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Abstract

Block Copolymer Membranes for Protein Nanopore-Based Biosensing

by

Justin Daniel Rofeh

Model membranes are synthetic structures that mimic cell membranes. They may be

used for basic research or as part of an engineered device. Phospholipids are typically used

to make model membranes, but they may be replaced by amphiphilic block copolymers

that are more physically and chemically stable, more tunable, and less costly. In this

work, we explore the use of block copolymer membranes for biosensing applications.

Specifically, we target the goal of nanopore DNA sequencing using the protein nanopore

MspA in block copolymer membranes.

As a first step, we extended previous work on MspA in a block copolymer membrane

by translating it to an array of apertures using a microfluidic painting technique. We

found that the use of a volatile solvent in a microfluidic channel caused variations in

membrane properties with corresponding undesirable variations in MspA behavior. Ad-

ditionally, we used this method to demonstrate DNA translocation through MspA in

block copolymer membranes. We selected droplet interface bilayers (DIBs) to investigate

which membrane properties are responsible for variations in MspA behavior. However,

we found that our aqueous block copolymer DIBs behave differently than any previously

studied DIB, necessitating the use of new techniques to characterize their behavior. Key

differences include reduced bilayer stability due to poor packing of the monolayer and

slow equilibration kinetics. We addressed the poor bilayer stability by establishing a

technique for manually packing monolayers prior to bilayer formation. We addressed the

slow equilibration kinetics by establishing a new method for measuring monolayer and

vii



bilayer tensions in DIBs using droplet shape analysis. While droplet shape analysis is

typically used for single droplets with axial symmetry, our method works even for DIBs

with asymmetric volumes and tensions. Another advantage is that the method can deter-

mine monolayer and membrane tensions in real time, independent of the applied voltage.

The method may be used for polymer and phospholipid DIBs alike. The work presented

in this thesis contributes to the understanding of amphiphilic block copolymer behavior

and will aid in the optimization of membrane properties for biosensing applications.
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What I cannot create,

I do not understand.

— Richard Feynman
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Chapter 1

Introduction

Two main thrusts are presented in this thesis. The primary thrust is the use of a block

copolymer as a replacement for phospholipids in membranes. The secondary thrust is the

use of block copolymer membranes specifically for the purpose of protein nanopore-based

DNA sequencing. Both of these topics are relatively new and have only been reported

in the literature in the last two decades. In this chapter, we will introduce and motivate

the membrane techniques that are utilized in Chapters 3 and 4: aperture-suspended

membranes and droplet interface bilayers. This includes an introduction to nanopore

DNA sequencing.
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Introduction Chapter 1

Cell interior

Cell exterior

Phospoholipid 

bilayer

Phospoholipids
Ion channels

Figure 1.1: Illustration of a cell membrane with phospholipids and ion channel proteins
indicated. All structures larger than phospholipids are proteins. These components,
and many more not shown here, interact to produce the complex behavior of cell
membranes.

1.1 Membranes, block copolymers, and protein nano-

pores

Cell membranes have a fundamental importance in biology. They not only separate

cells from their surroundings but are also involved in cell signaling, the regulation of

cell interiors, and cell adhesion [1]. Cell membranes are complex structures composed

of lipids and proteins, as shown in Figure 1.1. The importance of membrane proteins

is such that the genes that make them comprise 20-30% of genes in most genomes [2],

including humans [3], and membrane proteins comprise about half of all drug targets [4].

To an extent, membrane lipids are responsible for structural properties while proteins

are responsible for functional properties; however, this division is not absolute. One

way membrane lipids affect function is by their effect on proteins through their physical

interaction [5]. The effect of membranes on the proteins that reside in them is one of the

focuses of this thesis.

One approach to cell membrane research is to perform observations or experiments

on cells. These experiments often involve small perturbations to elucidate their behavior,

for example by altering the environment outside the cell or by genetically modifying a

2



Introduction Chapter 1

protein that is present in the membrane. Another approach to cell membrane research

is to use model membranes to investigate one or a few components of a cell membrane

in isolation. Model membranes are synthetic structures that mimic the behavior of the

phospholipid bilayers of cells, so that they often allow for analyses and insights that

are difficult to achieve in cell experiments. These experiments have provided important

information about both lipids and membranes. For example, model membranes com-

posed of phospholipids have allowed for the determination of their phase behavior [6],

thickness [7, 8], tension [9, 10], and properties of bilayer formation [11]. Additionally,

proteins are often introduced to the membranes to investigate their behavior and how it

is affected by membrane composition [12].

In addition to their importance to basic research, these membranes are the system

of choice for the growing field of protein nanopore-based biosensors. Nanopore-based

biosensors use the analysis of current through a protein nanopore to sense molecules.

The molecules of interest range from small molecules to macromolecules, and can be

synthetic or of natural origin. Among other possibilities, the measurements may be used

to determine concentration as in the case of cocaine [13], molecular weight as in the case

of synthetic polymers [14], or the sequence of nucleotides in DNA [15].

In this engineering context, membranes may be composed either of natural surfactants

such as phospholipids or of synthetic surfactants that mimic their behavior. Amphiphilic

block copolymers are synthetic surfactant molecules that can have certain advantages

over phospholipids depending on their synthesis: they are generally cheaper to produce;

they have improved chemical stability1; they can be more electrically and physically

robust [16, 17]; and they have a wider range of properties than can be tuned according

to their synthesis [18, 19]. It is for these reasons that they hold promise for commercial

1Phospholipids must typically be stored in a freezer at -20◦C while copolymers can typically be stored
at room temperature.

3
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Electrodes

Cell

Patch 

pipette

Teflon partition

Painted membrane

Electrodes

a

b

Figure 1.2: Illustration of (a) a patch clamp experiment on a cell and (b) a painted
bilayer experiment. In both experiments, an electrochemical measurement is made
over the membrane to investigate its behavior. In a painted bilayer, the experimenter
has full control over the membrane components.

applications. However, prior to their use they must be tailored for each protein of interest.

This process can be time consuming [18, 20] because block copolymer membranes are

relatively new and uncharacterized, and also because the desired membrane properties

for a particular protein are often not known. Additionally, we will see in this thesis that

block copolymers can behave in ways that differ significantly from phospholipids.

In their use with membranes, protein nanopores can be used as they are found in

nature or they can be modified by genetic engineering if a suitable protein nanopore

does not exist for an application. Protein nanopores are chosen for their ability to

pass a current that responds to some stimulus. The two most frequently used protein

nanopores are ion channels and pore-forming proteins. Ion channels are ion-selective

nanopores that are present in all cells. They play a role in establishing electrochemical

gradients across membranes, whereby they are responsible for important functions such as

electrical signaling (including signals between neurons) and energy metabolism [1]. They

4



Introduction Chapter 1

can be naturally responsive to stimuli such as heat, mechanical stress, and a variety of

chemicals [21]. Pore-forming proteins are proteins that form pores in cell membranes [22].

Their pores are larger than ion channels, making them nonselective or less selective to

ions. Pore-forming proteins include pore-forming toxins that cause cell death by creating

unrestricted leaks in cell membranes, such as α-Hemolysin. They also include porins

that are present in the membranes of many bacteria and other organisms, which are

responsible for transport by passive diffusion; one example is Mycobacterium smegmatis

porin A (MspA), which is used in this work.

5



Introduction Chapter 1

1.2 Membranes for research and protein nanopore-

based biosensing

There are many types of techniques for making membranes, each with particular bene-

fits and limitations [23]. These include giant unilamellar vesicles [24, 25], supported mem-

branes [26, 27], droplet interface bilayers [28] and aperture-suspended membranes [12].

In our case, we desire a membrane system that is amenable to protein nanopore-based se-

quencing. Supported membranes cannot be used because they rest directly on a substrate

so that translocation is impeded. Giant unilamellar vesicles could be used, but trans-

membrane electrical measurements necessitate patch clamping [29, 30], which is known

to be complicated and laborious [31]. Alternatively, aperture-suspended membranes and

droplet interface bilayers are both naturally suited for transmembrane electrical mea-

surements due to the ease of accessing reservoirs on either side of the membrane with

electrodes. For this reason, we chose them for use in our research. Here, we briefly review

the history of model membranes, focusing on aperture-suspended membranes and droplet

interface bilayers. Additionally, we motivate our choice of droplet interface bilayers in

particular in Chapter 4. Finally, we describe and motivate the use of automated and

arrayed devices.

Aperture-suspended membranes

The first cell membrane mimics were lipid bilayers reported in 1962 in a paper by

Mueller and Rudin [32]. They described the use of a lipid painted on an aperture in an

aqueous environment (Figure 1.3). Mueller and Rudin used the membrane to reconstitute

a voltage-gated ion channel to demonstrate the membrane’s ability to replicate behavior

that was until then unique to cell membranes. In their protocol, a dispersion of lipid in a

volatile solvent is first painted on the rim of the aperture and allowed to dry in air [33].

6
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Aperture
Membrane

Aqueous solution

Figure 1.3: Illustration of a painted bilayer membrane in an aqueous solution. An
electrode on either side of the membrane can be used for electrochemical measure-
ments.

Then the aperture is submerged in aqueous solution. Finally, a “brush” composed of

some inert material such as Teflon is used to paint a small amount of lipid in solvent

over the aperture. The membrane spontaneously thins, first due to suction due to the

Laplace pressure at the border2, and then due to adhesion of the monolayer leaflets[34].

In a variation of the Mueller-Rudin approach by Szabo et al. [35], the lipid solution is

introduced to the aperture using a pipette and bubbles are dragged over the aperture to

form membranes. This is the manual approach most similar to the automated approach

that was used in Chapter 3.

In 1972, Montal and Mueller [36] developed an approach which allowed for the creation

of asymmetric bilayers. In their approach, they first spread a monolayer over the surfaces

of two troughs separated by a partition with an aperture. The water level of the troughs

is initially below the aperture so that, by raising the level in each trough independently,

an asymmetric bilayer is formed as shown in Figure 1.4. This is important because

membranes in all eukaryotic cells and potentially all prokaryotic are asymmetric [37,

38]. For example, the Montal-Mueller approach has been used successfully to model the

asymmetric outer membrane of Gram-negative bacteria to better understand how they

2This process is illustrated in more detail in Section 2.4.
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Figure 1.4: Illustration of the Montal-Mueller technique described in the text. Source:
White et al. [42]

function [39, 40]. It has also been used to model the formation of lipid domains (rafts)

in asymmetric membranes [41].

Droplet interface bilayers

In 1966, Tsofina et al. demonstrated the first droplet interface bilayers (DIBs), bi-

layers which are formed by the contact of two monolayer-covered aqueous droplets sur-

rounded by oil [43]. With the exception of few researchers such as Michaels and Dennis,

who in 1973 used DIBs to form asymmetric bilayers [44], the approach went largely un-

noticed from its discovery until 2005 when it was popularized by Bayley’s group [28].

The approach is versatile: the formation of monolayers can be achieved by the presence

of surfactant in either the oil phase or the water phase. One major benefit of DIBs is

the ease of making asymmetric membranes, which can be achieved simply by dispensing

droplets with differing surfactants. DIBs can be formed in either a vertical or horizontal

configuration, as shown in Figure 1.5. In the vertical configuration, a small aqueous

droplet is lowered onto a larger aqueous pool or hydrogel beneath it. In the horizontal

configuration, two droplets may be suspended on the tip of electrodes, but alternatively

they may reside in a microfluidic channel [45] or they may be dispensed by capillar-

8
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Aqueous
phase

Electrodes
Oil phase

a)

Aqueous
phase

Oil phase
b)

Figure 1.5: Side view of a droplet interface bilayer experiment in a horizontal config-
uration (a) and a vertical configuration (b). First a monolayer of surfactant is formed
on each droplet. Then the monolayers are contacted to form a bilayer. For the vertical
configuration, a microscope views the experiment from the bottom so that the bilayer
area is visible as a circle. A hydrogel may be used to make the bilayer planar. Phos-
pholipids are shown but block copolymers may be used instead. Diagrams adapted
from Refs. [8] and [48].

ies [46]. Other major benefits of droplet interface bilayers include their versatility and

ease of use [47].

Using membranes to determine bilayer thickness and tension

There are several properties of membranes that are known to have an effect on pro-

tein behavior, including thickness, tension, fluidity, and spontaneous curvature [5, 49].

Our interest in these properties arises from results that will be presented in Chapter 3:

notably, the behavior of the protein nanopore MspA in block copolymer membranes ex-

hibits a strong dependence on membrane preparation. This dependence is important

because in most cases it causes the MspA to behave in a way that prevents its use in

DNA sequencing. This motivates our desire to investigate the properties of the block

copolymer membranes in Chapter 4. We focus our attention on membrane tension and

thickness because methods exist for measuring them in situ during transmembrane elec-

trical measurements.

The most common method for determining membrane thickness is by determining its

9
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specific capacitance. This is done by imaging the membrane to determine its area and

simultaneously performing a capacitance measurement over the membrane. Then, from

the formula for a parallel plate capacitor, the specific capacitance is C = ε/h, where h

and ε are the thickness and dielectric constant of the hydrophobic region. This method

is straightforward and has been used in both aperture-suspended membranes [7] and

droplet interface bilayers [8].

The determination of membrane tension is less straightforward. A common method

is to use geometric measurements. Requena and Haydon [11] established a method for

determining tension in a variation of an aperture-suspended membrane on a microscope

stage. They used the interference fringes of a lens of oil trapped in a bilayer to calculate

the contact angle between the monolayers at each voltage. The relation between contact

angle and voltage provides the monolayer and bilayer tension if the specific capacitance

is known, as will be described in Section 2.5.

A different method for determining membrane tensions was reported recently by Bel-

tramo et al. [9]. They use confocal microscopy with fluorescent particles on the interface

of an aperture-suspended membrane to determine the curvature of the monolayer that

supports it. By concurrently measuring the pressure difference over the monolayer, they

determined its tension using the Young-Laplace equation, which will be derived in Sec-

tion 2.4. The monolayer tension was used to determine the bilayer tension.

DIBs in both the vertical and horizontal configurations can also be used to determine

thickness and tension. Gross et al. used a droplet-on-hydrogel bilayer to determine mem-

brane thicknesses for different oils [8]. In this vertical configuration, the bilayer area is

visible as a circle, allowing for an accurate measurement of the area. Additionally, they

reported that bilayer tension can again be estimated by determining the relation between

10
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contact angle and voltage3. More recently, the horizontal configuration has been used

by Taylor et al. [10] to image the bilayer contact angle directly. Again the relation be-

tween contact angle and voltage was used to determine tension. For membrane thickness

measurements, the interfacial area is viewed edge-on in the horizontal configuration, so

that its diameter can be determined. However, the bilayer is stretched due to the effect

of gravity on droplet shape, so that determining the bilayer area requires a correction

factor. Due to the angles from which imaging is performed (head-on vs edge-on), it

is probable that the vertical configuration provides more accurate area and membrane

thickness measurements, while the horizontal configuration provides more accurate angle

and bilayer tension measurements4.

While other methods exist5, we aimed to emulate the DIB approach of Taylor et

al. [10] in Chapter 4 to determine bilayer tensions for its relative ease of use [28] and

the availability of a detailed protocol for droplet interface bilayers [47]. DIBs require a

minimal initial cost due to their use of simple materials and common laboratory equip-

ment. In our case, a microscope, micropositioners, a patch clamp amplifier, and suitable

surfactants were already available in the lab, so that the only materials missing to start

experiments were silver wire and agarose.

Automated and arrayed devices

Most membrane techniques are compatible with automation and arraying, which serve

to increase the throughput and consistency of measurements. Since these are both re-

3See the supporting material in Ref. [8]. In this configuration, they used the bilayer and droplet
radius to estimate the contact angle assuming a spherical droplet.

4However, the accuracy of contact angle measurements using horizontal DIBs decreases for small
contact angles [50]

5For example, the method of Takei et al. uses laser-induced surface deformation spectroscopy to
determine bilayer tension, which requires a complex apparatus [51]. The method of Petelska et al. uses
the shape of the bulge of a bilayer under a hydrostatic pressure to determine bilayer tension using the
Young-Laplace equation, which cannot scaled down to a desirable membrane area [52].

11



Introduction Chapter 1

quirements for the commercialization of technologies such as nanopore DNA sequencing,

the use of an automated and arrayed membrane formation system is explored in Chap-

ter 3. For a fully parallel system, each unit of the array must include an electrode, an

aperture or sealing mechanism, and a well to hold the measurement solution and insu-

late the electrode from the other units in the array. Several groups have reported such

arrays for aperture-based systems [53, 54, 55, 56, 57, 58]. For example, Hirano-Iwata

et al. [58] created a 3 × 3 aperture array on which they deposited membranes by the

Montal-Mueller approach. Notably, Baaken et al. [55] demonstrated the use of a planar

microelectrode-cavity array for BLMs, painting the apertures manually but simultane-

ously with a piece of PTFE. Their system has the additional benefit of scalability, due to

the ability to photolithographically pattern all elements on a planar chip. This allowed

for their commercialization so that their microelectrode-cavity arrays are available for

purchase as part of an easy-to-use automated painting system (Ionera). With cost and

scalability in mind, we too use a photolithographically-patterned system in Chapter 3.

12
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Figure 1.6: Atomic scale illustration of the DNA double helix. The four bases guanine,
adenine, thymine, and cytosine are labeled G, A, T, and C. Credit: Richard Wheeler
under a Creative Commons license [59]

1.3 Motivations for nanopore DNA sequencing

DNA is a polymer molecule that is essential to all known organisms [1]. As illustrated

in Figure 1.6, it is composed of two separate strands which bond to form a double helix.

Each strand is comprised of a sequence of four nucleotides that are distinguished by

their bases: guanine, adenine, thymine, and cytosine. The sequence of bases encodes the

instructions that are used for the function and reproduction of all cells. DNA is passed

from one generation to the next so that it is responsible for heredity.

DNA sequencing is the determination of the sequence of bases in DNA. Due the

importance of DNA to biology, DNA sequencing has a high potential for use in medicine.

It is estimated that variants of single genes are responsible for disease in approximately 1%

of births [60]. Many more common diseases such as heart disease [61], diabetes [62], and

cancer [63] are known to have a more complex genetic link that depends on multiple genes

as well as environmental effects. Some of these links have already been discovered. For

13
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example, around 60% of women with a known mutation of the BRCA1 gene will develop

breast cancer before the age of 70 [64]. As the understanding of the human genome

improves, DNA sequencing will continue to have increasing clinical relevance [65].

There are many medical applications of DNA sequencing other than the analysis a

person’s genome. For example, DNA sequencing is increasingly being used to diagnose

cancer subtype, which is used to inform treatment [66, 67]. Another example is the

analysis of the microbiome, the 10,000 or so species of bacteria that present in a given

person. Research on the microbiome is still in the very beginning stages: DNA sequencing

is being used to determine which bacteria are present in the human microbiome, which

might possibly play a significant role in conditions such as diabetes and obesity [68, 69].

Yet another example is the field of epigenetics, which is concerned with the expression

of genes: while DNA stores the genes, epigenetics controls to what extent genes are

activated [70, 71]. One mechanism of epigenetics is the addition of a methyl group to

some of the cytosine groups in DNA, which can be discerned from the four bases using

nanopore sequencing [72]. Considering the novelty of all of these fields, it is difficult to

predict how important they will be. But extrapolating from what is already known in

the reviews cited in this paragraph, the potential is massive [73].

This high potential of DNA sequencing has driven efforts reduce cost and improve

speed. This goal is being met at an astounding pace: while sequencing a genome cost

~$10 million in 2006, it costs ~$1,000 today [74, 75]. Concurrently, the speed and through-

put of methods have similarly improved [74]. These improvements have accompanied the

transition from first-generation DNA sequencing technologies such as Sanger sequencing

to second-generation sequencing technologies such as Illumina’s Solexa technology. Now

there are many so-called third-generation technologies vying to reduce cost and time even

further, some of which have been commercialized [76].

Most commercial DNA sequencing technologies that are available today are second-

14
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generation technologies, which are comprised of four steps [65]. The first step is the

preparation of the material to be sampled, which, for example, could originate from

blood or saliva. In this step the DNA is extracted and used to prepare a library of

DNA fragments for the next step. The second step is called amplification, where the

DNA fragments are duplicated. This is necessary to create a signal strong enough to

be detected. For example, Illumina’s Solexa technology uses fluorescent detectors, where

clusters of identical DNA fragments are used to create a detectable fluorescent response.

The third step is measurement, which is parallelized to increase speed. Enough overlap

must exist between adjacent strands of DNA so that the entire library of fragments

can be pieced together. The read length, the number of bases read consecutively in

each fragment DNA, is an important parameter which is typically limited because most

methods have an error rate that increases with the number of bases read. The last step

is data analysis, which is not trivial due in part to the large amount of fragments that

must be pieced together.

Each of these steps contributes to both the cost and time of DNA sequencing.

Nanopore DNA sequencing, like other third-generation technologies, could reduce the

cost and time of each of these four steps. DNA could be read without modification,

cutting down significantly on preparation costs. Additionally, because it is based on

single-molecule measurements, the error rate is independent of read length, allowing for

much larger consecutive reads. This eliminates the need for DNA amplification and

reduces the computation time for piecing together a whole sequence [77, 65].

It is likely that second-generation technologies will continue to improve also. For

example, Illumina has recently predicted that its newest machine will eventually cost

$100 per genome [78]. If they succeed, nanopore sequencing could still offer benefits

such as portability and lower capital cost. At the time of this writing, Oxford Nanopore

Technologies’ handheld MinION sequencer costs $1,000 [79], in comparison to Illumina’s
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Figure 1.7: Illustration of nanopore DNA sequencing using MspA (a) and α-Hemolysin
(b) nanopores. A positive voltage is applied to the cis reservoir relative to the trans
reservoir to drive the negatively charged single strand of DNA through the nanopore.
The resulting current is analyzed to determine the sequence. For both nanopores, the
constriction is barely wider than the DNA, but the constriction is much shorter for
MspA; this results in a greatly improved ability to discern bases using the current
signal in MspA.

least expensive sequencer, the MiniSeq, a tabletop sequencer that costs $49,500 [80].

1.3.1 Nanopore DNA sequencing

Nanopore sequencing uses an applied voltage to drive single-stranded DNA through a

nanopore, as shown in Figure 1.7. The nanopore diameter is close to the ~1-nm diameter

of DNA, so that the differences between the four bases contribute to distinct levels of

current through the nanopore. The best results to date have been with proteins because

they reproducibly fold into the same structure with atom-scale precision. Solid state,

synthetic nanopores have also been made, but the fabrication of nanopores of the desired

dimensions has been a major obstacle [81].

The first successful translocation of DNA through a nanopore was demonstrated in

1996 using the protein nanopore α-Hemolysin [82] (Figure 1.7b). Early experiments

with α-Hemolysin revealed that single-nucleotide resolution was limited by both short,

16



Introduction Chapter 1

poorly-controlled translocation times and nonideal nanopore geometry [15, 81]. Mem-

branes have increasing noise at higher frequencies arising from the capacitance of the

membrane and the system as a whole [81]. Because the signal strength (the magnitude

of current changes associated with translocation) is independent of the translocation

time, the signal-to-noise ratio decreases with shorter translocation times. Thus, in prac-

tice there is a maximum frequency at which bases can be discerned based on practical

system limitations, so that the DNA must be slowed down. Additionally, to discern

multiple consecutive repeats of the same base, it would be beneficial to have a system

that steps DNA through in a controlled manner, one base at a time. The pore geometry

is important because it effects the spacing of current levels associated with different se-

quences of bases. α-Hemolysin has a 5-nm long constriction region so that the current

is a reflection of over 10 bases at a time. The small differences in current between the

different combinations of bases makes sequencing in this case impractical.

Since the 1990s great progress has been made to resolve both of these issues. Following

the discovery of MspA, Gundlach identified it as a superior candidate for sequencing due

to its ~1 nm constriction length [15]. His group performed two sets of mutations on

MspA [83]. First, they converted negatively-charged amino acids to positively-charged

amino acids at the site of the constriction so that they would not repel negatively-

charged DNA. This was successful in allowing for the translocation of DNA. Second,

they performed similar mutations from negative to positive charge in the vestibule of the

protein, further from the constriction, thereby increasing the capture rate of DNA from

solution. It is this mutant of MspA, referred to as M2MspA by Butler et al. [83], that is

used exclusively in our research in Chapter 3.

In 2010 Lieberman et al. showed that a phi29 DNA polymerase could be used to

slowly ratchet DNA through α-Hemolysin [84]. Using this method, the Gundlach group

slowed DNA translocation through M2MspA to show that the current through it depends
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on ~4 nucleotides at a time, with the majority of the signal arising from one or two

nucleotides [85]. This allowed single-nucleotide polymorphisms in a DNA sequence to be

detected with 77% accuracy [86]. After exploring similar technologies in a parallel string

of developments [87], the portable nanopore sequencing-based device MinION, which

is commercially available from Oxford Nanopore Technologies, has been shown to have

single-nucleotide accuracy of over 85% [88]. With repeated readings, accuracy increases

to above 99% [15]. Accuracy remains the primary impediment to the widespread use of

nanopore sequencing.
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1.4 Outline of this thesis

In Chapter 2, we will describe some of the theory that is relevant to membranes. The

physics of surfactant aggregates and of monolayers and bilayers will help us interpret the

behavior of both planar membranes in Chapter 3 and DIBs in Chapter 4. In particular,

the Young-Laplace equation is critical to the droplet shape analysis that will be performed

in Chapter 4.

In Chapter 3, we will present the results of experiments using MspA as a nanopore in

a block copolymer membrane. The membranes are made on an array of apertures using a

microfluidic painting technique. The method causes variations in the behavior of MspA

that do not occur in the manual-painting method established by previous members in

our group. We investigate the source of these variations and show that they originate

primarily from changes in solution composition. Additionally, we will use the method to

demonstrate DNA translocation using MspA.

In Chapter 4, we will present the results of experiments performed using the same

block copolymer in DIBs. The DIB method was chosen as a simple way to determine the

tension of the block copolymer membranes. However, the DIBs behave in a manner that

is different enough from phospholipid DIBs that the intended methods cannot be used.

Specifically, the block copolymer we use does not adsorb to form a packed monolayer on

its own. Additionally, once stable bilayers are formed, they are so slow to reach equilib-

rium that the relation between contact angle and voltage cannot be used to determine

membrane tension. To circumvent these issues, we demonstrate a technique for manually

packing monolayers to form stable polymer bilayers. We also establish a new method for

measuring monolayer and bilayer tensions in a DIB using droplet shape analysis based

on the Young Laplace-equation. The method has the advantage that it can determine

tensions in real time, independent of the applied voltage.
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Theory

2.1 The thermodynamics of interfaces

As we discussed in Chapter 1, interfacial tension is an important parameter in mem-

branes. In our case, it is important because the interfacial tension in a bilayer may

potentially cause the undesirable current fluctuations in MspA that we will see in Chap-

ter 3. Additionally, bilayer tension can be directly related to the packing of amphiphiles

in the bilayer, so that it determines bilayer stability [89]. Monolayer tension is similarly

important to us because both aperture-suspended membranes and droplet interface bi-

layers begin with the formation of monolayers. Accordingly, the monolayer tension prior

to bilayer formation determines the resulting bilayer tension. This will be relevant in

Chapter 4 where the stability of DIBs formed by unassisted adsorption was poor due

to the incomplete packing of our block copolymer in the monolayer. Additionally, the

monolayers coexist with the bilayers after they are formed. This coexistence was ex-

ploited to make an experimental determination of the membrane tension using geometry

in Chapter 4.

Similar to the thermodynamic definition of pressure as the change in energy due to
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increasing volume, P =
∂U

∂V
, interfacial tension γ can be defined as the work required

to change the surface area, γ =
∂G

∂A
, at constant temperature [90]. This explains the

tendency of a droplet of water in air, with its constant, positive surface tension, to

minimize its surface area, forming a sphere in the absence of gravity. γ can refer to

surface tension at a liquid-gas interface or interfacial tension at a liquid-liquid interface.

The origin of γ is molecular, and to understand its origin, it is helpful to first consider

the surface tension of a liquid without surfactant in contact with gas or vacuum. In order

to increase the interfacial area, it is necessary to move molecules from the bulk to the

interface. As an approximation, let us consider that all adjacent pairs of molecules in the

liquid have an average interaction energy. Because molecules at the surface have fewer

nearest neighbors, the total interaction energy of molecules at the surface is lower than

that in the bulk. It is in essence this energy difference that is responsible for interfacial

tension. More formally, this energy difference is described by the work of cohesion wc of

a liquid, which is defined as the reversible work per unit area done on a liquid to split it

in two [91]. Because two surfaces are created, it is related to surface tension simply as

wc = 2γ.

The tension at the interface between two liquids has an additional contribution to

the work of cohesion: the work of adhesion, which arises from the molecular interaction

between molecules across the interface. The work of adhesion is defined as the reversible

work per unit area done on the system to separate the two liquids at an interface [91].

Including this contribution, the interfacial tension can be described by:

γ12 =
1

2
(wc,1 + wc,2)− wa,12.

Interfacial tension is always positive (and hence tensile) in equilibrium because if the

work of cohesion were negative, the interface would not be stable.
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The interfacial tension between liquids cannot be changed by any external means

except those that affect the composition of the interface. At an oil-water interface,

the introduction of surfactant molecules acts to lower interfacial tension by increasing

the work of adhesion between the liquids. Surfactants are typically amphiphiles, which

have both hydrophilic and hydrophobic regions. They increase the work of adhesion by

orienting along the interface and providing molecular groups that satisfy both liquids,

so that the interaction energy of molecules is not much different at the interface than in

the bulk. In general, denser packing of a surfactant is associated with lower interfacial

tension because it reduces the less favorable interactions between the adjacent phases.

Interfacial tension can alternatively be described using a mechanical formalism, so

that for a planar interface

γ =

∫ z2

z1

[Pext −PT(z)] dz (2.1)

where the z coordinate runs perpendicular to the interface, the integration is performed

over the thickness of the interface, Pext is the pressure outside the interface, and PT(z)

is a tensor describing the pressure in the transverse direction within the plane of the in-

terface as a function of height [92]. This formalism provides additional insight for thicker

interfaces such monolayer and bilayers, where the intermolecular forces between adjacent

molecules vary obviously as a function of height, contributing to PT(z). This makes

it clear that the reduction of free energy in the interface also depends on energetically

favorable interactions between molecules in the plane of the interface. This formalism

emphasizes that the tension is a mechanical property that exerts measurable forces in

the plane of the membrane. It shows how even a tensionless bilayer may exert forces on

a protein that affect its function if positive and negative values of PT(z) cancel out [5].
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2.1.1 Bilayer formation

The bilayers used in this work begin with the formation of monolayers which are then

joined. Prior to joining, the water/oil/water structure may be treated as two separate

oil/water interfaces, with the total free energy of the interface equal to the sum of each

individual monolayer. As the monolayers approach each other, they begin to interact

as the distance between them approaches ~100 nm. This interaction pushes the oil out

from between the monolayers and a bilayer is formed [34, 93]. Once the bilayer is formed,

it may be considered to be a single interface that is characterized by a single interfacial

tension, γb. The difference in interfacial tension between the bilayer γb and the two

monolayers γm is the free energy of bilayer formation per unit area [94]:

∆A = γb − 2γm

When a bilayer is formed by the adhesion of identical monolayers, a balance of tensions

occurs, so that the vector components of the monolayer tensions and bilayer tension are

in balance. If the two monolayers are not identical so that they have unequal tensions

γL and γR, they may form an asymmetric bilayer. The in-plane components give1

γb = γL cos θL + γR cos θR (2.2)

where θL and θR are the angles between the left or right monolayer and the plane of

the bilayer, as shown in Figure 2.1 [96]. This relationship derives from the minimization

of free energy at an interface [95]. For identical monolayers, γL = γR = γm, so that

γb = 2γm cos θ. Equation (2.2) makes it possible to determine γb indirectly by the

1In some cases, local interactions surrounding the monolayer-bilayer contact line can have an associ-
ated free energy per unit length that comprises a line tension [95]. The presence of a line tension adds an
additional term proportional to τ/r to Equation (2.2), where r is the radius assuming a circular contact
area.
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θL

θR

γL

γR

γb

Figure 2.1: Illustration of quantities in 2.2 for an asymmetric droplet interface bilayer
in the absence of a line tension.

measurement of contact angles and monolayer tensions, an approach we will use for the

analysis of droplet interface bilayers in Chapter 4. Similarly, the out of plane components

of the monolayer tensions are also balanced at equilibrium [96]:

γL sin θL − γR sin θR = 0 (2.3)

These components act to pull apart or push together the monolayers, so that they are

responsible for bilayer stability and changes in bilayer area [93].
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γsolid-water
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Figure 2.2: Illustration of the contact angle at the interface between oil, water, and a
substrate.

2.1.2 Liquid-solid contact angles

In both aperture-suspended membranes and droplet interface bilayers, the bilayer is

held in place by adjoining monolayers. The monolayers in turn are supported by a solid

part of the apparatus. At the line of intersection between the oil, water, and substrate,

the oil-water interface will make an angle relative to the substrate depending on the

properties of each of the three interfaces, as shown in Figure 2.2. Just as in the case

of liquid-fluid interfaces, the interface between a solid and a liquid is characterized by

an interfacial free energy per unit area γ. In analogy to the liquid-fluid case, this arises

from the energy difference resulting from the replacement of some of the liquid molecules’

nearest neighbors by the solid. It can be derived [97, 98] from the minimization of free

energy of the oil-water-substrate system that at equilibrium:

γsolid-oil = γsolid-water + γwater-oil cos θC (2.4)

This is known as Young’s equation. The solid-oil and solid-water interface can be con-

sidered to apply virtual tensions that are in balance with the interfacial tension at the

oil-water interface, just as in Equation (2.2). Ideally, the contact angle is independent of

other system properties such as the force of gravity and droplet volume. However, more

complicated effects such as line tension and hysteresis of the contact angle are often at
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play due to nonidealities such as surface roughness or contaminants. Typically, θC may

take a range of values and a more complicated analysis is required [90, 98].

2.2 Surfactant aggregates in solution

In contrast to most substances, which simply dissolve to varying extents in solution,

surfactants often form multi-molecular aggregates. The aggregates form due to the cohe-

sive interaction between surfactant molecules which originates from the hydrophobic or

lyophobic interaction [90]. As a surfactant is added to water or oil, it dissolves as single

molecules which begin to aggregate once the concentration crosses a threshold. This

threshold concentration is called the critical micelle concentration (CMC) or the critical

aggregate concentration.

The form of the aggregates depends on the surfactant properties. For small molecule

amphiphiles such as lipids, the packing parameter p =
v

al
provides a prediction of aggre-

gate geometry. Here l and v are the length and volume of the hydrophobic tail and a is

the area of the head group. Depending on the value of p, the aggregates are likely to be

spherical micelles, cylindrical micelles, or vesicles, as shown in the top of Figure 2.3. For

block copolymers, p is similarly predictive of aggregate geometry when l and v refer to

the hydrophobic region and a refers to the hydrophilic region, as shown in the bottom of

Figure 2.3 [100, 19]. Block copolymers will form spherical micelles, cylindrical micelles

and vesicles2 for similar values of p. Because the geometry of individual molecules is

not known prior to performing experiments, the hydrophilic ratio f =
mhydrophilic

mtotal

may

be used to predict it, where mhydrophilic is the molecular weight of the hydrophilic group

and mtotal is the molecular weight of the total polymer [101]. Typically vesicles form for

25% < f < 45% and micelles form for f > 45%. As we will see in Chapter 4, these values

2Block copolymers can also form more exotic aggregate types if their molecular weight is large
enough [19]. This is not the case for the block polymer used in our work.
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Figure 2.3: Dependence of lipid aggregates (top) and polymer aggregates (bottom)

on packing parameter p =
v

al
. Top figure adapted from Balazs et al. [99] under a

Creative Commons license. Bottom figure is taken from Blanazs et al. [19] with text
modified for clarity and consistency.
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are only rules of thumb.

It is possible for multiple aggregate types to exist in thermodynamic equilibrium [90].

Additionally, it is common for surfactants such as phospholipids and block copolymers

to be trapped in aggregates that are not at the minimum of Gibbs free energy. For ex-

ample, phospholipids require the addition of energy (e.g. via sonication) to form vesicles,

and some phospholipid aggregates take years to reach their equilibrium lamellar con-

figuration [102]. Amphiphiles with larger hydrophobic blocks have increasingly slower

equilibration kinetics, so that they exhibit kinetic trapping [101, 103, 104]. We will see

that this has important implications for the block copolymer aggregates used in Chap-

ter 4.

2.3 Gibbs and Langmuir monolayers

A property that will turn out to be relevant for droplet interface bilayers in Chapter 4

is whether a monolayer is soluble or insoluble. Here the monolayer solubility is distin-

guished from the surfactant solubility, although the two are related. Soluble monolayers

are monolayers whose molecules are in exchange equilibrium with the molecules in the

adjacent bulk. Insoluble monolayers are monolayers that do not exchange molecules with

the bulk over some timescale of interest [90]. Soluble monolayers are also called Gibbs

monolayers, while insoluble monolayers are also called Langmuir monolayers. Both types

of monolayers may be adsorbed from surfactant in the adjacent bulk solution, but Lang-

muir monolayers are usually formed by dissolving surfactant in a volatile solvent and

spreading it directly onto the interface.

In Langmuir monolayers, the monolayer behaves as a thermodynamic closed system.

For a given total number of surfactant molecules at the interface, the surfactant will exist

in a phase that depends on the interface area available to it [105]. This stands in direct
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Figure 2.4: Phases apparent on an idealized Π-A isotherm for a Langmuir monolayer
as a sliding barrier in compressed. This experimental setup is called a Langmuir
trough. Source: Matharu et al. [107]

analogy to the dependence of the phase (ice, water, or vapor) of a fixed number of water

molecules on the volume of an enclosure. Insoluble surfactant monolayers are typically

characterized by a surface pressure-area (Π-A) phase diagram, as shown in Figure 2.4.

The surface pressure Π is defined as the difference γ0 − γ, where γ0 is the interfacial

tension in the absence of any surfactant, and γ is the interfacial tension; this means that

the maximum surface pressure a monolayer may attain is γ0, which corresponds to an

interfacial tension of 0. The phases of surfactant molecule are gaseous, liquid expanded,

liquid condensed, and solid3 [106]. Once the Π-A phase diagram for a surfactant is

determined, the phase of a monolayer can later be deduced simply by a measurement of

its interfacial tension.

Gibbs monolayers also exist in one of the phases above. However, the phase is inde-

pendent of the interface area because surfactant moves freely to and from the interface.

3Kaganer et al. suggest the use of the phrases “tilted condensed” and “untilted condensed” to describe
the liquid condensed and solid phases because the two phases have the same amount of translation order,
which is not always long range.
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Instead, the phase of the monolayer is determined by the concentration of surfactant in

the bulk. The relationship between concentration and monolayer tension below the CMC

can be derived by considering the fundamental thermodynamic relation at an interface.

For an interface:

dU = TdS + γdA+
∑
j

µjdnj (2.5)

This is the same as the fundamental thermodynamic relation in bulk systems with the

volume term PdV replaced with the area term γdA. Because all differentials in Equa-

tion (2.5) are extensive quantities they may be integrated to give:

U = TS + γA+
∑
j

µjnj

Differentiating this gives

dU = SdT + TdS + γdA+ Adγ +
∑
j

µjdnj +
∑
j

njdµj

and subtracting this from Equation (2.5) at constant temperature gives

dγ = −
∑
j

Γjdµj (2.6)

where Γj =
nj
A

is the monolayer density. This equation is called the Gibbs equation or

the Gibbs adsorption isotherm, and will be used again later in this section. It shows

that if a species in the bulk accumulates at an interface, or equivalently if dµj is positive,

then it will reduce the interfacial tension. By inserting a formula for µ as a function of

the concentration of the species in the bulk, the relation between the bulk concentration

and the interfacial tension can be deduced. Then, for low concentrations, the Gibbs
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adsorption isotherm may be written as approximately [90, 105]:

Γ = − C

RT
· ∂γ
∂C

(2.7)

which is often used to fit for the surface concentration Γ in a plot of interfacial tension

against concentration C.

2.4 The dependence of droplet shape on interfacial

tension

Wherever there exists a tension at the interface between fluids, the interfacial tension

and geometry determine the pressure drop over the interface, which is called the Laplace

pressure. The relationship between interfacial tension, pressure, and geometry is impor-

tant to our work because it allows for the determination of surface tension from droplet

shape in Chapter 4. Additionally, the Laplace pressure is important in the process of

membrane thinning in a black lipid membrane in Chapter 3.

As a simple example, let us consider a immiscible sphere of fluid within the bulk of a

liquid with a size small enough so that gravity does not affect its shape. For example, it

could be a bubble of air in water or a droplet of water in oil. Let us consider a deviation

in the size of the sphere by the exertion of work. The work dW has two contributions:

PdV due to the volume expansion of the droplet against the bulk, and γdA due to the

increase in interfacial area. In equilibrium, these variations must balance each other

so that PdV = γdA. For a sphere, dV = 4πR2dR and dA = 8πRdR. Thus we have

P (4πR2dR) = γ(8πRdR) or:

P = 2γ/R (2.8)
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Figure 2.5: A small patch of interface used for deriving the Young-Laplace equation
in the text.

This implies that as the size of the sphere decreases, its internal pressure increases relative

to its surroundings.

This result can be generalized to arbitrary interfacial geometries following the deriva-

tion in Isenberg [108]. Consider the small section of the interface between two fluids

shown in Figure 2.5. We must have dW = PdV − γdA = 0 at equilibrium. An isotropic

change in the radii by dz increases the area from A = l1l2 to dA = (l1 + dl1)(l2 + dl2), so

that to first order dA = l1dl2 + l2dl1. The corresponding volume change is dV = l1l2dz.

This gives Pl1l2dz = γ(l1dl2 + l2dl1) or

P = γ

(
1

l1

dl1
dz

+
1

l2

dl2
dz

)

The derivatives
dlj
dz

can be determined by considering that the ratio of arc lengths must
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equal the ratio of radii:

Rj

Rj + dz
=

lj
lj + dli

which gives simply that
dlj
dz

=
lj
Rj

. Thus we have:

P = γ

(
1

R1

+
1

R2

)
= 2γκ (2.9)

which is known as the Young-Laplace equation. The variable κ introduced here is called

the mean curvature. The expression simplifies to Equation (2.8) when R1 = R2 = R.

The Young-Laplace equation can be derived equivalently by considering the force due

to membrane tension in each dimension independently [109]. Alternatively, it may be

derived by minimizing the Helmholtz free energy [110].

The Young-Laplace equation has a simple form, but it must be written as a differential

equation to model most physical systems. Its solution is typically difficult4 unless it can

be formulated naturally in polar or spherical coordinates. It is often used to describe

axisymmetric droplets, such as a droplet in equilibrium on a flat and level surface, or a

pendant droplet hanging from an axisymmetric needle or support. For a pendant drop,

the coordinate system is typically set up as in Figure 2.6. Both inside the droplet and

outside the droplet, the pressure must vary with height exclusively due to hydrostatic

pressure P = ρjgh, where g = 9.8 m/s2 and ρj is the density of the droplet or the

surrounding fluid. Thus at each height h = z, buoyancy determines the pressure P over

4In Cartesian coordinates, for an arbitrary surface z = S(x, y) the mean curvature has the form [108]:

κ =

(
1 +

(
∂S
∂x

)2) ∂2S
∂y2 − 2∂S

∂x
∂S
∂y

∂2S
∂x∂y +

(
1 +

(
∂S
∂y

)2)
∂2S
∂x2(

1 +
(
∂S
∂x

)2
+
(

∂S
∂y

)2)3/2
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r φ

sz

Figure 2.6: Coordinate system used for a pendant drop in Equation (2.10).

the interface:

P = P0 −∆ρgz.

Rewriting Equation (2.9) using the coordinates in Figure 2.6 yields the differential equa-

tion [109, 111]:

−∆ρg

γ
sinφ =

d

ds

(
dφ

ds
+

sinφ

r

)
(2.10)

The boundary conditions are φ(0) = 0 and φ′(0) = 1/r0, where r0 is the radius of

curvature at the bottom of the droplet. Only two unknowns are required to fully specify

the solution to the equation. These may be chosen as γ and r0, or they may be droplet

dimensions such as the width and height of the droplet. This freedom is exploited in

pendant drop fitting software so that a fit to the droplet shape provides the unknown

value of γ [111, 112].

In aperture-suspended bilayers, the Young-Laplace equation is responsible for the

initial stage of membrane thinning [34]. As shown in Figure 2.7, the curvature near the
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Figure 2.7: A painted lipid membrane in the process of thinning. If the contact angle
is less than 90°, the interfaces must curve near the aperture edge. This causes a
negative pressure near the aperture edges relative to the center, where the curvature
is close to zero, so that the membrane thins.

center of an aperture is lower than the curvature near the aperture perimeter. This means

that the Laplace pressure near the center is close to that of the surroundings, while the

Laplace pressure near the aperture is lower. This causes the solution to flow from the

center to the edges so that it thins out. This process continues until the top and bottom

interface are within ~100 nm of each other, when thermal fluctuations and the Van der

Waals attraction begin to play a role [42, 93].

2.5 The effect of applied voltage on membrane ten-

sion

In the presence of an applied voltage, a bilayer in electrolyte solution will accumu-

late charge, behaving as a capacitor. This has two important uses that relate to our

research. First, it allows for the calculation of the thickness of the hydrophobic region

of a membrane via its measured capacitance, as described in Chapter 1. Second, the

capacitive stored energy acts to lower the free energy of the bilayer and similarly its ten-

sion. Because the monolayer tension is unaffected, this effect causes a change in contact
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angle following Equation (2.2). Thus, the application of a voltage and corresponding

measurement of the contact angle allows for the experimental determination of γb and

γm. The relation and its derivation is outlined here, following the derivation of Requena

and Haydon [11].

Changes in bilayer tension due to an applied voltage V can be described with the

Gibbs adsorption isotherm, Equation (2.6), modified to include the effect of V . This

is done by replacing the chemical potential µ with the electrochemical potential µ̄ =

µ+ zjFV , where zi is the valency of the charged species and F is the Faraday constant.

At the bilayer, we have:

dγb = −
∑
j

Γjdµ̄i

The sum is over all species in solution on both sides of the bilayer. The only species that

accumulate at the interface are charged, so that they comprise the surface charge density

σ = e
∑

j Γj, where e is the charge of an electron. Additionally, the electrochemical

potential of these charged species is set by the electrode potential, so that dµ̄j = edV .

Thus we have that dγb = −σdV . For a specific capacitance C, σ = CV , so that

dγb = −CV dV , which may be integrated:

∆γb = −
∫ γ

V

γ0

CV dV =
1

2
C∆V 2.

This describes the difference in bilayer tension γ for a difference in applied voltage V .

Combining this with Equation (2.2) for a symmetric bilayer yields:

cos θ0 − cos θV = − C

4γm

(V 2 − V 2
0 ) (2.11)

which relates the observed contact angle θV at an applied voltage to γm and C given a

contact angle of θ0 for V = 0. This is known as the Young-Lippmann equation.
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2.6 Redox electrodes

Nanopore sequencing is based on a resistive pulse technique: different nucleotides

in the pore cause changes in the pore resistance, allowing DNA to be sequenced. The

current through the pore is purely ionic5, while the current measured in the amplifier

(i.e. the data to be analyzed) is electronic. It follows that in order for charge to form a

complete circuit, electronic current must be converted into ionic current. This conversion

occurs at the electrode-solution interface, and the study of this electron transfer process

lies in the field of electrochemistry [113].

A complete electrochemical circuit consists of a voltage source, wires, a pair of elec-

trodes, and the solution. In order to complete the circuit to both terminals, there must

be two electrode/solution interfaces. The electron transfer behavior at an interface de-

pends on the metal, the species that are dissolved in the aqueous phase, and the applied

voltage. In order to convert electronic charge into ionic charge, there must be a species

dissolved in the solution that is capable of being oxidized (having an electron removed)

or reduced (having an electron added) by the electrode. The process of oxidation and

reduction typically have a forward and reverse reaction rate, so that the process can be

described by Ox←→ Red + e–. This reaction is characterized by a potential V 	 at which

the forward and reverse rates are equal for a standard concentration of both species, so

that equilibrium is reached. This is called the redox potential for the species.

The Nernst equation describes the dependence of the equilibrium on concentration.

Due to nonidealities, the equation is written in terms of activities aRed and aOx, which

are equal to concentration in the limit of low concentration:

V = V 	 − kT

q
ln
aRed

aOx

(2.12)

5Electrons in water do not form a conduction band.
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The logarithmic dependence arises from Boltzmann’s equation. If the electrode potential

is lowered to below the redox potential, the reduced species is favored, and current will

flow until equilibrium is reached; on the other hand, if the potential is raised above the

redox potential, the oxidized species is favored. The Nernst equation applies whether or

not an external voltage is applied. In the absence of an applied voltage, the concentration

of the reduced and oxidized species determine the potential at the interface via the

Nernst equation. Alternatively, for an applied constant voltage V, the Nernst equation

determines the ultimate concentrations once equilibrium is reached.

Ag/AgCl electrodes are frequently used in nanopore sensing for several reasons: (1)

the electron transfer reaction Ag + Cl– ←→ AgCl + e– happens readily even at very

low applied voltages, so that the nanopore and solution resistances always dominate

the current; (2) the value of the redox potential avoids undesirable reactions such as

the hydrolysis of water; (3) the requisite inclusion of Cl– for the electrode to function

properly is rarely detrimental, considering NaCl and KCl are common electrolytes; (4)

their construction is relatively straightforward. The potential of each Ag/AgCl electrode

is set by the Cl– concentration as given by the Nernst equation. For these reasons,

Ag/AgCl electrodes are used for measurements in both Chapters 3 and 4.

The use of Ag/AgCl electrodes has two limitations that are common to all redox

electrodes. First, the concentration of Cl– will change as current is flowed, effecting

the relative potential of the electrodes. Second, if the finite supply of Ag, AgCl or Cl–

is exhausted, the electrode will cease to function normally. These can translate into

practical limitations in nanopore sequencing devices such as a minimum reservoir size for

the measurement solution or a minimum electrode size; alternatively the devices must be

designed differently to replenish Cl– or they must be operated differently to periodically

replenish Ag or AgCl in the electrodes.
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Automatically-painted triblock

copolymer membranes for protein

nanopore-based DNA sequencing

As explained in the introduction, the use of an automated approach is critical to the

commercialization of nanopore DNA sequencing. The rate of nanopore DNA sequencing

has to date been limited to below 500 bases per second [114] due to the tradeoff between

noise and bandwidth [81]. Even at a rate of 1,000 base per second, it would take 35 days

to sequence a full human genome (~3 gigabases) using a single nanopore. An arrayed

device reduces this time by taking measurements in parallel: a 1-cm square device could

fit 2,500 nanopores each in a 200-µm square area, ideally lowering the translocation time

for an entire genome from 35 days to 20 minutes. Therefore, in this section, the use of

an automated, arrayed system is explored.

The automated system uses a microfluidic painting approach similar to that used

by Suzuki et al. [54]. In this chapter we show that when switching from a previous

hand-painted system [20] to this system, both using the same painting solution with
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the same block copolymer, the behavior of the nanopore MspA is often degraded signifi-

cantly. We establish a metric for quantifying the quality of MspA behavior and the causes

for variations in the behavior are investigated. Finally, we demonstrate the successful

translocation of hairpin DNA through an MspA nanopore in an automatically-painted

block copolymer membrane, producing results that are similar to the pioneering results

of Butler et al. [83] in phospholipid bilayers.

3.1 Experimental details

The device used here was largely designed by collaborators at Illumina. It features a

microfluidic array of eight wells and apertures as well as two ground wells fabricated using

a photopatternable epoxy similar to SU-8 (ADEX from DJ Devcorp) on a glass substrate.

Each aperture well is comprised of a Ag/AgCl electrode (silver on gold, electrochemically

chlorided) at the base and apertures between 35 µm and 100 µm in diameter aperture at

the top, sitting on a wider reservoir. The ground wells and electrodes are much larger so

that they can accommodate the use of all eight apertures. The thickness of the apertures

is 10 µm. A fluoropolymer (Fluoropel 2000V) was spin coated and baked on the surface

in order to make it more hydrophobic. The microfluidic channel was formed by placing

a rectangular gasket over the electrode array and sandwiching them between two holder

pieces. The top holder piece was machined from Teflon and featured reservoirs and

fittings for microfluidic tubing to serve as an inport and outport while the bottom piece

served as a support. A window was made through the bottom piece so that the channel

could be viewed during the flow of polymer solution if desired.

The device design received from Illumina was optimized for use with the equipment

available at UCSB by varying microfabrication parameters such as bake times, pho-

tolithography exposure times, and cleaning protocols. The most serious fabrication issue
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encountered at UCSB was delamination of the SU-8 from the glass, which was resolved by

adding a 400W oxygen plasma cleaning step before lamination of SU-8, as well back-side

flood exposure through the glass substrate during photolithography of the SU-8. This

helped the SU-8 achieve a more uniform exposure throughout its thickness, which likely

resulted in reduced stress.

Electrical measurements were performed in voltage clamp mode (constant voltage)

by connecting the headstage of an Axopatch 200B to the ground wells and one of the

aperture wells. Data was filtered using the Axopatch’s built-in 8-pole, 10-kHz filter

and was sampled using a Digidata 1550 at 100 kHz. Capacitance measurements were

performed by applying a 50-Hz sinusoid and using the impedance to deduce R and

C. To address other aperture wells, the live electrode was switched manually from one

to another. In some cases this would cause a membrane to break, but in most cases

it would not; the presence of MspA in these cases proved that a polymer membrane

could withstand manual electrode switching. Membrane quality was typically deduced

from capacitance (though these were unreliable, as will be explained), leak current, and

voltage-induced breakage. MspA insertions served as a final indication of membrane

formation.

Once the channel was assembled, buffer solution was loaded into the channel and the

assembly was placed under vacuum to load the buffer into the wells. In all experiments,

a buffer solution of 1M KCl, 10 mM HEPES, pH 8 (titrated using KOH) in Millipore

water was used. Typically, between 0.2 µL and 5 µL of a solution of 1 wt% polymer

in 3:1 chloroform:decane (v:v) was loaded at the in-port and pushed through using a

syringe pump. Electrical measurements of this first set of membranes was performed,

and after these membranes were broken, an air bubble was flowed through at a rate

between 1 µL/min and 5 µL/min to form a new set of membranes. The process of

flowing air bubbles and making measurements was repeated until membranes could no
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longer be formed.

In all cases, PMOXA13-b-PDMS47-b-PMOXA13 was used as the block copolymer,

synthesized as reported in Isaacman et al. [115]. The block lengths are deduced from

their corresponding molecular weights, which were determined to be 1,100 g/mol for each

PMOXA block and 3,500 g/mol for the PDMS block. Polymer solutions made previously

by our group for manually painted apertures [20] were typically prepared by volume in

a ~200 µL quantity and stored in 5 mL vials. This had the potential to cause variation

between experiments due to evaporation of chloroform both during preparation and over

the course of experiments. To avoid such variations in these experiments, the painting

solutions used here were always made in large batches (>1 mL), were always measured

by weight, and were stored in 2 mL, low-leakage vials (SureStop by Thermo Fisher

Scientific) with Teflon caps. Typically, 16 mg of dry PMOXA13-b-PDMS47-b-PMOXA13

was dissolved in 1.20 g of chloroform. After dissolution, 0.20 g of decane was added,

yielding a solution that is 1.1 wt.% polymer. By volume, the solution is 75% chloroform

and 25% chloroform, the same as the solution made previously [20].

The MspA referred to throughout this chapter is the mutant M2MspA reported in

Butler et al. [83], provided generously by Jens Gundlach. Prior to use, MspA was stored

in a buffer solution at 0.1 or 1 µg/mL concentration with 0.1 wt.% octyl-POE (n-Octyl-

oligo-oxyethylene, Santa Cruz Biotechnology, Inc.; a nonionic surfactant) in a refrigerator

to prevent its aggregation. At the time of an experiment, MspA was added to the 1M KCl,

10 mM HEPES, pH 8 buffer described above to a working concentration of 2.5 ng/mL.

For all results reported here, this MspA-buffer solution was introduced prior to membrane

formation. Hairpin DNA was diluted to a concentration of 1 µM in the same buffer and

was introduced only after membrane formation and MspA insertion. The hairpin DNA

used was provided by Illumina with the following sequence:
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/5Phos/TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT

TTT TTT TTT TTA AAC GAC CGA GAC AAC GCT CTC TCG TTG

TCT CGG TCG

Membrane formation

The flow of polymer solution typically coated the channel interior and caused all

apertures to be insulating. The subsequent flow of air bubbles then lead to a diminishing

number of insulating channels until eventually all channels remained conducting. Typi-

cally, most or all insulating apertures could be made conductive with a 1.3-V zap. When

MspA was present in solution, most or all membranes after the first or second air bubble

included MspA insertions. Membranes that could not be broken with a 1.3-V zap never

allowed for the insertion of MspA, which indicates an excess of polymer solution that

prevented thinning to bilayer thickness.

MspA insertion statistics

In order to analyze DNA translocation data, it is important that there be a single

nanopore in an aperture; otherwise the multiple pores will all contribute to the current.

Because nanopore insertion events are discrete and independent, insertion is a Poisson

process, and it is straightforward to show that the maximum theoretically attainable

average number of single insertions is 1/e = 36.8%. This means that an average of

approximately 3 out of the 8 apertures will have single MspA insertions if an optimal

concentration of MspA is present in the buffer solution, regardless of the insertion mech-

anism. At a concentration of 2.5 ng/mL MspA loaded in the buffer prior to membrane

formation, it was common that two to four membranes had single insertions. This shows

that the concentration used was near optimal.
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Specific capacitance measurements

The system did not permit a simple analysis of membrane specific capacitance. Typ-

ically, when a planar membrane experiment is performed, it can be assumed that the

membrane area is bounded by the aperture area. If the membrane cannot be imaged to

determine the membrane area as in our case, the aperture area can still be used to provide

a bound on the specific capacitance. However, in our system, the specific capacitance

would occasionally rise to unrealistically high values (~2 µF/cm2) using this approach.

This implies that the membrane was not actually bounded by the aperture area. Ad-

ditionally, the capacitance would sometimes decrease to below the baseline value for a

plugged aperture. This occurred either due to movement of the leads during polymer

and air flows or due to impedance changes from the accumulation of polymer solution on

the electrodes. While the measurement of capacitance gave an indication of membrane

quality, no one measurement could be relied upon as accurate. For these reasons, we do

not report capacitance measurements in this microfluidic system.
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3.2 Investigation into the variation of MspA behav-

ior

In order to perform resistive pulse based DNA sequencing, it is desirable to have

a nanopore with a steady conductance in the absence of DNA. There are two types

of conductance variations that arise in nanopores: voltage gating and noise. Gating is

the partial or complete shutting of a pore, and is a common response of many pore-

forming proteins to applied voltages [116]. Voltage gating occurs stochastically and

can occur over both short and long timescales, causing both small and large jumps in

current. A nanopore that is gated might not translocate DNA or otherwise could make the

nucleotide sequence difficult to discern [15]. Additionally, gated pores can make it difficult

to determine whether there is one or more nanopore present. Different mechanisms for

gating have been proposed [116, 117], and membrane thickness and tension are two such

mechanisms known to affect gating via membrane-protein interactions [49, 118].

Noise in the nanopore current is also undesirable because it decreases the signal-to-

noise ratio, so that current levels associated with different DNA nucleotides are harder

to discern [81]. Nanopore noise is common and often has a f−α characteristic so that it

increases with lower frequency f with α~1 [20, 119, 120]. Other noise characteristics also

occur, which include a flat characteristic that is still larger than thermal noise or shot

noise [20, 121]. As in voltage gating, noise in nanopores is also exacerbated by membrane-

protein interactions [20]. Additionally, for many proteins, both the probability of gating

and the amplitude of noise increases with voltage magnitude [81, 116, 121, 122].

Wild-type MspA shows significant voltage gating behavior even at 30 mV [117]. By

modifying some of the amino acids at the constriction of MspA, Butler et al. succeeded in

removing most noise and gating behavior of MspA even at 180 mV [83]. The application

of 180 mV is desirable not only to increase the capture rate of DNA, but also to provide
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the force needed to use polymerase as a DNA ratchet with MspA experiments [85]. In

ordinary aperture-suspended membranes using DPhPC, MspA exhibits a flat frequency

spectrum [20] and few gating events (~0.5 short dips in current per second) [83] at 180 mV

in the absence of DNA.

Our group previously sought to replace DPhPC with a block copolymer [20] for the

benefits discussed in Chapter 1, including improved stability and robustness. Triblocks

were chosen over diblocks for their simpler synthesis, and PMOXA-PDMS-PMOXA poly-

mers were chosen in particular because the PDMS group has a high flexibility that allows

it to accommodate proteins of different sizes [123]. Despite the high PDMS flexibility,

in initial experiments, MspA in PMOXA-PDMS-PMOXA polymer membranes exhibited

high noise and significant voltage gating even at 60 mV. After optimizing polymer block

length, MspA exhibited DNA-free characteristics similar to lipids [20]. However, when

we switched from a manually-painted aperture to the microfluidic painting approach de-

scribed here, high noise and gating were observed again using the optimized polymer

(PMOXA13-b-PDMS47-b-PMOXA13). Thus we set to determine the cause of this gating

and noise so that it could be reduced.

To this end, an investigation into the variation in MspA behavior was performed

on three devices. As determined by optical microscopy shown in Figure 3.1, device 1

had 50-µm apertures, device 2 had 43-µm apertures, and device 3 had 35-µm diameter

apertures. Because the aperture arrays were all made using the same photomask with

circles of the same diameter, the differing UV exposure conditions resulted in differing

sidewall profiles also. A highly inclined sidewall profile is visible in device 3 due to this

effect, while the profiles of device 1 and 2 were less extreme. When MspA was introduced

to membranes formed in this system, most MspA insertions behaved poorly, displaying

both high baseline noise and gating, while some insertions behaved well.

46



Automatically-painted triblock copolymer membranes for protein nanopore-based DNA sequencing
Chapter 3

Figure 3.1: Representative apertures 50 µm, 43 µm, and 35 µm in diameter, from left
to right. The shading on the 35-µm diameter aperture suggests its shape is a conical
frustum. These images are focused at the tops of the apertures, but the microscope
objective could also resolve the bottoms of the apertures by looking through the SU-8
as a results of the wider diameter at the bottom. This indicated that the 43-µm and
50-µm apertures are also shaped like the 35-µm apertures, but with sidewall angles
much closer to vertical.

3.2.1 A metric for MspA behavior

In order to determine the experimental parameters causing MspA variation, it was

useful to establish a numerical metric for MspA behavior. The frequency spectrum

analysis in Morton et al. [20] could not be used alone because at 180 mV gated MspA

sometimes has a low and flat noise spectrum that is typically indicative of better behavior,

as evidenced in Figure 3.2. Thus the conductance at 60 mV was used as a primary filter

against pores with significant gating: MspA with an open-pore conductance lower than

1.55 nS at 60 mV typically exhibited gating or otherwise behaved erratically, which is in

line with the previously reported conductance of 1.84 ± 0.24 nS for well-behaved MspA in

this polymer. Insertions with conductances above 1.55 nS allowed for a straightforward

frequency spectrum analysis at 180 mV. We used the spot noise at 10 Hz as a metric for

MspA behavior because it correlates with spectrum slope but also takes magnitude into

account, as demonstrated in Figures 3.2 and 3.3. Using this criteria, the spot noise at

10 Hz varied over 3 orders of magnitude.
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Figure 3.2: Current trace (a) and frequency spectrum (b) for a single poorly-behaved
insertion at 180 mV applied. The frequency spectra correspond to different parts of
the trace, which demonstrates that gated pores can be noisier or quieter than the
baseline. All dips, spikes, and gating events that deviated by more than 3.5 standard
deviations from each current level were excised from the current trace to produce the
frequency spectra as described in text. Note that the spot noise of the baseline at
10 Hz is ~0.07 pA2/Hz.
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Figure 3.3: Current trace (a) and frequency spectrum (b) for an MspA insertion
exhibiting low baseline noise with 180 mV applied. The large, single-step dip in current
(and other similar large dips not shown here) prove the presence of an insertion of at
least 320 pA in current. The spot noise at 10 Hz is ~0.006 pA2/Hz, over 10 times
lower than the baseline in Figure 3.2.
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Prior to computing the frequency spectra, all dips and spikes that deviated by more

than 3.5 standard deviations from the baseline were excised from the current trace I(t).

This was done to exclude the stochastic contribution of dips and spikes, which signifi-

cantly impacts the frequency spectrum. A Gaussian function was fit to the main peak in

the histogram of I(t) and used to determine the mean 〈I〉 and standard deviation σ of

the baseline. Then all datapoints between 〈I〉 − 4σ and 〈I〉 + 4σ were used to compute

a 10,000-point-smoothed baseline over time, IB(t). I(t) was then excised so that only

datapoints between IB(t) − 3.5σ and IB(t) + 3.5σ were used to compute the frequency

spectrum via a fast Fourier Transform (FFT). Prior to computing the FFT, the data was

windowed into overlapping intervals 0.7 seconds in duration beginning every 0.2 seconds.

Then the FFT of all windows was averaged to yield a smoothed FFT1.

3.2.2 Origin of noise and gating variation

Multiple insertions in the same membrane typically have similar noise characteris-

tics, as evidenced by Figure 3.4. This suggests that the behavior of MspA insertions is

primarily a result of the properties of an individual membrane and not another feature

such as the polydispersity of the polymer [20, 124]. There are two main experimental

parameters that could affect the membranes: aperture geometry and painting protocol.

The difference in aperture geometry was already shown in Figure 3.1: both shape and

diameter varied between devices. The major difference in painting protocol was that af-

ter the flow of painting solution, a different number of air bubbles was used to form each

membrane. In order to discern these effects, the aperture geometry and the spot noise for

single MspA insertions were plotted against the number of air bubbles flowed since the

most recent painting solution flow in Figure 3.5. There is a strong trend that membranes

formed after more air bubbles support better quality insertions. Additionally, at each air

1A Hann window was used. All computations were made using a Matlab script.
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Figure 3.4: Current trace (a) and frequency spectrum (b) for two good insertions in the
same membrane. While such low baseline noise was extremely rare, these two occurred
in the same membrane, which demonstrates that insertion quality is a reflection of
individual membrane properties. This is the same membrane as in Figure 3.3 and a
discrete jump in the baseline current from 340 pA to 660 pA was recorded between
these two measurements. Note: the scale is the same as in Figure 3.2 but trace is
offset by 350 pA.
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bubble number, larger apertures are more likely to support better insertions.

After the polymer solution coats the channel interior, the flow of air bubbles has

three potential effects: (1) it can sweep painting solution out of the channel2, (2) it can

induce drainage of the painting solution from the aperture [125], and (3) it can decrease

the chloroform and decane3 concentration by evaporation. This suggests two possible

mechanisms for affecting MspA behavior: differing volumes in the solvent annulus for

different apertures and changing composition of the polymer solution.

Annulus volume directly affects membrane area, and thereby affects the possibility for

the existence of a membrane. If the annulus volume is too low, the membrane will lack the

volume necessary to span the aperture; if annulus volume is too large, a bilayer may take

too long to form. This air bubble approach is very similar to the automated approach

reported by Sandison et al. [125]. For their devices, they reported that exposure to air

between 15 and 35 seconds lead to rapid thinning of their membranes to achieve large

bilayer areas. However, in their case, there were major differences: (1) their painting

solution involved lipid in decane only, (2) their open geometry included a surrounding

space to which the painting solution could wick away, and (3) they began with a controlled

volume of painting solution and actively monitored its volume as it was wicked away by

exposure to air.

Due to the confined geometry, the painting solution probably cannot wick from the

aperture to the channel if the coated thickness is too large. It is possible that the

membranes can wick into the wells beneath the aperture, but the surface chemistry of

the bottom surface of the apertures is not well controlled: the Fluoropel may have reduced

access to the aperture bottoms during spin coating, so that the aperture bottoms may be

uncoated, fully coated, or partially coated. This was supported by the observation that

2This behavior is observed when dragging air bubbles over the polymer solution on a transparent
Teflon partition.

3The decane concentration is affected less because it is far less volatile.
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Figure 3.5: Scatter plot showing how spot noise at 10 Hz in MspA single insertions
at 180 mV depends on the number of air bubbles flowed through the channel since
polymer solution was last flowed. Each circle represents a single MspA insertion in a
different membrane, with aperture diameter represented by circle area and shading.
The trend is clear that MspA has better noise characteristics in membranes formed
using more air bubbles: for a linear regression of the semilog data, p = 6× 10−6 and
r2 = 0.73 when including the outlier point marked with an asterisk. In the case of the
outlier, the spot noise dropped by a factor of 100 about 5 minutes later. Reductions
in noise were very rarely observed, so the point may be considered to be an outlier.
Excluding this data point, or repositioning it to its later value, makes the trend even
more prominent. However, the point is included because additional measurements
beyond the first 5 minutes at 180 mV were not always available. Additionally, at
every bubble number, the geometric mean of the spot noise increased with aperture
diameter with the exception of 3 bubbles. This trend becomes absolute with the
outlier removed or repositioned. In all cases, the first 5 seconds of data taken at 180
mV was used to calculate the spot noise. Note the overlapping data points for 0, 1,
and 2 air bubbles.
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the aperture bottoms were more likely than the tops to accumulate material that seemed

to have been precipitated by solvent changes. All of these effects amount to potential

variations in the amount of painting solution in the aperture, which determines the area

or the existence of a bilayer region.

Solution volume and aperture size and shape can affect membrane properties because

the curvature at the annulus causes a Laplace pressure via Equation (2.9). This increased

pressure within the annulus counteracts the pressure associated with the free energy of

bilayer formation (called the disjoining pressure) and could thereby affect membrane

thickness and tension [93]. The effect of the Laplace pressure on membrane tension in an

aperture-suspended membrane involving lipids has been reported by Beltramo et al. [9].

Knowing the effect of the Laplace pressure requires knowing the geometry of the annulus,

but, while the geometry has been solved for cylindrical aperture by White [126], to our

knowledge such an analysis has not been performed for our geometry. It is reasonable that

smaller apertures would lead to higher membrane curvatures, leading to higher Laplace

pressures and higher membrane tension. This higher tension could be responsible for the

trend that larger apertures tend to have better MspA behavior. Reducing the volume of

solution in the annulus and its surroundings by flowing air bubbles could affect MspA

behavior in a similar way.

The other potential mechanism by which the number of air bubbles has an effect

is the solution composition. Solution composition is known to affect the bilayer on a

molecular level, whereby residual solvent in the membrane affects both its thickness4

and tension. Thus it is possible that differing aperture areas affect bilayer properties

by affecting solution composition via the evaporation of chloroform. To investigate this

effect, a preliminary experiment was performed using a 200-µm-diameter Teflon aperture

on a microscope stage with the same polymer solution used for microfluidic painting. The

4The effect of oil on thickness will be demonstrated in Chapter 4.
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polymer solution was dispensed over the aperture manually and air bubbles were allowed

to sit on the polymer solution for 1 to 5 minutes prior between each subsequently formed

membrane. All membranes spanned the 200-µm-diameter aperture, so that their area was

known during capacitance measurements. The result was that the specific capacitance

rose monotonically from less than 0.1 µF/cm2 for the first membrane to over 0.2 µF/cm2

for the last membrane.

If the dielectric constant ε of the hydrophobic region is known, it can be used to

determine its thickness h using the formula for a parallel plate capacitor: Cspecific =

ε/h. The presence of three potential components in the hydrophobic region (PDMS,

decane, and chloroform) each with different dielectric constants (2.8ε0, 2.0ε0, and 4.8ε0,

respectively) makes a determination of the hydrophobic thickness difficult, because the

composition is unknown and varies with hydrophobic thickness. However, assuming as

a rough estimate that ε = 3ε0 implies a hydrophobic thickness that varies from ~20 nm

to ~10 nm with exposure to air. Considering that MspA has a hydrophobic thickness of

3.7 nm [127], it is understandable why air bubbles improve behavior: a membrane with

a hydrophobic thickness of 10 nm is much less likely to affect MspA than a hydrophobic

thickness of 20 nm. At the same time, the high flexibility of PDMS could reduce the

impact of this difference.

While the precise thickness values are unknown, the varying specific capacitance

shows that the solution composition is affected by the evaporation of polymer solution in

contact with air bubbles. Considering that membrane tension also varies with membrane

composition, both the thickness and tension are potential causes of the variation in MspA

behavior. This all suggests that the use of a volatile solvent that is sometimes used to form

block copolymer membranes [20, 128, 129] necessitates special attention. One remedy

would be to avoid the use of a volatile solvent. Other remedies would be to plan the

effects of evaporation into the design or to avoid the use of air bubbles altogether.
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Figure 3.6: The trace shows two MspA insertions in a polymer membrane just as the
front of hairpin DNA solution reaches the membrane with 180 mV applied. 6 blockades
are visible in the first 5 s and approximately 20 blockades are visible in the last 5 s,
a 4-fold increase. Overall (not shown) the combined blockade rate increased 20-fold,
from 0.5/s prior to the introduction of hairpin DNA, to over 10/s.

3.3 Translocating hairpin DNA through MspA in

block copolymer membranes

In order to investigate the ability of MspA in a PMOXA13-b-PDMS47-b-PMOXA13

membrane to translocate DNA, hairpin DNA constructs were added in the measurement

buffer, in a replication of Butler et al.’s experiment using lipid bilayers [83]. Figure 3.6

shows a current trace just as MspA in microfluidically-painted polymer membranes was

exposed to 1 µM hairpin DNA. Overall, the hairpin DNA caused a 20-fold increase in

the blockade rate.

Zooms of the current traces of individual hairpin DNA blockades in a single MspA

insertion are shown in Figure 3.7 and closely resemble those reported by Butler et al. Af-

ter hairpin DNA measurements were performed on a single MspA insertion, the statistics
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Figure 3.7: Current traces for translocation data for hairpin DNA constructs in a single
MspA pore in a microfluidic-painted PMOXA13-b-PDMS47-b-PMOXA13 membrane at
140 mV and 180 mV. The smaller plots show zooms of the first six partial blockades
(in gray) and the first six deep blockades (in black) from each trace of the larger plots
for blockades less than 20 ms in duration. It is clear from these traces that partial
blockades increase in duration and deep blockades decrease in duration when voltage
is increased. This data is part of the dataset used to compute statistics in Figures 3.8
and 3.9
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of the current blockades were analyzed. Figure 3.8 shows scatter plots of an individual

pore at 120, 140 and 180 mV. Current blockades for hairpin DNA commonly have two

magnitudes based on the location of the hairpin DNA relative to the MspA [83]. Hairpins

that translocate through the pore cause large dips in current (deep blockades) because

the DNA occludes a large portion of the MspA constriction, which dominates the MspA

conductance. On the other hand, hairpins that do not translocate through the MspA

reside in the MspA vestibule and causes smaller dips in currents (partial blockades). The

threshold used for discerning partial and deep blockades was determined to be 30% of

the baseline current5. This differs from the value of 50% in Butler et al. due to our use of

a hairpin with a T50 tail compared to A50. It is this difference that allows for discerning

bases during sequencing [85].

The scatter plots show that partial blockades tended to increase in dwell time with

increased voltage, while deep blockades have the opposite trend. This is consistent with

the description that partial blockades correspond to hairpins which escape back into the

channel (the cis compartment), so that increasing voltage increases the barrier to escape;

on the other hand, deep blockades correspond to hairpins which translocate through the

pore, so that increasing voltage reduces the barrier to escape. These are the same trends

that were reported in Butler et al. for a similar MspA mutant in a lipid membrane.

The partial blockade dwell times were fit well by an exponential function. Figure 3.9

shows that the time constant for partial blockade dwell time approximately doubles from

120 mV to 140 mV, and doubles again from 140 mV to 180 mV. These time constants

are about 10 times greater than those reported in Butler et al. for 50 nt-long strands T50

5 The 10,000-point-smoothed baseline IB(t) was used, as computed in the previous section. The
criteria for accepting and rejecting current dips as blockades is similar to those in Butler et al. [83].
Different thresholds between deep and partial events were used due to the difference in current associated
with adenine and thymine, as described. Additionally, we used a 10-kHz filter, so blockades less than
100 µs were rejected. Similarly, due to our 100-kHz sampling rate, blockades were rejected if they occured
within 30 µs of each other, compared to 26 µs in Butler et al.
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Figure 3.8: Scatter plots of mean blockade current vs dwell time. Shading was added
to distinguish deep and partial events on the basis of maximum blockade current. The
criteria for selecting and rejecting events for inclusion in these plots is described in
Footnote 5. The slant in current dips is due to an RC time constant arising from the
membrane capacitance and is fit well by I0(1− e−t/τ ).
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Figure 3.9: Histogram and fits of partial blockade data. Partial blockades are fit with
simple exponentials with r2 > 0.98. The first 0.25 ms bin was excluded from the fit
for the 180 mV data, for which it was difficult to distinguish between partial and deep
blockades due to the RC rise time. The 120 mV and 140 mV data were less sensitive
to this effect. The criteria for selecting and rejecting events for inclusion in these plots
is described in Footnote 5.

without a hairpin loop in M2MspA. This is likely due to the presence of the hairpin loop.

Additionally, whereas blockades including both partial and deep current levels were rare

in Butler et al. [83] for hairpins with M1MspA, they were more common in our system.

This effect is likely due to the longer time constant for partial blockades: longer residence

times increase the probability that a DNA molecule will ultimately translocate.

All of these results suggest that the same results would have been obtained if these

experiments were repeated in phospholipid membranes. All deviations from the results of

Butler et al. have justifications that rely on other differences in our experiments6. This

suggests that the use of PMOXA-b-PDMS-b-PMOXA in an optimized system would

compatible with the use of MspA for the application of DNA sequencing.

6We did not perform measurements in phospholipid membranes that would serve as a direct control
to polymer membranes due to a shortage of time and resources.
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Chapter 4

Experimental results for droplet

interface bilayers

The previous chapter described experiments performed using PMOXA13-b-PDMS47-b-

PMOXA13 in aperture-suspended membranes, which allowed for the translocation of

DNA through MspA nanopores. The results showed a large variability in MspA behavior,

but also suggested the requirements for consistent, good MspA behavior. The approach

was limited in that it did not allow for a measurement of bilayer thickness and tension,

which are primary candidates for the cause of MspA variation.

On the other hand, droplet interface bilayers (DIBs) have been shown to allow the

measurement of thickness and tension of phospholipid membranes using the Young-

Lippmann equation [10]. In this chapter, we use DIBs with the goal of determining these

properties for PMOXA13-b-PDMS47-b-PMOXA13. We begin by describing the prepara-

tion and properties of polymer vesicle solutions. We demonstrate that poor adsorption

dynamics of the polymer solutions causes loosely packed monolayers that cannot form

stable bilayers. To solve this issue, we present a technique for manually packing mono-

layers so that they form stable bilayers.
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An additional challenge was that the Young-Lippmann equation failed to describe

PMOXA13-b-PDMS47-b-PMOXA13 membranes due to their long equilibration timescale.

In response to this, we established a new approach for measuring monolayer and bilayer

tensions using droplet shape analysis via the Young-Laplace equation. We end the chapter

by using this approach to determine monolayer and bilayer tensions for the DIBs made

using PMOXA13-b-PDMS47-b-PMOXA13.

4.1 Preparation and characterization of aqueous poly-

mer solutions

The first step in DIB experiments is the preparation of a surfactant solution that

adsorbs to form a monolayer at an oil-water interface. We prepared aqueous vesicle

solutions by the solvent injection technique, in which the block copolymer is first dissolved

in a solvent that dissolves both the hydrophobic and hydrophilic blocks. The solvent is

miscible with water so that when the polymer-solvent solution is added to an aqueous

solution, the solvent partitions into the water and the polymer forms aggregates [130].

Some solvent remains in the solution, but it may be removed partially via evaporation

or more thoroughly via dialysis. The technique has the benefits of being simple and

scalable [130]. Additionally, it has previously been demonstrated to yield unilamellar

vesicles for PMOXA-b-PDMS-b-PMOXA [131].

Several aqueous solutions were made using PMOXA13-b-PDMS47-b-PMOXA13 DIBs

via the solvent injection technique. Acetone, ethanol, and tetrahydrofuran (THF) were

used as solvents and Millipore water or buffered salt solution were used for the aque-

ous phase. The buffer solution was the same as in the previous chapter: 1M KCl, 10

mM HEPES, pH 8 in Millipore water. Agitation was applied by vortexing, sonicating,
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or magnetically stirring the aqueous phase while the polymer solution was added; the

agitation method used did not significantly affect the results, but there were causes for

variation that could not be determined. Aggregate solutions were placed briefly in a

rotary evaporator or were allowed to sit for a few hours to remove solvent. In some cases,

the solution was dialyzed in buffer solution to remove residual solvent, but these solutions

behaved similarly to solutions that were not dialyzed.

An important requirement for DIBs is that the aqueous polymer solution in a droplet

must have enough polymer to form a complete monolayer on its surface in a reason-

able timescale. To determine the concentration of polymer in vesicle form, nanoparti-

cle tracking measurements were performed. The nanoparticle tracking equipment used

(NanoSight NS300, Malvern Instruments) works by using an ultramicroscope to image

the paths of nanoparticles over time. It then uses the two-dimensional position trace

of each particle to determine its diffusion coefficient. The diffusion is due to Brownian

motion, and the particle’s hydrodynamic radius is related to the diffusion constant by

the Stokes-Einstein equation. The NS300 software determines concentration by counting

the number of particles in the viewable area. The solution is flowed between measure-

ments to average over a sample. The result of a nanoparticle tracking measurement is a

distribution of concentration against diameter, binned in 5 nm increments, provided by

the NS300.

The molar concentration of polymer in vesicle form was calculated by performing a

weighted sum over nanoparticle radii, assuming that all nanoparticles are unilamellar

spherical vesicles:

cvesicle =
∑
j

4πr2
jΓcj (4.1)

where cj is the concentration of vesicles of radius rj in the jth bin and Γ is the sur-

face concentration of polymer molecules in units of [number]/[area]. As an estimate,
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Solvent phase
(wt.% polymer)

Aq.
phase

Vol.%
solvent
in aq.

Vesicle
yield

cvesicle

(mg/mL)
Solutions
made

2-10% in THF water 5-20% 14-34% 0.2-1.5 6
8% in ACE water 5% 15% 0.5 1
1.1% in EtOH 1M KCl 10% 4% 0.08 1
19% in EtOH 1M KCl 10% 2-4% 0.4-0.7 1
18-19% in EtOH 1M KCl 4% 3-4% 0.2-0.3 2

Table 4.1: Vesicle solutions prepared by the solvent injection method. Yield and con-
centration ranges arise either from different solutions or from multiple measurements
of the same solution. In all cases, mean vesicle diameters were ~100 nm or larger.
Smaller particles were not detected. None of these vesicle solutions could form stable
DIBs in hexadecane without the shrink method introduced in the following section.

Γ = 1 nm2 area was used1. A potential source of error in this calculation is that the

nanoparticle tracking data could only provide particle sizes and could not distinguish

between unilamellar vesicles, multilamellar vesicles, and solid spheres of precipitate.

In order to demonstrate the fraction of polymer converted to vesicles, cvesicle was

compared to the mass of polymer used to make the solution. A 100% vesicle yield indi-

cates that the entire mass of polymer was converted to unilamellar vesicles. Yields below

100% indicate either a deviation from unilamellarity or a loss of polymer to precipitate

or smaller aggregates that could not be detected2. Alternatively, the assumption that

Γ = 1 nm2 could lead to error. We also note that the nanoparticle tracking was not

calibrated against a standard of known concentration. For these reasons, the computed

yields should be viewed with some caution.

Table 4.1 shows results for selected aggregate solutions made via solvent injection.

For ethanol, 2-4% of the polymer introduced is converted into vesicles, while for the

1A reference with the surface concentration in PMOXA13-b-PDMS47-b-PMOXA13 vesicles could not
be found, but the value of ~2.5 nm2 from the polymer with different block lengths when compressed at
an air/water interface [132] is an upper bound. Using this value instead of 1 nm2 would give cvesicle and
vesicle yields that are 2.5x lower for this entire section, for which the same arguments would apply.

2In theory, the turbidity as well as other scattering techniques could be used to better determine the
lamellarity of solution.
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other solutions, above 14% is converted. For comparison, an aqueous solution of DPhPC

prepared by rehydration according to the protocol in Taylor et al. [10] gave yields between

21% and 48% under the same assumptions (e.g. Γ = 1 nm2). Although the yield was

very low for ethanol injection, there was relatively little precipitate visible. To test the

possibility of multilamellar vesicles, some solutions were prepared by either sonication or

extrusion, both of which are known to induce unilamellarity [133]. Neither of these had

a noticeable effect on yield. For example, one solution with a yield of 2.5% was passed 21

times through a 100 nm extruder (NanoSizer Liposome Mini Extruder, T&T Scientific),

but the yield was unchanged when measured again.

To investigate further, some solutions were analyzed using dynamic light scattering

(DLS) to determine if smaller aggregates were present. DLS measurements use an ag-

gregate measure of the Brownian motion statistics using light scattering and allow for

measurement down to ~1 nm. In contrast to nanoparticle tracking, DLS does not mea-

sure absolute concentration and works better for monodisperse samples. Additionally,

DLS measurements are not as sensitive to low particle concentrations. This means that

a combination of DLS and nanoparticle tracking analysis can provide a more accurate

picture of a sample than either one alone.

DLS measurements were performed on a Zetasizer Nano SZ (ZEN3600, Malvern In-

struments) with a 632.8 nm laser and are shown in Table 4.2. They reveal that ethanol-

based solutions have sizable number of smaller aggregates that were not detected by

nanoparticle tracking. On the other hand, smaller aggregates were not detectable in

acetone- and THF-based solutions, which likely accounts for the discrepancy in the vesi-

cle yields. The intensity of the signal due to the smaller aggregates is roughly the same

as that of larger aggregates. For scattering by solid spheres much smaller than the wave-

length of light, the scattered intensity increases as the third power of the diameter [134],

so that the approximately fivefold difference in diameter would correspond to ~125 times
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Solvent phase
(wt.% polymer)

Aq.
phase

Vol.%
solvent
in aq.

d1 (nm)
(st. dev.)

I1 (%)
d2 (nm)
(st. dev.)

I2 (%)

10% in THF water 5-20% 142 (57) 26.3 1020 (696) 68.9
8% in ACE water 5% 318 (63) 100 N/A 0
19% in EtOH 1M KCl 10% 38 (18) 52.3 219 (124) 47.7%
18-19% in EtOH 1M KCl 4% 29 (8) 41.4 169 (48) 58.6%

Table 4.2: DLS data for vesicle solutions in Table 4.1. d1 and d2 are the inten-
sity-weighted mean diameter of aggregates in the solutions and I1 and I2 are the
integrated intensities for the distribution about each mean. The intensity-weighted
mean is related to but distinct from the number-weighted mean, so that e.g. d2 for
ethanol does not contradict the mean value of 100 nm determined from nanoparticle
tracking measurements noted in the text.

more small aggregates than large ones. In our case, however, the scatterers are spherical

shells, so that the math is different and the intensity is a complicated function of diam-

eter. In Section A1 of the appendix, the function is used to determine that the amount

of polymer in the smaller aggregates cmicelle is likely a few times larger than cvesicle.

The number distributions calculated assuming solid spheres gives a mean hydrody-

namic diameter of 16.5 nm (st. dev. 4.9 nm) for the ethanol-formed solution with the

highest concentration. For comparison, PMOXA6-b-PDMS44-b-PMOXA6 vesicles have

been shown to have a bilayer thickness of 10.7 ± 0.7 nm by cryo-TEM imaging [135].

Using this as a minimum-bound for our polymer, which must form thicker bilayers due

to the additional PMOXA and PDMS groups, the thinnest possible vesicle would be

about 22 nm in diameter. Because the aggregates we see here are mostly smaller than

this, they must necessarily be micelles. We note that while the hydrophilic ratio of

PMOXA13-b-PDMS47-b-PMOXA13, f =
2× 1,100 g/mol

(3,500 + 2× 1,100) g/mol
= 39%, predicts the

formation of vesicles, such predictions are only a rule of thumb [101]. Cryo-TEM images

for PMOXA6-b-PDMS44-b-PMOXA6 and PMOXA7-b-PDMS49-b-PMOXA7 also appear

to show smaller aggregates that are 10-15 nm in diameter in addition to larger vesi-

cles [135].
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An estimate of cvesicle can be used to determine whether enough polymer is present to

form a full monolayer on a DIB surface. For a droplet of radius r, the enclosed number

of polymer molecules in a droplet is NV = V cNA = 4
3
πr3cNA where c is the molar

concentration and NA is Avogadro’s number. The number of molecules needed to form

a monolayer at the droplet surface is NS = ΓA = 4πr2Γ where Γ is again assumed to be

1 nm2. The ratio NV/NS =
NAcra

3Γ
then indicates the relative abundance of polymer in

the droplet, where NV/NS = 1 corresponds to the case where there is just enough polymer

available to form a complete monolayer. This only serves as a minimum theoretical limit.

In practice, there should be an overabundance of polymer in the droplet so the adsorption

rate is not limited by long diffusion times or a finite desorption rate.

For our polymer, cvesicle = 0.4 mg/mL was the lowest vesicle molar concentration

attained when aiming for solutions with high aggregate concentration. We will use this

as a worst case estimate of whether there is enough polymer present to form monolayer.

Typically DIB droplets are 200 nL in volume (approximately a 350 µm radius). Using this

with average molecular weight of 5,700 g/mol, a concentration of 0.4 mg/mL corresponds

to NV/NS = 5. Thus, at this concentration, the average concentration will not drop by

more than 20% of its original value.

To determine whether diffusion will have a limiting effect, we consider how far vesicles

must diffuse to form a full monolayer and then calculate the corresponding diffusion time.

Rather than solving the diffusion equation for this geometry, a simple algebraic estimate

is made using the diffusion timescale. For NV/NS = 5, only 20% of the vesicles in a

volume are needed to form a complete monolayer. Because half of the aggregates near

the surface will diffuse toward the surface, we require the outwardly diffusing aggregates

in the 40% of the volume closest to the surface. For a 200 nL spherical droplet, this

is the region within 57 µm of the surface. We treat this spherical shell as planar as an

approximation. Then we can estimate the diffusion time for all aggregates in this region
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by using the average diffusion time for aggregates 57 µm from the surface.

For a single particle diffusing in one dimension, its mean squared displacement is

〈x2〉 = 2Dt so that the time to diffuse a distance of 57 µm is t = (57 µm)2

2D
. The Stokes-

Einstein equation provides the diffusion constant D for spherical particles in a liquid at

low Reynolds number: D =
kBT

6πηr
, where η is the dynamic viscosity and r is the radius

of the particle. Using the average vesicle diameter of 100-nm from the nanoparticle

tracking data gives D = 4 µm2/s and t = 6 minutes. This means that diffusion will not

significantly delay the adsorption process at cvesicle = 0.4 mg/mL. If every polymer that

reaches the droplet surface adsorbs, these values would give the equilibration timescale

for a full monolayer. If, in the opposite extreme, polymer adsorption is very slow, then

these favorable diffusion timescales would keep the concentration near the surface above

80% of the initial value throughout the process.

For the smaller aggregates, the average diffusion constant is at least 5 times higher

because the diameter is ~15-20 nm instead of ~100 nm. Then, assuming the molar

concentration is cmicelle = 0.4 mg/mL also, the diffusion timescale is at most 1 minute.

As mentioned above and calculated in Section A, cmicelle is likely a few times higher

than 0.4 mg/mL. This means that for ethanol injected solutions, there is independently

an overabundance of both micelles and vesicles for droplets larger than 200 nL. If the

adsorption kinetics of either micelles or vesicles is dominant, ethanol based solutions will

give the best or nearly the best monolayer formation results of the solutions tested. Time

limitations prevented the study of whether adsorption occurred primarily from micelles

or vesicles.

68



Experimental results for droplet interface bilayers Chapter 4

4.1.1 Dynamics of monolayer formation

Figure 4.1 shows an image of a pendant drop of aqueous PMOXA13-b-PDMS47-b-

PMOXA13 solution in hexadecane, along with a plot of its interfacial tension over time.

The monolayer tension after 15 minutes is ~25 mN/m, which is an order of magnitude

larger than phospholipids, e.g. 1.18 ± 0.2 mN/m for DPhPC and 1.99 ± 0.5 mN/m

for DOPC [136]. Such high interfacial tension indicates exposure between the oil and

water phases due to poor polymer packing. Pairs of droplets prepared this way typically

fused either on contact or a few minutes after formation, even after waiting several hours

prior to contact. Bilayers were not stable when formed in a bath of hexadecane, silicone

oil AR 20, or mixtures of decane or D4 with squalene. Bilayers were sometimes stable

when formed in a bath of pure decane or pure D4. The high thickness associated with

membranes formed in decane or D4 (~20 nm according to the measured ~0.1 µF/cm2

specific capacitance) stabilized the bilayers despite their poor polymer packing. These

results held for all aqueous polymer solutions tested, including those formed from THF

or acetone, although all polymer solutions were not tested with all oils.

Considering that diffusion is not limiting, the monolayer tension trace in Figure 4.1

implies that there is a large barrier to the adsorption process. In the initial stage of

adsorption, adsorption is so fast that the tension is kept below 30 mN/m even as the

droplet is dispensed. Below 30 mN/m, adsorption slows nearly to a stop. Longer-term

measurements (data not shown here) showed that tension remained above 20 mN/m for

hours despite the large over abundance of polymer due to the large droplet size (~5 µL).

For comparison, the polymer-free control is shown to be above 50 mN/m and slowly

decreasing due to trace contaminants, as expected for hexadecane (99%, Alfa Aesar)

used as received [137]3.

3The inclusion of 1M KCl in the buffer serves to increase the tension only by ~1.5 mN/m [138] relative
to pure water.
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Figure 4.1: Pendant droplet image with fit line and plot of interfacial tension of
aqueous droplets in hexadecane. The polymer solution was made in ethanol and
contains both micelles and vesicles. The control data (in gray) used the same buffer
(1 M KCl, 10 mM HEPES, pH 8) without polymer added. The data was obtained with
a commercial pendant drop apparatus using OneAttension software. Each data point
corresponds to an image which was fit with the Young-Laplace equation to determine
tension. The image above corresponds to the datapoint denoted by the arrow. A
longer continuous trace was not taken for the control, but the tension eventually
dropped to ~30-35 mN/m due to surfactant activity of contaminants and potentially
the HEPES buffer. For scale, the width of the needle is 0.51 mm
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For phospholipids, Venkatesan et al. [136] observed a two stage process, which they

attributed to two different mechanisms of adsorption: aggregate adsorption and single-

molecule adsorption. Initially, the oil-water interface is bare so that entire aggregates

may fuse onto it. Once the monolayer is moderately packed, this pathway becomes

hindered. At this stage, adsorption continues at a slower rate with single molecules.

Our polymer seems to behave similarly: the first adsorption stage may be attributed

to faster aggregate adsorption while the second adsorption stage may be attributed to

slower single molecule adsorption.

The process of adsorption is similar to the process of evolution in a micellar solu-

tion, which can also have two stages. When a micellar system is far from equilibrium,

entire aggregates fuse together in a single step; but when a micellar system is nearer

to equilibrium, the relaxation occurs through a single molecule exchange process [139].

The kinetics of this process for block copolymers are often far slower than phospholipids

due to the larger size of both the hydrophobic and hydrophilic blocks [104, 140]. It has

been demonstrated that the kinetics of single molecule exchange are hypersensitive to

the molecular weight mB of the hydrophobic block. This occurs because the hydrophobic

block is exposed to the hydrophilic region during its transit [141], so that the associated

activation energy scales as m
2/3
B or mB [104]. Additionally, the hydrophilic blocks of ad-

jacent molecules must be displaced for a molecule to pass through. This implies that in

our case, as the monolayer becomes more packed, the hydrophilic blocks on the interface

become increasingly difficult to displace so that the barrier to adsorption increases [104].

In view of the large molecular weight of both our hydrophilic and hydrophobic blocks

relative to phospholipids, it is not surprising that the monolayer tension remains above

20 mN/m during adsorption.
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4.2 Preliminary experiments on monolayers and bi-

layers of block copolymer DIBs

4.2.1 Shrinking droplet approach to DIBs

The source of bilayer instability in PMOXA13-b-PDMS47-b-PMOXA13DIBs is poor

monolayer packing at the interface, evidenced by monolayer tensions above 20 mN/m.

Thus, a modified approach was conceived to manually compress the monolayers enough so

that the droplets would not fuse on contact. The approach is demonstrated in Figure 4.2.

First a droplet of aqueous polymer solution is pushed out through the needle into a bath

of oil. After waiting for the polymer to adsorb onto the surface, most of the droplet

volume is withdrawn. As the droplet surface area decreases, the area per molecule also

decreases if the monolayer does not redistribute into the bulk and the monolayer does

not slip at the contact point with the pipette.

This principle was adapted for use with DIB experiments. First a 2-µL droplet of

vesicle solution is held suspended from the pipette tip for several seconds for the first

phase of monolayer formation to complete. Then the droplet is withdrawn slowly back

into the pipette. If the polymer in the monolayer does not leave the interface, this

increases the monolayer packing. This is accompanied by a reduction in interfacial tension

so that the droplet is distorted by gravity. Eventually the interfacial tension can no

longer support the weight of the droplet hanging beneath it, and a part of the droplet

separates and falls down. If the droplet is held to envelop the agarose-tipped ball electrode

throughout this process, the separated droplet remains attached to the electrode. This

process is repeated to form two droplets which are used to form a DIB.

Figure 4.3 shows images and monolayer tension traces of droplets prepared this way.

In all cases the monolayer tension rises until it plateaus after about 5 to 20 minutes.
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Figure 4.2: A demonstration of the droplet shrinking technique to increase the packing
of the polymer monolayer. As solution is manually sucked back in through the needle,
the droplet volume decreases and as a result the interfacial tension decreases also.
The fits of the images above provided the volume and tension values indicated by the
numbered arrows in the plot as in Figure 4.1. For scale, the width of the needle is
0.51 mm. The steady increase in volume was due to the use of a disposable syringe
with poor control over the dispensed volume. The steady rise in interfacial tension is
due to the volume increase and potentially also due to leakage of polymer molecules
out of the monolayer.
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Figure 4.3: Monolayer tension traces for aqueous PMOXA13-b-PDMS47-b-PMOXA13

droplets made using the shrinking approach and suspended from ball electrodes in
a bath of hexadecane. First, a 2-µL droplet was held to envelop the ball electrode
for about 30 seconds. Then the droplet was slowly withdrawn until the monolayer
tension could no longer support its weight, so that a small part of the original droplet
fell off onto the electrode. t = 0 marks the instant at which droplets detached from
the pipette onto the electrode, but the first datapoint is between 40 and 105 seconds
after this4. After an initial rise, the monolayer tensions remain constant over time.
The monolayer tensions were determined via pendant drop fits made using Pendant
Drop on ImageJ after preprocessing the images as will be described later in the text.
The gaps in the data usually denote times when measurements were not made, but
sometimes are a result of an error during analysis. The drifts and fluctuations in the
tensions may result from measurement artifacts such as movement of the camera arm
or from genuine changes in tension. Such changes in tension could arise from changes
in the ambient temperature or from changes in droplet volume due to evaporation via
wetting of the electrode wire.
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The fact that the tension is stable over several hours shows that the number of polymer

molecules in the monolayer is nearly constant. This proves that PMOXA13-b-PDMS47-

b-PMOXA13 behaves as a Langmuir monolayer on at least a several-hour timescale and

additionally that there is no leakage of polymer from the monolayer where it meets the

electrode.

The droplet shrinking process uses the same principle as a Langmuir trough exper-

iment, which was illustrated in Figure 2.4. A Langmuir trough experiment begins by

spreading a known quantity of amphiphile dissolved in a volatile solvent onto the surface

of a tank of water. The amount of amphiphile used is small, so that after the volatile

solvent evaporates the amphiphile is initially in a two-dimensional gas phase on the water

surface. Then the surface area of the monolayer is reduced by moving a sliding barrier

as the surface tension is measured. The area per molecule is calculated by dividing the

total number of amphiphiles by the area enclosed by the barrier. Together, the surface

tension and area per molecule comprise the desired Π–A isotherm.

This principle has already been exploited to use pendant drops to determine Π–A

isotherms of Langmuir monolayers at water/air [142, 143] and water/oil interfaces [144].

First, a much smaller droplet of an amphiphile in solvent is spread onto an amphiphile-

free pendant drop as the initial step. Then, as the droplet volume is reduced, its shape

is analyzed to determine its surface area and tension at each instant, yielding the desired

Π–A isotherm. The difference in our approach is that our polymer is introduced to the

interface by adsorption, so that the area per molecule is unknown and a Π–A isotherm

cannot be obtained.

One of the design criteria for a Langmuir trough experiment is the minimization of

the amount of amphiphile that leaves, or “leaks” out of, the interface. Amphiphile that

4The reason for the delay before the first datapoint is that a video was recorded with the side
camera during and after droplet dispension to capture the initial quick rise in tension at high frame rate.
However, the video data has not yet been analyzed so it is not plotted here.
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leaks to the adjacent phases leads to an error in the area per molecule in a Π–A isotherm,

and can also prevent interrogation of the low-area regime. The amount of amphiphile

leakage is based on the barrier material as well as the properties of the amphiphile and

adjacent phases. For example, it has been shown that Delrin barriers reduce the amount

of a phospholipid lost at the barrier when compared to Teflon barriers [145]. The pipette

tips that we use (Gilson Diamond) are composed of pure polypropylene, which has a

hydrophobicity intermediate to Delrin and Teflon. This suggests that while leakage may

occur during the shrinking process for PMOXA13-b-PDMS47-b-PMOXA13, it is likely

not greater than it would be for Teflon, which remains a popular material for Langmuir

troughs. In our case, the amount of leakage that occurs during the shrinking stage is

small enough that it is irrelevant.

On the other hand, once the droplet is transferred to the agarose-coated electrode,

leakage of polymer out of the interface becomes relevant to the experiment. Any leakage of

polymer will cause the packing of the monolayer to decrease and the interfacial tension to

increase, a process which cannot be reversed due to the slow adsorption rate demonstrated

in Figure 4.1. Images of shrunk droplets suspended on ball electrodes show that the

droplet is initially in contact with the agarose. As the monolayer tension rises, the droplet

climbs up the agarose until it reaches the wire, at which point the tension plateaus. The

leakage of polymer occurs when the monolayer is in contact with agarose, but not when

it is in contact with the AgCl of the electrode.

At equilibrium, the force exerted by the monolayer tension along the circumference

of the electrode must support the weight of the droplet. The supporting force due to

monolayer tension is given by Fs = 2πreγm cos θC, where θC is the contact angle as

illustrated in Figure 2.2 and re is the electrode radius at the contact line. Let us consider

a droplet that is initially in equilibrium while in contact with the 50-µm-diameter wire

of the electrode. If the monolayer tension is decreased by the increasing the packing of
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the monolayer, then Fs will no longer be able to support the weight of the droplet. The

droplet will fall until it reaches the larger circumference of the ball of the electrode, and

it will stop when Fs at the new circumference again balances the weight of the droplet.

If, as in our case, the monolayer tension is increased in this position, the droplet will rise

until equilibrium is reached again. This phenomenon has been noted before in DIBs: the

lowering of a droplet from the electrode wire to the ball is used as a signal that lipid

monolayer packing is dense enough for stable bilayer formation [47]. This phenomenon

also explains the purpose of the ball electrode: without it, droplets of low monolayer

tension would slide off the electrode.

In general, the contact angle θC will also vary with monolayer tension. However,

this is not usually the case if θC = 0, which often holds at the oil/water/electrode

interface. Images show that the contact angle of the droplet on agarose and AgCl are

very small. Additionally, the 0° contact angle with the electrode wire is evidenced by the

slow reduction of droplet volume over time that is observed in all oils tested; a droplet

will gradually lose on the order of half its volume over the course of 24 hours, depending

on its initial size. Because water is insoluble in oils such as hexadecane or AR 20, the only

way this can occur is if a thin film of water wicks up the electrode and evaporates, which

indicates complete wetting. For comparison, droplets that were submerged for several

days in hexadecane without contact to an electrode did not noticeably change in size, as

expected for an oil that is so immiscible with water. The 0° contact angle of water on

agarose is likely owing to the high percentage of water in agarose and the nonpolarity of

the surrounding oil. Thus we can consider simply that Fs = 2πreγm in our case because

cos θC is equal to 1 or very close to it.

This behavior makes it possible to control the monolayer tension of the droplet simply

by controlling the volume of the dispensed droplet. To determine the relation between

dispensed volume and γm we balance Fs with the weight of the droplet. In the case of

77



Experimental results for droplet interface bilayers Chapter 4

a pendant drop, there is a correction to the droplet weight that arises from the Laplace

pressure. The higher pressure inside the droplet acts to push against the electrode,

effectively increasing the droplet weight. To determine this excess pressure at the contact

line, we begin with the value of the Laplace pressure at the bottom of the droplet,

P0 = 2γm/r0 where r0 is the radius of curvature at the droplet bottom as discussed in

Section 2.4. Then we subtract off the hydrostatic pressure difference between the droplet

bottom and the contact point Ph = ∆ρghdrop, where ∆ρ is the density difference between

the oil and aqueous phases. The additional weight due to the Laplace pressure is then

πr2
e(P0−Ph). r0 and hdrop can be determined for a droplet from pendant drop fitting or by

solving the pendant drop equation; but for the sake of simplicity and to demonstrate that

volume is fully predictive of monolayer tension, we estimate both of them from the droplet

volume under the approximation that the volume is spherical. This approximation gives

r0 = 3

√
3V

4π
and hdrop = 2r0. Values calculated this way overestimate r0 by 3-5% and

underestimate hdrop by 12-16% relative to pendant drop fits for the four datapoints in

Figure 4.3. These result in an error in the monolayer tension below ~1%.

Balancing Fs with the effective droplet weight gives the exact formula:

2πreγm = ∆ρgVd + πr2
e(2γm/r0 −∆ρghdrop)

Solving this equation for γm and plugging in the estimates for r0 and hdrop in terms of

the droplet volume gives:

γm =
∆ρg

2πre

×
Vd − πr2

e
3

√
3Vg
4π

1− re
3

√
4π

3Vg

(4.2)

where a distinction is made between the volume dispensed, Vd, and the geometric volume,
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Figure 4.4: Scatter plot showing that the radius of the electrode wire re and the
droplet’s volume V determines its monolayer tension via the mechanism described in
the text for shrunk droplets of aqueous PMOXA13-b-PDMS47-b-PMOXA13. On the
horizontal axis is the value of the monolayer tension predicted by Equation (4.2). On
the vertical axis is the monolayer tension measured by pendant drop fitting. The
monolayer tension traces of four of the five datapoints are shown in Figure 4.3 and
the tension value for all droplets was averaged as described later in Table 4.3. The
percentage error of the predicted values in comparison to the measured values ranged
from -11% to 4%.

Vg = Vd + Velectrode, which includes the volume of the ball electrode. The volumes Vg

are taken from the surface of revolution of the pendant drop profile, while the volumes

Velectrode are estimated from the width and height of the ball by assuming it to be a prolate

spheroid undistorted by lensing due to the droplet shape. Velectrode varied between 16 nL

and 19 nL when estimated this way. re was taken to be 25 µm in all cases based on

the nominal 50 µm diameter of the Ag wire. Figure 4.4 demonstrates the ability of

Equation (4.2) to predict γm a priori for five droplets of different sizes.

This behavior applies exclusively to our particular system, in which amphiphile leaks

out of the monolayer when in contact with the agarose but not when in contact with
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bare Ag/AgCl. It can only be observed for a Langmuir monolayer for which adsorption

from the adjacent bulk does not replenish amphiphile that leaks out of the monolayer.

This implies that for a given oil the tension in a shrunk droplet of aqueous PMOXA13-

b-PDMS47-b-PMOXA13 can be controlled either by varying the droplet volume or the

electrode wire diameter. Additionally, oils with a density closer to that of water will

be associated with smaller tensions at the same droplet volume and electrode diameter,

assuming that the initial monolayer tension falls within a range.

4.2.2 Bilayer formation experiments

When droplets of PMOXA13-b-PDMS47-b-PMOXA13 solution are deposited using the

shrinking approach, they form a stable bilayer. For example, in hexadecane the bilayers

are stable with a specific conductance of 0.5 nS/mm2 up to around 400 mV. An important

aspect of these bilayers is they do not achieve equilibrium even after several hours. Their

slow equilibration means that the Young-Lippmann equation cannot be used, so that

the monolayer and bilayer tensions cannot be determined using the method of Taylor et

al. [10].

The slow equilibration is demonstrated in Figure 4.5, which plots the response of the

monolayer-bilayer contact angle to a step in voltage for aqueous polymer and aqueous

lipid DIBs. DPhPC was used as the lipid, made with same 1M KCl buffer as the polymer5.

For DPhPC, the response to the 100-mV step is abrupt and the contact angle achieves

its new equilibrium value within a minute. For polymers, the contact angle is steadily

rising prior to the voltage step, even after waiting over an hour for equilibrium. After the

voltage step, the contact angle continues its steady rise without any noticeable reaction.

5The DPhPC solution was prepared as described in Taylor et al. [10] at 2 mg/mL. However, for the
data in Figure 4.5, the DIB measurements were taken after the solution was stored for several months in
a refrigerator. The initial monolayer formation took much longer than it did when the solution was first
made, and these bilayer results may be affected also. However, considering that aged DPhPC solutions
have worse kinetics than fresh ones [136], this further proves the point being made.
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Figure 4.5: Comparison of DIB voltage response of contact angles for aqueous
PMOXA13-b-PDMS47-b-PMOXA13 compared with aqueous DPhPC, each in a bath
of hexadecane. For DPhPC, the contact angle responds quickly to the voltage step so
that equilibrium is reached within a minute. For polymer, the bilayer was neither in
equilibrium before nor after the voltage step so that the Young-Lippmann equation
cannot be used. The angles were computed as averages of the two left and two right
contact angles shown in Figure 4.16 using the tangent algorithm. Images were taken
in groups of three, although some failed to analyze. The inset is a vertical zoom of
the polymer data. The polymer data is taken from Figure 4.7 between 80 and 100
minutes. See Footnote 5 for a note on the age of the DPhPC solution.

The slow change in contact angle is concurrent with a slow change in bilayer area.

Figure 4.6 shows the initial bilayer formation at the instant of bilayer formation for

polymer and DPhPC DIBs. In the 35 seconds plotted, the polymer bilayer grows to a

fifth of the size of the DPhPC bilayer. The bilayer area stabilizes within 5 minutes for

DPhPC (data not shown) but continues to grow for hours for our polymer. Figure 4.7

shows a bilayer area trace over a much longer period of time. Despite the electrodes

being pushed together to accelerate bilayer growth, the area continued to grow after they

were returned to their original position. This shows that equilibration would likely take

several hours. Voltage steps up to 500 mV were also applied. While these increased the
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rate of bilayer formation, they did not quickly achieve equilibrium either.

The slow rate of bilayer formation is the source of the slow change in contact angle.

When a voltage is applied, the electric field becomes negligible within tens of nanometers

from the contact line6. Outside of the region affected by the field, the droplet curvature

is fully specified by the monolayer tension and the vertical position along the droplet (via

∆ρgz) in Equations (2.9) and (2.10). Thus, while the contact angle may be affected on

the nanoscale, the macroscopic, measured contact angle is effectively unchanged without

a change in bilayer area.

The slow rate of bilayer formation observed here stands in stark contrast to the

results reported by Tamadonni et al. [146], who performed experiments on a similar

block copolymer dissolved in the oil phase. They observed reversible, rapid growth of the

bilayer area in response to steps in voltage, about a thousandfold faster than that observed

here. There are two differences that may responsible for their results: the polymer and

its presence in the oil phase instead of the aqueous phase. They used PEO45-b-PDMS27-

b-PEO45 in comparison to our use of PMOXA13-b-PDMS47-b-PMOXA13.

Considering the difference in the block length of the PDMS group and in view of

the hypersensitivity of micellar exchange kinetics on hydrophobic block length, it is rea-

sonable to ask whether some similar hypersensitivity is responsible for the thousandfold

difference in bilayer formation kinetics. One process that may affect the zipping of mono-

layers to form a bilayer is the lateral diffusion coefficient. This sets the timescale of the

lateral motion of molecules in the monolayer and bilayer. According to Itel et al. [135],

the lateral diffusion of the molecules is determined by the molecular weight of the middle

block. Extrapolating from the results in Itel et al., our polymer has a lateral diffusion

coefficient of 1.7 µm2/s while Tamadonni’s has a lateral diffusion coefficient of 3.4 µm2/s.

6Even at the bilayer, an applied voltage has a relatively weak effect; for example, at 100 mV, the
capacitive energy for a 0.2 µF/cm2 bilayer is CV 2/2 = 1 nJ/cm2, or less than 1% of kBT per molecule.
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Figure 4.6: Comparison of initial bilayer formation rate for shrunk droplets of aqueous
PMOXA13-b-PDMS47-b-PMOXA13 against droplets of aqueous DPhPC, each in a
bath of hexadecane. This demonstrates that the initial bilayer formation rate for the
polymer is much slower than for DPhPC. The current response to a 100-mV-amplitude

triangle wave was used to determine the capacitance via I = C
dV

dt
. Capacitance

was scaled by 0.7 µF/cm2 and 0.2 µF/cm2 to yield areas for DPhPC and polymer,
respectively, which are the values determined at large area. The assumption that the
initial specific capacitances are equal to their later values may not be valid, so that
this plot should be considered to be an estimate. This method was preferred over
determining areas using microscopy due to the inaccuracy of measuring small areas.

0 20 40 60 80 100 120 140

Time (min)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

B
il

a
y

e
r
 a

r
e
a

 (
m

m
2
)

 100 mV

 200 mV

 300 mV

 400 mV

 500 mV

 0 mV

↑
droplets

compressed

↑
droplets

decompressed

Figure 4.7: Bilayer area plotted against time for shrunk droplets of aqueous
PMOXA13-b-PDMS47-b-PMOXA13 in a bath of hexadecane. The rate of bilayer for-
mation increases with droplet compression and with applied voltage, but equilibration
would likely take several hours. The areas were computed automatically using the
maximal algorithm explained later in Section 4.4.2 using microscope images.
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For comparison, the lateral diffusion coefficient is 12.5 µm2/s for the phospholipid POPC.

Considering that the threefold to fourfold reduction from phospholipids to Tamadonni’s

polymer does not necessitate slowing of the bilayer formation kinetics, it is unlikely that

the additional twofold reduction to our polymer is responsible for slow kinetics. Another

process that could potentially affect the dynamics of bilayer area changes is the exclusion

of solvent between opposing PDMS molecules and within each PDMS group. Part of this

is due to the viscosity of the solvent. However, the fast bilayer formation kinetics were

demonstrated for an oil mixture with a viscosity larger than that used here7.

One mechanism by which the bilayer area can change is by zipping and unzipping,

whereby the opposing monolayers join or separate. Considering the middle block is

PDMS in both Tamadonni’s and our case, it is unclear why the kinetics of zipping and

unzipping would be so different. One possibility is that the presence of polymer in the

oil acts as a catalyst for zipping and unzipping.

An alternative mechanism to zipping and unzipping for bilayer area changes is the

adsorption and desorption of polymer to and from the monolayer and bilayer. The bilayer

could grow in size if polymer is simultaneously desorbed from the monolayer and adsorbed

to the bilayer. This is similar to the exchange mechanisms that are responsible for the

equilibration of aggregates that was mentioned earlier in this chapter. For amphiphiles in

the oil phase, the adsorption and desorption of polymer onto the bilayer could occur along

the monolayer-bilayer contact line8. The polymer used by Tamaddoni exhibited faster

monolayer formation than lipids, forming packed monolayers within only 30 seconds

of droplet deposition, compared to 2 to 5 minutes for lipids in water [146]. On the

other hand, such a mechanism of bilayer growth would be nonexistent in the case of

7A video in their supplementary material features a mixture of 1:3 silicone oil AR 20:hexadecane.
Considering silicone oil AR 20 has a viscosity of 20 mPa · s, its viscosity must be larger than that of pure
hexadecane used in our case.

8There is also a possibility that the polymer would saturate the aqueous phase if its solubility is high
enough, so that adsorption and desorption occur at the bilayer-water interface.

84



Experimental results for droplet interface bilayers Chapter 4

aqueous PMOXA13-b-PDMS47-b-PMOXA13 due to the slow exchange dynamics, so that

the bilayer must grow by a zipping mechanism. This vast difference in adsorption and

desorption kinetics could result from differences in our polymers as well as their inclusion

in the oil phase compared to the aqueous phase.

Bilayer specific capacitance

Specific capacitance measurements were made for PMOXA13-b-PDMS47-b-PMOXA13

DIBs as a first estimate of the bilayer thickness using the DIB approach. It is well known

that lipid membranes surrounded by an annulus of oil have a thickness that depends on

the nature of the oil. For example, this was demonstrated in 1977 by White [7] for glycerol

monooleate bilayers in alkanes in aperture-suspended membranes, as well as in 2011 by

Gross et al. [8] for DPhPC DIBs in alkanes. In both cases, when the alkane was varied

from decane to heptadecane (linear hydrocarbons from 10 to 17 carbons in length), the

thickness of the hydrophobic layer decreased from 4.4-4.8 nm to 2.8-3.0 nm. We observed

a similar trend for aqueous PMOXA13-b-PDMS47-b-PMOXA13 DIBs: typically larger oil

molecules resulted in thinner bilayers.

To demonstrate this effect, the specific capacitance of polymer DIBs was determined

in mixtures of D4 in squalene. D4 (octamethylcyclotetrasiloxane) is a small molecule

siloxane (and a precursor to the PDMS block during synthesis) with some amount of

mixing with the PDMS block of the polymer. On the other hand, squalene is a large

hydrocarbon composed mostly of alkyl groups which is excluded from the PDMS block.

Specific capacitance was determined using simultaneous capacitance measurements with

DIB images as shown in Figure 4.16. The result is plotted in Figure 4.8, which shows

the dependence of specific capacitance on oil composition. Here only one experiment was
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Figure 4.8: A plot of the specific capacitance against oil composition for mixtures of
D4 and squalene. With increasing concentration of squalene, the specific capacitance
rises significantly, demonstrating that more solvent is excluded from the membrane
interior. For each measurement N=1 and measurements were made using a microscope
camera only. Therefore, this plot should be viewed as an estimate.

performed for each oil and measurements were made using a microscope camera only9,

so the values should be viewed as estimates.

The thickness of the hydrophobic region h can be estimated using the specific ca-

pacitance and the dielectric constant ε of the hydrophobic region of the membrane using

the formula for a parallel plate capacitor: Cspecific = ε/h. There are three possible com-

ponents in the hydrophobic region (PDMS, D4, and squalene) and their proportions

determine ε. Because squalene is less likely to remain in the bilayer, its contribution

to ε is neglected. Thus we assume that the membrane is permeated by D4 only, which

has a bulk dielectric constant of 2.39ε0 [147]. The dielectric constant for the PDMS is

assumed to be the same as for bulk PDMS: 2.8ε0 [148]. As an estimate, we assume that

the dielectric constant can be extrapolated linearly based on the volume fraction of D4

to PDMS in the membrane.

For a weight fraction of 0.25 D4 in squalene, we assume the hydrophobic region is

9Because the droplets are distorted by gravity, the bilayer area is an ellipse rather than a circle.
These measurements neglect this effect by measuring the diameter of the ellipse from the bottom and
assuming the interface area to be a circle.
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almost completely comprised of PDMS so ε = 2.8ε0 is used. Then the measured specific

capacitance of 0.35 µF/cm2 gives h = 7 nm. A membrane in pure D4 is ~70% D4 by

volume according to its capacitance of 0.13 µF/cm2, so ε = 2.5ε0 is used. Similarly for a

membrane in 50 wt.% D4, the membrane is ~50% D4 by volume based on its measured

capacitance of 0.21 µF/cm2, so ε = 2.6ε0 is used. Using these estimates gives thicknesses

of 11 nm and 17 nm for weight fractions of 0.5 and 1 D4 in squalene. Similar trends

were observed in all oils studied. For example, the addition of squalene to silicone oil

AR 20 or to hexadecane similarly increased their specific capacitance to ~0.35 µF/cm2.

Additionally, DIBs in decane had a specific capacitance of ~0.1 µF/cm2, compared to

~0.2 µF/cm2 for hexadecane.

These preliminary results demonstrate that the hydrophobic thickness of PMOXA13-

b-PDMS47-b-PMOXA13 bilayers may be as small as 7 nm and as large as 20 nm. These

results show a larger range in thickness than observed by Gross et al. [8]. This is ex-

pected because while the lipid chains in DPhPC are relatively stiff, the PDMS groups

are flexible, allowing them to have a larger range of thicknesses as they are permeated

with oil. The values here are consistent with capacitance measurements of an aperture-

suspended membrane using PDMS-PMOXA-PDMS with a 5,400 g/mol PDMS group by

Nardin et al. [128]. Their hydrophobic thickness was deduced from Cspecific = ε/h to be

approximately 10 nm, although the level of solvent in their membranes (formed using

chloroform and toluene) is not known. The relation between the molecular weight m of

the hydrophobic and its thickness h for PDMS is about h ∝ m0.6 [123] in our case, so that

extrapolating to our 3,500 g/mol PDMS block gives 7.7 nm. Additionally, electroformed

vesicles of PDMS-PMOXA-PDMS with a 3,700 g/mol PDMS were deduced to have a

hydrophobic thickness of 8.8 ±0.7 nm from TEM images [123], again in agreement with

the estimates for our polymer.
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Figure 4.9: A demonstration that droplet profile is not significantly altered by contact
in a DIB. Even when the electrodes are moved far apart, the droplet profile looks about
the same far from the electrodes and contact point.

4.3 Application of the Young-Laplace equation to

DIBs

As described in the previous section, the Young-Lippmann equation cannot be used

to find the monolayer and bilayer tension for aqueous PMOXA13-b-PDMS47-b-PMOXA13

DIBs. We sought an alternative method that could determine monolayer and bilayer ten-

sion by analyzing droplet shape. As described in the theory section, a typical pendant

drop tension measurement is fit using the Young-Laplace equation under the assump-

tion of axial symmetry. This yields a simple differential equation that can be solved by

numerical integration. In the case of two droplets that are adhered to each other, axial

symmetry is necessarily broken, so that a simple solution is unattainable. One possible

approach to determine the tension would be to use finite element analysis in three di-

mensions to fit the DIB profile. We avoided this approach in favor of an approach that

is less cumbersome and computationally less expensive.

The shape of droplets in contact closely resembles their shape before contact, as shown

in Figure 4.9. It seems plausible that the droplet profile far from the contact interface

could be fit assuming axial symmetric to estimate interfacial tension. In this section we

use finite element simulations to estimate the error associated with this approach. When

optimized, the approach is accurate to within 5-10% over a variety of system parameters.
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4.3.1 Symmetrization and droplet fitting algorithm

We begin by establishing a method for fitting parts of a DIB profile under the as-

sumption of axial symmetry. Rather than write a new algorithm to fit portions of the

DIB images, the images are digitally modified to appear as two separate, axisymmetric

pendant drops. Then each symmetrized image is fed into open-source pendant drop soft-

ware (Pendant Drop, developed by Daerr and Mogne [111] for ImageJ) to fit the droplet

profiles. The digital symmetrization procedure was automated in a Matlab script.

The symmetrization algorithm begins by scaling the image intensity so that 1% of the

pixels are saturated at white and black for consistency across different lighting conditions.

The edges are then detected using a black/white threshold and a Canny edge detector,

as described later for the angle-measurement algorithm. The image is split into a left

and right half near the droplet interface. Then the outer side (the side not in contact)

of each droplet is flipped over a vertical line going through the droplet bottom, so that

each droplet appears as an individual, complete droplet with mirror symmetry.

In order to reduce errors associated with finding the droplet bottom, the Matlab

script first detects the bottom edge of each droplet, and then compares it with its mirror

image about all points near the droplet bottom. The origin of reflection yielding a mirror

image most similar to the original is selected as the origin of the flip transformation.

The similarity between the original and its mirror image is parametrized by the sum of

vertical pixel distances between their edges. The result of this procedure is demonstrated

in Figure 4.10 using an image from a real experiment.

4.3.2 Pendant drop fitting of simulations

Droplet profiles were simulated using Surface Evolver, a program for finding the

minimal energy of surfaces subject to physical constraints. A continuous surface is ap-
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Figure 4.10: The results of the symmetrization algorithm (bottom images) applied to
a DIB (top image). The symmetrized images are ready for analysis with pendant drop
fitting software. During DIB experiments, the electrode separation was set so that
the droplets appeared to hang vertically. This was visualized by imagining a vertical
line running from the bottommost part of each droplet to the center of the contact
point with its electrode.
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proximated by vertices on a mesh and is iterated to minimize total energy. A standard

iteration of the surface uses gradient descent, where the partial derivative of the total

system energy with respect to the position of each vertex is used to take a step in the di-

rection toward lower energy. Additionally, the matrix of second derivatives (the Hessian)

of total energy with respect to vertex positions may be used along with the gradient to

provide improved convergence.

The script used here was adapted from a Surface Evolver script provided generously

by Stephen A. Sarles, the principal investigator in Taylor et al. [10]. The script was

designed to estimate the ellipticity of the bilayer area for different values of interfacial

tension using the gradient descent method. In our case, it was necessary to use Hessian

iterations to produce single droplet profiles that could be fit accurately by Pendant Drop.

Without the use of Hessian iterations, the fits to single pendant drops gave tension values

that differed by ~30-70% from the programmed values. Additionally, the RMS distance

between the fit line and the detected droplet edge was generally 3-8 pixels, signifying an

unrealistic droplet shape. With the use of Hessian iterations, fits to single pendant drops

had ~5% error in retrieving the programmed tension and an RMS fit distance generally

less than 1 pixel at the same image resolution.

The Hessian iteration uses the Hessian matrix to take a much larger step toward the

minimum energy than gradient descent; but if the surface is not already near equilibrium,

the Hessian iteration will cause wildly unrealistic deformations. While Hessian iterations

typically worked for single pendant droplets, they always failed for DIBs regardless of

the mesh resolution. The source of the issue is at the bilayer interface and at the contact

points with the wires. To solve the issue, vertices in those regions were frozen in place

prior to Hessian iterations. They were then unfrozen and gradient descent iterations

were performed. Though the regions that were temporarily frozen may have an unre-

alistic shape, they are effective in breaking the axial symmetry of the pendant drops.
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θC = 20°

θC = 45°

Figure 4.11: Simulations of droplet shape using Surface Evolver. In both cases, the
monolayer tensions are 2 mN/m and the droplet volumes are 150 nL. The blue and
magenta are regions of the droplets that were frozen in place partway through the
simulation to avoid instabilities. The shape of the remainder of the droplets is accurate
if the colored regions are regarded as fixed boundaries. After the simulation, the
droplets and electrodes were colored black to produce high resolution droplet profiles,
as shown in Figure 4.12. For scale, the balls of the electrodes are 250 µm in diameter.

Additionally, the remainder of the droplet shape should be accurate if the frozen regions

are considered as fixed boundaries. Figure 4.11 shows the results of Surface Evolver

simulations using this strategy.

The simulated meshes in Figure 4.11 were colored black and exported as high reso-

lution images which were symmetrized and analyzed with Pendant Drop as though they

were DIB images. Simulations were performed for three different droplet configurations:

γm = 2 mN/m with θC = 20°, γm = 2 mN/m with θC = 45°, and γm = 4 mN/m with

θC = 20°. In all cases, the droplet volumes were fixed to 150 nL each, including the
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volume of the enclosed electrode. The electrodes included a 50-µm-diameter wire (to

match the diameter of the Ag wire) and a 250-µm-diameter ball. Physical parameters

were chosen to match those in experiments: ρaqueous = 1.04 g/mL for the aqueous phase,

ρhexadecane = 0.77 g/mL for hexadecane, and g = 9.8 m/s2.

Two parameters are expected to have an effect on the success of the method: the

height of the profile up to which the image is fit and the electrode separation. The elec-

trode separation is expected to cause deviations from axial symmetry, as demonstrated

in Figure 4.9. Because this deviation is largest at the contact point with the electrode,

decreasing the height of the profile up to which the image is fit is likely to provide more

accurate fits. The height to which the droplet profiles are fit is parametrized as the crop

width: the image is cropped at the first vertical position at which the droplet width

equals the crop width10. Figure 4.12 demonstrates the effects of both of these param-

eters. For crop widths greater than 200 µm, the programmed monolayer tension was

recovered to within 10% accuracy over a 100-µm range of electrode separations. Control

over electrode separation on this scale is easily achieved using micropositioners.

Figure 4.13 demonstrates the accuracy of all three droplet configurations using a crop

width of 400 µm over an expanded 200 µm range of electrode separations for each case.

Pendant drop fits using the symmetrization algorithm are successful in retrieving the

programmed values of interfacial tension to within 6% in all cases. That the errors are

low and vary little over a large range of electrode separations implies that the method is

suitable for real experiments.

In real experiments, there is a trade off with respect to crop width. Larger crop

widths reduce the amount of information for pendant drop fits. In fact, the droplets tops

contain the largest deviation from sphericity, so that the region that is cropped off is the

richest in information about the monolayer tension. This effect was mitigated in the case

10The automated algorithm for performing cropping at the crop width is explained in Section 4.4.1.
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Simulated droplet profiles for different electrode separations:

500 µm 550 µm 600 µm

Symmetrized images for 550-µm electrode separation with different crop widths:
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Figure 4.12: Percent error for monolayer tensions fit after using the symmetrization
algorithm for simulated DIBs plotted against electrode separation for different crop
widths. This plot shows that there is an ideal crop width for which the error is less
than ~5%. All simulations used a monolayer tension of 2.0 mN/m and a bilayer contact
angle of 20° for 150-nL droplets. After symmetrizing and cropping the left droplets,
their tension was fit using Pendant Drop in ImageJ. Percent errors were computed by
comparing the fitted tensions against the programmed tension of 2.0 mN/m.
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Figure 4.13: Percent error for monolayer tensions fit after using the symmetrization
algorithm for simulated droplet profiles for three different scenarios: droplets with
monolayer tension γm = 2 mN/m and bilayer contact angle θC = 20°, droplets with
γm = 2 mN/m and θC = 45°, and droplets with γm = 4 mN/m and θC = 20°. This
plot demonstrates that the symmetrization method produces low errors in tension for
different conditions over a large range of electrode separations when a favorable crop
width is used. Here the crop width was 400 µm and the droplet volumes were 150 nL
in all cases. The vertical dashed lines mark the electrode separation at which the
bottommost part of the each droplet in the original image aligns with the center of
its contact with the electrode.

of these simulations due to the high resolution (~3 pixels/µm) of the images used. In a

real setting, this leads to larger random errors, so that an ideal crop width may be 200 or

300 µm, as we will demonstrate in Section 4.4.3. Finally, we note that, because the error

in fitting single pendant drops simulated using Surface Evolver is approximately ~5%,

the accuracy for a real experiment is potentially better or worse than demonstrated here.
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Figure 4.14: Experimental schematic for two-camera measurements. A photograph of
the setup is shown in Figure 4.15.

4.4 Experimental and programming details for two-

camera measurements

A schematic and photograph of the experimental setup during measurements are

shown in Figures 4.14 and 4.15. All experiments were performed on a vibration isolation

table in a grounded Faraday box large enough to enclose the microscope. An all-glass,

all-sides-polished fluorometer cuvette (Varsal, 450-33-G20) was used to hold the oil bath,

which allowed for distortion-free imaging of the droplets from both the bottom and side.

The top of the cuvette was sawed off at a height of 8 mm for electrode access to the focal

point of the objective.

A CMOS microscope camera was used (AmScope MU1803, 18 MP, USB 3.0) with

the 4x objective of an inverted microscope (Tritech Research). The CMOS camera was

chosen for its low cost and high resolution. The high resolution was somewhat beneficial

to the profile fitting algorithms on Matlab, even though the resolution is limited by the

numerical aperture of the microscope. However, a drawback of the CMOS camera was
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Figure 4.15: Photograph of the two-camera experimental setup for DIBs. The micro-
scope camera is visible in the left foreground, while the side camera (a boroscope) is
visible on the bottom right, held by a flexible arm and covered by a bubble level to
which it is fastened by four nuts and bolts. A white square on the screen of a laptop
is used as a source of uniform light for the side camera. The fluorometer cuvette is
immediately in front of the side camera, and two electrode wires are held over it by
micropositioners. Red and black alligator clips connect these wires to the headstage
of the Axopatch, which is clamped just beneath the microscope stage. The entire
setup is enclosed by a Faraday box with Cu-colored metal sheet that is visible in the
background.
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that the rolling shutter of the CMOS camera produced a wobble effect in combination

with vibrations that could not be damped. This is the most likely source of the random

error in contact angle and area measurements in Section 4.4.3.

The side camera (Opti-Tekscope OT-FlexScope, 2 MP) was also CMOS-based and

allowed for continuous zoom by twisting a knob at its end. In order to ensure upright

images, a two-axis bubble level was mounted to the cylindrical shaft of the camera after

calibrating it with a plumb bob. The mounting was performed by 3D printing pieces

that could be screwed together to fit snugly across the bubble level and camera shaft.

Prior to beginning measurements, the camera head was adjusted to within 1 cm of the

cuvette and leveled to less than 1° by adjusting the flexible holding arm of the camera.

To limit cost, a laptop screen was used as a source of uniform light for the side camera. A

10-hour video of an approximately 10-mm square of white pixels on a black background

was used so that the intensity remained constant. It was kept approximately 35 mm from

the camera, with the center of the square aligned with the center of the field of view.

The lighting conditions and camera created a blur along the droplet edge not seen on

commercial pendant drop setups. This likely caused errors that may be improved with a

more advanced setup.

50-µm silver wire (Alfa Aesar™ 44461G5, 99.99%, annealed) was used for the elec-

trodes. One end of a ~1-cm length of wire was quickly moved in front of a propane flame

to melt and ball up the end. The other end was soldered to a thicker piece of wire,

which fit snugly into the arm of a micropositioner. The silver ball and wire was chlorided

by submerging it in a bath of measurement buffer and applying a 100 mV voltage for

30-60 seconds using a much larger sintered Ag/AgCl pellet (In Vivo Metric) as a counter

electrode. Low gelling temperature agarose (Sigma-Aldrich A9414) was mixed at 3% w/v

with measurement buffer and heated to above 70◦C and thoroughly mixed by vortexing.

The Ag/AgCl electrode was carefully scraped along the meniscus of the melted agarose
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solution, ensuring that the agarose coated the ball but not the wire. The same agarose

preparation was reheated for reuse as needed. After being submerged in the bath of n-

hexadecane (99%, Alfa Aesar), the agarose was rehydrated by suspending a 1-µL or 2-µL

droplet of buffer solution for 5 minutes. The droplet was withdrawn with a pipette and

vesicle solution was deposited using the shrinking approach described in Section 4.2.1.

Before performing additional experiments, the polymer solution was removed from the

electrodes and they were soaked again in buffer solution for 5 minutes.

For the aqueous polymer solution, the ethanol injection technique was used. First

PMOXA13-b-PDMS47-b-PMOXA13 was synthesized as in Isaacman et al. [115]. The

buffer solution was made using Millipore water with 1M KCl and 10 mM HEPES, set to

pH 8 by titration with KOH. 30 mg of the polymer was added to 174 mg of ethanol (Gold

Shield) and allowed to dissolve, forming a turbid solution. 2 mL of buffer solution was

held partially submerged in a sonicating bath while the polymer-ethanol solution was

added over 30-60 seconds. After allowing evaporation overnight (100 mg evaporated),

the solution was filtered once at 0.45 µm then four times at 0.2 µm using PTFE syringe

filters. This solution was dialyzed 1:100 with the same buffer solution under constant

stirring for 5 hours using a Pur-A-Lyzer dialysis kit (Sigma-Aldrich, PURN60010, 6-8

kDa MWCO). The density of this aqueous PMOXA13-b-PDMS47-b-PMOXA13 solution

was assumed to be 1.04 g/mL based on the value for 1M KCl solution. All experiments

were performed at 21-24◦C.

Capacitance and conductance measurements were taken by connecting the electrodes

to the headstage of an Axopatch 200B. For an applied voltage Vapp = 0, resistance was

measured by applying ±10 mV for 100 ms each and using R = ∆V/∆I. At higher

voltages, R = Vapp/I was used, which was measured for 500 ms. Capacitance mea-

surements were performed by applying a 50-Hz, 20-mV peak-to-peak sinusoid centered

about the measurement voltage. The phase offset and amplitude of the response current

99



Experimental results for droplet interface bilayers Chapter 4

sinusoid were fit using a Matlab script to determine the impedance. The impedance

Z of the sinusoid was used to deduce the capacitance assuming a simple series RC cir-

cuit, so that C =
1

2πf

Im{Z}
Im{Z}2 + Re{Z}2

. Additionally, a 20 mV peak-to-peak triangle

wave was applied about Vapp with
dV

dt
= ±0.4 V/s to determine the capacitance via

I = C
dV

dt
− 〈I〉Vapp , where 〈I〉Vapp is the mean current at Vapp. The two capacitance

methods generally agreed to around 1%, and the impedance-based approach was always

used because it was assumed to have greater accuracy. All of these measurements were

performed in a single 1.5-s sweep. The data was filtered using the Axopatch’s built-in

8-pole, 1-kHz filter and was oversampled using a Digidata 1550 at 50 kHz to provide a

higher resolution for fitting the phase of the sinusoid.

The two images and capacitance measurement used three separate programs, each

provided by the manufacturers of the equipment (ToupView for the microscope camera,

ehe for the side camera, and Clampex for the capacitance measurement). Their simul-

taneous acquisition was achieved by using AutoHotKey for Windows, a program that

automates keystrokes and mouse clicks using a timer. Using this technique, all files ac-

quired simultaneously were timestamped within 5 seconds of each other, a timescale over

which significant changes were rare.

4.4.1 Experimental considerations for pendant drop measure-

ments

The solution to the pendant drop equation, Equation (2.10), is fully specified by the

density difference between the two fluids, and two unknowns such as the droplet width

and the radius of curvature at the droplet bottom. However, in practice, pendant software

fit for the direction of gravity also because the camera is not usually upright [111]. Fitting

for the direction of gravity in an image is straightforward in the case of a single axially
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symmetric droplet due to its mirror symmetry about the direction of gravity. However, it

becomes nontrivial in the case of two droplets, which may have different volumes so that

they are not mirror symmetric. This issue was addressed experimentally by calibrating

the camera angle with a plumb bob as described in the experimental section.

The side angle of the camera features a variable zoom lens without gradations, making

pixel scale calibration difficult. The variable zoom is a beneficial feature because it

allows the user to fill the camera’s field of view regardless of droplet size to attain a high

resolution image. On the other hand, the microscope camera uses a fixed 4x objective

with a pixel scale calibrated using a sample of known dimensions. This enables the use

of the microscope camera to calibrate the length scale of the side camera. This was

accomplished by identifying the horizontal extent of the droplets in the side camera with

the same horizontal extent as measured with the microscope for every pair of images.

A Matlab script was written to perform this process automatically using a Canny edge

detector to determine the horizontal extent of the droplets in both images.

4.4.2 Details of contact angle and bilayer area determination

A Matlab script was coded to determine the two bilayer diameters and eight contact

angles visible in the simultaneously captured images. The script was recreated based on

the results reported by Taylor et al. [10]. As in the symmetrization algorithm, the script

starts by scaling the image intensity so that 1% of the pixels are saturated at white and

black for consistency under different lighting conditions. The image is then converted

to black and white by establishing an intensity threshold below (above) which all pixels

are changed to black (white). This prevents the edge detection algorithm from detecting

edges other than the droplet profile. Wherever coordinates of the top and bottom edges

of the droplet profile are desired, a Canny edge detection function is used. Then top and
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bottom edges are converted to a function of horizontal position by counting the number

of pixels until the first edge from the top or bottom of the image.

The images are rotated to upright under the assumption that the droplets should each

be mirror-symmetric about an axis normal to the center of the bilayer plane11. This ac-

counts for the possibility that the contact point on either side is occluded by the adjacent

droplet edges, so that the true contact point is not identified. It also ensures that the con-

tact angle on either side of the interface is measured relative to the plane of the bilayer.

The applied rotation angle is found by guessing and checking applied rotations until the

remaining deviation from mirror symmetry is below a threshold. Applied rotations are

always applied to the original droplet image, prior to the black/white thresholding and

edge detection, to prevent undesirable artifacts of the processes from compounding.

Two Matlab scripts are used to determine angles and interfacial lengths that we

will call the maximal algorithm and the tangent algorithm. They are illustrated in

Figures 4.16 and 4.17, which demonstrate the results of both algorithms for both the

side and bottom view. In the maximal algorithm, the length of the contact interface

is determined by counting the total number of pixels between lowest point of the top

edge and the highest point of the bottom edge. To find the contact angles, first the edge

is traced left or right from each contact point, calculating the angle to every point on

the edge. This function of angle vs horizontal distance exhibits a minimum value, and

this minimum is chosen as the correct contact angle. This approach is used because the

contact point appears rounded in the 2-3 µm region surrounding it so that the contact

angle is close to 90° when only this region is considered. Additionally, the entire region

within 5 µm of the contact point is excluded as a candidate for the contact point due

to undesirable optical distortions that occur in that region. The net result is that the

11This is based on the assumption that the contact angle of each droplet relative to the bilayer plane,
θL and θR, is constant if the monolayer and bilayer tensions are fixed, as described in Equation (2.2).
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maximal algorithm overestimates both the contact angle and the bilayer diameter.

In the tangent algorithm, first, differential contact angles are determined as a function

of horizontal position by comparing each point on the edge to the point adjacent to it.

Then all contact angles are smoothed over a 10 µm region, and the point with the smallest

contact angle chosen as the correct angle. Again, the entire region within 5 µm of the

contact point is excluded from consideration. The tangent lines are extrapolated from

the points at which the contact angles are chosen until they intersect. The intersection

points serve as the top and bottom contact points, so that the distance in pixels between

them is used to determine the bilayer diameter.

The bilayer diameters of the side camera and microscope camera are assumed to

be the major and minor diameters of an ellipse which represents the bilayer area. The

bilayer area is combined with the simultaneously acquired conductance and capacitance

measurements to provide the specific conductance and specific capacitance. The four left

and four right contact angles are averaged to provide θL and θR. These are combined

with the monolayer tensions γL and γR deduced by fitting the symmetrized droplets to

provide the bilayer tension via Equation (2.2).

Bilayer bowing due to asymmetric DIBs

A bilayer will bow as a result of asymmetric droplets. To investigate whether this

effect may be neglected in a DIB, an estimation of bilayer bowing is made for the case

of zero gravity, as illustrated in Figure 4.18. The assumption of zero gravity allows for

an order of magnitude approximation without complicated math. The Laplace pressure

is P1 = γ1/R1 in the left droplet and P2 = γ2/R2 in the right droplet, so that the radius

of curvature of the bilayer is given by P1 − P2 = γb/R3.

Using values similar to those in experiment (γ1 = 2 mN/m, γ2 = 4 mN/m, R1 =

250 µm, R2 = 350 µm, γb = 5 mN/m, Abilayer = π × (40µm)2), and comparing Abilayer to
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Figure 4.16: Bottom view image of an experimental DIB (top) and a demonstration
of the fitting process using Matlab (bottom) as described in the text. The blue (red)
crosses and text correspond to the maximal (tangent) algorithm. The results of the
edge detection process is overlaid onto the image in yellow for demonstration purposes.
The larger crosses denote the deduced contact points, and for scale the width of the
larger blue crosses is 10 µm. The smaller crosses denote the points used for angle
determination. Note the rounded shape surrounding the large blue crosses as well as
subtle kinks in the detected edge near those points which arise from optical artifacts.
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Figure 4.17: Side image of an experimental DIB (top) and a demonstration of the
fitting process using Matlab (bottom). The same image processing is used as in
Figure 4.16 and the colors have the same meanings. Again, the width of the larger
blue crosses is 10 µm. Note the pixelation of the image due to the lower resolution of
the side camera, and the same rounded shape surrounding the contact point.
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Figure 4.18: An asymmetric DIB in zero gravity. The left and right droplets have
radii of curvature R1 and R2, monolayer tensions γ1 and γ2, and internal pressures P1

and P2, respectively. The bilayer has radius of curvature R3 and tension γb.

the area of the associated spherical cap of radius R3 gives an error or 0.02%. Even if the

area were ten times as large, the percentage difference in area due to bowing would be

0.2%, so that the bilayer bowing due to the Laplace pressure can be neglected.

4.4.3 Optimization of algorithms for determining contact an-

gles, bilayer areas, and tensions

There are various choices to make in the programming of the experimental approach

explained above. One of these is the choice between the maximal and tangent algorithms.

Another is the black/white threshold used prior to edge detection. To investigate the

effect of these differences on experimental data, a set of 30 side images taken concurrently

with 30 microscope images was analyzed. There was no significant variation over the

3 minute interval that the 60 images were taken. They were taken as a part of the

experiment in Figure 4.22 so the monolayer tensions are γL = 2.2 mN/m and γR =

3.4 mN/m.

Figure 4.19 shows the results of the maximal and tangent algorithms for determining
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the major and minor diameters as a function of the black/white threshold. It is not

possible to know the true minor and major diameter, so this serves to show the sensitivity

on the black/white threshold and the variability between pictures taken with the same

settings. For both views, these span a ~5% range for a ~90 µm diameter, so by choosing

a black/white threshold near the middle, it seems reasonable that the systemic error

may be ±3%. The random error is given by the standard deviation σ of the diameter

for the set of 60 images used. These σ values are of similar order (and are also relatively

small) so that they do not constitute an important difference between the algorithms. In

the absence of more compelling differences, we prefer the tangent algorithm because it

is logically more likely to be accurate, considering that the maximal algorithm probably

overestimates the area.

Figure 4.20 shows θL and θR for the same sequence of 60 images as a function of the

black/white threshold. It is expected that the θL,side = θL,bottom and θR,side = θR,bottom

from the spatial constancy of γL, γR, and γb. In the plot, these conditions hold for all

black/white thresholds for the tangent algorithm but not for the maximal algorithm.

Additionally, it is expected that θL 6= θR due to the differing monolayer tensions of

the two droplets. The tangent algorithm appears to do a better job at capturing the

difference in θL and θR in both views. Another benefit of the tangent algorithm is that

the standard deviation at each black/white threshold is lower, denoting a smaller random

error. Finally, the tangent algorithm is less sensitive to changes in the black/white

threshold. For all these reasons, the tangent algorithm is preferred for contact angle

measurements.

Another parameter that was varied is the height at which droplet images are cropped

before fitting their profile. This follows from the simulation results in Figure 4.12. The

tops of the drop images were cropped off to avoid fitting a region whose shape is distorted

by contact with the electrode as explained in Section 4.3.2. This was parametrized as
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Figure 4.19: Comparison of maximal algorithm and tangent algorithm for computing
bilayer interface diameter for microscope (top) and side camera (bottom) images.
In every case, computed diameters for a group of 30 images are plotted against the
black/white threshold used for edge detection in image processing. Note that the
tangent algorithm has a greater dependence on the black/white threshold. The height
of the error bars in black is double the standard deviation of each 30-image set.
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Figure 4.20: Comparison of maximal algorithm and tangent algorithm for computing
left (θL) and right (θR) contact angles for microscope (top) and side camera (bottom)
images. In every case, computed angles for a group of 30 images are plotted against the
black/white threshold used for edge detection in image processing. Notice that that
tangent algorithm is less sensitive to the black/white threshold, and also has a much
smaller variation between measurements (as in Figure 4.19, the height of the error
bars in black is double the standard deviation of each 30-image set.). Additionally,
the tangent algorithm does a better job at capturing a difference between left and
right contact angles in both cases. Note: the black/white threshold was varied only
in increments of 0.05 and the data was offset horizontally as a visual aid.
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Figure 4.21: Demonstration that the measured tension in a DIB experiment with
PMOXA13-b-PDMS47-b-PMOXA13 in hexadecane is less sensitive to crop width than
predicted by simulation in Figure 4.12. The tension is near 3.4 mN/m for the left
droplet and is near 2.2 mN/m for the right droplet. The data is taken from between
t = 53 and t = 57 minutes in Figure 4.22, where 40 side view images were taken; the
number of images successfully processed was between 27 and 35 depending on crop
width.

the crop width, the width of a droplet at which the droplet is cropped, as explained

previously. The cropping was performed using a Matlab script that determined the

droplet or electrode width at every row of pixels. The image processing was similar to

that used for determining contact angles, using a black/white threshold and a Canny edge

detector as the first step. The profile was smoothed with a nonlinear Matlab function

which removed abrupt outlier points12. Then, beginning from the top of the image and

moving downward, the first row with a width equal to the crop width was used as the

cropping point for the image.

Figure 4.21 shows the how the random error for experimental tension measurements

depends on crop width for symmetrized droplets for the experiment in Figure 4.22. A

set of 40 side view images were taken, but number of images successfully processed was

between 27 and 35 depending on crop width. The failures in processing were usually

12The setting “rloess” was used in the “smooth” command with a span of 0.02. The abrupt outlier
points that needed to be removed were occasional dark pixels away from the droplets that fell below the
black/white threshold.
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due to bad initial guesses by Pendant Drop, which caused the fits to converge to a local

optimum far from the global optimum. Surprisingly, all mean tension values are within

5% of each other for crop widths ranging from 100 to 400 µm; this is much smaller than

for the simulations in Figure 4.12, suggesting that the simulated errors were artifacts of

the simulation method.

Additionally, the variation between measurements at the same crop width is more

pronounced at crop widths 200 µm, 300 µm, and 400 µm compared to the simulation

results in Figure 4.12. Here the standard deviation is around 2-5% of the mean value. The

reason for this was already explained in Section 4.3.2: the droplet tops are the richest

in information, so cropping off more of them will introduce more random variation.

The lower resolution of these images relative to the simulations exacerbates this effect.

However, the quality of fits from Pendant Drop to both single and symmetrized droplets

was generally good: in most cases, the RMS error between the fit line and the detected

edge was less than 1 pixel. That the symmetrized droplets could be fit by a physically

accurate profile is further evidence that the symmetrization algorithm gives accurate

tension values for DIBs.
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4.5 Results for real-time determination of tensions

Figure 4.22 shows the monolayer and bilayer tension traces for a carefully performed

DIB experiment using shrunk droplets of aqueous PMOXA13-b-PDMS47-b-PMOXA13

solution in a hexadecane bath. The bilayer tension was calculated via γb = γL cos θL +

γR cos θR with all quantities computed automatically as described in the previous sec-

tions. After an initial period of compressing the droplets to grow the bilayer area, the

electrodes were separated to the location where the droplet bottoms were centered below

the electrode contact points. Throughout the experiment, the electrode positions were

manually adjusted in both relative height and separation to make the bilayer plane ap-

pear fully upright (i.e. aligned with the direction of gravity) from the side view. Without

these adjustments, the bilayer continued to tilt away from the direction of gravity while

one of the droplets climbed up its wire more than the other. Figure 4.23 shows the same

experiment performed in two more trials, and time-averaged quantities corresponding to

the three trials are tabulated in Table 4.3.

Considering the lack of equilibration of the contact angle, the use of γb = γL cos θL +

γR cos θR requires justification. Because the droplets were pushed into hard contact and

then separated, the contact angles are brought closer to their equilibrium values, as

demonstrated in Figure 4.7. The standard deviations of the contact angles in Table 4.4

show that the contact angle did not change much over the 60 minutes of data in Trial 1.

This suggests that the contact angle is near equilibrium. Additionally, later in the same

experiment (data not shown), the electrodes were separated slightly to increase the con-

tact angles by an average of 3°. At this contact angle the bilayer area was observed to

slowly decrease, which gives a definite upper bound on the equilibrium angles. Compar-

ing e.g. cos 21° to cos 18° gives an error of about 2%, so that the errors arising from being

out of equilibrium are small.
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Figure 4.22: Monolayer and bilayer traces with representative images of the three
stages in the experiment: before contact, during compression, and during contact.
t = 0 is the time of contact and the shaded gray region denotes the time during which
compression was high. Bilayer tension was calculated via γb = γL cos θL + γR cos θR.
All monolayer tensions for times t > 0 are deduced by using the symmetrization
procedure prior to pendant drop fits. The height of the error bars represent twice
the standard deviation for sets of 10 side and bottom view pictures taken together.
This gives an idea of the random variation in the measurement. Standard deviations
include variations in angles and tensions, which were computed under the assumption
that all variations are statistically independent. Note error bars that are barely visible
for a set of 10 side view images taken near t = −25 mins. Also note that the monolayer
of the right droplet is in contact with the agarose during the gray shaded region (top
middle image), leading to a rise in the monolayer tension after contact.
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Figure 4.23: Monolayer and bilayer traces for two additional trials. As in Figure 4.22,
t > 0 signifies contact and the gray region signifies high compression. The gray region
includes t < 0 only to accommodate the plot marker size for aesthetic purposes. In
Trial 3, the left droplet had not reached the expected monolayer tension given by
Equation (4.2) prior to t = 0. Thus the difference between its post-contact and
pre-contact monolayer tension is about twice as large as that of any of the other 5
droplets in Trials 1-3 whether by absolute or percentage rise. Gaps in data represent
times when data was not taken or when automated analysis failed.
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VL VR γL,t<0 γL,t>0 γR,t<0 γR,t>0 γb C

Trial 1
185 105 3.41 3.44 1.95 2.24 5.36 0.207

(0.05) (0.12) (0.05) (0.08) (0.11) (0.003)

Trial 2
120 60 2.41 2.42 1.25 1.33 3.56 0.194

(0.02) (0.04) (0.02) (0.07) (0.03) (0.001)

Trial 3
145 205 1.93* 2.41* 3.52 3.81 5.92* 0.227

(0.03) (0.11) (0.03) (0.16) (0.08) (0.007)

Table 4.3: Results of the three trials of experiments performed on aqueous
PMOXA13-b-PDMS47-b-PMOXA13 in hexadecane. L and R denote the left and right
droplet for each variable. With the exception of asterisked values, all values except vol-
umes are averages performed over all times visible in Figures 4.22 and 4.23 excluding
the grayed region. The corresponding standard deviations are given in parentheses.
For asterisked values, only |t| < 10 mins was used. V denotes volumes in nL, γ
denotes tensions in mN/m, and C denotes the specific capacitance in µF/cm2. For
monolayer tensions γL and γR, t < 0 denotes pre-contact tensions while t > 0 denotes
post contact tension based on the image symmetrization procedure. Volumes are dis-
pensed volumes Vd calculated as in Section 4.2.1. Additional geometric quantities are
provided in Table 4.4.

For the five droplets whose tension plateaued prior to contact, the average monolayer

tensions after contact are within 15% of those before contact. After contact, monolayer

tension can change if the area per molecule in the monolayer increases or decreases.

Assuming no leakage of polymer from the monolayers, this occurs both because the

growth of the bilayer changes the monolayer area and because the bilayer can only take

up molecules from the monolayer. Thus, the relevant parameters are the bilayer area and

the area per molecule in the bilayer. Because it is expected that the area per molecule

in the bilayer is either the same or not too different from the monolayer, and because

the bilayer area is small in these experiments, it is expected that the monolayer tensions

should not be significantly altered by the growth of the bilayer.

A look at the images during the initial hard contact period for Trial 1 shows that the

monolayer of the right droplet was clearly in contact with the agarose for approximately

5 minutes. This is evident in the kink in the right droplet in the top center image in
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θL,bot θL,side θR,bot θR,side dminor dmajor

Trial 1
16.6° 17.0° 19.0° 19.5° 85.5 87.1

(0.2°) (0.2°) (0.4°) (0.2°) (0.7) (0.4)

Trial 2
16.3° 16.1° 20.2° 19.3° 71.4 71.8

(0.4°) (0.2°) (0.9°) (0.5°) (1.3) (1.5)

Trial 3
15.7° 16.8° 14.7° 14.8° 78.7 83.0

(0.1°) (0.4°) (0.2°) (0.4°) (1.0) (1.4)

Table 4.4: Additional geometric quantities for Table 4.3. Left and right contact angles
θL and θR are each deduced from four measured angles, two angles from each view.
The tangent algorithm was used to compute all values as described in Section 4.4.

Figure 4.22. This accounts for some of the 15% increase in γR after contact. A careful

look at images during the initial hard contact period for Trial 3 is less conclusive; the

monolayer of the right droplet is close to the agarose but the droplet is not kinked, so

that they may or may not be in contact. If they are in contact, it could account for the

8% increase in γR after contact.

All droplets except for the left droplet in Trial 3 were plotted in Figure 4.413. The

left droplet in Trial 3 was excluded from the plot only because its tension had not yet

plateaued prior to contact due to contact with the agarose. The expected tension due to

Equation (4.2) is 2.55 mN/m while the actual tension was 1.93 mN/m, far greater than

the ~5-10% discrepancy for the plateaued droplets as shown in Figure 4.4. Thus, it is

expected that the rise in tension after contact would be larger than any of the other 5

droplets. This was indeed the case: the tension increased by 25% to 2.41 mN/m, which

is near the predicted value of 2.55 mN/m. These observations justify the usefulness and

validity of the symmetrization procedure; large changes in monolayer tension measured

after contact are not due to artifacts of the symmetrization algorithm; rather, they arise

from real physical changes in the system.

13Additionally, both the droplets in Trials 1 and 2 are plotted in Figure 4.3.
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The specific capacitance measurements in Table 4.4 each have relatively small random

errors, with standard deviations less than about 3% of the total. On the other hand,

the variation among the specific capacitance determined in different trials is 17%. This

suggests that either the specific capacitance can take different values depending on the

experimental parameters or that there is a systemic error in the measurements. Without

more data we cannot distinguish which of these is the case. If it is the result of a

systemic error, the error may improve with the larger bilayer sizes and contact angles

that are typical of lipid DIBs.

Comparison with other systems

One benefit of this method is that it obviates the need for the use of a bilayer area

correction factor used by Taylor et al. [10]. They used Surface Evolver to compute

correction factors for the bilayer area because in their case only a measurement of the

minor diameter was available. In our case, the major diameter of the bilayer area can

be measured directly. The use of smaller and asymmetric droplets makes it difficult to

do a direct comparison to ellipticity factors predicted by Taylor, but a rough comparison

can still be made. They predicted an ellipticity of approximately 1.03 for a monolayer

tension of 2.5 mN/m and 300 nL droplets. The ellipticities in our experiments are 1.02,

1.01, and 1.05 for Trials 1, 2, and 3, respectively. Our ellipticities trend with average

volume: 90 nL in Trial 2, 145 nL in Trial 1, and 175 nL in Trial 3. The values here and

those predicted by Taylor et al. seem consistent with each other given the smaller size of

our droplets. While these correction factors are small, they become significantly larger

for larger droplets or lower interfacial tensions due to increased sagging.

Beltramo et al. [9] used a confocal microscope to determine the monolayer tension

of a painted bilayer. They determined the monolayer tensions based on the shape of

the solvent annulus using the Young-Laplace equation. However, their method requires
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horizontal sectioning with a confocal microscope, so that the time for of each tension

measurement is greater than 20 seconds. Our measurement time is only limited by the

frame rate of the cameras we use. Additionally, they use a custom-made aperture with

equipment that is more specialized than ours. Our method features the other benefits of

DIBs, which includes the ability to make asymmetric bilayers. Still, there are trade-offs:

their method provides for more accurate determination of bilayer area as well as a simple

control over monolayer tension even for Gibbs monolayers.

In contrast to the oil-phase block copolymer DIBs in Tamadonni et al. [146], our

system allows for asymmetric bilayers due to the inclusion of block copolymers in the

aqueous phase. Additionally, while their monolayer and bilayer tensions are fixed by

properties of the block copolymer solution, in our system, droplets of any arbitrary

monolayer tension can be dispensed. This in turn determines the bilayer tension. This

results from the insoluble characteristic of monolayers formed by our aqueous polymer

solution as described earlier in the chapter.

Until now, the methods for determining monolayer and bilayer tension in DIBs in the

literature [8, 10, 146] have used the Young-Lippmann equation (Equation (2.11)), which

fails in the present case. In the cases where the Young-Lippmann equation may be used,

measurements must be performed at different voltages, between which one must wait

for the system to reach equilibrium. Additionally, it cannot be used for large voltages

due to deviations from the Young-Lippmann equation. On the other hand, the droplet

shape analysis used here works in real time and individually at any voltage. Because we

used a triblock copolymer which does not readily achieve equilibrium, we expect that the

quality of results will improve if this method is used for phospholipid DIBs.
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4.6 Conclusions and future research

In this chapter, there were two main results. The first was that compressed Lang-

muir monolayers of PMOXA13-b-PDMS47-b-PMOXA13 can be used to form a bilayer.

The monolayer and bilayer tension have been decoupled from other system properties,

allowing for deeper understanding of the membrane-protein interaction or of other mem-

brane physical properties [9]. The dispersion of the polymer in the aqueous phase allows

this method to generate asymmetric bilayers which can serve as more accurate models

of cell membranes. The second main result was that droplet shape analysis can be used

to determine monolayer and bilayer tensions in real time. The method is preferable to

other methods for its ability to determine monolayer and bilayer tensions independent

of applied voltage. The monolayer tension can be determined both prior to contact and

during contact even if the bilayer is out of equilibrium. The use of the second camera also

allows for more accurate bilayer area measurements. Additionally, the independent mea-

surement of the monolayer tension of each droplet makes it better suited for asymmetric

bilayers than the approach of Taylor et al.

Now that the system has been established and validated, the original goal of de-

termining how bilayer tension and thickness affect MspA behavior can be addressed.

The system could be used as is, or various improvements can be made. For example,

control over the tension of compressed monolayers could be achieved by controlling the

dispensed volume by an automated, precision system. The use of a side camera with a

telecentric lens along with better lighting would improve the accuracy of droplet profiles

and monolayer tension measurements. More broadly, droplet shape analysis is well-suited

for characterizing the properties of different amphiphiles.

The work reported here leads naturally to more questions. Specifically, as applies

to the triblock copolymer we used: is the leakage rate of triblock copolymer out of
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compressed monolayers truly zero, or is it finite? This has implications for the long-term

stability of devices made using compressed monolayers of our triblock copolymer. Also,

what is the lowest tension that can be achieved without leakage of polymer out of the

monolayer? How do the kinetics of adsorption of this triblock copolymer change when

it is dissolved in the oil phase? In that case, would the polymer continue to behave as

a Langmuir monolayer, or would the presence of aggregates in the oil phase increase the

kinetics of both adsorption and desorption? How do asymmetric bilayers of the same

triblock copolymer compare to asymmetric bilayers made of two different amphiphiles?

There are other questions that are raised for Gibbs monolayers. For example, consid-

ering the slow kinetics of bilayer area change in our polymer, what is the mechanism of

growth for phospholipid DIBs? The microfluidic DIB method of Funakoshi et al. [45] is

ideally suited for this experiment. Their setup makes it straightforward to form a packed

monolayer using a phospholipid-oil solution and then to replace it with phospholipid-free

oil prior to bilayer formation. If the bilayer formation rate depends on the presence of

phospholipid in oil, this would show that the bilayer growth mechanism relies on phos-

pholipid exchange with aggregates. Another question is whether contact with agarose

affects phospholipid DIBs.

For real-time measurements of monolayer tension, the accuracy remains a question.

While the simulation results suggest that the accuracy is ~5-10%, they are not ideal,

considering the requirement to freeze parts of the simulation mesh and the ~5% error

in tension when fitting the profiles of simulated single droplets. An alternative way to

determine the accuracy of the method is to perform experiments on phospholipid DIBs

with known properties. The method of Taylor et al. could also be used to determine

monolayer and bilayer tensions in situ. Here the use of a new system using compressed

monolayers made it difficult to assess the validity of real-time measurements of monolayer

tension measurements. Some of these investigations are under way.
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Appendix A

Analysis of DLS data

A.1 The relative number of small aggregates in poly-

mer vesicles solutions made by ethanol injection

The intensity of scattered light due to spherical shells such as vesicles that have an

index of refraction near that of water is given by [149]:

I(r) = α

[
4πt

(
r − t

2

)2
]2

×

 3

q3r3
[
1− (r−t)3

r3

] [sin(qr)− sin(q[r − t]) + q(r − t) cos(q[r − t])− qr cos(qr)]

2

(A.1)

where α is a constant, r is the shell radius, t is the shell thickness, and q is scattering

vector. The scattering vector is q = 4πn sin ( θ
2
)/λ where n is the index of refraction of

the buffer solution (n = 1.344 for 1M KCl [150]), θ is the detection angle (173° for the

Zetasizer, which detects backscattered light) and λ is the wavelength of light (632.8 nm
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for the Zetasizer). The first term is the square of the volume of the vesicles, while the

second term is the square of the form factor. Notably, the intensity oscillates in intensity

when diameter is varied, with the first two minima near r = 0 and r = 120 nm for our

experimental parameters.

Due to the complexity of this function, finding the relative number of small and large

aggregates from the intensity distributions determined by DLS requires an involved cal-

culation [149] that we do not attempt here. Instead we estimate the relative number of

aggregates from the relative intensities of the intensity peaks as follows. First we assume

a mean value and standard deviation for the number probability distributions Nsmall(r)

and Nlarge(r) for small and large aggregates, which are approximated as normal distribu-

tions. Then we compute a weighted integral of each N(r) with I(r) in Equation (A.1)

to provide the total intensities Ismall and Ilarge. Because Nsmall(r) and Nlarge(r) are prob-

ability distributions normalized to 1, the ratio Ilarge/Ismall also gives the relative number

of small and large aggregates if the intensities Ilarge and Ismall were to be equal.

One source of uncertainty with this estimate is that number probability distributions

are unknown. However, the number distributions are likely to be bounded by the intensity

probability distribution on the one hand, and by the number distribution deduced by

the Zetasizer assuming solid spheres on the other hand. Using these ranges gives that

there are ~50 to ~2000 times more small aggregates than large aggregates in ethanol-

injected solutions. By weighting this with the volume of the shells, this means there are

between 1.5 and 10 times as much polymer in the small aggregates compared to the large

aggregates. Another source of uncertainty is that the small aggregates are micelles (as

explained in Chapter 4) whose optical intensities differ from small vesicles.
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