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Wave-particle energy exchange directly observed
in a kinetic Alfvén-branch wave
Daniel J. Gershman1,2, Adolfo F-Viñas2, John C. Dorelli2, Scott A. Boardsen2,3, Levon A. Avanov1,2,

Paul M. Bellan4, Steven J. Schwartz5, Benoit Lavraud6,7, Victoria N. Coffey8, Michael O. Chandler8,

Yoshifumi Saito9, William R. Paterson2, Stephen A. Fuselier10, Robert E. Ergun11, Robert J. Strangeway12,

Christopher T. Russell12, Barbara L. Giles2, Craig J. Pollock2, Roy B. Torbert13,14 & James L. Burch10

Alfvén waves are fundamental plasma wave modes that permeate the universe. At small

kinetic scales, they provide a critical mechanism for the transfer of energy between

electromagnetic fields and charged particles. These waves are important not only in planetary

magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma

experiments and fusion reactors. Through measurement of charged particles and electro-

magnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s

magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy

exchange between the electromagnetic field fluctuations and the charged particles that

comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks

may have contributed to saturation of damping effects via nonlinear particle trapping. The

investigation of these detailed wave dynamics has been unexplored territory in experimental

plasma physics and is only recently enabled by high-resolution MMS observations.
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T
he Alfvén wave is a ubiquitous plasma wave mode wherein
ions collectively respond to perturbations in the ambient
magnetic field direction1. No net energy is transferred

between the field and the plasma particles in ideal Alfvén waves.
However, ion motion decouples from electron motion when wave
dynamics are faster than ion orbital motion around the local
magnetic field or are on scales smaller than the ion orbit size,
defined by the gyrofrequency (oci) and gyroradius (ri),
respectively. When the perpendicular spatial scale of an Alfvén
wave approaches ri, the wave can support significant parallel
electric and magnetic field fluctuations that enable net transfer of
energy between the wave field and plasma particles via Landau or
transit–time interactions2–4.

The transition of an ideal fluid-scale Alfvén wave to a kinetic-
scale Alfvén wave (KAW) occurs at k?riB1 and k?4k||, where k
is the wavevector and ‘?’ and ‘||’ are defined with respect to the
local magnetic field direction. These KAWs are essential for
energy transfer processes in plasmas. Broadband KAWs have
long been associated in space physics with turbulent heating in
the solar wind and magnetosheath5–7 and are also thought to
account for a substantial amount of the energy input into Earth’s
auroral regions that can drive charged particle outflow and
atmospheric loss8–13. In the laboratory, KAWs can transport
energy away from the core regions of fusion plasmas, resulting in
the unwanted deposition of energy at the reactor edges14,15.
Understanding kinetic-scale wave generation, propagation and
interaction with charged particles is critical to unraveling and
predicting the relevant physics of these fundamental processes.

Alfvén wave theory predicts that transverse fluctuations in the
current density (J) and electron-pressure-gradient-driven electric
field (Ep¼ �=�Pe/(nee)) are 90� out of phase with one another,
such that the plasma heating term, D J?Ep?

� �
, can be instanta-

neously non-zero but averages to zero over a wave period1. In
such an undamped wave, power sloshes back and forth between
the wave field and particles with no net energy transfer. There are
no corresponding fluctuations in DEp|| and DJ|| in an ideal Alfvén
wave. For kinetic-scale Alfvén waves, however, non-zero DEp||

fluctuations enable the Landau resonance, where particles with
V||Bo/k|| can gain or lose energy through interaction with the
wave field. These interactions, combined with an imbalance in the
number of particles that are moving faster than or slower than the
wave, result in net plasma heating or cooling4. Here, fluctuations
in DJ|| and DEp|| become in-phase such that the wave-averaged
D(J||Ep||) is non-zero3,16. Likewise, fluctuations in DB|| result in
transit-time damping effects, the magnetic analog of Landau
damping, where the magnetic mirror force takes the place
of Ep

2,4. For nonlinear KAWs, parallel fluctuations can be
sufficiently large in amplitude to trap electrons between adjacent
wave peaks. The oscillatory bounce motion of these electrons
produces equal numbers of particles moving faster than or slower
than the wave, limiting the effects of Landau and transit-time
damping, and enabling stable wave mode propagation4,17.

The detailed properties of KAWs (for example, DJ, DEp, k)
have been difficult to characterize due to their small spatial and
temporal scales with respect to the capabilities of laboratory or
on-orbit plasma instrumentation. Accurate estimates of current
density and the characterization of particle populations require
full three-dimensional distribution functions of both electron and
ions on timescales faster than the wave frequency in the
observation frame of reference. In addition, estimates of pressure
gradients and wavevectors rely on multiple observation points
being available within a single wave peak. However, NASA’s
recently launched Magnetospheric Multiscale (MMS) mission18

consists of four identical observatories deployed in a tetrahedron
configuration that measure charged particle and electromagnetic
fields orders of magnitude more quickly than previous space

missions. This increased temporal sampling combined
with a small MMS inter-spacecraft separation enables plasma
parameters and their spatial gradients to be determined at
kinetic scales.

Here we use observations from MMS to characterize
the microphysics of a monochromatic Alfvén wave. Through
the calculation of DJ�DE, we provide a direct measurement of the
conservative energy exchange between the wave’s electromagnetic
fields and particles. A perpendicular spatial scale of k?riB1,
non-zero DEp|| and DJ|| fluctuations, and a parallel wave speed
close to the local Alfvén speed confirm that the wave packet is an
ion-scale KAW. Finally, analysis of the velocity distribution
function of electrons reveals a population that is nonlinearly
trapped within the wave’s magnetic minima. These trapped
electrons may have enabled nonlinear saturation of damping
processes, resulting in marginally stable wave propagation and
providing evidence in support of early analytical theories of
wave–particle interactions in collisionless plasmas.

Results
Event overview. On 30 December 2015, the four MMS
observatories were near the dayside magnetopause, that is, the
interface between the interplanetary magnetic field and the
Earth’s internal magnetic field, at [7.8, � 6.9, 0.9] Re (1 Re¼ 1
Earth radius¼ 6,730 km). Magnetic reconnection at the
magnetopause boundary19,20 generated a southward flowing
exhaust at B22:25 UT denoted by a �Vz jet, an increase in
plasma density, and a decrease in plasma temperature (see Fig. 1).
There was no discernable rotation in the magnetic field
suggesting that the spacecraft constellation remained inside the
Earth’s magnetosphere throughout this interval. Low frequency
(B1 Hz) waves were observed in the exhaust in a B4 min
interval localized to a region of strong proton temperature
anisotropy (THþ?/THþ ||B2). MMS partially crossed the
magnetopause into the magnetosheath for the first time at
B22:35 UT (not shown) at [8.0, � 6.9, 0.9] Re. For the
subsequent B2 h, multiple magnetopause crossings resulted in
the MMS spacecraft sampling both þVz and �Vz jets, that is,
above and below the reconnection site. However, B1 Hz waves
were only observed in the short interval shown in Fig. 1.
The MMS observatories were in a tetrahedron configuration
(quality factor21 B0.9) separated by B40 km, a distance which
corresponded to a local thermal ion gyroradius (ri¼ 35 km).

The reconnection exhaust plasma consisted of mostly Hþ and
some He2þ with number density ratio nHe2þ /nHþo0.02
throughout the interval. The local ratios of ion thermal parallel
and perpendicular pressure to magnetic pressure were b||E0.2
and b?E0.5, respectively. In addition, the average plasma flow
velocity during this interval was Vo¼ [� 17, 73, � 183] km s� 1.
This velocity corresponded to a jet flowing nearly anti-parallel to
the background magnetic field ([0.10, � 0.52, 0.85] direction)
with speed B0.5 VA, where VA is the Alfvén speed, that is, the
characteristic speed in which information can be transferred
along a magnetic field. For this interval, with nHþ ¼ 10 cm� 3

and B¼ 55 nT, the local Alfvén speed was estimated to be
380 km s� 1. Variations were observed in the number density
(Dn), bulk velocity (Dve), temperature (DT||, DT?) of both ions
and electrons, and in the electric (DE) and magnetic fields (DB)
(see Fig. 2). The amplitude of these B1 Hz fluctuations were
nonlinear with DnHþ /nHþB0.2. The magnetic field fluctuations
exhibited both left-handed and right-handed polarization (see
Supplementary Fig. 1). Finally, bursts of electron phase space
holes measured in the total parallel electric field (DE||) were
bunched with the wave in locations of strong electron pressure
gradients.
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Wave properties. Accurate determination of the wavevector (k)
was critical to identify the observed wave mode. In situ estimation
of k, especially for broadband wave spectra, is non-trivial
and often relies on multi-spacecraft techniques22. Fortunately, the
monochromatic nature of the observed wave enabled the
application of several independent methods of wavevector
determination. Here we utilized four methods to provide a
robust estimate of k: (1) parallel component of the wavevector
derived from the correlation between velocity and magnetic field
fluctuations16, (2) k-vector estimation from current and magnetic
field fluctuations measured in the spacecraft frame23,24,
(3) comparison of spacecraft-measured gradients with their
corresponding spacecraft-averaged quantities, that is, the plane-
wave approximation4, and (4) phase differencing of the magnetic
field fluctuations between each spacecraft25.

In the first method, we estimated the parallel component of the
wavevector through comparison of four-spacecraft-averaged
electron velocity and magnetic field fluctuations. Alfvén-branch
waves have parallel wave speeds close to the local Alfvén speed,
that is, |o/k|||EVA and correlated transverse fluctuations16,
DVe? ¼ � (o/k||)DB?/B. Positively correlated (R2¼ 0.92) DVe?
and DB? indicated that o/k||¼ � 1.15±0.03 VA, that is, the
wave propagated anti-parallel to the background magnetic field
near the Alfvén speed (see Supplementary Fig. 2). Although

qualitatively similar B1 Hz fluctuations have been observed near
Earth’s bow shock that are more consistent with magnetosonic
wave modes26, a parallel phase speed well above the local sound
speed of B0.5 VA and the anti-correlation between density and
magnetic field fluctuations were inconsistent with slow and fast
magnetosonic wave modes, respectively.

In the second method, we combined fluctuations of
current and magnetic field in the spacecraft frame to estimate k
as a function of frequency using spectral techniques recently
developed by Bellan23,24. Here the k-vector was derived directly
from fluctuations in DJ and DB measured in the spacecraft frame
(see Fig. 3). Although this technique could have been applied
to data from a single spacecraft, in order to maximize
spectral resolution we used the four-spacecraft average of DB
and the average DJ determined from magnetometer data
using the four-spacecraft ‘curlometer’ technique27. The value of
k at the frequency of maximum spectral power, 0.9 Hz, was
k¼ [7.1� 10� 3, � 2.0� 10� 2,� 2.2� 10� 2] km� 1, which
corresponded to a wavevector angle (y) of B100� with respect
to the background magnetic field and k?riB1.0.

In the third method, we used the phase difference25 measured
between each pair of MMS spacecraft for each component of the
magnetic field to derive additional estimates of k. At the spectral
peak of 0.9 Hz, the k-vector determined from the phase
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Figure 1 | MMS observations of a reconnection exhaust. (a) Illustration of the MMS constellation near the dayside magnetopause on 30 December 2015.

MMS entered a southward flowing reconnection exhaust in the separatrix region on the magnetospheric (msp) side of the magnetopause. (b–i) Plasma

parameters from MMS4 across the jet are shown from 22:23 to 22:30 UT. The density increased to B10 cm� 3 (d) and �Vz increased by B200 km s� 1

(e). No rotation in the magnetic field (B) indicated that the spacecraft remained inside the magnetosphere during this time period. Approximately 1 Hz

waves (h,i) were observed to be localized in a region of enhanced ion temperature anisotropy, with T?/T||B2. Hþ dominated the ion composition during

this time period.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14719 ARTICLE

NATURE COMMUNICATIONS | 8:14719 | DOI: 10.1038/ncomms14719 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


differencing of the BX, BY and BZ fluctuations (using MMS3 as a
reference) were: [� 7.4� 10� 5, � 8.5� 10� 3, � 1.5� 10� 2],
[2.9� 10� 2,4.7� 10� 3, � 1.1� 10� 2], and [2.3� 10� 2,
� 3.5� 10� 3, � 1.0� 10� 2] km� 1, respectively. Although
similar phase shifts were observed in all components of DB
between MMS2, MMS3 and MMS4, there were significantly
different shifts of MMS1 with respect to the other observatories
for each component (see Supplementary Fig. 3). These differences
demonstrated that this wave packet was not truly planar and
exhibited spatial structure on the order of an ion gyroradius.
Because MMS1 was farthest from the magnetopause (that is, the
X direction), the kX component was most strongly affected by this
structure. Despite this discrepancy, all determinations of k result
in k?riB1 and the phase differencing of BX and BY components,
those with the largest fluctuation power, both produced
o/k||¼ � 1.1 VA.

Finally, in the fourth method, the small MMS spacecraft
separations and high-quality tetrahedron formation enabled
gradients of particle and field quantities to be estimated directly

from the MMS data. These gradients were compared with those
predicted by the plane-wave approximation (that is, ‘r�’Eik and
‘r� ’Eik� at a single frequency4) to both evaluate the validity
of this approximation to the observed wave packet and to provide
further validation of k (see Fig. 4). The current was calculated
from three methods: (1) direct particle observations, that is,
ene(Vi�Ve), (2) magnetic field ‘curlometer’27, that is, r�B/mo,
and (3) the plane-wave approximation, that is, ik�B/mo. All
three estimates of DJ are shown in Fig. 4. ky and kz most strongly
influenced the plane-wave-derived currents such that this
intercomparison was relatively insensitive to errors in the
determination of kx. The electron-pressure-gradient-driven
electric field determined from four spacecraft measurements
(that is, �r�Pe/(nee)), when compared with its plane-wave
approximated value (that is, � ik�Pe/(nee)), provides further
confidence in the determination of k (see Fig. 4). Here all three
components of k contributed to this result. The X-component
comparison demonstrates that kx is of the correct sign but may
underestimate the four-spacecraft gradient.
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We adopted the k-vector derived using the Bellan23,24 method
k¼ [7.1� 10� 3, � 2.0� 10� 2, � 2.2� 10� 2] km� 1 because it
simultaneously leveraged data from all four spacecraft and all
components of the magnetic field. Allowing for B30% (3-s level)
uncertainty in each individual component, we found
k?ri¼ 1.02±0.07 with wavevector angle 104±4� from the
magnetic field. The 0.9 Hz peak observed in the spacecraft
frame (osc) was then Doppler-shifted by o¼osc� k�Vo to
obtain a frequency of o/oci,Hþ ¼ 0.61±0.08 in the plasma
frame. We conclude that multiple independent methods indicated
that MMS resolved a kinetic-scale Alfvén-branch wave.

Modelled wave growth rates. Growth rates (g¼ Im{o/oci}) and
polarization (Re{iEy/Ex}) solutions along the Alfvén-branch dis-
persive surface were estimated using a linear dispersion solver
and are shown as a function of y in Fig. 5. The dispersion solver
predicted that the large ion temperature anisotropy of Ti?/Ti||B2
produced a nearly monochromatic ion cyclotron wave mode that
propagated parallel/anti-parallel to the background magnetic field
(y¼ 0�, 180�) with o/ociB0.5, kriB0.4 and left-handed polar-
ization. At increasingly oblique wavevector angles, the predicted
wave growth was substantially reduced. There was no slow or fast
magnetosonic wave growth predicted for the measured plasma
parameters. Several Alfvén-branch dispersion curves are shown in
Fig. 5 as a function of kri and y. The observed KAW mode
(o/oci¼ 0.6, kri¼ 1, y¼ 100�) was close to but not precisely
on the solution surface. Nearby Alfvénic solutions to the
measured data (matching two of the three wave parameters) were
{o/oci¼ 0.3, kri¼ 1, y¼ 100�}, {o/oci¼ 0.6, kri¼ 1.6, y¼ 100�}
and {o/oci¼ 0.6, kri¼ 1, y¼ 110�}. All of these nearby solutions
were weakly damped (|g|B10� 2) such that local generation of
the observed KAW was not predicted by linear wave theory.
However, local spatial gradients of plasma density may have
increased the y of the ion cyclotron mode during its propagation,
converting it into an oblique Alfvén wave4. Furthermore,
nonlinear effects and parametric forcing (for example,

magnetopause motion) were not taken into account by the
homogenous dispersion solver, yet may have played a role in the
evolution of the observed KAW.

Wave–particle interactions. Given the demonstrated validity of
the plane-wave approximation for DEp, the electron-pressure-
gradient-driven electric field was estimated at a single spacecraft,
for example, MMS4, using � ik�Pe/(nee). Fluctuations of DEp

and DJ in magnetic coordinates on MMS4 are shown in Fig. 6. In
addition to the transverse electric field fluctuations expected for
all Alfvén waves, fluctuations in DEp|| further confirmed the
presence of kinetic-scale effects. These parallel fluctuations were
an order of magnitude smaller than those in DEp? as expected
from KAW theory16. Furthermore, fluctuations in all components
of DJ and DEp (both perpendicular and parallel) were each
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B90� out of phase with one another. These phase differences
resulted in a non-zero instantaneous value of D(J�Ep)
with D|J�Ep|maxE50 pW m� 3 and near-zero wave-averaged
D J?Ep?
� �

and D(J||Ep||) quantities. These data demonstrated the
conservative energy exchange between the particles and fields that
comprise an undamped KAW.

Because k?reoo1, electrons should have remained magnetized
throughout the wave packet. Close examination of the electron
velocity distribution function in the parallel wave frame revealed
three distinct populations of electrons in the wave packet: (1) an
isotropic thermal core, (2) suprathermal beams counterstreaming
along the magnetic field, and (3) trapped particles with near
B90� magnetic pitch angles (Fig. 7). Thermal and counter-
streaming electrons are commonly observed in the magnetopause
boundary layer in the absence of analogous wave activity28.
However, trapped electron distributions are atypical of ambient
boundary layer plasmas. Furthermore, these trapped electrons
were dynamically significant: they accounted for B50% of the
density fluctuations within the KAW. Although these electrons
also resulted in a B20% increase in Te?, they were not indicative
of heating but rather of a nonlinear capture process.

The depth of the parallel potential well estimated from DEp||

and k|| was found to be B10 V (Fig. 7). In addition, the parallel
magnetic field of the wave generated a mirror force that resulted
in a kinetic-scale magnetic bottle between successive wave peaks.
This mirror force supplemented the force from the wave’s parallel
electric field, enabling trapping of electrons with magnetic pitch

angles between B75� and B105� (Bmin/Bmax¼ 0.96). To under-
stand the combined effects of these forces, electrons measured in
the magnetic minima were Liouville-mapped to other locations
along the wave using various parallel potential well depths
(Fig. 8). The full-width at half maximum distance along the wave
at a pitch angle of 90� was calculated for each potential and
compared with the measured data. The best match between
measured and Liouville-mapped distributions was found for a
potential well depth of |Fmax|¼ 10 V. Such agreement provided
additional validation of DEp|| and k||. In addition, these
distributions demonstrated that the effect of the parallel electric
field was to confine magnetically trapped electrons closer to
magnetic minima.

Discussion
KAWs in turbulent space plasmas are thought to account for
heating of plasmas at kinetic scales5–7. In previous studies29,30,
such waves were found to have k?ck||, that is, yB90�. This
plasma heating was accompanied by significant reductions in field
fluctuation power. The wave presented here had a somewhat
higher frequency (oci,He2þooooci,Hþ ) than those considered
in these previous KAW studies (ooooci,Hþ , oci,He2þ ).
Furthermore, its comparatively non-perpendicular wavevector
(yE100�) and large scale (k?riE1) indicated that the observed
wave was close to the transition point between ideal and kinetic
regimes. Nonetheless, the wave had non-zero DJ|| and DEp||
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fluctuations, confirming that it contained kinetic-scale structure
not present in an ideal Alfvén wave. These observations
demonstrated that the mere presence of a KAW or parallel
electric field fluctuations do not necessarily imply heating via
Landau damping. Only in-phase fluctuations in DJ and DEp result
in such net transfer of energy from the wave field to the plasma
particles.

In linear KAW theory, the electrostatic field formed by
parallel gradients in electron pressure enables the energization

of particles via the Landau resonance4,13,16. Similarly, the
transit-time resonance becomes relevant for systems where
there are parallel gradients in magnetic field magnitude.
Despite the presence of these field gradients in the observed
KAW, out-of-phase DEp|| and DJ|| fluctuations and a finite wave
amplitude for several wave periods (that is, |g|oo1) indicated the
absence of strong wave growth or damping. Although a hot core
population (Vth,ec|o/k|||) does not lead to strong damping
(Fig. 5), the velocity distribution function of electrons was not
directly sampled at energies corresponding to V||Bo/k|| (that is,
B0.5 eV). Electrons at these low energies are often present as they
serve to neutralize a ubiquitous population of ‘hidden’ cold ions
that flow out from the ionosphere31. Such ionospheric electrons
may have added structure to the velocity distribution function
near V||Bo/k||, amplifying damping rates. However, nonlinear
KAW theories have predicted that trapped electrons with
V||Bo/k|| lead to wave stabilization if their bounce frequency
(oB) is significantly faster than the damping or growth rate,
that is, oB/ocic|g|4,17,32. We estimated oB/ociB1 for this wave,
consistent with such a criterion. Therefore, the presence of
trapped electrons here could have contributed to nonlinear
instability saturation in a single-mode wave even if there were low
energy structure in the electron distribution function that was not
resolved by MMS.

Finally, at higher frequencies (B1 kHz), fluctuations in the
total parallel electric field DE|| associated with electron
phase space holes33 were bunched in phase with the low
frequency wave packet (Fig. 1). Because these structures
persisted outside of the KAW interval (not shown), it is
unlikely that they were related to its initial generation.
However, the location of these electron-scale structures
within the wave was coincident with the location of electron
pressure gradients, suggesting that they could have contributed,
in an average sense, to some of the observed
ion-scale DEp|| fluctuations. Furthermore, electron holes may
have been responsible for higher frequency contributions to
D(J||E||) in the form of nonlinear and turbulent terms in the
electron momentum equation34.

Using MMS data, we have experimentally confirmed the
conservative energy exchange between an undamped kinetic
Alfvén wave field and plasma particles: fluctuations of all
three components of DJ and DEp were 90� out of phase with
one another, leading to instantaneous non-zero D(J�Ep).
Furthermore, we have discovered a significant population of
electrons trapped within adjacent wave peaks by the combined
effects of the parallel electron-pressure-gradient-driven electric
field and the magnetic mirror force. In addition to contributing
B50% of the density fluctuations in the wave, these trapped
electrons may have provided nonlinear saturation of Landau
and transit-time damping. The monochromatic nature of the
wave enabled a direct comparison of observations with linear
and nonlinear KAW theories. It is crucial to understand
these dynamics to predict the evolution of kinetic-scale waves
in laboratory fusion reactors, planetary magnetospheres and
astrophysical plasmas.

Methods
Coordinate systems. The coordinate system used in this study (unless otherwise
noted) was the Geocentric Solar Ecliptic (GSE) coordinate system, where the
X direction pointed towards the Sun along the Earth–Sun line, the Z direction
was oriented along the ecliptic north pole and the Y direction completed the
right-handed coordinate system35. Local ‘magnetic coordinates’ were derived from
GSE vectors where B3 was parallel to the local magnetic field direction, B1 was in
the XGSE�B3 direction and B2 completed the right-handed coordinate system,
that is, B1�B2¼B3.
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MMS4 particle observations. Current density and electric field fluctuations

were 90� out of phase in both the perpendicular and parallel directions,

resulting in non-zero instantaneous D(J�Ep), which provided confirmation

of the conservative energy exchange between the wave field and plasma

particles. The amplitude of D J?Ep?ð Þ was an order of magnitude higher than

D(J||Ep||). The wave-averaged D(J�Ep) was approximately zero, indicating
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Calculation of plasma parameters. The thermal gyroradius was calculated using

ri¼
mHþ

ffiffiffiffiffiffiffiffiffiffiffiffi
kB THþ?

mHþ

q
eB

ð1Þ

where kB is Boltzmann’s constant, e is the elementary charge and mHþ is the mass
of Hþ . The ion gyrofrequency was calculated using,

oci¼
eB

mHþ
ð2Þ

The plasma thermal pressure was calculated using nHþkBTHþ . The magnetic
pressure was calculated using B2/2mo where mo is the magnetic permeability of free
space. Finally, the Alfvén speed was calculated using

VA¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

monHþmHþ
p ð3Þ

All calculations were done in SI units.

DVe–DB correlations. The comparison of DVe and DB was done in the direction
of minimum current density fluctuations ([0.93, 0.32, 0.18]) such that ion and
electron velocities were approximately equal. This minimum variance direction

was nearly perpendicular to the background magnetic field direction b¼ [0.10,
� 0.52, 0.85].

Electric field measurements. The electric field in the electron frame was
defined as EþVe�B, where E was the measured electric field in the spacecraft
frame23. Since J is frame independent, this electron-frame electric field is
conveniently used for estimates of energy transfer, that is, plasma heating occurs
when J�(EþVe�B)40. At the scales relevant for this KAW packet, electrons
remained magnetized such that electron inertia and anomalous resistivity
contributions to the electric field were neglected and the pressure gradient term
should have been the dominant contributor to EþVe�B at low frequencies. The
individual amplitudes of E and Ve�B were measured to be on the order of several
mV m� 1. Systematic uncertainty in both particle and fields measurements would
have led to a challenging recovery of EþVe�B because |EþVe�B|oo|E|,|Ve�B|.
Therefore, accurate direct estimates of J�(EþVe�B) were not recovered for
this event. Instead, here we focussed on effects of the electric field generated by
the divergence of the electron pressure tensor, that is, Ep¼ �r�Pe/(nee) and
validated the measurement using multiple methods. In the electron frame, the
electrons are not moving so there is no magnetic term in the electron equation
of motion giving EEEp.
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Linear instability analysis. To determine the properties of kinetic modes that
interact with ions and electrons at their respective scales, we used the linear
dispersion solver PLADAWAN36 (PLAsma Dispersion And Wave ANalyzer) to
solve the linearized Vlasov-Maxwell system for arbitrary wavevector directions.
Using measured plasma parameters of ions and electrons, the dispersion solver
produced growth rates and wave properties as functions of o and k. The plasma
parameters used as input to the dispersion solver (assuming stationary plasma)
were ne� ¼ 10 cm� 3, B¼ 55 nT, Te? ¼Te||¼ 35 eV, THþ ||¼ 175 eV and
THþ? ¼ 350 eV. Wave polarization was calculated using the simulated electric field
fluctuations as Re{iEx/Ey}. Left-hand and right-hand polarization corresponded to
Re{iEx/Ey}o0 and Re{iEx/Ey}40, respectively4. No growth was observed for the
slow-mode or fast-mode magnetosonic branches of the dispersion relation.
Additional simulations were run to evaluate the influence of He2þ on the observed
instability. Increased nHe2þ /nHþ ratios up to 0.02 with THe2þ ¼ 550 eV reduced
the maximum wave growth but did not alter the sharpness of the peak in k-space.
No new wave modes appeared to be introduced into the system from the presence
of the local He2þ population.

Liouville mapping and electron bounce motion. Under the assumption that
electron phase space density f(v) was conserved along particle trajectories
throughout the wave interval (that is, Liouville’s theorem), we used f(v) measured
in the magnetic minimum, defined as fo(v), a sinusoidal profile of the magnetic
field strength B with M¼Bmin/Bmax¼ 0.96, and a sinusoidal profile of electric
potential F to infer the velocity distribution along the wave37,38. Velocity space was
transformed using equations

v jj o¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
? Dð Þ 1� Bo

B Dð Þ

� �
þ v2

jj Dð Þ� 2e
me

F Dð Þ

s
ð4Þ

and

v?o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
?ðDÞ

Bo

B Dð Þ

� �s
; ð5Þ

where the ‘o’ subscripts denote values at the magnetic minimum of the wave.
The ‘þ ’ and ‘� ’ branches of equation (4) correspond to the sign of v||.
For each (v||, v?) point in the reconstructed skymap, equations (4 and 5) provided a
point (v||o, v?o) that was used to map a phase space density in the reference
distribution, that is, f(v||, v?)¼ fo(v||o, v?o).

In the magnetic minimum (D¼ l||/2), Bo
B Dð Þ ¼ 1 and F¼Fo¼ 0. At the magnetic

maximum (D¼ 0, l||), Bo
B Dð Þ ¼M and F¼ � |Fmax|, that is,

Bo

B Dð Þ¼Mþ 1�Mð Þsin
p
l jj

D

� �
ð6Þ

F Dð Þ¼� Fmaxj j
2

1þ cos
2p
l jj

D

� �� �
: ð7Þ

Finally, bounce frequencies (oB¼ 1/tB) for trapped electrons were estimated
using

tB¼4
Z R

l jj =2

dD
v jj Dð Þ ; ð8Þ

where R was defined as the reflection point along the wave (that is, v|| (R)¼ 0).
Electrons with pitch angles 75–90� and energies 100–400 eV produced bounce
frequencies of 1.4±0.3 Hz (that is, o/oci¼ 1.6±0.3) in a l||¼ 830 km wave with
M¼ 0.96.

MMS data sources and processing. Particle, magnetic field and electric field
data were measured by the Fast Plasma Investigation39 (FPI), the Fluxgate
Magnetometers40 and Electric Field Double Probe41 instruments, respectively.
Corresponding composition data at B10 s time resolution was obtained from the
Hot Plasma Composition Analyzer42. Time series data were high-pass filtered with
a fifth-order digital Butterworth IIR filter with coefficients b¼ [0.85850229,
� 4.29251147,8.58502295, � 8.58502295, 4.29251147, � 0.85850229] and
a¼ [1.0, � 4.69504063,8.82614592, � 8.30396669, 3.90989399, � 0.73702619],
where b and a correspond to the filter’s numerator and denominator polynomials
listed in increasing order. This filter had an effective cutoff frequency of 0.5 Hz
and no discernable effect (o1%) on the amplitude or phase of a 0.9 Hz input
signal.

Data availability. Data used for this study is available to download from the
MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/) or from the
corresponding author upon request.
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Figure 8 | Liouville-mapped electrons in a KAW. Measured phase space

densities from MMS4 as a function of magnetic pitch angle and position

in the wave, D, between successive magnetic field maxima in the KAW

packet from Fig. 3 (22:26:29.94–22:26:30.90 UT) for 132 eV electrons.

Liouville-mapped distributions are shown for |F|max¼0, 5, 10, 15, 20 and

25 V (a–g). These distributions were constructed using measured phase

space densities at the magnetic minimum (that is, D¼ l||/2). The mirror

ratio of Bmin/Bmax¼0.96 confined particles to pitch angles between 75�
and 105� in all cases. The parallel potential formed from DEp|| provided

additional spatial localization of the trapped population within the wave

minima. Vertical dashed lines denote the full-width at half-maximum along

D at a pitch angle of 90�. The best agreement with the measured data

occurred for the distribution mapped using |F|max¼ 10 V, which was

consistent with independent estimates of k|| and DEp||.
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