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ABSTRACT OF THE DISSERTATION

Measuring and Modeling Self-Assembly in Cardiomyocytes

By

Nancy Kimberly Drew

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2016

Assistant Professor Anna Grosberg, Chair

Myofibrillogenesis is the formation of myofibrils, the building blocks of muscle filaments. How

neonatal rat ventricular myocytes and human induced-pluripotent stem cell (iPS) derived

cardiomyocytes assemble will have a great impact on tissue engineering strategies for building

myocardium in vitro. Normally, cardiomyocytes cultured on extracellular matrix islands form

myofibrils that extend across the longest diagonal of the cells, but this is not necessarily the

case for iPS-derived cardiomyocytes. In order to investigate why this is not always the

case, it is advantageous to examine the self-assembly mechanism in vitro by quantifying

the consistency of changes in cardiomyocyte architecture in response to a variety of input

conditions. We developed the Co-orientational order parameter (COOP) to quantify the

correlation between orientations of biological constructs and the consistency of cytoskeleton

architecture. Using this newly invented parameter, we were able to investigate consistency

across multiple length scales. To further explore this topic, microcontact printing was used to

create cells of specific shapes (i.e. triangles, rectangles, squares, ovals, and circles) which were

quantified for consistency through image analysis using the COOP. The images of these cells

were used to determine at which length scales cardiomyocyte self-assembly was consistent

and to fit and validate a computational myofibrillogenesis model developed previously in our

lab. In the future, this model could be used to help uncover mechanisms of self-assembly of

neonatal rat ventricular myocytes and human iPS-derived cardiomyocytes.
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Chapter 1

Introduction

In the United States, one of the leading causes of death over the last decade is heart

disease [13]. The American Heart Association has predicted that approximately 44% of the

United States population will have a form of cardiovascular disease by the year 2030. High

blood pressure, high cholesterol, and smoking are some of the risk factors for heart disease.

According to the CDC about 50% of Americans have one of these three risk factors [13].

Each year, billions of dollars are spent on treating heart disease [53]. Over the years,

scientists, and doctors have made sufficient strides to increase the amount of information

known about heart disease and healthy hearts. In additon, many treatment methods have

been designed as well. One of the methods with the most promise for treating and

developing drugs for heart disease currently being used by some researchers involves using

induced-pluripotent stem cell (iPS) derived heart cells [26, 62]. The iPS derived heart cells

are an attractive option since embryos are not destroyed during their production, and they

can also be specific to the individual patient [67]. In a perfect world, iPS derived heart cells

could be used to fully rebuild the myocardium. While iPS derived heart cells have been

helpful in cardiac research, they are still inadequate as a true substitute for heart cells

(cardiomyocytes) because this cell type does not have all of the structural and functional
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properties of healthy cardiomyocytes [42, 61].

1.1 Background

1.1.1 Organization and Structures in the Heart

Healthy hearts have structures that are intricately organized at multiple length scales. At

the tissue scale, multiple cardiac sheets form muscular heart walls that work symbiotically

to contract and relax the heart [14]. The same organization scheme extends to the cellular

scale, with myofibrils arranged into bundles, and further at the intracellular scale, where

multiple repeats of sarcomeres form these myofibrils [2]. Sarcomeres, which are composed of

z-lines and actin-fibrils are the contractile units of the cell, and contractility is an essential

property of heart function, as observed at the tissue scale [2].

Besides containing myofibrils, cardiomyocytes architecture also consists of an arrangement

of focal adhesions [9]. Focal adhesions help connect cardiomycoytes to the extracellular

matrix (ECM) and provide cardiomyocytes with details about the conditions of the ECM.

The complexes that make focal adhesions consist of engaged (bound) integrins. Through

integrins, focal adhesions are connected to actin filaments, which are embodied in myofibrils

[2, 39]. In summary, bundles of myofibrils span the longest diagonal of cultured isolated

myocytes, with focal adhesions at the periphery of the cell which are concentrated at the

corners of cultured isolated cardiomyocytes [9].

1.1.2 Conditions Influencing Organization

Mechanotransduction, migration, and boundary conditions have all been shown to influence

self-assembly of intracellular structures [61, 9]. The cells’ organization of the intracellular

2



structure depends on the cellular response to geometrical boundaries, cell shape, migration

cues, stretching, and other chemical or physical cues [61]. For example, when engineered

cardiac tissues are stretched actin and sarcomere orientation is affected and cells will align

with the direction of the stretch [50]. Cell shape is a static cue that is controlled by the

ECM boundary conditions. Previously, it was observed experimentally that a cells internal

structure is a function of geometrical cues. Triangular and square shaped cells have myofibrils

that span the longest diagonals of the cells [9, 32]. Whereas, when the aspect ratio increases

and squares become long rectangular cells, myofibrils are longitudinal to the cell [9]. Circular

cells are an example of a rotationally symmetric shape, and the organization of myofibrils is

random [9] but can be polarized.

1.1.3 Organization in Heart Disease

During heart disease, organization is disrupted at some of these scales and pumping is affected

[37, 76, 3]. For example, at the tissue scale cardiac tissue can be disorganized with bundles

of myofibrils scattered in numerous orientations. Additionally, organization can be effected

at the cellular scale, myocytes can change shape and there is often a change in length to

width ratio or aspect ratio [29]. It has been shown that the cellular aspect ratio is a function

of contractility in single cells, and traction force microscopy data has demonstrated that the

maximum force is produced by cardiomyocytes with an aspect ratio of 6-7 [47]. However, it

is not known if cells of certain shapes are more consistent in their self-assembly [28]. Gerdes

et al. reported that cells with elongated shapes are endemic for various types of heart

disease [29]. Since cell shape influences organization, it is necessary to quantify intracellular

architecture self-assembly of cardiomyocytes for different shaped cells at multiple scales in

order to provide information that can be used to predict the mechanisms involved in heart

disease.
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1.2 Overview of Present Models

One technique used to predict and explain cell behavior is through computational model.

Boundary conditions are an attractive variable for early fibrillogenesis (formation of fibrils)

modeling because they can be manipulated in vitro e.g. cell shape [9, 32, 56], and

patterned surfaces [45, 23, 24]. Previously, numerous types of cell myofibrillogenesis

computational models were created. One example is a phenomenological model based on

focal adhesion distribution in the cell created by Novak et al. [55]. This model forecasts a

high concentration of focal adhesion at the edges of the cell validated by experimental data

from NIH3T3 fibroblast [55]. Novak et al.’s model did not include a myofibril

length-developed tension relationship, the maturation of fibrils, or mechanical properties of

the substrate [55]. Another type of model is a finite element model of the distribution of

myofibrils designed by Deshpande et al. [18, 19]. This model is based on the interaction

among integrins, the substrate, and stress fibers [18, 19]. Additionally, the model can

predict the distribution of myofibrils in a variety of cell shapes. However, fibroblast and

epithelial cells were used to validate this computationally complex model, which is

problematic as cardiomyocytes are inherently different in both structure and function when

compared to fibroblast and epithelial cell lines. Paszek et al., created a chemo-mechanical

model based on the interaction between ligands and integrins [57]. This model can predict

the stresses and strains of focal adhesions, however it was not validated with a specific cell

type. Paszek et al.’s model does not include myofibrils and stress fibers. Our lab previously

created a phenomenological model of myofibrillogenesis [32]. This model is based on the

interaction between myofibrils and focal adhesions and uses the concepts in Novak et al.’s

model [32]. Unlike the models presented by Deshpande et al. and Paszek et al., it is

specific to cardiomyocytes and was validated using in vitro data obtained from neonatal rat

ventricular myocytes. The model’s purpose is to explore how symmetry breaking and

boundary conditions affect self-assembly.
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Despite the creation of multiple myofibrillogenesis models, the mechanisms behind how

structures inside cardiomyocytes self-assemble are not fully understood. Understanding the

mechanisms behind self-assembly could allow for better control when creating engineered

cardiac tissues or cardiac patches from stem cell derived heart cells. These tissues and

patches could be used to fix the heart and to test drugs for heart disease therapies [62, 26].

Currently, recapitulating the multi-scale organization seen in healthy hearts is one

challenge that still remains when utilizing stem cell derived cardiomyocytes [62, 26]. In

order to explore self-assembly in heart cells, tools and metrics are needed to quantify

organization at a variety of length scales.

1.3 Metrics to Quantify Organization

Previously the process of quantifying orientation of structures in images was performed

manually [40] or by using a variety of computational algorithms [10, 43, 23, 77]. Later, after

identifying the orientation of the structures through image analysis, these studies selected

a metric to summarize the overall organization. For example, a study by Davidson et al.

on human osteoprogenitor (HOP) cells on grooved surfaces used an orientation metric that

provides the standard deviation of a truncated Gaussian distribution [17]. Studies done by

Karlon et al. to analyze orientation in endothelial cells and Dunn et al. to analyze fibroblast

alignment on grooved surfaces used metrics based on the von Mises circular distribution

[43, 23]. However, the von Mises circular distribution is a wrapped normal (Gaussian)

distribution and often subcellular structures distributions are non-gaussian. Therefore, it is

not ideal to use these distributions to analyze organization of subceullular distributions.

Others used an alternative metric called the orientational order parameter (OOP) [24, 75,

66, 72, 31, 45]. The OOP was originally developed for the field of liquid crystals [34] and

applied to other areas for quantifying the organization of subcellular structures in cardiac
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tissues and cardiomyocytes [31, 45], fibroblast cells [66], valve endothelial cells [6], bacteria

[75], and vascular smooth muscle cells [72]. Even though this metric has been widely used,

it is not capable of determining correlation of two subcellular structures or the consistency

of one subcellular structure.

Prior studies have used a variety of metrics to quantify correlation in images. For instance,

to compare two images with a change in scale or possible rotation, Feng et al. used

normalized cross-correlation [25]. Yet, this method is insensitive to a rotation of the whole

images. Another study done by Noorafshan et al. used second-order stereology to analyze

the correlation between the spatial arrangement of microvessels and cardiomyocytes [54].

Some studies have used colocalization to analyze the spatial overlap between two biological

structures [71, 74]. Nonetheless, second-order stereology or colocalization is capable of

analyzing the relative orientations of biological subcellular structures. Lastly, another

metric created to analyze correlation is the circular correlation coefficient, which can only

be used on data with uniform distributions [7]. All of the above metrics have been used

previously, but we need a tool that does not depend on certain distributions and that is

capable of analyzing correlation of two subcellular structures as well as analyzing

consistency of one subcellular structure.

1.4 Quantify Correlation and Consistency of

Subcellular Structures Organization in

Cardiomyocytes

In this work, we developed a new metric, the co-orientational order parameter (COOP),

to analyze self-assembly of heart cells in vitro and in silico. Here we present, in Chapter

2, the derivation and theorems to illustrate the properties and boundaries of the COOP.
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Additionally, we show an application of the COOP to quantify the correlation of actin

fibrils and sarcomeric z-lines in disorganized engineered cardiac tissue. Then, to explore self-

assembly we use the COOP in Chapters 3 and 4 to quantify the consistency of subcellular

structure organization in cardiomyocytes in vitro and in silico.
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Chapter 2

Metrics for Assessing Cytoskeletal

Orientational Correlations

and Consistency

1

2.1 Introduction

The architecture and organization of the cytoskeleton components in cells, the cells in

tissues, and cellular ensembles in organs affect function at each of these physiological scales

[65, 32, 12, 58]. The study of architecture is therefore key to understanding how the

cellular microenvironment potentiates function, and may provide new insights in the study

of physiological mechanisms. Furthermore, for proper function, different components of the

cytoskeleton, cell, or tissue need to co-localize and orient properly with respect to each

1Drew et al., 2015 PLoS Comput Biol
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other [22, 10]. Quantifying the degree of orientation of cells and subcellular components,

both relative to themselves and to other components, is thus crucial for evaluating the

quality of engineered tissues [62].

The problem of describing the organization of biological structures is twofold: first, the

orientation of the constructs needs to be quantified from the available images, and second,

a metric needs to be applied to summarize the overall organization. The quantification of

orientation from biological images is in principle straightforward and can be either done

manually [40] or with a variety of computational algorithms [10, 43, 23, 77]. As far as

the second problem is concerned, summarizing the overall organization after image analysis

involves selecting a metric, which is more controversial. As a result, a wide variety of

metrics are utilized in the bio-imaging field. For example, some assume that the parameter

can be described as the standard deviation of a truncated Gaussian, or normal, distribution

[17]. Others use the von Mises circular distribution [43, 23], which is a wrapped normal

distribution. However, cellular and cytoskeleton distributions are often non-Gaussian, and

their being non-Gaussian may be of crucial importance [24].

An alternative metric, the Orientational Order Parameter (OOP), has been developed in

the field of liquid crystals. The OOP is a mathematical construct developed to quantify the

degree of order in anisotropic medias [34]. Mathematically, the OOP is equivalent to resultant

vector length from the circular distribution with a period of π [8]. In biology, the OOP has

been successfully employed to characterize organization of bacteria [75], fibroblasts [66],

vascular smooth muscle [72], actin fibrils alignment in valve endothelial cells [6], and Z-lines

in cardiac muscle [31]. However, there is a lack of a robust correlation metric that has been

characterized for use with biological images. The suite of correlation parameters provided

by circular statistics are either too limited to be used with cytoskeleton organization or so

complex the results are hard to connect back to biological phenotypes [7]. Other correlation

metrics are also not ideal for correlating orientations of the cytoskeleton components, and to
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date no metric has been developed or specifically characterized for this purpose [54, 25, 35].

In this work, we develop a new parameter with similar mathematical framework as OOP

that will characterize both consistency of orientation of a single component and correlation

of orientation of two components. As an example, we apply this Co-Orientational Order

Parameter (COOP) to compare orientation of Z-lines and actin filaments in a neonatal rat

ventricular myocyte (NRVM) monolayer. Lastly, we show how the COOP can be used to

measure the consistency of building a cardiomyocyte on a triangular island of extracellular

matrix (ECM).

2.2 Materials and Methods

2.2.1 Ethics statement

All animals were treated according to the Institutional Animal Care and Use Committee

of UCI guidelines (Animal Experimentation Protocol permit number 2013-3093-0). This

protocol met the guidelines for the use of vertebrate animals in research and teaching of the

Faculty of Arts and Sciences of UCI. It also followed recommendations of the NIH Guide

for the Care and Use of Laboratory Animals and was in accordance with existing federal (9

CFR Parts 1, 2 & 3), state, and city laws and regulations governing the use of animals in

research and teaching.

2.2.2 Implementing COOP calculation

To facilitate the calculation of the COOP we created a custom MATLAB code. The code

was designed to have an input of angles for P and Q organized such that the information of

which pseudo-vectors are paired was not lost. The code outputs were OOPP, OOPQ, COOP,
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COOPu, COOPc, n̂, and θ.

2.2.3 Synthetic data

Synthetic data of isotropic constructs for limiting conditions (Fig. 2.2) was generated using a

random number generator (rand) that provides a uniform distribution of at least 106 random

values in MATLAB. Each construct used in testing COOPu and COOPc (Fig. 2.3) contained

108 random numbers (MATLAB function normrnd) that were normally distributed with the

specified mean and standard deviation.

2.2.4 Experimental data

Microcontact printing and ECM patterns

To make the substrates 25 mm glass coverslips were coated with PDMS (Ellsworth Adhesives,

Germantown, WI) and cured for 12 hours in a 60℃ oven. To create triangular myocytes

we utilized a microcontact printing procedure similar to that described by Tan et al [68].

A mask with the desired pattern was designed using Adobe Illustrator (Adobe Systems

Incorporated, San Jose, CA) and made by Front Range Photomask (Palmer Lake, CO).

The mask was used to make a silicone wafer (Integrated Nanosystems Research Facility,

Irvine, CA). A polydimethylsiloxane (PDMS) stamp, cast from a silicon master, was used to

contact transfer the extracellular matrix (ECM) protein fibronectin (FN) (Fisher Scientific

Company, Hanover Park, IL) onto a UV-sterilized (UVO, Jelight Company, Inc. Irvine, CA)

PDMS-coated coverslip. Fabricated substrates underwent one 10 minute pluronics (250g of

Pluronics F-127, Sigma-Aldrich, Inc., Saint Louis, MO) wash and three rinses of phosphate

buffer-saline (PBS) (Life Technologies, Carlsbad, CA). To make isotropic substrates, UV-

sterilized PDMS-coated coverslip were coated with FN for 10 minutes and underwent three
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PBS washes. The substrates were stored at 4℃prior to NRVM seeding.

Cardiomyocyte culture

Cell cultures of NRVMs were prepared from two-day old Sprague-Dawley rats (Charles

River Laboratories, Wilmington, MA). A mid-sternal incision was made in order to expose

the heart of the neonatal rat for dissection. Ventricular tissue was removed and rinsed in a

Hanks balanced salt solution buffer (Life Technologies, Carlsbad, CA) and placed in 1

mg/mL trypsin solution (Sigma-Aldrich, Inc., Saint Louis, MO) to be shaken overnight (12

hour incubation) at 4℃. The next day, isolated tissue was dissociated into individual cells

by treatment with four separate washes of 1 mg/mL collagenase type II (Worthington

Biochemical, Lakewood, NJ) for two minutes at 37℃. Isolated cardiomyocytes were

resuspended in M199 culture medium (Invitrogen, Carlsbad, CA) supplemented with 10%

heat-inactivated Fetal Bovine Serum, 10 mM HEPES, 20 mM glucose, 2 mM L-glutamine,

1.5 µM vitamin B-12 and 50 U/ml penicillin. The cell solution was filtered with a 40 µm

filter (Thermo Fisher Scientific, Waltham, MA), and the remaining cells were pre-plated

multiple times to eliminate fibroblast contamination. Immediately after purification,

myocytes were plated on substrates (prepared as detailed above) at a density of 106 or 105

cells per well in a standard six-well plate for confluent or sparse cultures, respectively.

These were incubated at 37℃ with a 5% CO2 atmosphere. Seeded cultures underwent a

wash with PBS 24 hours after plating to remove unattached and dead myocytes. They

were then cultured in 10% serum media for another 24 hours at which point the media was

changed to 2% serum media. After a total of 72 hours in culture, the samples were fixed

and immunostained.
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Fixing, immunostaining and imaging

After 3-4 days in culture, confluent monolayers of cardiomyocytes were fixed with 4%

paraformaldehyde (PFA) (VWR, Radnor, PA) with 0.01% Triton X-100 (Sigma-Aldrich,

Inc., Saint Louis, MO) for 10 min, and rinsed three times with PBS in 5-min intervals.

Cardiomyocytes were stained with nuclei acid-sensitive dye

4’,6’-diaminodino-2-phenylinodole (DAPI) (Life Technologies, Carlsbad, CA) for

chromatin, FITC-phalloidin (Alexa Fluor 488 Phalloidin, Life Technologies, Carlsbad, CA)

for actin, monoclonal mouse sarcomeric anti-α-actinin (Sigma-Aldrich, St. Louis, MO), and

polyclonal rabbit anti-human fibronectin (Sigma-Aldrich, St. Louis, MO) and incubated for

a total of 1-2 hours at room temperature. Secondary staining was applied using

tetramethylrhodamine-conjugated goat anti-mouse IgG antibodies (Alexa Fluor 633 Goat

anti-mouse, Life Technologies, Carlsbad, CA) and goat anti-rabbit IgG antibodies (Alexa

Fluor 750 goat anti-rabbit, Life Technologies, Carlsbad, CA) for a 1-2 hour incubation.

After each incubation period, coverslips were rinsed three times with PBS for 5-10 min.

Each coverslip was then mounted onto a microscope slide preserved with prolong gold

antifade reagent (Life Technologies, Carlsbad, CA). The images were collected using an

IX-83 inverted motorized microscope (Olympus America, Center Valley, PA) with an

UPLFLN 40x oil immersion objective (Olympus America, Center Valley, PA) and a digital

CCD camera ORCA-R2 C10600-10B (Hamamatsu Photonics, Shizuoka Prefecture, Japan).

For isotropic monolayers, at least ten fields of view were collected for every sample.

‘Noiseless” image generation

A macro was created in ImageJ that allows the user to select regions without imperfections

in an image. The regions that were not selected became masked, resulting in a series of

images with only regions of interest displayed in the new masked images for every channel
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imaged (for example: DAPI, m-cherry, GFP)(Fig. 2.4). The masked images could then be

analyzed using the same codes used for raw images.

Calculating construct angles

To determine construct angles, we adapted a previous MATLAB code that detects ridges of

a fingerprint [31, 46, 38]. This code was used to detect Z-lines and actin fibers in the images.

In the code, a binary mask applied to the image determined the constructs and a filter was

applied to clean up the constructs that were identified in the images. The code took pixel

information from the images and for every non-empty pixel in the image, a pseudo-vector

was calculated and used to determine the OOP for Z-lines and actin fibrils, as well as a new

set of pseudo-vectors for each square in the grid (Fig. 2.4B,D) These new pseudo-vectors

were then utilized to calculate the COOP between two constructs (i.e. Z-lines and actin

fibrils) or two cells (Fig. 2.4).

Statistics

To calculate the average angle between the constructs (〈θ0〉) and the standard deviation of

those angles (σθ0) across multiple conver-slips, it is essential to keep in mind that the angle

period is π. The simplest way, but not the only way, to generate 〈θ0〉 and σθ0 is to calculate

the director of the director pseudo-vectors n̂ALL of each cover-slip. Meaning that in Eq. (2.2)

−→
ki=n̂i where i is the cover-slip, and the n̂ALL is the the eigenvector of the tensor from

Eq. (2.2) that corresponds to the eigenvalue from Eq. (2.3). The angle for each cover-slip is

then determined as follows

θ0,i =


arccos(n̂i) for π

4
< arccos(n̂ALL) < 3π

4

arcsin(n̂i) for arccos(n̂ALL) > 3π
4

or arccos(n̂ALL) < π
4
.

(2.1)
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The 〈θ0〉 and σθ0 are the average and standard deviation of θ0,i for all cover-silps. Obviously

if the COOP →0 then this procedure is useless as the angles will be inconsistent between

the constructs. However, this procedure is a convenient way to determine the range in which

it is most convenient to report the angle (i.e. 0→π or −π
2
→π

2
). Additionally, there are

two possible angles that can be calculated (Fig. 2.1B). We chose to provide the clock-wise

angle from −→p to −→q , but it is also possible to calculate only the acute angle instead. To

compare the COOP, COOPc, and COOPu in the analysis of the experimental data, the one

way ANOVA with the Student-Newman-Keuls test was used.

2.3 Results

2.3.1 Theoretical Results

One of the main goals of this work was to develop a metric to quantify the correlation between

the orientation of different biological constructs within the cell or tissue. In designing the

new metric, we aimed to overcome the challenge of analyzing orientation of multiple pseudo

vectors, i.e. the metric needed to be symmetric with the period of π for both vectors.

The OOP was designed to analyze the organization of pseudo vectors, and has become a

standard parameter for use in liquid crystals [31]. The OOP ranges from zero, for isotropic,

to one, for aligned mediums (A.1), and it has been applied to various biological systems

[75, 31, 34]. However, the OOP was not designed to evaluate the correlation of orientation

of coupled constructs such as actin fibrils and Z-lines.The first step in creating the COOP

was to formally define the problem. Let the first construct be P , a set of pseudo vectors −→pi ,

and the second construct be Q, a set of pseudo vectors −→qi (Fig. 2.1A). The order tensor and
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OOP of each field is:

TK =

〈
2

ki,xki,x ki,xki,y

ki,xki,y ki,yki,y

− I

〉
= {Mean order tensor}, (2.2)

OOPK = max
[
eigenvalue(TK)

]
= {Orientational order parameter of K}, (2.3)

where K = {P,Q},
−→
ki = {−→pi ,−→qi }, and I is the identity matrix. To construct the new metric,

we defined a new field F (a set of pseudo vectors
−→
fi ):

fi,x = −→pi · −→qi = pi,xqi,x + pi,yqi,y = cos(θ) , (2.4)

fi,y =
∣∣−→pi ×−→qi ∣∣ = pi,xqi,y − pi,yqi,x = sin(θ). (2.5)

Physically, field F represent the angle (θ) between the two biological constructs, −→pi and −→qi .

The metric was then calculated similarly to the OOP:

TPQ =

〈
2

fi,xfi,x fi,xfi,y

fi,xfi,y fi,yfi,y

− I

〉
= {Mean tensor of the system}. (2.6)

COOPPQ = max
[
eigenvalue(TPQ)

]
= {Co-orientational order

parameter of the system} .
(2.7)
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The analytical solution of the COOP is:

COOPPQ =

〈
2
{−→
fi · n̂

}2

− 1

〉
=

〈
2
{−→
fi · n̂

}2
〉
− 1 = 2

〈{−→
fi · n̂

}2
〉
− 1, (2.8)

where n̂, the director, is the eigenvector associated with the maximum eigenvalue of mean

tensor TPQ. The director represents the mean angle between the two constructs.

Alternatively, the COOP can be written in the expended form:

COOPPQ = 〈f 2
i,x〉+ 〈f 2

i,y〉 − 1 +

√(
〈f 2
i,x〉 − 〈f 2

i,y〉
)2

+ 4〈fi,xfi,y〉2. (2.9)

The COOP was designed to range between zero and one. Here we present a series of theorems

that illustrate the various properties of the COOP.

Theorem 1: Demonstration of COOP symmetry

Symmetry is an important characteristic of both the OOP and the COOP because it

alleviates calculation errors that may arise when there is a random choice of signs for the

pseudo vectors (Fig. 2.1B). Symmetry can be easily shown for OOP (A.2). As can be seen

from the anyaltical solution of the COOP (Eq. 2.8), it is only necessary to demonstrate the

symmetry of
{−→
fi · n̂

}2

in π to demonstrate the pseudo-symmetry of the COOP.

Table 2.1 shows the eight possible symmetry permutations. All of these can be reduced to

the same equation with no difference in sign, which proves pseudo-vector symmetry of the

COOP. We also demonstrated that the COOP is symmetric to the switch of P and Q:

f ′
i,x = qi,xpi,x + qi,ypi,y = fi,x and f ′

i,y = qi,xpi,y − qi,ypi,x = −fi,y, (2.10)
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Figure 2.1: Theoretical formulation of the co-orientational order parameter (COOP).(A) The
parameter is based on two independent sets of pseudo-vectors that are co-localized in space; (B) the COOP
is symmetric to all permutations of 180° symmetry associated with the pseudo vectors; (C) the COOP
remains the same if every pseudo-vector in one of the fields is rotated by the same angle; (D) if two identical
fields of pseudo-vectors are compared to each other, COOP = 1; (E) The uncorrelated COOP graphically
defined: −→p and −→q are completely independent of each other, thus a given −→p does not place any limits on
the possible directions of −→q ; (F) Schematic example of two fields that are anti-correlated - parallel at the
ends of the rectangle, yet perpendicular in the middle; (G) The correlated COOP graphically defined: for
any −→p , there exists a range of angles within which the −→q will be positioned; (H) The ultra-correlated case
is similar to the correlated case, but there is also a global organization where the vectors are co-localized
maximal angle to minimal angle; (I) Ranges of COOP and Normalized COOP defined on the top and
bottom of the bar, respectively. The values of the uncorrelated and correlated COOP limits (sliders on
image) are fully defined by the values of OOPP and OOPQ. If the COOPu>0, the region between zero and
COOPu corresponds to the anti-correlated arrangements. If COOPc<1, the region between COOPc and
one corresponds to the ultra-correlated arrangements; (J)(i) and (ii) COOPu and COOPc as a function of
the OOPP and OOPQ respectively; (iii) Maximal allowable error in the OOP for there to be a statistically
significant (p<0.05) difference between COOPu and COOPc if the sample size N=4. (iv) The minimum
sample size, for statistical significance, with OOP error of σOOP =0.04.
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COOPQP = 〈f 2
x〉+ 〈(−fy)2〉−1+

√(
〈f 2
x〉 − 〈(−fy)2〉

)2
+ 4〈−fxfy〉2 = COOPPQ. (2.11)

Symmetry also plays an important role in interpreting the COOP director. There are four

valid results for an angles between two pseudo-vectors: θ0,−θ0, π−θ0, θ0−π (Fig. 2.1B). For

any symmetry permutation the director will correspond to one of these four angles. However,

it is essential that the translation from n̂ to θ0 is handled with this symmetry in mind.

Table 2.1: Symmetry Permutations

−→pi −→qi n̂ {
−→
fi · n̂}2

+ + + {(pi,xqi,x + pi,yqi,y)nx + (pi,xqi,y − pi,yqi,x)ny}2 =

+ + - {(pi,xqi,x + pi,yqi,y)(−nx) + (pi,xqi,y − pi,yqi,x)(−ny)}2 =

+ - + {−(pi,xqi,x + pi,yqi,y)nx − (pi,xqi,y − pi,yqi,x)ny}2 =

+ - - {−(pi,xqi,x + pi,yqi,y)(−nx)− (pi,xqi,y − pi,yqi,x)(−ny)}2 =

- + + {−(pi,xqi,x + pi,yqi,y)nx − (pi,xqi,y − pi,yqi,x)ny}2 =

- + - {−(pi,xqi,x + pi,yqi,y)(−nx)− (pi,xqi,y − pi,yqi,x)(−ny)}2 =

- - + {(pi,xqi,x + pi,yqi,y)nx + (pi,xqi,y − pi,yqi,x)ny}2 =

- - - {(pi,xqi,x +i,y qi,y)(−nx) + (pi,xqi,y − pi,yqi,x)(−ny)}2 =

Result for All = {(pi,xqi,x + pi,yqi,y)nx + (pi,xqi,y − pi,yqi,x)ny}2

Theorem 2: Field rotation does not affect COOP

To verify that rotation of Q with respect to P does not affect COOP (Fig. 2.1C), let

−→pi = [cos(α), sin(α)] and −→qi = [cos(β), sin(β)] . (2.12)
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If each −→qi was rotated by angle ν, the rotated field Qrot would be defined by:

−→q i,rot = [cos(β + ν), sin(β + ν)]

= [cos(β) cos(ν)− sin(β) sin(ν), sin(β) cos(ν) + cos(β) sin(ν)] .

(2.13)

Then the rotated field Frot is:

−→
f i,rot = [fi,x cos(ν)− fi,y sin(ν), fi,y cos(ν) + fi,x sin(ν)]. (2.14)

As the angle ν is constant:

〈fi,rot,x〉 = 〈fi,x〉 cos(ν)− 〈fi,y〉 sin(ν) and

〈fi,rot,y〉 = 〈fi,y〉 cos(ν) + 〈fi,x〉 sin(ν).

(2.15)

In combining equations Eq. (2.14) and (2.9), all terms with ν cancel or are reduced to

cos2(ν)+sin2(ν) = 1. As a result COOProt=COOP. Thus we have proven that field rotation

does not affect COOP, and without loosing generality we can assume n̂p = n̂q = [1, 0]. This

proves that the mean angle between fibers cannot be used to evaluate the correlation of

orientations.

Theorem 3: The same field compared to itself gives COOP of 1

We next proved that the same field compared to itself would obtain a COOP of one

(Fig. 2.1D). Imagine two sets of pseudo vectors distributed in a 2D space, −→pi and −→qi . Let

−→pi = [cos(α), sin(α)] , and −→qi = [cos(α), sin(α)] . (2.16)
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Then, the field
−→
fi of this system can be written as:

fi,x = pi,xqi,x + pi,yqi,y = cos2(α) + sin2(α) = 1 and (2.17)

fi,y = pi,xqi,y − pi,yqi,x = cos(α) sin(α)− sin(α) cos(α) = 0. (2.18)

The mean tensor:

TPQ =

〈
2

fi,xfi,x fi,xfi,y

fi,xfi,y fi,yfi,y

− I

〉
=

〈
2

1 0

0 0

− I

〉
=

1 0

0 −1

 . (2.19)

Therefore, the COOP of constructs P and Q:

COOPPQ = max

[
eigenvalue

(1 0

0 −1

)] = 1. (2.20)

We obtained a COOP of 1 thus constructs P and Q are a perfectly co-oriented system which

is expected as P = Q.

Theorem 4: Uncorrelated COOP Limit

For any given pair of fields with OOPP and OOPQ there is a range of possible COOP values,

with a maximum range of zero to one. To aid in interpreting the meaning of the COOP,

we derived the value for the COOP (COOPu) as a function of the OOPs for the maximally

uncorrelated system. For the COOP to be uncorrelated the two fields needed to have no

correlation between their orientations (Fig. 2.1E). If and only if −→pi and −→qi are assumed

independent and n̂p = n̂q (Theorem 2), the analytical solution Eq. (2.8) can be re-written
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as:

COOPu =
〈

2(pi,xqi,x + pi,yqi,y)
2 − 1

〉
=
〈

(2p2i,x − 1)(2q2i,x − 1)
〉
. (2.21)

Using the classical probability distribution property:

COOPu =
〈

(2p2i,x − 1)(2q2i,x − 1)
〉

=
〈

(2p2i,x − 1)
〉〈

(2q2i,x − 1)
〉
. (2.22)

Based on the definition of the OOP the uncorrelated COOP is:

COOPu =
〈

(2p2i,x− 1)
〉〈

(2q2i,x− 1)
〉

= OOPPOOPQ = {Uncorrelated COOP}. (2.23)

COOPu is the lowest limit of the COOP if and only if the two constructs are independent.

However, if P and Q are correlated in multiple ways it is possible to achieve a smaller value

of COOP.

Theorem 5: Anti-correlated COOP

To prove that COOPu is not necessarily the minimum COOP, we constructed an example

where P was composed of −→p1 and −→p2 , and construct Q was composed of −→q1 and −→q2 :

−→p1 = [cos(α), sin(α)] and −→p2 = [cos(−α), sin(−α)] . (2.24)

−→q1 =
[
cos(α +

π

2
), sin(α +

π

2
)
]

and −→q2 = [cos(−α), sin(−α)] . (2.25)
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Construct P has an OOPP = cos(2α) and construct Q has an OOPQ = |sin(2α)|. The

vector
−→
f is:

f1,x = 0 , f2,x = 1 and f1,y = 1 , f2,y = 0. (2.26)

The mean tensor and COOP of this system are:

TPQ =

0 0

0 0

 and COOP = 0. (2.27)

Using Eq. (2.23) we obtained:

COOPu = OOPP ·OOPQ = cos(2α) |sin(2α)| . (2.28)

Unless, α 6= {0, π
4
, π
2
} · n for n = {1, 2, . . . }, COOPu>0. Thus, the COOP can be lower than

COOPu. Such a case can be graphically imagined if you have constructs correlated in two

different ways in the same cell (Fig. 2.1F), similar to a single cardiomyocyte with punctate

alpha-actinin at the ends and well defined Z-lines in the middle. This demonstrates that,

similarly to the OOP, the COOP will not fully capture second order correlations (A.3).

Theorem 6: Correlated COOP Limit

For the upper limit, we derived the value of the COOP as a function of the OOPs for the

maximally correlated constructs. To determine the correlated COOP (COOPc), we assumed

the two fields, P and Q, were almost identical, except that Q was rotated by a random noise

angle θ (Fig. 2.1G). We can assume, without loosing generality, n̂p = n̂q = [1, 0] (Theorem 2),

and P is better organized (i.e. OOPP>OOPQ, Theorem 1). Using the analytical solutions,
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the OOPP and COOP were rewritten as:

OOPP =
〈

2 cos2(α)− 1
〉

and COOP =
〈

2 cos2(θ)− 1
〉
. (2.29)

As θ was assumed to be random noise generated, θ and α are independent, and therefore:

OOPQ =
〈

2 cos2(α− θ)− 1
〉

=
〈

(2 cos2(α)− 1)(2 cos2(θ)− 1) + 4 cos(α) sin(α) cos(θ) sin(θ)
〉

=
〈

(2 cos2(α)− 1)(2 cos2(θ)− 1)
〉

+
〈

2 cos(α) sin(α)
〉〈

2 cos(θ) sin(θ)
〉

=
〈

(2 cos2(α)− 1)
〉〈

(2 cos2(θ)− 1)
〉

+
〈

sin(2α)
〉〈

sin(2θ)
〉

= OOPPCOOPc.

(2.30)

Solving for COOPc and rewriting it in a more general form we obtained:

COOPc =
min(OOPP , OOPQ)

max(OOPP , OOPQ)
. (2.31)

This is the upper limit of COOP if the two constructs are correlated but are subject to

random biological variance (noise). This would not be the limit in a system where the

variance is not random.

Theorem 7: Ultra-correlated COOP

We also showed that the correlated COOP is not necessarily the maximum. To prove this

we defined P and Q as:

−→pi = [cos(αi), sin(αi)] and −→p n+i = [cos(−αi), sin(−αi)] (2.32)
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−→qi = [cos(αi + θi), sin(αi + θi)] and −→q n+i = [cos(−αi − θi), sin(−αi − θi)] (2.33)

for i = {1, ..., n}. Thus, each set of angles is paired in decreasing order (Fig. 2.1H). OOPP

and OOPQ are defined as:

OOPP =
1

n

n∑
i=1

cos(2αi) where αi :
n∑
i=1

cos(2αi) ≥ 0 (2.34)

OOPQ =
1

n

n∑
i=1

cos(2αi + 2θi) where αi, θi :
n∑
i=1

cos(2αi + 2θi) ≥ 0. (2.35)

Assuming
n∑
i=1

cos(2θi) ≥ 0 the mean tensor is:

TPQ =


2
n

n∑
i=1

cos2(θi) 0

0 − 1
n

n∑
i=1

(2 cos2(θi)− 2)

 . (2.36)

Knowing COOP = 1
n

n∑
i=1

cos(2θi) and the COOPc=
OOPQ

OOPP
:

COOP − COOPc =
1

n

n∑
i=1

cos(2θi)−

n∑
i=1

cos(2αi + 2θi)

n∑
i=1

cos(2αi)
. (2.37)
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If the expression in Eq. (2.37) is positive, then COOP ≥ COOP c. An example of such a

case is when θ is constant and Eq. (2.37) becomes:

COOP − COOPc =

n∑
i=1

sin(2αi) sin(2θi)

n∑
i=1

cos(2αi)
. (2.38)

Based on conditions in Eq. (2.34) and (2.35), 0 ≤ αi ≤ π
2

and 0 ≤ θi ≤ π
2
, which implies

sin(2αi) ≥ 0, cos(2αi) ≥ 0, and sin(2θi) ≥ 0 for all i. Therefore, every term in Eq. (2.38)

is positive. If P is not perfectly aligned (i.e. αi 6= 0), and if P and Q are not identical

(i.e. θi 6= 0), then COOP>COOPc. Thus, there is an ultra-correlated COOP that can be

greater than COOP c. Qualitatively, the ultra-correlated system is similar to the correlated

example, except the −→q vectors are not random within the noise, but are arranged maximum

to minimum angles (Fig. 2.1H).

Normalized COOP

Based on Theorems 4-7 we can divide the range of COOP into three regions (Fig. 2.1I):

anti-correlated, normal, and ultra-correlated. The boundaries of these regions (COOPu and

COOPc) are determined by the organization of the two constructs (OOPp and OOPq) and

will slide along the overall range [0,1]. Experimentally, it might be more relevant to know how

close the COOP is to the uncorrelated and correlated boundaries as these carry biological

implications. We therefore defined a Normalized COOP, which is a measure of how close a

parameter is to COOPu or COOPc:

Normalized COOP =
COOP − COOPu
COOPc − COOPu

. (2.39)

The normalized COOP is negative when it is anti-correlated, zero when the system is

uncorrelated, one when it is correlated, and greater than one when it is ultra-correlated
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(Fig. 2.1I). Any parameter has limitations. For example, the OOP of the red line-segments

in the anti-correlated schematic (Fig. 2.1F) would be equivalent to an isotropic

organization (OOP ∼ 0) even though the red line-segments are well organized. Similarly,

the COOP cannot be used to identify correlations in tissues that have very non-trivial

spatially dependent correlations (more complex than the ultra-correlated case (Fig. 2.1H)).

We believe that most biological constructs for which the COOP has been developed will

never exhibit this behavior. However, if the COOP is ever found to be statistically

significantly greater than COOPc, it will be essential to re-evaluate the applicability of the

parameter.

Estimated maximum tolerable error and minimum sample size

To interpret the information provided by the COOP, we would need to know which region

our tissue falls under. Our ability to do so will be limited by the error inherent in any

measurement and the width of the normal COOP range. COOPu approaches the maximum

(COOPu=1) as both OOPp and OOPq approach one (Fig. 2.1J(i)). COOPc, however,

approaches its maximum when the two order parameters are close to being equal

(Fig. 2.1J(ii)). This shows, for example, that if OOPp=0 and OOPq=0, then the normal

region of the COOP ranges [0,1]. However, if OOPp>0 and OOPq=0, the normal range

does not exist and a COOP>0 would indicate an ultra-correlated system. If the error in

the system is so large that there is no statistically significant difference between the

boundaries (COOPu and COOPc), it would not be possible to differentiate between the

regions. Therefore, for the parameter to be useful, the maximum allowable error and

minimum sample size have to be experimentally realistic. To estimate the error and sample

size, we calculated the propagation of error in COOPu and COOPc, and used them in the

student t-test to calculate statistical significance.

Assuming OOPP and OOPQ are normally distributed with the standard deviation σOOPP
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and σOOPQ
, respectively, and OOPP and OOPQ are independent, then the variance:

σ2
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∂OOPP

)2
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+

(
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)2
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2
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2
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,

(2.40)

and the standard deviation:

σCOOPu =
√
OOP 2

Qσ
2
OOPP

+OOP 2
Pσ

2
OOPQ

. (2.41)

Assuming OOPP>OOPQ, the variance for the correlated COOP:

σ2
COOPc

=

(
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)2
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.

(2.42)

Note that ∂COOP c
∂OOPP

and ∂COOP c
∂OOPQ

2
do not exist when OOPP=OOPQ. However, using Theorem

1, we formulated the estimate for the the standard deviation of COOPc:

σCOOPc =


√(OOPQ

OOP 2
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)2
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OOPP
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(

1
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1

OOPQ

)2
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+
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OOP 2
Q

)2
σ2
OOPQ

: OOPP < OOPQ.

(2.43)

Then to estimate maximum allowable error, we assumed σOOPP
= σOOPQ

, and tested the

null hypothesis of COOPu=COOPc. We calculated the t-value and degrees of freedom to

complete the t-test. We assumed significance for a p-value less than 0.05 for the two sample

t-test. There are two variables that impact significance as a function of OOPs: the error

(σOOP ) and the sample size (N). For visualization, we calculated the maximum allowable

experimental error (max(σOOP )) at sample size of four (Fig. 2.1J(iii)). The maximal

allowable error at N=4 was at its highest, max(σOOP ) = 0.18, for OOPP=OOPQ=0.60,
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which is greater than experimental error reported for OOP organization [24]. While the

maximal allowable error approaches zero as OOP→0, it rapidly increases for OOP>0.

We also determined the minimum sample size that provides statistical significance (p<0.05)

as a function of construct organization for σOOP = 0.04. The minimum sample size ranges

from two to infinity (Fig. 2.1J(iv)). Naturally, when COOPc→COOPu, the min(N) → ∞

as it is not possible to find them significantly different. For σOOP = 0.04, the minimum

sample size is between two and five for most of the OOP values. For convenience, we also

calculated the minimum sample size for a range of higher experimental errors (Fig. A.2).

Obviously higher error would necessitate more samples to maintain significance. However,

errors reported for OOP experimentally correspond to normal requirements in sample size.

The errors and sample sizes were confirmed to be experimentally realistic, thus we next

moved to testing the parameter with synthetic and experimental data.

2.3.2 Synthetic Results

Limiting cases

The first step to validate the new parameter was to construct four limiting cases that

should lead to specific COOP values. We constructed a custom MatLab code that could be

interfaced with experimental or synthetic (computer generated) data. The code was used

to confirm the COOP for four synthetic limiting cases. The first test was to compare two

perfectly aligned constructs (Fig. 2.2A(i)). It was clear from the image that these two

constructs were perfectly correlated, and we therefore expected COOP=1. We first

confirmed that both constructs were perfectly aligned with OOPP=OOPQ=1

(Fig. 2.2A(ii)). Analytically, it is clear that COOP=1, by first applying Theorem 2 and

then Theorem 3. When the synthetic data for this condition was analyzed by the code, the

COOP was confirmed to be one (Fig. 2.2A(iii)). It is worthwhile to note that the director
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generated by the COOP code corresponds to the angle, θ0, between the constructs.

For the second limiting condition, one construct was perfectly organized, while the second

was completely disorganized (Fig. 2.2B(i)). In this case, there was no correlation, and

we expected COOP=0. Analytically, even if we supposed that the two constructs were

maximally correlated (COOP=COOPc) and applied Theorem 6 based on OOPQ=1 and

OOPP=0 (Fig. 2.2B(ii)), the COOP=0. This was confirmed by the result of the synthetic

case (Fig. 2.2B(iii)).

The third case considered two isotropic constructs that are completely uncorrelated

(Fig. 2.2C(i)-(ii)). We expected the COOP for uncorrelated constructs to be zero, and
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analytically this was confirmed by Theorem 4. These findings were also confirmed by the

results of the synthetic data (Fig. 2.2C(iii)).

The fourth, most intriguing case, was of two isotropic constructs, which were perfectly

correlated (Fig. 2.2D(i)-(ii)). We expected the COOP to be one as there was perfect

correlation, and this was proven by Theorem 6. Synthetically we showed the COOP=1,

and again the director gave the average angle, θ0, between constructs. The limiting

conditions validated the parameter for four simple cases. However, the interpretation of the

COOP gets more complex when neither construct is perfectly aligned or isotropic.

COOPu and COOPc demonstrated with synthetic data

To understand the limits of the COOP parameter, we constructed a series of cases with

different organizations by truncation of Gaussian distributions with specified standard

deviations (Fig. 2.3A and 2.3B). We created synthetic data for the uncorrelated case (dark

blue Fig. 2.3C) by generating two separate random number sets using the appropriate

truncated Gaussian distribution for each. For the correlated case (brown Fig. 2.3C), we

generated the first, more organized, data set by the same method. Then the noise was

generated such that when it was added to the first data set, the new set would have the

target distribution. Both methods of creating P and Q data sets lead to the same desired

individual distributions (Fig. 2.3A and 2.3B). To visualize the results we constructed a

slider, sketched in Fig. 2.1I, for each case (Fig. 2.3C) color-coded to indicate the

boundaries, COOPu (dark blue) and COOPc (brown), as well as the three regions:

anti-correlated (light blue), normal (ranging from dark blue to brown), and ultra-correlated

(bright green). We expected that when OOPP=1 (Fig. 2.3A(i)), COOPu=COOPc=OOPQ

for all OOPQ values, which was confirmed by the results of the synthetic data (Fig.

2.3C(i)-(iii)). Also, if one OOP=0 (Fig. 2.3B(i)) and the other OOP 6= 0, the

COOPu=COOPc=0. This was also confirmed with synthetic results (Fig. 2.3C(i) and
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2.3C(iv)). For a case where OOP 6= {0 or 1} the normal range of the COOP was greater if

the OOPs were smaller and closer to each other, which can be seen by comparing

Fig. 2.3C(v) and Fig. 2.3C(vi). These synthetic results confirm the results of Fig. 2.1,

which showed that the COOP parameter is best applied in situations where the correlation

is not obviously dictated by the organization of the individual constructs.

2.3.3 Experimental Results

The COOP was designed as a tool to evaluate correlations of orientation in experimental

samples. We used actin fibers and sarcomeric Z-lines in NRVMs to validate the parameter

and code. The tissues were stained for α-actinin and phalloidin to identify Z-line and actin
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fibril directions, respectively (Fig. 2.4A). The program we used to identify the direction of

the construct was based on a finger-print identification code [38, 46, 10], and it assigned a

direction to every non-empty pixel in the image. However, computing correlation of

constructs based on individual pixels introduced too many errors. Indeed, most images of

cytoskeleton constructs are obtained via immunostaining and imaging. The accuracy of the

COOP will be a direct consequence of image quality. If the images are of poor quality

(poor contrast, dead cells, etc.), it will not be possible to accurately extract the construct

direction data, and thus, the COOP will not be accurate. However, if it is possible to

accurately extract directionality data, the COOP can be used. The images we have

collected for the proof-of-principle data set are representative of the images normally used

to study tissue architecture [10, 31]. The images may be resolvable to different degrees, and

image acquisition procedures can introduce inaccuracies at smaller scales. For example,

during the collection of this data, it is customary to ensure that each channel results in

sharp images of the corresponding construct, such as actin and Z-lines. This sometimes

requires focusing on slightly different planes, and as a result, the images of the same

field-of-view could be slightly off-set from each other. This along with other imaging

inaccuracies lead us to develop a procedure to average out these small errors by calculating

the direction of each construct within grid-squares. While any consistent small grid can be

used for comparing results across multiple tissues, we recommend picking a grid size that

would correspond to a natural biological unit. In this case, the image was partitioned into

a grid (Fig. 2.4B), which was chosen such that at minimum, two Z-lines could be expected

to fit within each grid-square, ensuring that at least one “sarcomere” complex is within

each square (Fig. A.3). The spacing between Z-lines in NRVM tissues is 1.9-2.1 µm[30],

thus we chose a grid size close to 4.2 µm (∼30 pixels). For each grid (i), we calculated the

average direction for both constructs (i.e. Z-lines or actin fibrils) (Fig. 2.4C). To account

for varying densities and partial grid-squares at the edges of the images, the area density

(ρ) was calculated for each grid-square using the number of non zero angles in the
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grid-square divided by its area. Each grid-square (i) was assigned a weight (Wi) based on

the OOP and density of constructs (ρ):

Wi = OOPP,i ·OOPQ,i · ρP,i · ρQ,i. (2.44)

Thus, partial grids with low densities have small weight factors whereas full grids have

high weight factors (length of arrows in Fig. 2.4D). Additionally, grid-squares with better

alignment have higher weights than grid-squares with isotropic organization, which prevents

loss of consistency.

Z-lines and actin fibers were expected to be perfectly correlated within the sarcomeres of the

healthy cardiac muscle tissue. However, histological samples may not be perfect, with some

example imperfections identified in the zoomed-in image of Fig. 2.4C, which correspond to

the non-perpendicular arrows identified in Fig. 2.4D. Note that the lengths of the arrows

correspond to the weights assigned to each square, so these imperfections can significantly

alter the resulting COOP. To test the parameter, we took four coverslips with 10 fields of view

imaged for each and identified noiseless regions with minimal imperfections (Fig. 2.4E-F).

Before any angle detection was done, ImageJ was used to merge fields of view containing Z-

lines and actin fibrils, and regions with minimal imperfections were chosen by an experienced

user. Only merged images that contained four or more regions of minimal imperfections were

used (Fig. 2.4E). This was done prior to the organizational analysis to eliminate bias. The

implementation of the code is summarized in a flow chart (Fig. A.4).

The OOPs for actin fibrils and Z-lines were essentially the same for both the raw and masked

images. We measured no significant difference in the values of COOPu or COOPc between

the full and noiseless data sets (Fig. 2.4G). There was also no significant difference between

COOP and COOPc for the masked, noiseless images. In contrast there was a significant

difference between COOP and COOPc (p<0.001) for the raw images. This is reflected in
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a higher magnification (corresponds to the dashed box in A). Blue boxes point to some
imperfections in the tissue and/or staining with clumps of α-actinin. (D) The skeletonized
Z-lines from the image in (C) overlaid with the direction of actin fibrils (green arrows) and
sarcomere z disks (red arrows) for every grid-square. Note that arrows in blue boxes are not
perpendicular. (E) The image from (C) masked to only show noiseless tissue. (F) The actin
fibril and Z-line directions overlaid on the Z-line skeleton from (E). (G) COOPu, COOP, and
COOPc for noiseless and raw images, (*) indicates statistical significance of p<0.001 between
the raw COOP and raw COOPc. (H) Normalized COOP and mean angle (clockwise from
actin fibril to Z-line) for raw and noiseless images. (I) NRVMs cultured on identical FN
islands. Each image contains a histogram of COOP between that cell and all others (solid-
Z-line, stripe-actin fibril). (J) The average COOP for consistency of Z-line (solid) and actin
fibril (stripe) organization. For (A), (C), (E), and (I) stains are: green - actin, red - α-
actinin, and blue - nuclei. For (G), (H), and (J), error bars represent standard deviation.
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the Normalized COOP which is 1 for the noiseless images and less than 0.5 for the full data

(Fig. 2.4H). This illustrates that while the parameter is capable of capturing the expected

correlation in a sarcomere between actin fibril and Z-line orientation, cardiac tissues may

have imperfections that result in a lower value of COOP. The mean angle for the noiseless

images also shows the expected perpendicular correlation between orientations of sarcomere

Z-lines and actin fibrils with minimal error (Fig. 2.4H). While, they were also approximately

perpendicular in the raw images, the error was greater than for the noiseless images.

The COOP can also be used to evaluate the consistency of construct orientation within cells

of the same shape. As an example we seeded NRVMs on triangular islands, and stained the

samples for nucleus, Z-lines, actin fibrils, and fibronectin (Fig. 2.4I). For analysis we ensured

that the fibronectin islands lined up for all five cells (A.5). Then the Z-line (solid bars) or

actin fibril (dashed bars) images were compared in a pairwise manner (Tables 2.2 and 2.3).

This showed an additional experimental confirmation of Theorem 3: COOP=1 for each cell

when it was compared with itself (Fig. 2.4I). The COOP was calculated for the same grid

as in the isotropic images. The results showed that although there is an overall consistency

between cells, i.e., myofibrils were bundled along the edges of the triangle, the orientation

was not fully consistent at a smaller length scale (grid size). Indeed, the average COOP for

ten pair-wise comparisons (bold in Tables 2.2 and 2.3) of both Z-lines and actin fibrils is less

than 0.5 (Fig. 2.4K). This demonstrated another potential use of this parameter.

Table 2.2: Pairwise comparison of sarcomeric Z-lines consistency

COOPsarc Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1 1.00 0.37 0.33 0.56 0.30

Cell 2 0.37 1.00 0.20 0.05 0.55

Cell 3 0.33 0.20 1.00 0.21 0.09

Cell 4 0.56 0.05 0.21 1.00 0.34

Cell 5 0.30 0.55 0.09 0.34 1.00
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Table 2.3: Pairwise comparison of actin fibrils consistency

COOPactin Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1 1.00 0.83 0.24 0.26 0.76

Cell 2 0.83 1.00 0.23 0.26 0.62

Cell 3 0.24 0.23 1.00 0.48 0.33

Cell 4 0.26 0.26 0.48 1.00 0.61

Cell 5 0.76 0.62 0.33 0.61 1.00

2.4 Discussion

Colocalization, a process that analyzes the spatial overlap between two biological constructs,

has been key in discovering cellular mechanisms that rely on the proximity of constructs

[71, 74]. For example, second-order stereology has been used to analyze spatial arrangements

of constructs in images. Noorafshan et al. used second-order stereology to examine the

correlation between the spatial arrangements of cardiomyocytes and microvessels [54]. Their

method involved pair correlation and cross-correlation functions to determine positive or

negative correlation at different distances. However, neither simple colocalization nor second-

order stereology do not analyze the relative orientations of biological constructs.

In this work, we have developed a new parameter, COOP, to characterize how two tissue

components align with respect to each other. The COOP would allow for investigation of

mechanisms or functions that rely on not only spatial proximity, but also specific

organizational schemes. To properly interpret the meaning of the parameter values, we

characterized it through a series of analytical theorems. As a result, we defined three

regimes – normal, ultra-correlated, and anti-correlated – that have biological implications.

After validating the parameter with synthetic data, we demonstrated its use with

experimental images by showing that perfect portions of cardiac tissues have the expected

correlation of the orientation between sarcomeric z-discs and actin fibrils. The reduction in
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the COOP for un-masked (raw) data suggests that the defects in the architecture will be

distinguished by our new method (Fig. 2.4G-H). The code we have developed can also be

used to calculate the mean angle between constructs thus allowing for tracking of mean

angle changes as a function of experimental conditions. Furthermore, the parameter can be

used to calculate the consistency of orientational organization to help evaluate the

importance of orientational order.

To compare organization between different experimental conditions, it is necessary to have

a robust metric. The best metrics place the least number of constraints on the distribution

of orientations. For example, the standard deviation is not an appropriate metric for

quantifying orientation distribution of Z-lines as they are not distributed normally. The

OOP works with all types of distributions, and it has an additional benefit of being

symmetric to pseudo-vectors [34]. As the COOP was designed with similar math, it shares

the same benefits as the OOP such as pseudo-vector symmetry.

In general, there are multiple ways to use mathematical functions to analyze the properties

of images. For example, Feng et al. use normalized cross-correlation to compare two images

with a possible rotation or change in scale [25]. Their method involves identifying a relatively

small number of points of interest and matching the comparison based on them. The Feng et

al. method is insensitive to the rotation of the whole image (i.e. rotation plus translation),

while the COOP method is insensitive to the rotation of all vectors without translation. The

normalized cross-correlation is a powerful tool, but not appropriate whole cell architectural

metric, the COOP is therefore useful for comparing consistency in similarly shaped cells with

matching ECM islands, but cannot be used to identify the same cell that has been re-scaled

and rotated. Another example of mathematical tools for image analysis is a set of a non-

parametric circular statistics tests such as Watson’s U2
n test, which is designed to evaluate

the probability that a sample comes from a specific distribution or that two samples come

from the same distribution. For instance, non-parametric circular statistics has been utilized
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to evaluate if a pattern of migration of different objects is the same [78, 59]. However, these

tests do not consider the location of each sample pair, thus while the results can correspond

to the COOP in very special situations these parameters address fundamentally different

questions. Thus, these circular statistics tests are not a good tool to evaluate orientational

correlation of co-localized pseudo-vectors.

There are specific cases where the COOP will correspond to other parameters. For

example, the OOP has been used to quantify the organization of the bacterial population

in a channel with respect to the channel direction [75]. Indeed, this is equivalent to a

rudimentary case of the COOP where one of the constructs, the channel, is perfectly

organized (Fig. 2.3C(ii)-(iii)). The COOP is more general in that it can be used when

neither construct is perfectly organized. Circular statistics tool-sets include some

correlation metrics [35], such as the circular correlation coefficient [7] which corresponds to

the COOP in the same case. Specificically the circular correlation coefficient can only be

used for uniform distributions (i.e. isotropic tissues). In that special case, the circular

correlation coefficient and the COOP converge to the same equation (A.5). However, the

more general vector formulation of the circular correlation coefficient, while not constrained

to a uniform distribution, is very complex, and thus cannot be easily characterized the way

we have done for the COOP. This circular correlation coefficient would not be a convenient

metric for cytoskeleton or cellular orientation quantification. The COOP can be calculated

so long as two sets of angular distributions and their locations are known, and it has been

extensively characterized. Thus, this new parameter can be used with a multitude of

biological systems.

In a healthy, properly functioning cell or tissue, the cytoskeleton needs to be organized in an

intricate manner. In disease, loss of this organization leads to reduction in function, such as

the myofibril organization changes in dilated cardiomyopathy [37, 76, 4]. However, proper

organization of one element in a cell or tissue is not sufficient. The multiple constructs
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have to be properly organized with respect to each other, and that organization can have

biological implications. This has been shown to occur during maturation of myocytes where

the α-actinin is initially punctate and parallel to actin fibrils, but, in mature cardiomyocytes,

becomes part of the newly formed sarcomeric Z-lines, which are perpendicular to actin fibrils

[60]. In this case the relative orientation of α-actinin staining and actin fibrils indicates the

progressive maturation of myofibrils. An additional example where orientation of different

constructs affects each other is when the organization of the extracellular matrix can be used

to control the architecture of cells [32, 24, 69]. Conversely, cells have been shown to change

the orientation of the extracellular matrix fibrils [33]. Another instance of organization

correlation can be found in the different cell types and collagen fibrils within heart valves [1].

The common use of such metrics as the OOP and COOP for biological and medical sciences

will allow for a quantitative evaluation of tissue engineered substrates from a variety of cell

sources. Combining such metrics with histology will create a universal evaluation metric

between in vitro and in vivo systems favorably impacting our ability to design replacement

tissues, to create in vitro drug testing platforms, and to evaluate pathological reports in the

clinic.

40



Chapter 3

Multi-Scale Characterization of

Cardiomyocyte Architecture in vitro

2

3.1 Introduction

The mechanical pumping of the heart is indisputably a function of the multi-scale

architecture of the myocardium [36, 37, 73]. In cardiac tissue engineering, recapitulating

this architecture over multiple length-scales has been one of the barriers to the utilization

of stem-cell derived cardiomyocytes for fixing the heart and to the creation of in vitro

platforms for testing cardiotoxicity of pharmaceuticals [62, 26]. For both of these

applications, it is increasingly evident that the architecture of the scaffold affects maturity

of cells, gene expression levels, and various functional outputs [16, 12, 11, 50, 24, 64, 63].

One affected function is the cells ability to self-assemble into a tissue with optimized

2Drew et al., accepted 2016 J Biomech Eng
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contractile properties. Learning to leverage the cells’ self-assembly capability would allow

for tissues to be engineered with minimal input. However, to accomplish this it is necessary

to quantify the tissue architecture over many scales and identify the essential cues that

promote recapitulation of native tissue structure in engineered cardiac tissue.

During normal development, the heart macro-structure evolves from a tube into a consistent

anatomy composed of four chambers wrapped with helical fibers [12, 11, 50, 48, 27, 49, 65].

Similarly, normal primary single cardiomyocytes interrogated for a response to geometrical

extracellular matrix (ECM) cues will produce qualitatively consistent structures [32, 61].

However, it is unclear if this consistency holds over all length-scales, and no one has been

able to reliably quantify this. Previously, quantifying orientation of architecture in cells has

been done using various computational algorithms [10, 43, 23, 77, 51, 44, 79, 52]. Also,

prior studies used a variety of metrics to analyze their results that were based on different

statistical distributions such as Gaussian [24, 43, 23, 44, 52, 17]. Yet, organizations of

structures in cardiac cells are not often normally distributed and one of the best suited

parameters for this task is the orientational order parameter. While initially developed for

the field of liquid crystals, this parameter has been extensively used to quantify organization

in biology [34, 66, 72, 6, 31]. Still, there is no standard method to measure architecture

consistency of various structures (actin fibrils, sarcomeric z-lines) over multiple scales to

ensure that in vitro cells and tissues recapitulate the condition of interest. Quantifying this

architecture would also allow us to answer important questions about cells’ self-assembly

mechanisms. To properly build in vitro replicas, it is also essential to quantify the consistency

of different subcellular structures organization. This is evident from observing the orientation

of α-actinin structures (protein in the z-lines of the myofibril) and the actin fibrils. In

development, these two evolve from parallel, punctate, in stress fibers to perpendicular z-

lines in myofibrils [22]. In sum, to control the mechanics of engineered heart tissues, it is

essential to understand multi-scale consistency of architecture of various structures in cardiac

muscle.
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The heart architecture has been extensively studied for decades [36, 24, 65, 31, 70, 45, 20].

However, the complex nature of the structures that form the heart makes it challenging to

quantitatively describe architecture in a consistent manner. This consistency is essential

as the field begins to rely more on cardiac cells and tissues engineered from stem cells

[26, 41]. Currently, one popular choice is using induced pluripotent stem cell (iPS) derived

cardiomyocytes. However, it has been shown that iPS derived cardiomyocytes do not have

all of the functional and structural properties of primary cardiomyocytes [42, 61]. In order to

determine why iPS derived cardiomyocytes are different it is necessary to fully understand

the cytoskeletal architecture in cardiomyocytes. Yet, the mechanisms behind self-assembly

and self-reorganization of cytoskeletal elements within cardiomyocytes remain unknown. To

address this uncertainty, we demonstrate how the co-orientational order parameter [20] can

be used to elucidate cardiac cell architecture over multiple scales. The qualitative observation

of consistent self-assembly as a function of cellular shape was tested over multiple subcellular

length-scales, and was found to have implications on these cells contractile function. In

addition, we hypothesized that there exists a spatial scale at which there is a distinct change

in the consistency of self-assembly and that this spatial scale is constant for cells cultured on

ECM islands of any size then the mechanism behind self-assembly is a bottom-up assembly

(focal adhesion → actin architecture → force distributions). In all, this work illustrates the

challenge of recapitulating the non-simplistic multi-scale architecture of cardiac cells, but

also its importance in creating engineered tissues with proper mechanical function.

3.2 Materials and Methods

Standard methods were used to prepare cells and tissues for structure characterization [32,

20]. Here, we describe them briefly.
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3.2.1 Substrate Preparation

Glass coverslips (Fisher Scientific Company, Hanover Park, IL) were sonicated in a 95%

ethanol solution for 30 minutes. These coverslips were then spin-coated in

polydimethylsiloxane mixed at a 10:1 ratio with curing agent (PDMS, Ellsworth Adhesives,

Germantown, WI). The coverslips with PDMS coating were cured at 65℃ overnight.

3.2.2 Extracellular Matrix Printing

Stamp designs were drawn using Adobe Illustrator software (Adobe Systems Inc., San Jose,

CA). The designs were etched into 5x5 chrome with soda-lime glass masks by a third-party

vendor (FrontRange Photo Mask Co., Palmer Lake, CO). Silicon wafers were made through

SU-8 deposition using the glass masks in the Bio-Organic Nanofabrication Facility

(University of California, Irvine). In order to create the stamps, silicon wafers were covered

in 60-80g of PDMS. It was then cured at 65℃ overnight and peeled from the wafers.

Thereafter, the square patterns regions were cut out and stored for use as stamps. The

stamps were sonicated and incubated for 1 hour with 0.1 mg/mL drops of fibronectin

(Fisher Scientific Company, Hanover Park, IL) placed on top of the patterned faces. Prior

to applying fibronectin to the coverslips, the coverslips were UVO-treated. Then the

coverslips were incubated in 1% pluronic acid solution (5g Pluronics F-127, Sigma Aldrich,

Inc., Saint Louis, MO, dissolved in 500 mL sterile water) for 10 minutes in order to block

cell adhesion between regions of fibronectin. After these steps, coverslips were rinsed in

Phosphate Buffered Saline (PBS) (Life Technologies, Carlsbad, CA) three times and kept

in PBS until cell seeding.
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3.2.3 NRVM Harvest and Seeding

All animal protocols were reviewed and approved by the University of California, Irvine,

Institutional Animal Care and Use Committee (Protocol No. 2013-3093). Neonatal Sprague-

Dawley rats (Charles River Laboratories, Wilmington, MA), 1-3 days postpartum, were

sprayed with 95% ethanol and decapitated. The hearts were rapidly removed and trimmed in

Hanks Balanced Salt Solution (HBSS) (Life Technologies, Carlsbad, CA). Once all hearts (10

per harvest) were dissected, they were incubated at 4C overnight (12 hours) in a 1 mg/mL

trypsin solution (Sigma-Aldrich, Inc., Saint Louis, MO) dissolved in HBSS. The trypsin

solution was then removed and tissue was neutralized in warmed M199 culture medium

(Invitrogen, Carlsbad, CA) supplemented with 10% heat inactivated Fetal Bovine Serum,

10mM HEPES, 20 mM glucose, 2 mM L-glutamine (Life Technologies, Carlsbad, CA), 1.5

µM vitamin B-12 and 50 U/ml penicillin (Sigma-Aldrich Inc., Saint Louis, MO). The media

was removed and the tissue was dissociated through several washes of 1 mg/mL collagenase

dissolved in HBSS. The collagenase cell solutions were then centrifuged at 1200 rpm for

10 minutes. The supernatant was aspirated and cells were re-suspended in chilled HBSS.

The HBSS cell solution was centrifuged at 1200 rpm for 10 minutes. The supernatant was

aspirated and cells were re-suspended in warm 10% FBS M199. The cells were purified in

three pre-plate steps, including 45-minute incubations in two different cell culture flasks and

a 40-minute incubation in a third cell culture flask (BD Biosciences, San Diego, CA) within

a tissue culture incubator. Cells were counted using a disposable hemocytometer (Fisher

Scientific, Waltham, MA) and seeded at a density of 1.5x105 or 2.5x105 cells per 3 mL for

single cell shape coverslips.

The samples for every experiment were cultured in standard incubator conditions. The dead

cells were washed off the samples 24 hours after seeding when media was refreshed with 10%

FBS M199 media. The media was replaced by 2% FBS M-199 media 48 hours after seeding

to maintain the cardiac myocytes without rapidly increasing the fibroblast population.
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3.2.4 Fixing and Staining

After 72 hours in culture, the samples were fixed in 4% paraformaldehyde (PFA) (Fisher

Scientific Company, Hanover Park, IL) supplemented with 0.001% Triton X-100 (Sigma

Aldrich, Inc., Saint Louis, MO). The samples were each stained for a combination of the

following: actin (Alexa Fluor 488 Phalloidin, Life Technologies, Carlsbad, CA), sarcomeric

α-actinin (Mouse Monoclonal Anti-α-actinin, Sigma Aldrich, Inc., Saint Louis, MO), nuclei

(4,6-diaminodino-2-phenylinodole (DAPI), Life Technologies, Carlsbad, CA), fibronectin

(polyclonal rabbit anti-human fibronectin, Sigma Aldrich, Inc., Saint Louis, MO).

Secondary staining was done using the appropriate pairs including:

tetramethylrhodamine-conjugated goat anti-mouse IgG antibody (Alexa Fluor 633 Goat

Anti-Mouse, Life Technologies, Carlsbad, CA), and goat anti-rabbit IgG antibodies (Alexa

Fluor 750 goat anti-rabbit, Life Technologies, Carlsbad, CA). Coverslips with stained cells

were mounted onto glass cover slides (VWR, Radnor, PA) with ProLong Gold Antifade

Reagent (Life Technologies, Carlsbad, CA) to prevent stain bleaching. Nail polish

(Electron Microscopy Sciences, Hatfield, PA) was then used as sealant along the edge of

each coverslip. The sealant was allowed to dry overnight.

3.2.5 Imaging

Cover slides with immunostained samples were imaged on an IX-83 inverted motorized

microscope (Olympus America, Center Valley, PA) mounted with a digital CCD camera

ORCA-R2 C10600-10B (Hamamatsu Photonics, Shizuoka Prefecture, Japan) using an

UPLFLN 40x oil immersion objective (Olympus America, Center Valley, PA).
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3.2.6 Image Analysis: Single Cells

Image analysis of single cells was performed using previously created customized MATLAB

codes. These codes were used to determine construct orientation and calculate the COOP

[20]. Grid squares were placed over the entire image and the director, i.e. average orientation,

was calculated in each grid square. The area of the cells was approximately 1250 µm2 and

2500 µm2, which is equivalent to a length-scale of 35 µm and 50 µm respectively. Therefore,

the possible sizes of the grid squares used to analyze single cardiomyocytes could range from

1 µm to 35 µm or 1 µm to 50 µm. We chose the large length scale (21 µm) for cells with area

∼1250 µm2 by determining the largest scale that contained a minimum of two orientation

angles within two grid squares for all cell shapes. The large length scale (29 µm) for cells

with area ∼2500 µm2 was determine using the same method used to select cells with area

∼1250 µm2 large length scale. Pairwise comparisons were used to quantify the consistency

of cardiomyocytes of same shape and aspect ratio.

3.2.7 Statistics

To determine statistical significance, one-way ANOVA was used with the Holm-Sidak

post-hoc test, which is commonly used for pairwise comparison of experimental groups.

Significance was considered for an unadjusted p-value less than the critical level, which

accounts for the number of comparisons.

3.2.8 EC50 and AUC

To determine spatial scales where a distinct change in consistency could be seen for the

differently shaped cardiomyocytes, the EC50 was calculated from fitting the average COOP

values at multiple length scales from 1 µm to 35 µm or 1 µm to 50 µm with a four parameter
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logistic curve. Also, the normalized COOP was calculated at every length scale based on

(Eq. 3.1):

normalized COOP =
x− a
b− a

(3.1)

where x is the original COOP value, a is the COOP at that length scale 1 µm and b is the

the COOP at either 21 µm or 29 µm. Then to the fit the normalized COOP data at multiple

length scales the four parameter logistic curve was used and the area under the parametric

curve (AUC) was calculated. The AUC was also used to explore and determine if there was

spatial scales of distinct change in consistency for all of the differently shaped cells.

3.3 Results

Characterizing cardiac muscle architecture is inherently a multi-scale problem. To address

this, the consistency of self-assembly of single cardiomyocytes over multiple length-scales

was considered. There are three questions of interest when considering single cells: (1) how

does consistency of self-assembly change in a multi-scale way, (2) how does extracellular

matrix (ECM) cues affect consistency of self-assembly and (3) how does size of ECM affect

consistency of self-assembly? In cell shapes with parallel fibers (i.e. rectangles with high

aspect ratio) it is possible to evaluate consistency based on the variance of a simple order

parameter. For cells that have un-aligned myofibrils (i.e. squares) the orientational order

parameter (OOP) would be always low, and the variance would be independent of

consistency. To overcome this, the co-orientational order parameter (COOP) was utilized

to evaluate consistency of self-assembly in cells of various shapes, aspect ratios, and sizes.

This provided a method to evaluate consistency as a function of scale in single

cardiomyocytes by culturing neonatoal rat ventricular myocytes (NRVMs) on fibronectin

islands of rectangles, ovals, and triangles of various aspect ratios and sizes (Table 3.1 and
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Figure 3.1: Example of Actin fibril consistency in NRVM with area ∼1250µm2.(A)
Images of stained NRVMS cultured on various shaped FN islands. The stains in the images
are green for actin, red for alpha-actinin, and blue for nuclei. (B) The average COOP
for consistency of actin fibril organization at different area and length-scales in rectangular
shaped NRVMs with an aspect ratio∼11. Scale bars=10 µm.

Fig. 3.1A).

3.3.1 Cells with Area ∼1250 µm2

The COOP was calculated to quantify consistency of actin fibrils and sarcomeric z-lines for

a variety of subcellular length-scales (Fig. 3.1B). For all shapes, the COOP varied from low

values at small length-scales to high values at large length-scales (Fig. 3.2). To summarize,

the consistency data of actin fibrils and sarcomeric z-lines in cells with area ∼1250 µm2

was plotted for all shapes at a small length-scale of ∼1 µm (Fig. 3.2A and Fig. 3.3A) and

at a large length-scale of ∼21 µm (Fig. 3.2B and Fig. 3.3B). Consistency of self-assembly

at the small scale (∼1 µm) was highly dependent on the aspect ratio of the ECM island

(Fig. 3.2A and Fig. 3.3A). Furthermore, consistency of actin fibrils was significantly different

between circles (ovals with aspect ratio of 1) and various shapes with an aspect ratio of ∼1

(Fig. 3.2A). This difference in circular shaped cardiomyocytes could be due to the rotational

symmetry of the shape. Actin fibril consistency in triangular cells with an aspect ratio of

1.95 were significantly different than oval shaped cells with aspect ratios of 1.70 and 2.45
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(Fig. 3.2A). Also, the consistency of actin fibrils in triangular cells with an aspect ratio of 3.02

were significantly different than oval shaped cells with an aspect ratio of 3.58 (Fig. 3.2A).

Additionally, actin fibril consistency in oval shaped cardiomyocytes with aspect ratios of

13.49 and 15.06 were significantly different than rectangular cardiomyocytes with an aspect

ratio of 14.20 (Fig. 3.2A). In fact, at this small scale, the consistency of actin fibrils settles at

an aspect ratio of ∼6, which correlates with the known relationship between force and aspect

ratio [47]. The average COOP at a scale of 1 µm for shapes with aspect ratios AR > 5.5 was

0.87 and 0.39 for actin (Fig. 3.2A) and sarcomeric z-lines (Fig. 3.3A), respectively. Except for

the circle, the shaped NRVMs were consistent at length-scales of ∼21 µm (area=441µm2) and

above, with an average COOP of 0.98 and 0.87 for actin (Fig. 3.2B) and sarcomeric z-lines

(Fig. 3.3B), respectively. The oval with an aspect ratio of one, i.e. a circle, was shown to be

less consistent than other shapes at large scales (Fig. 3.2B and Fig. 3.3B) because it has the

added challenge of shape rotational symmetry, but it has also been inconsistent qualitatively

[32]. For all other shapes, the qualitative observation of consistent cell self-assembly of actin

fibrils was confirmed by this data for large length-scales. This data illustrated that it is

possible to elucidate the self-assembly consistency in single cells, but architecture in larger

single cells needed to be characterized as well.

3.3.2 Cells with Area ∼2500 µm2

In fact, we explored actin fibril and sarcomeric z-line consistency in cardiomyocytes with

bigger areas (∼2500 µm2). The average COOP for actin fibirls and sarcomeric z-lines was

calculated at the small length scale of ∼1 µm for these bigger cardiomyocytes of various

shapes (e.g. rectangles, ovals, and triangles) (Fig. 3.4A-F). Similar to cells with smaller areas,

the consistency of self-assembly for cells with larger areas was highly dependent on aspect

ratio at this small scale. Furthermore, at ∼1 µm there was significant difference between

actin fibril consistency for rectangles and ovals with aspect ratios of 1.00 (Fig. 3.4A,C). Also,
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Table 3.1: The single cell shapes. Shape types, their aspect ratios, and the sample size
for each.

Type of Shape Aspect Ratio Sample # Area 1250 Sample # Area 2500
rectangle 1.00 6 8
rectangle 3.26 0 4
rectangle 3.45 5 0
rectangle 5.77 4 0
rectangle 5.91 0 4
rectangle 9.50 6 0
rectangle 10.69 5 0
rectangle 13.20 0 3
rectangle 14.20 5 0

oval 1.00 6 5
oval 1.75 5 0
oval 2.10 0 5
oval 2.45 6 0
oval 3.47 0 6
oval 3.58 6 0
oval 8.59 0 3
oval 8.78 4 0
oval 13.49 8 0
oval 15.06 5 0

triangle 60° 1.15 5 4
triangle 30° 1.83 7 0

triangle 30° 1.93 0 6
triangle 90° 1.95 7 0

triangle 90° 3.05 0 5
triangle 120° 2.96 0 4
triangle 120° 3.02 4 0
triangle 10° 5.57 4 0

triangle 10° 6.10 0 4
triangle 150° 5.46 0 4
triangle 150° 5.75 5 0
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triangles with aspect ratio 3.05 actin fibril consistency was significantly different from other

shapes with similar aspect ratios and areas of ∼2500 µm2 (Fig. 3.4A,C,E). Actin fibril and

sarcomeric z-line consistency was also calculated at ∼21 µm as well (Fig. 3.5A-F). At ∼21

µm, there was no significant difference between actin fibril or sarcomeric z-line consistency

of various shapes with similar aspect ratios and areas of ∼2500 µm2 (Fig. 3.5A-F).

Since these cardiomyocytes are twice the size of the smaller cells we also explored actin fibril

and sarcomeric z-line consistency at a larger length scale (∼29 µm) (Fig. 3.6). At this large

scale of ∼29 µm there was significant difference between actin fibril consistency of rectangles

with an aspect of 1.00 and triangles with an aspect ratio of 1.15 (Fig. 3.6A). Also, ovals with

an aspect ratio of 3.47 were significantly difference from triangles with an aspect ratio of

3.05 (Fig. 3.6A). However, at ∼29 µm there was no significant difference between sarcomeric

z-line consistency of various shapes of similar aspect ratios and areas (Fig. 3.6B).

3.3.3 Comparing Cells with Different Areas

In addition, we compared the consistency of actin fibrils and sarcomeric z-lines in similar

shapes with different areas (Fig. 3.4 and Fig. 3.5). At the small scale (∼1 µm), there

was no significant difference between shapes of similar aspect ratios with different areas for

actin fibril consistency (Fig. 3.4A,C,E). However, for sarcomeric z-line consistency there was

significant difference between ovals with similar AR > 1.00 with different areas (Fig. 3.4D).

Also, sarcomeric z-line consistency for triangles of different areas with a top angle of 120 and

150 degrees were significantly different at ∼1 µm (Fig. 3.4F). Additionally at this scale there

was a significant difference between rectangles of different areas with aspect ratios of ∼3 for

sarcomeric z-lines (Fig. 3.4B). In sum, sarcomeric z-line consistency was effected by ECM

island size for ∼44% (7/16) of the shapes. Similarly, we compared the consistency of actin

fibrils and sarcomeric z-lines at the length scale of ∼21 µm for similar shapes with different
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Figure 3.4: Consistency for differently shaped cardiomyocytes with a variety of
aspect ratios and areas at 1 µm. (A) The average COOP for consistency of actin
organization for rectangular cells. (B) The average COOP for consistency of sarcomeric
z-lines organization for rectangular cells. (C) The average COOP for consistency of actin
organization for cells shaped into ovals. (D) The average COOP for consistency of sarcomeric
z-lines organization for cells shaped into ovals. (E) The average COOP for consistency of
actin organization for triangular cells. (F) The average COOP for consistency of sarcomeric
z-lines organization for triangular cells. inset of (E) shows aspect ratios for the isosceles
triangle shapes. Green colored cells have an area of ∼2500 µm2 and yellow colored cells have
an area of ∼1250 µm2.
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Figure 3.5: Consistency for differently shaped cardiomyocytes with a variety of
aspect ratios and areas at 21 µm. (A) The average COOP for consistency of actin
organization for rectangular cells. (B) The average COOP for consistency of sarcomeric
z-lines organization for rectangular cells. (C) The average COOP for consistency of actin
organization for cells shaped into ovals. (D) The average COOP for consistency of sarcomeric
z-lines organization for cells shaped into ovals. (E) The average COOP for consistency of
actin organization for triangular cells. (F) The average COOP for consistency of sarcomeric
z-lines organization for triangular cells. inset of (E) shows aspect ratios for the isosceles
triangle shapes. Green colored cells have an area of ∼2500 µm2 and yellow colored cells have
an area of ∼1250 µm2.
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Figure 3.6: Actin and Sarcomeric z-line consistency for various aspect ratios in
cells with area ∼2500 µm2 at 29 µm. The average COOP for consistency of actin fibril
(A) and sarcomeric z-lines (B) organization for different aspect ratios at the large length-scale
of 29 µm.

areas (Fig. 3.5A-F). At ∼21 µm, there was only a significant different between rectangles

of different areas with an aspect ratio of 1.00 for actin fibrils consistency (Fig. 3.5A). Also,

there was a significant different between rectangles of different areas with an aspect ratio

of 1.00 for sarcomeric z-line consistency at ∼21 µm (Fig. 3.5B). As well as a significant

different for sarcomeric z-line consistency between ovals of different areas with similar aspect

ratios greater than one (Fig. 3.5D). Overall, at the length scale of ∼21 µm, ECM island size

only had an effect on acitn fibril consistency for ∼0.06% (1/16) of the shapes. Whereas,

sarcomeric z-line consistency was shown to be effected by ECM island size for ∼31% (5/16)

of the shapes.

3.3.4 Spatial Scale of Distinct Change in Actin Consistency

In order to determine if there was a spatial scale of distinct change in actin fibril

consistency we calculated the EC50 for the various shapes with different areas

(Fig. 3.7A,B,C). EC50 values for rectangular and oval shaped cells appeared to be linear

with aspect ratio (Fig. 3.7A,B). However, EC50 values did not appear to be linear with
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aspect ratio for triangular shaped cardiomyocytes (Fig. 3.7C). Furthermore, the EC50

value was extremely high and unrealistic for larger triangles with an aspect ratio of 1.15

(Fig. 3.7C). Therefore, we were not able to determine if there was a distinct change in actin

fibril consistency from the EC50 values. Thus, we calculated the area under the curve

(AUC) for the various shapes with area of ∼1250 µm2 (Fig. 3.8A) and an area of ∼2500

µm2 (Fig. 3.8A) to determine if there was a distinct change in actin fibril consistency. The

AUC ranged from 14 to 19 for rectangular and oval shaped cells with an area of ∼1250

µm2 (Fig. 3.8A). Whereas, rectangular and oval shaped cells with an area of ∼2500 µm2

had AUC values that ranged from 16 to 25 (Fig. 3.8B). Triangular shaped cells with an

area of ∼1250 µm2 had AUC values that were more dispersed that ranged from 9 to 16

(Fig. 3.8A). In addition, AUC values were dispersed and ranged from 14 to 28 for the

bigger triangular shaped cells with an area of ∼2500 µm2 (Fig. 3.8B). To summarize the

AUC results we calculated the average AUC for each shape for both areas (Fig. 3.9). We

found there was no significant difference between the average AUC for rectangular and oval

shaped cardiomyoycte with different areas (Fig. 3.9). Conversly, the average AUC for

triangular shaped cells was significantly difference between cells with area ∼1250 µm2 and

∼2500 µm2 (Fig. 3.9). Overall, our results show that the average AUC was constant for 2

out of 3 (66%) ECM island shapes of different sizes.

3.4 Discussion

In this work we illustrated the use of one order parameter, the co-orientational order

parameter [20] in characterizing multi-scale organization of engineered cardiac cells.

Indeed, there were other metrics that could have been used to summarize orientation

properties from data obtained through image analysis that are based on a variety of

functions. For example, there are different statistical metrics based on different
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distributions that were used to quantify orientation data [17, 43, 23] or multiple image

correlation methods to compare images [15, 25, 54, 35]. However, the COOP was chosen

because it is mathematically appropriate to interpret data from biological tissues and, by

now, have been widely characterized for the use in cardiac tissues [20]. These methods and

software could have also been used on immunostatined images of fibronectin as well [5],

however examining ECM was beyond the scope of this paper.

There have been many models of single cell self-assembly, but they have mostly relied on

a qualitative view of cytoskeletal architecture for validation [32, 19, 55, 21]. The ability to

quantify consistency displayed in this work provides a tool for future models not only to

be validated quantitatively, but to be assessed at multiple length-scales (Fig. 3.1B). Indeed,

by considering architecture over multiple length-scales, we discovered that the highest actin

fibril consistency at smaller subcellular length-scales was observed with high aspect ratios,

e.g. elongated cells, without sharp corners of the ECM island. Therefore, at small length-

scales in order for actin fibrils to consistently self-assemble it is more advantageous for cells

to be a smooth elongated shape. The consistency settled at a very high value for the small
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subcellular scale of 1 µm when the aspect ratio is above ∼6 (Fig. 3.2A and Fig. 3.4A,B,C).

This has an interesting correlation with the TFM data showing a maximum force produced

by cells with an aspect ratio of 6-7 [47]. Thus, in order to produce reliably high forces the

cell needs to be assembled consistently within areas that range 1µm2 ∼400 µm2 (Fig. 3.2), or

conversely, given proper guidance, cardiomyocytes can be assembled very consistently with

areas of 3 orders of magnitude in scale. In addition, we observed that actin fibril consistency

at both length scales 1 µm and 21 µm, (Fig. 3.4A,C,E and Fig. 3.5A,C,E) were similar

between cells of similar shapes and aspect ratios with different areas. Overall, at both of

these scales, the consistency of actin fibrils was not signficantly different for ∼99% of shapes

with similar aspect ratios with different areas. Thus, we discovered that self-assembly of

actin fibrils does not depend on the size of the ECM island (Fig. 3.4A-F and Fig. 3.5A-F).

Furthermore, using the area under the curve we were able to discover distinct spatial scales

in the self-assembly of actin fibril consistency for cardiomyocytes on different ECM island

sizes. The distinct average spatial scales of actin fibril consistency was constant for

rectangular and oval shaped cardiomyocytes with different areas. However, it was

surprising that the distinct average spatial scale of actin fibril consistency was not constant

for triangular shaped cardiomyoyctes with different areas. There are a few possible

explanations for this unexpected results. First, grids of a variety of sizes were used to

determine consistency at each length scale tested, but grids might not be an appropriate

way to obtain consistency values for multiple length scales for triangular shaped cells.

There does not appear to be logical effective way to place grids over triangles. It might be

more applicable to define a partition that follows the nature shape of the triangle instead.

Second, It would be expected that the triangles would have the same aspect ratio for

isosceles triangles with similar angles no matter the ECM island size. However, the aspect

ratio of triangular shaped cells with a top angle of 90 degrees increased by 1.10 between

ECM islands with areas of ∼1250 µm2 and ∼2500 µm2. Nonetheless, 66% of the average

distinct spatial scales of actin fibril was constant were cells on ECM islands of different
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sizes. As a result, we concluded that distinct spatial scales of self-assembly for actin fibril

consistency in cardiomyocytes in vitro was constant for cells on a differently sized ECM

islands. Therefore, this is further evidence that the mechanism behind self-assembly is

based on bottom-up assembly.

In summary, the quantitative analysis of primary engineered cardiac cells illuminated an

important property, self-assembly and force development mechanisms are optimized at the

same minimal aspect ratio. In addition, we showed that ECM island size does not effect

consistency of actin fibrils and sarcomeric z-lines. As well as showing that ECM island size

does not effect the distinct spatial scales of self-assembly of actin fibrils. Lastly, providing

evidence that the mechanism behind self-assembly is based on assembly from the bottom-up.
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Chapter 4

Multi-Scale Quantification of

Cardiomyocytes Intracellular

Architecture in silico

4.1 Introduction

Organs in the body are intricately organized on a wide range of length scales. In the heart,

organization is seen at length scales that span several orders of magnitude (from

nanometers to centimeters), and organization at one scale can differ from organization at

another scale. For instance, z-lines and actin filaments, which are the major building

blocks of sarcomeres, have particular patterns of organization at the nanometer length

scale, whereas myofibrils, which are made up of many sarcomeres, can show an independent

organization at the centimeter length scale. The collective organization at all of these

length scales greatly affects the emergent pumping function of cardiomyocytes and the

heart as a whole, and in diseased hearts, organization is known to be disturbed on some
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length scales. However, the mechanisms of self-assembly or self-reorganization, which could

be paramount in heart disease, are not fully understood.

Currently, it is known that assembly of this multi-scale architecture is controlled by

myofibrillogenesis (formation of myofibrils) processes. Also, boundary conditions,

migration, and mechanotransduction influence the self-assembly of the intracellular

structures. For instance, cell shape is controlled by extracellular matrix (ECM) boundary

conditions. Previously, it has been shown that the cell shape affects the organization of

myofibrils [9]. In vitro data has shown that cells engineered with corners e.g. squares,

triangles contain myofibrils that span the longest diagonal of the cells and with focal

adhesion located in the corners of the cells [9, 32]. Yet, shapes with smooth curves e.g.

circles have a random organization of myofibrils and focal adhesions scattered randomly

along the boundaries of the cell [32].

Several computational models have been proposed to mimic myofibrillogenesis and predict

the organization of myofibrils and focal adhesions in cells. Novak et. al. created a model

that is able to recapitulate the distribution of focal adhesion [55]. However, their model was

validated with fibroblast instead of cardiomyocytes. Deshpande et. al. used finite elements

to create a model of the distribution of myofibrils [18, 19]. They use the interaction between

stress fibers, integrins, and the substrate of the cell. This model was able to predict myofibril

distribution for a variety of shapes. Yet, their model was not validated with cardiomyocytes

but with fibroblast and epithelial cells. Also, Paszek et. al. created a chemo-mechanical

model capable of predicting the stresses and strains of focal adhesions [57]. Their model is

based on the interaction between integrins and ligands. Unlike the other models, they did

not use a specific cell type to validate their model.

Our lab’s PI previously created a cardiomyocyte specific myofibrillogenesis model based on

concepts from Novak et. al. model and the interaction of integrins and myofibrils [32].

Our model was validated with cardiomyocytes and predicts myofibril and focal adhesion
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distribution. This model has been developed in such a way as to be modular. In this chapter,

we added length scales to our model and validated the model using the co-orientational

order parameter (COOP) to quantitatively compare the consistency of actin orientation

in the model to the experimental data collected in Chapter 3. We hypothesized that the

model should be accurate for larger length scales, but will be less accurate at smaller length

scales. This will considerably extend the use of the model, and it might become possible to

include factors such as motility. Creating a more robust myofibrillogenesis model will greatly

enhance our ability to understand the mechanisms in cells that do not function like normal

cardiomyocytes.

4.2 Methods and Materials

4.2.1 Microcontact printing and ECM islands

To make the substrates, PDMS (Ellsworth Adhesives, Germantown, WI) was spin-coated

on glass coverslips (Fisher Scientific Company, Hanover Park, IL). These PDMS coated

coverslips were cured in a 60 degrees Celsius oven overnight. Microcontact printing was used

to create a variety of shaped myocytes. Adobe Illustrator(Adobe Systems Incorporated, San

Jose, CA) was used to design a stamp with various shapes of different areas and aspect ratios.

A third party vendor (FrontRange Photo Mask Co., Palmer Lake, CO) created mask from

the stamp design. A silicon wafer (Integrated Nanosystems Research Facility, Irvine, CA)

was created from the mask. Silicon wafers were coated in PDMS and cured at 60 degrees

overnight. The PDMS was peeled from the wafers, and was stored as PDMS stamps. The

extracellular matrix (ECM) protein Fibronectin (FN) (Fisher Scientific Company, Hanover

Park, IL) was transferred from these stamps onto UV-sterilized (UVO, Jelight Company, Inc.

Irvine, CA) PDMS coated coverslips. To block cell adhesion between regions of fibronectin,
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substrates were washed with pluronics (250g of Pluronics F-127, Sigma Aldrich, Inc., Saint

Louis, MO) for ten minutes. Followed by three rinses of Phosphate Buffered Saline (PBS)

(Life Technologies, Carlsbad, CA) and stored at 4 degrees Celsius prior to cell seeding.

4.2.2 NRVM Harvest and Seeding

All experiments were conducted in accordance with the guidelines of the Institutional

Animal Care and Use Committee of UCI (protocal No.2013-3093). Ventricular tissue was

removed from one to three day old neonatal Sprague Dawley rats (Charles River

Laboratories, Wilmington, MA). The tissue was placed in 1 mg/mL trypsin solution

(Sigma-Aldrich, Inc., Saint Louis, MO) overnight (12 hour incubation) at 4 degrees Celsius.

The next day, the tissue was dissociated into single cells by treating four times with 1

mg/mL collagenase type II (Worthington Biochemical, Lakewood, NJ) for two minutes at

37 degrees Celsius. The cell solution was filtered and remaining cells were purified using

three pre-plate steps. After purification, cells were seeded on coverslips at density of

1.5x105 or 2.5x105 cells per 3 mL.

4.2.3 Fixing and Staining

After 3 days in culture, cardiomyocytes were fixed in 4% paraformaldehyde (PFA) (Fisher

Scientific Company, Hanover Park, IL) with 0.001% Triton X-100 (Sigma Aldrich, Inc.,

Saint Louis, MO). Cardiomyocytes were stained with the following combination: sarcomeric

α-actinin (Mouse Monoclonal Anti-α-actinin, Sigma Aldrich, Inc., Saint Louis, MO), actin

(Alexa Fluor 488 Phalloidin, Life Technologies, Carlsbad, CA), fibronectin (polyclonal rabbit

anti-human fibronectin, Sigma Aldrich, Inc., Saint Louis, MO), and nuclei (4,6-diaminodino-

2-phenylinodole (DAPI), Life Technologies, Carlsbad, CA). Secondary staining was peformed

using tetramethylrhodamine-conjugated goat anti-mouse IgG antibody (Alexa Fluor 633
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Goat Anti-Mouse Life Technologies, Carlsbad, CA) and goat anti-rabbit IgG antibodies

(Alexa Fluor 750 goat anti-rabbit, Life Technologies, Carlsbad, CA).

4.2.4 Imaging

To collect images of the immunostained single cells an IX-83 inverted motorized microscope

(Olympus America, Center Valley, PA) with an UPLFLN 40x oil immersion objective

(Olympus America, Center Valley, PA) was used. Also the microscope was mounted with a

digital CCD camera ORCA-R2 C10600-10B (Hamamatsu Photonics, Shizuoka Prefecture,

Japan).

4.2.5 Image Analysis

Previously customized MATLAB codes were used to analyze images of single cells [20].

These codes calculated construct orientation angles of sarcomeric z-lines and actin fibers in

the images [20].

4.2.6 Model

Output from a previously myofibrillogenesis model was used to create in silico

cardiomyocytes of various shapes, areas, and aspect ratios [32]. The previous model is a

phenomenological reaction diffusion model based on interaction between focal adhesions

and myofibrils [32] and is specific to cardiomyocytes. Equations for the model can be found

in the work done by Grosberg et al. [32]. We added length scale information to we created

triangles and rectangles with a variety of aspect ratios and areas similar to experimental

data obtained in Chapter 2. Furthermore, we were able to create circles e.g. ovals with an
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aspect ratio of one. The parameters used to create cells were similar to the ones used in the

study by Grosberg et al. [32].

Incorporating length scales into the model

Originally all shapes had an area of one in the model with arbitrary units. Therefore we

created a customized MATLAB codes to add length scales into the model. First, this code

was used to add units and to change the area, height, and width of the shapes from the

model to match the corresponding in vitro shaped cells. Second, interpolation was used to

fill in the corresponding actin orientation angles for every pixel inside of the shape. The

actin orientation angles in the original model did not contain values for every pixel. Third,

we create a larger matrix from the actin orientation angles matrix from the model and added

zeros for orientation angles outside the boundary of shape to ensure that this larger matrix

matched the same dimension as the matrix from the in vitro data. Finally, we obtained a

matrix of actin orientation angles that matched the format of the in vitro data.

4.2.7 Comparing model vs experiment

The co-orientational order parameter (COOP) [20] was used to compare consistency of

subcellular structure orientation in in vitro versus in silico cardiomyocytes. The COOP

ranges from one to zero for perfect consistency to no consistency respectively. Grids of

various sizes were placed over the in silico. and in vitro images of cells and the average

actin orientation was calculated in each grid. To be consistent with the previous chapter,

21 µm was chosen to be the large length scale for cells with area ∼1250 µm2, and 29 µm

was the large length scale for cells with area ∼2500 µm2. For all cells, 1 µm was the small

length scale. The overall COOP at the small and large scales was calculated based on a

comparison of the in silico image to each of the in vitro images.
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Figure 4.1: Example of model and experimental cells with area ∼1250 m2 actin
fibril consistency in NRVM(A) Images of stained NRVMS cultured on various shaped
FN islands. The red stain in the images is for actin. (B) Images of actin fibrils in
cells created from computational model. (C) The average COOP for consistency of actin
fibril organization at different length-scales in rectangular shaped NRVMs with an aspect
ratio∼3.5. Scale bars=10 µm.

4.2.8 Statistics

One-way ANOVA with the Holm-Sidak post-hoc test was used to determine statistical

significance. Significance was considered for a p-value less than the critical level.

4.3 Results

4.3.1 In silico v.s. in vitro Cardiomyocytes with Area ∼1250 µm2

In the previous chapter, we examined how consistency of self-assembly changes within in

vitro neonatal rat ventricular myocytes (NRVM) of various shapes and aspect ratios

(Fig. 4.1A) over multiple length scales. Next, we explored consistency of self-assembly in

cardiomyocytes in silico. To do this, we used our previously created phenomenological

myofibrillogenesis model to create single cardiomyocytes of various shapes (e.g. circles,

rectangles, and triangles) and aspect ratios (Fig. 4.1B). Cells with an area of ∼1250 µm2
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from this model (Fig. 4.1B) were compared to in vitro data from neonatal rat ventricular

myocytes (Fig. 4.1A) over multiple length scales using the co-orientational order parameter

(COOP) (Fig. 4.1C). The COOP was calculated in order to quantify consistency of actin

fibrils for a variety of length scales in both types of data (Fig. 4.1C).

To be consistent with how we analyzed the results in the previous chapter, we present the

results at two length scales, a small length scale (∼1 µm) and a large length scale (∼21 µm) in

order to summarize our findings. At the small scale, the consistency of the model matched the

consistency of the in vitro data (Fig. 4.2A) and there was no significant difference between

the model and experimental results. Additionally, at this small scale, the consistency of

the model increased as aspect ratio increased (Fig. 4.2A). However, excluding triangular

shaped cells with aspect ratios of ∼1.9, the consistency of actin for various shapes of similar

aspect ratios from the model was not significantly different. The difference between actin

consistency values for triangles with aspect ratios of ∼1.9 was 0.29 which is extremely high

compared to the difference in consistency values obtained by other shapes with similar aspect

ratios. Thus, there was significant difference between triangular shaped cardiomyocytes from

the model with aspect ratios of 1.83 and 1.95. At this small scale, actin consistency for the

model settles arounds an aspect ratio of ∼6 with the average consistency for shapes with

an AR > 5.5 of 0.90. Actin consistency was high for the model at the large length scale

(Fig. 4.2B). Excluding circular shaped cells at ∼21 µm, aspect ratio did not affect actin

consistency for the model (Fig. 4.2B). The difference between the consistency for circular

shaped cells and rectangular shaped cells with an aspect ratio of 1.00 and triangular shaped

cells with an aspect ratio of 1.15 was 0.27 and 0.30 respectively. As a result there was

significant difference between circular shaped cells and other shapes with similar aspect

ratios. None of the model results were significantly different from the in vitro data at

the large scale. However, at ∼21 µm for the model results, the circular shaped cells were

significantly different than the rectangular and triangular shapes with an aspect ratio of ∼1.

Actin consistency at ∼21 µm for the rest of the shapes of similar aspect ratios from the
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Figure 4.2: Model and experimental cells with area ∼1250 µm2 actin fibril
consistency for various aspect ratios.The average COOP for consistency of actin fibril
organization in model and experimental cells for different aspect ratios at the small length-
scale of ∼1 µm (A) and at the large length-scale ∼21 µm (B).

model was not significantly different.

4.3.2 In silico v.s. in vitro Cardiomyocytes with Area ∼2500 µm2

Actin fibril consistency of the model versus experimental results was examined at the small

length scale (∼1 µm) (Fig. 4.3A) and at the large length scale (∼21 µm) for cells with an

area of ∼2500 µm2 (Fig. 4.3A). The model exhibited a higher consistency at both of these

scales. Also, there was no significant difference between the model and experimental results

at either of these scales. Next, we looked at consistency at another large length scale (∼29

µm) determined based on the area of these larger cells (Fig. 4.3A). For most shapes the

model displayed higher consistency than the experimental cells. Still, at this scale (∼29 µm)

there was no significant difference between the model and experimental results.
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4.4 Discussion

In this chapter, we created cells from a previous computational myofibrillogenesis model

[32] and used to co-orientational order parameter [20] to quantitatively compare actin fibril

consistency in silico and in vitro cardiomyocytes. At the small length scale of ∼1 µm for

cardiomyocytes with an area of ∼1250 µm2 or ∼2500 µm2 we were able to demonstrate

that the model matches experimental results. These result contradicts our hypothesis, we

expected the model to be less accurate at the small length scale. This could be due to the

fact that the model mostly produce higher consistency values than the in vitro data for all

the shapes examined at this small scale. Additionally, we showed that the model matched

experimental results at the larger scales of ∼21µm, and ∼29 µm as well. Based on our

results we can conclude that the model is accurate at both small and large length scales

since there was no significant difference between the model results and the experimental

result at the three different length scales. Thus, we successfully quantitatively validated our

existing model across multiple length scales. Therefore, this provides us with a validation
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tool that can be used in the future to build modular additions into our myofibrillogenesis

model.
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Chapter 5

Summary

This research was set out to explore in vitro and in silico self-assembly of cardiomyocytes.

To investigate this we needed to select a tool to quantify correlation and consistency of

subcellular structures. There were a variety of metrics and tools that could have been used

to quantify organization of subcellular structures. For instance, previous studies have used

different statistical metrics that are based on a variety of distributions [17, 43, 23]. Other

studies used different image correlation methods to compare images [15, 25, 54, 35].

Another example of a metric used by previous studies to quantify organization is the

orientational order parameter (OOP) [24, 75, 66, 72, 31, 45]. In fact, the OOP has been

used to quantify organization in cardiac tissues and cardiomyocytes [31, 45]. However, the

OOP is not capable of evaluating the consistency of one subcellular structure or the

correlation between two subcellular structures. Therefore, we needed to design a tool that

did not depend on certain distributions and was capable of evalutaing consistency of one

subcellular structure and the correlation of two subcellular structures. Thus, we created a

new tool, the co-orientational order parameter (COOP) to quantify correlation and

consistency of subcellular structures. The COOP was developed with similar mathematical

framework as the OOP. As an application of the COOP, we compared the orientation of

73



sarcomeric z-lines and actin fibrils in isotropic engineered cardiac tissues. As a results, we

identified the expected perpendicular correlation between actin fibril and sarcomere z-line

orientations in isotropic engineered cardiac tissue. In addition, we sought to examined the

consistency of subcellular structures at a variety of length scales. Specifically, this study

wanted to answer three questions: (1) how does the consistency of subcellular structures

(which self-assemble) in cardiomyocytes change in a multi-scale way, (2) how consistency of

self-assembly in cardiomyocytes is affected by extracellular matrix (ECM) cues, and (3)

how size of the ECM affect consistency of self-assembly?

To answer these questions neonatal rat ventricular myocytes were created in various shapes,

sizes, and aspect ratios and the COOP was used to quantify consistency of actin fibrils and

sarcomeric z-lines at multiple subcellular length scales. By observing consistency at multuple

length scales, we showed that cells with an area of ∼1250 µm2 and high aspect ratios,

e.g. elongated cells, without sharp corners produced the highest actin fibril consistency at

smaller subcellular length-scales. Therefore, in order for actin fibrils to consistency self-

assemble at this small length-scale it is advantageous for cells to be a smooth elongated

shape. Additionally, we discovered that the size of the ECM island does not effect self-

assembly of actin fibrils. As well as determined that there was distinct spatial scales of

self-assembly for actin fibrils. In fact, our results proved that the distinct spatial scales of

self-assembly for actin fibrils are constant between similar shapes on different sized ECM

islands. Thus, we believe this is evidence proving that the mechanism behind self-assembly

is based on a bottom-up assembly.

Finally, we wanted to add length scales into out previously developed myofibrillogenesis

model. Previously the model was developed in a modular way and was based on arbitrary

units. Once length scales were incorporated into the model, we compared the model to

data from in vitro cardiomyocytes. In particular, we showed that the our myofibrillogenesis

model was accurate for large and small length scales. Therefore, we were able to validate
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the incorporation of length scales into our model.

In the future, our parameter could be used to identify the consistency of cytoskeleton

organizations at multiple length scales in cells of different origins. As well as determine

distinct spatial scales of consistent cytoskeleton organization in a variety of cell sources. In

addition, our myofibrillogenesis model could be used as a validation tool in the future to

incorporate further modular additions to the model such as the actual presence of

sarcomeres or motility. Lastly, we believe the co-orientational order parameter and our

myofibrillogenesis model will dramatically impact our ability to build accurate models that

predict and explain the behavior of cells of varying sources.
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Appendix A

COOP

A.1 Orientational Order Parameter (OOP)

The OOP characterizes the order of orientation of a single construct. For disordered systems

the OOP is zero and for perfectly aligned systems it is one. The OOP is calculated by using

a set of vectors, −→pi , and forming a tensor for each of the vectors. The mean tensor is:

T =

〈
2

pi,xpi,x pi,xpi,y

pi,xpi,y pi,ypi,y

−
1 0

0 1

〉 = {Mean tensor}. (A.1)

The OOP is defined as the maximum eigenvalue of the mean tensor

OOP = max
[
eigenvalue(T)

]
= {Orientational order parameter}

=
〈

2{−→pi · n̂p
}2

− 1
〉

=
〈

cos
(
2(α− α0)

)〉 (A.2)

where n̂p and α0 are the director and mean angle, respectively.
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A.2 Symmetry of OOP

The OOP also has pseudo-vector symmetry and this can be easily shown.To check for

symmetry we need to vary the sign of −→pi and n̂p. If we change the sign of −→pi , n̂p or both we

obtain:

〈
2
{
−−→pi ·n̂p

}2

−1
〉

=
〈

2
{−→pi ·(−n̂p)}2

−1
〉

=
〈

2
{
−−→pi ·

(
−n̂p

)}2

−1
〉

=
〈

2{−→pi ·n̂p
}2

−1
〉
.

(A.3)

Thus, we will produce the same OOP no matter the sign of −→pi and n̂p therefore the OOP is

symmetric.

A.3 Second order correlations

The OOP is not able to characterize second order correlations. To prove this define P as:

−→pi =
[
cos(

π

2
)), sin(

π

2
))
]

and −→p i+n =
[
cos(−π

2
), sin(−π

2
)
]

(A.4)

for i = 1, ..., n. Thus, (n̂p = 0 and α0 = 0):

OOPP =
2n∑
i=1

cos(2α) = n · cos
(

2
π

2

)
+ n · cos

(
2
(
− π

2

))
= 0. (A.5)

Thus, OOP=0 even though there is obvious organization in P .
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A.4 Circular Statistics (assume period of π)

It is possible to show that the R of circular statistics [8] is the same as the OOP. If the data

is distributed:

α =
2πx

k
(A.6)

where, x is the data in the original scale, k is the total number of steps on the x scale, and

α is the variable on the new directional scale (i.e. with a standard 2π period). In our case

a rod that is β degrees away from the director is physically the same rod as the one β + π

degrees away. Therefore in our case k = π and:

α = 2θ (A.7)

where, θ is defined as the angle that we measured from the director. From this it follows:

S =
1

N

N∑
i=1

sin 2θi (A.8)

C =
1

N

N∑
i=1

cos 2θi (A.9)

R =
√
S2 + C2. (A.10)

If we assume that the director is orientated such that θn̂ = 0, then the angles are evenly

distributed between positive and negative and therefore S = 0. We can then write R as:

R = C =
1

N

N∑
i=1

cos 2θi = 〈cos 2θi〉. (A.11)

Therefore, by definition of the director we will have the range 0 < R < 1 and it is equivalent
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to the OOP = 2〈cos2 θi〉 − 1 = 〈cos 2θi〉 = R.

A.5 Circular Correlation

In the special case, with both constructs having a uniform distribution, i.e. both being

perfectly isotropic, the correlation coefficient and COOP converge to the same equation.

If the angles are uniformally distributed on the circle the correlation coefficient [7] can be

written as

r =

√√√√( 1

N

N∑
i=1

cos 2θi

)2

+

(
1

N

N∑
i=1

sin 2θi

)2

(A.12)

where θ represents the angle between two biological constructs. If the director is to be

assumed n̂=[1,0] then 〈sin 2θi〉 = 0, and therefore

r =

√√√√( 1

N

N∑
i=1

cos 2θi

)2

= 〈cos 2θi〉. (A.13)

Thus, COOP = 2〈cos2 θi〉 − 1 = 〈cos 2θi〉 = r.
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Figure A.1: Example of OOP using synthetic data. For (A-D) schematic of the
construct is on the left, and the orientation distribution with the OOP and standard deviation
is on the right. (A) Perfect alignment; (B) almost perfect organization; (C) somewhat
anisotropic; (D) perfectly isotropic.
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Figure A.2: Minimum Sample Size. Statistical significance at p<0.05, with OOP error
of σOOP =0.1, σOOP =0.3, and σOOP =0.5.
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Figure A.3: Schematic for grid size selection. For (A-D) schematic of square grids
(dashed black line outlines) on Z-lines(red). (A-B) Grid size equivalent to one sarcomere
complex length. (C-D) Grid size equivalent to two sarcomere complex length. (A,C) Grid
by chance aligns with Z-lines. (B,D) Grid does not align with Z-lines. we choose the grids
shown in C-D because we cannot control the alignment of grid to sarcomere complex.

Figure A.4: Implementation Flow Chart. Flow chart sketching the implementation
of the new method for experimental data. The additional steps for generating “noiseless”
images with minimal imperfection is highlighted in blue.
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Figure A.5: Fibronectin stains. Image of the fibronectin island for each cell in Fig. 2.4I
were cropped such that the triangular islands aligned with each other.
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