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Abstract 

Cardiac fibrosis is a serious condition currently lacking effective treatments. It occurs as a result 

of cardiac fibroblast activation and differentiation into myofibroblasts, characterized by 

proliferation, extracellular matrix production and stiffening, and contraction due to the 

expression of smooth muscle α-actin. The mechanical properties of myocardium change 

regionally and over time after myocardial infarction. Although mechanical cues are known to 

activate cardiac fibroblasts, it is unclear which specific mechanical stimuli regulate which 

specific phenotypic trait; thus we investigated these relationships using three in-vitro models of 

cardiac fibroblast mechanical activation and found that: 1) Paracrine signaling from stretched 

cardiomyocytes induces cardiac fibroblast proliferation under mechanical conditions similar to 

those of the infarct border region; 2) Direct stretch of cardiac fibroblasts mimicking the 

mechanical environment of the infarct region induces a synthetic phenotype with elevated 

extracellular matrix production; 3) Progressive matrix stiffening, modeling the mechanical 

effects of infarct scar maturation, causes smooth muscle α-actin fiber formation, upregulation of 

collagen I and downregulation of collagen III. These findings suggest that myocyte stretch, 

fibroblast stretch and matrix stiffening following myocardial infarction may separately regulate 

different pro-fibrotic traits of activated cardiac fibroblasts. 
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Introduction  

Cardiac fibroblasts (CFB) are responsible for maintaining extracellular matrix (ECM) 

composition and organization in the heart wall. They are central mediators of the fibrosis that 

develops in many forms of cardiac disease, notably myocardial infarction (MI). In response to 

injury, the CFB becomes activated and acquires a pro-fibrotic phenotype commonly referred to 

as a myofibroblast (Hinz, 2007), characterized by proliferative activity, excessive ECM 

production and contractile function due to expression of smooth muscle α-actin (SMA). 

However, it is becoming increasingly clear that activated CFB display multiple overlapping 

phenotypes depending on their spatial location and the stage of fibrosis (Tomasek et al., 2002; 

Hinz, 2007; van Putten et al., 2016). It has been established that the altered mechanical 

properties of the myocardium associated with cardiac diseases activate CFB (van Putten et al., 

2016). However, similar to the heterogeneity of CFB phenotypes, the mechanical alterations 

occurring in and adjacent to the infarct are regionally variable and change during the acute and 

chronic phases of infarction and post-infarct remodeling. Therefore, teasing out which 

mechanical cues regulate specific phenotypic traits may identify novel targets that could prevent 

the adverse progression of cardiac fibrosis.  

CFB mechanosensitivity is demonstrated by their rapid transformation to a pro-fibrotic 

myofibroblast phenotype when they are grown on plastic tissue culture dishes or 

polydimethylsiloxane (PDMS) membranes used to impose stretch; these materials have 

stiffnesses five and three orders of magnitude, respectively, greater than that of cardiac muscle 

(Berry et al., 2006; Engler et al., 2008). This may explain conflicting reports of both increased 

and decreased myofibroblast differentiation in response to mechanical stress (Wang et al., 2003; 

Papakrivopoulou et al., 2004; Husse et al., 2007; Waxman et al., 2012; Guo et al., 2013). Thus, 

development of cell culture models that better imitate the in-vivo mechanical environment and 

the changes post-infarction are needed (Spinale et al., 2016). The use of hydrogels to manipulate 

culture substrate stiffness has helped in-vitro research on fibroblasts function (Yeung et al., 

2005; Goffin et al., 2006; Li et al., 2007; Kloxin et al., 2010; Olsen et al., 2011; Liu et al., 

2015), but few studies have investigated the interplay of mechanical stimuli, especially in the 

context of CFB phenotype plasticity. Thus, all of the experiments here were performed on soft 

gels with physiological stiffness in an attempt to discriminate the differential effects of substrate 

stiffness and other applied mechanical stimuli, e.g. biaxial stretch.  

To formulate hypotheses for which mechanical forces drive specific CFB responses, it is 

important to understand the course of events triggered by MI, which roughly equate to acute scar 

formation and chronic scar remodeling. In the healthy heart, quiescent CFB are probably at least 

partially protected against large changes in mechanical stress by their physical integration in the 

structurally stable ECM network. During acute MI, cardiomyocytes (CM) in the ischemic 

myocardium rapidly cease generating active tension, while contraction of the surrounding 

functional myocardium gives rise to a functional border zone of perfused and viable tissue that is 

nonetheless dyskinetic or hypokinetic (Mazhari et al., 2000). The border zone is also associated 

with CFB proliferation and fibrosis (Virag and Murry, 2003), although the exact mechanism by 

which fibrosis occurs is unclear; CFB may also be less protected from increased mechanical 

stress owing to rapid degradation and acute loss of native ECM stiffness. This scenario likely 

creates excessive stretch during systole, causing CFBs to acquire a synthetic phenotype 

producing matricellular proteins, structural ECM proteins, and inducing collagen cross-linking 
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that increases myocardial stiffness (Lopez et al., 2012). In later stages of scar remodeling, CFB 

differentiation into contractile myofibroblasts and ECM maturation cause scar shrinkage. In the 

normal adaptive response to scar healing, myofibroblasts undergo apoptosis as ECM tension of 

the scar is restored and takes over the mechanical load. In conditions where mechanical load 

continues to be elevated such as in the left ventricles of patients with chronic hypertension, 

persistent myofibroblast activity and progression of myocardial fibrosis is observed (Creemers 

and Pinto, 2011). The objective of this study was to investigate the distinct effects and relative 

contributions of different mechanical stimuli on CFB pro-fibrotic phenotypes. For that, we 

developed three in-vitro models that mimic the mechanical cues of MI. Based on known regional 

and temporal CFB responses, we hypothesized that: 1) Paracrine signaling from stretched CM 

induces CFB proliferation; 2) Direct stretch of CFB induces ECM production; and 3) Matrix 

stiffening promotes a contractile myofibroblast phenotype.  

 

Results 

Matrix stiffness affects cardiac fibroblast phenotype and function 

To determine the matrix stiffness required for maintaining a quiescent phenotype in-vitro, CFB 

were grown on hyaluronic acid (HA) gels with stiffnesses corresponding to the range of intact 

myocardial tissue. CFB grown on HA gels with a Young’s elastic modulus of 3kPa had low or 

no expression of the myofibroblast marker SMA (Figure 1A). A substrate stiffness of 8kPa, 

comparable to that of healthy myocardium (Berry et al., 2006; Engler et al., 2008), was sufficient 

for formation of SMA fibers. CFB displayed prominent SMA fibers on 50kPa HA gels 

corresponding to the myofibroblast phenotype observed in fibrotic myocardium which has a 

stiffness of 20-100kPa (Berry et al., 2006; Engler et al., 2008). Focal adhesion size and location, 

as determined from vinculin staining, were altered according to substrate stiffness, transitioning 

from small peripheral adhesions on 3kPa substrates to large “super mature” focal adhesion 

structures that were evenly distributed throughout the cell membrane on 50kPa substrates (Figure 

1B). Although adhesion changes were more continuous, CFB area was markedly higher at and 

above 8kPa than for 3kPa HA gels (Figure 1C). Proliferation rate was similar for all stiffnesses 

(Figure 1D). We observed local the lowest mRNA expression for extracellular matrix 

remodeling genes in CFB on 8kPa HA gels (Figure 1E), with the notable exception of 

thrombospondin 1 (THBS1). These data indicated that culturing CFB on HA gels with stiffness 

of 3 and 8kPa maintained the quiescent phenotype, thus these stiffnesses were used in the 

subsequent in-vitro assays. Since we also used polyacrylamide (PA) gels in this study, 

phenotyping experiments for SMA fiber incorporation and proliferation were repeated for CFB 

on PA gels and showed no significant difference to HA gels (Supplementary Figure 1).  

Paracrine signaling from stretched cardiomyocytes induces proliferation of cardiac 

fibroblasts  

CM and CFB were first cultured on separate substrates with common culture media (Figure 2A) 

to assess paracrine communication during CM stretch. CM were subjected to non-equibiaxial 

biaxial (14% longitudinal, 3.6% transverse) static stretch using a custom device  mimicking 

strains in the border region post-MI in-vivo (Camelliti et al., 2006). Proliferation of the non-

stretched CFB markedly increased in the presence of CM and was further enhanced by their 

stretch (Figure 2B). Whereas CM stretch was necessary to induce proliferation of grown on 8kPa 

substrates, CFB on 3kPa substrates also responded to paracrine signaling from non-stretched CM 
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(Supplementary Figure 2A), indicating enhanced sensitivity of CFBs to paracrine signals. CFB 

proliferation rates were similar on 3 and 8kPa substrates when cultured with stretched CM, 

suggesting that responses to stretch-induced paracrine signaling are independent of substrate 

stiffness. The effect on CFB proliferation was not significant when CFB were treated with 

conditioned media from stretched CM, i.e. without the co-culture device, possibly indicating that 

paracrine mediators have short half-lives (Figure 2C). A co-culture media screen indicated 

significant presence of a subset of cytokines, (Supplementary Figure 2B) and among these, 

mRNA of CSF-1 and platelet-derived growth factor B (PDGF-B), a growth factor known to 

induce proliferation of mesenchymal cells (Antoniades et al., 1979) were upregulated in 

stretched CM (Figure 2D). Although fibroblast growth factor 2 (FGF2) mRNA increased with 

24h stretch, it was reduced at the earlier time point, suggesting that this factor is not the initiator 

of CFB proliferation. Stimulation of CFB on 8kPa substrates with recombinant CSF-1 or PDGF-

B induced CFB proliferation, and this response was enhanced by co-stimulation with both factors 

(Figure 2E). Finally, treatment with PDGF-B (AG-1295) and CSF-1 (GW-2580) receptor 

antagonists prevented the increase in CFB proliferation observed in co-cultures with stretched 

CM, suggesting PDGF-B and CSF-1 to be central to the paracrine signaling induced by stretch. 

Treatment with antagonists also reduced the proliferative response of CFB on 8kPa PA gels 

(Figure 2F), indicating a basic level of PDGF-B and CSF-1 receptor activity. This effect was 

abolished when CFB were co-cultured with non-stretched CM. Despite effects on proliferation, 

paracrine signaling from stretched CM had no effect on SMA fiber formation or FN expression 

(Supplementary Figure 2C-E). There was a slight reduction in cell area (Figure 2G), possibly as 

a result of the increased proliferation or morphological changes such as enhanced cell 

protrusions (Figure 2H), which may reflect cell responses to chemotactic agents in the media. 

Overall, these data are suggestive of a direct effect of CM stretch on CFB proliferation via 

paracrine CSF-1 and PDGF-B signaling. 

Stretching cardiac fibroblasts on soft substrates induces SMA and ECM expression 
To stretch CFB grown on substrates of physiological relevant stiffness and thus maintained as 

inactivated quiescent fibroblasts, 3 and 8kPa PA gels were attached to PDMS membranes 

(Figure 3A) using a previously published protocol (Simmons et al., 2013). Static 3% or 6% 

equibiaxial stretch (corresponding to a 10% and 20% cell area change, respectively (Lee et al., 

1999) was applied using a custom circular stretch device (Camelliti et al., 2006). Although static 

stretch of the PA gels was sustained for 24h, cells returned to their original size well within the 

24h of applied stretch (Supplementary Figure 3). Nevertheless this static stretch induced massive 

upregulation of mRNA for collagen 1a1, collagen 1a2, collagen 3a1 and fibronectin (Figure 3B) 

and protein for fibronectin (Figure 3C). The effect was more prominent in CFB on 8kPa PA gels 

and independent of stretch amplitude. Other ECM remodeling genes were also altered by 3% 

stretch (Figure 3D) with tenascin C (TNC) being the only oppositely expressed gene between 

3kPa and 8kPa substrates. Stretch also induced opposing proliferation responses depending on 

substrate stiffness (Figure 3E).  

SMA mRNA levels were markedly substrate dependent with 300- and 8-fold increases for the 3 

and 8 kPa PA gels (Figure 3F). This was also reflected in immunostaining for SMA where SMA 

intensity was clearly increased in 3kPa CFB cultures after stretch, albeit not incorporated into 

fibers (Figure 3G). Although development of SMA fibers was not induced by stretch, cell 

morphology of 8kPa CFB cultures was altered by stretch displaying more elongated cells, 

suggesting that cells remodel and readjust cell size during the 24h static stretch.  



5 
 

Since vinculin staining (Figure 1) showed differences in focal adhesion size for CFB on 3 and 

8kPa substrates, we measured activation (by phosphorylation) of focal adhesion kinase (FAK).  

FAK was phosphorylated by 24h static stretch only in CFB on 8kPa suggesting active 

mechanotransduction by integrins (Figure 3H). 

TGFβ is the most well-known driver of myofibroblast differentiation (Biernacka et al., 2011), 

and mRNA levels were increased by stretch only in CFB on 3kPa PA gels (Supplementary 

Figure 4A). However, this was not accompanied by TGFβ activity 24h after static stretch 

(Supplementary Figure 4B) and TGFβ activity was reduced by stretch for CFB on 8kPa PA gels. 

TGFβ is known to regulate expression of the myofibroblast marker gene fibronectin extradomain 

A (EDA) which also was increased in CFB on 3kPa but reduced in CFB on 8kPa PA gels 

following stretch (Supplementary Figure 4C), supporting that EDA may be down-stream of 

TGFβ signaling and not independently regulated by stretch. Accompanying higher fibronectin 

protein staining (Supplementary Figure 4D), mRNA levels of αv, a fibronectin receptor and 

TGFβ-activing integrin, were higher in CFB on 3kPa compared to 8kPa substrates 

(Supplementary Figure 4E), suggesting that these CFB are more capable of activating TGFβ. 

Collectively, these data suggest an interplay between substrate stiffness and stretch to induce a 

synthetic phenotype, but in a limited set of niche conditions. 

 

Matrix stiffening from physiological to pathological stiffness induces upregulation of 

collagen I, downregulation of collagen III and smooth muscle α-actin fiber formation 

Since stretch effects depend on local stiffness, it is important to note that stiffness itself depends 

on ECM production and crosslinking, and this can increase during scar formation post-infarct. 

To determine how dynamic changes in stiffness could affect CFBs, cells where grown on soft (3 

or 8kPa) HA gels for 5 days before stiffening substrates to 30kPa (Figure 4A); Although this 

treatment is UV based, we did not observe p53 immunostaining and viability changes suggestive 

of cell damage (Supplementary Figure 5). To detect changes in SMA expression and fiber 

formation, HA gels were stiffened from 3kPa (where CFB have no SMA fibers) to 30kPa. 

Stiffening caused massive cell spreading, increased SMA intensity and SMA fiber formation 

(Figure 4B). Similar to CFB on 10kPa HA gels (see Figure 1A), SMA fibers were present at 

8kPa (Supplementary Figure 6A) and stiffening from 8 to 30kPa did not induce additional 

presence of SMA fibers or cell spreading. These data suggest that the threshold for SMA fiber 

formation in 2D cultures is somewhere in the range of >3kPa to <8kPa. TGFβ and EDA mRNA 

were unchanged after stiffening from 3 to 30kPa and 8 to 30kPa (Supplementary Figure 6B) 

indicating that the effect on SMA was a direct effect of stiffening and not downstream of TGFβ 

signaling. Stiffening from 8 to 30kPa increased collagen I but reduced collagen III mRNA as 

measured 24h after stiffening (Figure 4C), suggesting differential transcriptional regulation of 

these two genes. Although fibronectin mRNA expression was not was upregulated in CFB 24h 

after stiffening, immunofluorescent staining intensity of fibronectin protein was increased 48h 

after stiffening from 8 to 30kPa (Figure 4D). No change was observed for LOX mRNA (Figure 

4C) or activity (Supplementary Figure 6C), nor was there any change in other ECM proteins 

after stiffening from 8 to 30kPa (Supplementary Figure 6D). Interestingly, osteopontin mRNA 

was reduced following substrate stiffening from 8 to 30kPa (Figure 4C) even though this gene 

has previously been found to upregulated in response to mechanical stress (Herum et al., 2015). 

Proliferation was unchanged by stiffening from 8 to 30kPa (Supplementary Figure 6E). Taken 
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together, these data specifically imply that SMA expression and its assembly are affected by 

temporal changes in passive niche properties, e.g. stiffness. 

 

 

 

Discussion 

In these studies we found that: 1) Paracrine signaling from stretched CM induces proliferation of 

CFB, consistent with the high proliferative activity of fibroblasts in the functional border region 

after acute MI (Figure 5, point 1); 2) ECM production by CFB in response to stretch is dependent 

on matrix stiffness. This suggests a mechanism for differential regulation of ECM across the 

infarct and peri-infarct regions during the acute phase when ECM stiffness is decreased due to 

rapid degradation of ECM (Figure 5, point 2a), and the subsequent remodeling phase when ECM 

stiffness increases with the accumulation of newly synthesized ECM (Figure 5, point 2b); 3) 

Matrix stiffening induces massive cell spreading and SMA fiber formation as hypothesized. We 

also report the novel finding that substrate stiffening promotes collagen I but inhibits collagen III 

expression (Figure 5, point 3). This response imitates the late stages of infarct healing when 

ECM stiffening dominates the mechanical environment of the infarct scar. Figure 5 summarizes 

the results in the context of the mechanics of myocardium following MI.   

Matrix stiffness regulates fiber formation while stretch regulates expression of smooth 

muscle α-actin 

For the first time, we here show the effect of matrix stiffening on CFB phenotype, causing 

massive cell spreading and incorporation of SMA into stress fibers. This is in agreement with 

reports from other fibroblast-like cells, including hepatic stellate cells (Guvendiren et al., 2014; 

Caliari et al., 2016), mesenchymal stem cells  (Guvendiren and Burdick, 2012) and the NiH3T3 

fibroblast cell line (Ondeck and Engler, 2016). Although equibiaxial stretch also caused a 

dramatic increase in SMA mRNA, it did not promote SMA stress fiber formation, suggesting 

that substrate stiffness is the dominant determining mechanical factor for the assembly of SMA 

into fibers and subsequent contraction of the infarct scar. From a mechanical standpoint this is 

consistent with the cell tensegrity theory (Ingber, 2008). Interestingly, Cui and colleagues 

showed that cyclic stretch of CFB on soft gels did induce F-actin stress fibers even in the 

absence of matrix stiffening (Cui et al., 2015). Whether this also applied to SMA fiber formation 

was not studied. The massive upregulation of SMA mRNA in stretched CFB on 3kPa PA gels 

might partly be due to increased TGFβ signaling, since TGFβ and its target gene EDA also 

exhibited increased expression following stretch. This was not the case for CFB on 8kPa 

substrates suggesting a mechanotransduction pathway independent of TGFβ to account for this 

change, e.g. mechanotransduction via the transmembrane proteoglycan syndecan-4 has been 

shown to have such an effect (Herum et al., 2013).  

Mechanical cues regulate collagen differentially  

Essential for development of fibrosis is enhanced production of structural ECM proteins, with 

collagen amount and composition being of particular importance due to its central role in 

myocardial stiffening. Stretch (3%, 8kPa substrates) caused massive upregulation of collagen III 
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and fibronectin, thus confirming our previous results from CFB stretched on PDMS substrates 

(with an elastic modulus in the MPa range) (Lee et al., 1999). However, responses by CFB on 

soft substrates were 5- and 2.5-fold higher for collagen III and fibronectin, respectively, 

suggesting a more mechanosensitive CFB phenotype in this setting. Also, increasing stretch to 

6% did not reduce fibronectin mRNA as previously reported for standard PDMS membranes 

(Lee et al., 1999), again supporting different responses to stretch depending on substrate 

stiffness. Both stretch and substrate stiffening promoted collagen I expression, although the 

response was ten times higher for stretch in the case of col1a1. Interestingly and in contrast to 

stretch, collagen III was downregulated in response to stiffening. Mass spectrometry has 

provided insight about the ECM composition of infarct regions (Sullivan et al., 2014), indeed 

showing elevated collagen I and reduced collagen III levels in the mature scar compared to 

earlier stages of remodeling. Along these lines, collagen I and III ratio has been suggested to 

influence myocardial stiffness, with high collagen I:III ratio being associated with a less 

compliant ventricle (Mukherjee and Sen, 1990). Also other subtypes of collagens including non-

structural collagens have been associated with cardiovascular disease (Rasi et al., 2010; Luther et 

al., 2012; Skrbic et al., 2015). Determining the mechanoregulation and role of these less studied 

collagens may provide valuable information for evaluating their importance in different stages of 

cardiac fibrosis development.  

Collagen maturation is promoted by stretch 

Collagen cross-linking is emerging as an essential player in myocardial stiffening and diastolic 

dysfunction (Kasner et al., 2011; Lopez et al., 2012). mRNA for the collagen cross-linking 

enzyme LOX and its activator BMP1 were increased by stretch, but no change in LOX mRNA 

and activity were observed after matrix stiffening, suggesting the absence of a feed-forward loop 

involving further stiffening by enzymatic collagen cross-linking. In agreement, OPN and 

POSTN, which are known to induce LOX expression (Lopez et al., 2013; Herum et al., 2015) 

and increase collagen cross-linking (Maruhashi et al., 2010) were not upregulated by substrate 

stiffening. Thus stretch seems to be the mechanical trigger for enzymatic collagen cross-linking. 

Indeed LOX has been shown to become rapidly upregulated prior to myocardial stiffening in an 

experimental mouse model of left ventricular pressure overload (Herum et al., 2015). Cross-

linked collagen is less susceptible for degradation by the MMP enzymes. This, together with the 

increase in MMP endogenous inhibitors TIMP1 and 2 by CFB on 3kPa PA gels, supports that 

stretch promotes collagen maturation and ECM stabilization. 

The effect of stretch on matricellular gene expression is dependent on matrix stiffness 

Matricellular proteins such as OPN, POSTN, SPARC and THBS1 play important roles in post-

MI remodeling, and were upregulated by stretch when cells were cultured on 3kPa but not 8kPa 

PA gels. A stiffness of 3kPa likely reflects the ECM stiffness in the early phase after an infarct 

where a sudden increase in MMP activity (Takahashi et al., 1990) leads to degradation of 

collagen and thus decreases myocardial stiffness. Indeed, results from experimental animal 

models of MI and left ventricular pressure overload generally show a rapid increase of OPN, 

POSTN and SPARC at early stages and a somewhat decline at later stages of ECM remodeling 

(Schellings et al., 2009; Sullivan et al., 2014; Herum et al., 2015). As new ECM accumulates 

and remodeling of the infarct progresses, myocardial stiffness will gradually increase. Reflecting 

the mechanical environment of this stage of remodeling, osteopontin mRNA was reduced with 

stretch of CFB on 8kPa PA gels. Interestingly, cardiac MMPs have recently been found to cleave 

OPN resulting in OPN fragments with distinct biological functions that are associated with 
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fibrosis (Lindsey et al., 2015). Thus, a stiffness resembling the healthy myocardium or later 

stages of post-MI remodeling may exert a negative feedback effect on fibrosis development.  

 

Possible mechanisms for stiffness-specific stretch responses 

Although mechanical activation of FAK has been studied extensively (Parsons, 2003; Wong et 

al., 2012), we here show that stretch-induced activation is stiffness-dependent and could 

therefore be involved in the stiffness-specific response of CFB to stretch. Indeed, stiffness has 

been shown to be a regulator of FAK activity (Carraher and Schwarzbauer, 2013) and required 

for nuclear translocation of the transcriptional cofactor four-and-a-half LIM domains 2 (FHL2) 

which controls cell proliferation by modulating p21 gene expression (Nakazawa et al., 2016). 

This is in agreement with the stiffness-dependent inhibition of proliferation observed along with 

FAK activation. FAK is activated by integrins in response to mechanical stress, and signals 

downstream to activate mitogen-activated protein kinases (MAPK) signaling (Hynes, 2002), 

known to induce myofibroblast differentiation and ECM production (Davis and Molkentin, 2014; 

Lighthouse and Small, 2016; Molkentin et al., 2017), and inhibition of FAK was recently 

successfully used to prevent fibrosis after myocardial infarction (Zhang et al., 2017). Thus, 

inhibition of FAK may hold therapeutic potential for treatment of cardiac fibrosis and it is 

therefore important to understand which mechanical cues regulate its activity in cardiac 

fibroblasts. Although we did not see increased TGFβ activity in CFB on 3kPa PA gels 24h after 

static stretch, there were other indications that TGFβ signaling was enriched only for CFB on 

3kPa substrates. Collectively, our data indicate that the stiffness of the ECM directly surrounding 

the CFB seems to influence which pro-fibrotic signaling mechanisms are activated by stretch.   

Matrix stiffness dictates the effect of stretch on TNC expression  

The matricellular protein TNC distinguished itself from the other matricellular proteins in that it 

exhibited regulation in opposite directions according to matrix stiffness, being downregulated on 

3 and upregulated on 8kPa PA gels in response to stretch. Interestingly, TNC expression post-MI 

is seen  in regions expected to have mechanical properties resembling the stiffer 8kPa PA gels 

including the viable border zone during acute MI and the central infarct zone during the chronic 

stages of remodeling where it is co-expressed and co-localized with fibronectin (Willems et al., 

1996). The different domains of TNC have distinct functions that manifest themselves according 

to the environment. TNC can disrupt CM adhesions at the CM costameres thereby facilitating 

tissue reorganization in the border region after MI (Imanaka-Yoshida et al., 2001), while 

promoting myofibroblast differentiation in the infarct region during the remodeling phase (Duerr 

et al., 2011). The differential TNC gene expression demonstrated here suggests a critical 

importance of matrix stiffness in determining the specific mechanosignaling pathways are 

engaged in response to stretch. 

Paracrine signaling from stretched cardiomyocytes induces cardiac fibroblast proliferation 

via PDGF and CSF-1 

The main effect of paracrine signaling from stretched CM was enhanced proliferation of CFB 

and this response was independent of substrate stiffness. This resembles the intense proliferative 

activity of fibroblasts present in the border zone and infiltrating the infarct region (Virag and 

Murry, 2003). Results from immunohistochemical studies and in-situ hybridization experiments 

suggest that stretched CM in the infarct border zone produce a variety of cytokines 
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(Gwechenberger et al., 1999) and chemokines (Tarzami et al., 2002). However, the identity and 

relative contribution of CM-derived inflammatory mediators for the pro-fibrotic response of CFB 

is poorly understood. We here identify PDGF-B and CSF-1 as factors upregulated in CM by 

stretch and capable of inducing the observed response on CFB proliferation. Whereas PDGF has 

been shown to be rapidly upregulated in the border zone (Zhao et al., 2011), and promote 

proliferation of rat atrial fibroblasts (Jiang et al., 2016), studies on the effect of CSF-1 on CFB 

are limited although it does regulate the survival, proliferation, and differentiation of 

mononuclear phagocytes (Chitu and Stanley, 2006) and can be expressed by cardiac cells 

(Hohensinner et al., 2007). Antagonists for PDGF-B and CSF-1 receptors could prevent the 

increase in proliferation of CFB induced by paracrine signaling from stretched CM, supporting a 

role for PDGF-B and CSF-1 in CM-induced proliferation.  

Limitations of the in vitro CFB models 

The static stretch is a model of a chronic hemodynamic overload such as an increase in 

ventricular volume, rather than the effects of phasic cardiac strains. Although cyclic stretching 

does more closely reflect the contraction cycle of the heart, in-vitro models do not recapitulate 

the frequencies of cyclic strain of the mouse heart (≈10Hz). Previously published work show that 

low frequency (0.1Hz) cyclic strain of CFB on soft substrates display greater SMA fiber 

formation (Cui et al., 2015). This would either suggest the sustainment of a mechanical memory 

as was recently demonstrated for microRNA-21 in mesenchymal stem cells (Li et al., 2017), or 

that the continuous cyclic stretch prevents cells from remodeling back to their original size, as 

we observed for 24h static stretch. The fact that we saw dramatic responses to static stretch that 

mimic the cardiac fibroblast responses observed after myocardial infarction in-vivo, supports that 

pathological remodeling is mainly driven by an increase in baseline stretch.   

Conclusion and future perspectives 

Antifibrotic therapies have failed owing to the pleiotropy of targets and difficulties of regional 

and temporal targeting of the post-infarcted myocardium. For instance, while blocking well-

known fibrotic pathways inhibits excessive fibrosis and diastolic dysfunction, cardiac rupture 

becomes more prevalent (Daskalopoulos et al., 2012; Hermans et al., 2016). Hence, it may be 

necessary to promote myofibroblast transformation in some regions and certain times (e.g. to 

stabilize ECM in the infarct zone at early stages of post-MI remodeling), while inhibiting their 

actions in other (e.g. preventing fibrosis in remote and border regions during the chronic stages 

of post-MI remodeling). Although many of our observations have been made in other cell types, 

this study provides new information about pro-fibrotic responses of cardiac fibroblasts to specific 

and distinct mechanical cues, which occur in-vivo in the complex mechanical milieu of post-

myocardial infarction remodeling. Further, our results suggest that the engaged 

mechanotransduction pathways are specific to particular mechanical cues. With these novel 

experimental tools and established CFB phenotypes in place, differential targeting of 

mechanosignaling pathways present at different stages and regions of fibrosis development, is an 

obtainable goal. These targets include components of the extracellular matrix itself, such as the 

family of proteoglycans of which accumulating data support a central role in cardiac 

mechanosignaling and differential expression patterns at different stages of fibrosis development 

(Melchior-Becker et al., 2011; Engebretsen et al., 2013; Lunde et al., 2016; Melleby et al., 

2016). Another approach that holds great promise is the combination of high sensitivity analyses 

of entire CFB transcriptomes and advanced systems biology computational models (McCulloch, 

2016; Zeigler et al., 2016) to draw connections between changes at the transcriptional level to 
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upstream signaling pathways as well as downstream phenotypic changes. In this way, established 

signaling pathways may prove to play previously unknown roles in mechanotransduction, and 

novel pro-fibrotic mechanosensitive signaling pathways may be identified.  

 

 

 

Materials and methods 

Isolation of adult cardiac fibroblasts 

CFB were isolated from adult CD1 male and female mice (Charles River Labs, San Diego, CA, 

USA) and all animal procedures followed the Guide for the Care and Use of Laboratory Animals 

(Eighth Edition) and were approved by UCSD Animal Subjects Committee 

(Protocol#S01013M). Mice were euthanized by cervical dislocation after initial anesthesia with 

“open drop” isoflurane. Hearts were excised, rinsed in Hank’s Balance Salt Solution (HBSS, 

Cat#14170-120, Gibco Life Technologies, Grand Island NY, USA) and the left ventricle cut into 

8 pieces. These were subjected to pre-digestion in 0.6mg/ml trypsin (Cat#22715, USB, 

Cleveland OH, USA) overnight at 4C. Hearts were further digested with 1mg/ml (330U/ml) 

collagenase type 2 (Cat#LS004176, Worthington Biochem, Lakewood, NJ, USA) for 10min at 

37C and mechanically dissolved by repeated pipetting. Cell solution was passed through a 

100µm cell strainer whereafter the collagenase was neutralized by adding Fibroblast media 

consisting of Dulbecco’s Modified Eagle’s Medium (DMEM; Cat# 11965-092, Gibco Life 

Technologies) supplemented with 10% fetal bovine serum (FBS; Cat#16000-044, Gibco Life 

Technologies) and 1% antibacterial/antimicrobial (Sigma, St.Louis, MO, USA). The cell solution 

was centrifuged at 200g for 4min, whereafter the supernatant was aspirated and the pellet 

resuspended in fibroblast media. The solution was then incubated in a T75 tissue culture flasks 

for 30min at 37ºC and 5% CO2 allowing fibroblasts to attach to the flask so that the supernatant 

containing CM and ECM debris could be removed. CFB were immediately trypsinized in 0.05% 

Trypsin-EDTA (Cat#25300-054, Gibco Life Technologies), counted and seeded onto PA or HA 

gels for further experiments.  

Isolation of neonatal cardiomyocytes 

Neonatal CD1 mouse pups (Protocol#S01013M, Charles River Labs) were euthanized by 

decapitation and hearts removed and rinsed in HBSS. Pre-digestion was performed with 

0.46mg/ml trypsin overnight and digestion with 0.7mg/ml collagenase type 2 for 7 min at 37C. 

Further digestion was done by repeated pipetting whereafter the cell solution was passed through 

a 100µm cell strainer. Collagenase was neutralized by adding Dark media consisting of 3:4 

DMEM, 1:4 M-199 (Cat#11150-059, Gibco Life Technologies) and supplemented with 1% 

HEPES (1M), 10% horse serum (Cat#DH-05, Omega Scientific, Tarzana, CA, USA), 5% FBS 

and 1% penicillin/streptomycin (Cat#30-00261, Corning, Manassas, VA, USA). The cell 

solution was centrifuged at 200g for 4min. After resuspending the pellet in dark medium, pre-

plating was performed by letting non-CM cells attach to T75 flasks for 1.5h at 37C and 5% 

CO2. The supernatant containing CM was collected, centrifuged for 4min at 200g and 

resuspended in 2ml Dark media. Cell number was determined using a Bürcher cell counter 

chamber by counting live cells after the addition of Trypan Blue (Cat#K940, VWR Amresco, 
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Solon, OH, USA). 700,000 CM were added to each cell stretcher membrane and incubated at 

37C and 5% CO2 for 3 days before stretch experiments were performed. For some control 

experiments 10μM AraC (Cytosine-B-D-arabino-furanoside hydrochloride; Cat#C6645, Sigma) 

was added on day 2 after isolation to prevent survival of “contaminating” CFB (Ehler et al., 

2013).  

Preparation of polyacrylamide gels 

PA gels were fabricated with Elastic Moduli E of 3.13 (3kPa) and 8.7kPa (8kPa) by adjusting the 

relative acrylamide and bis-acrylamide concentrations (Tse and Engler, 2010). 0.5% acrylic acid 

was added to enable subsequent collagen attachment. The photoinitiated cross-linker Irgacure 

2959 (Sigma) was dissolved in 100% ethanol to obtain a 10% solution which was then diluted to 

0.05% in the PA solution. PA solution was then sandwiched between a 12mm diameter coverslip 

that was UV-ozone activated and methacrylated to permit hydrogel binding, and a glass slide that 

was treated with dichlorodimethylsilane (DCDMS, Cat#430881000 Acros Organics, Geel, 

Belgium) to avoid adherence to the gel. To initiate gel polymerization, the hydrogel was 

subjected to UV light with a wavelength of 350nm for 5min using a transilluminator (4 

mW/cm2; UVP, Upland, CA, USA)  

 

PDMS membrane 

Two-part polydimethylsiloxane (PDMS, Cat#30097358-1004, Sylgard 186, Dow Corning, 

Midland, MI, USA) was mixed at a 10:1 ratio of base to curing agent according to the 

manufacturer's instructions. The mixture was then loaded into 10mL syringes with Luer-Lok 

stopcocks, and large air pockets were removed in an IEC Centra CL2 centrifuge at 2500rpm for 

3min. Seven mL of elastomer mix was then extruded onto either an unpatterned or a patterned 

(microgrooves of 10µm width, 5µm depth and spaced 10µm apart) silicon wafer in a spin coater. 

The spin coater was run at 650rpm for 30s for each wafer. All wafers were then placed in a 

vacuum chamber to degas in short cycles for 20-40min, or until all visible bubbles were gone. 

The wafers were then oven cured for 30min at 70ºC, and cooled at room temperature overnight. 

The membranes could then be peeled off the wafer and stored in a clean environment for up to 1 

year (Camelliti et al., 2006).  

 

Treatment of PDMS membranes with benzophenone in to allow polyacrylamide adherence 

In order to allow PA gel adherence to the PDMS surface, a previously described protocol 

(Simmons et al., 2013) was utilized. The silicone elastomer PDMS membranes were immersed 

in a solution of 10% benzophenone (Cat#A10739, Alfa Aesar) dissolved in a water/acetone 

mixture (35:65 w/w) for 1min. The membranes were then immediately rinsed with methanol and 

dried with a stream of nitrogen. Following benzophenone treatment, PA gel solution was 

prepared as described above, pipetted onto the surface of the membrane, covered with a 

DCDMS-treated 25mm coverslip and exposed to UV light (350nm) for 25min. Coverslips were 

removed and gels that successfully adhered to PDMS membranes were equilibrated in PBS 

overnight. 

 

Assembly and stretch of circular and elliptical stretch device 

Prior to coating with protein, PDMS membranes were assembled in circular (for CFB on PA gels 

on unpatterned PDMS stretch membranes) or elliptical (for CM on patterned PDMS stretch 

membranes) in-house built stretch devices (Camelliti et al., 2006). A perimeter of silicone grease 

was placed around the area intended for cell attachment and coated with either collagen I for 
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CFB cultures or laminin (10µg/ml, 10min UV exposure, Cat#L2020, Sigma) for CM cultures. 

After 3 days of cell culture, static stretch was applied for 24 and 48h by turning the screw top of 

each device to the extent corresponding to the desired amount of stretch. Stretch has previously 

been confirmed to transfer to cells cultured on PA gels attached to PDMS stretch membranes 

(Simmons et al., 2013). To determine whether cells return to their original size after stretch, cell 

area of 8 cardiac fibroblasts on PDMS stretch membranes was measured before stretch, 

immediately after stretch and 10, 20, 30 and 60 min after applying static stretch. Cell areas for 

non-stretched and stretched CFB on 3 and 8kPa PA gels were measured 24h after applying the 

static stretch. 

Interface co-culture device for studying paracrine signaling in combination with stretch 

To study the effect on paracrine signalling from stretched CM on CFB phenotype, we designed a 

co-culture device that allowed CFB on PA gels attached to coverslips to be inverted onto CM in 

the elliptical stretch device while preventing physical contact between cell cultures. The design 

allowed sufficient gas exchange, close proximity (1mm) between cell cultures to ensure 

maximum effect of paracrine signals, easy access to media, easy collection of CFB cultures after 

completion of the experiment and was made of a biocompatible inert material (polylactic acid, 

PLA). The device was manufactured by 3D-PLA printing. CM were stretched by rotating the 

screw-top 720°C, corresponding to a 14% longitudinal and 3.6% transverse stretch of the CM. 

CFB and media were collected after 24 or 48h co-culture.  

Production and stiffening of hyaluronic acid hydrogels 

HA was methacrylated and HA hydrogels synthesized according to the protocols described by 

the Burdick (Guvendiren et al., 2014) and Engler (Ondeck and Engler, 2016) groups. Sodium 

hyaluronate (50 kDa, Lifecore Biomedical, Chaska, MN, USA) was dissolved in de-ionized 

water overnight whereafter 20M methacrylate anhydride was added for an additional 12h, 

dialyzed against de-ionized water at 4°C for 3 days and lyophilized for an additional 3 days. 

Hydrogels were synthesized by dissolving methacrylated hyaluronic acid at 1% in PBS 

containing 0.2M triethanolamine (Sigma). HA hydrogel solution containing 0.02% Irgacure 2959 

was sandwiched between a 12mm diameter coverslip that was UV-ozone activated and 

methacrylated, and a DCDMS-treated glass slide. To induce gel polymerization, the hydrogel 

was subjected to UV light with a wavelength of 350nm for 0.5-2min using a transilluminator. 

HA hydrogels were stiffened by incubating 30min with 0.05% v/v Irgacure 2959 per 1ml cell 

media consisting of DMEM without phenol red (Cat#SH30284.01, GE Life Sciences, Logon, 

UT, USA) supplemented with 10% fetal bovine serum prior to 2min exposure to UV light 

(350nm). Cell cultures were immediately washed three times with cell media. Atomic Force 

microscopy (MFP-3D-Bio atomic force microscope, Asylum Research; Santa Barbara, CA) was 

used to determine hydrogel elastic modulus as previously described (Ondeck and Engler, 2016). 

To ensure that UV exposure was not detrimental to cells, live-dead stain (Cat#R37609, 

Molecular Probes, Eugene, OR, USA) and immunostaining for p53 was performed. 

Collagen attachment to PA and HA gels 

Collagen I from rat tail was attached by incubating PA gels with 20mM 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (ProteoChem, Hurricane, UT, USA), 50mM N-

hydroxysuccinimide (Alfa Aesar, Heysham, UK), and 100µg/ml type I rat tail collagen 

(Cat#354249, BD Biosciences, Bedford, MA, USA) dissolved in phosphate-buffered saline 

(PBS) overnight at 37ºC.  To fluorescently label collagen on the surface of the hydrogel to 



13 
 

compare amount of rat tail type I collagen binding to HA and PA hydrogel, a polyclonal rabbit 

type 1 collagen antibody (1:200, Novus Biological NBP1-30054) and 568 conjugated goat anti-

mouse secondary antibody (1:1000, Thermo A-10042) were used. Confocal cross-sections of 

hydrogels were taken and intensities were obtained using ImageJ (NIH) and plotted using 

Matlab. Collagen staining intensity was normalized to background and the maximum intensity 

was used to quantify relative collagen amount. Values were normalized to amount found on HA 

gels.  

 

Proliferation assay  
Proliferation was measured with the Click-iT® EdU imaging kit (Cat#C10337, Life 

Technologies, Grand Island, NY), according to the manufacturer’s instructions and imaged and 

analysed with the EVOS FL Auto fluorescence microscope (Cat#AMAFD1000, Life 

Technologies). Ten pictures were taken per gel at 10X magnification and EdU and DAPI 

positive nuclei were counted and represented as the fraction of proliferating cells per 24h. CFB 

were stimulated with 10ng/ml recombinant PDGF-B (Cat#558802, BioLegend, San Diego, CA), 

10ng/ml CSF-1 (Cat# 14-8983-62, Affymetrix, San Diego, CA) and their respective receptor 

blockers AG1295 (10µM, Cat#ab142375, Abcam, Cambridge, MA, USA) and GW2580 (5µM, 

Cat#SML1047, Sigma).  

Activity assay  

LOX and TGFβ activity was measured in the media of CFB cultures 24h after stiffening using a 

LOX activity assay (Cat#ab112139, Abcam) and TGFβ activity assay (Cat#437707, BioLegend, 

San Diego, CA, USA) according to the manufacturer’s instructions.  

Immunocytochemistry 

CFB were fixed in 4% paraformaldehyde, permeabilized in 0.1% Triton X (Sigma), quenched 

with 25mM glycin (Cat#646500, Fischer Scientific, Fair Lawn, NJ, USA), blocked in 5% goat 

serum (Cat#G6767, Sigma) in PBS for 20 min, and incubated at 4ºC overnight with primary 

antibodies toward SMA (1:200, mouse anti-mouse α-SMA, Cat#A5228, Sigma), fibronectin 

(1:200, rabbit anti-mouse fibronectin Cat#ab2413, Abcam), vinculin (1: 200, mouse anti vinculin 

Cat#V9131, Sigma) and p53 (1:200, rabbit anti-p53 Cat#sc6243, Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) in 2% goat serum in PBS. After washing three times 10min with PBS, 

secondary antibodies were added (1:1000 in 2% goat serum, AlexaFluor488 goat anti-mouse 

Cat#A11029, AlexaFuor700 goat anti-rabbit Cat#A21038, Molecular Probes). 633-Phalloidin (1: 

200 in PBS, 20min at room temperature, Cat#A22284, Molecular Probes) was used to stain F-

actin and DAPI used to stain nuclei. Coverslips with cells were mounted on microscope slides 

using SlowFade® Gold antifade reagent (Cat#S36940, Molecular Probes) and imaged and 

analysed with the EVOS FL Auto fluorescence microscope. Fibronectin was imaged with 20X 

magnification and the staining intensity was analysed using Image J (1.50f). Settings were kept 

constant for the same experiment (from a same date), time point and stiffness. The presence of 

SMA fibers was evaluated for at least ten micrographs per gel at 20X magnification. For some 

micrographs EdU proliferation assay and SMA staining were performed simultaneously at the 

same excitation and emission wavelength. Since EdU was restricted to the nucleus and SMA is 

located in the cytosol, these were easily distinguished during analysis. Cell area was measured by 

using brightness and contrast thresholds that clearly displayed the autofluorescence of the cell 
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cytoplasm and thus enabled automatic quantification of the area of the micrograph covered with 

cells. This area was then divided by the number of cell nuclei as determined by DAPI staining.  

RNA isolation, cDNA synthesis and real-time PCR 

RNA isolation was performed using the TRIzol method. First, 1mL of TRIzol (Cat#15596026, 

Ambion, Carlsbad, CA, USA) was added to each of the gels in order to lyse CFB. The cell lysate 

was then added to pre-spun Phase Lock Gel-Heavy tubes (Cat#2302830, 5 Prime GmbH, 

Hamburg, Germany), spun at 1500g for 30s and incubated for 5min at 22ºC. 0.2mL of 

chloroform was then added to each gel and shaken vigorously for 15s. The lysate/chloroform 

mixture was then centrifuged at 12,000g for 10min at 4ºC. Following this spin, there was a 

visible separation between the layers of solution with a clear aqueous layer entirely above the 

Phase Lock Gel. This aqueous layer, containing RNA, was then removed and placed into a fresh 

1.7mL tube. To each of the RNA solutions, 0.5mL of isopropyl alcohol was added and mixed by 

inversion. Samples were then allowed to incubate at 22ºC for 10min followed by centrifugation 

for 10min at 12,000g (4ºC). The supernatant was then decanted and 1mL of freshly prepared 

75% ethanol was added to each sample. 1μL of glycogen was added to each sample to visualize 

the pellet. Samples were then centrifuged for 5min at 7,500g (4ºC). Following this centrifugation, 

the supernatant was decanted from each sample and the RNA pellet was dried. Finally, each 

RNA pellet was resuspended in 15μL of Molecular Biology Grade water and stored for later 

quantification and analysis. For CFB on stretchers, RNA isolation was performed with RNeasy 

minikit (Cat#74104, Qiagen, Hilden, Germany) according to the manufacturer’s protocol. RNA 

quantification was performed with the Qubit RNA BR assay kit (Cat#Q33211, Molecular Probes) 

and cDNA synthesis using the iScript kit (Cat#04896866001, Roche, Indianapolis, IN, USA) 

according to the manufacturer’s protocol. Quantitative real-time PCR was performed using 

StepOnePlus Real-time PCR machine (Applied Biosystems, Foster City, CA, USA) and KAPA 

SYBR Fast Universal qPCR kit (Cat#07959397001, Kapa Biosystems, Cape Town, South Africa) 

and primers targeting the genes of interest (Integrated DNA Technologies, Indianapolis, IN, 

USA). Primer sequences are available in Supplementary Table 1. 

 

Statistics 

Data are presented as mean ± S.E.M. N represents biological replicates and all experiments were 

replicated in at least two independent cell isolations. Changes in gene expression presented in 

Figure 3C were calculated using log2 transformed values where fold changes were calculated by 

taking the normalized (meanstretch – meancontrol) with a S.E.M being √((SDcontrol
2 

/ ncontrol) + 

(SDstretch
2
/nstretch)). Statistical analysis was performed using GraphPad Prism 6. Normal 

distribution of data was determined by D'Agostino & Pearson omnibus normality test and 

assisted in the choice of subsequent parametric or non-parametric statistical tests. For 

comparison of two groups, two-sided Student’s t-test or Mann-Whitney testing was used. If 

multiple t-tests were performed, these were corrected for multiple comparisons using the Holm-

Sidak post hoc test. For comparison between three or more groups one-way ANOVA with 

Tukey’s post hoc testing (parametric) and Kruskal-Wallis with Dunn’s post hoc testing (non-

parametric) was used. For data sets comparing two interventions (e.g. substrate stiffness and 

stretch), two-way ANOVA with the Tukey’s post hoc test was used. For correlation of 

parametric data, Pearson’s test was used. ***P<0.005, **P<0.01, *P<0.05. 
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Figure 1. Maintaining a quiescent cardiac fibroblast phenotype by controlling substrate stiffness. 

Immunofluorescent staining for smooth muscle α-actin (SMA; green) in (A) and vinculin in (B). 

F-actin and nuclei were stained with phalloidin (red) and DAPI (blue), respectively. (C) Cell area 

and (D) proliferation rate (% of proliferating cells per hour) of cardiac fibroblasts plated on gels 

of 3, 8, 10, 20 and 50kPa hyaluronic acid (HA) gels. One-way ANOVA with Tukey’s post hoc 

test was used in C and D. N=6 and 4, respectively. (E) Heatmap showing relative mRNA 

expression levels of collagen (col) 1a1, 1a2 and 3a1, fibronectin (FN1), tenascin C (TNC), 

secreted protein acidic and rich in cysteine (SPARC), osteopontin (OPN), periostin (POSTN), 

thrombospondin 1 (THBS1), lysyl oxidase (LOX), bone morphogenetic protein 1 (BMP1), 

matrix metalloproteinase (MMP) 2, tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP2 

normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in cardiac fibroblasts plated 

on HA gels with 3, 6, 8, 10, 20 and 50kPa stiffness. Expression across genes was lowest at 8kPa 

stiffness as indicated by the black frame. Values in each box represent raw 2^(-delta Ct) values 

for comparison of expression levels among genes. *Denotes significant effect of stiffness as 

tested by one-way ANOVA and Kruskal-Wallis tests for parametric and non-parametric data, 

respectively. N=8-12 
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Figure 2. Paracrine signaling from stretched cardiomyocytes induces cardiac fibroblast 

proliferation. (A) Schematic illustration of the principles of the paracrine signaling model. (B) 

Proliferation rate of cardiac fibroblast (CFB) cultures alone, or in co-culture with non-stretched 

cardiomyocytes (CM) or stretched CM. CFB were plated on PA gels with 8kPa stiffness. Two-

way ANOVA showed significant effect of culture type*** and Tukey’s post hoc test as indicated 

in figures. N=3-6. (C) Proliferation rate of CFB in CM co-culture or treated with conditioned 

media from co-cultures. Two-way ANOVA showed an effect of cuture type***, conditioned 

media*** and a significant interaction**. Tukey’s post hoc test results are indicated in figures. 
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N=3. (D) Relative expression of chemokine (C-X-C motif) ligand 1 (CXCL1), colony 

stimulating factor 1 (CSF-1), interleukin-1 receptor antagonist (IL-1ra), cluster of differentiation 

54 (CD54), platelet-derived growth factor B (PDGF-B) and fibroblast growth factor 2 (FGF2) 

mRNA normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA in CM 

stretched for 4 and 24h. *Denotes significant difference from 0h control as determined by 

Student’s t-test. N=9 (control) and 4 (stretch). (E) Proliferation rate following 24h stimulation 

with recombinant CSF-1 and/or PDGF-B. One-way ANOVA showed significant effect of 

stimulation*** and Tukey’s post hoc test results as indicated. N=3. (F) Relative proliferation rate 

of CFB in co-cultures in the presence of PDGF-B and CSF-1 receptor antagonists (AG and GW, 

respectively). Two-way ANOVA showed an effect of culture type*** and blockers*** as well as 

significant interaction* between the two. Tukey’s post hoc test results are indicated in figure. 

N=3. Cell area (G) and morphology (H) of CFB on 8kPa alone, or in co-culture with non-

stretched and stretched CM. One-way ANOVA showed significant effect of culture type* on cell 

area and Tukey’s post hoc test results as indicated in figure.  
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Figure 3. Stretch promotes extracellular matrix remodeling by CFB. (A) Schematic illustration 

of the principles of the stretch model. (B) Collagen (col) 1a1, 1a2 and 3a1 and fibronectin (FN1) 

mRNA normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA in cardiac 

fibroblasts on 3 and 8kPa gels subjected to 0, 3 and 6% stretch (x-axis). One-way ANOVA was 

used to test significant effect of stretch with Tukey’s post hoc tests for specific comparisons. 
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Statistical results are indicated in the figure. N=4 (control) and 12 (stretch). (C) Quantification 

and immunoblot of fibronectin (FN) protein normalized to total protein determined by Ponceau 

staining. N=4 (3kPa) and 8 for (8kPa). (D) Fold difference in lysyl oxidase (LOX), bone 

morphogenetic protein 1 (BMP-1), osteopontin (OPN), periostin (POSTN), tenascin C (TNC), 

secreted protein acidic and rich in cysteine (SPARC),  thrombospondin 1 (THBS1), 

metalloproteinase (MMP) 2, and tissue inhibitor of metalloproteinase (TIMP) 1 and 2 mRNA 

expression normalized to GAPDH mRNA. Significance was determined by multiple Student’s t-

tests corrected for multiple comparisons using Holm-Sidak’s post hoc test. P-values displayed in 

figure D are the uncorrected p-values from the t-test. N=4 (control) and 12 (stretch). (E) Relative 

proliferation of CFB controls (C) or with 3% stretch (S). N=3. (F) Smooth muscle a-actin (SMA) 

mRNA normalized to GAPDH mRNA. N=4 (control) and 12 (stretch). (G) Immunofluorescent 

staining for SMA (green) and DAPI staining for nuclei (blue). (H) Immunoblot for total and 

phophorylated focal adhesion kinase (FAK and pFAK, respectively) normalized to GAPDH. 

N=4. Student’s t-test was used to determine significant changes for C, E, F and H. 
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Figure 4. Matrix stiffening causes cell spreading, smooth muscle a-actin fiber formation, 

upregulation of collagen I and downregulation of collagen III. (A) Schematic illustration of the 

principles of the stiffening model. (B) Immunofluorescent staining for smooth muscle a-actin 

(SMA; green). F-actin and nuclei were stained with phalloidin (red) and DAPI (blue), 

respectively. (C) Collagen (col) 1a1, 1a2 and 3a1, fibronectin (FN1), lysyl oxidase (LOX) and 

osteopontin (OPN) mRNA normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

mRNA in cardiac fibroblasts on 8kPa gels stiffened to 30kPa. N=4 (control) and 12 (stiffened). 

(D) Immunofluorescent staining for fibronectin (FN; green) and quantification of staining 

intensity 48h after gels stiffening. N=8. F-actin was stained with phalloidin (red). Student’s t-

tests were applied to determine significant changes. 
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Figure 5. Proposed model of mechanical regulation of cardiac fibroblasts following myocardial 

infarction. 1) Paracrine signaling involving platelet-derived growth factor B (PDGF-B) and 

colony stimulating factor 1 (CSF-1) from stretched cardiomyocytes in the border region leads to 

proliferation of cardiac fibroblasts (CFB). 2a) Stretch of the infarct region during the acute phase 

after myocardial infarction (extracellular matrix (ECM) stiffness ~ 3kPa) promotes collagen I, 

lysyl oxidase (LOX), bone morphogenetic protein 1 (BMP-1), periostin (POSTN), secreted 

protein acidic and rich in cysteine (SPARC), thrombospondin 1 (THBS1), tissue inhibitor of 

metalloproteinase (TIMP) 1 and 2 while inhibits tenascin C (TNC) expression by CFB. 

Proliferation is increased during this phase; 2b) Stretch of the infarct region during the 

remodeling phase (ECM stiffness ~ 8kPa) also upregulates collagen I in addition to collagen III, 

fibronectin and TNC, while downregulates the matricellular protein osteopontin (OPN). Matrix 

metalloproteinase 9 (MMP9) expression was reduced in this setting. Proliferation is decreased 

during this phase. Stretch causes upregulation of smooth muscle a-actin (SMA) mRNA during 

both the acute and remodeling phases; however incorporation into stress fibers requires an 

accompanying increase in matrix stiffness; 3) At late stages of infarct healing, ECM stiffening to 

pathological stiffnesses (~ 30kPa) dominates the mechanical environment. This promotes a 

contractile CFB phenotype due to SMA fiber formation that has elevated, albeit dampened 

collagen I production compared to that of stretched CFB. Collagen III and osteopontin (OPN) 

expression is reduced supporting scar maturation and healing. However, continuous stretch of 

CFB at this stage will cause persistent ECM production and thus development of pathological 

fibrosis. 

 

 




