cell to move freely within a given vertical displacement range (in units of placement rows),

enabling a larger solution space to minimize diffusion steps.

In single-row and double-row optimization, where only intra-row relocating and reordering are

allowed, the initial cell ordering (ck in Table 3.2) is defined within each row from the initial (input)

placement. To enable a unified multi-row reordering range, with support of inter-row relocating and

reordering, we redefine the original cell ordering as follows:

84

Definition. Given an m-row initial (input) placement, cells in all m rows are left-to-right ordered

according to their rightmost boundary, in a unified one-dimensional array, e.g., c1, c2, ..., ck. If cells in the

initial placement have the same x coordinate for their right boundary, we break ties using the y coordinate

of their lower boundary.

Figure 3.6 shows an example of sequential cell ordering for a two-row initial placement. We note

that cells c4 and c5 could have their positions exchanged in the ordering, regardless of their left boundary.

However, as mentioned, in our implementation tie-breaking is by descending order of y coordinate.

Figure 3.6: An example of multi-row cell ordering. Cells are sequentially ordered (c1 to c6) according to
the x coordinate of their right boundary. Cells c4 and c5 have the same right boundary x coordinate, and

thus could be switched in the ordering.

With the above redefined cell ordering, reordering range works the same way as in Section 3.1.2.

The new sequentially ordered position is determined by the new x coordinate (in the final solution) of the

right boundary of each cell. The difference between the original and the new sequentially ordered position

should be always within the reordering range. In the multi-row optimization, given the above redefined

cell ordering, our dynamic programming still seeks to place one cell at a time, from left to right. The

left-to-right placement procedure then induces the following assumption:

Assumption. The x coordinate of the right boundary of the (i+ 1)st cell must be greater than or

equal to the right boundary of the partial placement consisting of i cells (i.e., placement boundary).

Given the definition, the assumption does not reduce the solution space. For example, in Figure 3.7,

assuming a partial placement of c2 and c1, if the 3rd cell to be placed is c3, and we would like its right

boundary to be to the left of the placement boundary, then we can always get to such a partial placement

solution from a partial placement of c2 and c3, followed by placement of c1.

85

Figure 3.7: Illustration of the Assumption.

Formulation

Given the above assumption, our approach will find an optimal placement solution for a given

optimization window of m rows containing multi-height cells. We illustrate the multi-row dynamic

programming-based detailed placement in Figure 3.8(a). We use type array T = {t0, ..., tm−1} to describe

the type, i.e., 2-fin, 3-fin or 4-fin configuration, of the rightmost cell in each row. Initially, each entry of T

is an initial virtual cell, indicating that the placement boundary for all rows is the left boundary of the die,

and that there will be no diffusion step penalty applied to any type of cell immediately to the right of this

boundary. We also use distance array D = {d0, ..., dm−1} to describe the shape of the placeable region as

shown in Figure 3.8(b). The subproblems solved in the DP are of form: place |C| − i cells in the placeable

region defined by a partial placement with i cells.

Figure 3.8: Illustration of DP in multi-row placement with m = 4.

We give a precise description of our multi-row dynamic programming in Algorithm 7. Note that

the numbers of entries of distance array D and cell type array T are both m − 1 because the distance

86

from the last placed cell to the placement boundary is always zero, and the cell type of the last placed

cell can be retrieved by cell variant v. Lines 1 – 3 initialize the DP solution array. Lines 4 – 15 describe

the main algorithm. Compared to single-row dynamic programming, we have one more iteration over all

placement rows in an optimization window, subject to the maximum vertical displacement range constraint.

Effectively, the multi-row DP array is different from single-row DP array in that it is capable of storing

multiple intermediate placement solutions given the same cell ordering and horizontal displacement, as

long as these solutions have different type (T) or distance (D) arrays. Also, Line 11 updates distance array

D and cell type array T according to the choice of placement row b′. Lines 16 – 19 obtain the optimal

solution among all legal cases when i = |C|, and Line 20 returns the optimal solution for the current

optimization window.

Algorithm 7 Dynamic programming (multi-row)

1: Initialize costs for all legal cases (j, v, l, b,D, T, s)
2: d[0][j][v][l][b][D][T][s]← 0,
3: d[i][j][v][l][b][D][T][s]← +∞, (0 < i ≤ |C|)
4: for all i = 0 to |C| − 1 do
5: for all d[i][j][v][l][b][D][T][s] 6=∞ do
6: for all (j′, s′) ∈ getNext(s) do
7: for all (v′, l′, b′) do
8: i′ = i+ 1
9: t← d[i][j][v][l][b][D][T][s] + cost(j

′,v′,l′,b′

i,j,v,l,b,D,T)
10: d[i′][j′][v′][l′][b′][D′][T ′][s′]←

min (d[i′][j′][v′][l′][b′][D′][T ′][s′], t)
11: Update(D,T)
12: end for
13: end for
14: end for
15: end for
16: finalCost←∞
17: for all (j, v, l, b,D, T, s) when i = |C| do
18: finalCost← min (d[|C|][j][v][l][b][D][T][s], finalCost)
19: end for
20: Return finalCost

Multi-row optimization is not capable of being aware of HPWL change in y direction and across

different optimization windows. Therefore, to prevent HPWL degradation, we add additional displacement

costs if a cell is moved out of the original HPWL bounding box, with penalty coefficient γpenalty, as

87

shown in Equation (3.4).36 The term costhpwl is calculated as the distance between the current cell and the

original HPWL bounding box, in units of placement sites.

cost = coststep + α · costdisp + γpenalty · costhpwl + α · β · costvar (3.4)

3.1.5 Experiments

We implement our dynamic programming in C++ with OpenAccess 2.2.43 [128] to support

LEF/DEF [119], and with OpenMP [125] to enable thread-level parallelism. We perform experiments in an

N7 FinFET technology with multi-height triple-Vth libraries from a leading technology consortium. The

fin height information is not disclosed in our enablement. Therefore, following guidance from [75], we

randomly assign fin heights (2, 3, or 4 fins) to each cell with 1:3:6 ratio for 2, 3 and 4 fins, respectively, as

our default fin height assignment methodology to match industrial designs at advanced nodes. For example,

a double-height cell will have four random fin heights, i.e., for its left and right boundaries on the first row,

and its left and right boundaries on the second row. Section 3.1.5 further discusses the impact of alternative

fin height assignment methods.

We generate the bimodal leakage values from the NDE-oblivious standard-cell Liberty file as

follows [75]. Since NDE only affects the boundary transistors for each cell, given a leakage value of each

standard cell from the Liberty file, we first approximate the boundary transistor leakage value by dividing

the state-independent cell leakage by the cell width (in units of contacted-poly pitch), e.g., if a cell (width

= 3) has a leakage value of three, then the boundary transistors have a leakage value of one. Then, for each

diffusion step, 52% of boundary transistor leakage value is added to the cell leakage. In the above example,

the cell has a new leakage value of 3.52 (resp. 4.04) when there exists one step (resp. two steps).

We apply our detailed placement optimization to an Arm Cortex-M0 core (M0) and four design

blocks (AES, JPEG, VGA and MPEG) from OpenCores [124]. Design information is summarized in

Table 3.3. We synthesize designs using Synopsys Design Compiler L-2016.03-SP4 [129], and perform
36We pre-calculate all net bounding boxes (one-time effort) and only apply the HPWL penalty if a cell is placed outside of its

nets’ bounding boxes.

88

place-and-route using Cadence Innovus Implementation System v15.2 [112]. We also apply our detailed

placement optimization to winning solutions from the ICCAD-2017 multi-deck standard cell legalization

contest [11]. All experiments are performed with 8 threads on a 2.6GHz Intel Xeon server.

In the following, we show (i) the scalability and sensitivity, i.e., impact of cell displacement

range x∆, reordering range r, enabling of cell flipping f , and #rows per window m for the multi-row

implementation on runtime and quality of results (QoR in terms of step reduction); (ii) impact of the

weighting factors, i.e., weighting factor α for cell displacement, weighting factor β for cell flipping, and

weighting factor γ for HPWL on QoR; (iii) metaheuristics by combining single-row HPWL-aware and

multi-row optimization; (iv) our main results with single-row, double-row and multi-row optimization for

five design blocks and three fin height assignment methodologies; (v) performance improvement using

intentional steps; and (vi) our results with multi-row optimization for ICCAD-2017 benchmarks [11].

Table 3.3: Design information.

Design #Inst Clock period
AES ∼12K 500ps
M0 ∼10K 500ps

JPEG ∼54K 500ps
VGA ∼69K 500ps

MPEG ∼14K 500ps

Scalability/Sensitivity Study

In this subsection, we compare the impact of reordering range and displacement range on the

single-row (SR), double-row (DR) and multi-row (MR) optimization. By default, we use m = 2 in MR

optimization (see Figure 3.10 and discussion below). Following results of [36], cell flipping is enabled by

default for maximum step reduction.

To assess the scalability of our approach, we sweep (x∆, r), i.e., maximum allowed cell displace-

ment x∆ (in placement sites) and maximum allowed one-sided reordering r, and study the impact on

runtime. In this experiment, we sweep x∆ from 0 to 15, and r from 0 to 2. A cell can freely move across

31 placement sites, and can have up to 5 different positions in a placement window, if we set x∆ = 15

89

Figure 3.9: Sensitivity of runtime to (x∆, r, f) parameters.

and r = 2. We set (α, β) = (0, 0) as these parameters do not have any impact on the complexity of our

formulation. We use design block AES for this study.37

Our study results are shown in Figure 3.9. We find that the runtime generally grows quadratically

with the number of available placement sites per each cell. However, for cell reordering, there is a dramatic

increase in runtime as r goes up, e.g., we observe 12× runtime increase going from r = 1 to r = 2.

Also, compared to DR [36], our new MR implementation with m = 2 rows per window is much

more efficient in terms of runtime. To investigate the impact of m (#rows in a window) in MR, we compare

the sensitivity of #steps in Figure 3.10 for m = 2 and m = 3. Runs with m = 4 are not feasible due to

much larger memory consumption. We find that m = 2 actually gives better #steps than m = 3 using

our N7 library, because all multi-height cells have VSS power rails for their cell boundaries, such that all

multi-height cells are aligned per two cell rows. Given the above observation, we use m = 2 for MR in all

of the following experiments.

To assess the sensitivity to (x∆, r), Figures 3.11, 3.12 and 3.13 show #diffusion steps, HPWL

and RWL respectively, as we sweep (x∆, r). Since our algorithm only optimizes #diffusion steps when

(α, β) = (0, 0), here we see HPWL and RWL that correspond to a best-case (minimized) #steps normalized

to initial design.
37To investigate the stability of our sensitivity studies and observations, we also use (i) an alternative AES design implementation

with slightly different layout, and (ii) design block M0. Results for (i) and (ii) are consistent with the results that we report here.

90

Figure 3.10: Sensitivity of #steps to m in MR optimization.

Figure 3.11: Sensitivity of #steps to (x∆, r, f) parameters.

We see from Figure 3.11 that SR can only reduce #steps by up to 80%, while DR and MR are able

to reduce #steps by up to 99% given larger displacement range. Also, MR is consistently better than DR,

especially given a smaller displacement range. Along with the runtime benefit of MR, we believe that the

new MR implementation surpasses both the solution quality and the runtime efficiency of DR [36].

Moreover, for f = 1, there is only ∼ 0.6% benefit of using r = 2 over r = 1, at the cost of 12×

the runtime; this suggests that r ≥ 2 may not offer significant benefit in reducing #steps. In Figure 3.12

and Figure 3.13, HPWL and RWL increase linearly as x∆ goes up. Based on these studies, to balance

solution quality and runtime we apply (x∆, r) = (7, 1) in all of the following experiments.

91

Figure 3.12: Sensitivity of HPWL to (x∆, r, f) parameters.

Figure 3.13: Sensitivity of RWL to (x∆, r, f) parameters.

Study of Weighting Factors

In the following subsection, our default flow is MR optimization, with two rows per window.

We investigate impacts of the weighting factors (α, γpenalty) for cell displacement and HPWL penalty

(γpenalty) on HPWL and #steps. We sweep α and γpenalty from 0 to 1. We perform this experiment using

design block AES. The results are shown in Figure 3.14. We can see that a non-zero displacement weight

(α) and a non-zero HPWL penalty (γpenalty) save HPWL while preserving most of the step reduction

benefits. Therefore, we apply α = 0.01 and γpenalty = 0.00001 in all following experiments.

92

For the single-row optimization, we also study the impact of the HPWL weighting factor γ on

HPWL and #steps. We sweep γ from 0.00001 to 1 with a step size of 10×. We perform this experiment

using design block AES, with results shown in Figure 3.15. The tradeoff between HPWL and #steps is

clear when γ is in the range of [0.00001, 0.01]. We use γ = 0.0001 for the HPWL-aware single-row

optimization.

Figure 3.14: Impacts of weighting factors (α, γpenalty) on the tradeoff between HPWL and #steps.

Main Results

We apply our multi-row dynamic programming-based optimization to all our design blocks using

the aforementioned parameter settings, i.e., (x∆, r, f) = (7, 1, 1) and (α, β) = (0.01, 1). Table 3.4 shows

93

Figure 3.15: Impact of weighting factor γ on the tradeoff between HPWL and #steps.

the step reduction, runtime and estimated yield improvement for all five design blocks using multi-row

optimization. We also report the impact on other metrics, i.e., routed wirelength (RWL), worst negative

slack (WNS) and leakage power as reported by the place-and-route tool [112].

Table 3.4: Experimental results for all design blocks using multi-row optimization.
Design Type Fin Height Distribution #Steps RWL (µm) WNS (ns) Leakage (mW) Runtime Est. Yield

2 fin% 3 fin% 4 fin% Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (s) Impr. %

AES
rand 10.0 30.4 59.6 7973 152 (-98.1%) 31873 32995 (+3.5%) -0.013 -0.021 16.1 15.8 (-2.1%) 162.1 +0.71
Vt 48.3 47.8 3.9 6816 143 (-97.9%) 31874 32944 (+3.4%) -0.013 -0.020 16.6 15.8 (-4.9%) 81.5 +0.66

drive 47.5 46.6 5.9 7215 236 (-96.7%) 31874 32888 (+3.2%) -0.013 -0.018 16.1 15.8 (-2.0%) 109.9 +0.69

M0
rand 10.1 30.4 59.4 6588 243 (-96.3%) 27670 28728 (+3.8%) -0.043 -0.070 18.9 18.6 (-1.9%) 174.4 +0.22
Vt 49.3 48.6 2.1 5379 152 (-97.2%) 27674 28588 (+3.3%) -0.043 -0.111 19.5 18.6 (-4.5%) 74.1 +0.52

drive 46.3 45.6 8.0 6211 398 (-93.6%) 27669 28718 (+3.8%) -0.043 -0.051 19.1 18.6 (-2.6%) 64.5 +0.58

JPEG
rand 10.0 30.0 60.0 34760 656 (-98.1%) 101000 107699 (+6.6%) -0.319 -0.278 96.3 94.3 (-2.1%) 776.5 +3.50
Vt 48.2 48.6 3.3 29452 387 (-98.7%) 100997 106972 (+5.9%) -0.319 -0.274 98.8 94.4 (-4.4%) 403.2 +2.78

drive 44.0 44.5 11.5 36173 1291 (-96.4%) 101003 108103 (+7.0%) -0.323 -0.290 97.2 94.4 (-2.9%) 398.2 +3.30

VGA
rand 10.0 30.1 60.0 50766 6179 (-87.8%) 208155 217492 (+4.5%) -0.137 -0.080 208.3 205.1 (-1.5%) 713.3 +4.56
Vt 48.8 49.6 1.6 40743 3685 (-91.0%) 208155 216603 (+4.1%) -0.137 -0.069 213.4 205.5 (-3.7%) 536.8 +3.48

drive 42.1 42.8 15.1 57273 10871 (-81.0%) 208155 217664 (+4.6%) -0.137 -0.129 208.2 205.1 (-1.5%) 491.1 +4.24

MPEG
rand 9.9 30.5 59.6 9994 1367 (-86.3%) 38896 40594 (+4.4%) -0.005 -0.018 33.2 33.1 (-0.2%) 137.3 +0.87
Vt 49.6 49.4 1.0 7824 753 (-90.4%) 38882 40383 (+3.9%) -0.011 -0.026 33.2 33.1 (-0.3%) 68.6 +0.70

drive 43.1 43.1 13.8 10931 2145 (-80.4%) 38901 40649 (+4.5%) -0.005 -0.030 33.2 33.1 (-0.3%) 99.5 +0.86

We also investigate the impact of fin height assignment methodologies. We apply three method-

ologies – (i) rand randomly assigns fin heights according to probability ratio 1:3:6 for 2, 3, and 4 fins,

respectively (see Section 3.1.5 above); (ii) Vt assigns fin heights according to their Vth property, with

HVT (resp. NVT and LVT) cells having probability ratio 1:1:0 (resp. 1:1:1 and 0:1:1) for 2, 3, and 4

fins; (iii) drive assigns fin height according to their drive strength, with X0 (resp. X1 and others) cells

having probability ratio 1:1:0 (resp. 1:1:1 and 0:1:1) for 2, 3, and 4 fins. The three methodologies generate

different fin height distributions, and thus help confirm the robustness of our optimization in broader

94

scenarios. The results are shown in Table 3.4. For all designs with the default (rand) random fin height

distribution, we achieve up to 98.1% reduction in #steps at the cost of around 3.5% RWL increase. The

results also show that our optimization has negligible impact on WNS and that we can slightly improve the

leakage. In addition, we perform a preliminary yield estimation assuming 2ppm failure rate for each step,

and 1ppm failure rate after we remove the step (recall Footnote 32). Based on this assumption, we can see a

yield improvement of up to 4.56% for a design block of 69K instances. We note that the yield improvement

is expected to grow markedly with the die size. A larger design with many millions of instances may see

more benefits.

For Vth and drive distribution, the results show similar step reduction percentage, demonstrating

the robustness of our optimization. Figure 3.16 shows the layouts of placements before and after MR

optimization.

Figure 3.16: Layouts of placements before (Init) and after (MR) our MR optimization. Red color
indicates cell instances with diffusion steps and blue color indicates cell instances without diffusion steps.

We also investigate the improvement achieved by our multi-row optimization over single-row,

double-row optimization and previous works. We compare multi-row (MR) optimization to (i) single-row

(SR) optimization (also to match [21][67]), (ii) ordered double-row (ODR) optimization (to match [66]),

and (iii) double-row (DR) optimization. For (i), we use the proposed methodology in Section 3.1.2 and

fix the locations of all multi-height cells. We note that our SR implementation is equivalent to [21][67],

95

supporting neighboring cell swapping and cell flipping with the adaptation of NDE. In SR, we use the

same displacement range and reordering range as in DR, while using the default HPWL weighting factor

γ = 0.0001 (HPWL weighting factor is not considered in the work of [36]). For (ii), we simply run our

DR optimization with zero reordering range to achieve an ODR equivalent to [66]. For (iii), we use the

proposed methodology in Section 3.1.3. The comparisons of #steps, routed wirelength (RWL) and runtime

are shown in Tables 3.5, 3.6 and 3.7, respectively. For design blocks with fewer double-height cells,

SR performance is competitive with that of ODR. However, for design blocks with more double-height

cells, ODR is significantly better (up to 21% more step reduction) than SR due to movable double-height

cells. The results show that DR effectively reduces the diffusion steps by around half compared to SR,

and by around 40% compared to ODR. On average, DR has 11.6% more step reduction than ODR, and

17.7% more than SR, with respect to the initial number of diffusion steps. This suggests the importance of

supporting movable and reorderable double-height cells, as there will be substantial benefits.

Table 3.5: Comparison of diffusion steps with SR (to match [21][67]), ODR (to match [66]) DR, MR and
metaheuristics (Meta). DH% = % of double-height cells.

Design DH% Init SR (to match [21][67]) ODR (to match [66]) DR MR Meta
AES 4.3% 7973 1395 (-82.5%) 1869 (-76.6%) 750 (-90.6%) 152 (-98.1%) 131 (-98.4%)
M0 8.4% 6588 1672 (-74.6%) 1742 (-73.6%) 842 (-87.2%) 243 (-96.3%) 179 (-97.3%)

JPEG 8.3% 34760 9731 (-72.0%) 8341 (-76.0%) 4555 (-86.9%) 656 (-98.1%) 473 (-98.6%)
VGA 24.8% 50766 27170 (-46.5%) 16405 (-67.7%) 11816 (-76.7%) 6179 (-87.8%) 5652 (-88.9%)

MPEG 23.0% 9994 5101 (-49.0%) 3444 (-65.5%) 2402 (-76.0%) 1367 (-86.3%) 1215 (-87.8%)
Avg. – -0.00% -64.9% -71.9% -83.5% -93.3% -94.2%

Table 3.6: Comparison of routed wirelength (RWL) with SR, ODR, DR, MR and metaheuristics (Meta).

Design Init SR ODR DR MR Meta
AES 31873 32517 (+2.02%) 32637 (+2.40%) 32898 (+3.22%) 32995 (+3.52%) 33065 (+3.74%)
M0 27670 28201 (+1.92%) 28271 (+2.17%) 28470 (+2.89%) 28728 (+3.82%) 28805 (+4.10%)

JPEG 101000 104562 (+3.53%) 104657 (+3.62%) 105550 (+4.50%) 107699 (+6.63%) 108173 (+7.10%)
VGA 208155 212186 (+1.94%) 212905 (+2.28%) 214169 (+2.89%) 217492 (+4.49%) 216856 (+4.18%)

MPEG 38896 39640 (+1.91%) 39799 (+2.32%) 39950 (+2.71%) 40594 (+4.37%) 40512 (+4.15%)
Avg. +0.00% +2.26% +2.56% +3.24% +4.57% +4.66%

96

Table 3.7: Comparison of runtime (seconds) with SR, ODR, DR, MR and metaheuristics (Meta).

Design SR ODR DR MR Meta
AES 32 8 59 162 348
M0 22 8 51 174 214

JPEG 325 50 344 776 2153
VGA 493 51 386 713 1658

MPEG 30 11 86 137 234

Metaheuristics

We have also explored several metaheuristics to assess (i) the step reduction achievable by invoking

multiple optimization iterations, as well as (ii) potential improved tradeoffs between step reduction and

degradation from initial placement (in terms of HPWL). First, we investigate the maximum step reduction

versus the number of iterations. To explore the maximum benefits of step reduction, we invoke the

multi-row optimization several times. Since the multi-row optimization is for every two rows, e.g., row

1 and 2 in a window, row 3 and 4 in the next window, etc., we can shift the window by one row and run

again if we can further improve the solution quality. In our experiments, we alternatively align/unalign the

optimization window with double-height cells, with aligned window in the first iteration to encourage the

movement of double-height cells. We show the normalized number of diffusion steps and HPWL versus

the number of optimization iterations (up to 8) in Figure 3.17. Compared to one iteration, the second

iteration removes 45 out of 152 remaining steps after the first iteration, while the remaining six iterations

only reduce 13 more steps, at the cost of increased HPWL.

Figure 3.17: #steps (normalized) and HPWL (normalized) vs. #iterations in metaheuristic optimization.

97

Figure 3.18: #steps vs. HPWL in metaheuristic optimization. Red (resp. green and blue) dots represent
metaheuristic iterations that start with configuration A (resp. configuration B and configuration C).

Given the above observation, we seek to obtain a better tradeoff between step reduction and

HPWL. Since our multi-row optimization is not HPWL-aware, we propose to invoke both single-row and

multi-row optimization with a total “budget” of four iterations, to find the best four-iteration sequence.

We explore all possible optimization sequences comprised of the following three configurations – (A)

single-row HPWL-aware; (B) multi-row aligned with double-height cells; and (C) multi-row unaligned

with double-height cells. We report the optimized number of steps, along with HPWL, in Figure 3.18. We

can see that the configuration for the first iteration largely determines the optimized number of steps. The

first iteration should be (B) to obtain better step reduction. Also, the optimization should finish with (A)

for better HPWL. We report the metaheuristic results in Tables 3.5, 3.6 and 3.7.

Performance Improvement Using Intentional Steps

Similar in spirit to [51], we explore the possibility of improving design performance with in-

tentional steps – i.e., using filler cells that create an intentional step to the neighboring timing-critical

functional cell so as to improve the timing of that functional cell.38 In the cost function, we use a third
38An intentional inter-cell step may increase/decrease the drive strength of the function cell. E.g., a step adjacent to a PFET

may decrease the drive strength while a step adjacent to an NFET may increase the drive strength. Here, instead of using a filler
cell to match diffusion heights for both the NFET and the PFET of the function cell (to reduce #steps), we create a filler-induced
intentional step by matching the diffusion height for only the PFET, thus increasing the drive strength for the NFET. We note that
exact timing and power impacts and tradeoffs will vary with STI processes.

98

weighting factor δ to represent the benefit of an intentional step to a timing-critical cell. We sweep δ from

0 to -2 with a step size of -0.1. We select 5% of all cells as timing-critical cells and perform optimization

using all design blocks. The results are shown in Figure 3.19. We use orig.opt to represent the results

with δ = 0, and time.opt to represent the results with δ = −0.3. Compared to δ = 0, we achieve

up to 5× increase in #filler-induced steps incident to timing-critical cells when δ = −0.3, at the cost

of slightly increased #non-filler-induced steps to non-timing-critical cells. This translates to up to 2.13

steps per timing-critical cell after time.opt, compared to 0.42 steps after orig.opt. Overall, we can still

decrease total steps by more than 70%, showing the effectiveness of our algorithm. We note that as we add

more intentional steps to timing-critical cells, we leave a smaller solution space for non-timing-critical

cells. Thus, time.opt generates more steps to non-timing-critical cells. We furthermore observe that as δ

decreases, the #intentional steps that we can achieve approaches a limit, as shown in Figure 3.20. This

may help set expectations for benefits that might be derived from a more comprehensive, timing-aware

flow (which we leave for future work).

Figure 3.19: Comparison of #filler-induced steps and total #steps for all design blocks before (orig.opt,
δ = 0) and after (time.opt, δ = −0.3) using intentional steps.

ICCAD-2017 Benchmark Results

We apply our multi-row dynamic programming-based optimization to winning solutions from

the ICCAD-2017 contest [11] only considering row and site alignments, but not considering constraints,

including maximum cell movement, cell edge spacing, pin access, pin shorts and fence regions from

the contest. The input legalized placements for all benchmark testcases are from the first-place team’s

99

Figure 3.20: Sensitivity of filler-induced steps to δ. Testcase: AES.

solutions in ICCAD-2017 contest, except pci bridge32 a md1 and pci bridge32 a md2, for which we use

the second-place team’s solutions (because the first-place team’s solutions for these two testcases have

cells placed outside of the die boundary). We keep the same P/G alignment as in the input placement. We

apply rand fin height assignment methodology with the above-mentioned 1:3:6 ratio for 2, 3 and 4 fins,

respectively. The results are shown in Table 3.8. For all ICCAD-2017 benchmark testcases, we achieve up

to 96.8% reduction in #steps.

3.1.6 Conclusion

In this work, we present an optimal dynamic programming-based single-/double-row detailed

placement methodology to minimize diffusion steps in sub-10nm VLSI, for improved yield and mitigation

of NDE. Our work achieves several improvements as compared to previous works: (i) optimal dynamic

programming with support of a richer set of cell movements, i.e., flipping, relocating and enhanced

reordering; (ii) optimal double-row dynamic programming with support of movable and reorderable

double-height cells; and (iii) a novel performance improvement technique using intentional steps. The

proposed techniques achieve up to 98% reduction of inter-cell diffusion steps, with scalable runtime and

high die utilization in an N7 node enablement.

100

Table 3.8: Design information and experiment results for ICCAD-2017 benchmark [11]. Distribution of
single-height, double-height, triple-height and quadruple-height cells are shown in columns 1×H, 2×H,

3×H and 4×H, respectively.

Design #Inst Cell types % #Steps Runtime
1×H 2×H 3×H 4×H Init Final (∆%) (s)

des perf b md1 ∼11K 94.80 5.20 0.00 0.00 57806 3781 (-93.46%) 361.3
des perf b md2 ∼11K 90.47 6.02 2.01 1.50 70733 7494 (-89.41%) 232.8
edit dist 1 md1 ∼13K 90.31 6.12 2.04 1.53 74351 6019 (-91.90%) 420.9
edit dist a md2 ∼13K 90.31 6.12 2.04 1.53 76657 8074 (-89.47%) 417.8

fft 2 md2 ∼ 3K 89.62 6.56 2.18 1.64 22040 3789 (-82.81%) 53.2
fft a md2 ∼ 3K 89.57 6.59 2.19 1.65 10960 606 (-94.47%) 136.4
fft a md3 ∼ 3K 93.42 2.19 2.19 2.19 11631 372 (-96.80%) 78.1

pci bridge32 a md1 ∼ 3K 90.39 6.07 2.02 1.52 17284 1429 (-91.73%) 83.8
des perf 1 ∼11K 100.00 0.00 0.00 0.00 73202 3516 (-95.20%) 488.7

des perf a md1 ∼11K 95.66 4.34 0.00 0.00 64624 3060 (-95.26%) 307.3
des perf a md2 ∼11K 96.99 1.00 1.00 1.00 64346 4793 (-92.55%) 315.9
edit dist a md3 ∼13K 93.88 2.04 2.04 2.04 78560 11100 (-85.87%) 258.9

pci bridge32 a md2 ∼ 3K 85.51 7.08 4.05 3.37 21435 6235 (-70.91%) 71.2
pci bridge32 b md1 ∼ 3K 90.39 6.07 2.02 1.52 14988 1070 (-92.86%) 68.1
pci bridge32 b md2 ∼ 3K 96.97 1.01 1.01 1.01 13812 488 (-96.47%) 135.0
pci bridge32 b md3 ∼ 3K 94.94 1.01 2.02 2.02 14929 1193 (-92.01%) 84.2

3.2 Vertical M1 Routing-Aware Detailed Placement for Congestion and

Wirelength Reduction in Sub-10nm Nodes

In tandem with aggressive pitch scaling in sub-10nm technology nodes, the detailed routing

problem has become extremely challenging. Routing today must deal with large numbers of complex

design rules that are driven by patterning technologies – notably, self-aligned multiple patterning and

line-end cut on minimum-pitch metal layers, as well as contact- and via-layer patterning. The quest to scale

“PPAC” (power, performance, area, cost) has led to a very delicate balancing act among power delivery,

routing resource, and resistivity in middle-of-line (MOL) and local metal layers.

To address these challenges, the industry has seen rapid innovation in standard-cell architecture

starting at the foundry 10nm (N10) node, and accelerating into the N7/N5 enablement. As examples of

cell architecture evolution, metal layers below M1 are used for internal routing within a standard cell, or

horizontal M1 power/ground pins are removed to gain additional routing resources for inter-cell routing.

101

These new cell architectures, wherein inter-row M1 routing is allowed, force new consideration of vertical

alignment of cells.

New Cell Architectures in Sub-10nm

Figure 3.21 illustrates inverter (INV) layout in three types of cell architectures: (a) conventional 12-

track, (b) ClosedM1 7.5-track, and (c) OpenM1 7.5-track. The conventional 12-track INV has power/ground

(VDD/VSS) in M1, which prevents use of vertical M1 routing for pin access. In other words, with the

conventional cell architecture, pin access is available only with M2 routing. However, in sub-10nm nodes,

where metal layers below M1 are used for internal cell routing, the M1 layer can be used for pin access as

well as for routing with both the ClosedM1 and OpenM1 cell architectures.

(a)

VDD

VSS

A ZN

(b)

VSSVSS
ZNA

VDDVDD

VDD

VSS

VDD

VSS

(c)

VDD

VSS

I
ZN

ZN
ZN

M1

M2

V01

M0

Cell boundary

Figure 3.21: New cell architectures to gain additional routing resources. (a) Conventional 12-track INV;
(b) ClosedM1 7.5-track INV; (c) OpenM1 7.5-track INV.

ClosedM1 standard cell architecture. A ClosedM1 standard cell has 1D vertical M1 pins,

including VDD/VSS pins, as shown in Figure 3.21(b). The M1 VDD/VSS pins at the left and right

boundaries of the cell are connected to M2 VDD/VSS pins at the top and bottom boundaries by using

via V12. In this way, VDD/VSS pins do not block inter-row M1 routing. Also, due to the design rules

for self-aligned multiple patterning (SAMP), the M1 pins in ClosedM1 have 1D shapes and are regularly

placed with a fixed pitch. In particular, the ClosedM1 cell library that we use in this work has M1 pitch

equal to the width of a placement site. Therefore, if we vertically align pins of given net, these pins can

be connected by a small M1 segment with negligible routing cost or overheads. Figure 3.22(a) illustrates

102

an example of direct vertical M1 routing (dM1) between two INVs. Here we define a direct vertical

M1 routing as a (sub)net routing using only one M1 routing segment. Importantly, even though the

ClosedM1 cell architecture enables inter-row M1 routing, the realized power/performance/area (PPA)

benefit from M1 routing may not be significant unless a router can effectively exploit the availability of

direct vertical M1 routing. This is because M1 routing tracks are blocked by M1 pins, and the inter-row

M1 routing can be used only when two pins are sufficiently aligned. Thus, both the detailed placer and the

router must comprehend vertical alignment in order to maximally exploit direct vertical M1 routing for

ClosedM1-based designs.

OpenM1 standard cell architecture. At sub-10nm nodes, the OpenM1 standard cell architecture

is introduced to enable more M1 routing resource than with the ClosedM1 architecture. For OpenM1 cells,

M1 routing is “open” since most of the pins are on the M0 layer, which is a complementary layer below

the M1 layer. As shown in Figure 3.21(c), the I, ZN, VDD, VSS pins have horizontal M0 segments, and

an M1 segment connects two M0 segments for the ZN pin. We note that there is no connection between

M0 and M2 segments for VDD/VSS pins. Thus, M1 routing for VDD/VSS pins must be accomplished

with a special structure for the power distribution network.39 In terms of signal routing, if two pins are

overlapped horizontally (i.e., their projections onto the x-axis intersect), direct vertical M1 routing can be

used to connect them. Figure 3.22(b) shows a direct vertical M1 routing between the ZN pin of the upper

INV and the I pin of the lower INV. As long as the ZN and I pins are overlapped horizontally, the two pins

can be connected using a single vertical M1 segment along with two V01 vias.

Compared to both the conventional and the ClosedM1 cell architectures, OpenM1 effectively

enables an additional metal layer for routing, which can have considerable routability benefits. Furthermore,

unlike with the sub-10nm ClosedM1 architecture, conventional P&R tools can easily find benefits from

OpenM1 without any special optimization to maximize M1 routing. This being said, below we explore

the question of whether there might still be room (beyond the current state of the art in commercial P&R

tooling) to optimize for better pin accessibility in OpenM1-based designs, given that pins are horizontal.

For instance, by maximizing “overlap” between pins in a net, we might induce a router to use more direct

vertical M1 routing between pins, which would reduce usage (blockage) and detouring on upper layers
39For example, vertical M1 segments must be inserted with a fixed pitch to staple M2 and M0 VDD/VSS pins.

103

(M2, M3, etc.). In Section 3.2.4, we report experimental results with and without a detailed placement

optimization that maximizes pin overlaps for OpenM1.

(a) (b)

VDD VDD

ZN A
VSS VSS

VSS

VSSVSS

ZNA

VDDVDD

VDD

VSS

M1

M2

V01

M0

Cell boundary

M1 routing

VSS

VSS

VDD

I
ZN

ZN
ZN

VSS

VDD

VSS

I
ZN

ZN
ZN

pin overlap

Figure 3.22: Direct vertical M1 routing examples: (a) ClosedM1 and (b) OpenM1.

This Work

In this work, we propose a vertical M1 routing-aware detailed placement optimization based

on mixed-integer linear programming (MILP) for two new sub-10nm cell architectures, i.e., OpenM1

and ClosedM1. We note that the vertical M1 routing-aware detailed placement is a completely different

problem from traditional wirelength-driven detailed placement, in the sense that the routing cost is non-

monotonic due to vertical M1 routing, which is almost “free”. Our MILP formulation enables exploration

of the tradeoff between minimization of the traditional half-perimeter wirelength (HPWL) objective and

maximization of the number of vertical pin alignments (= potential direct pin-pin routings using vertical

M1) via a weighting factor (α). Below, we specifically study the impact of α on routed wirelength. The

main contributions of our work are summarized as follows.40

40The MILP formulation will differ according to the standard cell template and layer directionality. However, our distributable
optimization and exploration of metaheuristic configurations can apply with any technology.

104

• We propose an MILP-based detailed placement optimization for two cell architectures that are

relevant in sub-10nm process nodes, to consider and exploit (direct vertical) inter-row M1 routing.

• We propose a distributable window-based optimization to overcome the runtime limitation of the

MILP-based approach.

• We implement our proposed approach in C++ with OpenAccess 2.2.43 [128] and incorporate it into

a commercial tool-based placement and routing (P&R) flow. The results from our approach are

evaluated using a commercial tool flow.

• We explore various metaheuristic configurations (optimization degrees of freedom, window size,

iteration strategy, etc.) and study impacts on runtime and solution quality.

The remainder of this work is organized as follows. Section 3.2.1 reviews related previous works.

In Section 3.2.2, we describe our MILP formulations for detailed placement optimization considering direct

vertical M1 routing. In Section 3.2.3, we explain our overall optimization metaheuristic, centered around a

distributable window-based optimization. Section 3.2.4 provides experimental results and analysis. We

give conclusions in Section 3.2.5.

3.2.1 Related Work

We classify relevant previous works on detailed placement and placement legalization into three

categories: (i) dynamic programming-based approaches, (ii) graph model-based approaches, and (iii)

MILP-based approaches. Our present work is most closely related to the third category.

Dynamic programming-based approaches. Dynamic programming (DP) has been a popular

framework, particularly for row-based detailed placement, for many years. Kahng et al. [53] propose

an HPWL-driven ordered single-row detailed placement with free sites. Gupta et al. [33] propose a

DP-based single-row placement optimization to enable sub-resolution assist feature insertion for improved

manufacturability. Subsequent work addresses a 2D formulation [34], using DP in which vertical and

horizontal costs are calculated with restricted perturbations. Hur and Lillis [47] propose a DP-based

optimal interleaving for intra-row optimization in detailed placement. For double-patterning-aware

105

detailed placement, Gupta et al. [31] propose a DP-based algorithm that solves coloring conflicts while

minimizing the displacement of timing-critical cells.

Graph-based approaches. A literature of graph model-based approaches typically formulates

placement optimization as a shortest-path computation in an appropriate directed graph. Kahng et al. [50]

legalize placement of a single row with various minimization objectives, by calculating a shortest path in a

directed acyclic graph constructed from the input ordering of cells. The work of [106] proposes a triple-

patterning-aware detailed placement using a graph model. The authors formulate a graph to determine cell

locations as well as coloring solutions for a single row placement. Du and Wong [21] address the abutment

of source and drain in FinFET-based cell placement. The authors propose a graph model that captures

cell flipping and adjacent-cell swapping as underlying operations for detailed placement perturbation.

A shortest-path algorithm then minimizes the cost induced by fixing the placement with respect to the

source-drain abutment. Lin et al. [67] propose a graph-based detailed placement to resolve inter-row

middle-of-line conflicts. Similar to [21], a graph is constructed to handle cell flipping, swapping and

shifting operation for local reordered single row refinement.

MILP-based approaches. While DP-based and graph model-based approaches are efficient for

single-row placement, it is not easy to handle multiple-row placement optimizations (specifically, in the

context of this work, vertical M1 routing-aware placement) with these approaches due to interaction

between vertically adjacent cells. However, several mixed integer-linear programming (MILP)-based

approaches have been proposed which handle both single-row and multiple-row placement. Lin and

Chu [63] formulate a MILP for triple-patterning-aware detailed placement. The MILP is used to assign

a coloring solution for each standard cell and determine the location of each cell in a single row, while

minimizing placement perturbation and coloring conflicts. Li and Koh [61] propose MILP-based detailed

placement approaches using single-cell-placement (SCP) variables. The SCP variables correspond to

locations, orientations as well as placement sites of each cell. The MILP determines the best SCP variable

for each cell. The same authors’ extension [62] supports mixed-size circuits and improves runtime by

bounding solution spaces. Han et al. [39] adopt the MILP model of [61][62] and extend it to support

N10-relevant design rules. Further, a distributable optimization is proposed based on partitioning of the

layout into windows that can be independently legalized. In our present work, we use a similar strategy as

106

the work of [39], extending it to handle vertical M1 routing for new cell architectures in sub-10nm. Overall,

our work is distinguished from previous (MILP-based) approaches in that (i) we formulate inter-row cell

alignment to maximize direct vertical M1 routing, which has not been addressed in previous works, and

(ii) we improve the distributable optimization of [39] by a smart selection of target windows along with a

metaheuristic strategy.

3.2.2 MILP-based Optimization

In this section, we give our problem statement, followed by MILP formulations for vertical M1

routing-aware detailed placement optimization with two sub-10nm cell architectures, ClosedM1 and

OpenM1.

Vertical M1 Detailed Placement

Given: a post-routed placement, and per-cell placement perturbation range.

Perform: Perturb the input placement to optimize a weighted sum of (minimized) HPWL and (maxi-

mized) inter-row pin alignments, while satisfying cell location perturbation bounds and placement legality

constraints.

MILP Formulation for ClosedM1

We formulate an MILP for our detailed placement problem for the ClosedM1 cell architecture.

In the following, we use notation as described in Table 3.9. For a given input layout, our objective is to

minimize the weighted sum of HPWL of all nets subtracted by the total number of pin alignments for

direct vertical M1 routing, while achieving a legal placement (no overlap of cells).

107

Minimize: − α ·
∑

dpq +
∑
n∈N

βn · wn (3.5)

Subject to:

wn = xmax,n − xmin,n + ymax,n − ymin,n, ∀n ∈ N (3.6)

xmax,n ≥ xc + xp, xmin,n ≤ xc + xp

ymax,n ≥ yc + yp, ymin,n ≤ yc + xp

∀p ∈ Pn, where c is the owner cell of pin p (3.7)

(xc + xp)− (xc′ + xq) ≤ G(1− dpq)

(xc + xp)− (xc′ + xq) ≥ −G(1− dpq)

(yc + yp)− (yc′ + yq) ≤ G(1− dpq) +H

(yc + yp)− (yc′ + yq) ≥ −G(1− dpq)−H

∀(p, q) in n, where c, c′ are owners of pins p, q (3.8)∑
k∈Kc

λkc = 1, ∀c ∈ C (3.9)

fc =
∑
k∈Kc

fkc λ
k
c , ∀c ∈ C (3.10)

xc =
∑
k∈Kc

xkcλ
k
c , yc =

∑
k∈Kc

ykcλ
k
c , ∀c ∈ C (3.11)

scrq =
∑
k∈Kc

skcrqλ
k
c , ∀c ∈ C (3.12)

∑
c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (3.13)

HPWL calculation. Constraint (3.6) calculates the HPWL for each net n, where HPWL as

usual corresponds to the half-perimeter of the minimum bounding box that contains all pins of n. The

maximum and minimum x, y coordinates of pins of the net n are obtained by Constraint (3.7). The absolute

coordinates of pin p are determined by adding the coordinates (xc, yc) of p’s owner cell c to (xp, yp).

108

Table 3.9: Notations.
Notation Meaning
dpq a binary indicator of whether pins p and q are aligned (ClosedM1) or overlapped (OpenM1)
wn half-perimeter wirelength (HPWL) of net n
α a weighting factor for direct vertical M1 routing
βn a weighting factor for HPWL of net n

C,R,Q sets of cells, rows, columns (placement sites)
N set of nets

x(y)min,n minimum x (y) and maximum x (y) coordinates of net n
x(y)max,n

Pn set of pins in net n
G a large positive constant number
H placement row height

xc(yc) x (y) coordinate of the center of cell c
xp(yp) relative x (y) coordinate of pin p to its owner cell’s x (y) coordinate
xmin,p minimum (maximum) x coordinate of pin p relative to its owner cell’s x coordinate

(xmax,p)
fc a binary indicator of whether cell c is flipped
scrq a binary indicator of whether cell c occupies site (r, q)

Kc a set of candidates of cell c
λkc a binary indicator of whether candidate k for cell c is selected

xkc (ykc) x (y) coordinate corresponding to λkc
fkc fc corresponding to λkc
skcrq scrq corresponding to λkc
γ maximum allowed length for a direct vertical M1 routing (unit: number of placement rows)
vpq a binary indicator of whether pins p and q are within a given range (γ) in y direction
opq length of overlap between pins p and q
δ minimum required overlap length for direct vertical M1 routing
ε a weighting factor for the sum of overlap lengths (opq)

Checking pin alignment. Constraint (3.8) checks whether pins p, q are aligned, by comparing

their absolute coordinates. If the (absolute) x coordinates of p, q are not the same, dpq = 0. Otherwise, the

left side of the first and second constraints in Constraint (3.8) becomes zero, which makes dpq = 1 allowed.

In our implementation, we always ensure dpq = dqp.

Placement of each cell. Similar to [39], we assume that a perturbation range is given for each

cell c, and that a cell cannot move beyond its given perturbation range. As in [39], we adopt the single-

cell-placement (SCP) model of [62] to represent each candidate location and orientation for a cell. The

binary variable λkc represents a candidate k for a cell c, including the coordinates (xkc , ykc), the orientation

(fkc), and whether placement site (r, q) is occupied (skcrq). These relations are handled by Constraints

109

(3.10), (3.11) and (3.12). Constraint (3.9) ensures that exactly one candidate is chosen for cell c among all

λkc , k ∈ Kc. Constraint (3.13) ensures a legal placement.

MILP Formulation for OpenM1

To maximize direct vertical M1 routing for the OpenM1 cell architecture, we must maximize

“overlap” between target pins, which is different from the objective for ClosedM1. In addition to maximizing

the number of overlapping pin pairs, we also maximize the sum of overlap lengths of each pin-to-pin

(sub)net so as to increase the probability that the router completes the direct vertical M1 routing. The

OpenM1 objective is:

Minimize: − α ·
∑

dpq − ε ·
∑

opq +
∑
n∈N

βn · wn (3.14)

To support OpenM1, we slightly modify the previous MILP formulation for ClosedM1 by introduc-

ing extra variables. In this case, dpq becomes a binary indicator of whether pins p and q are “overlapped”,

and Constraint (3.8) is replaced with Constraints (3.15) – (3.17). Our notation is again as described in

Table 3.9.

a ≥ xc + xmin,p, a ≥ xc′ + xmin,q

b ≤ xc + xmax,p, b ≤ xc′ + xmax,q

∀p, q, where c, c′ are the owner cells of pins p, q (3.15)

(yc + yp)− (yc′ + yq) ≤ G · vpq + γ ·H

(yc + yp)− (yc′ + yq) ≥ −G · vpq − γ ·H

∀p, q, where c, c′ are the owner cells of pins p, q (3.16)

110

a ≥ xc + xmin,p, a ≥ xc′ + xmin,q

opq ≤ b− a− δ +G(1− dpq), opq ≤ G · dpq

opq ≥ −G(1− dpq)

∀(p, q) pin pairs in net n, ∀n (3.17)

dpq + vpq ≤ 1, ∀p, q (3.18)

Checking pin overlaps. Constraint (3.15) calculates the length of overlap in x direction between

pins p and q. It first identifies the left side (a) and the right side (b) of the overlap between pins p and q.

The overlap length opq is determined by a and b in Constraint (3.17). Constraint (3.16) checks whether the

absolute difference of y coordinates of pins p and q is larger than γH and, if so, forces vpq = 1. γ is a

user-defined value for the maximum allowed vertical span of a direct vertical M1 routing.41

We use γ = 3, which means that a direct vertical M1 routing can cross three placement rows. For

the case vpq = 1, we do not need to make overlaps in the x direction since pins are multiple rows apart

vertically; in such cases, it is difficult (i.e., highly improbable) to make a direct vertical M1 routing across

multiple rows. Thus, Constraint (3.18) forces dpq = 0 if vpq = 1 so that the optimization does not make

unnecessary overlaps. Constraint (3.17) forces dpq = 1 if b− a is larger than a predefined δ, which is the

minimum required overlap length. Then, the opq is bounded by b− a− δ. Otherwise, opq is bounded by

zero.

3.2.3 Overall Flow

We now describe the overall flow of our optimization.

Distributable Optimization

In practice, the most critical limitation of the MILP-based approach is runtime. To overcome the

runtime limitation, we adopt the distributable optimization proposed in [39].
41For example, γ = 1 means that direct vertical M1 routing can traverse only between two adjacent cell rows, and γ = 2 (resp.

3) means that direct vertical M1 routing can go through at most one (resp. two) intervening cell row(s).

111

We partition the layout into small windows, each with width bw, and height bh, and optimize these

windows in several iterations. In each iteration, we select a subset of windows that are independently

optimizable, and optimize them in parallel. More specifically, we select windows that do not have any

horizontal or vertical overlap (i.e., have disjoint projections onto the x-axis and onto the y-axis). For

example, as shown in Figure 3.23, windows that are diagonally adjacent can be selected and optimized

in parallel. This is because a given window’s optimization is unaware of cell displacements concurrently

being made outside of the window; if windows share projections onto the x- or y-axis, the impact of

solutions on HPWL from each window cannot be accurately captured.

Figure 3.24 illustrates two example cases of (a) target windows with intersecting projections (on

the y-axis) and (b) target windows with disjoint projections. Since the target windows are optimized in

parallel, the optimizer calculates ∆HPWL1 for the displacement of p in w1 without knowing pin q’s

displacement, and vice versa (∆HPWL2 for q in w2). However, according to the final locations of p and

q, the pins that determine the bounding box corresponding to HPWL can change, as shown in the figure.

In the (a) case, this results in a discrepancy between the total ∆HPWL and the sum of ∆HPWL from

each window. In the (b) case, since p and q always determine the top-left point and the bottom-right point

of the bounding box, the sum of ∆HPWL from each window is equal to the total ∆HPWL.

Target window for the current optimization
Untouched window
Optimized window in previous iterations

Figure 3.23: Illustration of distributable optimization.

Overall Flow

Algorithm 8 (VM1Opt()) gives the metaheuristic outer loop of our detailed placement optimiza-

tion considering direct vertical M1 routing. The inputs include a routed layout T , a weighting factor α,

112

Target window for the current optimizationUntouched window

ΔHPWL1 ΔHPWL2

Total ΔHPWL ≠ ΔHPWL1 + ΔHPWL2

ΔHPWL1

ΔHPWL2

Total ΔHPWL=ΔHPWL1 + ΔHPWL2

w1 w2

w3 w4

w1 w2

w3 w4

p

q

p

q

(a) (b)

Figure 3.24: HPWL calculation for two cases. (a) Target windows with intersecting projections on the
y-axis. (b) Windows with disjoint projections. In the case of (a), the total ∆HPWL is not equal to the

sum of ∆HPWL values that are calculated from each window.

and a sequence (queue) of input parameter sets U . Each parameter set in U includes window width (bw),

window height (bh), maximum x displacement for cells (lx), and maximum y displacement of cells (ly).

The sequence U is determined empirically based on experimental results (see Section 3.2.4). The output is

an optimized layout Topt with a heuristically minimized objective value Obj.

In Line 2, we obtain the first input parameter set u in the current U . In Lines 3 – 11, we iteratively

run DistOpt() with u until the normalized improvement (∆Obj) of the objective with respect to Obj

of the previous iteration is less than a threshold θ. We use θ = 1% as the threshold. In Line 4, we first

store the previous Obj value as preObj. In Lines 5 – 6, we then perform DistOpt() with window size

and perturbation range defined in u (i.e., u.bw, u.bh, u.lx, u.ly) but without allowing the flip operation

(f = 0). After that, DistOpt() is performed again in Lines 7 – 8, with allowing of the flip operation

(f = 1) but without allowing perturbation. Empirically, we observe that a sequential optimization that

performs perturbation and flipping serially is faster than an optimization that performs perturbation and

flipping simultaneously, while both optimizations give similar solution quality. In Line 9, we update the x

and y shift values for windows (tx, ty). Although we avoid interference between windows by selecting

diagonally-adjacent windows (recall Figure 3.23) for parallel optimization, cells at the boundary (i.e., cells

that overlap two windows simultaneously) cannot be optimized. Thus, similar to the method of [39], we

113

shift the windows to handle the unoptimized boundary region of the previous iteration. If ∆Obj is less

than θ (Line 3), we change u to the next input parameter set in U (Line 2). We iterate the optimization

until we reach the last input parameter set in U .

Algorithm 9 describes details of DistOpt(). According to the given input parameters, we partition

the layout into small windows (Line 1). We then select target windows that are independently optimizable

and store them in D (Line 3) as explained above. Since we select target windows such that windows do

not have any vertical or horizontal overlaps, the parallel optimization has k =
√
|W | iterations, where

|W | is the total number of windows. In Lines 5 – 6, all windows d ∈ D are optimized in parallel. For

each window, we list candidates for each cell according to a given perturbation range (i.e., lx and ly,

the maximum displacement of x and y, respectively). Along with input parameters α, βn, γ and δ, we

formulate the MILP instance for the window and use CPLEX to solve the MILP instance. The solution

is updated for each window, and is then used as a boundary condition for the target windows in the next

iteration.

Algorithm 8 Overall flow of VM1Opt

Procedure VM1Opt(T, α, U)
Input : Layout T , weighting factor α, queue of parameter sets U
Output : Layout Topt

1: while U 6= ∅ do
2: u ← U.pop(); ∆Obj ← ∞;
3: while ∆Obj ≥ θ do
4: preObj ← Obj;
5: lx ← u.lx; ly ← u.ly; f ← 0;
6: (T,Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);
7: lx ← 0; ly ← 0; f ← 1;
8: (T,Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);
9: Update tx, ty

10: ∆Obj ← (preObj −Obj)/preObj;
11: end while
12: end while
13: Topt ← T ;
14: return Topt;

114

Algorithm 9 Procedure DistOpt

Procedure DistOpt(T, tx, ty, bw, bh, lx, ly, f, α)
Input : Horizontal (vertical) offset tx (ty), width (height) of window bw (bh), perturbation range in x
(y) lx (ly), binary indicator of whether flip operation is allowed f , weighting factor α
Output : Updated layout Topt, objective value Obj

1: A set of windows W ← Partition(T, tx, ty, bw, bh);
2: for i = 1 to

√
|W | do

3: D ← set of current target windows;
4: // parallel optimization
5: MILPFormulation(d, lx, ly, f, α) for ∀d ∈ D;
6: Solve MILP and update MILP solutions to T ;
7: // parallel optimization ends
8: end for
9: Topt ← T

10: Obj ← CalculateObj(Topt);
11: return Topt;

3.2.4 Experiments

Experimental Setup

We implement our flow in C++ with OpenAccess 2.2.43 [128] to support LEF/DEF [119], and with

IBM ILOG CPLEX Optimization Studio v12.6.3 [115] as our MILP solver. We apply our detailed placement

optimization flow to an ARM Cortex-M0 core (M0) and three designs (AES, JPEG and VGA) from the

OpenCores website [124]. The design information is summarized in Table 3.10. The four designs are

implemented with 7nm OpenM1 and ClosedM1 triple-Vth libraries from a leading technology consortium.

We synthesize the testcases using Synopsys Design Compiler K-2015.06-SP4 [129], and then perform

placement and routing using Cadence Innovus v16.1 [112]. The experiments are performed with 8 threads

on a 2.6GHz Intel Xeon dual-CPU server. We note that with flexible computing resources, the number of

usable threads could be as large as the number of layout windows that are independently optimizable (i.e.,√
|W |) to reduce runtime for larger designs.

Experimental Results

We have conducted two basic types of experiments. Expt1 experiments seek to optimize our overall

flow by finding input parameters and optimization sequences that give dominating runtime versus solution

115

quality tradeoffs. The AES design with ClosedM1 is used for Expt1 experiments. Expt2 experiments

apply our flow to both ClosedM1-based and OpenM1-based designs. For all experiments, we use β = 1 so

that our MILP formulation minimizes pure HPWL.

Figure 3.25: Scalability test with various window sizes and perturbation ranges.

Figure 3.26: Sensitivity of total routed wirelength (RWL) and the number of direct vertical M1 routings
(#dM1) to α.

Expt1-1: Scalability study on window size and perturbation range. We sweep the window

size and the perturbation range to study the tradeoff between solution quality and runtime. We assume

square windows and vary bw = bh from 5µm to 80µm. For the perturbation range, we try lx ∈ {2, 3, 4, 5},

ly ∈ {0, 1}. In this experiment, we only run one iteration in Algorithm 8 (i.e., one pair of DistOpt()).

Figure 3.25 shows the normalized routed wirelength (RWL) and runtime versus the window size. As the

window size increases, the routed wirelength decreases, as expected. However, we observe huge runtime

increases, e.g., 5× runtime increase with bw = bh = 40µm. To balance between runtime overhead and

solution quality, we select the option with shortest runtime that gives≤ 1% total routed wirelength increase

compared to the minimum routed wirelength; this is bw = bh = 20µm, lx = 4, and ly = 1.

116

Figure 3.27: Results of various optimization sequences.

Expt1-2: Sensitivity study for α. We sweep α values and study the impact of α on the number of

direct vertical M1 routings (#dM1) and the routed wirelength (RWL). We vary α from 0 to 6000 – e.g., for

ClosedM1-based design, the objective with α = 10 prefers one more aligned pin pair at the cost of at most

10 units increase in HPWL. Figure 3.26 shows total routed wirelength (RWL) and the number of direct

vertical M1 routings (#dM1) versus α. As α increases, the number of direct vertical M1 routings increases.

However, maximizing the number of direct vertical M1 routings does not always reduce routed wirelength,

Based on our studies, we select α = 1200 for ClosedM1. Similarly, we experiment on OpenM1-based

designs and select α = 1000.

Expt1-3: Sequence of optimization. We explore various sequences of input parameter sets

(bw = bh, lx, ly) to optimize our overall flow. We illustrate this with five example optimization sequences:

(1) (20, 4, 1); (2) (10, 3, 1)→ (10, 4, 0)→ (20, 4, 0) ; (3) (10, 3, 1)→ (20, 3, 1)→ (20, 3, 0); (4) (10, 3,

1)→ (20, 3, 0) ; and (5) (10, 3, 1)→ (10, 3, 0)→ (20, 3, 1)→ (20, 3, 0). Figure 3.27 shows RWL and

runtime for these optimization sequences. We observe that optimization sequences 1 and 2 with lx = 4

give better solution quality (in terms of RWL). However, optimization sequence 2 consumes twice the

runtime of optimization sequence 1. Therefore, (20, 4, 1) would be a preferred choice of sequence.

Table 3.10: Results of Expt2.
Design #Inst Util

α
#dM1 M1 WL (µm) #via12 HPWL (µm) RWL (µm) WNS (ns) Power (mW) Runtime

(%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (s)
ClosedM1-based designs

M0 9922 75% 1200 545 2955 (442.2) 676 629 (-7.0) 35766 31932 (-10.7) 22850 23760 (4.0) 27636 26833 (-2.9) 0.000 0.000 2.444 2.431 (-0.5) 344
AES 12345 75% 1200 631 3177 (403.5) 970 710 (-26.8) 43248 38631 (-14.4) 30420 28890 (-5.0) 32560 30471 (-6.4) 0.000 0.000 3.240 3.212 (-0.9) 711

JPEG 54570 75% 1200 3694 20688 (460.0) 3605 3329 (-7.7) 179315 153500 (- 5.7) 91030 88900 (-2.3) 96621 90593 (-6.2) 0.000 0.000 28.592 28.399 (-0.7) 1216
VGA 68606 75% 1200 2460 12473 (407.0) 5973 5428 (-9.1) 270930 255466 (-10.7) 169200 169800 (0.4) 206558 204269 (-1.1) 0.000 -0.002 53.614 53.542 (-0.1) 561

OpenM1-based designs
M0 9891 75% 1000 1183 1931 (63.2) 3681 3790 (3.0) 35099 34336 (-1.7) 24790 24570 (-0.9) 29884 29575 (-1.0) -0.003 0.000 2.475 2.468 (-0.3) 298
AES 12348 75% 1000 1341 1975 (47.3) 4646 4620 (-0.5) 43004 42269 (-4.1) 30670 29980 (-2.2) 34338 33592 (-2.2) 0.000 0.000 3.273 3.263 (-0.3) 325

JPEG 54689 75% 1000 8391 13763 (64.0) 18709 19244 (2.8) 173622 166411 (-3.8) 92100 91110 (-1.1) 103257 101463 (-1.7) 0.000 -0.001 29.024 28.957 (-0.2) 1026
VGA 68729 75% 1000 7714 13132 (70.2) 26912 26823 (-0.3) 261424 251558 (-2.2) 170000 168700 (-0.8) 215218 213598 (-0.8) 0.000 -0.002 53.805 53.730 (-0.1) 515

117

Expt2-1: Detailed placement optimization for ClosedM1-based designs. Table 3.10 shows

overall results for our detailed placement optimization. Our optimizer increases the number of direct

vertical M1 routings by more than 4× compared to the initial post-routing solution, while decreasing overall

M1 wirelength. This means that we remove long vertical M1 routings that are not used for direct vertical

routing, while generating many short, direct vertical M1 routes; this results in smaller M1 wirelength and

a larger number of M1 routing segments. Along with the increase in the number of direct vertical M1

routings, we achieve up to 6.4% routed wirelength (RWL) reduction and up to 14.4% #via12 reduction

without design rule violations (DRCs).42 Total power also decreases by up to 0.9%. For half of the designs,

HPWL increases in favor of more dM1 to further reduce routed wirelength.

To study the impact of direct M1 routing on congestion reduction, we increase the initial utilization

on the AES design so as to induce congestion hotspots, which lead to design rule violations. In Figure 3.28,

we show that our optimizer has the added benefit of avoiding a substantial fraction of DRCs (#DRCs orig

versus opt in the figure). We note that even though our optimization consistently decreases #DRCs, routing

QoR is ultimately determined by the initial placement quality. Notably, placement QoR with utilization

83% from the commercial tool is worse than placement with utilization 84% in terms of DRCs. The cause

of this phenomenon is beyond our present scope.

Figure 3.28: #DRCs after optimization for AES design with various utilizations. Also shown: the number
of direct vertical M1 routings.

42Here we refer to routing DRCs. In this work, we do not consider advanced node placement rules (e.g., drain-drain abutment,
minimum implant area, etc.). However, our framework is fully compatible, and can be easily integrated, with the work of [39] and
complex sub-14nm rules.

118

Expt2-2: Detailed placement optimization for OpenM1-based designs. Our optimizer in-

creases the number of direct vertical M1 routings by around 60% compared to the initial post-routing

solution. We observe that the increase of the number of direct vertical M1 routings for OpenM1-based

designs is much smaller than that for ClosedM1-based designs. This small increase of the number of

direct vertical M1 routings results in only up to 2.2% routed wirelength reduction, and up to 4.1% #via12

reduction, without design rule violations. There can be several reasons for the lesser improvement seen for

OpenM1-based designs. Our current hypothesis is that P&R for OpenM1 is very similar to traditional P&R

in terms of pin access. In traditional P&R flows with conventional libraries, where most pins are on M1,

the M2 layer is used to access the pins. Similarly, OpenM1 cells also have pins (on or) below M1, and M1

can be used for pin access. Thus, P&R for OpenM1 can be seen as a variant of the conventional P&R flow,

where the bottom routing layer is shifted down to M1. Indeed, in OpenM1-based designs, direct vertical

M1 routing can block access to other pins, which limits the wirelength reduction. On the other hand, in

ClosedM1-based designs, direct vertical M1 routing does not block any pin access, and is thus “free” in

terms of routing resource. Compared to ClosedM1, where routed wirelength can be reduced even at the

cost of HPWL increase, OpenM1-based designs prefer smaller α to reduce HPWL. However, given our

use of a black-box commercial router, it is difficult to identify root causes of the improvement difference

between OpenM1 and ClosedM1. This is the subject of one of our ongoing studies.

3.2.5 Conclusion

In this work, we present a vertical M1 routing-aware detailed placement optimization based

on mixed-integer linear programming (MILP) for two new cell architectures in sub-10nm nodes, i.e.,

ClosedM1 and OpenM1. With our optimization, up to 6.4% (resp. 2.2%) total routed wirelength reductions

and 14.4% (resp. 4.1%) #via12 reductions are achieved for ClosedM1-based (resp. OpenM1-based)

designs, with no adverse timing impact.

We note that the model for ClosedM1 library cells might need to change since the vertical M1

routings might affect cells’ library model (change in gate capacitance, etc.). However, according to our

study with an INV cell in ASAP ASU 7nm PDK [111], the timing impact is negligible (≤ 0.1ps).43

43We modify pin shapes (increase the pin length by 32nm) in a cell layout, run parasitic extraction with Calibre xRC

119

3.3 Acknowledgments

Chapter 3 contains reprints of Changho Han, Kwangsoo Han, Andrew B. Kahng, Hyein Lee,

Lutong Wang and Bangqi Xu, “Optimal Multi-Row Detailed Placement for Yield and Model-Hardware

Correlation Improvements in Sub-10nm VLSI”, Proc. IEEE/ACM International Conference on Computer-

Aided Design, 2017; Changho Han, Andrew B. Kahng, Lutong Wang and Bangqi Xu, “Enhanced Optimal

Multi-Row Detailed Placement for Neighbor Diffusion Effect Mitigation in Sub-10nm VLSI”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(9), 2019; and Peter De-

backer, Kwangsoo Han, Andrew B. Kahng, Hyein Lee, Praveen Raghavan and Lutong Wang, “Vertical M1

Routing-Aware Detailed Placement for Congestion and Wirelength Reduction in Sub-10nm Nodes”, Proc.

ACM/EDAC/IEEE Design Automation Conference, 2017. The dissertation author is a main contributor to,

and a primary author of, each of these papers.

I would like to thank my coauthors Peter Debacker, Changho Han, Kwangsoo Han, Andrew B.

Kahng, Hyein Lee, Praveen Raghavan and Bangqi Xu, as well as the research support from Samsung

Electronics.

v2016.1 31.21 [123], and measure cell delay and slew with HSPICE I-2013.12 [130]. We observe that the delay and slew impacts
of the pin modifications are negligible (≤ 0.1ps). Further, there are only a small number of possible uses of vertical M1 incident
to a cell (this number is a function of the number of pins, and of upward versus downward alignments). In a regime where these
delay and slew changes must be modeled, each of these contexts could be characterized.

120

Chapter 4

Open Source Physical Design

Methodologies in Routing

This chapter presents two works towards a complete, end-to-end academic detailed routing flow

targeting advanced nodes. First, we present a multi-level, standard cell- and instance-based, complete,

robust, scalable and design rule-aware pin access analysis framework. The proposed framework includes

pin-based access point generation, boundary conflict-aware access pattern generation and cluster-based

access pattern selection based on dynamic programming. The work achieves 100% DRC-clean pin access

and demonstrates a superior final detailed routing solution as compared to the best known results using

the ISPD-2018 initial detailed routing benchmark suite. Second, we present a complete, end-to-end

academic detailed router, TritonRoute. Our router is capable of comprehending connectivity and design

rule constraints using industry-standard formats. Our router consists of an in-memory router database

that complies with the LEF/DEF data models, a pin access analysis engine, a track assignment engine,

a detailed routing engine, and a design rule checking engine. The detailed routing engine includes a

ripup-and-reroute-based path search engine, capable of avoiding potential design rule violations, as well as

working around existing design rule violation markers. The router is evaluated using the official ISPD-2018

contest benchmark suite, demonstrating an extremely low level of DRCs. Overall, TritonRoute improves

wirelength by up to 0.8% (avg. 0.4%), via count by up to 16.1% (avg. 9.3%) and DRCs by up to 100%

(avg. 92.0%) as compared to the known best detailed routing solutions.

121

4.1 Pin Access Analysis Framework for Detailed Routing

Pin accessibility has been one of the major crucial issues [3][84] in advanced node enablement.

Various related topics have been widely studied in recent works, ranging from detailed placement optimiza-

tion, standard cell layout optimization and new design rule-aware access model. (See Section 4.1.1 below

for our definition.)

The works of [69][107] perform detailed placement optimization using a global routing solution

as guidance, with pin accessibility modeled only in the form of pin density. Ding [15] develops a dynamic

programming and linear programming-based detailed placement optimization considering pin access per

instance pin. Ye [104] proposes an integer linear programming formulation to solve the unidirectional cell

layout optimization under middle-of-line structure. However, the above models are over-simplified with

assumptions of 1D gridded design and distance-based cost function, with no precise awareness of design

rules. Recently, Xu [100][102] develops a series of pin access planning and regular routing techniques

for self-aligned double patterning. These works, still under the assumption of 1D gridded design, are the

first open literature trying to address both cell-level and instance-level pin accessibility. However, the

methodology has a few drawbacks: (i) there is no robust flow to generate “hit points” given any 1D/2D,

gridded/non-gridded design, with or without specific (e.g., self-aligned double patterning) design rules; (ii)

the flow is unrealistic in that the number of “hit point combinations” is far too large, resulting in a complex

lookup table that is impractical to use; and (iii) the benchmark suite is not public and includes testcases

only up to 12K cells. These small testcases nevertheless consume as much as 800 seconds of wall time in

multithreaded mode, which is a prohibitive runtime cost for real industry testcases and use contexts.

To our knowledge, no works present a complete, fully defined pin access analysis flow, or

demonstrate robustness with a real detailed routing contest benchmark suite. In this work, we present a real,

robust, scalable and design rule-aware dynamic programming-based pin access analysis framework that

performs both standard cell-based and instance-based pin access analysis. With the integration to the open

source TritonRoute [54][126], we demonstrate superior solution quality over the best known results [60]

using the official ISPD-2018 benchmark suite [73]. Our main contributions are summarized as follows.

122

• We propose a multi-level, standard cell-based and instance-based pin access analysis framework

with intra-cell and inter-cell pin accessibility awareness.

• We propose a robust and design rule-aware pin access point generation methodology for unique

instances, supporting both planar and via access, and both on-track and off-track access.

• To achieve intra-cell pin compatibility, we propose a dynamic programming-based, design rule and

boundary conflict-aware access pattern generation methodology for unique instances.

• We propose a dynamic programming-based access pattern selection methodology for standard cell

instance clusters, which minimizes inter-cell pin access conflicts. To the best of our knowledge, this

proposed framework is the only scalable solution in the open literature.

• We improve the pin access over the open-source TritonRoute v0.0.6.0 [127] (the latest release as of

this writing), achieving design rule check (DRC)-clean via access for all of ISPD-2018 benchmark

suite testcases. With the integration to TritonRoute, we demonstrate superior solution quality over

the best known results using the official ISPD-2018 benchmark suite.

The remainder of this work is organized as follows. Section 4.1.1 provides background information

for pin access. Section 4.1.2 describes our pin access methodology. Section 4.1.3 presents our experimental

setup and results. Section 4.1.4 gives conclusions and directions for future work.

4.1.1 Preliminaries

In this section, we describe fundamental concepts that underlie pin access analysis: unique instance,

access point, access pattern, and coordinate types.

Unique Instance

A unique instance is defined by a signature, which consists of (i) the cell master of the instance

(e.g., NANDX1, NORX4, etc.); (ii) the orientation of the instance (e.g., R0, R180, MX, MY); and (iii)

offsets to all track patterns that exist in the design DEF. Two instances having different signatures require

separate intra-cell pin access analysis flows. Figures 4.1(a) and (b) illustrate two different unique instances.

123

Although the two instances share the same cell master and orientation, they are considered as different

unique instances because they have different offsets to routing track patterns, resulting in different on-track,

off-track conditions for the same pin access location (relative to the origin of the cell master). Thus,

these instances require separate intra-cell pin access analyses. By contrast, two instances having the same

signature would have exactly the same intra-cell pin access analysis result. Thus, we only need to perform

intra-cell pin access analysis once for each unique instance.

Figure 4.1: Illustration of two different unique instances that have the same cell master and orientation,
but different offsets to track patterns.

Figure 4.2: Illustration of access points.

Access Point

For each pin, an access point is an (x, y) coordinate on a metal layer where the detailed router

ends routing. Each access point stores from which direction the router can access the pin. For example, in

Figure 4.2, pin A has an access point indicating the up direction. We use a via12 enclosure to show that

124

an up-via (i.e., a via connecting the pin to the upper metal layer) is valid to escape from this access point.

Similarly, pin B (resp. C) has an access point indicating that routing to the east (resp. south) is valid. In

our implementation, Each access point may indicate multiple valid access directions. For the up direction,

we also store which vias are valid to use, among which one via is primary (preferred to use). The access

point must be on the pin shape.

Access Pattern

For each unique instance, an access pattern consists of one access point per pin, so that the primary

vias from these access points are compatible (i.e., DRC-clean) with each other.

Coordinate Type

To accommodate a broad range of technology nodes, we define four coordinate types (and

respective cost values, given in parentheses) as follows.

• An on-track (0) coordinate is on a preferred or non-preferred routing track. We always use the

upper-layer preferred direction routing tracks as the non-preferred direction routing tracks for the

current metal layer so that the on-track up-via access aligns to both the current and its immediately

above metal layers.

• A half-track (1) coordinate is at the midpoint between two neighboring routing tracks.

• A shape-center (2) coordinate is at the midpoint between the left and right (or top and bottom)

coordinates of a rectangular pin shape. If the pin consists of polygon(s), we generate the maximum

rectangles of the polygon(s) (all overlapping rectangles that are maximal in area) to obtain shape-

center coordinate(s). We skip the shape-center x (resp. y) coordinate if the x-span (resp. y-span) of

the rectangle touches at least two tracks; we do this to reduce the occurrence of unique, off-track

coordinates.

• An enclosure boundary (3) coordinate satisfies the via-in-pin requirement for an up-via access and

the via enclosure alignment with the pin shape boundary.

125

Figure 4.3 illustrates examples of the coordinate types for a horizontal preferred direction. In

Figures 4.3(a) and (b), we see that up-vias at the on-track and half-track coordinates cause minimum step

DRCs. In such cases, we need shape center or enclosure boundary access points although they are off-track

as illustrated in Figures 4.3(c) and (d). The above four types of coordinates are concise, while satisfying

a broad range of technology nodes – from mature nodes where 2D, off-track pin access is required, to

advanced nodes where 1D, on-track pin access is required. The cost serves as the priority (the lower, the

better) when we loop through different types of coordinates to generate access points (cf. Lines 3 and 4 in

Algorithm 10, in Section 4.1.2 below).

Figure 4.3: Illustration of four y-coordinate types, overlaid with same-layer up-via enclosure at the access
point: (a) on-track; (b) half-track; (c) shape-center; and (d) enclosure boundary. Only (c) and (d) are

DRC-clean.

4.1.2 Methodology

In this section, we describe our methodology to analyze pin accessibility for detailed routing. We

perform three analyses in a multi-level sequence of three steps: (i) pin-based access point generation;

(ii) unique instance-based access pattern generation; and (iii) cluster-based access pattern selection.

The first step enumerates valid access points per unique instance, without consideration of intra-cell or

inter-cell pin access compatibility. The second step picks good access points per pin within a given unique

instance, forming an access pattern, within which intra-cell pin accesses are mutually compatible. The

third step selects the best access pattern for all instances in the design, with awareness of inter-cell pin

compatibility.

126

Step 1: Pin-Based Access Point Generation

Although we could enumerate all coordinate types to generate every access point per pin, in a

reasonable detailed routing-driven pin access analysis framework the number of generated access points

per pin should be neither too small nor too large. Too small a number of access points will overly restrict

the solution space in detailed routing, resulting in degraded solution quality. On the other hand, given the

heuristic, cost-based nature of modern detailed routing [60][126], too large a number of access points will

provide excessive options (e.g., many off-track access points) for the detailed router, again resulting in

degraded solution quality. Thus, the access point generation flow must be robustly designed to generate

a proper amount of access points. In our flow, for example, to generate an access point at (x, y) on

Metal1, where the preferred routing direction is horizontal, we consider all four coordinate types for the y

coordinate (corresponding to the preferred direction), but only consider the first three coordinate types for

the x coordinate (corresponding to the non-preferred direction) to reduce unique, off-track coordinates.

We explain below the determination of “proper amount” after the description of Algorithm 10.

Algorithm 10 Pin-based access point generation
1: Inputs: pin, track patterns tps, viadefs vias
2: Output: valid access points aps
3: for all nonPreferredDirCoordType t1 ∈ {0, 1, 2} do
4: for all preferredDirCoordType t0 ∈ {0, 1, 2, 3} do
5: tmpAps← genAccessPoint(pin, tps, vias, t0, t1)
6: for all ap ∈ tmpAps do
7: if isValid(ap) then
8: aps += ap
9: end if

10: end for
11: if |aps| ≥ k then
12: return
13: end if
14: end for
15: end for

Algorithm 10 describes the pin-based access point generation. In Lines 3 – 4, we loop through

different combinations of x and y coordinates sequentially according to their cost. For example, we first

generate all (on-track, on-track) points, then (off-track, on-track) points, etc. In Line 5, for each type of

coordinates, we first generate all access points. Then in Lines 6 – 10, we add all valid access points to the

127

output. An access point is valid if a via can be dropped DRC-free to access the pin. We use an accurate

DRC engine similar to the one used in [126] to perform the design rule check, considering all design rules

existing in the specific design. Next, in Lines 11 – 13, we check whether we have generated enough access

points for a pin, and early-terminate the procedure once the number of generated access points is equal to

or greater than our required number k. Given the above, all access points of given coordinate types are

generated, DRC-checked and added before we try to early-terminate the procedure. Therefore, the number

of access points generated may be slightly larger than k. This behavior allows more access points to be

generated when we are given a large pin shape, while also reducing the occurrence of unique, off-track

coordinates. In our implementation, k = 3 for both standard-cell and macro-cell pins.

Step 2: Unique Instance-Based Access Pattern Generation

For each unique instance, we now describe how to pick a good access point per pin to form an

access pattern in which the chosen access points are compatible with each other. Figure 4.4 illustrates our

unique instance-based access pattern generation flow. The access pattern generation mainly consists of (i)

pin ordering, (ii) graph construction, and (iii) dynamic programming-based pattern generation.

Figure 4.4: Iterative access pattern generation flow.

128

Pin ordering. Pin ordering is a preparation step for graph construction and dynamic programming-

based pattern generation. Given a unique instance and an ordering of the pins in the unique instance, we

assume only the neighboring ordered two-pin pairs might have conflicting access points (i.e., the two

access points cause DRCs). For example, if we have a pin order of <A, B, C, Z>, then our assumption is

that only <A, B>, <B, C> and <C, Z> could have conflicting access points, while <A, C>, <A, Z>

and <B, Z> should not have conflicting access points. In this way, the access patterns can be generated

within reasonable amount of time, without the need to perform design rule check among all two-pin pairs.

For corner cases where non-neighboring two-pin pairs have conflicting access points, we can still avoid

such cases by a post-processing method, described at the end of the discussion below of DP-based access

pattern generation. As shown in Section 4.1.3, this method works well in all ISPD-2018 benchmark suite

testcases.

For a pin, if the averaged coordinates of all its access points are (xavg, yavg), then given a unique

instance, we sort the pins according to (xavg + α · yavg). Figure 4.5 illustrates an example of unique

instances with four pins. If α = 0, then the pin ordering is equivalent to the ordering of xavg. Thus,

we obtain a pin order of <A, B, C, Z>. The first and last pin according to the pin order are boundary

pins, which receive special treatment in access pattern generation as described below. Generally, given a

reasonably small α (α < 1), the first and last pins are the leftmost and the rightmost pins in the unique

instance, respectively. In our implementation, we use α = 0.3.

Figure 4.5: Pin ordering.

129

Graph construction. We build a graph for dynamic programming. Figure 4.6 shows the directed

graph corresponding to the unique instance shown in Figure 4.5, assuming α = 0. All edges are directed

from left to right in the figure. The leftmost (resp. rightmost) vertex in the graph is the (virtual) starting

(resp. ending) vertex, which serves as the starting (resp. ending) point in the dynamic programming that

we describe below. Vertices between the starting and ending vertices represent access points; these are

grouped by the owner pin of the access point, and ordered sequentially following the aforementioned pin

order. We build complete bipartite graphs over neighboring groups’ respective vertex sets. A path from

the starting vertex to the ending vertex visits one access point vertex per pin. The visited access points

represent an access pattern.

Figure 4.6: Graph for dynamic programming-based access pattern generation.

DP-based access pattern generation. Algorithm 11 describes the procedure of dynamic programming-

based access pattern generation. The input is the graph. We describe all access points according to the pin

index (m) and access point index (n). For example, access point {3,2} in Figure 4.6 is the second access

point (n = 2) of the third pin (m = 3). Line 3 initializes the dynamic programming array dp. The array

stores the minimum cost up to the current vertex, and its previous vertex. The minimum cost is initialized

to infinity for every vertex except for the source. In Lines 4 – 17, we loop through all vertices (access

points) of the current pin. For each vertex of the current pin, we find one vertex from the previous pin,

130

from which the total path cost is minimized. Line 9 gets the edge cost from one previous access point

vertex to the current access point vertex. Line 10 gets the total cost. The total path cost equals the previous

path cost plus the edge cost. In Lines 11 – 14, we update the path cost up to the current vertex if the path

cost is smaller than the existing path cost stored in the vertex. We also update the previous vertex, from

which the path comes from, so that we can trace back the path to obtain the access pattern solution. Line

18 traces back the dp array and returns the access pattern with the lowest cost. We perform Algorithm 11

several times to generate up to three access patterns. Each time, the edge costs are slightly different so as

to obtain different access patterns.

Algorithm 11 Access pattern generation

1: Inputs: graph G(V,E)
2: Output: access patterns APs
3: Initialize array dp[m][n] G(V,E)
4: for all currPinIdx m do
5: for all currApIdx n do
6: for all prevApIdx n′ do
7: prev← aps[m− 1][n′]
8: curr← aps[m][n]
9: edgeCost← getEdgeCost(prev, curr)

10: pathCost← prev.cost + edgeCost
11: if pathCost < curr.cost then
12: curr.cost← pathCost
13: curr.prev← prev
14: end if
15: end for
16: end for
17: end for
18: APs← traceBack()
19: return APs

Algorithm 12 details the edge cost calculation. The edge cost calculation is boundary conflict-

aware (BCA). In Lines 3 – 6, we assign a penalty cost to the boundary pin (the first and last pins according

to the pin order) access points that have been selected in existing access patterns. This helps to generate

access patterns with different boundary pin access points. Thus, two neighboring instances have more

flexibility choosing compatible access patterns, as described in Section 4.1.2. Lines 7 – 8 check whether

the two access points have design rule violations, and apply design rule violation cost if two access points

are not compatible. Lines 9 – 10 further look back one more pin, and check whether the two access points

131

(indexed prev − 1 and curr) have design rule violations. This step generates a history-based cost to avoid

DRCs between non-neighboring access points. We call this step history-aware optimization. We note

that since there can only be one intermediate solution when we reach node curr, the nodes prev and

prev − 1 are always deterministic, and thus the cost of each edge is still fixed. Line 12 calculates the edge

cost according to the quality metric of the two access patterns if neither the penalty nor the violation cost

applies.

Algorithm 12 Edge cost calculation
1: Inputs: previous dp array vertex prev current dp array vertex curr
2: Output: edge cost cost
3: if isUsed(prev) and prev ∈ boundaryAp then
4: edgeCost = penaltyCost
5: else if isUsed(curr) and curr ∈ boundaryAp then
6: edgeCost = penaltyCost
7: else if isDRCClean(prev, curr) then
8: edgeCost = drcCost
9: else if isDRCClean(prev-1, curr) then

10: edgeCost = drcCost
11: else
12: edgeCost = apCost(prev) + apCost(curr)
13: end if
14: return edgeCost

Finally, for all the access patterns that we generate, we use a DRC engine similar to the one used

in [126] to validate whether there exist unseen DRCs, i.e., between non-neighboring groups of access

points, or between multiple objects. To accelerate the access pattern generation, only up-vias are included

for DRC.

Step 3: Cluster-Based Access Pattern Selection

Given access patterns per unique instance, we select the best access patterns per instance so that

the access patterns of neighboring instances are compatible. Our cluster-based access pattern selection

is performed on a continuous chunk of instances. We first group all instances according to their rows,

and each continuous chunk of instances (no empty site in between) forms a cluster. We only consider the

access pattern compatibility within a cluster while assuming that the neighboring clusters within or across

rows always allow compatible access patterns. The cluster-based access pattern selection works similarly

132

to the access pattern generation. The pin ordering step, in Algorithm 11, is now replaced with the instance

ordering step, which naturally follows the left-to-right instance ordering. The graph construction works the

same way except that now each vertex represents an access pattern of an instance. Finally, the dynamic

programming-based optimization selects the best access pattern per instance to minimize the total cost.

To accelerate the procedure, only up-vias of boundary access points (pin A and pin Z of each instance in

Figure 4.7(a)) are included for DRC.

Figure 4.7: Illustration of (a) ordered cell instances and (b) corresponding graph.

4.1.3 Experiments

In this section, we present our experimental setup and results.

133

Table 4.1: Testcase information [73].

Benchmark #Standard cell #Macro cell #Net #IO pin #Layer Die size Tech. node
ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

Experimental Setup

We implement our pin access analysis in C++ and integrate our framework with the open-source

TritonRoute [126]. We perform all our experiments using the official ISPD-2018 initial detailed routing

contest benchmark suite [73]. Table 4.1 summarizes the testcase information. These testcases are real

industry designs with up to 290K standard cells in two technology nodes. We note that these testcases

use real industry LEF-based design rule syntax, which is much more realistic than the testcases used

in previous works [100][102]. Currently, no pin access framework targets the ISPD-2018 benchmark

suite. To our best knowledge, no pin access framework has ever demonstrated enough robustness and

scalability in publicly accessible, large benchmark testcases. Thus, we compare our work with the pin

access framework from the latest release of the open-source TritonRoute v0.0.6.0 [127]. Furthermore, to

enable a broader horizontal comparison to other frameworks, we also make necessary improvements to

TritonRoute in addition to the integration of pin access analysis. We compare final routed designs to the

best known academic detailed router – Dr. CU 2.0 [60]. All our experiments are performed using a Xeon

2.6GHz server in single-threaded mode. We perform three experiments.

• Experiment 1: We compare the quality of access points for all unique instance pins (without

consideration of intra-cell or inter-cell pin access compatibility) from this work with that from

TritonRoute v0.0.6.0.

134

Table 4.2: Results for Experiment 1: comparison between the original TritonRoute (TrRte) and our pin
access analysis framework (PAAF) for all unique instance pins (without considering intra-cell or inter-cell

pin access compatibility) in terms of total #access points generated (Total #APs), #access points with
DRCs (#Dirty APs), and runtime.

Benchmark #Unique Total #APs #Dirty APs Runtime (s)
Inst TrRte PAAF TrRte PAAF TrRte PAAF

ispd18 test1 182 2320 3102 0 0 4 2
ispd18 test2 222 3638 4867 1 0 8 4
ispd18 test3 227 3672 4970 1 0 8 4
ispd18 test4 2725 98220 99356 416 0 120 63
ispd18 test5 2733 76290 80027 385 0 142 71
ispd18 test6 2886 84012 87876 469 0 163 78
ispd18 test7 148 3982 4152 4 0 7 3
ispd18 test8 414 11814 12316 10 0 20 12
ispd18 test9 404 11832 12342 12 0 21 11

ispd18 test10 426 11749 12254 12 0 20 13

• Experiment 2: We compare the quality of access points for all instance pins (with consideration of

intra-cell and inter-cell pin compatibility) from this work with that from TritonRoute v0.0.6.0.

• Experiment 3: By integrating our framework with the open-source TritonRoute and making ad-

ditional improvements, we enable a preliminary comparison of pin accesses from the final routed

design, and also of the final routed #DRCs, between the original TritonRoute, the best known

published result from Dr. CU 2.0 [60][116], and our pin access analysis framework. We further

demonstrate the capability to extend our PAAF into 14nm and below nodes.

Experimental Results

Experiment 1. Table 4.2 shows the experimental results of the quality of access points for all

unique instance pins, between the original TritonRoute (TrRte) and our pin access analysis framework

(PAAF). This experiment only evaluates the quality of each access point, but does not consider intra-cell or

inter-cell pin access compatibility. Total #APs means the total number of access points generated. #Dirty

APs means #access points with DRCs. Ideally, a robust pin access point generation methodology should

not generate any access points with DRCs. In ispd18 test6, with nearly 3K unique instances, our method

135

generates 90K access points, all DRC-clean, within 80 seconds in single-threaded mode. Overall, our

method generates only DRC-clean access points, while the original TritonRoute produces several hundreds

of dirty access points. Also, our method generates more access points, while consuming less runtime.

Table 4.3: Results for Experiment 2: comparison between the original TritonRoute (TrRte) and our pin
access analysis framework (PAAF) for all instance pins (considering intra-cell and inter-cell pin access

compatibility) in terms of #pins without a DRC-clean access point (#Failed Pins), and runtime. Total #pins
means the total number of all instance pins (with net attached).

Benchmark Total #Pins
#Failed Pins Runtime (s)

TrRte
PAAF

TrRte
PAAF

w/o BCA w/ BCA w/o BCA w/ BCA
ispd18 test1 17203 31 0 0 4 3 5
ispd18 test2 157990 665 0 0 7 5 8
ispd18 test3 158110 663 0 0 7 5 7
ispd18 test4 316652 1305 0 0 95 84 94
ispd18 test5 316220 2529 80 0 107 85 98
ispd18 test6 474300 4048 0 0 113 96 121
ispd18 test7 790550 7816 0 0 8 7 23
ispd18 test8 790550 7816 0 0 20 17 39
ispd18 test9 790550 7816 0 0 20 17 38
ispd18 test10 790550 7816 0 0 21 18 49

Experiment 2. Table 4.3 shows the experimental results of the quality of access points for all

instance pins, between the original TritonRoute (TrRte) and our pin access analysis framework (PAAF).

We have two setups for PAAF. The first setup is “without BCA” (w/o BCA): we generate only one access

pattern per unique instance, hence the access pattern is not boundary conflict-aware and there could be

inter-cell pin accessibility issues. The second setup is “with BCA” (w/ BCA): we generate up to three

access patterns per unique instance. Total #pins means the total number of all instance pins (with net

attached). Since all of these pins must be connected in detailed routing, we need a good (i.e., DRC-clean)

access point per pin. #Failed pins means the number of pins without a DRC-clean access point. We

can see that the original TritonRoute fails to provide legal pin access for thousands of instance pins,

while our PAAF can generate intra-cell and inter-cell DRC-clean pin access. For up to 790K instance

pins, PAAF takes less than a minute of runtime in single-threaded mode. Note that runtime is one of the

most important aspects of a pin access analysis framework in physical design, especially for support of

136

placement optimizations (i.e., detailed placement, sizing, buffering), where frequent changes in placement

require a tremendous amount of inter-cell pin access analysis.

Experiment 3. By integrating our framework with the open-source TritonRoute v0.0.6.0 [127]

(the latest release as of this writing) and making additional improvements, we show a preliminary result of

pin accesses from the final routed design, and also of the #DRCs for the final routed design, for testcase

ispd18 test5. Figure 4.8 compares two pin accesses from the final routed design, between Dr. CU 2.0

and our PAAF. As noted above, PAAF is capable of generating DRC-clean pin access for all instance

pins. By using our robust PAAF, we surpass the best known academic detailed routing result in terms of

#DRCs. The current best known result comes from Dr. CU 2.0 [60][116], with 755 DRCs. By contrast, we

complete detailed routing with only two DRCs, and with no pin access issues remaining.

Figure 4.8: Comparison of pin access between Dr. CU 2.0 and PAAF: (a) Dr. CU 2.0 (Case 1), (b) PAAF
(Case 1), (c) Dr. CU 2.0 (Case 2), and (d) PAAF (Case 2). Dashed red boxes are DRCs. Testcase:

ispd18 test5.

We also perform a preliminary study on pin accessibility using a commercial 14nm library. We

perform our experiments using the AES testcase from OpenCores [124] (20K instances, 779 unique

instances). Our preliminary study shows that our PAAF successfully generates and selects DRC-clean

access points for all 57K instance pins in a runtime of 9 seconds. An example of standard cell pin access is

shown in Figure 4.9.

137

Figure 4.9: Illustration of pin accesses in 14nm. Note that off-track pin access is enabled automatically in
PAAF.

4.1.4 Conclusion

In this work, we present a multi-level, standard cell- and instance-based, complete, robust, scalable

and design rule-aware pin access analysis framework. We describe our robust pin-based access point

generation, boundary conflict-aware access pattern generation and cluster-based access pattern selection

based on dynamic programming. We achieve 100% DRC-clean pin access and demonstrate a superior

final detailed routing solution as compared to the best known results using the ISPD-2018 initial detailed

routing benchmark suite.

4.2 TritonRoute: The Open Source Detailed Router

Detailed routing is a dead-or-alive critical element of advanced node enablement. New technology

nodes come with smaller feature sizes, while fundamental physical (lithographic patterning, CMP, reliability,

variability, etc.) and circuit (crosstalk, delay, etc.) limitations remain. As a result, ever-more complex

design rules must be comprehended and satisfied at the detailed routing stage, greatly challenging routability

as well as the architecture and strategy of the detailed router itself.

Due to the high complexity and enormous solution space for the VLSI routing problem, the routing

is typically split into global routing and detailed routing stages. In global routing, the routing region is

divided into rectangular grid cells and represented using a coarse-grained 3D routing graph. Capacities and

various constraints are assigned to the edges and vertices in this 3D routing graph so that overall routing

138

topology and layer assignment can be optimized considering routability, timing, crosstalk, power, etc. The

ensuing detailed routing stage attempts to realize the segments and vias according to the global routing

solution, while minimizing design rule violations.

The detailed routing problem has been extensively studied for more than five decades. The

fundamental algorithms (e.g., Lee’s algorithm, unidirectional and bidirectional A* search, ripup-and-

reroute paradigm, etc.) and problem formulations (e.g., channel routing and switchbox routing) have

largely remained intact in commercial tools for several decades; see [7] for a thorough review. These

algorithms and formulations are elaborated to meet real-world requirements (design-rule correctness,

quality of result, scalability, and turnaround time) and widely deployed in today’s commercial tools that

support foundry N7, N5 or even N3 nodes.

However, only a few academic works [27] even attempt to present an end-to-end detailed routing

flow, and almost no works make claims to viability in the real-world IC physical design (P&R) context.

Since most detailed routing research focus on different objectives, such as crosstalk or new-technology

contexts, comparison between these works is difficult. Further, direct application of academic codes to

modern industrial benchmarks has many hurdles, especially given that commercial tools and industrial

designs satisfy far more, and more complex, design rules than any academic tools.

Given the above, it is a highly significant milestone for the field that the ISPD-2018 contest,

on the subject of initial detailed routing, has recently exposed industrial detailed routing challenges

and benchmarks to the academic community [73][122]. The ISPD-2018 benchmark suite provides 10

testcases in 45nm and 32nm nodes, with up to 290K standard cells and 182K nets. These designs are

industrial benchmarks – including large memory cells, off-track pin access, IO ports, and power and

macro blockages – with realistic design rules offered in industry-standard input/output formats while

keeping problem complexity tractable to academic researchers within the four-month contest timespan.

However, even two full years after the initial release of the ISPD-2018 contest, there are only a few

works [9][10][30][54][60][91] capable of delivering any kind of result; these results have nearly a thousand,

if not thousands, of design rule check violations (DRCs) for nearly every testcase. Up until now, no work

has come close to approaching the solution quality we expect from commercial detailed routers, although

almost every work utilizes a variant of the five-decades-old path search algorithm.

139

Based on the ISPD-2018 Initial Detailed Routing contest, the present work describes TritonRoute,

an open source detailed router for advanced VLSI technologies. Our main contribution is an end-to-end

(i.e., complete, and with collaterals visible in a permissively open-sourced repository) detailed routing

framework that aims and achieves beyond all existing academic detailed routers. Highlights of our work

are summarized as follows.

• We propose an end-to-end detailed routing scheme. Our proposed scheme is capable of comprehend-

ing connectivity constraints (i.e., opens and shorts) and design rule constraints (i.e., spacing tables,

end-of-line (EOL) spacing, minimum area and cut spacing).

• We build an in-memory router database that complies with LEF/DEF data models. This non-contest-

driven code infrastructure enables future development and leverage of our open-source code towards

deeper core optimization, more complete design rule support, and other enhancements.

• We present a number of key ideas in addition to the well-known A*-based path search. Transparency

of our descriptions is aided by all implementation source codes being released under a permissive

open source license.

• We evaluate our router using the official ISPD-2018 benchmark suite, and show that we reach an

unprecedented, extremely low level of DRCs (< 20) in seven of 10 testcases, which is a 99.3%

reduction of DRCs on average as compared to the known best detailed routing solutions from all

published academic detailed routers. For the remaining three testcases, we reduce DRCs by 75.1%

on average, and by 60.0% at a minimum. Overall, compared to the known best detailed routing

solutions, TritonRoute improves wirelength by up to 0.8% (avg. 0.4%), via count by up to 16.1%

(avg. 9.3%), and DRCs by up to 100% (avg. 92.0%).

• To the best of our knowledge, we are the first and the only open source gridded detailed router which

is capable of delivering a DRC-clean detailed routing solution in sub-65nm technology nodes.

The remainder of this work is organized as follows. Section 4.2.1 provides a brief overview of

previous works in the open literature. As noted above, such literature is sparse as far as it gives insight into

140

industry routing tools and how they address modern routing challenges. Section 4.2.2 presents our router

database. Section 4.2.3 details our overall detailed routing flow. Section 4.2.4 presents our detailed routing

methodology. Section 4.2.5 presents our experimental results using the official ISPD-2018 benchmark

suite. Section 4.2.6 gives conclusions.

4.2.1 Related Work

As surveyed in [7], previous works on detailed routing can be categorized into fundamental and

conventional algorithms, and recent developments. Further, we summarize the recent works targeting the

ISPD-2018 initial detailed routing contest.

Fundamental and conventional algorithms. Lee [57] proposed the first maze routing algorithm,

i.e., a breadth-first search that guarantees to find a minimum-cost path between two terminals if a path

exists. Use of “best-first search”, also known as A* search [78], sometimes in its bidirectional [83] form,

enables maze-based search to focus itself toward desired targets, and reduces effort needed to find a

minimum-cost feasible path. Hadlock [35] and Soukup [89] applied speedups to Lee’s algorithm and

others applied the line-search paradigm [43] to improve time and space efficiency as compared to Lee’s

and A* algorithms. Hetzel [42] developed a sequential routing approach using a shortest path algorithm

with respect to euclidean distance. Specialized contexts such as channel routing [25] and switchbox

routing [72], along with general frameworks such as multicommodity flow [88] and ripup-and-reroute [95],

have respective sub-literatures and remain as fundamental building blocks of the detailed router today

(cf. [27]).

Recent developments. More recent academic works on detailed routing focus on certain aspects

of the modern routing challenge, mainly to address issues arising with advanced nodes. [59] gives an

excellent summary of the academia-industry gap for detailed routing as of 2003; much of this gap remains

today. Examples of focused recent works include Nieberg [77], which proposes techniques for gridless

pin access in detailed routing. Xu [102] proposes pin-access planning and regular routing for self-aligned

double patterning (SADP). The works of [16][20][26][68] address the detailed routing problem in an

SADP process context. MANA [6] introduces an end-end separation and minimum wire length-aware

shortest path algorithm. Han [38] develops a framework to reduce various DRCs in advanced nodes using

141

multicommodity flow-based integer-linear programming. BonnRoute [1][27] and RegularRoute [108] are

two works prominent in the recent literature that present more complete portraits of overall detailed routing

solutions.

ISPD contest-based works. Recently, a few works in the open literature attempt to address the

gap between modern industrial designs and academic detailed routing flows, based on the ISPD-2018

initial detailed routing contest [73]. Sun [91] presents a multi-stage ripup-and-reroute flow for detailed

routing. Kahng [54] proposes an integer linear programming (ILP)-based parallel intra-layer and sequential

inter-layer routing flow. Chen [9][10] and Li [60] propose a detailed routing flow using min-area-captured

path search on a sparse grid graph. Gonçalves et al. [29][30] propose a tunnel-aware A* lower bound,

and a design-rule-aware path search algorithm for detailed routing. Although most recent works use

correct-by-construction or safe-by-construction approaches to prevent DRCs, none of them is capable of

delivering decent solution quality (that is, in a practical sense) due to the complexity of developing the

necessary router infrastructure.

4.2.2 Database

Table 4.4: Database objects from LEF.

Object LEF Keyword Meaning
tech back-end-of-line metal stacks
layer LAYER metal or cut layers
viadef VIA via definitions

constraint

WIDTH default routing width
AREA minimum area rule
SPACING spacing rule
SPACINGTABLE spacing table rule
MINIMUMCUT minimum cut rule
MINWIDTH minimum width rule
MINSTEP minimum step rule

block MACRO standard or macro cells
term PIN standard or macro cell pin
blockage OBS standard or macro cell blockage
pin PORT physical pin
rect RECT rectangle
polygon POLYGON polygon

142

Figure 4.10: Major database structures.

In this section, we list all major objects and structures in the routing database. In building this

database, we follow the LEF/DEF [119] data model, and reuse the naming convention from OpenAc-

cess [128] as much as possible. The objects from LEF are summarized in Table 4.4, and the objects from

DEF are summarized in Table 4.5. The structure of the database is described in Figure 4.10. The database

is an in-memory, flattened physical design database. In the top level, the database consists of a technology

library, a top block and several reference blocks.

Technology library

Technology library stores all metal and cut layers, viadefs, and design rule constraints. A back-

of-end-stack layer consists of basic layer information, i.e., type, direction, pitch, offset, as well as all

its applied design rule constraints. A viadef holds one or more shapes (rectangles or polygons) on two

consecutive metal layers with shape(s) in the middle cut layer, realizing physical connection between

neighboring metal layers at the same x-y coordinate. We summarize the design rules that we support in

Table 4.6. For definitions, examples, and detailed handling methodology of each rule, please refer to [120].

143

Table 4.5: Database objects from DEF.

Object DEF Keyword Meaning
block DESIGN block-level design
inst COMPONENTS instance of standard or macro cell
term PINS block-level IO pin
blockage BLOCKAGES block-level blockage

net
SPECIALNETS special net
NETS regular net

instTerm points to a term
instBlockage points to a blockage
pathSeg routing segment
via routing via
patchMetal routing patch rectangle

Block

The top block describes the flattened logical and physical connections, following the DEF model.

There are four major types of objects: term, blockage, instance and net. A reference block is a standard

or macro cell from LEF, having the same data structure as the top block, except that only terms and

blockages are populated.

Terms are IO pins for the top block, and standard or macro cell pins for the reference blocks. Each

term consists of one or more physical pins. Each pin consists of one or more physical shapes across one or

more metal and cut layers.44

Blockages are user-defined routing blockages from DEF BLOCKAGES for the top block, and are

from LEF OBS statement for reference blocks. We reuse the pin object to hold physical shapes of the

blockages.

Instances are from DEF COMPONENTS. Each instance is an instantiation of either a standard

cell or a macro block, holding zero or more instance terms and instance blockages. An instance term

points to the related term from its reference block. An instance blockage points to the related blockages

from its reference block.
44A term including more than one pin with “MUSTJOIN” keyword indicates that the two pins should be physical connected in

detailed routing. In this work, we assume that each term holds one physical pin to simplify the description.

144

Table 4.6: Design rules.

// metal layer
WIDTH defaultWidth ;
[MINWIDTH minWidth ;]
SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;

[SPACING minSpacing SAMENET [PGONLY] ;]
[MINSTEP minStepLength [MAXEDGES maxEdges] ;]
[SPACING eolSpacing ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES] ;] ...
// cut layer
{SPACING cutSpacing [CENTERTOCENTER]
[ADJACENTCUTS numCuts WITHIN cutWithin [EXCEPTSAMEPGNET]
| PARALLELOVERLAP
| AREA cutArea] ;}...

[SPACING cutSpacingSN [CENTERTOCENTER] SAMENET ;]

Nets are from DEF NETS and SPECIALNETS. A net stores its logical connections, and its

physical connections, i.e., pathSegs, vias and patchMetals. A pathSeg is a point to point routing wire on

a specific layer, defined with the start and end points, width and extensions. A via is an instantiation of

viadef at a specific coordinate. A patchMetal is a patching rectangular metal used to satisfy various design

rules.

Other types of objects in a block include boundary, trackPattern, gcellPattern, marker, etc.

The gcellPattern object defines the global routing cells (GCells) [19] in 2D grids;45 and marker object

represents a design rule check (DRC) violation, including the bounding box, layer, violation type and

source objects. In our implementation, we also build several assisting objects and structures. Some of the

procedures are described in Section 4.2.3. A complete picture and details of the database implementation

are visible at [126].

145

Figure 4.11: Overall flow.

4.2.3 Flow

In this section, we describe the detailed routing flow. As shown in Figure 4.11, the inputs to the

router are LEF, DEF and guide files. LEF and DEF files are industry-standard formats. The route guide file

serves as the global routing solution. Given the inputs, we first set up the design database. Next, we take

several data preparation steps. Then, we perform track assignment, multiple iterations of detailed routing

and output a routed DEF.

Data preparation

The data preparation step processes the design database to generate assisting structures, including

via ordering, guide processing, region query, DRC LUT generation and pin access analysis.

Via ordering is the step to select default viadef(s) used for pin access and detailed routing. We

sort all viadefs according to (i) number of cuts; (ii) default via property; (iii) enclosure direction; (iv)
45In our work, we derive the GCell size based on global routing solution, in the “route guide” format of ISPD18, ISPD19 and

ICCAD19 contests. GR solutions in practice (to our knowledge) commonly use ∼15 M2 tracks as a typical GCell dimension.

146

enclosure area; and (v) enclosure width. In detailed routing, we only use the minimal-enclosed default

single-cut viadef, with both lower and upper-layer enclosure along the preferred routing direction. In pin

access analysis, in addition to the viadef we use in detail routing, we also use the minimal-enclosed default

single-cut viadef, with the lower-layer enclosure orthogonal to the preferred routing direction, and the

upper-layer enclosure along the preferred routing direction. Overall, we select one of two viadefs to access

the pin, and only use one viadef for all other connections. Figure 4.12 illustrates the ordered viadefs for

detailed routing, additional viadef for pin access analysis, and a non-preferred viadef.46

Figure 4.12: Illustrations of ordered viadefs: (a) preferred viadef for detail routing; (b) additional viadef
for pin access analysis; and (c) non-preferred viadef.

Figure 4.13: Preprocessing: (a) initial route guides; (b) splitting; (c) merging; (d) bridging; and (e)
preprocessed guides. The preferred direction for M1 is vertical, and for M2 is horizontal.

46Ultimately, the via ordering step should be replaced with a more robust via generation and LEF matching strategy in a future
work.

147

Guide processing [19] [54] is the step to transform a set of input route guides into a standardized

tree-like global routing solution.47 A route guide specifies a rectangular region on a specific metal layer. A

global routing solution for a net may contain several route guides on some or all of the metal layers. If we

abstract the guide by drawing a center line for each guide along the preferred routing direction, we take the

center lines to form a connected graph, as shown in Figure 4.13(e).

To standardize on a guide dimension that is conducive to form a trimmed tree-like global routing

solution, we first extract the most common offset and width of all guides to form GCELLGRIDS [19],

then process all route guides with splitting, merging and bridging techniques. Given the input guides in

Figure 4.13(a), we first split the guide according to the GCELLGRID along the preferred routing direction

for each metal layer, as shown in Figure 4.13(b); then merge touching guides along the preferred routing

direction, as shown in Figure 4.13(c). Last, for abutting guides along the non-preferred routing direction,

we bridge them by creating upper-layer (or, otherwise, lower-layer) guides, as shown in Figure 4.13(d).

The above procedures guarantee a connected global routing solution as long as the input guides

satisfy the assumption described in [19]. To remove redundant edges (i.e., loops) in a global routing

solution, we further perform A* search from any pin to all other pins through the processed guides. All

off-path guides are removed.

Region query is the data structure for fast shape queries. The inputs to the region query engine is

a bounding box on a specific layer. The outputs are all intersecting shapes, in the form of {bbox, owner}

pairs. For polygon shapes, we decompose the polygon into rectangles to be used in the region query engine.

The owner belongs to one of the following types: term, instTerm, blockage, instBlockage, pathSeg, via or

patchMetal.

Figure 4.14: DRC LUT: (a) via to jog (vertical); (b) via to jog (horizontal); (c) via to via (vertical); (d) via
to via (horizontal); (e) jog to jog (vertical); and (f) jog to jog (horizontal).

47Ultimately, the solution quality of detailed routing may be improved with an input of a better global routing solution that
satisfies our guide processing behavior in a future work.

148

LUT generation is the step to construct assisting data structure to avoid same-net design rule

check violations. In grid-based path search, we use object cost (described in Section 4.2.4) to avoid

potential DRCs to existing objects. To prevent DRCs within the current path, i.e., same-net violation, we

characterize the minimum default-width routing length between any two-object pair of an up via, a down

via and a jog, on all metal layers, and in all directions. Figure 4.14 illustrates three types of minimum

length requirement: via to jog, via to via, and jog to jog, in both x and y directions. In our implementation,

we characterize separately for the up via and down via. In grid-based path search, we apply additional cost

if the minimum length between vias and/or jogs is not satisfied.

The pin access analysis framework is described in Section 4.1.

Track assignment

We adopt a simplified version of greedy track assignment [97]. To reduce the problem size and lay

a foundation for future parallel implementation, we perform the track assignment every 50 GCell panels.

Each GCell panel has length along the preferred routing direction and spans 50 GCell heights. The initial

track assignment is applied once on all horizontal layers, then on all vertical layers. According to [97], we

then perform one iteration of track reassignment to optimize the solution quality.

Detailed Routing

Given the track assignment result, we perform multiple iterations of detailed routing. In each

iteration, we partition the design into 7×7, non-overlapping GCell-aligned clips, and create one detailed

routing worker for each clip. Each detailed routing worker first initializes its own data structures (worker

database) from the global database, then performs routing and design rule checking, all without touching

the global database. Last, each worker commits the changes by writing back to the global database. In

alternate iterations, we shift the partitioning of 7×7 clips with an offset of 0 and -4 to enable optimization

at clip boundaries. We describe the detailed routing flow inside the detailed routing worker in Section 4.2.4.

In the construction of a detailed routing worker, each clip comes with three bounding boxes:

standard, DRC and extended box. The standard box is the above-mentioned 7×7, non-overlapping

GCell-aligned clip. The detailed routing worker can only modify objects with their center lines on or

149

within the standard box. The DRC box is slightly larger than the standard box, enclosing the bounding

box of all modifiable objects. We only count and writeback those markers intersecting with the DRC box.

The extended box is slightly larger than the DRC box, allowing design rule check across the DRC box. In

the detailed routing worker database, all objects within the extended box are constructed locally. Only

the objects that are on or within the standard box are modifiable, while other objects are fixed. The fixed

objects are used for cost calculation and design rule checking.

4.2.4 Detailed Routing Worker

In this section, we describe the methodology to perform gridded, A*-based detailed routing inside

the detailed routing worker. We first describe the grid graph structure and various types of costs. Then, we

describe the overall ripup-and-reroute flow of a detailed routing worker. Last, we detail the methodology

to route one net.

Grid graph

The grid graph is an essential part of detailed routing because the path search algorithm works

directly on the grid graph, and various costs and properties are associated with the grid vertices and edges

in the grid graph. In TritonRoute, we build a non-regular-spaced 3D grid graph supporting irregular

tracks and off-track routing.

Figure 4.15: Grid graph: (a) preferred-direction grid lines on Metal1; (b) preferred-direction grid lines on
Metal2; (c) preferred-direction grid lines on Metal3; and (d) overlay of grid lines (3D grid graph projected

onto the x-y plane).

150

Construction. We now describe how to generate the preferred-direction grid lines on each metal

layer. We first form all grid lines that are on-track – i.e., align with the DEF TRACKS definitions. Then

we form all grid lines that are off-track – i.e., the center lines along the preferred direction for any existing

pathSegs, vias and pin access points. We also form the grid lines on the boundary. We do not generate the

grid lines in the non-preferred direction. However, bi-directional routing is still available as described later.

Figure 4.15 shows how we form the grid lines. Figure 4.15(a) shows horizontal Metal1, with

7 regular-spaced tracks from DEF. The Metal1 pin has an access point with an off-track y-coordinate.

Thus, we create an off-track grid line according to the pin access point location. Figure 4.15(b) shows

vertical Metal2, with 5 regular-spaced tracks from DEF. We additionally create an off-track grid on the left

boundary. By always creating grid lines along the boundaries of the routing region, we make sure that

at least one path exists in the grid graph in any direction, in the case that no on- and off-track grid lines

exist (e.g., given a small routing region). Since the center line of the Metal1 pin access point aligns with a

Metal2 track, we do not build additional off-track grid lines on Metal2. Similarly, we build grid lines on

Metal3. Note that Metal1 and Metal3 grid lines do not necessarily align.

In Figure 4.15(d), we show the overlay of x- and y-direction grid lines. The grid vertices are

formed by intersecting all x- and y-direction grid lines, and repeating |Z| times along the z-direction. Each

vertex has six neighbors (except the boundary vertices) – west, east, south, north, down and up; this is the

3D grid (projected onto the x-y plane) that we use in TritonRoute.

Table 4.7: Edge properties.

Type Name Meaning
boolean isEnable whether the edge exists in path search
boolean isOnTrack whether the edge is on track
boolean isOnPrefDir whether the edge is on the preferred direction
viadef specialVia special via
int objCost object cost
int markerCost marker cost

Edge. The edge properties are summarized in Table 4.7. As shown in Figure 4.15, not every grid

line exists in every metal layer. We use isEnable to show whether the edge exists in the path search. A

151

planar edge in the preferred direction is enabled if it is on a current layer grid line. A planar edge in the

non-preferred direction is enabled if it is on an upper-layer grid line (if any, otherwise lower-layer). Via

edges are enabled between any two preferred-direction grid lines on neighboring metal layers. For each

edge, we use isOnTrack to show whether the edge is on track; we use isOnPrefDir to show whether the

edge is on the preferred direction. For a via edge, specialVia indicates whether the router should choose

a special via instead of the default via. Only pin access points may have this special via property. We

preprocess and mark relevant via edges for all up-via pin accesses (using non-default via). There are

two types of costs associated with each edge, object cost and marker cost. We describe these costs in

Section 4.2.4.

Table 4.8: Vertex properties.

Type Name Meaning
enum prevDir incoming direction
boolean isSrc whether the vertex is the source
boolean isDst whether the vertex is the destination

Vertex. The vertex properties are summarized in Table 4.8. In A*-based path search, after a path

is found, we only know the ending vertex. We use prevDir to indicate the incoming direction of the current

vertex so that we are able to trace back the path. We use isSrc (resp. isDst) to indicate whether the vertex is

a source (resp. destination).

Routing Cost

We use two types of costs: object cost, and marker cost. Overall, object cost is applied around

an existing shape. This cost preemptively guides the path search to go around existing objects to avoid

potential DRCs. The marker cost is applied around an existing DRC marker. In the ripup-and-reroute

scheme, this cost helps the nets to be routed avoiding the DRC hotspots given the history of DRC data.

Object cost is the cost originated from an object, and stored in neighboring edges to the object.

We modify this cost whenever the worker database adds or removes an object, e.g., at the time of

database initialization, after net ripup, or after routing of one net. We use the object cost to prevent

152

potential design rule check violations. The evaluation of object cost is non-precise but quick, and does not

invoke the DRC engine.48 We support three types of spacing rules for object cost: (i) SPACINGTABLE

PARALLELRUNLENGTH; (ii) SPACING ENDOFLINE; and (iii) SPACING (cut).

Figure 4.16: Object cost from parallel run length spacing: (a) expanding region; and (b) shadow object.

For parallel run length spacing, given a target object, we first draw an expanding region in which

objects on the intersecting edges may cause DRCs, as shown in Figure 4.16(a). The expanding region

extends beyond the target object up to the maximum required spacing plus half the default width for planar

edges, and half the via enclosure for via edges. We then assume a shadow object (either a default-width

pathSeg or a via) on each of the neighboring planar and via edges, and check against the target object, as

shown in Figure 4.16(b). For a pathSeg on a planar edge, since the exact length of the shadow object can

be arbitrarily longer than the edge length, we add pessimism by assuming maximum parallel run length

between the two objects to accelerate convergence. The maximum parallel run length is the length of the

target object regardless of the actual parallel run length. For each via edge, we assume a default via, or

the special via stored with the edge, and check the via enclosure against the target object. The parallel

run length between a shadow via enclosure and the target object is calculated by their actual parallel run

length. We modify the cost of the edge if there is a violation. Here, the modification of the costs also helps

to avoid short violations since the expansion region implicitly includes those edges that may have potential

short violations with the target object.
48We do not have a metric for “precision” of object cost evaluation. The goals of the quick object cost evaluation, in decreasing

priority order, are: (i) quickness, and (ii) help avoidance of repeated cycles of violations (e.g., arising due to DRC marker cost in
A* search). In practice, we see that our use of quick object cost evaluation – which naturally must be pessimistic – helps avoid
cycling.

153

Figure 4.17: Object cost from end-of-line spacing: (a) expanding region; and (b) shadow object. The
preferred routing direction is horizontal.

For end-of-line spacing, we only check the target object if it is a via, and the spacing is only

checked along the preferred routing direction of the metal layer. Spacing orthogonal to the preferred

routing direction is not checked to avoid pessimism since almost all jogs end with a preferred-direction

routing or a default via, making the line end a non-end-of-line edge. Figure 4.17 illustrates the procedure.

For cut spacing, given a target via, we check all neighboring via edges which could potentially

cause a cut spacing violation. For each via edge, we assume a default via (or the special via stored with the

edge) and check against the target via. We modify the cost of the via edge if there is a violation.

The object cost has no history. For example, an object cost is added to the neighboring edges of

the target object after the object is created, and subtracted from the neighboring edges of the target object

after the object is removed. The object cost calculation supports same-net overriding, blockage spacing

overriding and other exceptions. For more details pertaining to this and other parts of our discussion, please

refer to [126].

Marker cost is the cost applied according to the DRC markers after each call to the DRC engine.

For each marker, we get all objects touching the marker, and add costs to the nearest edge(s) that are used

to form the objects. The marker cost has history within the detailed routing worker. For example, a marker

cost is added to an edge and decayed over time (currIter in Algorithm 13), but is never subtracted due to

the removal of a specific marker. Here, marker cost history only persists within the detailed routing worker.

There is no history between detailed routing iterations shown in Figure 4.11.

154

Routing flow

Figure 4.18: Local netlist construction: two disjoint subnets constructed in the detailed routing worker
from one global net.

Now we describe the routing flow inside a detailed routing worker. In Algorithm 13, Line 2 first

initializes the worker database from the global database. In this step, we construct a local netlist from

the connectivity of routing objects. Figure 4.18 shows an example, where a single net passes through the

standard box twice, with two parts disjoint. In this case, we construct two subnets so that ripup-and-reroute

does not change the connectivity of the net.

In Lines 3 – 20, we perform up to maxIter iterations of ripup-and-rerouting.49 In each iteration, we

ripup the problematic nets and reroute each one sequentially. Line 4 adds the marker cost according to all

existing markers. Line 5 gets all nets that are associated with markers. We order the nets according to their

distance to the nearest marker and route them sequentially. Line 6 rips up those nets and Line 7 subtracts

the object cost from the ripped-up objects. Here, the boundary objects outside the standard box are not

removed and their object costs remain. Since nets are routed sequentially, according to the net ordering,

we would like to avoid the ith net blocking the pin access of the jth(j > i) net. In Line 8, we reserve the

pin access of all unrouted nets (ripped-up nets) by adding the object cost of their preferred pin access (an

up via) as if those pin access points are used.

In Lines 9 – 15, we route each net once according to the net ordering. Before routing, Line 10

unreserves the pin access for the current net by subtracting the corresponding object cost of the preferred

pin access (up via). Line 11 subtracts the object cost for the boundary objects outside the standard box to
49Note that this number of iterations is different from the number of “outer” iterations in Figure 4.11. For the results that we

report in this work, we perform seven (outer) iterations. The maxIter number of iterations in Algorithm 13 defines the maximum
number of ripup-and-reroute iterations a net inside a DRWorker can undergo. In the current implementation/results represented in
this work, we use (1, 4, 4, 4, 4, 4, 4) as the maxIter (for ripup-and-reroute) for each net in the seven “outer” iterations, respectively.

155

avoid unnecessary costs when we connect the net to the boundary pin. Line 12 routes the current net. Line

13 adds the object cost for all the newly routed objects. Line 14 adds back the object cost for boundary

objects to prevent design rule violations between these objects to the remaining unrouted nets. Lines 16 –

19 perform design rule checking, and terminates the ripup-and-reroute flow once the clip is clean.

Line 21 commits the worker database back to the global database.

Algorithm 13 Routing flow
1: Input: worker database, worker markers markers
2: WorkerDBInit()
3: while currIter < maxIter do
4: addMarkerCost(markers)
5: nets← getMarkeredNets(markers)
6: ripupNets(nets)
7: subObjCost(nets)
8: reservePA(nets)
9: for all net ∈ nets do

10: unreservePinAccess(net)
11: subBoundCost(net)
12: routeOneNet(net)
13: addObjCost(net)
14: addBoundCost(net)
15: end for
16: DRC(nets)
17: if numMarkers = 0 then
18: break
19: end if
20: end while
21: DBCommit()

Routing one net

Flow. We now describe the methodology to route one net in a detailed routing worker. In our

current implementation, in the standard box, a net is either fully routed or unrouted, but not partial routed.

Algorithm 14 describes the methodology to route one net. Line 2 gets all unconnected pins, including

standard box boundary pins and pins from instTerm and term. Line 3 holds the set of visited grid vertices,

and we initialize the set to be empty. Lines 4 and 5 select the source pin to perform path search and remove

it from the unconnected pins. To select the source pin, we first calculate the center of gravity for all pins in

156

the x-y plane, then select the pin furthest away from the center of gravity as the source. Line 6 performs

the initialization described later. In Lines 7 – 11, we perform the path search as long as there are still

unconnected pins. After path search, we update the grid graph in preparation for the next round of path

search. The writeDB function backtraces the path to create the routing objects according to the path.

Algorithm 14 Route one net
1: Input: net n, grid graph G
2: unConnPins← allPins(n)
3: visitedGrids← ∅
4: srcPin← selectSrcPin(unConnPins)
5: unConnPins.removePin(srcPin)
6: init(n, srcPin, unConnPins, visitedGrids, G)
7: while not isEmpty(unConnPins) do
8: path← search(visitedGrid, G)
9: update(n, path, unConnPins, visitedGrids, G)

10: writeDB(n, path)
11: end while

During backtracing, we calculate the total metal area and add necessary patch metals to satisfy the

minimum area rule. The patch metals are always created with default routing width along the preferred

routing direction. In our implementation, we also build assisting structures to calculate necessary patch

metal area for objects connected to the boundary pin. Figure 4.19 gives two examples of patch metal

addition. We assume the preferred routing direction is horizontal. We do not allow the patch metal to

exceed the standard box. If there are more than one patch metal choices, e.g., adding to the left or to the

right of a routing object, we choose the one with smaller object cost. The path search is completed once

all pins are connected. The path search algorithm is described in Algorithm 16. The update function is

described in Algorithm 17.

Initialization. Algorithm 15 describes the initialization procedure. In Line 2, we first reset the

previous direction flag for each grid vertex. In Lines 3 – 6, we set the source flag for all vertices on

the access points of the source pin, and add the vertices to the visited grids. In Lines 7 – 11, we set the

destination flag for all vertices on the access points of all destination pins. After initialization of the grid

graph, the core path search algorithm does not need to look for objects and properties of the net, which is

beneficial to the runtime.

157

Figure 4.19: Minimum area patch metal: (a) patch metal considering area outside of standard box; and (b)
patch metal always along the preferred routing direction even if the routing ends in the non-preferred

direction.

Algorithm 15 Initialization
1: Input: n, srcPin, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ srcPin do
4: G.setSrc(grid)
5: visitedGrids.add(grid)
6: end for
7: for all dstPin ∈ unConnPins do
8: for all grid ∈ dstPin do
9: G.setDst(grid)

10: end for
11: end for

Path search. Algorithm 16 details the path search. The A*-based path search is based on a priority

queue. Each element in the priority queue is an element of the search’s wavefront, representing that a path

exists from the source up to the wavefront grid vertex. In Lines 3 – 5, we first push all visited grids (source)

to the queue as the initial wavefront vertices. Then in Lines 6 – 16, we pop the wavefront vertex with the

least cost. We use the previous direction to indicate whether the wavefront vertex has been visited before.

Lines 9 – 11 skip the wavefront vertex if it has been visited before. In Lines 12 – 14, we check whether

the wavefront vertex is the destination, and return the path when reaching the destination. Otherwise, we

expand the wavefront vertex by pushing its neighbors into the priority queue (with proper cost) as new

wavefront vertices.

158

Algorithm 16 Search
1: Input: visitedGrids, G
2: Initialize wf
3: for all grid∈visitedGrids do
4: wf.push(grid)
5: end for
6: while not isEmpty(wf) do
7: currGrid← wf.top()
8: wf.pop()
9: if hasPrevDir(currGrid) then

10: continue
11: end if
12: if isDst(currGrid) then
13: return path
14: else
15: expand(currGrid)
16: end if
17: end while

Here, the cost in the priority queue is the A* cost, consisting of an existing path cost and an

estimated future cost, as shown in Equation (4.1). Whenever we expand from a wavefront vertex to its

neighboring vertex, the existing cost is the cost from the wavefront vertex plus the cost to its neighbor,

as shown in Equation (4.2). The cost is the sum of edge length, plus 8× edge length if the edge has a

non-zero object cost, and 64× edge length if the edge has a non-zero marker cost. In addition, we apply a

penalty p if any match to the DRC LUT is found. The estimated future cost is the Manhattan distance to a

pre-determined destination, as shown in Equation (4.3). If there are more than one unconnected pins to be

connected, the pre-determined destination is the bounding box of the unconnected pin that is the closest to

the bounding box of all visited grids. The Manhattan distance in z-direction (between two neighboring

metal layers) is calculated as 4× the lower metal layer pitch.

costtot = costwf ′ + costest (4.1)

costwf ′ = costwf + lene + objCoste +markerCoste + p (4.2)

costest = distwf ′,dst (4.3)

159

As described in Lines 9 – 11, we avoid expanding an already-visited vertex by checking its

previous directional flag. In an ideal A*-based path search with a consistent path cost and a lower-bounded

estimated future cost, each vertex only needs at most one visit to get the minimum cost path. However,

considering the inconsistent nature of the penalty applied from the DRC LUT, the worst-case complexity

of A*-based path search becomes O(n2). To balance the tradeoff between runtime and solution quality,

we write the previous direction to a vertex only after two more wavefront expansions are performed from

that vertex.

Update. Algorithm 17 describes the methodology to update the grid graph. In Line 2, we reset the

previous direction flag for every grid vertex in preparation of the next path search. In Lines 3 – 6, we set

the source flag for every grid vertex along the path. We then add these grid vertices to the visited grids.

Here the source flag and the visited grids serve the same purpose as they both identify the new sources for

the next round of path search. However, visited grids are stored in a vector-like container to allow us to

initialize the wavefront for the next path search in batches. In Lines 7 – 15, we identify the destination pin

that we route to in the current round of path search, remove it from the unconnected pins, and reset the

destination flag on all access points of the destination pin.

We now describe two special cases for pin feedthrough. Pin feedthrough describes a scenario

where two (or multiple) parts of the net are connected to different access points of the same pin. We can

either enable, or disable pin feedthrough. Disabling pin feedthrough forces that only one access point per

pin can be used.

In case of enabling feedthrough, all access points of the destination pin, even those we do not route

to, now become new sources for the next round of path search, as shown in Lines 12 –14.

In case of disabling feedthrough, special handling methodology is needed for the first source pin

of the net, described in Lines 17 – 24. Recall that in Line 4 of Algorithm 15, we set the source flag on all

access points of the source pin. Given feedthrough disabled, we must reset the source flag on all unused

access points of the source pin once the first path search completes.

4.2.5 Experiments

In this section, we present experimental setup and results.

160

Algorithm 17 Update
1: Input: n, path, unConnPins, visitedGrids, G
2: G.resetPrevDir()
3: for all grid ∈ path do
4: setSrc(grid)
5: visitedGrids← add(grid)
6: end for
7: endGrid← path.end()
8: currDstPin← findPin(endGrid)
9: unConnPins.removePin(currDstPin)

10: for all grid ∈ currDstPin do
11: G.resetDst(grid)
12: if isAllowPinAsFeedThrough() then
13: G.setSrc(grid)
14: end if
15: end for
16: beginGrid← path.begin()
17: if not isAllowPinAsFeedThrough() then
18: if findPin(beginGrid) then
19: currSrcPin← findPin(beginGrid)
20: for all grid 6= beginGrid ∈ currSrcPin do
21: G.resetSrc(g)
22: end for
23: end if
24: end if

Setup

We implement our router in C++ with LEF/DEF parser [119] and Boost C++ libraries. We perform

experiments using the ISPD-2018 benchmark suite [73]. The ISPD-2018 benchmark suite provides 10

testcases in 45nm and 32nm nodes, with up to 290K standard cells and 182K nets. These designs are

industrial benchmarks – including large memory cells, off-track pin access, IO ports, and power and macro

blockages – with realistic design rules offered in industry-standard input/output formats. ISPD-2018

benchmark information is summarized in Table 4.1.

The ISPD-2018 contest evaluation metrics consist of three components: (i) routing, including

wirelength and via count; (ii) guides and tracks obedience, including out-of-guide wire and vias, off-track

wire and vias, and wrong-way wire; and (iii) DRCs, including area of metal shorts, number of minimum

161

area violations and number of spacing violations. However, in the experimental results below, we do not

report (ii), and make several improvements to (iii) according to the following.

• We do not strictly obey the guides since TritonRoute is not targeting the ISPD-2018 contest.

According to the contest organizers, strict guide obedience was never their initial intention although

all participating teams and the following published papers all strictly follow the route guides.

• We do not report the off-track and wrong-way routing although they are already considered through-

out the routing flow. In all our reported testcases, such off-track and wrong-way routing account for

0.68% of the total wirelength on average.

• We report all types of DRCs, including all ISPD-2018 centric DRCs plus (number of) metal short,

non-sufficient metal overlap and minimum width. The number of metal short is a good indicator of

the strength of the detailed router. Non-sufficient metal overlap and minimum width are two design

rules existing in the input, but not considered in the contest evaluation. We believe that the reporting

of all types of DRCs effectively forbids any optimization targeting the contest metric.

Among all recently published academic detailed routers [30][60][91] that are capable of delivering

ISPD-2018 contest solutions, Dr. CU dominates the solution quality for all ten testcases in terms of DRCs.

Thus, we compare our TritonRoute to Dr. CU 2.0. All experiments are performed using a single thread on

an Intel Xeon server.

Results

Experimental results are shown in Table 4.9 and Table 4.10. Table 4.9 gives wirelength, via count,

memory consumption and runtime; Table 4.10 gives the details of DRCs.

As a prerequisite, a routing solution is valid only if there are no open nets. All of our reported

solutions meet the connectivity requirement. Furthermore, our solution guarantees a loop-free and dangling

wire-free solution (except the minimum area patch metals).

We achieve DRC-clean solution for ispd18 test1, and reach an unprecedented, extremely low level

of DRCs (< 20) in seven of 10 testcases while consuming substantially reduced memory, with similar

162

single-threaded runtime. This translates to a 99.3% reduction of DRCs as compared to known best detailed

routing solutions from all published academic detailed routers. For the remaining three testcases, we

reduce DRCs by 75.1% on average, and by 60.0% at a minimum. Overall, compared to the known best

detailed routing solutions, TritonRoute improves wirelength by up to 0.8% (avg. 0.4%), via count by up to

16.1% (avg. 9.3%), and DRCs by up to 100% (avg. 92.0%). TritonRoute completes routing with smaller

wirelength and smaller via count, and leaves only a fraction of DRCs compared to all other academic

detailed routers.

Table 4.9: Comparison of total wirelength, total via count, memory usage and runtime between
TritonRoute (column A) and Dr. CU (column B).

Benchmark Wirelength (µm) Via count Memory (GB) Runtime (s)
TR CU TR CU TR CU TR CU

ispd18 test1 86025 86709 32912 32402 0.08 0.21 61 40
ispd18 test2 1570651 1566537 319855 325684 0.43 1.39 614 578
ispd18 test3 1750028 1743561 319456 318309 0.47 1.51 824 788
ispd18 test4 2620890 2641860 695901 729312 1.09 5.72 1866 3422
ispd18 test5 2763186 2780130 831775 965544 1.29 4.61 1722 2383
ispd18 test6 3557744 3570351 1241673 1480617 1.71 5.72 2682 3357
ispd18 test7 6482066 6517341 2041794 2402543 3.07 9.87 5023 5847
ispd18 test8 6513278 6546908 2062997 2412121 3.11 10.47 4916 5932
ispd18 test9 5442527 5476029 2049839 2410790 2.71 10.11 4378 4910
ispd18 test10 6769942 6809019 2226243 2594386 3.09 10.58 10129 9380

We have also performed a case-study experiment using different standard box sizes to analyze

the tradeoff between runtime and final DRC count. We sweep the standard box size from 3×3 to 11×11

with a step size of 2 on the ispd18 test3 testcase. The specific testcase that we choose has relatively high

#violation-to-#instance ratio, which indicates that ispd18 test3 is a difficult and congested design among

the ISPD18 contest benchmarks. Figure 4.20 illustrates the tradeoff between runtime and final DRC count

with different standard box sizes. We observe that a larger standard box provides a larger solution space

for ripup-and-reroute for DRC fixing at the cost of longer runtime for A* search. A standard box with size

of 7×7 GCells can achieve a decent tradeoff between runtime and final DRC count, especially for difficult

designs.

163

Table 4.10: Comparison of number of minimum width (MinWid), non-sufficient-metal overlap (NSMet),
minimum area (MAR), metal short (Short), cut short (CShort), metal parallel run length spacing (MetSpc),

metal end-of-line spacing (EOLSpc), cut spacing (CutSpc) and total design rule violations between
TritonRoute (TR) and Dr. CU (CU).

Benchmark
Design rule violations

#MinWid #NSMet #MAR #Short #CShort #MetSpc #EOLSpc #CutSpc #Total
TR CU TR CU TR CU TR CU TR CU TR CU TR CU TR CU TR CU

ispd18 test1 0 0 0 1716 0 0 0 1 0 0 0 1 0 1 0 0 0 1719
ispd18 test2 0 0 0 20048 0 0 1 1 0 0 7 49 9 9 0 0 17 20107
ispd18 test3 0 0 0 21224 0 0 112 219 1 0 17 86 10 9 2 0 142 21538
ispd18 test4 0 10 2 17 0 32 190 287 0 0 132 289 2 164 0 142 326 941
ispd18 test5 0 7 0 19 0 48 2 342 0 0 0 309 0 36 0 20 2 781
ispd18 test6 0 8 0 44 3 92 1 36 0 0 2 489 2 21 0 30 8 720
ispd18 test7 0 0 0 11 5 127 4 604 0 0 4 129 0 7 0 60 13 938
ispd18 test8 0 0 0 19 3 138 2 625 0 0 1 118 0 15 0 59 6 974
ispd18 test9 0 0 0 16 4 185 1 39 0 0 0 49 0 7 0 54 5 350
ispd18 test10 0 0 0 26 4 228 1103 3180 5 1 425 742 144 73 33 100 1714 4350

3×3 5×5 7×7 9×9 11×11
DRWorker (standard box) size

500

550

600

650

700

750

Ru
nt

im
e

(s
)

ISPD18_test3

130

135

140

145

150

155

#D
RC

Figure 4.20: Illustration of tradeoff between runtime and final DRC count with various DRWorker
standard box sizes in unit of GCell.

4.2.6 Conclusion

In this work, we present TritonRoute, an open source detailed router. We describe an in-memory

router database, and an end-to-end detailed routing scheme. We evaluate our router using the official

ISPD-2018 benchmark suite, and show that we reach an unprecedented, extremely low level of DRCs

(< 20) in seven of 10 testcases, a 99.3% reduction of DRCs on average as compared to the known best

detailed routing solutions from all published academic detailed routers. Overall, compared to the known

best detailed routing solutions, TritonRoute improves wirelength by up to 0.8% (avg. 0.4%), via count by

up to 16.1% (avg. 9.3%), and DRCs by up to 100% (avg. 92.0%).

164

4.3 Acknowledgments

Chapter 4 contains reprints of Andrew B. Kahng, Lutong Wang and Bangqi Xu, “The Tao of PAO:

Anatomy of a Pin Access Oracle for Detailed Routing”, Proc. ACM/IEEE Design Automation Conference,

2020. Chapter 4 also contains the draft of Andrew B. Kahng, Lutong Wang and Bangqi Xu, “TritonRoute:

The Open Source Detailed Router”, in submission to IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2020. The dissertation author is a main contributor to, and a primary

author of, each of these papers.

I would like to thank my coauthors Andrew B. Kahng and Bangqi Xu for their support and work.

165

Chapter 5

Conclusion

This thesis has presented several physical design methodologies and optimizations to address

existing and future challenges in advanced VLSI. The presented methodologies and optimizations help to

realize manufacturing-aware design technology co-optimizations, advanced node design-based equivalent

scaling, and an open-source academic detailed routing flow.

Chapter 2 has presented two general flow optimizations in physical design. First, we have presented

a novel flop tray-based optimization for improved design power reduction. We propose a capacitated

K-means algorithm which iteratively applies a min-cost flow-based clustering and a LP-based flop tray

placement. We also propose an ILP-based matching optimization to generate flop trays while minimizing

the perturbation to the initial placement solution. Our work achieves several improvements as compared to

previous works: (i) awareness of flop tray aspect ratio and (large) size; (ii) explicit minimization of relative

displacement of timing-critical start-end flop pairs; and (iii) global optimization instead of local search.

The proposed techniques allow us to achieve up to 32% total block power reduction as compared to designs

with only single-bit flops, and up to 16% total block power reduction over designs with flop trays generated

by logical clustering during synthesis. We also achieve 13% clock power reduction on average as compared

to the previous work in [48]. We further study the impact of flop tray sizes on optimization solution

quality, as well as the useful skew optimization in the context of our flop tray-based designs. Second, we

have presented a scalable MILP-based optimization of 2D block masks that considers block mask rules,

166

minimum metal density constraints, and timing impact of dummy fills. We propose an improved timing

impact model for use in our MILP formulation. A distributed optimization flow enables application of

the MILP-based optimization to large design layouts. We evaluate our approach across timing-awareness,

different patterning technologies, and different minimum metal density constraints. Our study shows up to

84% ∆WNS recovery, up to 85% ∆TNS recovery, and up to 56% ∆switching power recovery, along with

up to 62% dummy removal rate. We believe that our enablement of a timing-aware optimization shows

promising product-level benefits from use of 2D block masks, and furthermore sheds light on the merits of

various block mask optimization objectives. We have also studied the co-optimization of cut and block

masks. Our cut and block co-optimization opens up a broader solution space, with more flexibility in EOL

realization and attendant design quality benefits.

Chapter 3 has presented two improved physical design methodologies in placement. First, we have

presented an optimal dynamic programming-based single-/double-row detailed placement methodology

to minimize diffusion steps in sub-10nm VLSI, for improved yield and mitigation of NDE. Our work

achieves several improvements as compared to previous works: (i) optimal dynamic programming with

support of a richer set of cell movements, i.e., flipping, relocating and enhanced reordering; (ii) optimal

double-row dynamic programming with support of movable and reorderable double-height cells; and (iii)

a novel performance improvement technique using intentional steps. The proposed techniques achieve up

to 98% reduction of inter-cell diffusion steps, with scalable runtime and high die utilization in an N7 node

enablement. Second, we have presented a vertical M1 routing-aware detailed placement optimization

based on mixed-integer linear programming (MILP) for two new cell architectures in sub-10nm nodes, i.e.,

ClosedM1 and OpenM1. With our optimization, up to 6.4% (resp. 2.2%) total routed wirelength reductions

and 14.4% (resp. 4.1%) #via12 reductions are achieved for ClosedM1-based (resp. OpenM1-based)

designs, with no adverse timing impact.

Chapter 4 has presented two works towards an open source detailed router. First, we have presented

a multi-level, standard cell- and instance-based, complete, robust, scalable and design rule-aware pin access

analysis framework. We describe our robust pin-based access point generation, boundary conflict-aware

access pattern generation and cluster-based access pattern selection based on dynamic programming. We

achieve 100% DRC-clean pin access and demonstrate a superior final detailed routing solution as compared

167

to the best known results using the ISPD-2018 initial detailed routing benchmark suite. Second, we have

presented TritonRoute, an open source detailed router. We describe an in-memory router database, and an

end-to-end detailed routing scheme. We evaluate our router using the official ISPD-2018 benchmark suite,

and show that we reach an unprecedented, extremely low level of DRCs (< 20) in seven of 10 testcases,

a 99.3% reduction of DRCs on average as compared to the known best detailed routing solutions from

all published academic detailed routers. Overall, compared to the known best detailed routing solutions,

TritonRoute improves wirelength by up to 0.8% (avg. 0.4%), via count by up to 16.1% (avg. 9.3%), and

DRCs by up to 100% (avg. 92.0%).

The methodologies and optimizations presented in this thesis are only tips of an iceberg to address

critical challenges in advanced VLSI. Beyond this thesis, future directions and ongoing works include, but

are not limited to, the following.

• Better PPAC requires an even tighter integration in physical design. In the past decade, we have

seen tight integration of different stages, e.g., global placement considering routing congestion,

detailed placement considering pin access, etc. Such optimizations are still in the form of look-ahead,

with limitations due to various practical and engineering reasons. One example is between detailed

placement and detailed routing pin access. On the one hand, the detailed placement engine does not

“understand” how the pin is accessed; while on the other hand, the detailed routing engine does not

“understand” how to best move a cell. In this situation, solution space is lost during routing while a

single move of a cell might save several DRCs. In-route cell movement, or even a unified metric

supporting both cell movement and “real” detailed routing pin access, is preferred.

• If tighter integration is to break the wall between different physical design stages, to achieve ultimate

PPAC we must also build a better wall in layout – a seamless, synthesis, place-and-route full flow on

any clip of the layout. From a flow perspective, look-ahead cannot solve all the problems. Every

time a problem occurs, designers cannot afford to loop through several previous stages to solve

the problem on a whole layout scale. Instead, a localized layout can be generated and a full-flow

optimization can be run on a small clip of the layout. Even though existing physical design tools

may have such capability to some extent, an automatic and seamless framework is still largely

168

missing. Especially for academic researchers, there are several valuable high-level decisions worth

investigating, such as where to generate the localized clip, and which optimization stages to loop

through.

• Several other research topics are also among the key interests of physical design engineers and

EDA R&D. One such problem is that of detailed routing convergence. In mature technology nodes,

the opportunistic search and repair heuristic works well with fast convergence. However, in the

5nm node and below, more restricted design rules and denser designs result in much slower DRC

convergence. The solution quality largely depends on fine tuning dozens of parameters, without

an analytical, or even a systematic, understanding. A detailed analysis and explanation of each

impacting factor to the underlying path search algorithm, or the proposal of new metric, is of high

value to both academia and industry.

• Last, beyond physical design, innovative “More-than-Moore” approaches are one of a few ways

to go beyond conventional PPAC tradeoffs. For accuracy-tolerant tasks, we have seen active

academic research and development using approximate computing and analog computing, achieving

both high speed and low power. Recently, in-memory computing shows great potential of power

reduction compared to conventional designs for machine learning workloads. With other fundamental

breakthroughs, such as in materials science and quantum computing, these open up a new era of

computing. In turn, these innovations can also provide abundant opportunities to further optimize

physical design, by utilizing new hardware and new algorithms.

169

Bibliography

[1] M. Ahrens, M. Gester, N. Klewinghaus, D. Müller, S. Peyer, C. Schulte and G. Téllez, “Detailed
Routing Algorithms for Advanced Technology Nodes”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(4) (2015), pp. 563-576.

[2] C. Albrecht, B. Korte, J. Schietke and J. Vygen, “Maximum Mean Weight Cycle in a Digraph
and Minimizing Cycle Time of a Logic Chip”, Discrete Applied Mathematics 123(1-3) (2002), pp.
103-127.

[3] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez, “What Makes a Design
Difficult to Route”, Proc. ACM International Symposium on Physical Design, 2010, pp. 7-12.

[4] C. J. Alpert, Z. Li, G.-J. Nam, S. Ramji, C. N. Sze, P. G. Villarubia and N. Viswanathan, “Structured
Placement of Latches/Flip-Flops to Minimize Clock Power in High-Performance Designs”, U.S.
Patent No. US8954912B2, February 2015.

[5] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of Careful Seeding”, Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2007, pp. 1027-1035.

[6] F.-Y. Chang, R.-S. Tsay, W.-K. Mak and S.-H. Chen, “MANA: A Shortest Path Maze Algorithm
Under Separation and Minimum Length NAnometer Rules”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 32(10) (2013), pp. 1557-1568.

[7] H.-Y. Chen and Y.-W. Chang, “Global and Detailed Routing”, Chapter 12 in Wang, Chang
and Cheng (Eds.), Electronic Design Automation: Synthesis, Verification, and Test, Morgan
Kaufmann, 2009, pp. 687-749. http://cc.ee.ntu.edu.tw/˜ywchang/Courses/PD_
Source/EDA_routing.pdf

[8] D. C. Chen, G. S. Lin, T. H. Lee, R. Lee, Y. C. Liu, M. F. Wang, Y. C. Cheng and D. Y. Wu, “Compact
Modeling Solution of Layout Dependent Effect for FinFET Technology”, Proc. International
Conference on Microelectronics Test Structures, 2015, pp. 110-115.

[9] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang and E. F. Y. Young, “Detailed Routing by Sparse Grid
Graph and Minimum-Area-Captured Path Search”, Proc. Asia and South Pacific Design Automation
Conference, 2019, pp. 754-760.

[10] G. Chen, C.-W. Pui, H. Li and E. F. Y. Young, “Dr. CU: Detailed Routing by Sparse Grid Graph
and Minimum-Area-Captured Path Search”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, to appear. DOI:10.1109/TCAD.2019.2927542

170

[11] N. K. Darav, I. S. Bustany, A. Kennings and R. Mamidi, “ICCAD-2017 CAD Contest in Multi-
Deck Standard Cell Legalization and Benchmarks”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2017, pp. 867-871.

[12] P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang, “Vertical M1 Routing-
Aware Detailed Placement for Congestion and Wirelength Reduction in Sub-10nm Nodes”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2017, pp. 51:1-51:6.

[13] C. Deng, Y.-C. Cai and Q. Zhou, “Register Clustering Methodology for Low Power Clock Tree
Synthesis”, Journal of Computer Science and Technology 30(2) (2015), pp. 391-403.

[14] Y. Ding, C. Chu and W.-K. Mak, “Throughput Optimization for SADP and E-beam Based Man-
ufacturing of 1D Layout”, Proc. ACM/EDAC/IEEE Design Automation Conference, 2014, pp.
1-6.

[15] Y. Ding, C. Chu and W.-K. Mak, “Pin Accessibility-Driven Detailed Placement Refinement”, Proc.
ACM International Symposium on Physical Design, 2017, pp. 133-140

[16] Y. Ding, C. Chu and W.-K. Mak, “Self-Aligned Double Patterning Lithography Aware Detailed
Routing with Color Preassignment”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36(8) (2017), pp. 1381-1394.

[17] S. Dobre, Qualcomm CDMA Technologies, Inc., personal communication, April 2016.

[18] S. Dobre, A. B. Kahng and J. Li, “Mixed Cell-Height Implementation for Improved Design Quality
in Advanced Nodes”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2015,
pp. 854-860.

[19] S. Dolgov, A. Volkov, L. Wang and B. Xu, “2019 CAD Contest: LEF/DEF Based Global Routing”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2019, pp. 1-4.

[20] Y. Du, Q. Ma, H. Song, J. Shiely, G. Luk-Pat, A. Miloslavsky and M. D. F. Wong, “Spacer-is-
Dielectric-Compliant Detailed Routing for Self-Aligned Double Patterning Lithography”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2013, pp. 1-6.

[21] Y. Du and M. D. F. Wong, “Optimization of Standard Cell Based Detailed Placement for 16nm
FinFET Process”, Proc. Design, Automation and Test in Europe, 2014, pp. 1-6.

[22] Y. Du, H. Zhang, M. D. F. Wong and K.-Y. Chao, “Hybrid Lithography Optimization with E-beam
and Immersion Processes for 16nm 1D Gridded Design”, Proc. Asia and South Pacific Design
Automation Conference, 2012, pp. 707-712.

[23] S.-Y. Fang, “Cut Mask Optimization with Wire Planning in Self-Aligned Multiple Patterning Full-
Chip Routing”, Proc. Asia and South Pacific Design Automation Conference, 2015, pp. 396-402.

[24] J. V. Faricelli, “Layout-Dependent Proximity Effects in Deep Nanoscale CMOS”, Proc. IEEE
Custom Integrated Circuits Conference, 2010, pp. 1-8.

[25] A. Feller, “Automatic Layout of Low-Cost Quick-Turnaround Random-Logic Custom LSI Devices”,
Proc. ACM/IEEE Design Automation Conference, 1976, pp. 79-85.

171

[26] G.-R. Gao and D. Z. Pan, “Flexible Self-Aligned Double Patterning Aware Detailed Routing with
Prescribed Layout Planning”, Proc. ACM International Symposium on Physical Design, 2012, pp.
25-32.

[27] M. Gester, D. Muller, T. Nieberg, C. Panten, C. Schulte and J. Vygen, “BonnRoute: Algorithms and
Data Structures for Fast and Good VLSI Routing”, ACM Transactions on Design Automation of
Electronic Systems 18(2) (2013), pp. 32:1-32:24.

[28] W. Gillijns, S. M. Y. Sherazi, D. Trivkovic, B. Chava, B. Vandewalle, V. Gerousis, P. Raghavan, J.
Ryckaert, K. Mercha, D. Verkest, G. McIntyre and K. Ronse, “Impact of a SADP Flow on the Design
and Process for N10/N7 Metal Layers”, Proc. SPIE Design-Process-Technology Co-Optimization
for Manufacturability IX, 2015, pp. 942709:1-942709:9.

[29] S. M. M. Gonçalves, L. S. Rosa and F. S. Marques, “An Improved Heuristic Function for A*-Based
Path Search in Detailed Routing”, Proc. IEEE International Symposium on Circuits and Systems,
2019, pp. 1-5.

[30] S. M. M. Gonçalves, L. S. Rosa and F. S. Marques, “DRAPS: A Design Rule Aware Path Search
Algorithm for Detailed Routing”, IEEE Transactions on Circuits and Systems II: Express Briefs, to
appear. DOI:10.1109/TCSII.2019.2937893

[31] M. Gupta, K. Jeong and A. B. Kahng, “Timing Yield-Aware Color Reassignment and Detailed
Placement Perturbation for Bimodal CD Distribution in Double Patterning Lithography”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 29(8) (2010), pp.
1129-1242.

[32] P. Gupta, A. B. Kahng, O. S. Nakagawa and K. Samadi, “Closing the Loop in Interconnect Analyses
and Optimization: CMP Fill, Lithography and Timing”, Proc. International VLSI/ULSI Multilevel
Interconnection Conference, 2005, pp. 352-363.

[33] P. Gupta, A. B. Kahng and C.-H. Park, “Detailed Placement for Improved Depth of Focus and CD
Control”, Proc. Asia and South Pacific Design Automation Conference, 2005, pp. 343-348.

[34] P. Gupta, A. B. Kahng and C.-H. Park, “Manufacturing-Aware Design Methodology for Assist
Feature Correctness”, Proc. SPIE Design and Process Integration for Microelectronic Manufacturing
III, 2005, pp. 131-140.

[35] F. O. Hadlock, “A Shortest Path Algorithm for Grid Graphs”, Networks 7(4) (1977), pp. 323-334.

[36] C. Han, K. Han, A. B. Kahng, H. Lee, L. Wang and B. Xu, “Optimal Multi-Row Detailed Placement
for Yield and Model-Hardware Correlation Improvements in Sub-10nm VLSI”, Proc. IEEE/ACM
International Conference on Computer-Aided Design, 2017, pp. 667-674.

[37] K. Han, “IC Physical Design Methodologies for Advanced Process Nodes”, Ph.D. Thesis, Electrical
and Computer Engineering, University of California, San Diego, 2018.

[38] K. Han, A. B. Kahng and H. Lee, “Evaluation of BEOL Design Rule Impacts Using an Optimal
ILP-Based Detailed Router”, Proc. ACM/EDAC/IEEE Design Automation Conference, 2015, pp.
68:1-68:6.

172

[39] K. Han, A. B. Kahng and H. Lee, “Scalable Detailed Placement Legalization for Complex Sub-14nm
Constraints”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2015, pp.
867-873.

[40] K. Han, A. B. Kahng, H. Lee and L. Wang, “ILP-Based Co-Optimization of Cut-Mask Layout,
Dummy Fill and Timing for Sub-14nm BEOL Technology”, Proc. SPIE Photomask Technology,
2015, pp. 96350E:1-96350E:14.

[41] T. Han, H. Liu and Y. Chen, “A Paradigm Shift in Patterning Foundation from Frequency Mul-
tiplication to Edge-Placement Accuracy: A Novel Processing Solution by Selective Etching and
Alternating-Material Self-Aligned Multiple Patterning”, Proc. SPIE Alternative Lithography Tech-
nologies VIII, 2016, pp. 977718:1-977718:16.

[42] A. Hetzel, “A Sequential Detailed Router for Huge Grid Graphs”, Proc. Design, Automation and
Test in Europe, 1998, pp. 332-339.

[43] D. W. Hightower, “A Solution to Line-Routing Problems on the Continuous Plane”, Proc. ACM/IEEE
Design Automation Conference, 1969, pp. 1-24.

[44] D. Hill, “Method and System for High Speed Detailed Placement of Cells Within an Integrated
Circuit Design”, US Patent No. US6370673B1, April 2002.

[45] W. Hou, D. Liu and P.-H. Ho, “Automatic Register Banking for Low-Power Clock Trees”, Proc.
International Symposium on Quality Electronic Design, 2009, pp. 647-652.

[46] C.-C. Hsu, Y.-T. Chang and M. P.-H. Lin, “Crosstalk-Aware Power Optimization with Multi-Bit
Flip-Flops”, Proc. Asia and South Pacific Design Automation Conference, 2012, pp. 431-436.

[47] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Placement”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2000, pp. 165-170.

[48] I. H.-R. Jiang, C. L. Chang and Y. M. Yang, “INTEGRA: Fast Multibit Flip-Flop Clustering for
Clock Power Saving”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31(2) (2012), pp. 192-204.

[49] A. B. Kahng, “The ITRS Design Technology and System Drivers Roadmap: Process and Status”,
Proc. ACM/EDAC/IEEE Design Automation Conference, 2013, pp. 34-39.

[50] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-Based Placements”, Proc. ACM
Great Lakes Symposium on Very Large Scale Integration, 2004, pp. 214-219.

[51] A. B. Kahng, P. Sharma and R. O. Topaloglu, “Exploiting STI Stress for Performance”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2007, pp. 83-90.

[52] A. B. Kahng and R. O. Topaloglu, “A DOE Set for Normalization-Based Extraction of Fill Impact
on Capacitances”, Proc. International Symposium on Quality Electronic Design, 2007, pp. 467-474.

[53] A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of Linear Placements for Wirelength
Minimization with Free Sites”, Proc. Asia and South Pacific Design Automation Conference, 1999,
pp. 241-244.

173

[54] A. B. Kahng, L. Wang and B. Xu, “TritonRoute: An Initial Detailed Router for Advanced VLSI
Technologies”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2018, pp.
81:1-81:8.

[55] S. Khuller and Y. J. Sussmann, “The Capacitated K-Center Problem”, SIAM Journal on Discrete
Mathematics 13(3) (2000), pp. 403-418.

[56] Y. Kretchmer, “Using Multi-Bit Register Inference to Save Area and Power: The Good, The Bad,
and The Ugly”, EE Times Asia, 2001.

[57] C. Y. Lee, “An Algorithm for Path Connections and Its Applications”, IRE Transactions on Electronic
Computers 10(3) (1961), pp. 346-365.

[58] C. Y. Lee, C.-Y. Ting and J.-H. Shieh, “Method of Patterning for a Semiconductor Device”, US
Patent No. US8697537B2, April 2014.

[59] H. K.-S. Leung, “Advanced Routing in Changing Technology Landscape”, Proc. ACM International
Symposium on Physical Design, 2003, pp. 118-121.

[60] H. Li, G. Chen, B. Jiang, J. Chen and E. F. Y. Young, “Dr. CU 2.0: A Scalable Detailed Routing
Framework with Correct-by-Construction Design Rule Satisfaction”, Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2019, pp. 1-7.

[61] S. Li and C.-K. Koh, “Mixed Integer Programming Models for Detailed Placement”, Proc. ACM
International Symposium on Physical Design, 2012, pp. 87-94.

[62] S. Li and C.-K. Koh, “MIP-based Detailed Placer for Mixed-size Circuits”, Proc. ACM International
Symposium on Physical Design, 2014, pp. 11-18.

[63] T. Lin and C. Chu, “TPL-Aware Displacement-driven Detailed Placement Refinement with Coloring
Constraints”, Proc. ACM International Symposium on Physical Design, 2015, pp. 75-80.

[64] M. P.-H. Lin, C.-C. Hsu and Y.-T. Chang, “Post-Placement Power Optimization with Multi-Bit
Flip-Flops”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
30(12) (2011), pp. 1870-1882.

[65] M. P.-H. Lin, C.-C. Hsu and Y.-C. Chen, “Clock-Tree Aware Multibit Flip-Flop Generation During
Placement for Power Optimization”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34(2) (2015), pp. 280-292.

[66] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert and D. Z. Pan,
“MrDP: Multiple-row Detailed Placement of Heterogeneous-sized Cells for Advanced Nodes”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2016, pp. 1-8.

[67] Y. Lin, B. Yu, B. Xu and D. Z. Pan, “Triple Patterning Aware Detailed Placement Toward Zero Cross-
Row Middle-of-Line Conflict”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 2015, pp. 396-403.

[68] I.-J. Liu, S.-Y. Fang and Y.-W. Chang, “Overlay-Aware Detailed Routing for Self-Aligned Double
Patterning Lithography Using the Cut Process”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 35(9) (2016), pp. 1519-1531.

174

[69] W.-H. Liu, C.-K. Koh and Y.-L. Li, “Optimization of Placement Solutions for Routability”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2013, pp.153:1-153:9.

[70] S. S.-Y. Liu, W.-T. Lo, C.-J. Lee and H.-M. Chen, “Agglomerative-Based Flip-Flop Merging and
Relocation for Signal Wirelength and Clock Tree Optimization”, ACM Transactions on Design
Automation of Electronic Systems 18(3) (2013), pp. 40:1-40:20.

[71] S.-C. Lo, C.-C. Hsu and M. P.-H. Lin, “Power Optimization for Clock Network with Clock Gate
Cloning and Flip-Flop Merging”, Proc. ACM International Symposium on Physical Design, 2014,
pp. 77-84.

[72] W. K. Luk, “A Greedy Switch-Box Router”, Integration 3(2) (1985), pp. 129-149.

[73] S. Mantik, G. Posser, W.-K. Chow, Y. Ding and W.-H. Liu, “ISPD 2018 Initial Detailed Routing
Contest and Benchmarks”, Proc. ACM International Symposium on Physical Design, 2018, pp.
140-143.

[74] A. D. Mehta, Y.-P. Chen, N. Menezes, D. F. Wong and L. T. Pileggi, “Clustering and Load Balancing
for Buffered Clock Tree Synthesis”, Proc. IEEE International Conference on Computer Design,
1997, pp. 217-223.

[75] Model-Hardware Correlation Team, Samsung Electronics Co., Ltd., November 2016.

[76] G.-J. Nam, IBM, personal communication, March 2016.

[77] T. Nieberg, “Gridless Pin Access in Detailed Routing”, Proc. ACM/EDAC/IEEE Design Automation
Conference, 2011, pp. 170-175.

[78] N. J. Nilsson, “State-Space Search Methods”, in Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Book Co., 1971, pp. 43-79.

[79] S.-K. Oh, S.-H. Baek, S.-Y. Lee and T.-J. Song, “Standard Cell Library, Method of Using the
Same, and Method of Designing Semiconductor Integrated Circuit”, US Patent No. US9830415B2,
November 2017.

[80] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I.-P. Wu and Y.-W. Chang, “Layout-Dependent-Effects-Aware
Analytical Analog Placement”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35(8) (2016), pp. 1243-1254.

[81] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective Detailed Placement Algorithm”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2005, pp. 48-55.

[82] D. Papa, N. Viswanathan, C. Sze, Z. Li, G.-J. Nam, C. Alpert and I. L. Markov, “Physical Synthesis
with Clock-Network Optimization for Large Systems on Chips”, IEEE Micro 31(4) (2011), pp.
51-62.

[83] I. Pohl, “Bi-Directional Search”, Machine Intelligence (1971), pp. 127-140.

[84] X. Qiu and M. Marek-Sadowska, “Can Pin Access Limit the Footprint Scaling?”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2012, pp. 1100-1106.

175

[85] P. Raghavan, M. G. Bardon, D. Jang, P. Schuddinck, D. Yakimets, J. Ryckaert, A. Mercha, N.
Horiguchi, N. Collaert, A. Mocuta, D. Mocuta, Z. Tokei, D. Verkest, A. Thean and A. Steegen,
“Holistic Device Exploration for 7nm Node”, Proc. IEEE Custom Integrated Circuits Conference,
2015, pp. 1-5.

[86] P. J. Rousseeuw, “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster
Analysis”, Journal of Computational and Applied Mathematics 20 (1987), pp. 53-65.

[87] S. M. Y. Sherazi, B. Chava, P. Debacker, M. G. Bardon, P. Schuddinck, F. Firouzi, P. Raghavan,
A. Mercha, D. Verkest and J. Ryckaert, “Architectural Strategies in Standard-Cell Design for the
7nm and beyond Technology Node”, SPIE Journal of Micro/Nanolithography, MEMS, and MOEMS
15(1) (2016), pp. 1-11.

[88] E. Shragowitz and S. Keel, “A Global Router Based on a Multicommodity Flow Model”, Integration
5(1) (1987), pp. 3-16.

[89] J. Soukup, “Fast Maze Router”, Proc. ACM/IEEE Design Automation Conference, 1978, pp. 100-
102.

[90] Y.-H. Su and Y.-W. Chang, “Nanowire-Aware Routing Considering High Cut-Mask Complexity”,
Proc. ACM/EDAC/IEEE Design Automation Conference, 2015, pp. 1-6.

[91] F.-K. Sun, H. Chen, C.-Y. Chen, C.-H. Hsu and Y.-W. Chang, “A Multithreaded Initial Detailed
Routing Algorithm Considering Global Routing Guides”, Proc. IEEE/ACM International Conference
on Computer-Aided Design, 2018, pp. 82:1-82:7.

[92] M. Tarabbia, A. Mittal and N. Hindawy, “Forming FinFET Cell with Fin Tip and Resulting Device”,
US Patent No. US9059093B2, June 2015.

[93] H. Tian, Y. Du, H. Zhang, Z. Xiao and M. D. F. Wong, “Triple Patterning Aware Detailed Placement
with Constrained Pattern Assignment”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2014, pp. 116-123.

[94] C.-C. Tsai, Y. Shi, G. Luo and I. H.-R. Jiang, “FF-bond: Multi-Bit Flip-Flop Bonding at Placement”,
Proc. ACM International Symposium on Physical Design, 2013, pp. 147-153.

[95] P.-S. Tzeng and C. H. Sequin, “Codar: A Congestion-Directed General Area Router”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 1988, pp. 30-33.

[96] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo and W.-K. Mak, “Power-Driven Flip-Flop Merging and Relo-
cation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 31(2)
(2012), pp. 180-191.

[97] M.-P. Wong, W.-H. Liu and T.-C. Wang, “Negotiation-Based Track Assignment Considering Local
Nets”, Proc. Asia and South Pacific Design Automation Conference, 2016, pp. 378-383.

[98] G. Wu and C. Chu, “Detailed Placement Algorithm for VLSI Design with Double-Row Height
Standard Cells”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
35(8) (2016), pp. 1569-1573.

176

[99] R. Xie, K.-Y. Lim, M. G. Sung and R. R.-H. Kim, “Methods of Forming Single and Double Diffusion
Breaks on Integrated Circuit Products Comprised of FinFET Devices and The Resulting Products”,
US Patent No. US9412616B1, August 2016.

[100] X. Xu, B. Cline, G. Yeric, B. Yu and D. Z. Pan, “Self-Aligned Double Pattering Aware Pin Access
and Standard Cell Layout Co-Optimization”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34(5) (2015), pp. 699-712.

[101] C. Xu, P. Li, G. Luo, Y. Shi and I. H.-R. Jiang, “Analytical Clustering Score with Application to
Post-Placement Multi-Bit Flip-Flop Merging”, Proc. ACM International Symposium on Physical
Design, 2015, pp. 93-100.

[102] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu and D. Z. Pan, “PARR: Pin Access Planning and Regular Routing
for Self-Aligned Double Patterning”, ACM Transactions on Design Automation of Electronic Systems
21(3) (2016), article 42.

[103] J.-T. Yan and Z.-W. Chen, “Construction of Constrained Multi-Bit Flip-Flops for Clock Power
Reduction”, Proc. International Conference on Green Circuits and Systems 2010, pp. 675-678.

[104] W. Ye, B. Yu, D. Z. Pan, Y.-C. Ban and L. Liebmann, “Standard Cell Layout Regularity and Pin
Access Optimization Considering Middle-of-Line”, Proc. ACM Great Lakes Symposium on Very
Large Scale Integration, 2015, pp. 289-294.

[105] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Lee, C. J. Alpert and D. Z. Pan, “Methodology for Standard
Cell Compliance and Detailed Placement for Triple Patterning Lithography”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34(5) (2015), pp. 726-739.

[106] B. Yu, X. Xu, J.-R. Gao and D. Z. Pan, “Methodology for Standard Cell Compliance and Detailed
Placement for Triple Patterning Lithography”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2013, pp. 349-356.

[107] Y. Zhang and C. Chu, “CROP: Fast and Effective Congestion Refinement of Placement”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2009, pp. 344-350.

[108] Y. Zhang and C. Chu, “RegularRoute: An Efficient Detailed Router Applying Regular Routing
Patterns”, IEEE Transactions on Very Large Scale Integration Systems 21(9) (2013), pp. 1655-1668.

[109] H. Zhang, Y. Du, M. D. F. Wong and K.-Y. Chao, “Mask Cost Reduction with Circuit Performance
Consideration for Self-Aligned Double Patterning”, Proc. Asia and South Pacific Design Automation
Conference, 2011, pp. 787-792.

[110] H. Zhang, Y. Du, M. D. F. Wong and K.-Y. Chao, “Lithography-Aware Layout Modification
Considering Performance Impact”, Proc. International Symposium on Quality Electronic Design,
2011, pp. 1-5.

[111] ASAP ASU 7nm PDK. http://asap.asu.edu/asap/

[112] Cadence Innovus Implementation System.
https://www.cadence.com/content/cadence-www/global/
en_US/home/tools/digital-design-and-signoff/
soc-implementation-and-floorplanning/innovus-implementation-system.
html

177

[113] Cadence Quantus QRC Extraction Solution.
https://www.cadence.com/content/cadence-www/global/en_
US/home/tools/digital-design-and-signoff/silicon-signoff/
quantus-qrc-extraction-solution.html

[114] Cadence Tempus Timing Signoff Solution.
https://www.cadence.com/content/cadence-www/global/en_
US/home/tools/digital-design-and-signoff/silicon-signoff/
tempus-timing-signoff-solution.html

[115] IBM ILOG CPLEX Optimization Studio.
https://www.ibm.com/products/ilog-cplex-optimization-studio

[116] Dr. CU 2.0, https://github.com/cuhk-eda/dr-cu/releases/tag/v4.1.1

[117] International Technology Roadmap for Semiconductors.
http://www.itrs2.net/itrs-reports.html

[118] imec. https://www.imec-int.com/

[119] LEF/DEF 5.7 reference.
http://projects.si2.org/openeda.si2.org/projects/lefdef

[120] LEF/DEF Language Reference. http://www.ispd.cc/contests/18/lefdefref.pdf

[121] LEMON (Library for Efficient Modeling and Optimization in Networks).
http://lemon.cs.elte.hu/trac/lemon

[122] W.-H. Liu, “ISPD 2018 Initial Detailed Routing Contest and Benchmarks” presentation slides,
http://www.ispd.cc/slides/2018/s7_3.pdf

[123] Mentor Graphics Calibre.
https://www.mentor.com/products/ic_nanometer_design/
verification-signoff/physical-verification/

[124] OpenCores: Open Source IP-Cores. http://www.opencores.org

[125] OpenMP Architecture Review Board, “OpenMP Application Program Interface, Version 4.0”.

[126] The-OpenROAD-Project/TritonRoute: UCSD Detailed Router, https://github.com/
The-OpenROAD-Project/TritonRoute

[127] TritonRoute Version 0.0.6.0, https://github.com/The-OpenROAD-Project/
TritonRoute/releases/tag/0.0.6.0

[128] Si2 OpenAccess. http://projects.si2.org/?page=69

[129] Synopsys Design Compiler.
https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html

178

[130] Synopsys HSPICE.
https://www.synopsys.com/verification/ams-verification/hspice.
html

179

