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Abstract

Thailand has the highest road traffic fatality rate in Southeast Asia, making road safety a crit-

ical public health concern. A 2015 World Health Organization (WHO) Report showed that

speeding behavior was the most important determinant for road traffic crashes in Thailand.

Here, we aimed to examine associations of socio-demographic factors (gender, age, socio-

economic status) with self-reported motorcycle speeding behavior. Additionally, we exam-

ined a potential role of time discounting and risk preference as mediators in the association

of socio-demographic factors with speeding. We used data obtained from the Mahasarak-

ham University Social Network Survey 2018 (MSUSSS) (N = 150). We ran linear network

autocorrelation models (lnam) to account for the data’s social network structure. We found

that males are more likely than females to engage in speeding behavior (β = 0.140, p =

0.001) and to discount the future (β = 5.175, p = 0.017). However, further causal mediation

analysis showed that time discounting does not mediate the gender-speeding association (p

for mediation = 0.540). Although socioeconomic status (subjective social class) was not

associated with speeding (β = 0.039, p = 0.177), age was marginally associated with speed-

ing (β = 0.005, p = 0.093). Future studies may consider using a larger sample.

Introduction

Traffic crashes have remained the number one cause of premature death in Thailand since

2007 [1]. Despite being among the wealthiest countries in Southeast Asia, Thailand sustains

the highest road traffic fatality rate of its Southeast Asian counterparts. Additionally, Thai-

land’s road traffic fatality rate is among the highest globally at 32.7 per 100,000 (2016) [2,3].
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While only 23% of all global road traffic deaths involved motorcyclists, motorcyclist deaths

accounted for 74% of all road traffic deaths in Thailand [4]. A WHO Report in 2015 showed

exceeding the speed limit (i.e. speeding) was the number one factor for road traffic crashes in

Thailand, contributing to 12.61% of crashes in 2013 [5]. A study of adolescent motorcyclists in

Hat Yai, the largest city in southern Thailand, found that speeding was associated with a 63%

higher odds of experiencing motorcycle injuries [6]. Evidence from other studies further dem-

onstrate the role of speeding in the severity of crashes. A study of truck-related accidents in the

United States suggests that speeding was associated with an increased probability of incapaci-

tating injuries and fatalities [7]. Speeding was also found to be correlated with injury severity

in a study of rear-end crashes between cars [8]. In fact, environmental conditions affecting

speeding behaviors, such as time of day, precipitation, and freeway curvatures, have previously

been found in Guangdong Province, China to be significant predictors of crash severity as well

[9].

Identifying socio-demographic predictors of speeding behavior is an important first step

for ascertaining a target population for intervention planning. A sizeable body of evidence

from other countries, including the United States, Australia, China, and Israel, suggests that

one of the most important predictors of speeding behavior is gender—males are more likely

than females to speed on the road [10–13]. Several explanations for this gender difference have

been examined. One explanation is that males have a more negative attitude toward road safety

issues, where a negative attitude means greater preference for risk-taking behaviors [11,14].

Previous research in nine European countries, the Maldives, and northeastern Thailand sup-

ports this, indicating that males are generally less concerned about safety and have a lower per-

ception of crash risk [14–16]. A study of road traffic injuries in Malé, Maldives, for instance,

found that males with a negative attitude toward road safety issues had an 84% higher odds of

road traffic injury [15]. Additionally, an experimental study of gender and speeding behavior

at a roundabout found that the amount of force male participants applied to the brakes during

the roundabout was the same as that of females who were driving at a lower speed, suggesting

that males are generally less cautious drivers [17].

Previous research also suggest that younger drivers are more likely to speed [11]. A study of

a representative sample of Australian drivers found that drivers under the age of 25 were more

likely to be non-compliant with speed limits [11]. Socioeconomic status or position, however,

has not been previously found to be an important predictor of speeding behavior in studies

implemented in Jordan and Thailand [18–20].

Socio-demographic predictors of motorcycle speeding, while critical for identifying target

populations, cannot be intervened upon. It is, therefore, our goal in this study to identify not

only a target population but other mediating factors as well. One potentially mediating and

modifiable factor is time discounting, which has previously been found to be a predictor of

risky behaviors (although past papers suggest the modifiable nature of time discounting, there

is no current research which proves this) [21–23]. In economic theory, rational consumers

endogenously decrease time discount rate because wealthy people have high opportunity costs

when she choose risky behavior. Thus, education, for example, can decrease time discount rate

by increasing expected future income. Time discounting refers to the act of choosing between

a smaller benefit immediately and a larger benefit later [24]. In various economic experiments,

researchers have consistently found that males have a stronger tendency to discount the future

than females [25–27]. In the context of road safety, a study by Freeman et al. (2017) revealed

that being male and having future discounting tendencies were associated with lower percep-

tions of getting caught for speeding in Australia [28].

A second potential modifiable factor is risk preference. Previous economic experiments

indicate that males have higher risk tolerance than females, particularly in the realm of
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financial risk-taking [29–31]. In the present study, risk preference refers to an individual’s will-

ingness to pay for a risky asset, namely a hypothetical lottery ticket. Regarding speeding, only

one study, to our knowledge, has investigated the association between risk preference and

speeding behavior. An experiment in Virginia, US found that risk preference was not a signifi-

cant predictor of speeding behavior [32].

While the primary aim of the present study is to identify individual-level predictors of

speeding, it is important to acknowledge the influence of environmental factors on individual

driving behaviors and outcomes. Driving in areas with more concentrated traffic, pedestrians,

and road intersections is associated with a higher crash rate due to more complicated routes

and road conflicts [33]. In addition, areas with higher average speed limits are associated with

fewer crashes, most likely due to better road infrastructure and management in these driving

zones [34,35]. An assessment of Thailand’s transport sector, however, reports that Thailand’s

road infrastructure and enforcement of traffic laws is lacking. A number of transportation con-

cerns were raised in the assessment, including poor land-use planning, insufficient organiza-

tion of traffic management, and an outdated highway master plan [36,37].

The examination of time discounting and risk preference as predictor of speeding behaviors

has not yet been conducted in Thailand. Identifying potential target populations and modifi-

able factors specific to the Thai motorcyclist population is a much-needed next step in plan-

ning for future interventions to reduce speeding behavior. As such, this study aims to explore

1) socio-demographic predictors of motorcycle speeding behaviors and 2) time discounting

and risk preference as mediators in the association between gender and motorcycle speeding.

Methods

Study sample and data collection

We used the data collected with the Mahasarakham University Social Network Survey 2018

(MSUSSS), which was implemented through the Surveys for Pages application on Facebook.

Maha Sarakham is one of the major cities in the Northeastern region (population

size = 963,047 from a 2018 estimate) [38]. The original intent of the MSUSSS was to plan a

social network or social media intervention at Mahasarkham University. Mahasarakham Uni-

versity is one of the national universities in the region and motorcycles are one of the major

sources of transportation for the students. We targeted Maha Sarakham because of the rural-

urban disparity in motorcycle road safety, including disparities in crashes and compliance

with road signs [39,40].

In the survey, we recruited 172 undergraduate and graduate students attending the Faculty

of Informatics, Mahasarakham University. They were recruited through campus posters and

classroom announcements from May to September 2018. In the survey, participants were

asked to report socio-demographic characteristics, including gender, age, subjective social sta-

tus (SSS: participants were asked to select one among the following choices: upper, upper mid-

dle, middle, lower middle, and lower), and names of up to five close friends in the faculty.

Participants who completed the survey were given one coupon for a free drink, valued at THB

40 (1.27 USD; 1 USD = THB 30.76 as of August 12, 2019), at a designated local café. To collect

social network data, participants were also asked to list the facebook profiles of five close

school friends. After excluding respondents who reported never riding a motorcycle (N = 5)

or always riding as a passenger (N = 17), we carried out our analysis on a sample size of 150.

Speeding

Participants were also asked to rate how frequently they ride their motorcycles as “always”,

“often”, “occasionally”, or “never”. In our analysis, such frequency values were converted to
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proportions: “always” was assigned a value of 1, “often” a value of 0.67, “occasionally” a value

of 0.33, and “never” a value of 0, which corresponds to. Validation studies of self-reported

speeding show significant but low correlations between observed speeding behavior and self-

reported behavior–more specifically, participants tend to underreport their speeding behavior

[41].

Time discounting

Time discounting was elicited by asking participants to choose between hypothetical scenarios

of receiving THB 300 (USD 9.50) today (Option A), or receiving a higher amount 7 days from

today (Option B) for a series of 5 selections. For context, THB 300 can buy approximately

three meals or two articles of clothing. All Option B amounts were as follows: THB 330, THB

306, THB 594, THB 303, THB 312. We followed the methods for finding discount rates used

in Ikeda et al. (2010) and Akesaka (2018), where the discount rate is the interest rate at which

participants switch from choosing Option A to Option B [42,43]. For example, a participant

who selected Option A for THB 303, THB 306, THB 312, and THB 330 (interest rate of 521%)

but selected Option B for THB 594 (interest rate of 5110%) was assigned a discount rate of

521%. Participants who were inconsistent with their reasoning (i.e. if they chose Option B for

one price but decided on Option A when B was much higher) were treated as missing. For

example, a participant who selected Option B for THB 306 but didn’t choose Option B for

THB 312 was treated as missing. Additionally, participants who selected Option A for all

choices were assigned a discount rate of 5110%, which is the highest interest rate provided in

the question, and participants who selected Option B for all choices were assigned a discount

rate of 0%. We expect that participants who have higher time discounting will choose Option

A at lower interest rates and Option B at higher interest rates.

Risk preference

Risk tolerance was elicited by asking participants whether they would buy a lottery ticket in

which they have a 50% chance of winning THB 3000 (USD 96.20). They receive nothing if

they lose. Participants were asked to choose between buying the lottery ticket (Option A) and

not buying a lottery ticket (option B) at 5 different prices. The 5 prices of lottery tickets are as

follows: THB 1, THB 120, THB 450, THB 1050, THB 1500. To measure risk tolerance, we

recorded the price point where participants switched from choosing option A to option B, in

alignment with the methods of Miura (2017), Ikeda et al. (2010), and Akesaka (2018) for find-

ing time discounting rates [42–44]. For instance, a participant who chose option A for THB 1,

and THB 125 but selected option B for THB 450 onward were assigned a value of 125. Partici-

pants who selected option B for one price but selected option A for a higher price were

assigned missing. Participants who selected option A for all prices were assigned 1500, which

is the maximum price asked in this question, and participants who selected option B for all

prices were assigned 0. We expect that participants who have a higher risk tolerance would be

willing to buy a lottery ticket at higher prices.

Statistical analysis

To take into account the network structure of the data (some study participants are friends of

other study participants, and therefore their error terms may be correlated), we used linear

network autocorrelation models (lnam) [45]. The network autocorrelation model incorporates

the network structure as a parameter in order to account for and estimate the social network

effect on individual-level outcomes [46–48]. The network autocorrelation model is commonly
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expressed as follows:

y ¼ rWy þ Xβþ ε; ε � Nð0; s2IgÞ ð1Þ

where y is the dependent variable representing a (g×1)-vector of values for g members of the

network, ρ is the network autocorrelation parameter representing the network influence on y,

W is a (g×g)-matrix representing the structure of the social ties in the network, X is a (g×k)-

matrix of g members on k covariates, β is a (k×1)-vector of regression coefficients, Ig is a (g×g)-

identity matrix, and ε is a (g×1)-vector of normally distributed error terms with mean of zero

and, σ2 variance [46–48].

We ran different models to examine the association of socio-demographic factors (gender,

age, and SSS), time discounting, and risk preference with speeding, as well as that of socio-

demographic factors with time discounting and risk preference. We also implemented a sensi-

tivity analysis using ordinary least square method (a normal linear regression) to confirm that

our results do not come from a poor model fit in lnam.

To assess a potential mediating role of time discounting or risk tolerance on the associa-

tions of socio-demographic factors with speeding, we conducted model-based causal media-

tion analysis, which involves decomposing the total effect into two parts: the direct effect and

the causal mediation effect [49]. First, we fitted separate models for the outcome and media-

tors. The models were then used to compute the estimated average causal mediation effect

(ACME) (e.g. gender to speeding through time discounting), average direct effect (ADE) (e.g.

gender to speeding not through time discounting), and total effect (TE) using the mediation
package in R. All analyses were performed via R version 3.4.3 [50].

Ethics

The UCLA Human Subjects Committees (UCLA IRB#17–001856) approved this study, and

waived the need for written informed consent from the participants.

Results

Summary statistics are shown in Table 1. The majority of the study participants were male,

which can be attributed to the fact that a majority of the informatics students at MSU are male.

The median age is 21 years (interquartile range = 20–21 years). Most study participants (98%)

reported their SSS to be in the middle. A majority of study participants (71.3%) also reported

engaging in speeding behavior at a frequency ranging from sometimes to always. The median

discount rate is 521% (interquartile range = 209%-521%), and the median ticket price is THB

125 (interquartile range = THB 1-THB 450).

LNAM analysis of speeding on gender revealed that males are significantly more likely to

speed than females (β = 0.140, p = 0.001) (Table 2A). SSC and age were not significant predic-

tors of speeding behavior. However, the association of age with speeding can be marginally

detected (p = 0.09). The inclusion of time discounting and risk preference slightly attenuated

the β coefficient of gender on speeding (Table 2B–2D). However, the gender-speeding associa-

tion was still detected even after both time discounting and risk preference were included in

the model.

Gender is significantly associated with time discounting (β = 5.175, p = 0.017), which indi-

cate males have a higher discount rate than females (Table 3A). This tendency is confirmed in

the raw data (Table 1). SSC or age were not associated with time discounting. None of the

socio-demographic factors including gender were not significant predictors of risk tolerance

(β = 72.949, p = 0.347) (Table 3B). Sensitivity analyses were done for all models and produced

similar results.
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A causal mediation analysis of time discounting showed that neither time discounting

(ACME = 0.007, p = 0.540; ADE = 0.122, p<0.001; TE = 0.128, p =<0.001; Table 4A) nor risk

tolerance (ACME = 0.003, p = 0.540; ADE = 0.128, p<0.001; TE = 0.131, p = <0.001;

Table 4B) were significant mediators in the association between gender and speeding among

our sample. Average direct effect mostly explained the gender-speeding association, which

means that we could not find meaningful mediating factors.

Table 1. Descriptive characteristics of the study participants (N = 150).

Frequency (%)

Males (n = 114) Females (n = 36) Total (n = 150)

Age

18–20 48 (42.1%) 10 (27.8%) 58 (38.7%)

21–22 59 (51.8%) 24 (66.7%) 83 (55.3%)

23–25 6 (6.1%) 2 (5.6%) 9 (6.0%)

Subjective social status (SSS)

Lower 0 (0.0%) 1 (2.8%) 1 (0.7%)

Lower middle 23 (20.2%) 9 (25.0%) 32 (21.3%)

Middle 79 (69.3%) 24 (66.7%) 103 (68.7%)

Upper middle 10 (8.8%) 2 (5.6%) 12 (8.0%)

High 2 (1.8%) 0 (0.0%) 2 (1.3%)

Speeding

Never 24 (21.1%) 19 (52.8%) 43 (28.7%)

Sometimes 68 (59.6%) 14 (38.9%) 82 (54.7%)

Often 20 (17.5%) 3 (8.3%) 23 (15.3%)

Always 2 (1.8%) 0 (0.0%) 2 (1.3%)

Discount rates (Time discounting)

0% 12 (11.2%) 6 (17.6%) 18 (12.8%)

52.14% 1 (0.9%) 0 (0.0%) 1 (0.7%)

104% 6 (5.6%) 4 (11.8%) 10 (7.1%)

209% 19 (17.8%) 11 (32.4%) 30 (21.3%)

521% 57 (53.3%) 13 (38.2%) 70 (49.6%)

5110% 12 (11.2%) 0 (0.0%) 12 (8.5%)

Ticket prices (Risk preference)

0 16 (14.8%) 6 (18.8%) 22 (15.7%)

1 32 (29.6%) 8 (25.0%) 40 (28.6%)

125 27 (25.0%) 9 (28.1%) 36 (25.7%)

450 20 (18.5%) 8 (25.0%) 28 (20.0%)

1050 7 (6.5%) 0 (0.0%) 7 (5.0%)

1500 6 (5.6%) 1 (3.1%) 7 (5.0%)

https://doi.org/10.1371/journal.pone.0243930.t001

Table 2. LNAM regressions of speeding.

A. Model 1 B. Model 1 + Time discounting C. Model 1 + Risk preference D. Model 1 + Time discounting

+ Risk preference

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Gender 0.140 0.001 0.125 0.005 0.132 0.003 0.126 0.005

Social class 0.039 0.177 0.030 0.371 0.028 0.395 0.030 0.367

Age 0.005 0.093 0.006 0.062 0.006 0.097 0.005 0.105

Time discounting - - 0.001 0.483 - - 0.001 0.496

Risk preference - - - - <0.001 0.186 <0.001 0.190

https://doi.org/10.1371/journal.pone.0243930.t002
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Discussion

In this study, we aimed to identify socio-demographic predictors as well as mediating factors

of motorcycle speeding behavior in Thailand. An analysis of time discounting and risk toler-

ance in the gender-speeding association revealed that males are more likely than females to

discount the future, but time discounting is not a significant mediator.

Looking at socio-demographic predictors, our study revealed that gender was a significant

predictor of speeding, a result that aligns with previous studies. A study of young Thai motor-

cyclists by Chumpawadee et al. reported that male riders were more likely to engage in moder-

ate to high risk accident risk behaviors, which included behaviors such as speeding, drunk

driving, disobeying traffic rules, and telephone use while driving [16]. Studies done in various

global regions, including the U.S., Australia, China, the Maldives, and select countries in

Europe have similarly found that males are more likely to speed [10–12,15]. Findings by Cor-

dellieri et al. from 9 European countries and Stephens et al. from Australia suggest that the

gender differences in speeding compliance may be attributed to differences in perception of

accident risk, which is an observation that our findings appear to support [11,14].

We focused on a university population 18 to 25 and were unable to detect significant differ-

ences in speeding behavior by age. This finding aligns with previous studies of speeding behav-

ior by age. A study in Australia found that motorcyclists under the age of 25 were more likely

to speed compared to older age groups between 26 and 75. However, no significant differences

were detected within the under 25 age group [11]. Similarly, a study of Israeli undergraduate

students under the age of 25 did not find significant differences in vehicular speeding behavior

by age [51].

Data from the present study regarding SSS and speeding behavior are in concordance with

previous findings. A study done by Khallad examining health risk behaviors of university stu-

dents in Jordan reported that socioeconomic status indicators, including income and occupa-

tion level, were not found to be significant predictors of speeding behavior [18,20]. Similarly, a

study on red light running behavior in Thailand found that education was not a significant

indicator of running red lights [19].

The second objective of our study was to examine two potential modifiable factors of speed-

ing behavior: time discounting and risk tolerance. A study done by Freeman et al. reported

that 1) males are more likely than females to discount the future, and 2) tendencies to discount

Table 3. LNAM regressions of time discounting and risk preference.

A. Time discounting B. Risk preference

Coefficient p-value Coefficient p-value

Gender 5.175 0.017 72.949 0.347

SSS -1.526 0.343 8.702 0.874

Age 0.136 0.388 8.875 0.112

https://doi.org/10.1371/journal.pone.0243930.t003

Table 4. Causal mediation analysis of time discounting and risk tolerance in the gender-speeding association.

A. Time discounting B. Risk tolerance

Estimate p-value Estimate p-value

Average causal mediation effect 0.007 0.540 0.003 0.540

Average direct effect 0.122 <0.001 0.128 <0.001

Total effect 0.129 <0.001 0.131 <0.001

https://doi.org/10.1371/journal.pone.0243930.t004
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the future were predictive of lower perceptions of getting caught for speeding [28]. Our results

regarding gender differences in time discounting behaviors agree with the findings of Freeman

et al. However, our findings in regards to time discounting and speeding differ. Our results

regarding time discounting and speeding behavior were not statistically significant, possibly

due to our study being underpowered. Furthermore, whereas the present study examines

speeding behavior, Freeman et al. examined perceptions of getting caught for speeding in Aus-

tralia. Nonetheless, including time discounting in the gender-speeding model weakened the

effect of gender on speeding, suggesting that time discounting may play a mediating role. Dis-

crepancies in our results may also be due to differences in the way time discounting was mea-

sured. While Freeman et al. examined discounting tendencies specific to speeding-related

penalties, we employed an economics-based approach in which participants were asked to

choose between receiving a hypothetical sum of money either today or 7 days from today [28].

Literature on risk tolerance and road safety behaviors is limited. An experiment conducted

by Anderson and Mellor investigated the association between risk aversion and not using seat-

belts, which was positively associated with risk tolerance [32]. However, no studies, to our

knowledge, have examined the association between risk tolerance and speeding. Hence, the

findings of the present study contribute to the discussion on risk preference and road

behaviors.

Our study has several limitations. One limitation is our small sample size and its homoge-

nous nature due to our use of convenience sampling. Our study was intended to be a network

intervention study in Mahasarakham University, where our target population was young

motorcyclists in rural areas of Thailand. Additionally, our study may also be underpowered

due to the small sample size. A second limitation in our study is our use of only one time

period in assessing time discounting. When investigating time discounting, the hypothetical

scenarios presented to the participants only involved spans of 7 days. As a result, we were only

able to assess discounting preferences over 7 days rather than hyperbolic discounting behav-

iors. A third limitation is our use of self-reported speeding behaviors, which may be subject to

social desirability bias and errors in recall. Social desirability bias is caused by respondents’

tendency to misreport behaviors in order to avoid being viewed negatively by others [52,53].

The effects of social desirability bias may have been mitigated in the present study.

As far as we know, the present study is the first one to formally report that gender is a risk

factor of motorcycle speeding in Thailand. However, neither of the two proposed factors, time

discounting and risk tolerance, were significant mediators in the gender-speeding association.

Future studies may consider using a more nationally representative sample with a larger sam-

ple size and assessing the role of hyperbolic discounting. However, addressing time discount-

ing and risk tolerance only as intervention components may not be sufficient in behavioral

interventions for modifying motorcycle speeding behavior; rather, a more comprehensive

approach may need to be taken.
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