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Executive Summary 

Since the initial reporting in 2017 of the first physical attack on an Autonomous Vehicle (AV), various attack 

methods have been discovered targeting critical AI components in AVs, especially those involving how the 

vehicle perceives its surroundings. Although prior studies have extensively considered the technical attributes 

of these attacks (e.g., attack effectiveness), the security risks such attacks can pose to our daily life are still 

uncertain. For example, laser attacks have been shown to have a high attack success rate using a physical setup 

consisting of a function generator, oscilloscope, amplifier, photodiode, laser diode, lenses, camera tracking 

system, and a pan-tilt system. However, such a physical setup can cost the attacker around $10,000, is hard to 

carry and is visible to everyone on the street, making it less likely that an attacker will employ it in the real 

world. Thus, an understanding of the technical attributes of such attacks (lack of stealthiness, cost-

effectiveness, and ease of deployment) does not directly translate to an understanding of the risks they can 

pose to our daily life, which is important to a wide range of potentially-affected parties including individuals, 

developers, stakeholders, and policymakers. 

In this report, we present the results of the first quantitative risk assessment of physical attacks on AVs. We 

specifically focus on AVs’ ability to perceive the roadway and objects on it because of its critical nature in AV 

operations and the availability of existing research.  We assess the likelihood that a given attack method will be 

employed in real life. We develop a problem-specific risk scoring system and metric design, and employ them in 

an initial evaluation. We envision that a risk assessment such as we propose should be a fundamental 

component in future attack studies to enable a more comprehensive understanding the potential impact of 

future AV attacks on our daily lives. 

In summary, our study accomplished the following: 

● We performed the first quantitative risk assessment of physical attacks on AVs. We specifically focused 

on perception attacks considering their high criticality and prevalence in existing research. 

● We defined the daily-life risk as the likelihood that a given attack method will be employed in real life, 

and developed a problem-specific risk scoring scheme and metric design. 

● We performed an initial evaluation of the proposed risk assessment method for all the reported attacks 

from 2017 to 2023 in the physical perception domain of AVs. We quantitatively ranks the daily-life 

risks posed by each of eight attack categories, and identified three which posed the highest risks: 2D 

printed images (i.e., printing images/photos of critical road objects such as cars and pedestrians), 2D 

patches (i.e., attaching malicious stickers/posters to critical road objects), and coated camouflage 

stickers (i.e., painting/adding camouflage coat to cover the entire critical road objects), which deserve 

more focused attention for developing potential future mitigation strategies and policy making. 
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Introduction 

Autonomous Vehicles (AVs) have become increasingly accessible on today's roads, their development 

propelled by ongoing technological advancements. These vehicles, designed to function independently without 

continuous active human intervention, heavily rely on the vehicle’s perception system—its ability to detect the 

roadway (e.g., lane markings) and objects in its path—using external sensors, including cameras, light detection 

and ranging (LiDAR), and radar, to comprehensively perceive their surroundings. In order to process the 

extensive data collected by these sensors, AVs utilize sophisticated machine-learning algorithms, enabling 

them to interpret and respond to dynamic environments in real time. However, the use of these machine 

learning models also introduces a critical vulnerability: the potential for adversarial attacks. These attacks 

manipulate the input data received by the vehicle's sensors in imperceptible ways to the human eye, resulting 

in deceptive alterations that can compromise the vehicle's perception system. Such malicious interventions 

pose a significant threat to the safety of autonomous vehicles, potentially leading to system malfunctions and 

hazardous collisions. 

For the future of autonomous vehicles, a significant area of concern revolves around physical adversarial 

attacks. These are instances where real-world objects are physically altered, like affixing a patch to a stop sign, 

resulting in the vehicle's perception module incorrectly identifying it as a speed limit sign. Given their high 

impact on safety-critical systems, these physical adversarial attacks hold more importance in autonomous 

vehicle security compared to other digital domain attacks. 

Since the first reported attack [1] in 2017, numerous methods, or scenarios, known in cybersecurity circles as 

attack vectors, that can be exploited to disrupt critical artificial intelligence (AI) components of AVs have been 

identified, notably those targeting the car’s perception system. Previous research studies have thoroughly 

examined these AV perception attacks, including an analysis of the attacker's capabilities, diverse attack vectors, 

and the vulnerability of distinct modules within the perception system. 

Although prior studies have extensively considered the technical attributes of these attacks (e.g., attack 

effectiveness), the security risks such attacks can pose to our daily lives are still obscure. It is crucial to 

differentiate the concept of risk assessment from the attack technique itself. An attack typically exploits a 

vulnerability, whereas the associated risk is defined as the likelihood of a real-world adversary utilizing this 

particular attack vector, taking into account various factors including the attack cost, deployability, 

stealthiness, and more. For example, laser attacks [2] have been shown to have a high success rate with a 

physical setup consisting of a function generator, oscilloscope, amplifier, photodiode, laser diode, lenses, 

camera-tracking system, and a pan-tilt system. However, to carry out such an attack could cost the attacker 

around S10,000, the equipment would be hard to carry, and the devices would be visible to everyone on the 

street, making it less likely for an attacker to employ it in the real world, resulting in a lower risk that such an 

attack would actually occur. Thus, an understanding of the technical attributes of such attacks does not directly 

translate to an understanding of the risks they can pose to our daily lives, which is highly important to a wide 
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range of potentially affected individuals, developers, stakeholders, and policymakers as they go about making 

decisions. 

Therefore, in this report we present the first quantitative risk assessment of the feasibility of various AV attack 

scenarios. We specifically focus on perception attacks considering their highly critical nature and also the 

availability of existing research. Our study defined the daily-life risk as the likelihood that a given attack vector 

will be employed in real life, then designed a problem-specific risk scoring system and developed metrics to 

measure the risks.  Using this methodology we conducted a systematic risk assessment of all the reported 

attacks against AVs from 2017 to 2023, and found that three types of attacks—2D printed images, 2D patches, 

and coated camouflage stickers—posed the highest daily-life risk. We believe that such analyses and results can 

help individuals, developers, stakeholders, and policymakers in making decisions about deploying and adopting 

AV technology. We also envision that risk assessments, such as the one we propose, will become a fundamental 

component in future attack studies to enable a more comprehensive picture of these attack’s impact on our 

daily life. 

Structure of the Report 

The rest of this report is structured as follows. In the Background section, we provide an overview of existing 

attacks on AV perception and delve into prior research related to risk assessment. In the Risk Assessment 

Methodology section, we outline the threat model and its scope. Subsequently, we describe the four steps of 

the risk assessment methodology, followed by the identification of seven risk metrics. The Risk Assessment 

Results section entails an initial quantitative evaluation of the proposed risk assessment method, including the 

ranking of daily-life risks posed by each of the eight attack categories. Finally, we outline potential future 

research directions and present our conclusions in the final section. 
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Background 

Existing Attacks 

Recent research has demonstrated the susceptibility of machine-learning models to adversarial attacks, raising 

concerns about the robustness of AI systems in AVs. Given the critical reliance of AVs on these models at 

various stages in driving the vehicle, such as perception, localization, prediction, and planning, the potential 

vulnerability of AVs to a multitude of adversarial attacks becomes a pertinent concern. 

According to recent findings highlighted in Cao, et al. [3], more than 86 percent of the reported AV attacks 

targeted the AV perception system. Notably, attacks on cameras account for approximately 60 percent of 

these cases [3]. These camera-based perception attacks can occur during both training and inference times. 

During training—the process of teaching an AI system to perceive, interpret and learn from data—the input 

data can be contaminated with specific triggers, known as poisoning or backdoor attacks. During inference— 

the process of running live data through a trained AI model to make a prediction or solve a task—the input 

images can be digitally or physically tampered with. 

In these types of digital attacks, the attacker may introduce noise into the input data (such as point clouds in 

LiDAR or images in cameras) to mislead the AV's perception model. On the other hand, in a physical attack, the 

attacker may employ a physical setup as the attack vector. For instance, this could involve manipulating the 

input sensor data, such as by shooting laser at the camera to generate additional points in a point cloud (i.e., 

set of data points in a 3D coordinate system generated by LiDAR sensing results) or placing a physical patch 

(e.g., a malicious paper or sticker attached to a road object such as cars and pedestrians) on an image to change 

the appearance of an object. 

An attacker's objectives can be classified into three distinct categories: hiding, creation, or misclassification. In 

hiding attacks, the goal is to make an object disappear from the perception system's view. In creation attacks, 

the attacker aims to introduce a new object that is not actually present. In misclassification attacks, the 

detected object is intentionally mislabeled, leading to potentially dangerous consequences (e.g., the AV brakes 

suddenly after a car is misclassified as a pedestrian). 

We performed an exhaustive survey of physical AV perception attacks from 2017 to 2023, reported in 56 

research papers, and identified eight types of attack vectors in total: 2D Printed Images, 2D Patch, Coated 

Camouflage Stickers, 3D Object, Light Projection, Laser/Infrared (IR) Light, Acoustic Signal, and 

Electromagnetic Interference (EMI). 

Machine learning models relying solely on camera data face challenges in distinguishing between 2D and 3D 

objects. Consequently, a seemingly harmless 2D poster of a person placed in front of a vehicle could be 

erroneously identified as an actual human [4], triggering an abrupt halt. In this scenario, an attacker does not 

require advanced engineering skills so anyone can carry out the attack. Many of the proposed attacks operate 
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using gradients (i.e., a mathematical guidance in the optimization process)—which measures how well the 

model is performing—where the attacker calculates the gradient concerning the input and manipulates it to 

optimize the attacker's specific objective function. One prominent attack method of this type is the 2D patch 

attack [5], where an attacker strategically places a skillfully crafted patch on an object, leading the machine 

learning model to misclassify it. Recent developments have focused on making such patches appear more 

naturalistic. Coated camouflage stickers [6] that fully cover vehicles have been devised, causing objects to be 

misclassified from any viewpoint or distance. 

Moreover, instead of merely attaching a patch onto a benign object, attackers can deform the shape of an 

object to render the entire entity malicious. These techniques [7] are employed to deceive both cameras and 

LiDAR systems. Another noteworthy attack vector involves light projections, where an attacker projects light in 

the shape of a human [8] in front of the camera or directs lights towards the lens to create a flare effect [9]. 

Similarly, in the case of laser or infrared light, the attacker can exploit the rolling shutter effect of the camera 

by shooting laser/lights to the camera [10] or create alterations in the points of the LiDAR point cloud by using 

laser shooting to change the distance measurement for the 3D points [2]. With the acoustic signal attack 

vector [11], the attacker aims to confuse the system’s object detector into misclassifying objects by directing 

acoustic signals towards the camera to affect the image stabilizer sensor. Additionally, the use of 

electromagnetic interference (EMI) presents an intriguing attack vector [12]. Here, the attacker generates an 

electromagnetic field which induces a voltage on the LiDAR's internal Time-of-Flight (TOF) circuits, leading to 

disruptions in the resulting point cloud. 

Risk Assessment 

A few studies have delved into risk assessment with regard to AVs. The definition of risk in this context covers 

a wide range of meanings. Many research papers provide their own unique definition of risk, subsequently 

presenting research based on their specific understanding. This variability in defining risk is to be expected, 

given that the interpretation of risk is influenced by the specific context under consideration. 

Certain risk assessment studies [13,14] have focused on predicting the probability of an accident for AVs 

equipped with collision avoidance systems. Another line of research has leveraged risk assessment techniques 

[15,16] for evaluating AV decision-making and planning while driving. However, only a limited number of 

works have concentrated on conducting risk assessments of potential attacks on AVs. For instance, ML-Doctor 

[17] offers a comprehensive risk assessment of inference attacks, conducting an extensive measurement study 

across five model architectures and four datasets, encompassing both attack and defense strategies. Similarly, 

another study has developed a systematic framework for risk assessment, specifically addressing the 

vulnerability of Unmanned Aerial Vehicles (UAVs) to potential cyber-attacks [18]. These endeavors highlight 

the growing recognition of the significance of robust risk assessment methodologies in ensuring the safety and 

security of AV systems in the face of emerging threats. 
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Risk Assessment Methodology 

Scope and Threat Model 

Our threat model focuses on physical attacks on the AI components responsible for AV perception that do not 

require access to the AV system internal components. We examined research papers from top-tier research 

venues related to Security, Computer Vision (CV), Machine Learning (ML), and Artificial Intelligence (AI). Our 

search process involved an exhaustive review of publications from 2017 to 2023, ensuring comprehensive 

coverage of the literature related to our research scope. 

An AV perception module is an intricate system encompassing various tasks, such as object detection, object 

classification, semantic segmentation, object tracking, lane detection, and traffic light detection. The sensors 

employed include cameras, LiDAR, and radar.  Attacks may be launched against one of these devices though 

attacks on multi-sensor fusion systems which combine observations from several different sensors to provide a 

more complete description of driving environment. 

Our research scope takes into account all forms of physical attacks, such as altering the texture, shape, and 

position of objects in the physical world. Additionally, we address sensor-specific attacks, including LiDAR 

spoofing, radar spoofing, manipulation of Laser/IR light, and distortion of acoustic signals. These attacks cover 

a range from white-box to black-box, with the attacker's goals varying from hiding information to misclassifying 

sensor data, or even the creation of false observations. 

Assessment Methodology 

Our methodology for performing a thorough risk assessment involves four key steps. 

1. Collecting existing attack vectors: We first analyzed relevant research within the scope of our specific 

threat model to identify existing attack vectors. 

2. Analyzing attack launching workflow: In this step, we carefully examined the general workflow that an 

attacker might follow while attempting to execute an attack. Understanding each step of the attacker's 

process is crucial as each phase has a direct impact on the likelihood of the attacker's success. 

3. Identifying risk metrics: By observing the workflow, we identify a set of risk metrics denoted as 𝑅𝑖 , 𝑖 = 

1 . . . 𝑛. These metrics independently influence the likelihood of an attacker adopting a specific attack 

vector in real-life scenarios. Examples of these risk metrics could include the attacker’s cost, how easily 

the attack can be concealed, and the effort required to carry out the attack. 

4. Calculating risk score: In this final step, we define a risk score of a given attack vector A as 𝑅𝑖𝑠𝑘(𝐴) = 

𝑃(𝐴|𝑅1, 𝑅2. . . 𝑅𝑛), where 𝑃(. ) is the likelihood for an attacker to employ A given the risk metrics for A. 

Since the risk metrics are designed to be independent in affecting 𝑃(. ), we can calculate Risk(.) using 



Risk Assessment for Security Threats and Vulnerabilities of Autonomous Vehicles 8 

𝑃(𝐴|𝑅1, 𝑅2. . . 𝑅𝑛) = ∏𝑛
𝑖=1 𝑃(𝐴|𝑅𝑖 ). Each 𝑃(𝐴|𝑅𝑖) can then be determined by the risk analyst based 

on the attack characteristics per risk metric. 

Metric Design 

Based on the characteristics of the attack vectors we analyzed, we identified the following seven risk metrics, 

𝑅𝑖 . 

1. Attacker’s Knowledge: This refers to the level of understanding an attacker has about the system they 

are targeting. It can be classified as white, grey, or black-box. White-box indicates a high level of 

knowledge, meaning the attacker has complete information about the system. Grey-box means the 

attacker has some information, but not all. Black-box implies minimal or no information about the 

system. 

2. Effectiveness: This measures how well the attack achieves its intended goal. It is commonly reported as 

the Attack Success Rate, which indicates the percentage of successful attacks out of the total attempts. 

3. Robustness: This refers to how well the attack performs under different environmental conditions. It 

accounts for the ability of the attack to work consistently in various scenarios, such as different 

weather conditions or lighting. 

4. Deployability: This represents the level of effort and resources required to carry out an attack in a real-

world situation. It considers factors like the time, materials, and expertise needed to execute the attack 

successfully. 

5. Stealthiness: This indicates the level of visibility of the attack setup. A highly stealthy attack is one that 

is difficult to detect by security measures or monitoring systems, allowing it to operate undetected for 

an extended period. 

6. Attacker's Cost: This primarily refers to the financial expenses incurred by the attacker during the 

planning and execution of the attack. It encompasses costs associated with acquiring necessary tools, 

resources, or personnel required for the attack. 

7. Evaluation Level: This specifies the scope at which the evaluation of the attack is conducted. It can be 

at the component level, focusing on individual parts of the system; at the Simulation level, which 

involves testing in simulated environments; or at the AV level, examining the performance of the attack 

on the entire autonomous vehicle system. 
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Risk Assessment Results 

A user study is required to obtain the actual value of 𝑃(𝐴|𝑅𝑖 ),. However, as an initial trial, we defined the value 

of each to be at three normalized value levels: High (H), Medium (M), and Low (L) in order to make a subjective 

estimate. Positive risk metrics are directly proportional to the attacker's benefit, thus we subjectively assigned 

H=1, M=2/3, and L=1/3 for each positive metric (e.g., stealthiness). Negative risk metrics are inversely 

proportional to the attacker's benefit; thus the assigned values are opposite (H=1/3, M=2/3, L=1) for those 

metrics (e.g., attacker’s cost). 

Please note that while our assigned values are subjective, they accurately reflect the true property of 𝑃(𝐴|𝑅𝑖 ), 

i.e., the higher the value the greater the attack vector is likely to be employed. These assignments provide a 

starting point for assessing risk factors, recognizing the subjectivity involved. 

As an initial design, we began with the three most direct risk metrics out of the seven identified above: 

Deployability (D), Stealthiness (S), and Attacker’s Cost (C). 

𝑃(𝐴|𝐷𝑒𝑝𝑙𝑜𝑦𝑎𝑏𝑖𝑙𝑖𝑡𝑦): 

● High: This category denotes that the attack can be easily deployed with minimal effort. An example of 

such a highly deployable attack could involve the simple placement of a 2D patch or 2D printed image, 

requiring minimal resources or technical skill to execute. 

● Medium: Attacks falling under this category require a moderate amount of effort to implement. For 

instance, applying a camouflage sticker over the entire vehicle would demand more time and resources 

compared to a simple patch. 

● Low: This classification signifies that the deployment of the attack is challenging and demands a high 

level of skill or precision. An example could be an intricate laser shooting mechanism that requires 

precise aiming and advanced technical knowledge. 

𝑃(𝐴|𝑆𝑡𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠): 

● High: An attack categorized as highly stealthy implies that it can easily go unnoticed or undetected. For 

instance, the use of a 2D printed image could seamlessly blend with its surroundings, remaining 

inconspicuous to the observer. 

● Medium: This category indicates that the attack possesses certain elements that could potentially be 

detected upon close inspection. An example of this could be the application of a camouflage sticker 

over an entire vehicle, which might have some detectable features upon careful observation. 

● Low: Attacks falling into this category are easily detectable and can be quickly identified. For example, 

setting up a projector would be conspicuous and easily spotted by security or monitoring systems. 
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𝑃(𝐴|𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟′𝑠 𝐶𝑜𝑠𝑡): 

● Low: Attacks falling under this category can be carried out with readily available and affordable 

materials. An example could be using a 2D printed image, which can be created using commonly 

accessible resources and tools. 

● Medium: This classification indicates that the attack requires specialized resources or materials that 

might not be readily available. An example could be an Electromagnetic Interference (EMI) attack, 

which might demand specific equipment or expertise not commonly accessible. 

● High: This category represents attacks that demand expensive materials or resources to execute. For 

instance, a complex 3D printing-based attack could require costly materials or advanced technology 

beyond the reach of ordinary means. 

Our risk assessment results are shown in Table 1. Among the eight attack vectors, the top three highest-risk 

ones are 2D printed images, 2D patches, and coated camouflage stickers. The 2D printed image attack is 

ranked the highest daily-life risk since it is highly deployable (you just need a simple placement of a printed 

image), highly stealthy (it can easily be disguised as a road-side advertisement), and with low attack cost (you 

just need a 2D printer). Thus, for both defensive development and security-related policymaking, combating 

this attack vector should be prioritized. The 2D patch attack comes in second, since it is still highly deployable 

and with low attack cost, but it is slightly less stealthy than the 2D printed image since it will exhibit a noise-

like pattern instead of being completely natural looking. The coated camouflage attack is ranked third; it still 

has low attacker’s cost, but suffers from the same suspicious pattern problem as the 2D patch attack. When 

compared to a 2D printed image attack and a 2D patch attack, it requires greater effort since the malicious 

pattern has to cover the entire surface of the target object, instead of just a small patch area. The total order of 

attack vectors, ranked from the highest daily-life risk to the lowest, is: 2D printed image, 2D patch, Coated 

camouflage stickers, 3D Object/mesh, EMI, and the remaining three which have the same lowest risk score 

(Light projection, Laser/IR light, and Acoustic Signal). 

Table 1. Initial risk assessment results. 

Attack Vectors (ranked 

by the risk scores) 

Metrics 
Risk(.) 

Deployability Stealthiness Attacker’s Cost 

2D Printed Image High (1) High (1) Low (1) 1 

2D Patch High (1) Medium (2/3) Low (1) 0.67 

Coated Camouflage 

Sticker 

Medium (2/3) Medium (2/3) Low (1) 0.44 



Risk Assessment for Security Threats and Vulnerabilities of Autonomous Vehicles 11 

Attack Vectors (ranked 

by the risk scores) 

Metrics 
Risk(.) 

Deployability Stealthiness Attacker’s Cost 

3D Object/Mesh High (1) High (1) High (1/3) 0.33 

Electromagnetic 

Interference 

Low (1/3) Low (1/3) Medium (2/3) 0.07 

Projection Low (1/3) Low (1/3) High (1/3) 0.04 

Laser/IR Light Low (1/3) Low (1/3) High (1/3) 0.04 

Acoustic Signal Low (1/3) Low (1/3) High (1/3) 0.04 
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Conclusion 

The surge in attacks targeting AV perception capabilities demands a comprehensive examination. Our 

extensive survey has analyzed 56 research papers, identifying eight distinct attack types. While technical 

attributes indicate the potential efficacy of various attacks, real-world implications reveal a more nuanced 

picture. To establish a comprehensive understanding of risk, we define it as the likelihood of an attack's real-

world deployment by adversaries. Seven essential risk metrics—Attacker’s Knowledge, Effectiveness, 

Robustness, Deployability, Stealthiness, Attacker's Cost, and Evaluation level—shape our risk assessment 

framework. In our initial assessment, we concentrate on three primary risk metrics—Deployability (D), 

Stealthiness (S), and Attacker’s Cost (C). Among the eight identified attack vectors, our analysis highlights 2D 

printed images, 2D patches, and coated camouflage stickers as the top three high-risk vectors, which deserve 

more focused attention for potential future mitigation strategy development and policy making. 

While acknowledging the inherent challenges in achieving a comprehensive checklist covering all possible risks, 

in the future we plan to refine our current design and improve the comprehensiveness and efficacy of our risk 

assessment framework. First and foremost, we plan to incorporate the remaining four identified risk metrics, 

ensuring a more comprehensive and holistic evaluation of potential risks. This expansion will enable a more 

nuanced understanding of the multifaceted dimensions of risk, allowing for a more accurate and inclusive risk 

assessment process. 

Furthermore, we intend to employ a more standardized and data-driven approach alongside a comprehensive 

user study to assign risk scores in a more objective and evidence-based manner. 

Lastly, we aim to broaden the scope of our research to encompass a more extensive range of AI components 

and threat models, with a particular emphasis on addressing potential cyberattacks. By extending our focus to 

incorporate these critical aspects, we aspire to develop a more comprehensive and adaptable risk assessment 

framework that accounts for the evolving landscape of AI security threats and vulnerabilities. 
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