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Towards a Data-Centric Research and Development
Roadmap for Large-scale Science User Facilities

E. Wes Bethel
Lawrence Berkeley National Laboratory

Berkeley, CA, USA, 94720

Abstract—The U.S. Department of Energy (DOE) Office of
Science (SC) operates approximately four dozen large-scale sci-
ence user facilities (SUFs), each of which generates a tremendous
amount of scientific data from experiments, observations and
computations. To better understand the data needs and chal-
lenges, DOE has run many workshops in recent years to identify
and articulate data-centric challenges and opportunities at vary-
ing resolution, from facility to community scale. Building on those
workshop reports, as well as others from elsewhere in the com-
munity, this article goes beyond the findings-recommendations
typical of workshop reports to consider how one might structure
a broad, technology- and data-centric, coordinated research effort
that would realize progress towards solutions that address the
well documented challenges and opportunities. We focus on
identifying practical issues of strategic relevance, along with
offering a view about the focal points for a coordinated research
and development effort that would target meeting data-centric
needs of a broad set of science users and SUFs. These focal points
would, by their nature, engage a spectrum of researchers from
computer science, computational and experimental sciences, and
data science in a coordinated fashion.

I. BACKGROUND AND INTRODUCTION

Nearly all fields of science are quickly evolving into a
regime where data is the central focal point, where new
opportunities for discovery await and where new impediments
and obstacles abound. There has been significant activity in
recent years to document those opportunities and challenges,
with results appearing as individual workshop reports ranging
from those focused on a particular regime of science like
High Energy Physics [7] as well as more broadly across
multiple areas of science [2], [3]. From these reports, others
have generated documents describing cross-cutting issues that
focus on data [8] and workflows [4]. Those cross-cutting
issues are viewed through different lenses in strategic planning
documents [1], [10].

This work takes these previous works a step further by
focusing how one might structure a large-scale research and
development effort that targets cross-cutting challenges and
opportunities. One way to approach thinking about structuring
such an effort, which is coordinated across a diverse set of
technology and science areas, is to identify broad strategic
objectives (§II), to define focal points for interdisciplinary
projects that serve as the basis for implementation and de-
ployment (§III), and to enumerate key technology areas where
R&D is needed (§IV) to that are put into use for data-intensive
science.

II. STRATEGIC OBJECTIVES

By strategic objectives, we mean desired outcomes, or a
long-term goal. Such an outcome might be something rela-
tively tangible, such as a new capability or some generally
applicable technology, or it may be more ethereal, such as
developing and retaining a scientific and data-savvy workforce.
The following set of strategic objectives are themes that are
present in many different workshop reports and strategic plans.

Data archival, dissemination, preservation. Science is gen-
erating increasing amounts of data, and also becoming increas-
ingly oriented around hypothesis formation and testing using
data [9]. A critical dependency for data-intensive science,
where there are both producers and consumers of data, is the
ability to store, share, find, and preserve data. The complexity
of this objective quickly deepens when considering the fact
that sharing/preserving data is not enough: one must also
preserve the software used to work with the data. When con-
sidering the preservation of software, one must also consider
the entire runtime environment and third-party tools needed
by the software that makes the data usable.

“Google for science”. Many reports have identified the
desire to have the same kind of straightforward access to
data they enjoy in finding other types of information on
the Internet. One key element of “finding things” is having
a basis for search; for web pages, text-based search is the
staple approach in broad use due to its relative simplicity
and low barrier to entry. Scientifically meaningful search
quickly becomes complicated: locating all datasets obtained by
a given instrument during a particular period of time requires
a significant amount of additional effort and technology. The
provenance of such data – who created it, on what date, at what
location – needs to be recorded as metadata, which in turn
becomes the basis of search. The mechanics and lexicography
of scientific search can be significantly more complex than the
text-based search that has enabled the rapid growth of public
internet in the past two decades.

Key software infrastructure, tools, libraries for data-centric
use. It is reasonably well accepted that software plays a key
role in both operating facilities and making use of data. A
common theme concerns the brittle and unmaintainable nature
of key software, which is often written by graduate students
or postdoctoral researchers working in relative isolation, and
that becomes unsupportable once they leave. Advances in
the computational ecosystem — increasing cores/processor,



increasing imbalance between compute and I/O rates, evolu-
tion in APIs for accessing system and network services —
catalyze software obsolescence. Many reports point to the need
for a stable, sustainable collection of core software tools that
are easily customizable and extensible for use at a particular
facility, much in the same way that a web server core is
customizable and extensible, and provides broad service and
value. From an economic standpoint, this kind of approach
helps to increase the lifespan of key, long-term investments.
Equally important is the value of best practices in modern
software engineering: revision control, bug tracking, multiple
platform testing, and rigorous QA.

Exemplar science use cases and key design and execu-
tion patterns. These serve to capture the most important
requirements and characteristics of the scientific data lifecycle.
They provide the blueprints upon which software tools and
data-centric services/facilities can be designed, architected,
implemented, and operated. They also provide the basis for
defining clear metrics for evaluating the success and value of
data-centric infrastructure and programs. One aspect of these
use cases that merits special attention is data etymology, or
how data will be used now and in the future. There is a
deep interplay between the concepts of data etymology, data
lifecycle, and the definition of exemplar use cases. There
is significant complexity lurking in these use cases when
taking into account objectives like facilitating the linking of
publications to data (and the software used to generate analysis
of data), and vice versa, establishing the links/dependencies
between a given datum and all derived publications.

Fostering Growth and Communication. Promoting the
growth of robust and vibrant data-intensive science research
activities requires thinking about and acting on the previously
mentioned strategic objectives: success in one area will serve
as an example to others, who in turn may be more likely
to adopt new methods and approaches to achive similar
successes. Communicating these successes to the public and
funding agencies, in terms of new science or economics, will
help to promote a deeper understanding of and appreciation
for these activities.

Better integration of facilities across science, network,
computing. The increasing complexity of the computational
and technological landscape is itself an impediment to the
use of such resources. A desired objective is to simplify
and streamline use of increasingly complex and distributed
compute and storage resources.

III. PROGRAM FOCAL POINTS

This set of focal points is by no means complete, but does
provide traction on a place to get started in a meaningful way.

Data “galaxies” and “hamlets”. These are community or
topically centered places where code and data live. They serve
as repositories and archives for both data and the software
tools/environment needed to work with data, and are designed
and engineered to meet the needs of exemplar use cases.
Examples of successful operational data galaxies include the
Earth System Grid Federation [6] and the HEPData repository

for high energy physics data [11]. In both these cases, the effort
focuses on meeting the data archival and dissemination needs
for a specific scientific community, each of which is global in
nature.

Pilot projects. These efforts, which are framed by thinking
about the data lifecycle, target specific types of capabilities
that can be applied in a focused, and scope-limited way. One
such example is the Neurodata Without Borders project [12],
which aims to make databases of neurological data usable
and accessible through a unified API for access. Another is
the Center for Advanced Mathematics for Energy Research
Applications (CAMERA) [5], which focuses on developing
mathematical methods for data understanding problems across
several light source projects.

IV. DATA THRUST AREAS – BASIS VECTORS

While the problem space is complex, with many different
interdependencies, the following set of basis vectors represents
an orthogonalizion that is intended to cultivate core R&D, to
assemble the right teams needed to create and operationalize
working software for data-intensive science, and to be some-
what scalable with available funding.

Computational data understanding. Design, use, application
of computationally based methods to derive insight from data.
Includes algorithms/methods/tools for analysis, visualization,
mathematics, machine learning, and so forth.

Data management. Methods, systems, approaches for man-
aging (storing, finding, sharing) data. Includes archival, search,
metadata, provenance, curation, digital libraries, along design
and implementation of data models/format architectures and
software tools.

Computational Data Systems. The customizable, extensible
software infrastructure needed to build data pipelines. In-
cludes things like workflow systems; the design/engineering
of “boundary infrastructure” at facilities (computing and
SUF) to accommodate data movement, resource discov-
ery/provisioning/marshaling. A desired target is for these sys-
tems to make use of methods and tools that emerge from
the data understanding and management thrusts, as well as
related technologies that might emerge from elsewhere in the
computational ecosystem.

Data “carpentry” and “engineering”. Construction and
implementation of user-facing tools, applications, data portals,
and so forth. Includes integration of methods/tools from above
categories, as well as a plan for ongoing support/maintenance.
These may be project-focused to expand/shrink with available
budget.

Outreach, etymology, workforce development/training.
Spectrum of efforts that aim to cultivate a systematic
understanding of how data is used now, and how it ought to
be used in the future; proactive engagement with potential
stakeholders and collaborators. Data bootcamps and “hack-
a-thons”, for making rapid progress in both training and in
quickly standing up working, operational systems. Interactions
with industry/other agencies/other offices.
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