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a b s t r a c t

Predictive equivalence in discrete stochastic processes has been applied with great success to identify
randomness and structure in statistical physics and chaotic dynamical systems and to inferring hidden
Markov models. We examine the conditions under which predictive states can be reliably reconstructed
from time-series data, showing that convergence of predictive states can be achieved from empirical
samples in the weak topology of measures. Moreover, predictive states may be represented in Hilbert
spaces that replicate the weak topology. We mathematically explain how these representations are
particularly beneficial when reconstructing high-memory processes and connect them to reproducing
kernel Hilbert spaces.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With an accurate model in hand, an observer can leverage
heir knowledge of a system’s history to predict its future be-
avior. For stochastic processes—distributions over time-series
ata—the task of predicting future behavior from past observa-
ions and the associated resource constraints this task imposes on
n observer have been studied under the physics of computational
echanics [1]. This subfield of statistical mechanics focuses on the

ntrinsic information-processing embedded in natural systems.
Its chief insight is the concept of the predictive (or causal)

tate. A process’ predictive states play a dual role. On the one
and, to accurately predict a process’ future behavior they are
he key objects that an observer must be capable of reproduc-
ng in their model. On the other hand, the predictive states
nd their dynamics are central to understanding the intrinsic,
odel-independent properties of the process itself [1].
The concept of predictive states has found use in numer-

us settings, such as classical and quantum thermodynamics [2–
], quantum information and computing [5–8], condensed mat-
er [9–11], dynamical systems [12], cellular automata [13], and
odel inference [14–20]. Additionally, in the setting of processes
enerated by finite-state, discrete-output hidden Markov models
HMMs) and generalized hidden Markov models (GHMMs), a
eep mathematical theory of predictive states is now available
1,21–25].

Despite their broad utility, a mathematically rigorous defini-
ion of predictive states is needed that is applicable and useful for
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E-mail addresses: sloomis@ucdavis.edu (S.P. Loomis), chaos@ucdavis.edu
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167-2789/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
even more general stochastic processes. Here, we have in mind
large-memory processes whose long-time correlations cannot be
finitely represented by HMMs or GHMMs and processes whose
outputs may span a continuous domain in time and space.

The following takes the next major step towards a rigorous
and mathematically general definition of predictive states, de-
veloping an approach that uses the tools of functional analysis
to better understand the topology and structure of predictive
states and that applies to all processes whose observations are
temporally discrete but may otherwise be either discretely- or
continuously-valued.

It was previously noted [21] that predictive states are al-
ways well-defined and can be convergently approximated from
empirical observations for any discretely-valued stationary and
ergodic process. We extend and deepen this result, relating this
convergence to the topology of sequences and applying it to
continuously-valued stochastic processes. Next, we expand on
recent work on Hilbert space embeddings of predictive states [20,
26–28], demonstrate that such embeddings always exist, discuss
their consequences for predictive-state geometry and topology.
Last, we explore the implications of our results for empirically
reconstructing predictive states via reproducing kernel Hilbert
spaces, particularly through the addition of new terms in the
asymptotic convergence bounds.

2. Assumptions and preliminaries

2.1. Stochastic processes

We begin by laying out a series of definitions and identifying
the assumptions made. We draw from the combined literature of
measures, stochastic processes, and symbolic dynamics [29,30].
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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A stochastic process is typically defined as a function-valued
random variable X : Ω → XT , where (Ω, Σ, µ) is a measure
space, T is a set of temporal indices (perhaps the real line,
perhaps a discrete set), and X is a set of possible observations
(also potentially real or discrete in nature). We take the sample
space Ω to be the set XT and X to be the identity. In this way,
a stochastic process is identified solely with the measure µ over
Ω = XT .

When T is Z, we say the process is discrete-time; when it is
R we say continuous-time. Unless specified otherwise we assume
discrete-time, later treating continuous-time as an extension of
the discrete case. In discrete time, it is convenient to write X(t)
as an indexed sequence (xt ), where each xt is an element of X .
When X is a discrete finite set, we say that the process is discrete-
observation; by continuous-observation we typically mean the case
where X is an interval in R or a Cartesian product of intervals in
Rd. These are the only cases we consider rigorously. That said,
we believe they are sufficient for many practical purposes or, at
least, not too cumbersome to extend if necessary; in Appendix I
we discuss possible extensions to noncompact X and continuous
time.

The temporal shift operator τ : XT
→ XT simply translates

t ↦→ t + 1: (τX)(t) = X(t + 1). It also acts on measures of
XT : (τµ)(A) = µ(τ−1A). A stochastic process paired with the
shift operator—(XT , Σ, µ, τ )—becomes a dynamical system and
is stationary if τµ = µ. It is further considered ergodic if, for all
shift-invariant sets I ⊆ XT , either µ(I) = 1 or µ(I) = 0. Here,
we assume all processes are both stationary and ergodic.

A consequence of ergodicity, and an equivalent restatement of
the property, is given by the following convergent limit for every
measurable function f : XZ

→ R and µ-almost every X ∈ XZ:

lim
N→∞

1
N

N−1∑
t=0

f (τ tX) =
∫

f (X)dµ(X)

That is, temporal Monte Carlo averages will converge to averages
over the stationary measure µ. The convergence rate, and its
dependence on X , will vary from process to process and has no
standard form since we are making no additional assumptions
beyond ergodicity.

Examples of stationary and ergodic processes include Markov
chains and hidden Markov chains; however, the class is much
broader than either of these, including also renewal and hidden
semi-Markov processes and processes generated by probabilistic
stack automata.

If X is discrete, then the measurable sets of XZ are generated
y the cylinder sets:

t,w := { X : xt+1 . . . xt+ℓ = w } ,

here w ∈ X ℓ is a word of length ℓ. For a stationary process, the
ord probabilities:

rµ ( x1 . . . xℓ ) := µ
(
U0,x1...xℓ

)
are sufficient to uniquely define the measure µ.

In the continuous-observation case, the issue is more subtle.
A cylinder set instead takes the form:

Ut,I1...Iℓ := { X : xt+1 ∈ I1, . . . , xt+ℓ ∈ Iℓ } ,

where each It is an interval in X (or product of intervals, if
X ⊆ Rd). This does not lend itself well to expressing simple word
probabilities; however, we can write the cylinder probabilities:

Prµ ( I1 . . . Iℓ ) := µ
(
U0,I1...Iℓ

)
Additionally we can define the word measures µ|ℓ by restricting
µ to the set X ℓ describing the first ℓ values (so that µ|ℓ(I1×· · ·×
Iℓ) = Prµ ( I1 . . . Iℓ )). By choosing intervals of rational dimension
centered on rational-valued points, we can fully characterize
any measure using only a countable number of probabilities
Pr I . . . I —a consequence of Carathéodory extension.
µ ( 1 ℓ )

2

2.2. Topology, continuity, and convergence on XN

A central feature of our result on predictive states is that they
converge in distribution as more information from the past is
provided. Convergence in distribution is defined in terms of con-
tinuous functions. Namely, a sequence of measures µk over XN

converges to a measure µ in distribution if, for every continuous
function f : XN

→ R,

lim
k→∞

∫
XN

f (−→x )dµk(
−→x ) =

∫
XN

f (−→x )dµ(−→x )

To relate this definition of convergence to our own intuitions
of stochastic processes, we must have a better understanding of
continuity in sequence-space.

The definition of continuity depends on the product topology,
whose neighborhoods are cylinder sets. For the discrete case, a
simple rendering of the definition of continuity is this: a function
f is continuous if, for every −→x ∈ XN and some small number ϵ >

0, there is a sufficiently large time t such that |f (−→y )− f (−→x )| < ϵ

whenever y1 . . . yt = x1 . . . xt . In other words, if two sequences
match sufficiently far into the future, then their function values
will be arbitrarily close.

Another feature of continuity on XN comes to us by virtue of
the compactness of the space. Since X is always assumed to be
compact (by virtue of being either a finite set or a bounded region
of Rd), XN is compact as well, by the Tychonoff theorem. Then
the Heine–Cantor theorem asserts that any continuous function
on XN is uniformly continuous. This means that we can in fact
strengthen our definition of continuity: for any small ϵ > 0,
there is a single time t > 0 after which it is guaranteed that
|f (−→y ) − f (−→x )| < ϵ for any two −→x and −→y that match on the
first t symbols: y1 . . . yt = x1 . . . xt . In other words, convergence
occurs at (at most) a uniform rate at every point; there are no
‘‘straggler points’’ that take an arbitrarily long time to converge
compared to other points.

For the following statement, we call a measure µ full if it
assigns positive measure to every cylinder set.

Proposition 1 (Continuity Via Word Averages). A function f :
XN
→ R is continuous if and only if the functions:

fµ,ℓ(x1 . . . xℓ) =

∫
U0,x1 ...xℓ

f (−→x )dµ(−→x )

µ(U0,x1...xℓ )

are continuous on X ℓ and converge to f (−→x ) uniformly over −→x and
for every full measure µ, as ℓ→∞.

Proof. Suppose f is continuous; then it is uniformly continuous,
and so for every ϵ > 0 there is a t so that, for every −→x and µ,
|fµ,ℓ(x1 . . . xℓ) − f (−→x )| < ϵ. This follows since f will be close to
f (−→x ) on the cylinder set being averaged over and so the average
will be close. Further, continuity of fµ,ℓ will be inherited from the
continuity of f . Thus, the forward implication is true.

For the converse, consider the fact that fµ,ℓ can be extended
to a function on XN as fµ,ℓ(

−→x ) = fµ,ℓ(x1 . . . xℓ). Each of these
extensions is necessarily continuous on XN. Since they converge
uniformly to f , f must be continuous by virtue of the Uniform
Limit Theorem. (The latter states that a uniform convergence of
continuous functions results in a continuous function.)

Let us keep in mind that if X is discrete, then the requirement
that fµ,ℓ is continuous is trivial.

We can now demonstrate that convergence-in-distribution is
equivalent to convergence over word distributions. We state the
full result and then explain the implications afterward.
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roposition 2 (Equivalence of Convergence-over-words and
onvergence-in-distribution). Let µk be a sequence of measures

on XN and let µ be a measure over the same. Then µk → µ in
distribution if and only if µk|ℓ → µ|ℓ in distribution for every ℓ,
where ν|ℓ is the projection of the measure ν to X ℓ.

Proof. By virtue of Proposition 1, for any continuous function f
for all measures ν:

lim
ℓ→∞

∫
fν,ℓ(x1:ℓ)d (ν|ℓ) (x1:ℓ) =

∫
f (−→x )dν(−→x ) .

If we replace ν with µk and µ, respectively, then on the one hand
convergence in distribution has the form:

lim
k→∞

lim
ℓ→∞

∫
fµk,ℓ(x1:ℓ)d (µk|ℓ) (x1:ℓ)

= lim
k→∞

∫
f (−→x )dµk(

−→x )

=

∫
f (−→x )dµ(−→x )

for all continuous f .
On the other hand, convergence of µk|ℓ → µ|ℓ for all ℓ takes

the form of the requirement:∫
f (−→x )dµ(−→x ) = lim

ℓ→∞

∫
fµ,ℓ(x1:ℓ)d (µ|ℓ) (x1:ℓ)

= lim
ℓ→∞

lim
k→∞

∫
fµk,ℓ(x1:ℓ)d (µk|ℓ) (x1:ℓ)

or all continuous f .
Equivalence of these two convergences then boils down to

he interchange of limits limℓ→∞ limk→∞ ↔ limk→∞ limℓ→∞.
y the Moore–Osgoode theorem, this interchange is in fact valid
henever the limit:

lim
→∞

∫
fµk,ℓ(x1:ℓ)d (µk|ℓ) (x1:ℓ) =

∫
f (−→x )dµk(

−→x )

s uniformly convergent over all k. This is guaranteed by Proposi-
ion 1, though, and so the two forms of convergence are equiva-
ent.

This proposition guarantees that to demonstrate convergence
n distribution, it is sufficient that the measures converge on their
arginalizations to finite words. For discrete X , this means that:

lim
→∞

Prµk ( w ) = Prµ ( w ) ,

or all w, is equivalent to convergence in distribution. This is
xtremely convenient, as word probabilities are perhaps the most
ntuitive way to interact with the measure.

For the case of X ⊂ R, the situation is more subtle. The
ortmanteau theorem [29] states that convergence in distribution
s equivalent to a very weak bounded convergence over open sets.
n our case, this means that:

im inf
k→∞

Prµk ( I1 . . . Iℓ ) ≥ Prµ ( I1 . . . Iℓ ) ,

or all open neighborhoods I1×. . .×Iℓ of any length, is equivalent
o convergence in distribution. In fact, what we prove for predic-
ive states is a stronger form of convergence than this. The latter
aintains the equality at each ℓ. This is still not nearly as strong,

hough, as other forms of measure convergence and, in most
ractical cases, it is equivalent to convergence in distribution.

. Predictive states

Each element X ∈ XZ can be decomposed from a bidi-
ectional infinite sequence to a pair of unidirectional infinite
3

sequences in XN
× XN, by the transformation . . . x−1x0x1 · · · ↦→

(x0x−1 . . . , x1x2 . . . ). The first sequence in this pair we call the
past
←−
X and the second we call the future

−→
X . From this perspec-

tive, a stochastic process is a bipartite measure over pasts and
futures. The intuitive definition of a predictive state is as a mea-
sure over future sequences that arises from conditioning on past
sequences. Heuristically, Prµ

(
−→
X |
←−
X = x0x−1 . . .

)
represents the

‘‘predictive state’’ associated with past x0x−1 . . . .
Conditioning of measures is nuanced, especially when the

involved sample spaces are uncountably infinite [31]. Of the
many perspectives that define a conditional measure, the most
practical and intuitive is that a conditional measure is a ratio of
likelihoods—and, in the continuous case, a limit of such ratios.
However, determining the manner in which this limit must be
taken is rarely trivial.

The following considers first the case of discrete observations,
where the matter is relatively straightforward, in order to intro-
duce the key concepts. Then we examine the case of continuous
observations, reviewing the previous literature on the nuances of
this domain and extending its results for our present purposes. As
we will see, in either case, the intuition of predictive states can
be born out in a rigorous and elegant manner for any stochastic
process satisfying the assumptions heretofore mentioned.

3.1. Discrete observations

Let ←−µ denote the projection of µ to pasts. (We define this
in further detail below.) We begin with the following result, first
noted by Upper [21]:

Theorem 1. For all measures µ on XZ, all ℓ ∈ N, all w =

x1 . . . xℓ ∈ X ℓ, and←−µ -almost all pasts
←−
X , where X is a finite set,

the limit:

Prµ
(

w|
←−
X

)
:= lim

k→∞

Prµ ( x−k . . . x0x1 . . . xℓ )

Prµ ( x−k . . . x0 )
(1)

is convergent.

In the discrete case, there are only a countable number of
words w. Thus, if for each w the set of converging

←−
X ’s is

easure-one, then the intersection of these sets is also measure
ne. That is, Eq. (1) converges for all w for µ-almost all

←−
X .

he convergent word probabilities define a probability measure
[
←−
X ] ∈ M(XN) over future sequences, uniquely determined by

the requirement ϵ[
←−
X ](U0,w) = Prµ

(
w|
←−
X

)
. Combining this

observation with Proposition 2 leads to the corollary:

Corollary 1. For all measures µ on XZ and µ-almost every past
←−
X ∈ XN, the measures ηℓ[

←−
X ] defined by:

ηℓ[
←−
X ](U0,w) = Prµ ( w|x−ℓ+1 . . . x0 ) (2)

converge to ϵ[
←−
X ] in distribution:

ηℓ[
←−
X ] → ϵ[

←−
X ] , (3)

as ℓ→∞.

This ϵ[
←−
X ] is the predictive state of

←−
X and the function ϵ :

XN
→ M(XN), the prediction mapping. Corollary 1 is an important

extension of Theorem 1, as it provides the topological context
for understanding the convergence of predictive states. And, this
is useful when we examine the relation to reproducing kernel
Hilbert spaces.

We present an alternative proof to that used by Upper, though.
This sets the stage for our proof in the continuous-observation
case. Our strategy consists in redefining the problem using the
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pproach of the differentiation basis. We primarily follow the
efinitions and approach of Refs. [31,32].
The limit in Eq. (1) can be recast as a likelihood ratio. The con-

ergence of likelihood ratios is itself closely related to the theory
f Radon–Nikodym derivatives between measures. Specifically,
he Radon–Nikodym derivative can be computed as a conver-
ence of likelihood ratios if (i) that convergence is taken over a
articular class of neighborhoods, called a differentiation basis, and
ii) that basis has a property called the Vitali property [31]. We
efine these concepts below and use them to prove Theorem 1.
Recall←−µ denotes the projection of µ to pasts, and let←−µ xℓ...x1

e the measure on pasts that precede the word w := x1 . . . xℓ.
hese are given by the word probabilities:

Pr←−µ ( x0 . . . x−k ) := Prµ ( x−k . . . x0 )

Pr←−µ xℓ...x1
( x0 . . . x−k ) := Prµ ( x−k . . . x0x1 . . . xℓ ) ;

or, alternatively, by the measure values:
←−µ (U0,x0...x−k ) := µ(U−k+1,x−k...x0 )

←−µ xℓ...x1 (U0,x0...x−k ) := µ(U−k+1,x−k...x0x1...xℓ ) .

Then Eq. (1) can be recast in the form of a convergence of likeli-
hood ratios, taken over a sequence of cylinder sets Uk := U0,x0...x−k
converging on←−x :

Prµ
(
x1 . . . xℓ|

←−
X

)
= lim

k→∞

←−µ xℓ...x1 (Uk)
←−µ (Uk)

. (4)

This reformulation, though somewhat conceptually cumbersome,
is useful due to theorems that relate the convergence of likelihood
ratios to the Radon–Nikodym derivative. Indeed, wherever Eq. (4)
converges, it will be equal to the Radon–Nikodym derivative
d←−µ xℓ...x1/d

←−µ (
←−
X ).

To use these theorems we must define a differentiation basis.
ny collection of neighborhoods D in XN may be considered a
ifferentiation basis if for every

←−
X ∈ XN, there exists a sequence

of neighborhoods (Dk) such that limk→∞ Dk =

{
←−
X

}
[31]. See

Fig. 1.
The Vitali theorem states that whenever the differentiation

basis D possesses the Vitali property with respect to ‘‘background’’
measure µ, then for µ-almost all

←−
X and any ‘‘test’’ measure

ν that is absolutely continuous with respect to µ, the limit of
likelihood ratios ν(V )/µ(V ) exists for any sequence (Vk) ⊂ D
converging on

←−
X and is equal to the Radon–Nikodym derivative

dν/dµ(
←−
X ) at that point [31]. This sort of very flexible limit is
 w

4

denoted by:

lim
V∈D
V∋
←−
X

ν(V )
µ(V )

=
dν
dµ

(
←−
X ) .

The Vitali property has strong and weak forms. Here, we state
the strong form as it is straightforwardly demonstrated for the
space XN and the differentiation basis of cylinder sets. Given a
differentiation basis D, a sub-differentiation basis D′ ⊆ D is any
differentiation basisD′ each of whose neighborhoods also belongs
to D. The differentiation basis D has the strong Vitali property
with respect to µ if for every measurable set A and for every
ub-differentiation basis D′ ⊆ D covering A, there is an at most
countable subset

{
Dj

}
⊆ D′ such that Dj ∩ Dj′ is empty for all

j ̸= j′ and:

µ

⎛⎝A−

⎛⎝⋃
j

Dj

⎞⎠⎞⎠ = 0 .

In other words, we must be able to cover ‘‘almost all’’ of A with a
countable number of nonoverlapping sets from the differentiation
basis [31].

The following proof is a simplification of more general argu-
ments to the special case of XN with the differentiation basis of
cylinder sets [32].

Proposition 3 (Vitali Property for Stochastic Processes). For any
tochastic process (XN, Σ, µ), let D be the differentiation basis of
llowed cylinder sets. Then D has the strong Vitali property.

roof. There are a few key properties of cylinder sets that
ake the strong Vitali property evident. First, since the set of all
ylinder sets is countable, any cover of XN built from the differ-
ntiation basis is countable in size. The only remaining task is to
onstruct a cover, given a sub-differentiation basis, comprised of
onoverlapping sets. The next key property is the fact that given
ny two cylinder sets U, V , either one is a subset of the other or
∩ V = ∅. So, given any sub-differentiation basis, we may keep
nly the ‘‘maximal’’ cylinder sets (those in the sub-basis that are
ot contained by any other cylinder set), which must constitute
full cover and may not overlap with one another. This proves

he strong Vitali property.

As a consequence, the likelihood ratios in Eq. (4) must con-
erge for ←−µ -almost every past

←−
X and every finite-length word
—proving Theorem 1.
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We note that this result follows as a relatively straightforward
application of the Vitali property, which holds for any measure
µ on XZ and XN. Our good fortune is due to the particularly
well-behaved topology of sequences of discrete observations. For
continuous observations, a less direct path to predictive states
must be taken.

3.2. Continuous observations: Overview

Shifting from discrete to real-valued observations, where now
X denotes a compact subset of Rd, multiple subtleties come to
the fore.

First, it must be noted that even in R, the existence of a
Vitali property is not trivial. For the Lebesgue measure, only a
weak Vitali property holds, though this is still sufficient for the
equivalence between Radon–Nikodym derivatives and likelihood
ratios. The differentiation basis in this setting can be taken to be
comprised of all intervals (a, b) on the real line.

Second, to go from R to Rd, constraints must be placed on
the differentiation basis. An ‘‘interval’’ here is really the Cartesian
product of intervals, but for a Vitali property to hold we must only
consider products of intervals whose edges are held in a fixed
ratio to one another, so that the edges converge uniformly to zero.
Likelihood ratios for fixed-aspect boxes of this kind can converge
to the Radon–Nikodym derivative [31].

This requirement poses a challenge for generalizing the Vitali
property to infinite dimensions, as we must to study sequences
of real numbers. A fixed-aspect ‘‘box’’ around a sequence of real
numbers is not a practical construction. In the empirical setting,
we can only observe information about a finite number of past
outputs. We therefore cannot obtain any ‘‘uniform’’ knowledge
of the entire past. That is, a direct generalization of the case for
Rd does not suffice.

However, integration and differentiation on
infinite-dimensional spaces has been considered before, mainly
by Jessen [33,34] and later Enomoto [35]. Their results focused
on generalizing Lebesgue measure to (S1)N, where S1 is the
circle. This section shows that their results can be significantly
extended. The primary result we prove is a generalization of
Enomoto’s Theorem [35]:

Theorem 2 (Generalized Enomoto’s Theorem). Let X be an interval
of R, and let µ be any probability measure over XN. Let f : XN

→

R+ and let F be its indefinite integral under µ. Let V denote the
differentiation basis consisting of sets of the form:

Vn,δ(
←−
X ) =

{
←−
Y |

⏐⏐yj − xj
⏐⏐ < δ, j = 1, . . . , n

}
.

Then:

lim
V∈V
V∋
←−
X

F (V )
µ(V )

= f (
←−
X ) , (5)

for←−µ -almost all
←−
X .

Note that the resulting differentiation basis is a weaker form
of that considered above. Each Vn,δ is evidently a cylinder set, but
f a very particular kind. As we take δ → 0 and n → ∞, we
xtend the ‘‘window’’ of the cylinder set to the entire past while
imultaneously narrowing its width uniformly. This turns out to
e sufficient to replicate the same effect as the fixed-aspect boxes
n the finite-dimensional case.

As a corollary of Theorem 2, we have the following result for
redictive states:
5

Corollary 2. Let X ⊂ Rd be a compact subset. For all measures
µ on XZ and ←−µ -almost every past

←−
X ∈ XN, define the measures

ηℓ[
←−
X ] and ηℓ,δ[

←−
X ] as:

ηℓ,δ[
←−
X ](U) =

µ(Vℓ,δ × U)
←−µ (Vℓ,δ)

and (6)

ηℓ[
←−
X ] = lim

δ→0
ηℓ,δ[
←−
X ] . (7)

hen ηℓ[
←−
X ] → ϵ[

←−
X ] in distribution, as ℓ→∞.

roof. From Theorem 2 for any neighborhood U:

rµ
(
U |
←−
X

)
:= lim

ℓ→∞
ηℓ,δ(ℓ)[

←−
X ](U) (8)

onverges as long as δ(ℓ) > 0 for all ℓ and δ(ℓ)→ 0.
First, we must show that it is also perfectly fine to take the

imit δ → 0 before taking ℓ → ∞. For each ζ > 0, let ∆(ℓ, ζ )
e chosen such that ηℓ,∆(ℓ,ζ )[

←−
X ] is ζ -close to ϵ[

←−x ], in the sense
hat:

Pr
ηℓ,δ(ℓ,ζ )[

←−
X ] ( U )− Pr

ηℓ[
←−
X ] ( U )

⏐⏐⏐ < ζ .

hoose δ(ℓ, ζ ) := min
{

∆(ℓ, ζ ), ℓ−1
}
so that δ(ℓ, ζ ) → 0. Then

learly ηℓ,δ[
←−
X ](U)→ Prµ

(
U |
←−
X

)
, and this holds for all ζ > 0.

e therefore trivially have:

rµ
(
U |
←−
X

)
= lim

ζ→0
lim
ℓ→∞

Pr
ηℓ,δ(ℓ,ζ )[

←−
X ] ( U )

ℓ[
←−
X ](U) = lim

ζ→0
Pr

ηℓ,δ(ℓ,ζ )[
←−
X ] ( U ) .

nd, this limit is in fact uniform by the construction of δ(ℓ, ζ ).
herefore we may interchange the ζ and ℓ limits to get:

rµ
(
U |
←−
X

)
= lim

ℓ→∞
lim
ζ→0

Pr
ηℓ,δ(ℓ,ζ )[

←−
X ] ( U )

= lim
ℓ→∞

ηℓ[
←−
X ](U)

ast, we noted previously that this need only hold for a count-
ble number of neighborhoods U in order for Prµ

(
U |
←−
X

)
to

eneralize to a measure. We call this measure ϵ[
←−
X ] and, by

roposition 2, we have ηℓ[
←−
X ] → ϵ[

←−
X ] in distribution for

−µ -almost all
←−
X .

Note here that we allowed X ⊂ Rd. This can be obtained
rom Enomoto’s theorem by simply reorganizing a sequence
f d-dimensional coordinates from (x1, x2, . . . ) to (x11, . . . , xd1,
12, . . . , xd2, . . . ). Enomoto’s theorem then requires uniformity of
he intervals across past instances as well as within each copy of
d.
As before, the quantities Prµ

(
U |
←−
X

)
define a unique proba-

ility measure ϵ[
←−
X ] on XN. It is determined by:

ϵ[
←−
X ](U) = Prµ

(
U |
←−
X

)
.

Enomoto’s theorem itself is the capstone result in a sequence
of theorems initiated by Jessen [33]. To prove Theorem 2, we
must start from the beginning, generalizing Jessen’s results. For-
tunately, the bulk of the effort comes in generalizing the first
of these results—Jessen’s correspondence principle. After this,
the generalization follows quite trivially from the subsequent
theorems.

The next section provides the full proof for a generalized
correspondence principle and explains how this result impacts
the proofs of the subsequent theorems. For completeness, we
also give the full proof of the generalized Enomoto’s theorem,
though it does not differ much from Enomoto’s—published in
French—once the preceding theorems are secured.
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Fig. 2. Snapshot of a differentiation net: A differentiation net defined on a line
egment. D1,D2,D3, . . . represent the dissections that comprise the net. Each
issection contains the last. New points are indicated in red and old points in
ray. These points define intervals; a sequence (Ik(x)) of these intervals is shown
onverging on the point x.

.3. Jessen’s correspondence principle

The Jessen and Enomoto theory rests on a profound correspon-
ence between cylinder sets on XN and intervals on R. To state
t, we must define the concept of a net.

A net is similar to but formally separate from a differentiation
asis, but like the latter allows for a notion of differentiation,
alled differentiation-by-nets. This is weaker than the Vitali prop-
rty on a differentiation basis, but following on Jessen’s work,
nomoto showed that differentiation-by-nets can be extended to
escribe a particular differentiation basis with the Vitali property.
The following definitions are drawn from Ref. [33]. Let X be a

inite interval on R. A dissection D = (b1, . . . , bN ) of X is simply
sequence of cut points, that generate a sequence of adjacent

ntervals (bk, bk+1) spanning X , covering all but a finite set of
oints—the interval edges. See Fig. 2. Denote the intervals I(D) =
{ (bk, bk+1)|k = 1, . . . ,N − 1 }. The length of the largest interval
in I(D) is denoted |D|. (Not to be confused with D’s cardinality,
that we have no need to reference.) A net N = (Dn) is a sequence
of dissections so that Dn ⊂ Dn+1 (that is, each new dissection only
adds further cuts) and |Dn| → 0 (the largest interval length goes
to zero). The boundary ∂N =

⋃
n Dn denotes all the boundary

points from the sequence and is always a countable set.
We can similarly define a dissection D = (d1, . . . , dℓ) on XN

as a set of ℓ dissections, one for each of the first ℓ copies of X .
D intervals I(D) =

{
i1 × · · · iℓ × XN

|ik ∈ I(dk)
}
are the cylinder

sets generated by the intervals of each individual dissection. See
Fig. 3. The boundary of a dissection is the set of all points that
do not belong to these intervals: ∂D =

{
X ∈ XN

|∃k : xk ∈ dk
}
.

The size of the dissection is |D| := maxk |dk|. For a finite measure
µ, there are always dissections with µ(∂D) = 0 of any given
|D| = maxk |dk|, since µ|X ℓ can only have at most countably many
singular points.

A net N =
(
Dn = (d1,n, . . . , dℓn,n)

)
of XN is a sequence of

dissections of increasing depth ℓn so that each sequence (dk,n) for
fixed k is a net for the kth copy of X . ∂N =

⋃
n ∂Dn denotes

all the accumulated boundary points of this sequence. Again, for
finite measure µ, nets always exist that have µ(∂N ) = 0 for all
n. Nets with this property are called µ-continuous nets.

Note that for any net, every sequence of intervals (In), In ∈
I(Dn) and In+1 ⊂ In, uniquely determines a point X ∈ XN. If

X ̸∈ ∂D, then X uniquely determines a sequence of intervals.
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The following result is a straightforward extension1 of the
correspondence principle given by in Ref. [33]:

Theorem 3 (Generalized Correspondence Principle). Let X ⊂ R be
an interval and let λ be the Lebesgue measure on X , normalized so
λ(X ) = 1. Let µ be a finite measure on XN that has no singular
points. Let N = (Dn) be any µ-continuous net of XN. Then there
exists a net M = (dn) of X so that:

1. There exists a function Φn that maps each interval in I(Dn)
of positive measure to one and only one interval in I(dn) and
vice versa for Φ−1n ;

2. λ(Φn(I)) = µ(I) for all I ∈ I(Dn) with µ(I) > 0; and
3. The mapping φ : XN

− ∂N → X − ∂M, generated by
X ↦→ (In) ↦→ (Φn(In)) ↦→ x, is measure-preserving.

To summarize this technical statement: For any method of in-
definitely dissecting the set XN into smaller and smaller intervals,
there is in fact an ‘‘equivalent’’ such method for dissecting the
much simpler set X . It is equivalent in the sense that all the
resulting intervals are in one-to-one correspondence with one
another—a correspondence that preserves measure. Since interval
sequences uniquely determine points (and vice versa for a set of
full measure), this induces a one-to-one correspondence between
points that is also measure-preserving.

The proof consists of two parts. The first proves the first two
claims about M. Namely, there is an interval correspondence
and it is measure-preserving. The second shows this extends
to a correspondence between XN and X that is also measure-
preserving.

Proof (Interval Correspondence). The proof proceeds by induction.
For a given µ-continuous net N = (Dn), suppose we already
constructed dissections d1, . . . , dN of X so that a function Φn
between positive-measure intervals in Dn and dn exists with the
desired properties (1) and (2) above, for all n = 1, . . . ,N .

Now, for Dn+1, a certain set of the intervals in I(Dn) is divided.
Suppose I ∈ In divides into I ′ and I ′′. If either of these, say I ′′,
has measure zero then we discard it and set Φn+1(I ′) = Φn(I).
Otherwise, suppose that Φn(I) = (a, b). Then divide Φn(I) into
the intervals:

Φn+1(I ′) :=
(
a,

aµ(I)+ (b− a)µ(I ′)
µ(I)

)
and

Φn+1(I ′′) :=
(
aµ(I)+ (b− a)µ(I ′)

µ(I)
, b

)
,

hat clearly have Lebesgue measures λ(Φn+1(I ′)) = µ(I ′) and
(Φn+1(I ′′)) = µ(I ′′), respectively. Generalizing this to more
omplicated divisions of I is straightforward.
We can always suppose for a given net N that D0 is simply the

rivial dissection that makes no cuts and only one interval. How-
ver, this has a trivial correspondence with X ; namely, Φ0(XN) =
.
By induction, then, the desired M can always be constructed.

With the existence of the interval correspondence established,
we further demonstrate the existence of a point correspondence
between µ-almost-all of XN and λ-almost-all of X .

Proof (Point Correspondence). For every X ∈ XN
− ∂N , there is

a unique sequence (In) of concentric intervals, In ∈ I(Dn) and

1 Jessen’s original proof concentrated on the space X = S1 with the Lebesgue
measure λ and the product measure λN on (S1)N; however, his argument
does not rely on this assumption. We have reproduced the proof here for any
nonsingular measure µ over XN for the purpose of completeness.
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Fig. 3. Snapshot of a differentiation net on a product space: A differentiation net defined on a product space XN . This is comprised of an increasingly detailed dissection
on each factor space. Also shown is a sequence of product intervals converging on a point X = x1x2x3 . . . .
c
m
|

p
o
t⏐⏐⏐⏐
In+1 ⊂ In, such that
⋂

n In = {X}. If X is in the support of µ,
then we define:

φ(X) :=
⋂
n

Φn(In)

as the corresponding point in X − ∂M. Due to the interval
correspondence, this mapping is invertible.

By measure-preserving we mean that for all A ⊆ XN
− ∂N ,

λ(φ(A)) = µ(A) and vice-versa for φ−1. Both the Lebesgue mea-
sure and µ must be outer regular, due to being finite measures.
Outer regular means that the measure of a set A is the infimum
of the measure of all open sets containing A, a property we use
to our advantage.

Consider for each n the minimal covering Cn of A by intervals
in I(Dn). The measure of this covering is denoted mn := µ(

⋃
Cn).

Clearly, mn ≥ µ(A) and mn → µ(A). The corresponding covering
Φn(Cn) in I(dn) is a covering of φ(A) and has the same measure
mn. By outer regularity, then, mn ≥ λ(φ(A)) for all n. And so,
µ(A) ≥ λ(φ(A)).

Now, by the exact reverse argument of the previous para-
graph, going from X to XN via φ−1, we can also deduce that
µ(A) ≤ λ(φ(A)). Therefore µ(A) = λ(φ(A)), and the function φ

is measure-preserving.

3.4. Corollaries and Enomoto’s theorem

Jessen’s correspondence principle is an extremely powerful
device. Among its consequences are the following theorems re-
garding functions on XN. We state their generalized forms here
and for the proofs refer to Jessen [33], as each is a direct appli-
cation of Theorem 3 without making any further assumptions on
the measure µ.

The first offers a much weaker (and on its own, insufficient
for our purposes) concept of differentiation of measures that we
refer to as differentiation-by-nets.

Corollary 3 (Differentiation-by-nets). Let f : XN
→ R+ and let F be

the measure defined by its indefinite integral: F (A) :=
∫
A f (X)dµ(X).

Further, let N = (Dn) be a net on XN and denote by f̂n a piecewise
function such that f̂n(X) = F (In)/µ(In) for all X ∈ In and each
I ∈ D . Then f̂ (X)→ f (X) as n→∞ for µ-almost all X .
n n n
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Though the full proof is found in Ref. [33], we summarize
its key point: Using the correspondence of intervals, we write
F (In)/µ(In) = F̃ (Φ(In))/λ(Φ(In)), where F̃ is the indefinite integral
of f ◦φ−1 with respect to λ. The limit then holds due to the Vitali
property of λ on X . However, we also note that Corollary 3 is
not an extension of the Vitali property to cylinder sets on XN.
Jessen himself offers a counterexample to this effect in a later
publication [34].

Jessen’s second corollary is key to demonstrating that V , the
differentiation basis defined in Theorem 2, will have the sought-
after Vitali property.

Corollary 4 (Functions as Limits of Integrals). Let f : XN
→ R+,

and let fn(X) be a sequence of functions given by:

fn(x1x2 . . . ) :=
∫
Y∈XN

f (x1 . . . xnY )dµ(Y ) .

That is, we integrated over all observations after the first n. Thus,
fn only depends on the first n observations. Then fn(X) → f (X) as
n→∞ for µ-almost all X .

This proof we also skip, again referring the reader to Jessen
[33], as no step is directly dependent on the measure µ itself and
only on properties already proven by the previous theorems.

We now have sufficient knowledge to prove the generalized
Enomoto’s theorem; generalized from Ref. [35].

Proof (Generalized Enomoto’s Theorem). First, we must demon-
strate, for almost every X , that there exists a sequence Vj(X)
onverging on X such that the limit holds. By Corollary 4, there
ust be, for µ-almost all X and any ϵ > 0, a k(X, ϵ) such that

fn(X) − f (X)| < ϵ/2 for all n > k(X, ϵ). Now, from the Vitali
roperty on µn and the fact that fn only depends on the first n
bservations, it must be true that for any ϵ > 0 and almost all X ,
here is a 0 < ∆(X, n, ϵ) < 1 so that:

fn(X)−
F (Vn,δ(X))
µ(Vn,δ(X))

⏐⏐⏐⏐ < ϵ/2 ,

whenever δ < ∆(X, n, ϵ). For a given ϵ, there is a countable
number of conditions (one for each n). As such, the set of points
X for which all conditions hold is still measure one. Then, taking
for each X the integer K := k(X, ϵ) and subsequently the number
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:= ∆(X, k(X, ϵ), ϵ), we can choose VK ,∆(X) and by the triangle
nequality we must have:

f (X)−
F (VK ,∆(X))
µ(VK ,∆(X))

⏐⏐⏐⏐ < ϵ . (9)

This completes the proof’s first part.
However, the second part—that all sequences Vnj,δj (x) of neigh-

borhoods give converging likelihood ratios—further follows from
the above statements, as:⏐⏐⏐⏐⏐f (X)− F (Vnj,δj (X))

µ(Vnj,δj (X))

⏐⏐⏐⏐⏐ < ϵ

ust hold for any nj > K (X, ϵ) and any δj < ∆(X, K (X, ϵ), ϵ),
hich must eventually be true for any converging sequence to X .

Now, the previous theorem does not directly prove the Vitali
roperty but rather bypasses it. Demonstrating that the differen-
iation basis V may be used to recover Radon–Nikodym deriva-
ives. This, then, is sufficient for Corollary 2 to hold, guaranteeing
he existence of predictive states ϵ[

←−
X ] for µ-almost all

←−
X .

3.5. Convergence of predictive states

An important task regarding predictive states is to learn a
process’s predictive states—that is, the ϵ-mapping from observed
pasts to distributions over futures—from a sufficiently large sam-
ple of observations. These learned predictive states may then
be used to more accurately predict the process’ future behavior
based on behaviors already observed.

The previous three sections avoided constraining the measure
µ on XN to be anything other than finite. It was not assumed to
be either stationary or ergodic, in particular. In such cases the ϵ-
mapping is time-dependent, as it obviously depends on where fu-
tures are split from pasts. To adequately reconstruct ϵ[

←−
X ] from a

single, long observation requires that the process be both station-
ary and ergodic. Stationarity makes ϵ[

←−
X ] time-independent, and

ergodicity ensures that the probabilities in the limits Eqs. (1) and
(8) can be approximated by taking the time-averaged frequencies
of occurrence.

The next natural question is how rapidly convergence occurs
for each past, in a given process. So far, we only guaranteed that
convergence exists, but said nothing on its rate. This is process-
dependent. Section 5 gives several examples of processes and
process types with their convergence rate. The most useful way to
think of the rate is in the form of ‘‘probably-almost-correct’’-type
statements, as exemplified in the following result:

Proposition 4. Let µ be a probability measure on XZ. Let
ηℓ[
←−
X ](U) be defined as in either Corollaries 1 or 2. For every

cylinder set U and ∆1, ∆2 > 0, we have for sufficiently large ℓ:

Pr←−µ
( ⏐⏐⏐ηℓ[

←−
X ](U)− ϵ[

←−
X ](U)

⏐⏐⏐ > ∆1

)
< ∆2 .

That is, the probability of an error beyond ∆1 is less than ∆2.

This is a consequence of the fact that all
←−
X must eventually

converge. The possible relationships between ∆1, ∆2, and ℓ in
particular is explored in our examples.

4. Predictive states form a Hilbert space

Thus far, we demonstrated that for discrete and real X , mea-
sures over XZ possess a well-defined feature called predictive
states that relate how past observations constrain future possi-
bilities. These states are defined by convergent limits that can be
8

approximated from empirical time series in the case of stationary,
ergodic processes.

We turn our attention now to the topological and geomet-
ric structure of these states, the spaces they live in, and how
the structure of these spaces may be leveraged in the inference
process. The results make contact between predictive states as
elements of a Hilbert space and the well-developed arena of re-
producing kernel Hilbert spaces. To do this we introduce several
new concepts.

Denote the set of real-valued continuous functions on XZ by
C(XZ). The set of signed measures on XZ, that we callM(XZ), may
be thought of as dual to C(XZ). This allows us to define a notion
of convergence of measures on XZ in relation to continuous
functions. We say that a sequence of measures µn converges in
distribution if:

lim
n→∞

∫
F (X)dµn(X) =

∫
F (X)dµ(X)

for all F ∈ C(XZ). Convergence in distribution is sometimes
referred to as weak convergence but we avoid this vocabulary
to minimize confusion—as another, distinct kind of weak conver-
gence is needed in the Hilbert space setting.

A kernel k : XZ
× XZ

→ R generates a reproducing kernel
Hilbert space (RKHS) H if k(·, ·) is positive semi-definite and
symmetric [36]. H is typically defined as a space of functions
(from XZ

→ R), but the kernel allows embedding measures on
XZ into the function space through fµ(x) =

∫
k(x, y)dµ(y). This

elicits an inner product between any two positive measures µ
and ν:⟨
fµ|fν

⟩
k :=

∫∫
k(x, y)dµ(x)dν(y) .

The inner-product space on measures generated by this construc-
tion is isometric to the RKHS generated by k(·, ·). The embedding
of measures into this space is unique if the kernel is characteristic.
And, convergence in the norm of the Hilbert space is equivalent
to convergence in distribution whenever the kernel is universal
[37].

What exactly is the set H of functions? The equivalence of
convergence in norm and convergence in distribution tempts
identifying H with the space of continuous functions, but this
is overly optimistic. If it were true—that H = C(XZ)—then the
convergence ⟨F |fµn⟩k → ⟨F |fµ⟩k for every F ∈ H implies fµn → fµ
in the norm topology of H. That, though, would identify norm
convergence on the Hilbert space with weak convergence, which
for Hilbert spaces is identified as the convergence of every inner
product. For infinite-dimensional Hilbert spaces, these two types
of convergence cannot be identified, as is seen in the simple case
of any orthonormal basis ei, for which ⟨F |ei⟩ → 0 is necessary
for F to have a finite norm, even though ∥ei∥ → 1 by definition.
So, we must conclude that while convergence in the norm of H
is equivalent to the convergence in distribution of measures, H
can only be a proper subspace of the continuous functions (a fact
also noted in [38]). Weak convergence in H is then indeed weaker
than convergence in distribution. (Hence, we do not call the latter
‘‘weak’’.)

4.1. Topology of predictive states

Let the (closure of the) set of a process’s predictive states be
denoted by:

K(µ) :=
{

ϵ[
←−
X ]|
←−
X ∈ XN

}
.

The closure is taken under convergence in distribution. Recall that
each ϵ[

←−
X ] is a probability measure over XN; K(µ) is therefore a

subset of the space of probability measures over XN.
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Fig. 4. Predictive states and their closed span. The red dots are a hypothetical
set K(µ) of predictive states (shaped like the Sierpinski set) that is uncountably
infinite but that has a finite-dimensional closed span K(µ).

The relation between pasts and predictive states may be highly
edundant. For instance, in the process generated by the results of
random coin-toss, since the future observations do not depend
n past observations, K(µ) is trivial. Meanwhile, for a periodic
rocess of period k, K(µ) has k elements, corresponding to the k
istinct states—the process’ phases. In more complex cases, K(µ)

may have countable and uncountable cardinality.
We may also consider the vector space of signed measures

generated by the closed span of K(µ), denoted K(µ). This is the
smallest closed vector space that contains the predictive states.
This, too, may demonstrate redundancy in the form of linear
dependence, regardless of the cardinality of K(µ). For instance, it
is possible to have an uncountably infinite set of predictive states
K(µ) whose dimension, dimK(µ), is finite. In fact, it is the general
case that any process generated by an HMM or GHMM will have
finite dimensional K(µ), but is not guaranteed to have finite K(µ)
[12]. See Fig. 4.

The topology of convergence in distribution is closely related
to the definition of continuity on XN. It behooves us at this
juncture to discuss XN not only as a topological space but also
as a metric space.

Two useful families of distance metrics, equivalent to the
product topology on XN, are the Euclidean metrics, one for the
discrete and real case each:

DE,γ (X, Y )2 :=
{∑

∞

t=1(1− δxt yt )γ
2t X discrete∑

∞

t=1 ∥xt − yt∥2 γ 2t X ⊂ Rd ,

for some 0 < γ < 1. These distance metrics arise from embed-
ding XN in a Hilbert space. Given an orthogonal basis (ei), the
components of this embedding for the discrete case are given by:

ci(X) =
{
γ ⌊i/|X |⌋ x⌊i/|X |⌋ = i mod |X |
0 otherwise

and in the continuous case (X ⊂ Rd) by:

ci(X) = γ txk,t , k = i mod d, t = i− k .

Using these distance metrics, the following section introduces an
inner product structure on K(µ) whose norm metrizes the topol-
ogy of convergence in distribution. Once K(µ)’s natural embed-
ding into a Hilbert space of its own is established, we investigate
how well this embedding can be approximated by the approach

of reproducing kernel Hilbert spaces.
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We note that the DE,γ family of metrics is not the only fam-
ily that metrizes the product topology on XN. Further, though
each DE,γ for 0 < γ < 1 metrizes the product topology,
they are not metrically equivalent in the strong sense. Thus,
while the precise choice of metric is irrelevant for our present
scope—to demonstrate the topological appropriateness of RKHS
algorithms—further investigation into their metric properties is
warranted. We discuss these issues in Supplementary Material II.

4.2. Embedding predictions in a Hilbert space

The space K(µ) of predictive states is a subspace P(XN) of the
probability measures over XN. On P(XN), given any symmetric
positive-definite kernel k : XN

× XN
→ R, we can define an

inner product over measures:

⟨µ|ν⟩k :=

∫∫
k(X, Y )dµ(X)dν(Y ) . (10)

Positive-definite means that for any finite set {Xi} of Xi ∈ XN and
any set {ci} of values ci ∈ R, both sets have the same cardinality:∑
i,j

k(Xi, Xj)cicj ≥ 0 ,

with equality only when ci = 0 for all i. If this is true, then the
inner product Eq. (10) is positive-definite for all measures. That is,
⟨µ|µ⟩k ≥ 0 with equality only when µ = 0 [37].

Since XN is compact, if the kernel k satisfies the property of
being universal, then norm convergence under the inner prod-
uct defined by k is equivalent to convergence in distribution of
measures [37].

A simple example of a universal kernel is the Gaussian ra-
dial basis function, when paired with an appropriate distance—
namely, one defined from embedding XN in a Hilbert space, as
our DE,γ are [39]. These take the form:

kβ,γ (X, Y ) := exp
(
−

DE,γ (X, Y )2

β2

)
.

While these are only one example of a universal kernel, we will
focus exclusively on this family for the remainder of the paper.

We denote the associated inner products by ⟨·|·⟩β,γ . Hβ,γ :=

P(XN), ⟨·|·⟩β,γ

)
defines a Hilbert space, since it has the topology

f convergence in distribution and P(XN) is complete in this
opology.

When referring to a measure µ as an element of Hβ,γ we
enote it |µ⟩β,γ and inner products in the bra-ket are ⟨µ|ν⟩β,γ .
ow, it should be noted that to every ket |µ⟩β,γ there is a bra
⟨µ|β,γ that denotes a dual element. However, the dual elements
of P(XN) correspond to continuous functions. The function fµ
corresponding to ⟨µ|β,γ is given by:

fµ(Y ) :=
∫

kβ,γ (X, Y )dµ(X) , (11)

so that:

⟨µ|ν⟩β,γ =

∫
fµ(X)dν(Y ) .

Let Fβ,γ denote the space of all fµ that can be constructed
from Eq. (11). This function space, when paired with the inner
product

⟨
fµ|fν

⟩F
β,γ
:= ⟨ν|µ⟩β,γ , is isomorphic to Hβ,γ . Fβ,γ is then

a reproducing kernel Hilbert space with kernel kβ,γ .
As the start of Section 4 discussed, Fβ,γ ⊂ C(XN). Further-

more, the Fβ,γ are not identical to one another, obeying the
relationship Fβ,γ ⊂ Fβ ′,γ when β > β ′ [40]. However, it is also
the case that each Fβ,γ is dense in C(XN), so their representative
capacity is still quite strong [37].
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We note an important rule regarding the scaling of our inner
products, as constructed. The distances DE,γ (X, Y ) have finite
diameter on our spaces. Let ∆ denote the diameter of X . For
discrete X we simply have ∆ = 1; for X ⊂ Rd it is deter-
ined by the Euclidean distance. Then XN’s diameter is given by
/
√
1− γ 2. Let u := µ − ν. Using a Taylor expansion for the

aussian, for arbitrarily large β:

∥µ− ν∥2β,γ

=

∫∫
kβ,γ (X, Y )du(X)du(Y )

≤

∫∫ (
1−

DE,γ (X, Y )2

β2 + O(β−3)
)
du(X)du(Y )

≤
2∥µ− ν∥TV∆

2

(1− γ 2)β2 + O(β−3) ,

(12)

here ∥ · ∥β,γ is simply the norm of Hβ,γ and ∥ · ∥TV is the total
variation norm. The first inequality follows from applying the
Taylor expansion and the second from using the bounded magni-
tude of the O(β−2) term (due to the diameter) in conjunction with
the total variation of u⊗ u, which satisfies ∥u⊗ u∥TV ≤ 2 ∥u∥TV.
The constant term vanishes under integration over the difference
easure u.)
This tells us that the norm is less discriminating between

easures as β →∞. Naturally, this can be remedied by rescaling
he kernel with a β2 factor. As it happens, Eq. (12) will be useful
ater.

.3. Finite-length embeddings

Our goal is to study how reproducing kernel Hilbert spaces
ay be used to encode information about predictive states
leaned from empirical observations. Given that such observa-
ions are always finite in length, we must determine whether and
n what manner the Hilbert space representations of measures
ver finite-length observations converge to the Hilbert space
epresentation of a measure over infinite sequences.

Let µ|ℓ denote the measure µ restricted to X ℓ. Define the
estricted distance on X ℓ:

(ℓ)
E,γ (X, Y )2 :=

{∑ℓ

t=1(1− δxt yt )γ
2t X discrete∑ℓ

t=1 ∥xt − yt∥2 γ 2t X ⊂ Rd ,

or X, Y ∈ X ℓ. This gives an important Pythagorean theorem for
equences:

E,γ (X, Y )2 =D(ℓ)
E,γ (x1 . . . xℓ, y1 . . . yℓ)2

+ γ 2ℓDE,γ (xℓ+1 . . . , yℓ+1 . . . )2
. (13)

Now, using D(ℓ)
E,γ define kernels k(ℓ)β,γ in the same style as for

N. These generate inner products on P(X ℓ). Denote by H(ℓ)
β,γ the

esulting Hilbert spaces. These are related to the original Hβ,γ by
he following factorization theorem:

roposition 5. The predictive Hilbert space Hβ,γ factors into
(ℓ)
β,γ ⊗Hβγ−ℓ,γ .

Before stating the proof, we should explain the above. The
actorization Hβ,γ = H(ℓ)

β,γ ⊗ Hβγ−ℓ,γ denotes separating the
nfinite-dimensional Hβ,γ into two pieces—one of which is finite-
imensional, but retains the same kernel parameters, and another
iece that reparametrizes infinite-dimensional Hilbert space. The
eparametrization is β → βγ−ℓ. This constitutes, essentially, a
enormalization-group technique, in which the topology of words
tarting at depth ℓ is equivalent to a reparametrization of the
sual topology. This reparametrization works precisely due to
10
he Pythagorean theorem for sequences Eq. (13).

roof. We are demonstrating an isomorphism—a particularly
atural one. Let δX be the Dirac delta measure concentrated on

X . We note that for any measure µ:

|µ⟩β,γ =

∫
|δX ⟩β,γ dµ(X) .

Now, consider the linear function from Hβ,γ to H(ℓ)
β,γ ⊗ Hβγ−ℓ,γ

that maps:

|δX ⟩β,γ ↦→ |δx1...xℓ⟩
(ℓ)
β,γ ⊗ |δxℓ+1...⟩βγ−ℓ,γ

, (14)

for every X . Then by Eq. (13) we can see that:

⟨δy1...yℓ |δx1...xℓ⟩
(ℓ)
β,γ ⟨δyℓ+1...|δxℓ+1...⟩βγ−ℓ,γ

= e−β−2D(ℓ)
E,γ (x1...xℓ,y1...yℓ)2e−β−2γ 2ℓDE,γ (xℓ+1...,yℓ+1... )2

= e−β−2DE,γ (X,Y )
= ⟨δY |δX ⟩β,γ ,

so the mapping Eq. (14) preserves the inner product and thus is
an isomorphism.

Note that for any of these Hilbert spaces there exists an ele-
ment corresponding to the constant function 1(X) = 1 for all X .
This function always exists in Fβ,γ . We denote its corresponding
measure in Hβ,γ as λβ,γ , so that ⟨λβ,γ |µ⟩β,γ

= 1 for all µ. Then
the operator Π

(ℓ)
β,γ : Hβ,γ → H(ℓ)

β,γ is given by:

Π
(ℓ)
β,γ := I (ℓ) ⊗ ⟨λβ,γ |β,γ ,

where I (ℓ) is the identity on H(ℓ)
β,γ . It provides the canonical map-

ping from a measure µ to its projection µ|ℓ: That is, Π
(ℓ)
β,γ |µ⟩β,γ =

|µ|ℓ⟩
(ℓ)
β,γ .

Consider the ‘‘truncation error’’—that is, the residual error
remaining when representing a measure by its truncated form
µ|ℓ rather than by its full form µ. We quantify this in terms of an
embedding. That is, there exists an embedding of truncated mea-
sures P(X ℓ) into the space of full measures P(XN) such that the
distance between any full measure and its truncated embedding
is small:

Theorem 4. There exist isometric embeddings H(ℓ)
β,γ ↦→ H(ℓ′)

β,γ and
H(ℓ)

β,γ ↦→ Hβ,γ for any ℓ ≤ ℓ′. Furthermore, let µ be any measure
and µ|ℓ be its projection to the first ℓ observations, and let |µ̂ℓ⟩β,γ be
the embedding of µ|ℓ into Hβ,γ . Then |µ̂ℓ⟩β,γ → |µ⟩β,γ as ℓ→∞,
with ∥µ− µ̂ℓ∥β,γ ∼ O(β−1γ ℓ).

Proof. For a measure µ with projection µ|ℓ let µ̂ℓ denote the
measure on XN with the property:

µ̂ℓ(A× B) = µ|ℓ(A)λβγ−ℓ,γ (B) ,

for A ∈ X ℓ and B ∈ XN. Then the mapping µ|ℓ ↦→ µ̂ℓ is simply a
rescaling, since:

⟨µ̂ℓ|ν̂ℓ⟩β,γ =

∫∫
kβ,γ (X, Y )dµ̂ℓ(X)dν̂ℓ(X)

=

∫∫
k(ℓ)β,γ (x1 . . . xℓ, y1 . . . yℓ)dµℓdνℓ

×

∫∫
kβγ−ℓ,γ (xℓ . . . , yℓ . . . )dλβγ−ℓ,γ dλβγ−ℓ,γ

= ⟨µ|ℓ|ν|ℓ⟩
(ℓ)
β,γ

∫
dλβγ−ℓ,γ

= ⟨µ|ℓ|ν|ℓ⟩
(ℓ)
β,γ

λβγ−ℓ,γ

2
βγ−ℓ,γ

.
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Now, as a result of Eq. (13), note that for any two measures µ
and ν:

⟨µ|ν⟩β,γ =

∫
dµ|ℓ(x1 . . . xℓ)

∫
dν|ℓ(y1 . . . yℓ)

× exp
(
−β2D(ℓ)

γ (x1 . . . xℓ, y1 . . . yℓ)
)

× ⟨µ(·|x1 . . . xℓ), ν(·|y1 . . . yℓ)⟩βγ ℓ,γ

If we combine this fact with the bound Eq. (12), we have the
result:µ− µ̂|ℓ

2
β,γ
=

∫
dµ|ℓ(x1 . . . xℓ)

∫
dµ|ℓ(y1 . . . yℓ)

exp
(
−β2D(ℓ)

γ (x1 . . . xℓ, y1 . . . yℓ)
)

×
µ(·|x1 . . . xℓ)− µ̂ℓ(·|y1 . . . yℓ)

2
βγ−ℓ,γ

≤

∫
dµ|ℓ(x1 . . . xℓ)

∫
dµ|ℓ(y1 . . . yℓ)

×
∥µ− µ̂ℓ∥TV∆

2γ 2ℓ

(1− γ 2)β2 =
∥µ− µ̂ℓ∥TV∆

2γ 2ℓ

(1− γ 2)β2 .

Thus, ∥µ− µ̂ℓ∥β,γ ∼ O(β−1γ ℓ).

In summary, representing measures µ over XN by their trun-
cated forms µ|ℓ leads to a Hilbert space representation that ad-
mits an approximate isomorphism to the space of full measures.
The resulting truncation error is of order O(β−1γ ℓ).

We close this part with a minor note about a lower bound on
he distance between measures. Given a word w, the function
n X ℓ that equals 1 when X = w and zero otherwise has a
epresentation |w⟩(ℓ)β,γ in H(ℓ)

β,γ . (This follows since for finite X ,
ll functions on X ℓ belong to F (ℓ)

β,γ .) The extension of this to

β,γ is |w⟩β,γ := |w⟩
(ℓ)
β,γ ⊗ |λβ,γ ⟩βγ−ℓ,γ

. This has the convenient
roperty that ⟨w|µ⟩β,γ = Prµ ( w ). Then, by the Cauchy–Schwarz
nequality, for any measures µ and ν and any word w:

µ− ν∥β,γ ≥
| ⟨w|µ− ν⟩ |√
⟨w|w⟩β,γ

=

⏐⏐Prµ ( w )− Prν ( w )
⏐⏐√

⟨w|w⟩β,γ

. (15)

o, word probabilities function as lower bounds on the Hilbert
pace norm.

.4. Predictive states from kernel Bayes’ rule

A prominent use of reproducing kernel Hilbert spaces is to
pproximate empirical measures [41]. Given a measure µ over a
pace X and N samples Xk drawn from this space, one constructs
n approximate representation of µ via:

µ̂⟩ :=
1
N

N∑
k=1

|δXk⟩ .

In other words, µ is approximated as a sum of delta functions
centered on the observations. Convergence of this approximation
to |µ⟩ is (almost surely) O(N−1/2) [41].

This fact, combined with our Theorem 4, immediately gives
the following result for Hβ,γ :

Proposition 6. Suppose for some µ ∈ P(XN) we take N samples of
ength ℓ, denoted {Xk ∈ X ℓ

} (k = 1 . . .N), and construct the state:

µ̂ℓ,N⟩β,γ =
1
N

N∑
k=1

|δXk⟩
(ℓ)
β,γ ⊗ |λβγ−ℓ,γ ⟩βγ−ℓ,γ

.

hen |µ̂ℓ,N⟩β,γ → |µ⟩ converges almost surely as N, ℓ → ∞ with
rror O(N−1/2 + β−1γ ℓ).
11
Note the addition of the truncation error O(β−1γ ℓ) to the
ypical sample convergence N−1/2. The truncation error has no
ependence on the number of samples. It is a consequence of
sing an overly simplified hypothesis space H(ℓ)

β,γ to estimate µ.
A more nuanced application of RKHS for measures lies in

reconstructing conditional distributions [26–28,41,42]. Let µ be
a joint measure on some X × Y , and let µ|X and µ|Y be its
marginalizations. Given N samples (Xk, Yk), construct the covari-
ance operators:

ĈXX :=
1
N

∑
k

|δXk⟩ ⟨δXk | and

ĈYX :=
1
N

∑
k

|δYk⟩ ⟨δXk | .

Let µY|X be the conditional measure for X ∈ X . For some g ∈
HY—the RKHS constructed on Y—let Fg (X) := ⟨g|µY|X ⟩ be a func-

tion on X . If Fg ∈ HX for all g ∈ HY , then ĈYX

(
ĈXX − ζ I

)−1
|δX ⟩

converges to |µY|X ⟩ as N → ∞, ζ → 0, with convergence rate(
(Nζ )−1/2 + ζ 1/2

)
.

The requirement essentially tells us that the structure of the
onditional measure is compatible with the structures repre-
ented by the RKHS.
This is the kernel Bayes’ Rule [42]. It applies to our Hβ,γ ,

y combining it with our results on truncated representations.
or this theorem the reader should refer to Corollaries 1 and 2.
hese define truncated predictive state ηℓ[

←−
X ] and assert that it

converges weakly to the predictive state ϵ[
←−
X ] for←−µ -almost all

←−
X as ℓ→∞. This implies that for any continuous function g;⟨
ηℓ[
←−
X ], g

⟩
→

⟨
ϵ[
←−
X ], g

⟩
,

albeit at some unspecified rate O(h←−X (ℓ)). (Here, we use ⟨µ, f ⟩ =∫
f (X)dµ(X), not to be confused with the inner products of Hβ,γ

and Fβ,γ ).

Theorem 5. Let µ ∈ P(XZ) be a stationary and ergodic process.
Suppose we take a long sample X ∈ X L and from this sample
subwords of length 2ℓ, wt = xt−ℓ+1 . . . wt+ℓ for t = ℓ, . . . , L − ℓ.
(There are L − 2ℓ + 1 such words.) Split each word into a past
←−w t = xt−ℓ+1 . . . wt and a future −→w t = xt+1 . . . xt+ℓ, each of length
ℓ. Define the operators:

Ĉ (
←−
X
←−
X )

β,γ =
1

L− 2ℓ+ 1

L−ℓ∑
t=ℓ

|δ̂←−w t ⟩β,γ
⊗ |δ̂←−w t ⟩β,γ

and

Ĉ (
←−
X
−→
X )

β,γ =
1

L− 2ℓ+ 1

L−ℓ∑
t=ℓ

|δ̂←−w t ⟩β,γ
⊗ |δ̂−→w t ⟩β,γ

.

Now, suppose for every g ∈ Fβ,γ that
⟨
ϵ[
←−
X ], g

⟩
∈ Fβ,γ and⟨

ηℓ[
←−
X ], g

⟩
→

⟨
ϵ[
←−
X ], g

⟩
at a rate of O(h←−X (ℓ)); see Section 3.5.

Then for all
←−
X :

Ĉ (
←−
X
−→
X )

β,γ

(
Ĉ (
←−
X
←−
X )

β,γ − ζ · Iβ,γ

)−1
|δ←−X ⟩β,γ

almost surely converges to |ϵ[
←−
X ]⟩β,γ as L → ∞, ℓ → ∞, and

ζ → 0, at the rate O
(
(Lζ )−1/2 + ζ 1/2

+ γ−ℓ
+ h←−X (ℓ)

)
.

This integrates all our results thus far with the usual kernel
Bayes’ rule. Several observations are in order.

1. First, there will (←−µ -almost) always be an h←−X (ℓ) as required
by this theorem due to our own Corollaries 1 and 2.
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2. Second, since ϵ[
←−
X ] is not generally continuous, the theo-

rem’s strict requirements on ϵ[
←−
X ] are not satisfied. That

said, weaker versions hold. If
⟨
ϵ[
←−
X ], g

⟩
as a function of

←−
X

does not belong to Fβ,γ as a function of
←−
X , then the rep-

resentational error scaling depends on the precise form of
ϵ[
←−
X ]. From a learning theory perspective this error scaling

depends upon the complexity of the hypothesis space rel-
ative to the function ϵ[

←−
X ] [43]. In the kernel embedding-

of-distributions literature these scalings are obtained by
choosing the ζ -parameter through cross-validation analy-
sis [41,42].

3. Third, all of this is contingent on our choice of metric
DE,γ for the underlying sample space XZ. The error whose
scaling we have expressed above is formulated in terms of
this metric, and so does not necessarily take into account
whether the metric itself has been well-chosen. Supple-
mentary Material II discusses the implications of the choice
of metric.

. Examples

Proposition 4 considered the existence of probabilistic expres-
ions for the convergence rate of the truncated predictive states
ℓ[
←−
X ] to the true predictive states ϵ[

←−
X ]. We close with a handful

f examples and case studies that give further insight to the
onvergence of

ηℓ[
←−
X ]−ϵ[

←−
X ]


β,γ

for widely-employed process
lasses—Markov, hidden Markov, and renewal processes.

.1. Order-R Markov processes

A Markov process is a stochastic process where each obser-
ation xt statistically depends only on the previous observation
t−1. An order-R Markov process is one where each observation
t depends only on the previous R observations xt−R . . . xt−1. As
such, the predictive states are simply given by:

Prµ
(
x|
←−
X

)
=

Prµ ( x−R+1 . . . x0x )

Prµ ( x−R+1 . . . x0 )
,

for each
←−
X = x0x−1 . . . . Since the predictive state is entirely

defined after a finite number of observations, and this number
is bounded by R, there is no conditioning error when R is taken
as the observation length.

5.2. Hidden Markov processes

A hidden Markov model (HMM) (S,X ,
{
T(x)

}
) is defined here

as a finite set S of states, a set X of observations, and a set
T(x)
= (T (x)

ss′ ) of transition matrices, labeled by elements x ∈ X
and whose components are indexed by S [21]. The elements are
constrained so that 0 ≤ T (x)

ss′ ≤ 1 and
∑

x,s′ T
(x)
ss′ = 1 for all

s, s′ ∈ S. Let T =
∑

x T
(x) and π be its left-eigenvector such that

πT = π. HMMs generate a stochastic process µ defined by the
word probabilities:

Prµ ( x1 . . . xℓ ) :=
∑
s′

[
πT(x1) . . . T(xℓ)

]
s′ .

An extension of HMMs, called generalized hidden Markov mod-
els (GHMMs) [21] (or elsewhere observable operator models [22]),
is defined as (V,X ,

{
T(x)

}
) where V is a finite-dimensional vector

space. The only constraint on the transition matrices T(x) is that
T has a simple eigenvector of eigenvalue 1. The left-eigenvector
is still denoted π, the right-eigenvector denoted φ, and the word
probabilities:

(x1) (xℓ)
Prµ ( x1 . . . xℓ ) := πT . . . T φ c

12
are positive [21]. GHMMs generate a strictly broader class of pro-
cesses than finite hidden Markov models can [21,22,44], though
their basic structure is very similar.

First off, consider sofic processes. A sofic process is one that
is not Markov at any finite order, but that is still expressible in
a certain finite way. Namely, a sofic process is any that can be
generated by a finite-state hidden Markov model with the unifilar
property. An HMM has the unifilar property if T (x)

s′s > 0 only when
s′ = f (x, s) for some deterministic function f : S × X → S.
Unifilar HMMs are the stochastic generalization of deterministic
finite automata in computation theory [45].

The most useful property of sofic processes is that the states
of their minimal unifilar HMM correspond exactly to the pre-
dictive states, of which there is always a finite number. Unlike
with order-R Markov processes, there is no upper bound to how
many observations it may take to δ-synchronize the predictive
states. However, closed-form results on the synchronization to
predictive states for unifilar HMMs is already known: at L past
observations, with L → ∞, the conditioning error is exponen-
tially likely (in L) to be exponentially small (in L) [24]. In terms of
our Hilbert space norm, there are constants α and C such that:

Pr←−µ

( ηℓ[
←−
X ] − ϵ[

←−
X ]


β,γ

> αℓ

)
< Cαℓ . (16)

As such, for ←−µ -almost-all pasts, the corresponding convergence
rate for the kernel Bayes’ rule applied to a sofic process is
O

(
(Lζ )−1/2 + ζ 1/2

+min(α, γ )−ℓ
)
.

Not all discrete-observation stochastic processes can be gen-
erated with a finite-state unifilar hidden Markov model. Though
still encompassing only a small slice of processes, generalized
hidden Markov models have a considerably larger scope of rep-
resentation than finite unifilar models, as noted above.

The primary challenge in this setting is to relate the structure
of a given HMM to the predictive states of its process. This is
achieved through the notion of mixed states. A mixed state ρ is a
distribution over the states of a finite HMM. A given HMM, with
the stochastic dynamics between its own states, induces a higher-
order dynamic on its mixed states and, critically for analysis,
this is an iterated function system (IFS). Under suitable conditions
the IFS has a unique invariant measure, and the support of this
measure maps surjectively onto the process’ set of predictive
states. See Refs. [12] for details on this construction.

If ρ = (ρ) is a mixed state, then the updated mixed state after
bserving symbol x is:

(x)
s (ρ) :=

1∑
s′

[
T(x)ρ

]
s′

[
T(x)ρ

]
s .

Let the matrix
[
Df (x)

]
s′s (ρ) be given by the Jacobian ∂ f (x)s′ /∂ρs

at a given value of ρ. There is a statistic, called the Lyapunov
characteristic exponent λ < 0, such that:

λ = lim
ℓ→∞

1
ℓ
log

Df (xℓ)(ρℓ) · · ·Df (x1)(ρ1)v


∥v∥
,

where ρt := f (xt−1) ◦ · · · ◦ f (x1)(ρ), for any vector v tangent
o the simplex, almost any ρ (in the invariant measure), and
lmost any

−→
X = x1x2 . . . (in the measure of the prediction

nduced by ρ). The exponent λ then determines the rate at which
onditioning error for predictive states converges to zero: for all
and sufficiently large ℓ:

r←−µ

( ηℓ[
←−
X ] − ϵ[

←−
X ]


β,γ

< Ceλℓ

)
> 1− δ .

his is somewhat less strict that Eq. (16)—depending on how
apidly the Lyapunov exponent converges in probability. In any
ase, for←−µ -almost all pasts, the convergence of the kernel Bayes’
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ule is O
(
(Lδ)−1/2 + δ1/2 +min(λ, γ )−ℓ

)
, very similar to the sofic

process rate.
We anticipate that these rules still broadly apply to gen-

eralized hidden Markov models, though we recommend more
detailed analysis on this question.

5.3. Renewal processes

A renewal process, usually defined over continuous-time, can
be defined for discrete time as follows. A renewal process emits
0s for a randomly selected duration before emitting a single
1 and then randomly selecting a new duration to fill with 0s
[46]. Renewal processes can be as simple as Poisson processes,
where the probability at any moment of producing another 0 or
restarting on 1 is independent of time. Or, they can be far more
memoryful, with a unique predictive state for any number of past
0s.

While high-memory renewal processes cannot generally be
represented by a finite hidden Markov model, they have only
a countable number of predictive states, unlike most hidden
Markov models. This follows since every number of past 0s de-
fines a potential predictive state, but the process has no further
memory beyond the most recent 1. Said simply, the predictive
states are the time since last 1 [47]—or some coarse-graining of
this indicator in special cases, such as the Poisson process.

A renewal process is specified by the survival probability Φ(n)
hat a contiguous block of 0s has length at least n. The exact
robability of a given length is F (n) := Φ(n) − Φ(n + 1). It is
lways assumed that Φ(1) = 1. Further, stationarity requires that
:=

∑
∞

n=1 Φ(n) be finite, as this gives the mean length of a block
f 0s. In the most general case the predictive states are given by:

[
←−
X ] =

{
ϵk

←−
X = 0k1 . . .

undefined
←−
X = 0∞

,

here the measures ϵk are recursively defined by the word prob-
bilities:

rϵk
(
0ℓ1w

)
=

F (k+ ℓ)
Φ(k)

Prϵ0 ( w ) .

Now, it can be easily seen that each past
←−
X converges to zero

conditioning error at a finite length since (almost) all pasts have
the structure . . . 10k, and so only the most recent k + 1 values
need be observed to know the predictive state. Therefore, the
kernel Bayes’ rule has an asymptotic convergence rate for each
past
←−
X of O

(
(Lδ)−1/2 + δ1/2 + γ−ℓ

)
. However, this does not tell

the entire story, as obviously not all pasts converge uniformly.
A probabilistic expression of the conditioning error gives more
information:

Proposition 7. Suppose µ is a renewal process with Φ(n) ∝ n−α ,
α > 1. Then there exist constants C and K such that:

Pr←−µ

( ηℓ[
←−
X ] − ϵ[

←−
X ]


β,γ

> Cℓ−1
)

> Kℓ−α .

That is, the probability the conditioning error decays as 1/ℓ is itself
at least power-law decaying in ℓ.

Proof. Recall from Eq. (15):ηℓ[
←−
X ] − ϵ[

←−
X ]


β,γ

>

⏐⏐⏐Prµ ( w|x1 . . . xℓ )− Prµ
(

w|
←−
X

)⏐⏐⏐√
⟨w|w⟩β,γ

,

13
for every word w, so we can choose any w and obtain a lower
bound on the conditioning error. If our past

←−
X has the form

0k1 . . . for k < ℓ, then we are already synchronized to the
predictive state and the conditioning error is zero. Thus, we are
specifically interested in the case k ≥ ℓ and we will further
consider the large-ℓ limit.

Now, under our assumptions, Φ(n) = n−α for some constant
. For large n, F (n) ∼ αn−α−1. Then for any j:

rµ
(
0j1|
←−
X

)
=

F (k+ j)
Φ(k)

∼
α

k

(
k+ j
k

)−α−1

.

Meanwhile, so long as k ≥ ℓ, the truncated prediction has the
form:

Prµ
(
0j1|0ℓ

)
=

∞∑
n=1

Φ(n+ ℓ)∑
p Φ(p+ ℓ)

F (n+ ℓ+ j)
Φ(n+ ℓ)

=
Φ(ℓ+ j)∑
p Φ(p+ ℓ)

∼
α − 1

ℓ

(
ℓ+ j

ℓ

)−α

.

Now, choose 0 < C < α − 1 and define:

B =
(
1−

C + 1
α

)−1
.

Then it can be checked straightforwardly that whenever k > Bℓ,
we have:

Prµ
(
1|0ℓ

)
− Prµ

(
1|
←−
X

)
∼

1
ℓ

[
α

(
1−

ℓ

k

)
− 1

]
>

C
ℓ

.

The probability that k > Bℓ is given by Φ(Bℓ) = B−αℓ−α . Setting
K = B−α/

√
⟨1|1⟩β,γ proves the theorem.

Therefore, while every sequence
←−
X converges to zero condi-

tioning error at finite length, this convergence is not uniform, to
such a degree that the proportion of pasts that retain conditioning
error of 1/ℓ has a fat tail in ℓ. This is a matter of practical
importance that is not cleanly expressed in the big-O expression
of the conditioning error from Theorem 5.

Poisson and renewal processes are merely the first two steps
in a structural hierarchy of increasing sophistication. The next
generalization beyond renewal processes are the semi-Markov
processes and beyond those, the hidden semi-Markov processes.
Roughly speaking, these are finite-state-controlled renewal pro-
cess and moving up the hierarchy requires using more memoryful
controllers. In this way, each process class in the hierarchy is ex-
ponentially larger than it predecessor and so exponentially more
expressive of complex process organization. Ref. [46]’s results on
hidden semi-Markov processes allow one to identify their predic-
tive states. This section made the route to these generalizations
explicit and so we do not include them here. We now shift to
consider another process class that employs infinite memory in
a different, more syntactic way than renewal process ‘‘count up
and reset’’.

5.4. Aperiodic infinitary processes

Substitution shifts provide an easy-to-grasp but behaviorally
nontrivial exploration ground for the possible behaviors of highly
complex processes that are still ergodic. The Thue–Morse process,
for instance, can be generated by starting from the string ‘‘0’’ and
taking the limit of an infinite number of substitutions of the form:

0 ↦→ 01

1 ↦→ 10 ,
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nd randomly sampling any contiguous block from the result.
imilarly, using the substitution rule:

↦→ 01
↦→ 10 ,

generates the Feigenbaum process. This has a physical interpre-
tation. If we sample a sequence of values yt from the logistic
ap:

t+1 = ryt (1− yt )

ith y0 ∈ [0, 1] at critical parameter r ≈ 3.56995, and only
easure the function:

t (yt ) =
{
0 0 ≤ yt < 1/2
1 1/2 ≤ yt ≤ 1

,

hen the resulting sequence X = (xt ) has the same statistics as
he Feigenbaum process [29,48].

These processes are considered aperiodic since they never fully
epeat and infinitary since many measures of their long-time sta-
tistical dependencies diverge, such as correlation length and ex-
cess entropy [49,50]. These processes are highly non-Markovian
and sequential generation requires a nested stack (infinite mem-
ory) automaton [48,49].

Nonetheless, our approach to predictive states here applies
directly to these processes. Helpfully, these processes provide
a useful example of the saturation of our convergence results.
While the preceding focused on demonstrating that predictive
states converge in distribution, for substitution shifts it can be
seen that predictive states fail to converge under certain stronger
riteria.
Thue–Morse and Feigenbaum processes are considered deter-

inistic since they have an asymptotically vanishing entropy rate
49] and the nested-stack automaton controller is determinis-
ic in the sense of formal language theory [45]. This means, in
articular, that the probability mass in Prµ

(
x1|
←−
X

)
is always

concentrated on a 0 or 1. This can be extended to the observation
that ϵ[

←−
X ], for←−µ -almost all

←−
X , is a δ-measure concentrated on

some specific future
−→
X = F (

←−
X ).

A somewhat stronger criterion for convergence of measures is
convergence over sets; that is, µn(A)→ µ(A) for any measurable
set A. An even stronger criterion is convergence in total variation:
∥µn − µ∥TV → 0.

However, suppose we choose the set A =
{
F (
←−
X )

}
, where

F is the deterministic mapping between pasts and futures from
before. Due to aperiodicity, ηℓ[

←−
X ] cannot be concentrated on

(
←−
X ). It must be, in fact, diffuse. If this were not so, then there
ould be a word of infinite length—namely, x−ℓ+1 . . . x0F (

←−
X )—

with nonzero measure under µ. This word must also be aperiodic,
since this is a key property of samples generated by substitution
shifts. Stationarity then implies that every time-shifted version
of the word also carries nonzero probability. Aperiodicity then
implies an infinite number of these. Whence we have a contra-
diction, since µ is a probability distribution and can only assign
a finite total mass.

Consequently, ηℓ[
←−
X ] must be a diffuse measure with no sin-

gular points, so ηℓ[
←−
X ](A) = 0 for all ℓ. Since ϵ[

←−
X ](A) = 1,

both convergence over sets and convergence in total variation
fail for the predictive states of aperiodic infinitary processes. The
very practical lesson is that attempts to recover such processes
from empirical data must use tools that rely on convergence in
distribution, such as the RKHS methods Section 4 outlined.
14
6. Concluding remarks

Taken altogether, the results fill-in important gaps in the
foundations of predictive states, while strengthening those foun-
dations for further development, extension, and application. Pre-
viously, the properties of predictive states were only examined
in the context of hidden Markov models, their generalizations,
and hidden semi-Markov models. We provided a definition ap-
plicable to any stationary and ergodic process with discrete and
real-valued observations, extending previous foundational work
[21]. Further, we showed that predictive states for all such pro-
cesses are learnable from empirical data, whether through a
direct method of partitioning pasts or through indirect methods,
such as the reproducing kernel Hilbert space.

One important extension is to continuous-time processes. By
exploiting the full generality of Jessen’s and Enomoto’s theo-
rems we believe this extension is quite feasible. As long as the
set of possible pasts and futures constitutes a separable space,
they should be expressible in the form of a countable basis, to
which these theorems may then be applied. (See our example in
Supplementary Material I.) The challenge lies in constructing an
appropriate and useful basis. We leave this for future work.

We described key properties of the space in which predictive
states live. However, predictive states are not merely static ob-
jects. They predict the probabilities of future observations. And,
once those observations are made, the predictive state may be
updated to account for new information. Thus, predictive states
provide the stochastic rules for their own transformation into fu-
ture predictive states. This dynamical process has been explored
in great detail in the cases where the process is generated by a
finite hidden Markov model—this is found in former work on the
ϵ-machine and the mixed states of HMMs. (See, for instance, Refs.
[8,12,51,52].) Understanding the nature of this dynamic for more
general processes, including how it makes contact with other
dynamical approaches like stochastic differential equations in the
continuous-time setting, also remains for future work.
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