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ABSTRACT OF THE THESIS

ArCuS: An Architecture for ASIC Cloud based Servers

by

Pulkit Bhatnagar

Master of Science in Computer Science (Computer Engineering)

University of California, San Diego, 2017

Professor Michael Bedford Taylor, Chair

As we approach the end of Moore’s law, the research focus has shifted to-

wards developing hardware accelerator based designs to achieve higher performance

with lower power requirements. The key objective while developing a server archi-

tecture is to minimize the Total Cost of Ownership (TCO) while improving both per-

formance and energy efficiency. Thus, the trend in such planetary scale applications

has been to move from CPUs, GPUs and FPGAs towards arrays of application specific

accelerators, known as ASIC Clouds. In this work we present ArCuS, a hardware in-

frastructure for developing Architectures for ASIC Cloud based Servers. We layout

the architectural specifications, RTL description and physical implementation details

for the ASIC which aims to serve as a reference and enable rapid prototyping. We

xiv



design and characterize the proposed architecture across technology nodes and evalu-

ate various metrics for accelerating bitcoin mining application. Finally, we present the

cost-performance trade-offs necessary for determining a cost-optimal ASIC Cloud con-

figuration.
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Chapter 1

Introduction

1.1 Motivation

As Moore’s Law approaches its limits and the Dark Silicon Apocalypse [3] pre-

vails upon Dennard’s scaling [4], the focus on achieving performance and energy effi-

ciency has shifted towards hardware acceleration and specialization [5]. Building het-

erogeneous architectures have become standard practice to achieve higher performance

while maintaining the device power budgets. Modern high-end mobile SoCs like Qual-

comm Snapdragon [6][7] and Apple A10 Fusion utilize a co-processor based design

integrating CPU, GPU and multiple DSP cores on a single chip. However, it is not al-

ways economically viable to integrate accelerators on mobile SoCs given the increased

IP cost, area and power constraints.

We are starting to see a similar trend in datacenter architectures. Packing more

and more CPU cores on the servers have lead to increased concerns over cooling and

maintenance of the warehouses. To achieve the desired performance improvement GPUs

(Graphic Processor Units) and FPGAs (Field Programmable Gate Arrays) have started

to gain popularity for search engines and machine learning applications. Companies like

Google [8] and Baidu [9] have deployed GPUs for neural networks, while Microsoft

(Bing) [10] has promoted FPGA based customizable servers as also seen in banking

[11] and High Frequency Trading [12] applications.

Application Specific Integrated Circuits (ASICs) have proven to provide better

energy efficiency with reduced area. ASICs are fully customizable logic blocks suited

1
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for highly specialized applications giving flexibility in memory configurations, IOs and

packaging options. Magaki et. al. [1] introduced ASIC Clouds which are purpose built

datacenters with arrays of ASIC accelerators aimed at optimizing the TCO (Total Cost

of Ownership) of servers. This accelerator based datacenter specialization approach spe-

cially makes sense for high volume recurring workloads. Applications such as Youtube

video transcoding, Facebook face recognition, Apple’s Siri, Google Home and Amazon

Alexa process hundreds and thousands of requests per second. These are essentially

repetitive computations over millions of users, making custom server designs viable.

ASIC clouds provide the flexibility to build custom PCB (Printed Circuit Boards), cool-

ing systems, Power Delivery Networks (PDN), DRAM interfaces and minimalistic IOs

based on the application requirements. Companies like Google [13], Amazon, Facebook

and Intel [14] have identified this and are developing custom designs for multiple appli-

cations. Bitcoin Miner ASICs [15] have been around for sometime now. These can be

found deployed today as 130nm down-to 16nm AISCs. Miners are mostly full-custom

build and proprietary.

1.2 Thesis Contributions

Today, most of the server-end designs are abstract and company proprietary. This

thesis is an effort to develop and realize an infrastructure based on the ASIC cloud [1]

model. We layout the functional specifications of the communication among the ASICs

at the server level, develop fully-synthesizable RTL model and implement it on various

technology nodes ranging from 180nm down-to 16nm for a comparative analysis. All

this is done with scalability and flexibility in mind targeting need of minimal changes for

each application. We leverage and build upon the open source IP database developed

by Bespoke Silicon Group [16] at University of California, San Diego. We hope that

this would provide an easily accessible starting point for the research community for

developing custom cloud infrastructures. We finally comment on the performance and

the cost effectiveness of our approach.
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1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 discusses related work in the field

of custom server designs and builds a background of the ASIC Cloud architecture. In

chapter 3 we define the specifications and present the architectural view of ArCuS at

the server and ASIC level. Chapter 4 provides details of the ASIC micro-architecture

describing the building blocks (IP cores) and the implementation methodology. Chapter

5 summarizes the results and we finally conclude the thesis with a discussion of future

efforts in Chapter 6.



Chapter 2

Background

This section gives a high level view of state-of-the-art datacenter and accelerator

research and an overview of the ASIC cloud architecture.

2.1 Related Work

The move towards specialization is thought of as one of the most promising di-

rections for future of computer architecture research to combat the effects of dark-silicon

[3][17]. Numerous specialized processors have been proposed in literature for cryptog-

raphy, signal processing, natural language processing, physical and scientific computa-

tions, neural networks, encoding and graphics. Authors in [5][18][19] suggests use of

automatically synthesized accelerator cores that trades-off area for energy efficiency in

processors. Shao et. al. [20] gives a taxonomy of various accelerators in literature and

develops an infrastructure for accelerator research.

As computation moves to the cloud, datacenter have become a focus for the re-

search community. Borosso et. al [21] presents a compendium of datacenter design and

operation. The era of using general purpose CPUs and even multiple commodity class

PCs for search engines as used by Google [22] a decade ago has come to an end. Low

power Embedded processors have been studied for warehouse-computing [23]. Special

Database processors like Q100 [24] and dataflow computers [25] have also been pro-

posed. Application of FPGAs as a replacement of CPUs and GPUs in datacenters have

also been studied. Microsoft’s Catapult [10] examines a reconfigurable FPGA based

4
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accelerator for ranking algorithms. Several others have applied FPGAs for Memcached

[26][27], Clustering [28] and Web-searches.

Some of the older ASIC supercomputers span from the GF11 [29] for physics

simulations to the Anton [30] deployed for molecular dynamic simulations. Google has

reported development of Tensor Processing Unit (TPU) [13] for machine learning appli-

cations. Amazon Web Services unveiled Annapurna ASIC [31] for faster networking.

Magaki et. al. [1] proposed an ASIC cloud architecture for datacenters focusing on

recurring workloads. Khazraee et. al. [2] gives a rigorous analysis on technology node

selection for realizing the ASIC cloud system for optimal NRE. We take this concept

forward and present a hardware infrastructure for realizing ASIC clouds based datacen-

ter.

2.2 ASIC Clouds Overview

This sub-section is a primer of the high level architecture of an ASIC Cloud,

Figure 2.1 as proposed in [1]. The machine room at the datacenter has multiple 42U or

48U racks. Each rack is connected through high speed Ethernet to the external network.

The racks have a central Ethernet switch (Top-of-Rack switch) which connects each of

the server blades in the rack. The server has a power supply unit (PSU) and cooling sys-

tem. The off-PCB interface (10G Ethernet, PCI-e or other point-to-point links) delivers

data to the server controller (FPGA or a micro-controller) which has access to an array

of specialized ASICs. Each of the ASIC consists of multiple accelerators called as the

Replicated Compute Accelerators (RCA for brevity). The off-chip interface connects

to the ASIC router and the controller which distributes the workload among the avail-

able RCAs through the internal network. Each ASIC may have on-chip clock generator

or PLL, thermal sensor and power grid. In case of memory intensive applications, the

DRAMs could be shared among RCAs with a memory controller on each ASIC.

In this work we focus on the server level configuration and the protocol for data

transfers. Then we look into a scalable ASIC design specifically for logic intensive

processing like bitcoin mining. The same idea could be easily extended to other types

of applications.
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Figure 2.1: High-Level Abstract Architecture of an ASIC Cloud [1].

2.3 Bitcoin Mining

Bitcoin (BTC or B) is one of the most widely used cryptocurrency system. The

transactions and distribution of new bitcoins are controlled by decentralized computa-

tions known as mining. It is a computationally intensive operation that takes a 512bit

block and performs a series of SHA-256 operations on it. The result is compared to

some reference value to check if it has a predefined number of starting zeroes. Every

such attempt is called a hash. Billions of hashes reuse the same block and performs this

operation. The number of hashes that a machine performs is termed as the hashrate,

generally reported in gigahash per second (GH/s). Each SHA-256 round takes up 64-

cycles making each hash operation 128-cycles long. This is a computationally intensive

and repetitive workload making it a good candidate for parallelism. Taylor [32] exam-

ines the transition of bitcoin miner hardware from FPGA to GPUs and ASICs. Today,

Cloud mining has become de facto standard. We take up the bitcoin application as our

base-case for ASIC cloud acceleration. Note that the Bitcoin application requires no

inter-chip communication and has a very high power density being logic intensive with

little on-chip memory.



Chapter 3

The ArCuS Framework

In this section we present the ArCuS framework, the complete specifications for

the hardware needed to develop the ASIC Cloud infrastructure. The focus of this work

is limited to the server level design. We touch upon the interface between the servers at

the rack level but do not delve into the networking part as it is outside the scope of this

work. Our goal is to:

• Propose an on-PCB network topology and communication protocol.

• Define the interfaces between the controller/FPGA and the ASICs.

• Establish a sequence for reset and system boot-up.

• Specify the data transfer (request and reply) packet formats.

• Govern the distribution/scheduling of workload amongst the ASICs and the RCAs.

3.1 Server Architecture

The server is a part of the 42U rack with multiple ASICs which connects to the

outside network via a high-speed off-PCB interface like 1/10/40G Ethernet as shown

in Figure 2.1. There are several factors to consider for the choice of the server level

controller. It directly depends upon the rack-level architecture, which must be optimized

for cost and reliability. At the server, in addition to providing the Ethernet capability, it

7
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is essential to have reliable packet delivery with special mechanisms at the network (IP)

and transport layer (TCP, UDP). One option to realize this is to have a low cost CPU

that performs the required networking in software taking care of the reliability of data

transfers at the TCP (Transmission Control Protocol) level and handles the scheduling

at the server level. This type of system saves the hassle of designing the TCP (or other

reliable protocols) stack in hardware and is easy to use. However, this ends up increasing

the total cost of the cloud with each server costing around $400. Some newer CPU chips

(such as the Intel Atom C3000) have been found to provide such capabilities at a much

lower cost. The other option is to have a reprogrammable FPGA along with the TCP

offload engine (TOE) core to take care of the network reliability. The Ethernet MAC IP

is easily available with most FPGAs as an open core. The controller and scheduler logic

can be easily programmed in the logic blocks. This type of system is a cheaper solution

and can be realized by spending around $250 per server considering amortization of the

TOE IP cost over multiple ASICs. However, all this comes with the added complexity

of the hardware. Lastly, one intermediate approach is to have distributed networking

inside the rack. At the rack-level we can implement a fully-reliable network framework

using dedicated CPUs while at the server level we can then use a light weight lower-

reliability protocol such as UDP (User Datagram Protocol). The UDP layer is easier to

design for the FPGA boards while also supporting the required bandwidth. The cost of

the server CPUs is amortized across the rack and hence turns out to be a reasonable and

cost-effective solution.

In the following discussion, we assume that the FPGA is connected to the exter-

nal network and is the entry point receiving the work packets in the appropriate format

after processing. The FPGA serves both as the off-PCB interface with the high speed,

high bandwidth Ethernet support, and as the controller for monitoring the task distri-

bution among the available ASICs. The FPGA controller and the AISCs communicate

using the on-PCB network, discussed next. Each ASIC is an array of identical Acceler-

ators or RCAs.
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3.1.1 Network Topology

Various network configurations were considered for the on-PCB interconnect.

Although a point-to-point network would provide minimum latency, it is not scalable as

the number of ASICs per server increases. Assume a single-ended 32-bit data channel

with clock and valid, 3-bit Test bus and 4-bit external reference clocks and control bits

per ASIC. Figure 3.1 shows as the number of ASICs increases, the number of pins

at the controller in a star network becomes unreasonably high. The situation is even

worse if we consider differential signalling for data transfer. The number of IOs on the

FPGA side could be increased by interfacing a low-end, low-cost FPGA with the main

FPGA board (eg: Xilinx Spartan-6 series can provide IOs as low as $0.2/differential

pair). However, there are overheads of interfacing the two FPGAs but this could be a

consideration for high performance latency sensitive applications. For our application,

to limit the number of IOs on the FPGA, we choose a Daisy Chained network for the

ASICs. Figure 3.2 shows a high level schematic of the server. Typically, each column

can have up to 32 ASICs or 63 ASICs per FPGA controller. The links are unidirectional

and the details of the communication protocol are provided in later sections. In this

configuration, Figure 3.1 shows only a marginal increase in pin count due to the test and

clock signals overhead per ASIC.

The communication link between the FPGA and the ASIC is based on a DDR

(Double Data Rate) source synchronous channel, bsg_comm_link. Here a light weight

version, bsg_comm_link_lite is implemented which provides a simplex rather than full-

duplex link as needed for this network. The link has various channel configurations and

is fully customizable. In this application we have a 32-bit data channel sent along with

source-synchronous clock and valid. The detailed description of the bsg_comm_link_lite

module is provided in chapter 4.

3.1.2 FPGA Controller

The FPGA controller provides reconfigurability and easy access to IP cores pro-

vided by the vendors for quick development of our application. There are a large variety

of FPGAs in the market and the decision for board selection was based on the design
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Figure 3.1: Pin Count vs. ASICs per FPGA: This shows the comparison of the pin requirements of
the Star and Daisy-Chain network topologies for the FPGA. It is observed that the IO demands for a star
network increases exponentially as the ASICs per server increases.

requirements while achieving minimal cost. We considered Xilinx series-7 [33] family

for this analysis. The board must support at least 10G Ethernet for a high speed, high

bandwidth connectivity to the external network. The network topology and the inter-

face discussed earlier requires at least 264 single ended IOs. The type of IOs must be

taken into consideration. Xilinx boards provides High Range (HR) IOs supporting up

to 3.3V and High Performance (HP) IOs for 1.8V supply. The Gate Count, logic blocks

and Block RAM must be sufficient to pack the networking and controller logic. Also,

there must be support for high speed memory interface like DDR3/DDR4 for applica-

tions requiring use of DRAM. Table 3.1 shows a comparison of some of the candidate

Xilinx boards from each of the series-7 family meeting the specifications. Artix-7 is

identified as a good fit for the application addressing all the requirements (except 10G)

at a low cost. The 10G Ethernet capability can be added by using the XAUI Attachment

Unit Interface with external XAUI to SFI (SerDes framer Interface) transceiver with an

additional cost of only $20-$30 per server.

Table 3.1: Xilinx Series-7 FPGA Comparison

Family Part UserIO (Banks) HS XCVR 10G Price [34]
Artix-7 XC7A75T 300 (6) 8 (6.6Gbps) No $134.26

Kintex-7 XC7K160T 400 (8) 8 (12.5Gbps) Yes $310.70
Virtix-7 XC7VX330T 600 (12) 20 (13.1Gbps) Yes $2,542.41
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Figure 3.2: Network Topology at Server Level: FPGA controller is the gateway to the data received
from the external network. The on-PCB network connects the ASICs in a Daisy-Chain topology to
achieve reduced pin count at the FPGA controller while still maintaining reasonable latency.
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3.1.3 ASICs

The ASICs consists of up to maximum of 512 RCA cores. In this work we

consider the case of Bitcoin Miner to develop the RCA which is logic intensive and

does not require external DRAM accesses. The same architecture could be extended for

applications such as litecoin, while video transcoding and neural network applications

could be targeted by appropriate memory interfacing with the ASICs and the FPGA

controller. Each ASIC has one input and one output interface which is daisy chained to

its neighbour as shown in Figure 3.2. The Micro-architectural details of the ASIC are

discussed in chapter 4.

3.2 Specifications and Packet Formats

We now define some of the basic functional specifications of our system includ-

ing the reset, boot-up, initialization, scheduling and the packet formats over the network.

3.2.1 Reset and Boot-up

The FPGA controller can issue an asynchronous reset to all the ASICs. As the

communication link is implemented as a unidirectional channel, the need for calibration

is avoided. However, sufficient time must be given for the communication links to set up

and initialize before driving any data. On ASIC reset, each of the ASIC’s internal clock

generator must be auto configured to a predefined frequency (lowest frequency). The

clock generator frequency can be configured later using bsg_tag after reset sequence is

complete. The bsg_tag is a test interface similar to JTAG that we use for system initial-

ization. To setup the IDs of each ASIC, the FPGA sends streams of bits to each ASIC

bsg_tag master. The ASIC interprets the set_id command and sets its ID. The FPGA

controller notes the number of ASICs available in the chain. Once the ASIC IDs are

setup, we can send the clock configuration signals over bsg_tag to set the internal clock

generator frequencies. Details of these modules are provided in subsequent sections.
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3.2.2 Scheduling

The scheduling and distribution of workload across the ASICs and the accelera-

tors (RCA) is partly handled by the controller. To avoid the large memory requirements

at the FPGA, this task is distributed rather than centralized. The controller/FPGA main-

tains an ASIC free list count in memory. It keeps track of the number (only count)

of available accelerators (RCAs) within each ASIC rather than which RCA in which

ASIC is available. On reset, the counters are set to all ones meaning all RCA units

are available. This reduces the memory requirements at the FPGA drastically. Con-

sidering maximum 512 RCAs per ASIC, there is only one 9-bit (log2512) counter per

ASIC. For 63 ASICs that evaluates to a requirement to record only 9*63 = 567-bits or

approximately 70 bytes/FPGA in comparison to about 8kB if a centralized approach

was used, Figure 3.3(a). Each ASIC is now responsible to keep track of which specific

RCA is loaded and which ones are available. This reduces unnecessary computations

in the central controller. The ASIC controllers maintains a 1-bit/RCA list, requiring a

maximum of 512-bits or 64 bytes/ASIC, Figure 3.3(b). The same distributed technique

propagates to the rack level scheduler and this provides scalability in the design.

Similar approach is taken for designing the buffers for storing the responses of

the RCAs. The ASIC controller stores each RCAs response in a dedicated memory till

the resources are available to forward the results to the FPGA. This distributed result

buffering again reduces the memory requirements at the FPGA. We can now maintain

a simple buffer for each of the ASIC in the chain which could be calculated by the

response time of each task and number of hops to reach the FPGA controller. The free

list is also updated as the responses are received at the FPGA.

3.2.3 Packet Formats

The standard packet length for on-PCB communication between FPGA and

ASICs is set to 80-bits. Each packet contains 64 bits of data and 16 bits of address

and control information. Two type of packets are defined, one originating from the

FPGA controller with the requested task and the other is the ASIC response, which is

the result of computation returned back to the FPGA.
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Figure 3.3: Scheduler Bookkeeping: (a)The FPGA controller maintains counts of the available RCAs
in each ASIC. ASIC0 has 510 RCA available. (b)The ASIC controller maintains a 1bit free list for each
of the RCAs. RCA0 and RCA1 are busy while others are available in ASIC0.

Request Packet: The request packet fields are described in Table 3.2. Multiple

such packets could be required for a single transaction depending upon the application

requirements of the accelerator (RCA) inputs. Figure 3.4 shows the packet format.

Reply Packet: The reply packet is very similar to the request packet except that

the destination address is always fixed at (111111) to denote that the packet is to be

routed to the FPGA, Table 3.3. The six bits ([72:67]) are used to store the source ASIC

ID so that the FPGA can keep track of which task has finished and take appropriate

actions. Figure 3.5 shows the packet format.

The packet formats internal to the ASIC network are detailed in the next chapter

where we explore the micro-architecture and various building blocks of the ASIC.
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Table 3.2: Request Packet Description

Field # Bits Description
Control/Reserved 1 The MSB is reserved for 1bit control.

Destination Address 6
Destination ASIC address. Maximum 63
ASICs could be addressed in a single chain.
(One address is reserved for the FPGA)

Command & Address 9
Configuring and controlling of individual
ASICs.

Data 64 Input data from the FPGA to the ASIC.

1 6 9 64

DataCommand 

and Address
Destination 

ASIC ID

Reserved

80 bits

Figure 3.4: Request Packet Format

Table 3.3: Reply Packet Description

Field # Bits Description
Control/Reserved 1 The MSB is reserved for 1bit control.

Destination Address 6 Destination is fixed to FPGA address (111111).
Source Address 6 Source ASIC address.

Opcode 3 Reserved for future use.
Data 64 Output data from the ASIC to FPGA.

1 6 6 3 64

DataOpcode

Destination 

FPGA ID (111111)

Reserved

80 bits

Source 

ASIC ID

Figure 3.5: Reply Packet Format



Chapter 4

Microarchitecture and Design

Based on the defined specifications for the ASIC cloud server (ArCuS) in pre-

vious sections, we provide the microarchitectural details of the ASIC. We re-use and

augment an open source IP infrastructure developed by Bespoke Silicon Group [16] at

University of California, San Diego. The repository provides a RTL library of general

purpose IP cores. The naming convention of the modules follow the group’s prefix con-

vention (bsg_<module_name>). Finally, we comment on selecting technology nodes

for implementation of the ASIC.

4.1 ASIC Microarchitecture

Figure 4.1 shows a block level view of the ASIC (bsg_bitcoin_asic). Although

this architecture is extensible to a wide variety of applications, this particular example

considers bitcoin miner application. Each ASIC has a single-ended 32-bit data input and

output interface (bsg_comm_link_lite) with per channel clock and valid. The ASIC has

independent internal clock generators for IO and Core clock (bsg_clk_gen). A test in-

terface (bsg_tag) similar to JTAG has been provided for configuration of the ASIC. The

controller (bsg_asic_controller) and the routing logic (bsg_mesh_router and bsg_fsb) is

responsible to schedule and distribute work to the available RCAs (bsg_bitcoin_miner).

The system is developed with an intention of scalability and ease of re-use without the

need of any vendor licensing except for synthesis, where foundry library must be pro-

vided. This makes our system ideal for exploration and use in the research community.

16
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4.1.1 On-PCB Interface

As introduced in chapter 3, the on-PCB network communicates via a light weight

communication link bsg_comm_link_lite. It is an unidirectional implementation of the

full-duplex source-synchronous communication channel. It is master-slave based link

which provides multiple user configurations. The interface can be split over multiple

link channels of custom width. Each link channel is source-synchronous and is sent with

a clock and valid signal. In the given application we have chosen a 32-bit data interface

which can be implemented as a single link of 32-bits or 4-link channels of 8-bits each.

The multiple link configuration provides a fault tolerant design. The bsg_comm_link

undergoes a calibration phase on reset to determine the number of active channels and

configures the internal blocks accordingly. Thus, in case of failure of any of the links,

the interface adopts appropriately and remains fully functional. This calibration requires

a full-duplex configuration to setup the link channels. The bsg_comm_link_lite is a light

weight version which bypasses the calibration phase to enable use of the master and

slave blocks independently on different chips (ASIC or FPGA).

Figure 4.2(a) shows the schematic of bsg_comm_link_lite. It consists of three

major sub-modules: Kernel, S-box and the Fuser. The kernel is the IO side interface

with the Source Synchronous Input (SSI) in Slave and a Source Synchronous Output

(SSO) in Master. This block is responsible for the clock domain crossing from the

IO clock to the Core clock using an asynchronous-FIFO. The data channel is DDR

(Double Data Rate) w.r.t the incoming clock and DDR to SDR conversion also takes

place in the kernel. Figure 4.2(b) shows the DDR data at the IO side for one 8-bit

link channel. The data aligned to the core clock then passes through the S-box and

assembler where it is assembled into (from) the core channels from (to) the link channels

format. In ArCuS, the standard core channel width is set to 80bits within the ASIC.

So, the assembler (Slave) takes in 32 bit data and converts it to 80bit format every 2.5

packets (2.5*32=80) at the input. The Master has a similar functionality in the opposite

direction. The bsg_comm_link_lite provides a means for high speed and reliable single-

ended data transfer without the need of SERDES and other high speed IOs.
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Figure 4.2: bsg_comm_link_lite: (a) Shows the schematic view of the bsg_comm_link_lite with IO and
core side data interfaces. (b) DDR data on IO for one 8-bit link channel with clock and valid.

4.1.2 Test and Configuration

The bsg_tag module provides a simple serial on-chip configuration network. It

is similar to the JTAG interface. This module’s functionality is split into a Master and

Client block. The ASIC instantiates a tag master module with serial data, clock and

enable interface. One Master can communicate with multiple client modules. Master

receives 1 bit data, decodes it and sends to respective client via 2 bit interface, op and

param (data). A stream of 0’s is used to reset the block. The internal zero counter

counts till a preset maximum packet length and is then ready for data. The data format

expected by the master is as follows. After reset, send a ’1’, followed by Header with

the {<node_id>, <data_not_reset>, <payload_length>} and finally the <payload> for

<payload_length> cycles. The master then sends data to the client based on the node_id.

The client has logic for clock domain crossing (CDC) and a set procedure for reset. The

data received at the client can then be used to configure other blocks and setup the ASIC

ID on boot-up. Figure 4.3 shows the schematic and interface of the bsg_tag modules.
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Figure 4.3: bsg_tag: (a) Master has a serial input interface and can handle multiple clients. (b) Client is
used for configuring a block while essentially taking care of CDC.

4.1.3 Clock Generators

The ASIC uses two on-chip clock generators bsg_clk_gen. These are all-digital

glitch-free inverter chain based circuit with down-sampling control. The clock is de-

signed to be atomically updated between any of its values without glitching. The clock

generator is divided into three sub-modules: Coarse Delay Tuner (CDT), Fine Delay

Tuner (FDT) and Atomic Delay Tuner (ADT) as shown in Figure 4.4. The FDT provides

fine delay control by utilizing the different loads on each of the clock paths which can

be configured depending on the desired frequency. The ADT provides atomic switching

between frequencies and consists of the delay chain. Finally, the CDT provides a coarse

delay control by including 0,2,4 or 6 inverters in the clock path. To avoid any variation

in duty-cycle, special clock inverters must be used which are generally provided in the

standard cell library. The control inputs for frequency settings are synchronized to the

internal clock. Each clock generator has a bsg_tag client instance to enable configu-

ration through the tag inputs as discussed in section 4.1.2. Special down-samplers are

also provided for a wider frequency range. The exact frequency range and the resolution

(step size) depends on the technology library and the delays of the standard cells used.

Option is also provided to by-pass these clock generators and use an external reference

clock for core and IO with appropriate select inputs at the ASIC level. This may be

useful for running RTL simulations to avoid using standard cell library and SDFs.
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FDT CDT

ADT

Figure 4.4: bsg_clk_gen Oscillator: The clock generator has a Fine Delay Tuner, Atomic Delay Tuner
and a Coarse Delay Tuner to achieve glitch-free operation with large dynamic frequency range.

4.1.4 ASIC Controller

Once the incoming packet address is matched to the ASIC ID at the router, the

bsg_asic_controller has the responsibility to assign the work to a free RCA. The con-

troller also takes care of the packet format conversion which is compatible with the

internal routing network. The controller receives a 80-bit packet in format defined in

section 3.2.3, Figure 3.4. It maintains an ASIC level free list of RCAs as discussed in

section 3.2.2. It checks for the available RCA in the list, changes the packet format and

routes the required number of packets to occupy the RCA. The internal network uses the

bsg_mesh_router which is detailed in next section. Once the RCA completes its execu-

tion, the controller accumulates the result packet and stores it in memory (one result per

RCA). The packet is then formatted back to the On-PCB network format (Figure 3.5)

with source address as the ASIC ID and is routed to the FPGA.

4.1.5 On-ASIC Routing Network

The accelerators (RCAs) are arranged in several lanes within the ASIC. There

could be a maximum of 32 lanes, each with 16 RCAs (therefore, 512 RCA maximum).

The 32 lanes are connected via bsg_mesh_router with address specified as (X,Y). The

bsg_mesh_router is a general purpose router with capability of routing in all four di-
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Figure 4.5: Mesh Router Format

rections (E,W,N,S) using dimensional ordered algorithm and one link to connect the

processor (P). Here, we utilize the mesh router to route only in following directions: 1)

West to East 2) West to South 3) South to West. The bsg_asic_controller is connected

at port P of the router (0,0). All the unused router links are stubbed to avoid additional

logic during synthesis. The routers provide buffering in form of FIFOs to handle traffic

during routing. Figure 4.5 shows the packet format for the bsg_mesh_router. The X and

Y co-ordinates are used for routing the packet to the appropriate lane.

Once the packet reaches the specified router lane (X), it is routed to the South

(S) port. The RCA lanes are connected via bsg_fsb module. The fsb provides a star

interconnection to each of the RCA. The request packet format issued by the fsb master

is shown in Figure 4.6. The important field to note is the 4-bit destination address which

is same as the Y-coordinate in the original mesh packet. The conversion of mesh to fsb

packets is taken care by bsg_mesh_fsb_convert. After the RCA finishes the computation,

the fsb client (RCA) pushes the result back to the fsb master. Figure 4.7 shows the

response packet with the complete source address (X,Y). This packet is then directed

to bsg_asic_controller i.e. (0,0) through the mesh routers. The bsg_asic_controller

collects the result packet and updates the free list accordingly.

4.1.6 RCA: Bitcoin Miner

The final piece of the ASIC is bsg_bitcoin_miner, the accelerator. Section 2.3

gives an overview of bitcoin mining. Figure 4.8 shows the mining algorithm. The block

header contains the version, previous hash, time-stamp, bits and nonce. The MSB of

the block is constant across attempts and is precomputed. The nonce and initial hash
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Figure 4.7: FSB Client Response Packet Format

go through two SHA-256 rounds. Billions of attempts are made until the hash is found

(a number less than the reference value) or attempt fails. The hardware implementation

is fully pipelined and is split in two 64-cycle stages. Thus, one mining latency is 128

cycles with one hash each cycle. The highlighted stages in Figure 4.8 makes up the

RCA logic with each taking a 256bit hash and 512bit block input. A total of 768 bits

data is needed to initiate the miner. This evaluates to 12 80-bit packets (12*64=768).

The packet counting and buffering is taken care at the RCA input by a n:1 (12:1) module.

Similarly, the output is a 256 bit hash value which equals 4 80-bit packets (4*64=256)

which are accumulated by 1:n (1:4) module at RCA output.

4.2 Simulation Environment

The overall simulation environment of the design looks similar to Figure 3.2.

The testbench setup for single ASIC is shown in Figure 4.9. Any number of ASICs

could be instantiated for testing. The FPGA logic is implemented for simulations pur-

poses only. It assumes that data after processing from the Ethernet is available in 80-bit
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Figure 4.8: Hashing: The RCA incorporates two pipelined SHA-256 units with value comparison.

format. The FPGA controller checks the ASIC available RCA counter and routes the

packet to the available ASIC through the bsg_comm_link_lite master interface. The

ASIC after processing the data returns the results back to the FPGA which is received

by the bsg_comm_link_lite slave. once all the packets are received, the ASIC free list

is updated accordingly. Some counters have also been added for measurements in the

simulation environment.
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clk_o token_clk_i data_i 
<32>
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Figure 4.9: ASIC Cloud Simulation Environment
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4.3 Tech-Node for Implementation

The main criteria for selecting an appropriate technology node for implementa-

tion is to optimize the Total Cost of Ownership (TCO) of the datacenter. The ASIC de-

velopment cost is part of the Non-Recurring Engineering (NRE) cost which includes the

labor, CAD tool licencing, IP and mask cost. Authors in [1] introduce a two-for-two rule

which suggests that the TCO of the datacenter must be at least 2x the NRE investment

for ASIC-based cloud to make sense. Khazraee et. al. [2] provide a detailed analysis

for manufacturing, licensing and other NRE costs for a spectrum of technology nodes

and applications. In general, it is observed that smaller technology nodes (16nm/20nm)

leads to sub-optimal TCO and hence authors promote use of mature nodes like 65nm

due to reduced mask and wafer costs. Next, we study various performance and cost

metrics across technology nodes for the proposed system.



Chapter 5

Results

We developed the RTL for the proposed ArCuS architecture and evaluated it in

various technology nodes to compare power, area and performance. Simulations were

performed in Synopsys VCS, synthesized using Design Compiler (DC) and physical

design, placement and routing done with Synopsys Galaxy Design Platform (IC Com-

piler). TSMC and UMC foundry models were used to implement the design. The nomi-

nal design parameters are shown in Table 5.1 with respective voltage and frequencies[2].

5.1 Utilization

The occupancy and utilization of the RCAs is directly dependent on the latency

of each operation. We define utilization as the ratio of the actual number of RCAs used

to the total number of available RCAs. These numbers are reported at both the ASIC

(Figure 5.1) and server level (Figure 5.2) as a function of the RCA latency. The total

available RCAs at ASIC level is assumed to be 512. Each ASIC adds a latency of 15

cycles/hop for the passing packets. Considering only one lane of 63 ASICs, each server

can have up to 32,256 RCAs. It is noticed that to saturate one ASIC with 512 RCAs the

Table 5.1: Process-Voltage-Frequency

Tech Node 180nm 130nm 90nm 65nm 40nm 28nm 16nm
Voltage (V) 1.8 1.2 1.0 1.0 1.0 1.0 0.8

Frequency (MHz) 50 75 90 100 120 150 170

26
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Figure 5.1: ASIC utilization: The percentage RCA utilization at ASIC level as a function of RCA
latency. Latency of around 16k cycles is desired to achieve 100% utilization of the ASIC with 512 RCAs.

latency of the accelerator is close to 16k cycles while to fully-exploit the server with 63

ASICs, a latency of close to 1 Million cycles per operation is required. This could be an

important factor while deciding the server and ASIC configurations depending on the

application and anticipated workload.
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Figure 5.2: Server utilization: The percentage RCA utilization at Server level as a function of RCA
latency. Latency of around 1M cycles achieves 100% utilization of a server with 63 ASICs.
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Figure 5.3: Total Power: Shows the total ASIC power with only 1RCA instance across tech-nodes.

5.2 Chip Power

The post-route power numbers of the ASIC with only one RCA is shown in Fig-

ure 5.3 across all technology nodes. There is a decrease of ≈40X total power when

moving from 180nm to 16nm, while paying for the increased power density of 3.2X.

It is noted that the power gain between 65nm and 28nm is not significant as the supply

voltages did not scale appreciably in these nodes. The distribution of the total power

shown in Figure 5.4 suggests that ASIC is dominated by the accelerator power. The bit-

coin miner takes up 85% of the chip power while the infrastructure overhead of ArCuS

is only 15% which is mainly due to the pads, on-PCB link and clock generators.

The total power per ASIC across technology nodes is shown in Figure 5.5. Power

numbers are plotted on a logarithmic scale to accommodate the large difference in mag-

nitudes on the same graph. We have considered no die-size limitations while evaluating

the number of RCAs per ASIC which is addressed later.

5.3 Area Analysis

Figure 5.6 shows the ASIC area with one RCA instance across all technology

nodes. The estimated gate count of the design post-synthesis is around 500K and simi-

lar to power, the area of the chip is dominated by the RCA. Only 13% of the total area

is contributed by the communication links, pads, buffers, controller and the routing net-
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Figure 5.4: Power Distribution: Distribution of total power in ASIC with 1 RCA. The architectural
overhead is only fraction of the total power. The accelerator power dominates the total chip power.
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Figure 5.5: Power vs. RCA count: Shows the power in log scale at various technology nodes with
different RCA per ASIC configurations.

work. Note that the clock generators are build only using standard cell clock inverters,

mux and basic logic gates, hence have insignificant area, Figure 5.7. For the purposes

of comparison of the area across technology nodes, Figure 5.8 shows the log of area

with increasing RCA count per ASIC. In the analysis so far, the die size constraints

have not been taken into consideration. It is essential to account for the die sizes and

amount of logic that can be packed in the ASIC. Figure 5.9 is a bar plot of the maximum
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Figure 5.6: Total Area: Shows the total ASIC area with only 1RCA instance across technology nodes.

RCA count per ASIC possible for different die sizes at each technology node. We have

considered five die sizes from as small as 5mmx5mm to as large as 18mmx18mm. For

technologies 40nm and above, it is seen that it is not possible to fit in 512 RCA per ASIC

even in 330mm2 die and larger dies of up to 600mm2 need to be considered. We have

saturated the RCA count plots to 512 as it is the maximum supported RCA per ASIC in

the proposed architecture. Die size of 200mm2 is sufficient to pack 512 bitcoin miners

at 28nm, while only 64mm2 die is able to fit those at 16nm.
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Figure 5.7: Area Distribution: Distribution of total area in ASIC with 1 RCA. The architectural overhead
is only fraction of the total area. The accelerator dominates the total chip area.
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5.4 Performance and Cost

Finally, we look into some important performance metrics for the ASIC cloud.

We study a server configuration subject to following constraints. The maximum die size

is set to 330mm2 and maximum of 512 RCAs per die are supported. Each server has

12 lanes with 10 ASICs each. The server configuration and the essential parameters are

summarized in Table 5.2. The performance metric in case of bitcoin mining is the hash

rate or number of hashes per second. The hash rate is directly dependent on the core

frequency and the number of RCAs on each server. Figure 5.10 shows the hash rate per

server in Gigahash per second (GH/s). 28nm and 16nm servers clearly outperform others

with hash rates reaching close to 10TH/s per server owing to higher density (therefore

more RCAs) and faster clock speeds.

The die cost is evaluated based on the technology node and the die area. The

total server cost in Table 5.2 models the silicon cost, package cost, heat sinks, fans, DC-

DC and Power Supply units. This cost model is based on the authors findings in [2]. The

energy efficiency of the server is calculated in terms of GH/s per Watt. Similarly, the

operations by the total server cost defines the hashrate per $. The trend in Figure 5.11

shows an increase in efficiency and decline in power and cost requirements per GH/s

with technology nodes. This is mainly due to the advantages of technology scaling,

higher RCA density in a given die area, reduced total power and higher frequencies.

To be profitable in datacenters, it is not only essential to have higher performance

but to maintain a reasonable Total Cost of Ownership. Although, from the metrics in

Figure 5.10 and Figure 5.11 it is evident that 16nm gives the best cost and energy ef-

ficiency, it might not be profitable enough to build custom chips at advanced nodes.

Table 5.2: ArCuS: Representative Server Configuration

Tech node 180nm 130nm 90nm 65nm 40nm 28nm 16nm
Die Size (mm2) 330 330 330 330 330 200 64
Die Cost ($) 9.90 15.50 16.96 17.24 25.44 23.97 10.86
GHps/Server 142 378 950 2,016 6,408 9,918 11,016
W/Server 1351.92 1854.75 2684.94 3700.19 6029.47 5224.95 2926.08
$/Server 1915.33 2656.07 2846.59 2882.96 3967.60 3773.18 2038.02
GHps/W 0.105 0.203 0.354 0.545 1.063 1.898 3.765
GHps/$ 0.074 0.142 0.334 0.699 1.615 2.628 5.405
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Figure 5.10: Performance (GHps/Server): The hash-rate for each server on different technology nodes
corresponding to configuration in Table 5.2 (Higher is better).
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(GHps/$) for the server configuration at all technology nodes (Higher is better).

Figure 5.12(a) shows the variation of the total cost per server with technology nodes for

our selected configuration. The absolute cost is noted to increase from 180nm to 40nm

ASIC clouds. This is due to the increased die costs and the power per server, which

increases the cooling and electricity requirements for the datacenter. However at 28nm

and below, higher density leads to a reduced die area and hence reduction in overall

cost. However, the trade-off comes in when we start to consider the Non-Recurring
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Engineering costs to develop ASICs at lower technology nodes. Figure 5.12(b) shows

the dramatic increase in NRE due to design and IP licensing costs when migrating from

older to newer technology nodes [2]. Studying various performance and cost metrics,

we can conclude 28nm is the candidate node for our application achieving high perfor-

mance with reasonable NRE and cost per server. No doubt ASICs outperform CPUs and

GPUs, however it is essential to consider all these effects while selecting the datacenter

configurations and identify when it is worth to migrate to custom cloud architectures.
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Figure 5.12: Cost:(a) Shows the variation of the cost per server across technology nodes (Lower is better).
(b) The Non-Recurring Engineering (NRE) costs for each technology node [2] (Lower is better).



Chapter 6

Conclusions and Future Directions

6.1 Conclusion

Datacenter architectures have taken central stage as more applications move to-

wards the cloud. In this thesis we explore the ideas proposed in [1] and present a light

weight Architecture for ASIC Cloud based Server: ArCuS. We developed the specifica-

tions for communication at the server-level and laid out the microarchitectural details of

the ASIC for bitcoin mining application. The complete ArCuS infrastructure has been

built using open-source repository developed by University of California, San Diego

with an aim to keep the design easily accessible to all research groups. We characterize

the proposed architecture over various technology nodes from 180nm down-to 16nm.

We examine area, power, cost and performance of ArCuS by considering a typical use-

case in the server.

The performance and efficiency numbers at lower technology nodes outperform

the older nodes due to the higher density, lower power and frequency scaling. However,

considering the total cost of the server and the NRE effort involved in the design of

the ASICs, the decision of selecting a technology node becomes non-trivial. Authors

in [1] [2] have given detailed analysis of optimizing TCO and NRE over many applica-

tions. It has been observed and re-enforced by the findings in this work that the most

advanced technology nodes might not always be profitable to consider for ASIC cloud

applications.

35
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6.2 Future Directions

This is an exciting time for server architecture researchers as more and more

companies have identified the movement towards custom ASICs in datacenters in fu-

ture. However, the intricate implementation details remain hidden from the research

community as these enterprises prefer to remain confidential due to stringent compe-

tition. This thesis is an early effort to develop an open infrastructure for ASIC cloud

applications with potential for further improvements.

In this work we implemented a logic intensive application with minimalistic

memory requirements. Addressing the memory (DRAM) architecture and related com-

munication protocols for the ASIC cloud remains an open challenge. Another aspect

to consider, as identified earlier is the networking outside the server. It is an essential

component to build the ASIC cloud datacenter. Depending upon the network interface

and the delivery of workload packets, necessary modifications and design decisions are

needed at the server controller (FPGA). We touch upon similar issues briefly in Chapter

3. We hope ArCuS will be one of the many server architectures to come that would

promote development of new ASIC cloud applications and speed up the research in this

domain.
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