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Navigating Underactuated Agents by Hitchhiking Forecast Flows

Marius Wiggert1, Manan Doshi2, Pierre F.J. Lermusiaux 2 and Claire J. Tomlin1

Abstract— In dynamic flow fields such as winds and ocean
currents an agent can navigate by going with the flow, only
using minimal propulsion to nudge itself into beneficial flows.
This navigation paradigm of hitchhiking flows is highly energy-
efficient. However, reliable navigation in this setting remains
challenging as typically only forecasts are available which differ
significantly from the true currents and the forecast error
can be larger than can be handled by the actuation of the
agent. In this paper, we propose a novel control method for
reliable navigation of underactuated agents hitchhiking flows
based on imperfect forecasts. In the spirit of Model Predictive
Control our method allows for time-optimal replanning at every
time step with only one computation per forecast. Using the
recent Multi-Time Hamilton-Jacobi Reachability formulation
we obtain a value function which is then used for closed-loop
control. We evaluate the reliability of our method empirically
over a large set of multi-day start-target missions in the ocean
currents of the Gulf of Mexico with realistic forecast errors.
Our method outperforms the baselines significantly, achieving
high reliability, measured as the success rate of navigating from
start to target, at low computational cost.

I. INTRODUCTION

We increasingly deploy autonomous systems in the air and
oceans. Beyond airplanes and ships, there are emerging ap-
plications such as balloons in the stratosphere for delivering
internet access [1], airships, ocean gliders and active drifters
for collecting ocean data [2]–[5], floating solar farms storing
energy in fuels [6], and floating seaweed farms for biomass
and carbon sequestration [7], [8].

The overactuated navigation approaches used in ships and
planes require significant power to overcome the drag forces
inherent in navigating through fluids. The power required
scales with P = FDrag ·∆s

∆t ∝ AC ·v3, where AC is the cross
sectional area and v the velocity relative to the surrounding
fluid. This makes overactuated control prohibitively expen-
sive for energy constraint applications such as long duration
environmental monitoring systems and floating structures
with large cross-sectional areas. Hence, we investigate an
energy-efficient steering paradigm leveraging the winds and
ocean currents around these systems: navigating agents by
hitchhiking complex flows. By using the drift of these non-
linear, time-varying flows for propulsion, only a minimal
amount of energy is required to nudge the agents into
beneficial flows, e.g., balloons going up and down to use
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Fig. 1: Our method for reliable navigation leveraging flows
is based on frequent replanning. For that the Time-to-reach
map D∗ is computed daily as new flow forecasts v̂(x, t)
become available. Then for closed-loop operation, the time-
optimal control u∗

t is calculated from D∗ which is equivalent
to replanning at every step. The system is simulated using
the true flow v(x, t) which differs from the forecast by the
forecast error δ(x, t).

different winds or small horizontal propulsion in the oceans
to navigate bifurcations in the flow. Because the required
power scales cubically with the relative velocity, navigating
with 1

10 th of the speed means only 1
1000 th of the power is

required which enables a host of new applications.
From a control perspective, there are three core chal-

lenges when navigating by hitchhiking these flows. First,
the dynamics of the wind and ocean flows are non-linear
and time-varying. Second, in realistic scenarios only coarse
forecasts of the flows are available and these differ from the
true currents [9]–[12]. Third, when agents are underactuated
they cannot easily compensate for these forecast errors with
classical methods such as robust control.

There is a rich literature on planning time- and energy-
optimal paths in flows both in the oceans [13]–[32] and the
air [33]–[36]. For planning in known flows researchers have
proposed Hamilton-Jacobi (HJ) reachability [13]–[15], non-
linear programming [16], [17], evolutionary algorithms [18],
and graph-based techniques such as A* [19], [20], [35], RRT
[21], [34], and time-varying Dijkstra [22]. Non-linear pro-
gramming, evolutionary algorithms, and graph-based meth-



ods suffer from discretization error and the non-convexity
of the optimization problem which can cause solvers to get
stuck in local minima and infeasible solutions. In contrast, HJ
reachability is guaranteed to obtain time-optimal paths when
the flows are known, as it solves the exact continuous-time
control problem via dynamic programming.

As the wind and ocean forecasts are never perfect, dif-
ferent paradigms and their combinations have been explored
for navigation when the true flow is not known. When we
have access to a realistic distribution of the flows we can
use probabilistic methods to optimize the expected energy or
travel time of a policy using stochastic reachability [37] or
Markov Decision Processes (MDP) [23], [33]. Previous work
also explored risk-optimal path planning in this stochastic
setting [24]–[26]. Unfortunately, for ocean surface currents,
only daily deterministic forecasts are available from the
leading ocean forecasting providers HYCOM [10] and EU
Copernicus Marine [11]. There are ocean dynamics models
with stochastic forcing to compute accurate probabilistic
forecasts [12], [38], [39], however these are too computa-
tionally expensive for real-time. A heuristics approach is
then to assume Gaussian noise [23] or to increase prediction
uncertainty around high velocity currents [26] which does
not capture the complexity of the forecast errors.

Another paradigm is to plan on the deterministic forecast
flows and follow the planned path with tracking algorithms
which compensate for the drifts and can guarantee a tracking
error bound [32]. While this is important in tight spaces
around obstacles, minimizing tracking error does not nec-
essarily lead to time and energy optimal paths. The Model
Predictive Control (MPC) paradigm uses frequent replanning
from the positions of the agent to handle the dynamics error
[19], [40]. In the robust control methods we assume a bound
on the forecast error to derive a path and controls that reach
the target despite bounded adversarial disturbances using
reach-avoid HJ reachability formulations [41] or approxi-
mations [19]. However, for underactuated agents often there
exists no robust control for realistic forecast error bounds.

Lastly, recent work has explored the application of deep
Reinforcement Learning (RL) to navigate in flows [28]–[30].
The controller trained by Gunnarson et. al. on vortical flows
using only local current information navigates successfully in
these flows but unsurprisingly it fails in other flow structures
[29]. The Loon team trained an RL agent for station-keeping
of balloons with forecasts as inputs and it performed well
in long-duration real-world experiments after training on an
immense distribution of flows [36].

In this work, we focus on the problem of reliable naviga-
tion of underactuated agents leveraging flows in the realistic
setting when regular deterministic forecasts are available. We
define reliability empirically as the success rate of a con-
troller in navigating from a start point to a target region over
a set of start-target missions, as developed in Section II-B. In
this paper we make three core contributions: (1) We propose
a control approach enabling full time-horizon replanning at
every time step with a single computation. For that we build
on the recent Multi-Time HJ Reachability formulation [42]

for computing a time-optimal value function (Time-to-reach)
on the latest forecast and use it for closed-loop control. This
can be thought of as full-time horizon MPC at every step;
(2) We are the first to evaluate and compare the reliability
of closed-loop control schemes for underactuated agents in
ocean flows in the setting of daily forecasts with realistic
forecast error. We evaluate performance across a large set of
multi-day start-to-target missions distributed spatially across
the Gulf of Mexico and temporally across four months using
HYCOM and Copernicus Ocean Forecasts [10], [11] We
compare several methods on this dataset across multiple
metrics and find that our control architecture significantly
outperforms other methods in terms of reliability; (3) We
quantify how the reliability of various control methods is
affected by the forecast error.

This paper is organized as follows: In Sec. II we define
the problem; followed by Sec. III which details the proposed
control architecture and our algorithm to compute the time-
optimal value function. Sec. IV contains the closed-loop
performance evaluation of our methods and baselines and
we conclude with Sec. V and outline future work.

II. PROBLEM STATEMENT

In this section, we define the problem in terms of the agent
and flow model and further explain and justify the notion of
reliability as our performance measure.

A. Agent and Flow Dynamics

We consider an agent operating in a general time-varying,
non-linear flow field v(x, s) → Rn where x ∈ Rn represents
the state, s the time and n the dimensionality of the domain
e.g. n = 2 for a surface vehicle on the ocean and n = 3 for
agents operating in the atmosphere or underwater. Let the
agent’s actuation signal be denoted by u from a bounded set
U ∈ Rnu where nu is the dimensionality of the control. Then
the dynamics of the system with given initial conditions are
governed by an Ordinary Differential Equation (ODE) of the
following form

ξ̇(s)=f(ξ(s),u(s), s)=v(ξ(s), s) + g(ξ(s),u(s), s), s ∈ [0, T ]
(1)

where ξ represents the trajectory and ξ(s) ∈ Rn the state
at time s. For more intuitive notation we use x for the
state whenever possible. The system dynamics 1 are further
assumed to be continuous, bounded and Lipschitz continuous
in ξ uniformly in u [43]. The movement of the agent in
the flow depends on its control g(x(s),u(s), s) and the
drift of the surrounding flow v(x(s), s). The control can
be holonomic when the agent can directly actuate in each
dimension e.g. g(x,u(s), s) = u or non-holonomic e.g. a
balloon can only actuate up and down along the vertical
axis. This makes the common assumption that the drift of
the agent directly affect its state and neglects any inertial
effects.

B. Problem Setting

The goal of the agent is to navigate reliably from a start
state x0 to a target region T ∈ Rn while being underactuated



maxu||g(x(s),u(s), s)||2 ≪ ||v(x(s), s)||2 most of the
time. During operation the agent is given a forecast of the
flow v̂(x, s) which differs from the true flow v(x, s) by
the stochastic forecast error δ(x, s;ω) where ω is a random
variable. The error field δ can be characterized based on
different metrics such as Root Mean Squared Error (RMSE)
of the velocities or vector correlation [9]. The agent receives
a new forecast at regular intervals (typically daily) that can
be used to improve performance.

Our goal is reliable navigation of underactuated agents in
realistic complex flows occurring in nature. The strongest
notion of reliability is robustness to a bounded disturbance,
which guarantees reaching the target despite a worst-case
forecast error δ. However, proving robustness is not possible
in our setting where the agent is significantly underactuated
and the average forecast error is larger than the actuation.
Nevertheless, we compare against a robust control baseline
in Sec. IV. A weaker notion of reliability is a probabilistic
bound, i.e. the agent reaches the target with high probability.
Probabilistic bounds could be established by making strong
assumptions on the distribution of the forecast error fields δ
and using a simple flow field; this would render the results
less meaningful for the realistic settings we consider.

For these reason we define reliability empirically as the
success rate of a controller navigating from a start point to
a target T over a set of start-target missions M in realistic
flows. If the agent reaches the target T within a maximum
allowed time Tmax the mission is successful, otherwise it
failed. In our experiments we sample missions M over a
large spatial region and over a period of four months.

III. METHOD

In this section, we first outline the motivation behind our
method and then detail our closed-loop control strategy.

A. Motivation

In realistic settings, only deterministic flow forecasts are
available to the agent. To ground our discussion we look
at ocean currents which are on the order of magnitude of
0.5 − 2m

s and underactuated agents with limited actuation
||max(g(u,x, s))||2 = 0.1m

s . The forecast error of the ocean
current forecasts by the HYCOM model is estimated to be
RMSE(δ) = 0.2m

s after extensive validation analysis [9],
[44]. In this challenging setting we can neither use prob-
abilistic methods without making unrealistic assumptions
about the error distribution δ nor can we apply robust control
as the average error δ is larger than the actuation of the agent.
How than can we achieve reliable navigation in this setting?

Our approach builds on the MPC paradigm of regular
replanning with deterministic dynamics to compensate for
imperfect knowledge of the dynamics and achieve reliable
navigation. Intuitively, the higher the frequency of replan-
ning, the more we can adapt the control to the dynamics
experienced. While we could use any planning algorithm
for non-linear time-varying dynamics, as mentioned in the
related work, HJ reachability is the state-of-the-art, as it
guarantees finding the optimal solution and can even handle

time-varying obstacles and targets [13], [41], [43]. While
we can obtain time-optimal trajectories from both classic
forward and backward HJ reachability, the value function
of backwards reachability is more useful. The backwards
reachability objective is to minimize the distance of the agent
to the target set at a terminal time. A key insight is that
the value function of this objective can be used for closed-
loop control as for every state and time in the domain we
can extract the optimal control that minimizes this objective.
This provides a notion of replanning at every step even
when the deterministic dynamics are not accurate. However,
there is a problem with directly applying classic backwards
HJ reachability: the value function that is minimized is the
distance to the target at a fixed terminal time. This poses the
problem of which terminal time to choose to calculate the
value function? If we choose it too distant in the future the
system will ”loiter”, not making progress towards the goal.
If we choose it too close to the current time, it might be
impossible to reach the target and the agent will minimize
the distance to the target in the short term, potentially at
the cost of long term progress. We can compute the earliest
possible arrival time, using forward reachability, and then
compute backwards reachability from that time to get our
value function for closed loop control (a baseline in IV). A
more elegant approach is the recent multi-time reachability
formulation which requires only one backwards computation
and produces a value function that yields the time-optimal
control everywhere, not just at the zero level-set, as the
classic reachability value function. We found that using time-
optimal control is a good proxy for reliability in our setting.

B. Multi-Time Reachability for Closed-Loop Control

In the following we summarize the multi-time reachability
technique for completeness. Details for more general systems
and applications are available in [42].

Multi-time reachability uses dynamic programming to
derive a controller that (a) if possible, will get the system
to the target in the minimum time, and (b) if not, will get
as close to the target as possible. In order to achieve this
behavior, we define the following cost function J :

J(x,u(·), t) = d(ξ
u(·)
t,x (T ), T )︸ ︷︷ ︸

Terminal distance
from target set

−
∫ T

t

IT
(
ξ
u(·)
t,x (s)

)
ds︸ ︷︷ ︸

Time spent in target set

(2)
where d(x, T ) is a distance metric of a point x to the

target set T , ξ
u(·)
t,x (s) is the position of the agent at time

s, when starting at x at time t with dynamics given in (1).
IT (x) is the identity function that is 1 when the state is in
the target x ∈ T and 0 otherwise. The consequence of this
cost function is that if the agent can reach the destination,
minimizing the cost implies reaching as quickly as possible.
If the agent cannot reach the destination, the optimal control
will attempt to reduce the terminal distance to the target.

Note that for underactuated systems we want to consider
the dynamics of the agent only until it reaches the target.



Within the target we switch off the dynamics to reward the
agent for staying in the target.

Given this cost function, we use the principle of dynamic
programming to derive an HJ Partial Differential Equation
(PDE) whose viscosity solution is [42]:

∂J∗(x, t)

∂t
=

{
1 x(t) ∈ T
−minu [∇xJ

∗ · f(x,u, t)] otherwise

J∗(x, T ) = d(x, T ) (3)
Since the value of J∗ contains information about the

minimum time it takes to reach the destination, we can
extract an informative time-to-reach map D∗ from it:

D∗(x, t) = T + J∗(x, t)− t, ∀(x, t) s.t., J∗(x, t) ≤ 0
(4)

If the target can be reached from x starting at t (implied
by J∗(x, t) ≤ 0), then D∗(x, t) is the minimum duration
required to reach T . Which means that inside the target
D∗(x, t) = 0 ∀t,x ∈ T . The optimal control u∗(x, t) is
then the value that minimizes the Hamiltonian.

u∗(x, t) = argmin
u∈U

f(x,u, t) · ∇xJ
∗(x, t) (5)

= argmin
u∈U

g(x,u, t) · ∇xJ
∗(x, t) (6)

Where (6) follows from (5) because v(x, t) does not depend
on u. Note that ∇xD∗(x, t) = ∇xJ

∗(x, t) which means we
can use D∗(x, t) and J∗(x, t) interchangeably to obtain the
optimal control. This formulation solves the two key issues
with classic backwards reachability as described above: a)
we do not need to fix an arrival time a priori, instead we
can run backwards Multi-Time Reachability from a large
maximum time backwards until the current time t; and b)
the control obtained from this value function provides the
time-optimal control at all states making it more useful for
reliable navigation.

The key insight here is that, the value function allows us
to extracted the time-optimal control for each state x at each
time t thereby enabling frequent replanning at low computa-
tional cost. This use of the reachability value function differs
significantly from the ways it has been used in the literature.
Much of the previous work in reachability-based control has
focused on least restrictive control for safety specifications
[43], where the terminal cost encodes constraints that must
be satisfied for safety, and the solution of the corresponding
HJ PDE provides both a reachable set of states that satisfy
the constraints, as well as the control u∗ to apply at the
boundary of the reachable set in order to stay within this
safe set. Such a least restrictive framework has been applied
to both safe trajectory planning [45]–[47] and learning-based
control [48], [49].

In this work, we propose to solve this Multi-time reach-
ability problem once per forecast, which are received at
regular (daily) intervals ( Fig.1 and Alg.1). The most recent
time-to-reach map is then used for closed-loop control which
by construction provides reliability through what can be
thought of as time-optimal replanning at every time-step.
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D∗ x,t ≤ 1 h

!
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Fig. 2: In time-invariant forecast flows v̂ the time-to-reach
map D∗(x, t) is static. The level-sets of D∗(x, t) indicate
how fast an agent can reach the target from a specific state
x. With holonomic actuation the optimal control is the spatial
gradient u∗

t = ∇xD∗(x, t). Applying u∗
t closed loop leads

to reaching the target region T even if the true currents are
different vt ̸= v̂t. This schema is equivalent to time-optimal
replanning at every step which leads to its reliability.

For an intuitive example, take the setting in Fig. 2: at
x0 the agent applies u∗

0 based on the planned time-to-reach
map. As the true currents v are different than the forecast v̂,
the agent finds itself at x1, a different state than expected.
Based on our forecast the time-optimal control from this state
onwards can again directly be computed from the time-to-
reach map.

There are two advantages of this method over classic MPC
replanning based on fast non-linear programming or graph-
based methods: (a) much higher replanning frequencies are
possible because deriving the optimal control from the value
function is computationally cheap compared to solving the
optimal control problem from a new state at every time
step, and (b) less discretization error because the HJ PDE
solves the continuous-time problem whereas the classic MPC
methods rely on discretization in time and space to enable
fast planning in the loop.

Algorithm 1: Multi-Time HJ Closed-loop Schema
Input: Forecast Flow(s) v̂(x(s), s), t = 0, xt = x0

while t ≤ Tmax and xt ̸∈ T do
if new forecast available then

compute time-to-reach map D∗

Use latest D∗ for control
u∗
t = argminu∈U g(xt,u, t) · ∇xD∗

xt+1 = xt +
∫ t+1

t
f(u, x(s), s) ds



IV. EXPERIMENTS

In this section we evaluate our control schema of using
multi-time HJ reachability for closed-loop control and com-
pare it to baseline methods on realistic ocean currents.

A. Experimental Set-Up

We investigate the reliability of various controllers in
navigating a two dimensional Autonomous Surface Vehi-
cle (ASV) with holonomic actuation of fixed magnitude
||g(u,x, t)||2 = ||u||2 = 0.1m

s . The control is the thrust
angle θ and the ASV is navigating in strong ocean currents
v(x, t) ∈ [0.3m

s , 2
m
s ] which it wants to hitchhike to get to the

targets. In the following we describe how we ensure realistic
ocean forecast simulation and obtain a large set of missions.
Then we explain the baselines and evaluation metrics.

a) Realistic Ocean Forecast Simulation: The Ocean
forecast data we employ are the HYCOM forecast and
hindcast [10] and hindcasts from Copernicus [11] for the
Gulf of Mexico region. To simulate realistic conditions we
provide the control methods daily with the HYCOM forecast
as it becomes available while simulating the system dynamics
with the hindcast as the true flow v(x, x)(Fig. 1). We
investigate two settings (a) planning on HYCOM forecasts
and simulating on HYCOM hindcasts (HYCOM-HYCOM)
and (b) planning on HYCOM forecasts and simulating on
Copernicus hindcasts (HYCOM-Copernicus) (IV-B).

To estimate how realistic our simulations are we compare
the simulated forecast error δ across our start-target mission
set M with the HYCOM forecast error as estimated by
Metzger et. al. using extensive drifter buoy data [9]. In Fig.3
we visualize two metrics, the velocity RMSE and the vector
correlation, where 2 represents perfect correlation and 0 no
correlation [44]. We find that the HYCOM-HYCOM setting
underestimates the forecast error, especially in the first
24h where the forecast is perfect. The HYCOM-Copernicus
setting is realistic as the simulated forecast error is of similar
magnitude as the actual HYCOM forecast error.

b) Large Representative Set of Missions: To obtain a
set of start-target missions M we first fix 18 regularly spaced
starting times ti between November 2021 and February 2022.
For each starting time ti we uniformly sample 16 start points
xti,j

Start spatially over the Gulf of Mexico. In our underactuated
setting many start-target missions are impossible even if the
true currents are known. Hence, for the test set M we need
to ensure each mission is fundamentally feasible given the
true currents. To generate only feasible missions from each
starting points xti,j

Start we calculate the forward reachable set
(FRS) starting at ti for a maximal time-horizon of Tmax =
120h using HJ reachability. The FRS is the set of all states xs

at time s for which there exists a control signal u(·) such
that ξ

u(·)
ti,x

ti,j

Start

= xs. To get a variety of mission durations

we sample 4 relative times ∆tk ∈ [20, 120]h and sample
a target point xi,j,k

T from within the forward reachable set
at s = ti + ∆tk. Then xi,j,k

T is guaranteed to be reachable
from xti,j

Start and the target T is the circular region of radius
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Fig. 3: The simulated forecast errors in our experiments are
of similar magnitude as the actual HYCOM forecast errors
[9]. The graphs show the mean and standard deviation of two
forecast error metrics, velocity RMSE and vector correlation,
over our mission set M for the two simulation settings.

Fig. 4: We evaluate our method over a large set of 1152 start-
target missions spatially distributed over the Gulf of Mexico
and temporally from November 2021 until February 2022.

rT = 0.1◦ around it. This gives us a large and diverse start-
target set M of 1152 missions ranging in duration from 20h
to 120h as visualized in Fig. 4, together with their respective
time-optimal trajectories based on the true currents.

c) Baseline Controllers: We compare the performance
of our multi-time HJ reachability closed-loop strategy with
four baselines. The first baseline is the HJ Closed-Loop
method which is the same as our method except that it
employs the classic backwards reachability value function.
The backwards reachability value function is calculated
based on the earliest possible arrival time and used for
closed-loop control, as explained in Sec. III. Our second



baseline (Robust Hamilton-Jacobi-Isaacs (HJI) Closed-Loop)
is a robust controller which is equivalent to HJ Closed-Loop
but instead of solving for the classic backward reachability
value function it solves for the reach-avoid value function
with a small bounded disturbance of d = 0.05m

s [41].
This means that the control extracted from it in closed-
loop is a conservative control that can arrive at T or get
as close as possible to T at the earliest arrival time despite
worst-case disturbance d. The third method (HJ + Waypoint
Tracking) we compare with is based on the idea of tracking
waypoints to compensate for the forecast error. It plans
the time-optimal path on each new forecast using HJ and
at each time actuates towards the next waypoint in this
plan. Lastly, we compare against a Naive-to-Target approach
which ignores the forecasts altogether and always actuates
towards the center of the target region. Note that we do not
compare against any graph-based methods such as RRT and
A* because the only approximate the time-optimal control
problem which HJ reachability solves in continuous time and
space. Hence, we expect them to be strictly worse.

d) Evaluation Metrics: The key performance metric
for our controllers is reliability, defined as the success rate
of a controller over the set of missions M (Sec. II). To
further elucidate the controller performances we look at two
additional metrics. Lastly, we investigate how the reliability
of a controller changes with the forecast error.

To evaluate how fast a controller reaches a target we
compute the time-optimality ratio ρ. We define it as the time
it took the controller to reach T divided by the fastest it could
have reached T under perfect knowledge of the currents. It is
calculated over the set of all missions in which the controller
succeeds (M̃ctrl) as

ρ =
1

||M̃ctrl||

∑
M̃ctrl

∆tarrival ctrl

∆tarrival best-in-hindsight
(7)

A value of 1 means the controller was as fast as possible
and 1.1 means it took 10% longer than the fastest possible.

The minimum distance to target measures the closest the
controller got to T during the full simulation horizon Tmax in
degree latitude, longitude. The minimum distance to target
is positive, except for when the controller succeeds in a
mission, and then it is 0.

Lastly, our diverse set of missions M allows us to in-
vestigate how the reliability of various controllers changes
with increasing forecast error. For that we calculate the
average forecast error RMSE(δ) for each mission spatially
over a regional box containing the start and target region
and temporally over the 5 day horizon of each forecast. We
then group the missions by their RMSE(δ) into 20 bins and
calculate for each controller the success rate across each bin.
To make the trends more visible we fit a weighted linear
regression over these 20 success rate - RMSE(δ) points and
weight each bin by its number of missions.

B. Experimental Results

a) Simulation Setting HYCOM-HYCOM:
In this setting we evaluate the controller performance over

||M|| = 1152 start-target missions and run the simulation
for Tmax = 150h. If the controller reaches the target region
within that time, it is successful otherwise it failed. Our con-
trol approach achieves a success rate of 99% and outperforms
the baselines (Table I). The time to reach the target is on
average only 3% higher than the fastest possible, here HJ
Closed-Loop performs slightly better with 2%. The Naive-to-
Target controller succeeds only in 84.9% of missions. These
results highlight that highly reliable navigation is possible
with low (short-term) forecast error. However, as of now the
actual forecast error of current ocean models is significantly
higher (Fig.3) which makes this an optimistic performance
estimate. To evaluate the statistical significance of our results
we perform a one-sided two sample z proportion test for
each of the controllers against the Naive-to-Target baseline.
With Γ denoting the success rate of a controller, our null hy-
pothesis is H0 : ΓNaive-to-Target = Γcontroller and the alternative
hypothesis is HA : ΓNaive-to-Target < Γcontroller. We obtain that
the success rate of all controllers is higher than Naive-to-
Target in a statistically significant way (p-values Multi-Time
HJ CL p = 3.9e−36, HJ CL p = 2.8e−27, Robust HJI CL
p = 1.36e−22, HJ + Waypoint Tracking p = 3.65e−15).

b) Simulation Setting HYCOM-Copernicus:
To ensure comparability across settings we take the same set
of missions M, however with the Copernicus hindcasts only
837 of the missions are fundamentally feasible, which makes
the set M smaller. Again our control approach achieves a
success rate of 82.3% and outperforms the baselines but with
less of a margin than in HYCOM-HYCOM (Table I). We
perform the same statistical significance test and find only
our approach has statistically significant higher success rate
than Naive-to-Target (p = 0.012). We want to emphasize
that a 4.4% increase over the baseline in this challenging
setting with large forecast errors is a sizeable improvement.
Moreover, the results from HYCOM-HYCOM indicate that
performance improves with better forecasts. Our closed-
loop control schema is easily extendable to include learning
about the currents while operating in them and using this
information to improve its estimate of the future currents
and thereby improve performance.

Figures 5 show how the success rate of the controllers
changes for missions with varying forecast errors. As ex-
pected we see that the success rate decreases with increasing
forecast error with different slopes for different controllers.
The performance of our Multi-Time HJ Closed-Loop ap-
proach decreases slower than the baselines. In the HYCOM-
HYCOM setting it is almost unaffected by higher forecast
error. Note that we would expect Naive-to-Target to be indif-
ferent to the forecast error as it does not consider the forecast.
However, for Naive-to-Target we observe a significant drop
in performance for missions with high forecast error. We
hypothesize that the forecast error is higher in regions with
complex and strong currents, conditions which are inherently
more challenging to navigate. This could explain why Naive-
to-Target fails more frequently with higher forecast error.



Success Rate Time-Opt. Min. Dist.

Plan on HYCOM Forecasts – true flows HYCOM Hindcasts

Multi-Time HJ CL 99.0%∗ 1.0332 0.060◦
HJ Closed-Loop 97.6%∗ 1.0207 0.104◦
Robust HJI CL 96.6%∗ 1.0346 0.154◦
HJ + Waypt. Tracking 94.7%∗ 1.1412 0.060◦
Naive-to-Target 84.9% 1.0752 0.068◦

Plan on HYCOM Forecasts – true flows Copernicus Hindcasts

Multi-Time HJ CL 82.3%∗ 1.129 0.107◦
HJ Closed-Loop 79.1% 1.106 0.110◦
Robust HJI CL 78.6% 1.111 0.106◦
HJ + Waypt. Tracking 67.1% 1.373 0.091◦
Naive-to-Target 77.9% 1.052 0.078◦

TABLE I: We compare the performance of multiple con-
trollers in two forecast settings. Our Multi-Time HJ Closed-
Loop (CL) controller outperforms the baselines in reliability,
the key focus of this work. The ∗ marks statistically signif-
icant higher success rate compared to Naive-to-Target. The
average time-optimality ratio indicates how fast the controller
reached the target relative to the best possible in-hindsight.
Minimum distance measures the closest the controller got to
the target region in degree lat, lon.

V. CONCLUSION AND FUTURE WORK

In this work we have demonstrated that planning with
Multi-Time HJ Reachability on daily forecasts and using the
value function for closed-loop control enables reliable nav-
igation of underactuated agents leveraging complex flows.
The reliability of our method stems from the fact that
the optimal control extracted from the value function at
every time step is equivalent to full horizon time-optimal
replanning. There are two key advantages over classic MPC
with non-linear programming or graph-based methods. First,
our method has lower computational cost as it only requires
computing the value function once per forecast instead of
having to solving an optimal control problem at every time-
step. Second, our method solves the continuous-time optimal
control problem and does not require spatial or temporal dis-
cretization typically employed by MPC for fast computation.
This leads to high reliability at low computational cost which
enables reliable autonomy for resource-constrained systems
navigating in flows in the atmosphere and the oceans.

We evaluated the performance of our method in realistic
ocean currents over a large set of multi-day start-to-target
missions distributed spatially across the Gulf of Mexico
and temporally across four months. In the setting of using
forecasts from HYCOM and simulating the true currents
with HYCOM hindcasts, our method achieves a 99% success
rate and outperforms the baselines. However, this setting
underestimates the actual HYCOM forecast error. Hence, we
also evaluated our method in a setting with forecast errors
that reflect more realistic operations: planning on HYCOM
forecasts and simulating the true currents with Copernicus
hindcasts. In this more challenging setting our method again
outperforms the baselines achieving a 82.3% success rate.
While we showcased our method on 2D ocean currents,
we want to emphasize that it is directly applicable to other

Forecast Error: Velocity RMSE

Plan on HYCOM Forecasts - true flows HYCOM Hindcasts

Plan on HYCOM Forecasts - true flows Copernicus Hindcasts

Fig. 5: The reliability of different controllers decreases for
missions with higher forecast error. The dots represent the
average success rate over a subset of missions with mean
forecast error plotted on the x axis. The size indicates
the number of missions in the respective subset. The lines
indicate the trends and represent the linear regression of the
success-rate to forecast error points weighted by their number
of missions.

flows e.g. 3D flows in the air and underwater. Lastly, we
demonstrated that our method is less affected by increasing
forecast errors than the baselines.

The stark difference between 99% and 82.3% success
rate in the two simulation settings highlights that more
accurate forecasts increase reliability. Hence, we anticipate
that if the agent learns about its surrounding flow field using
online flow measurements to improve its estimate of the
future flows, it can increase reliability significantly above the
current 82.3% in realistic settings. Therefore, our future work
we will focus on this learning of the surrounding currents
which can directly be integrated in our method. To further
validate our method, we plan to perform field tests with
multiple autonomous surface vehicles in the ocean.
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