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Abstract

On the Compatibility of Two Conjectures Concerning p-adic Gross-Stark Units

by

Shawn Tsosie

We give a proof of the consistency of Dasgupta’s conjectural p-adic formula for Gross-

Stark units with Dasgupta and Spiess’s alternative conjectural formula for these units.

We give details of the proof when F is a totally real number field of degree 2, which had

been previously proven by Dasgupta and Spiess. We present work towards proving the

case for a general totally real number field. Finally, we give a proof when F is a totally

real number field of degree 3.
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Introduction

In a series of four papers, [11], [12], [13], and [14] written from 1971 to 1980,

Stark outlined a series of conjectures about the value of the derivative of abelian L-

functions at s = 0. One such conjecture, the Brumer-Stark Conjecture, was stated in

the following manner by Tate:

Conjecture ([7], Conjecture 7.4). Let F be a totally real number field and let H be

an abelian extension of F . Let S be a non-empty finite set of places that contains the

Archimedean places and a place p which splits completely in H. Let T be an auxiliary

finite set of places which is disjoint from S.

There is a unique u ∈ H∗ that satisfies the following conditions:

1. u is a p-unit and |u|v = 1 for each Archimedean place v of H;

2. fix a prime P of H which divides p, for all σ ∈ Gal(H/F ), ζ ′T (σ, 0) = log |uσ|P;

3. u ≡ 1 (mod T ), i.e. if q ∈ T , then |u− 1|q < 1.

Further, in 1988, Benedict H. Gross gave a p-adic refinement of the Brumer-

Stark conjecture.
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Conjecture ([7], Conjecture 7.6). We denote the Artin reciprocity map from local class

field theory by

recp : F×p → A×F → Gal(H/F ).

If u ∈ H× ⊂ H∗P ⊂ F ∗p is the unit given in the previous conjecture, then we have

recp(u
σ) =

∏
τ∈Gal(H/F )
τ |H=σ−1

τ ζS,T (H/F,σ
−1,0) for all σ ∈ Gal(H/F ).

Using Gross’s refinement of Stark’s Conjectures, Samit Dasgupta was led to

an explicit conjectural formula for u in F×p . This formula is given in a definition:

Definition ([4], Definition 3.18). Given a conductor f, let e be the order of p in the

narrow ray class group Gf. So, we have pe = (π), where π is totally positive and π ≡ 1

(mod f). If D is a Shintani domain, R = S − {p}, and T satisfies a technical condition,

which will be given later, then we define

uT (b,D) := ε · πζR,T (Hf/F,b,0) · ×
∫
Op−πOp

x dν(b,D, x) ∈ F×p

where ε is a specific unit of F that will be defined later, ν(b,D, x) is a measure that will

also be defined later, and ×
∫

denotes the multiplicative integral as defined in Section 3

of [4].

Remark. We note that uT (b,D) is the notation used in [4]. We will specialize to the

case where T = {λ} and so use the notation Up(b, λ,D).

In [5], Michael Spiess and Samit Dasgupta gave a conjectural formula for the

minors of the Gross regulator matrix. Suppose that F is a totally real number field of
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degree n and suppose that χ : Gal (F/F ) → Q is a totally odd character. We take a

fixed prime number p and we fix two embeddings Q ⊂ C and Q ⊂ Cp. Let H be the

field fixed by kerχ and let R be the primes of F above p, which split in H.

For all p above p, we denote the group of p-units of H by

Up := {u ∈ H× : ordP u = 0 for all P - p}

Further, consider the subsets of Up ⊗Q:

Up,χ := {u ∈ Up ⊗Q : σ(u) = u⊗ χ−1(σ) for all σ ∈ G}.

Then

dimQ Up,χ =


1 p ∈ R

0 otherwise.

So, if p ∈ R, Up,χ is generated by any non-zero element. We fix a generator and denote

it by up,χ.

Now, consider the continuous homomorphisms

op := ordp : F×p → Z

`p := logp ◦NormFp/Qp : F×p → Zp.

As p splits completely we can evaluate elements Up with op and `p, as Up ⊂ H ⊂ HP
∼=

Fp.

In their paper [5], they also introduced a conjectural cohomological formula

for the Gross-Stark units. Suppose that E×R is the group of totally positive units of F ,

let FR =
∏

p∈R Fp, and let K be a finite extension of Qp, which contains the image of
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χ. There is an action of F×R on the space of compactly supported continuous functions

from FR to K, denoted by Cc(FR,K), given by

(g · f)(x) := f(g−1x)

where g ∈ F×R , x ∈ FR, and f ∈ Cc(FR,K). Further, by restriction this action induces

an action of E×R on Cc(FR,K).

We are also concerned with the p-adic measures Meas(FR,K), which are the

p-adically bounded linear forms on Cc(FR,K). The action of E×R on Cc(FR,K) induces

an action on Meas(FR,K). Further, we have a cocycle, called an Eisenstein cocycle,

κχ ∈ Hn−1(E×R ,Meas(FR,K)),

which will be given a precise definition later.

Given a prime p ∈ R, there are cocycles c`, co ∈ Hr(E×R , Cc(FR,K)) that are

defined in terms of the homomorphisms op and `p. Finally, we let

ϑ ∈ Hn+r−1(E
×
R ,Z) ∼= Z.

This ϑ is a generator of the n+ r − 1-st homology group.

The cap product sends κχ ∩ ϑ to Hr(E
×
R ,Meas(FR,K)). We take the cap

product of this with c` and co to obtain the following element of K:

(−1)#J
c` ∩ (κχ ∩ ϑ)

co ∩ (κχ ∩ ϑ)
∈ K.

Further, in their paper, they proved the following theorem:

Theorem ([5], Theorem 1.5). If [F : Q] = 2 and p ∈ R, then [5], Conjecture 1.2 is

consistent with [4], Conjecture 3.21.
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Further, this theorem gives the following lemma:

Lemma. If [5], Conjecture 1.2 is true, then we have the Gross-Stark unit is given by

the following formula:

cid ∩ (κχ ∩ ϑ) = Up,χ.

where id : F×p → F×p is the identity homomorphism and

Up,χ =
∑

[b]∈Gf

Up(b, λ,D)⊗ χ(b)

1− χ(λ)`
.

In this work, we will prove the n = 3 and p ∈ R case and we will give work

towards the general n case. We begin by providing background information, including

some background on the cap product and calculating the cap product. We provide some

work towards proving the general case. Afterwards, we then explicitly prove the n = 2

case as motivation towards the proof of the n = 3 case. Finally, we prove the n = 3

case.
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Chapter 1

Background

In this section, we will flesh out everything that was mentioned in the intro-

duction. We will give no proofs, but we will include references that contain the relevant

proofs.

1.1 Dasgupta’s Conjectural p-adic Formula for Gross-Stark

Units

Suppose that we have a totally real number field F , whose degree is [F : Q] = n.

As F is totally real, there are n embeddings ι : F ↪→ R. We will fix an ordering for

these embeddings and denote this ordered set of embeddings by I. With this ordering,

we can embed F into Rn, via α 7→ (αι)ι∈I .

There is an action of F× on Rn via componentwise multiplication. Explicitly,
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if α 7→ (αι)ι∈I ∈ Rn and (xι)ι∈I , then we have

α · (xι)ι∈I = (αιxι)ι∈I .

If we restrict to the totally positive units of F , which we denote by E+, then we get an

action of E+ on the positive orthant of Rn, which we denote by Rn>0.

In 1976, [9], Takuro Shintani showed that there exists a fundamental domain

for the action of E+ on Rn>0. An explicit formula for this fundamental domain was

proven by Francisco Diaz y Diaz and Eduardo Friedman using topological degree theory,

in a 2014 paper, [6]. In a 2015 paper, [2], this formula was also independently proven

by Pierre Charollois, Samit Dasgupta, and Matthew Greenberg, using a cohomological

argument to reduce it to a result of Pierre Colmez. We will recount the construction of

this domain and how it relates to zeta functions and L-functions.

We begin by defining a Shintani Cone:

Definition 1.1.1. Let v1, . . . , vr ∈ Rn be a collection of linearly independent vectors in

Rn>0. If v1, . . . , vr ∈ F ∩ Rn>0 and they generate the simplicial cone:

C(v1, . . . , vr) =

{
r∑
i=1

αivi : αi > 0

}
,

then we say that C(v1, . . . , vr) is a Shintani cone.

Further, if D ⊂ Rn>0 is the finite disjoint union of Shintani cones, then we call

D a Shintani set.

Note that C(v1, . . . , vr) may also be referred to as an F -rational simplicial cone.

We can now state Shintani’s Unit Theorem and we use the version from Jürgen

Neukirch’s Algebraic Number Theory, [8]:
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Theorem 1.1.2 ([9], Proposition 4). Let U be a finite index subgroup of E+, then there

exists a Shintani set DU such that

Rn>0 =
⋃
ε∈U

εDU (disjoint union).

Explicitly, for all (xι)ι∈I ∈ Rn>0 there exists a unique (yι)ι∈I ∈ DU and a unique ε ∈ U

such that

(xι)ι∈I = (ειyι)ι∈I .

This theorem leads us to make the following definition:

Definition 1.1.3. If a disjoint set of Shinani cones, denoted by D, satisfies Theorem

1.1.2 for U , then we say that D is a Shintani domain for U .

We introduce the concept of Colmez perturbation. This allows us to write the

Shintani domain in a relatively simple and clean manner. We do this by defining it

through the characteristic functions. With this method, we also define a generalization

of the fundamental domain: a signed fundamental domain.

Following the exposition given in [2], consider a linear independent collection

of vectors v1, . . . , vr ∈ Rn. Further, let Q ∈ Rn be a vector such that Span(Q) ⊕

Spani 6=j(vi) = Span1≤i≤r(vi) for all 1 ≤ j ≤ r. We define the set CQ(v1, . . . , vr), which

is the disjoint union of C(v1, . . . , vn) and some boundaries. If cQ(v1, . . . , vr) is the

characteristic function of CQ(v1, . . . , vr), then it satisfies:

cQ(v1, . . . , vr)(w) =


limε→0+ 1C(v1,...,vr)(w + εQ) the vi are linearly independent,

0 otherwise.

(1.1)
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If u1, . . . , un−1 is an ordered basis of U , then we an talk about the orientation

of a subset of the basis. We let uij denote the jth coordinate of the vector ui. We have

wu := sign det(log(uij)
n−1
i,j=1) = ±1.

For σ ∈ Sn−1, we let v1,σ = 1 and

vi,σ =
∏
j<i

vσ(j) ∈ U, for all 2 ≤ i ≤ n.

To each σ, we associate the following constant:

wσ = (−1)n−1wu sign det(vi,σ)ni=1 ∈ {0,±1}.

For the perturbation vector, we take en = (0, . . . , 0, 1) ∈ Rn. With this an

explicit fundamental domain was given by Pierre Colmez:

Theorem 1.1.4 ([3], Lemme 2.2). Suppose that wσ = 1 for all σ ∈ Sn−1, then

∐
σ∈Sn−1

Cen(v1,σ, . . . , vn,σ) (1.2)

is a fundamental domain for the action of U on Rn>0.

Remark 1.1.5. This fundamental domain may be more easily expressed using bar

notation. We will represent it by:

∐
σ∈Sn−1

Cen(v1,σ, . . . , vn,σ) =
∐

σ∈Sn−1

Cen([vσ(1) | . . . | vσ(n−1)]).

Note that [x1 | · · · | xn] denotes the bar notation from group cohomology. That is

[x1 | · · · | xn] = (1, x1, x1x2, . . . , x1x2 · · ·xn).
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Definition 1.1.6 ([2], Definition 1.4). Let U be a finite index subgroup of E+. If we

have a formal linear combination
∑

i aiCi, where ai ∈ Z and Ci is a simplicial cone for

all i, then we say that D =
∑

i aiCi is a signed fundamental domain for the action

of U on Rn>0 if the following identity holds:

∑
u∈U

∑
i

aiCi(u · x) = 1 for all x ∈ Rn>0.

The characteristic function of D is 1D =
∑

i ai1Ci.

The following theorem was proven by Diaz y Diaz and Friedman in 2014 and

independently by Charollois, Dasgupta, and Greenberg in 2015:

Theorem 1.1.7 ([2], Theorem 1.5). The formal linear combination

∑
σ∈Sn−1

wσCen(v1,σ, . . . , vn,σ)

is a signed fundamental domain for the action of U on Rn>0.

Now, we can define Shintani zeta functions. We will also introduce an integral

version using a method of Cassou-Noguès.

Let F be a totally real number field of degree n. Further, let GF = Gal(F/F )

and χ : GF → Q be a totally odd character, that is if σc is a complex conjugation, then

χ(σc) = −1. Let H be the fixed field of the kernel of χ. We fix a prime p and we let

S be a finite set of primes which contains the Archimedean primes and which contains

the set of primes of F above p. Suppose that p is a prime that splits completely and is

above p and R = S − {p}.

We make the following assumption before we define the Shintani zeta function:
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Hypothesis 1.1.8. Let T be a finite set of primes satisfying the following conditions:

1. T is disjoint from S;

2. suppose that the primes of T have different residue characteristic from the primes

of S.

Remark 1.1.9. We note that we will almost always take T to be a set containing a

single prime λ. Later, we will give a further restriction on λ.

Definition 1.1.10. Let f be an integral ideal relatively prime to S and let b be a factional

ideal of F relatively prime to S and the prime to the residue characteristic of T , that is if

q divides b, then the residue characteristic of q is not equal to the residue characteristic

of any prime of T .

Let z ∈ b−1 such that z ≡ 1 (mod f) and let C be a Shintani cone. Further,

let U be a compact subset of Op, then for Re(s) > 1, we have:

ζR(b, C, U, s) = N b−s
∑
α

Nα−s (1.3)

where the sum is taken over all α ∈ (b−1f + z) ∩ C ∩ U and (α,R) = 1. We call

ζR(b, C, U, s) a Shintani zeta function.

If λ is a prime such that Nλ = ` ≥ n + 2, where ` is a rational prime and

T = {λ}, then we define:

ζR,T (b, C, U, s) = ζR(b, C, U, s)− `1−sζR(bλ−1, C, U, s). (1.4)

We call this an integral Shintani zeta function.
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It is not immediately clear that ζR,T (b, C, U, s) has a meromorphic continua-

tion, but this was proven in Proposition 1, in Shintani’s 1976 paper, [9]. It is also not

trivial that ζR,T (b, C, U, s) is integral, but this is a corollary to a proposition given by

Dasgupta:

Proposition 1.1.11 ([4], Proposition 3.12). Suppose that T is given as in Definition

1.1.10 and C can be generated from v1, . . . , vr ∈ OF such that vi 6∈ λ for all 1 ≤ i ≤ r,

then

ζR,T (b, C, U, 0) ∈ Z[1/`]

and the denominator of ζR,T (b, C, U, 0) is less than or equal to `n/(`−1).

If we have a signed fundamental domain, D =
∑

i aiCi, then we have a zeta

function:

ζR,T (b,D, U, s) :=
∑
i

aiζR,T (b, Ci, U, s).

By [4], Proposition 3.12, ζR,T (b,D, U, 0) ∈ Z[1/`]. If we choose λ such that Nλ ≥ n+ 2,

then this proposition even implies that ζR,T (b,D, U, 0) ∈ Z.

As ζR,T (b,D, U, 0) ∈ Z, we obtain a Z-valued measure for Op. We denote this

measure by

ν(b,D, U) := ζR,T (b,D, U, 0).

Now, let Gf denote the narrow ray class group of conductor f and let Hf be

the narrow ray class field of conductor f. Let e be the order of p in Gf so that pe = (π).

The element π is totally positive and congruent to 1 modulo f.

12



Let E(f) denote the totally positive units that are congruent to 1 modulo f.

We are now ready to give Dasgupta’s conjectural p-adic formula for the Gross-Stark

unit.

Definition 1.1.12 ([4], Definition 3.18). Let D be a Shintani domain, then we have

Up(b, λ,D) = ε(b,D, π) · πν(b,D,Op) · ×
∫
Op

x dν(b,D, x) ∈ F×p (1.5)

where

ε(b,D, π) =
∏
ε∈E(f)

εν(b,εD∩π
−1D,Op)

and Op = Op − πOp.

We note that Up(b, λ,D) is not dependent on choice of π, as proven in [4],

Proposition 3.19 and under certain conditions, it is independent of the choice of Shintani

domain as proven in [4], Theorem 5.3.

Definition 1.1.13. If D is a Shintani domain and χ : Gal(F/F )→ Q is a totally odd

character, then we have

Up,χ =
∑

[b]∈Gf

Up(b, λ,D)⊗ χ(b)

1− χ(λ)`
.

1.2 Dasgupta and Spiess’s Conjectural formula for the Gross

p-adic Regulator

1.2.1 The Eisenstein Cocycle

Definition 1.2.1 ([5]). Suppose that we have the following:
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• a totally odd character χ : Gal(F/F )→ Q;

• a rational prime p;

• a set of primes of F which are totally split and which divide p;

• the ring of R-integers of F , OF,R;

• a fractional ideal b of F relatively prime to S;

• the OF,R-module generated by b, bR = b⊗OF OF,R;

• a compact open subset U of FR :=
∏

p∈R Fp;

• any union of simplicial cones C of Rn>0.

Then a Shintani L-function, denoted by L(C,χ, b, U, s) is the meromorphic continu-

ation of ∑
ξ

χ((ξ))

N ξs

where the sum is taken over ξ ∈ C ∩ b−1R , ξ ∈ U , and (ξ, S \R) = 1.

Let λ be a prime of F , such that no primes of S have the same residue char-

acteristic of λ, Nλ = `, where ` is a rational prime, and ` ≥ n+ 2. Then the integral

Shintani L-function is a twisted version of a Shintani L-function given by

Lλ(C,χ, b, U, 0) := L(C,χ, bλ−1, U, s)− χ(λ)`1−sL(C,χ, b, U, s).

Remark 1.2.2. Shintani showed that the Shintani L-function has a meromorphic con-

tinuation to C. Further, Cassou-Noguès showed that Lλ(C,χ, b, U, s) is integral at

s = 0.
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Definition 1.2.3. Let k be the cyclotomic field generated by the image of χ. The space

of k-valued distributions, the vector space of linear forms Cc(FR, k)→ k, is denoted by

Dist(FR, k). There is an action of F×R on Dist(FR, k) given by

(x · µ)(U) = µ(x−1U).

Proposition 1.2.4 ([5], Proposition 2.1). If x1, . . . , xn are elements of E×R and x is the

n × n matrix with columns given by the images of xi, 1 ≤ i ≤ n, in Rn>0, and U is a

compact open subset of FR, then we have a measure:

µχ,b(x1, . . . , xn)(U) := sgn(x)L(C∗(x1, . . . , xn), χ, b, U, 0),

here sgn(x) := sign(det(x)). Further, the class defined by µχ,b is a homogeneous (n−1)-

cocycle, i.e.

[µχ,b] ∈ Hn−1(E×R ,Dist(FR, k)).

Remark 1.2.5. The result of Cassou-Noguès shows that U 7→ Lλ(C,χ, b, U, 0) is Z-

valued and so p-adically bounded, hence it defines a p-adic measure.

Let P be the prime of k above p that corresponds to the embedding k ↪→ Q ↪→

Cp, then we denote kP by K. Thus U 7→ Lλ(C,χ, b, U, 0) gives a p-adic measure and so

an element of Meas(FR,K).

We define the function (E×R )n → Meas(FR,K) via

(E×R )n 3 (x1, . . . , xn) 7→ (U 7→ sgn(x)Lλ(C∗(x1, . . . , xn), χ, b, U, 0))

which we denote by µχ,b,λ. From [5], Proposition 2.1, it follows that κχ,b,λ := [µχ,b,λ] ∈

Hn−1(E×R ,Meas(FR,K)). This leads us to the next definition.
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Definition 1.2.6. The Eisenstein cocycle associated to χ and λ is given by

κχ,λ :=

h∑
i=1

χ(bi)

1− χ(λ)`
κχ,bi,λ ∈ H

n−1(E×R ,Meas(Fp,K))

where {b1, . . . , bh} is a set of integral ideals that are representatives of the elements of

the narrow class group of OF,R.

Proposition 1.2.7. The element κχ,λ does not depend on the choice of representative

of the narrow class group.

Proof. This is a routine calculation, which we will quickly go through.

Suppose that {b1, . . . , bh} and {a1, . . . , ah} are two sets of representatives of

the narrow ray class group numbered such that bia
−1
i = (ai) or bi = aiai, where ai is

totally positive and ai ∈ O×F,R.

If ξ ∈ bi, then ξ = aiαi, where αi ∈ ai. So, we have

∑
ξ

χ(ξ)

N ξs
=
χ(ai)

N asi

∑
αi

χ(αi)

Nαsi
=
χ(ai)

N asi
L(C,χ, ai, U, s).

Thus

L(C,χ, bi, U, 0) = χ(ai)L(C,χ, ai, U, 0).

This gives us

h∑
i=1

χ(bi)L(C,χ, bi, U, 0) =
∑
i=1

χ(bi)χ(ai)L(C,χ, ai, U, 0) =

h∑
i=1

χ(ai)L(C,χ, ai, U, 0)

A similar calculation shows that

h∑
i=1

χ(bi)L(C,χ, biλ
−1, U, 0) =

∑
i=1

χ(bi)χ(ai)L(C,χ, ai, U, 0) =

h∑
i=1

χ(ai)L(C,χ, aiλ
−1, U, 0).

Therefore, κχ,λ is independent of the choice of set of representatives.
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1.2.2 Shintani Zeta Function Cocycle

We introduce a formulation of a cocycle based on the Shintani zeta function.

The construction is similar to the construction of κχ,λ, but there are key differences.

We recall the definition of a Shintani zeta function. If we are given an integral

ideal f, a fractional ideal b of F that is relatively prime to S, J , a subset of R, a

union of simplicial cones C, a compact open subset U of FJ :=
∏

p∈J Fp, then it is the

meromorphic continuation of the summation

ζ(C, b, U, s) = N b−s
∑
α

Nα−s, Re(s) > 1,

where the sum is taken over α ∈ b−1J := b−1 ⊗OF OF,J , α ∈ C, α ∈ U , α ≡ 1 (mod f),

and (α, S \R) = 1. If we take λ as in the definition of the integral Shintani L-function,

then we have a twisted Shintani zeta function

ζλ(C, b, U, s) := ζ(C, b, U, s)− `1−sζ(C, bλ−1, U, s)

which is integral at s = 0.

Now, as before let f be the conductor of H/F and let E(f) denote the totally

positive units which are congruent to 1 modulo f and E(f)J denote the group of totally

positive J-units which are congruent to 1 modulo f.

Definition 1.2.8. For x1, . . . , xn ∈ E(f)J and U a compact open subset of FJ , then we

set

νJb,λ(x1, . . . , xn)(U) := sgn(x)ζλ(C∗(x1, . . . , xn), b, U, 0).
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This element defines a class in Hn−1(E(f)J ,Meas(FJ ,K)). We denote this class by

ωJf,b,λ := [νJb,λ] ∈ Hn−1(E(f)J ,Meas(FJ ,K)).

The variant Eisenstein cocycle is defined as

ωJχ,λ :=
∑

[b]∈Gf

χ(b)

1− χ(λ)`
ωJf,b,λ.

Remark 1.2.9. The reason that ωJf,b,λ ∈ Hn−1(E(f)J ,Meas(FJ ,K)) is because ζλ(C, b, U, 0) ∈

Z and so it is p-adically bounded and therefore a measure.

Further, we note that ωJf,λ and κχ,λ are compatible in a sense that will be made

more precise later. First, we need to introduce a specific cycle and cocycle.

1.2.3 Elements of Hr(F×p , Cc(Fp, K))

We begin by introducing a continuous homomorphism g : F×p → K and f ∈

Cc(Fp,Z). Also, we have an action of F×p on Cc(Fp,Z) given by (a · f)(x) = f(a−1x),

where a ∈ F×p and x ∈ Fp.

We use this action to extend g to a continuous function of Fp → K. Specifically,

given a ∈ F×p , we take the function

Fp → K

x 7→ (f(x)− (a · f)(x))g(x).

This gives us a map

F ∗p → Cc(Fp,K)

a 7→ (a · f)g(a) + (f − a · f)g.
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We denote this by zf,g : F×p → Cc(Fp,K).

Proposition 1.2.10. The class defined by zf,g is a 1-cocycle. That is

[zf,g] ∈ H1(F×p , Cc(Fp,K)).

Proof. We wish to show given a, b ∈ F×p , we have

zf,g(ab)(x) = zf,g(a)(x) + a · zf,g(b)(x).

This is a straightforward calculation.

First, we have

zf,g(ab)(x) = (ab · f)(x)g(ab) + (f(x)− (ab · f)(x))g(x)

by definition.

Next, we also have

zf,g(a)(x) + a · zf,g(b)(x) = (a · f)(x)g(a) + (f(x)− (a · f)(x))g(x)

+a · (b · f)(x)g(b) + a · ((f(x)− (b · f)(x))g(x))

= (a · f)(x)g(a) + (f(x)− (a · f)(x))g(x)

+(ab · f)(x)g(b) + (ab · f)(x)g(a)

−(ab · f)(x)g(a) + a · ((f(x)− (b · f)(x))g(x))

= (a · f)(x)g(a)− (a · f)(x)g(x) + f(x)g(x)

+(ab · f)(x)g(ab) + (a · f)(x)(a · g)(x)

−(ab · f)(x)g(a)− (ab · f)(x)(a · g)(x)
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Finally, this gives us

zf,g(a)(x) + a · zf,g(b)(x) = (ab · f)(x)g(ab) + f(x)g(x)− (ab · f)(x)g(x)

= zf,g(ab)(x).

Proposition 1.2.11. If f, f ′ ∈ Cc(Fp,Z) such that f(0) = f ′(0), then [zf,g] = [zf ′,g].

Proof. We calculate zf,g(a)(x)− zf ′,g(a)(x) and we show that if f(0) = f ′(0), then this

gives us a 1-coboundary.

We have

zf,g(a)(x)− zf ′,g(a)(x) = (af)(x)g(a) + (f(x)− a · f(x))g(x)

−(a · f ′)(x)g(a)− (f ′(x)− a · f ′(x))g(x)

= (a · f ′(x)− a · f(x))g(a−1x)

−(f ′(x)− f(x))g(x)

= a · ((f ′(x)− f(x))g(x))− (f ′(x)− f(x))g(x).

If f(0) = f ′(0), then (f ′(x) − f(x))g(x) ∈ Cc(Fp,K). Therefore, it is a 1-

coboundary.

Remark 1.2.12. This means we can choose an f that is amenable to calculation. To

that end, we will choose f such that f = 1πOp . This choice will simplify our calculations.

We will now construct an element of Hr(F×R , Cc(FR,K)), where r = #R. Let
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R = {p1, . . . , pr} and let J ⊂ R, then we define co, c`,J ∈ Hr(F×p , Cc(Fp,K)) via:

co = cop1 ∪ · · · ∪ copr

c`,J = cgp1 ∪ · · · ∪ cgpr ,

where

gi =


`pi if i ∈ J

opi i 6∈ J.

1.2.4 Generators of Hn+r−1(E
×
R ,Z) and Hn+d−1(E(f)J ,Z)

We will provide a brief outline of the construction of ϑ ∈ Hn+r−1(E
×
R ,Z) and

ϑ′ ∈ Hn+d−1(E(f)J ,Z), where d = #J . For further details, see Spiess’s Remark 2.1 in

[10].

Let ε1, . . . , εn+r−1 be a Z-basis for E×R , then

ϑ = ±
∑

σ∈Sn+r−1

sgn(σ)[εσ(1) | · · · | εσ(n+r−1)].

A similar construction is given for ϑ′ ∈ Hn+d−1(E(f)J ,Z). We take a Z-basis

ε1, . . . , εn+d−1 for E(f)J . This gives us

ϑ′ = ±
∑

σ∈Sn+d−1

sgn(σ)[εσ(1) | · · · | εσ(n+d−1)].

1.2.5 Dasgupta and Spiess’s Conjectural Formula for the Gross-Stark

Units

We are now ready to state the conjecture of Dasgupta and Spiess:
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Conjecture 1.2.13 ([5], Conjecture 1.2). We have

− `p(up,χ)

op(up,χ)
= (−1)d

c`,p ∩ (κχ ∩ ϑ)

cop ∩ (κχ ∩ ϑ)
∈ K.

Proposition 1.2.14 ([5], Proposition 3.5). The element (−1)d
c`,p∩(κχ∩ϑ)
cop∩(κχ∩ϑ)

is independent

of the choice of λ.

Further, the Eisenstein cocycle κχ,λ is compatible with the variant Eisenstein

cocycle ωJχ,λ in the following sense:

Proposition 1.2.15 ([5], Proposition 3.6). Let ϑ′ ∈ Hn+d−1(E(f)J ,Z) be a generator,

then

(−1)d
c`,p ∩ (κχ ∩ ϑ)

cop ∩ (κχ ∩ ϑ)
= (−1)d

c`p ∩ (ωJχ,λ ∩ ϑ′)
cop ∩ (ωJχ,λ ∩ ϑ′)

Remark 1.2.16. We finish by noting that we will specialize to the case when J = {p}.

Thus, we will drop the J from all notations, e.g. we will write ωχ,λ in place of ωJχ,λ or

E(f)p in place of E(f)J .
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Chapter 2

The General Case

2.1 Reduction of the Shintani domain

In this section, we set up the general case. That is, we will show that

cg ∩ (κχ,λ ∩ ϑ) = g(Up,χ)

where g : F ∗p → K is an arbitrary continuous homomorphism. We do this in several

steps. First, we note that by [5], Proposition 3.6, we can calculate cg∩(ωχ,λ∩ϑ′). Then,

we reduce to the case

cg ∩ (ωb,λ ∩ ϑ′) = g(Up(b, λ,D)).

Next, we reduce to the case of a finite-index subgroup V of E(f) such that wσ = 1 for

all σ ∈ Sn−1, where wσ was defined in Section 1.1. This subgroup is guaranteed to exist

by a theorem of Pierre Colmez, which will be stated more precisely. Then, we will show

that given a Z-basis ε1, . . . , εn−1 of V ⊂ E(f), ε ∈ V with ε =
∏
i ε
mi
i , and π−1 ∈ D,
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then the following holds: if εD ∩ π−1D 6= ∅, then mi ∈ {0, 1} for 1 ≤ i ≤ n − 1. We

remark that we can always take π−1 ∈ D, because D is a fundamental domain. This

means that we can multiply by a unit of E(f) to move π−1 into D. Finally, we show

that the conjecture is true if a certain identity of the measures is true.

Proposition 2.1.1. If the following holds:

cg ∩ (ωb,λ ∩ ϑ′) = g(Up(b, λ,D)),

then Conjecture 1.2.13 is true for J = {p}.

Proof. As

ωχ,λ =
∑

[b]∈Gf

χ(b)

1− χ(λ)`
ωf,b,λ

and

Up,χ =
∑

[b]∈Gf

Up(b, λ,D)⊗ χ(b)

1− χ(λ)`

then we have

cg ∩ (ωχ,λ ∩ ϑ′) =
∑

[b]∈Gf

χ(b)

1− χ(λ)`
cg ∩ (ωb,λ ∩ ϑ′)

=
∑

[b]∈Gf

χ(b)

1− χ(λ)`
g(Up(b, λ,D))

= g

 ∑
[b]∈Gf

χ(b)

1− χ(λ)`
⊗ Up(b, λ,D)


= g (Up,χ) .

Therefore, Conjecture 1.2.13 is true for J = {p}.
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Next, we wish to show that we can work with a finite index subgroup of E(f)

that has a nice Shintani domain. This subgroup is generated by elements ε1, . . . , εn−1

such that if σ ∈ Sn−1, then

sign det([εσ(1) | · · · | [εσ(n−1)]) = sgn(σ).

This is given by:

Theorem ([3], Lemme 2.1). There exists a finite subgroup V of E(f), free of rank n−1

generated by ε1, . . . , εn−1 ∈ E(f) such that if σ ∈ Sn−1, then

sign det([εσ(1) | · · · | [εσ(n−1)]) = sgn(σ). (2.1)

Definition 2.1.2. If a finite index subgroup V of E(f) satisfies Equation 2.1, then we

call V a Colmez subgroup.

Now, we are going to show that only specific units of E(f) have non-empty

intersection with π−1D.

Lemma 2.1.3. Let V be a finite index subgroup of E(f) and let ε1, . . . , εn−1 be a Z-basis

for V . Further, let D be a Shintani domain for V and π−1 ∈ D, then for ε =
∏
i ε
mi
i

εD ∩ π−1D = ∅

unless mi ∈ {0, 1}, 1 ≤ i ≤ n− 1.

Proof. This follows because D is a fundamental domain which has the form:

∑
σ∈Sn−1

wσCen(v1,σ, . . . , vn,σ)
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where v1,σ, . . . , vn,σ are given in Section 1.1. As π−1 ∈ D, then we have π−1vi,σ ∈ vi,σD

and vi,σ =
∏i−1
j=1 εσ(j). So unless mi ∈ {0, 1}, we must have

εD ∩ π−1D = ∅.

We now show that if Conjecture 1.2.13 is true for a finite index subgroup V ,

then it is true for E(f). As a consequence, we obtain as a corollary that if Conjecture

1.2.13 is true for a finite index subgroup V , then it is true for E(f)

Proposition 2.1.4. If Conjecture 1.2.13 is true for a subgroup V of E(f), then it is

true for E(f).

Specifically, if we have ϑ′V ∈ Hn(V ⊕ 〈π〉,Z) and ϑ′ ∈ Hn(E(f)p,Z), ω ∈

Hn−1(E(f),Meas(Fp,K)), and ωV ∈ Hn−1(V,Meas(Fp,K)). Then if

cg ∩ (ωV ∩ ϑ′V ) = g(Up(b, λ,DV ))

then

cg ∩ (ω ∩ ϑ′) = g(Up(b, λ,D)).

Here, DV is a Shintani domain for V and D is a Shintani domain for E(f)

Proof. We mimic the proof of [2], Theorem 1.5 given by Charollois, Dasgupta, and

Greenberg.

We have the following diagram:

Hn−1(V,Meas(Fp,K)) Hn(V ⊕ 〈π〉,Z) H1(E(f)⊕ 〈π〉,Meas(Fp,K))

Hn−1(E(f),Meas(Fp,K)) Hn(E(f)⊕ 〈π〉,Z) H1(E(f)⊕ 〈π〉,Meas(Fp,K)).

× ∩

cores coresres

× ∩
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We also have the commutative diagram:

H1(F×p , Cc(Fp,K)) H1(V ⊕ 〈π〉,Meas(Fp,K)) K

H1(E(f), Cc(Fp,K)) H1(E(f)⊕ 〈π〉,Meas(Fp,K)) K.

× ∩

coresres

× ∩

These diagrams are commutative thanks to [1], pp. 112-114. Further, thanks

to [1], pp. 112-114 and [1], Section 3, Prop. 9.5, we have the following identities:

cores(ϑ′V ) = [E(f) : V ]ϑ′ (2.2)

res(ω) = ωV . (2.3)

As cores(ϑ′V ) = [E(f) : V ]ϑ′U and res(ω) = ωV , then we have

cg ∩ (ωV ∩ ϑ′V ) = [E(f) : V ]cg ∩ (ω ∩ ϑ′).

So, we must show that

g(Up(b, λ,DV )) = [E(f) : V ]g(Up(b, λ,D))

or, alternatively, we may show the stronger equality

Up(b, λ,DV ) = Up(b, λ,D)[E(f):V ].

By a result of Colmez in Section 2 of [3], we have [E(f) : V ]ζλ(b,D, U, s) =

ζλ(b,DV , U, s). In terms of our measure [E(f) : V ]ν(b,D, U) = ν(b,DV , U) where

ν(b,D, U) = ζλ(b,D, U, 0) and ν(b,DV , U) = ζλ(b,DV , U, 0).

This immediately implies that

π[E(f):V ]ν(b,D,Op) = πν(b,DV ,Op)
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and (
×
∫
Op

x dν(b,D, x)

)[E(f):V ]

= ×
∫
Op

x dν(b,DV , x).

To finish we must show that

ε(b,D, π)[E(f):V ] = ε(b,DV , π)

or ∏
ε∈E(f)

ε[E(f):V ]ν(εD∩π−1D)(Op) =
∏
ε∈V

εν(εDV ∩π
−1DV )(Op) (2.4)

To that end, we first let ε1, . . . , εn−1 be a Z-basis for E(f) and let V be a finite

subgroup of E(f) with

E(f)/V ∼= Z/b1Z× · · · × Z/bn−1Z.

We take a Z-basis of V to be εb11 , . . . , ε
bn−1

n−1 . If D is a Shintani domain for E(f), then we

take a Shintani domain for V given by

DV =
⋃
ji

εj11 · · · ε
jn−1

n−1D,

where the union and product are taken over 0 ≤ ji ≤ bi − 1 for 1 ≤ i ≤ n− 1.

We calculate ε(b,DV , π) and to that end, we have

ε(b,DV , π) =
∏
ε∈V

εν(b,εDV ∩π
−1DV ,Op) (2.5)

=
∏

k∈Zn−1

(
εb1k11 · · · εbn−1kn−1

n−1

)ν(b,εb1k11 ···εbn−1kn−1
n−1 DV ∩π−1DV ,Op)

(2.6)

=

n−1∏
i=1

∏
kj∈{0,1},j 6=i

ki=1

ε
biν(b,ε

b1k1
1 ···εbn−1kn−1

n−1 DV ∩π−1DV ,Op)

i . (2.7)
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The last equality follows from the calculation used to derive Equation 2.19 in Conjecture

2.2.1.

On the other hand, we calculate ε(b,D, π). We have

ε(b,D, π) =
∏
ε∈E(f)

εν(b,εD∩π
−1D,Op) (2.8)

=
∏

k∈Zn−1

(
εk11 · · · ε

kn−1

n−1

)ν(b,εk11 ···εkn−1
n−1 D∩π−1D,Op)

(2.9)

=
n−1∏
i=1

∏
kj∈{0,1}
ki=1

ε
ν(b,ε

k1
1 ···ε

kn−1
n−1 D∩π−1D,Op)

i . (2.10)

Again, the last equality follows from the calculation used to derive Equation 2.19 in

Conjecture 2.2.1.

Combining Equations 2.4, 2.7, and 2.10, we must show the following equality:

bi
∑

kj∈{0,1},j 6=i
ki=1

ν(b, εb1k11 · · · εbn−1kn−1

n−1 DV ∩ π−1DV ,Op) (2.11)

= b1 · · · bn−1
∑

kj∈{0,1},j 6=i
ki=1

ν(b, εk11 · · · ε
kn−1

n−1 D ∩ π
−1D,Op) (2.12)

We note that ν(b, εC,Op) = ν(b, C,Op), where C is a Shintani cone. This is

due to the fact that N ε = 1.
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We reduce the Equation 2.11. We have

bi
∑

kj∈{0,1},j 6=i
ki=1

ν(b, εb1k11 · · · εbn−1kn−1

n−1 DV ∩ π−1DV ,Op) (2.13)

= bi
∑

kj∈{0,1},j 6=i
ki=1

mj−1∑
aj=0
j 6=i

ν(b, εa1+k11 · · · εan−1+kn−1

n−1 D ∩ π−1εa11 · · · ε
an−1

n−1 D,Op) (2.14)

= bi
∑

kj∈{0,1},j 6=i
ki=1

mj−1∑
aj=0
j 6=i

ν(b, εk11 · · · ε
kn−1

n−1 D ∩ π
−1D,Op) (2.15)

= bi
∑

kj∈{0,1},j 6=i
ki=1

∏
j 6=i

bj

 ν(b, εk11 · · · ε
kn−1

n−1 D ∩ π
−1D,Op) (2.16)

= b1 · · · bn−1
∑

kj∈{0,1},j 6=i
ki=1

ν(b, εk11 · · · ε
kn−1

n−1 D ∩ π
−1D,Op). (2.17)

Thus, we see that we have equality and so the proposition holds.

Corollary 2.1.5. If Conjecture 1.2.13 is true for a Colmez subgroup V of E(f), then

it is true for E(f).

2.2 Explicit Calculation of cg ∩ (ωb,λ ∩ ϑ′)

We calculate cg ∩ (ωb,λ ∩ ϑ′) explicitly. We do not make the assumption that

we are working with a Colmez subgroup.
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The explicit calculation of cg ∩ (ωb,λ ∩ ϑ′) is given below:

cg ∩ (ωb,λ ∩ ϑ′) = cg ∩

(
ωb,λ ∩

∑
σ∈Sn

sgn(σ)[θσ(1) | · · · | θσ(n)]

)
=

∑
σ∈Sn

sgn(σ)cg ∩ (ωb,λ ∩ [θσ(1) | · · · | θσ(n)])

=
∑
σ∈Sn

sgn(σ)

∫
Fp

cg(θσ(1))d(θσ(1)νb,λ([θσ(2) | · · · | θσ(n)]))

= −
∑

τ∈Sn−1

sgn(τ)

∫
Fp

cg(π)d(πνb,λ([ετ(1) | · · · | ετ(n−1)]))

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)

∫
Fp

cg(εk)d(εkνb,λ([θkτ(1) | · · · | θ
k
τ(n−1)]))

= −
∑

τ∈Sn−1

sgn(τ)

∫
Fp

π−1cg(π)d(νb,λ([ετ(1) | · · · | ετ(n−1)]))

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)

∫
Fp

ε−1k cg(εk)d(νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)]),

where the θki for 1 ≤ i ≤ n− 1 and 2 ≤ k ≤ n are given by θk1 = π for 2 ≤ k ≤ n and

θki =


εi+1 for i ≥ k

εi for i < k.

The first three equalities follow from straightforward cap product calculations.

The fourth equality follows, because we are splitting up the summation into the case

where θσ(1) = π and the case where θσ(1) 6= π. The fifth equality follows from the

fact that the action of E(f)p on a measure is given by (x · µ)(U) = µ(x−1U) and the

calculation:

∫
Fp

f(x) d(θν(x)) = lim
V

∑
V ∈V

f(xV )µ(θ−1V ) = lim
V

∑
V ∈V

f(θxV )µ(V )

= lim
V

∑
V ∈V

θ−1f(xV )µ(V ) =

∫
Fp

θ−1f(x) dµ(x),
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where the limit is taken over covers of Fp ordered by refinement.

We now calculate

∫
Fp

π−1cg(π)d(ω([ετ(1) | · · · | ετ(n−1)]))

and ∫
Fp

ε−1k cg(εk)d(ω([θkτ(1) | · · · | θ
k
τ(n−1)]).

To that end, we calculate π−1cg(π) and ε−1k cg(εk) by calculating it for zf,g, where f =

1πOp . For π−1cg(π), we have

π−1cg(π) = π−1(π(1πOp)) · g(π) + π−1(1πOp − 1π2Op
) · g

= 1πOp · g(π) + (1Op − 1πOp) · g

= 1πOp · g(π) + 1Op · g

For ε−1k cg(εk), we have

ε−1k cg(εk) = ε−1k (εk1πOp) · g(εk) + ε−1k (1πOp − 1εkπOp) · g

= 1πOp · g(εk) + ε−1k (1πOp − 1πOp) · g

= 1πOp · g(εk).
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Inputting these back into our cap product calculations gives us

cg ∩ (ωb,λ ∩ ϑ′) = −
∑

τ∈Sn−1

sgn(τ)

∫
Fp

π−1cg(π)d(νb,λ([ετ(1) | · · · | ετ(n−1)]))

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)

∫
Fp

ε−1k cg(εk)d(νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])

= −
∑

τ∈Sn−1

sgn(τ)

∫
Fp

1πOp(x)g(π)

+1Op(x)g(x)d(νb,λ([ετ(1) | · · · | ετ(n−1)]))(x)

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)

∫
Fp

1Op(x)g(εk)d(νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])(x)

= −
∫
Fp

1πOp(x)g(π) + 1Op(x)g(x) dν(b,D, x)

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)g(εk)νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])(Op)

= −ν(b,D, πOp)g(π)− g

(
×
∫
Op

x dν(b,D, x)

)

−
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)g(εk)νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])(Op).

The second equality follows, because we just input π−1cg(π) and ε−1k cg(εk).

The third equality follows from the fact that the Shintani domain for E(f) is

∑
τ∈Sn−1

sgn(τ) sign det([ετ(1) | · · · | ετ(n−1)])cen([ετ(1) | · · · | ετ(n−1)])

and plugging −
∑

τ∈Sn−1
[ετ(1) | · · · | ετ(n−1)] into νb,λ gives us the first integral. The

second integral comes from the elementary fact that
∫

1U dµ = µ(U), where 1U is the

characteristic function of U . Finally, the fourth equality follows from the previous fact

about
∫

1U dµ and the fact that g : F×p → K is a continuous homomorphism.
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On the other hand, we calculate g(Up(b, λ,D)). This is

g(Up(b, λ,D)) = g

(
ε(b,D, π) · πν(b,D,Op) · ×

∫
Op

x dν(b,D, x)

)
= g(ε(b,D, π)) + g(πν(b,D,Op)) + g

(
×
∫
Op

x dν(b,D, x)

)
= g(ε(b,D, π)) + ν(b,D,Op)g(π) + g

(
×
∫
Op

x dν(b,D, x)

)
We see that modulo a sign cg ∩ (ωb,λ ∩ ϑ′) = g(Up(b, λ,D)) if

g(ε(b,D, π)) =
n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)g(εk)νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])(Op).

Further, we have

g(ε(b,D, π)) = g

 ∏
ε∈E(f)

εν(b,εD∩π
−1D,Op)


=

∑
ε∈E(f)

ν(b, εD ∩ π−1D,Op)g(ε)

=
∑

(k1,...,kn−1)∈Zn−1

ν(b, εk11 · · · ε
kn−1

n−1 D ∩ π
−1D,Op)g(εk11 · · · ε

kn−1

n−1 )

=
n−1∑
i=1

g(εi)
∑

mj∈{0,1},j 6=i
mi=1

ν(b, εm1
1 · · · ε

mn−1

n−1 D ∩ π
−1D,Op).

This last equality is because of Proposition 2.1.3.

This leads us to the following conjecture that we will prove in the n = 2 and

n = 3 case, but not for the general case.

Conjecture 2.2.1. The following equality holds:

n−1∑
k=1

∑
τ∈Sn−1

sgn(τ)g(εk)νb,λ([θkτ(1) | · · · | θ
k
τ(n−1)])(Op) (2.18)

=
n−1∑
i=1

g(εi)
∑

mj∈{0,1},j 6=i
mi=1

ν(b, εm1
1 · · · ε

mn−1

n−1 D ∩ π
−1D,Op). (2.19)
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Chapter 3

The n = 2 and n = 3 case

3.1 The n = 2 case

This particular case has already been proven by Dasgupta and Spiess. We

follow their proof, but fill in some details. In this section, we prove it for E(f) and we

do not make any assumptions that ε is in a finite index subgroup. We also let τ1 : F → R

and τ2 : F → R be an ordering of embeddings of F into R.

In the n = 2 case, we choose ε such that sgn(1, ε) = 1 (i.e. an ε such that

ετ2 > ετ1). Then D = C(1, ε) ∪ C(ε).

We choose π such that π ∈ D. We can do this as D is a fundamental domain

for the action of ε and since (π) = (εnπ). Thus we have

ϑ′ = [π | ε]− [ε | π].
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As b, f, and λ are fixed, we will set ω = ωf,b,λ. Calculating explicitly gives us

cg ∩ (ωf,b,λ ∩ ϑ′) = cg ∩ (ω ∩ ϑ′)

= cg ∩ (ω ∩ [π | ε])− cg ∩ (ω ∩ [ε | π])

= cg ∩ ([π ⊗ πω(1, ε))− cg ∩ ([ε]⊗ ω(1, π))

=

∫
Fp

cg(π)(x) d(πω(1, ε))(x)−
∫
Fp

cg(ε)(x) d(πω(1, π))(x)

=

∫
Fp

π−1cg(π)(x) dω(1, ε)(x)−
∫
Fp

ε−1cg(ε)(x) dω(1, π)(x).

To finish the calculation, we must first compute

π−1cg(π)(x) and ε−1cg(ε)(x).

For π−1cg(π)(x), we have

π−1cg(π)(x) = π−1((π · 1πOp(x))g(π) + (1πOp(x)− π · 1πOp)g(x))

= 1πOp(x)g(π) + (1Op(x)− 1πOp(x))g(πx)

= 1πOp(x)g(π) + (1Op(x)− 1πOp(x))g(π) + (1Op(x)− 1πOp(x))g(x)

= 1Op(x)g(π) + (1Op(x)− 1πOp(x))g(x)

= 1Op(x)g(π) + (1Op(x))g(x),

where Op = Op − πOp.

For ε−1cg(ε)(x), we have

ε−1cg(ε)(x) = ε−1(ε · 1πOp(x)g(ε) + (1πOp − ε1πOp(x))g(x))

= 1πOp(x)g(ε).
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So,

∫
Fp

π−1cg(π)(x) dω(1, ε)(x)

−
∫
Fp

ε−1cg(ε)(x) dω(1, π)(x)

=

∫
Fp

1Op(x)g(π) + (1Op(x))g(x) dω(1, ε)(x)

−
∫
Fp

1πOp(x)g(ε) dω(1, π)(x)

= g(π) sign det(1, ε)ν(b,D,Op) + sign det(1, ε)g

(
×
∫
Op

x dν(b,D, x)

)
+ g(ε) sign det(1, π)ν(b,D, πOp)

= g(π)ν(b,D,Op) + g

(
×
∫
Op

x dν(b,D, x)

)
+ g(ε)ν(b,D, πOp).

The above equalities are justified, because

ετ2 > ετ1 and πτ2 > πτ1 ,

so sign(1, ε) = sign(1, π) = 1. We also have

ωf,b,λ(1, ε) = [νb,λ(1, ε)]

So, we have

ν(b, C∗(1, ε), U) = sgn(1, ε)ζλ(C∗(1, ε), b, U, 0)

= ζλ(D, b, U, 0)

= ν(b,D, U).
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Now, we calculate

g(Up(b, λ,D)) = g

(
εb,λ,D,π · πν(b,D,Op) · ×

∫
Op

x dν(b,D, x)

)

= g (εb,λ,D,π) + g
(
πν(b,D,Op)

)
+ g

(
×
∫
Op

x dν(b,D, x)

)

= g

 ∏
ε∈E(f)

εν(b,εD∩π
−1D,Op)

+ g(π)ν(b,D,Op)

+ g

(
×
∫
Op

x dν(b,D, x)

)

= g(ε)

(∑
n∈Z

ν(b, εnD ∩ π−1D,Op)

)
+ g(π)ν(b,D,Op)

+ g

(
×
∫
Op

x dν(b,D, x)

)
.

To finish up, we want to show that

∑
n∈Z

nν(b, εnD ∩ π−1D,Op) = −νb,λ(1, π)(πOp).

To that end, we must calculate

εnD ∩ π−1D.

We have

εnD = εnC∗(1, ε) = C∗(εn, εn+1)

and

π−1D = π−1C∗(1, ε) = C∗(π−1, π−1ε).
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We claim that we have the following equality:

C∗(εn, εn+1) ∩ C∗(π−1, π−1ε) =



C∗(1, π−1ε) n = 0

C∗(1, π−1) n = −1

∅ otherwise.

First, we need a couple lemmas:

Lemma 3.1.1. If x1 6= x2 and xτ22 /x
τ1
2 > xτ21 /x

τ1
1 , then

α ∈ C∗(x1, x2) = C(x1, x2) ∪ C(x2)

if and only if

xτ22
xτ12
≥ ατ2

ατ1
>
xτ21
xτ11

Proof. Suppose that α ∈ C∗(x1, x2), then α = a1x1 + a2x2, with a1 ≥ 0 and a2 > 0

and ατ2 = a1x
τ2
1 + a2x

τ2
2 . We show xτ22 /x

τ1
2 ≥ ατ2/ατ1 . We have xτ22 /x

τ1
2 > xτ21 /x

τ1
1 and

a1 ≥ 0 and so a1x
τ1
1 x

τ2
2 ≥ a1x

τ2
1 x

τ1
2 . We add a2x

τ1
2 x

τ2
2 to both sides to get

a1x
τ1
1 x

τ2
2 + a2x

τ1
2 x

τ2
2 ≥ a1x

τ2
1 x

τ1
2 + a2x

τ1
2 x

τ2
2

which is

xτ22 (a1x
τ1
1 + a2x

τ1
2 ) ≥ xτ12 (a1x

τ2
1 + a2x

τ2
2 )

or

xτ22 α
τ1 ≥ ατ2xτ12

which gives us the inequality xτ22 /x
τ1
2 ≥ ατ2/ατ1 .
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For ατ2/ατ1 > xτ21 /x
τ1
1 , from xτ22 /x

τ1
2 > xτ21 /x

τ1
1 and a2 > 0 we have

a2x
τ2
2 x

τ1
1 > a2x

τ1
2 x

τ2
1

and adding a1x
τ2
1 x

τ1
1 to both sides, we get

a1x
τ2
1 x

τ1
1 + a2x

τ2
2 x

τ1
1 > a1x

τ2
1 x

τ1
1 + a2x

τ1
2 x

τ2
1

and so

xτ11 (a1x
τ2
1 + a2x

τ2
2 ) > xτ21 (a1x

τ1
1 + a2x

τ1
2 )

thus xτ11 α
τ2 > xτ21 α

τ1 , which gives us the inequality ατ2/ατ1 > xτ21 /x
τ1
1 .

Now, suppose that xτ22 /x
τ1
2 ≥ ατ2/ατ1 > xτ21 /x

τ1
1 . As x1 and x2 are not collinear

by assumption, they form a basis of R2. So, α = a1x1 + a2x2, which means we wish to

show a1 ≥ 0 and a2 > 0. This is a result of a similar calculation.

By assumption π ∈ D and so ετ2/ετ1 ≥ πτ2/πτ1 > 1. Thus, we see that

1 > (π−1)τ2/(π−1)τ1 ≥ (ε−1)τ2/(ε−1)τ1 . Thus, π−1 ∈ C∗(1, ε−1) = ε−1D. This also

shows that π−1ε ∈ D.

We now want to show that

•

C∗(1, ε) ∩ C∗(π−1, π−1ε) = C∗(1, π−1ε);

•

C∗(ε−1, 1) ∩ C∗(π−1, π−1ε) = C∗(1, π−1ε);
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•

C∗(εn, εn+1) ∩ C∗(π−1, π−1ε) = ∅

for n 6= 0,−1.

For the first one, C∗(1, π−1ε) ⊂ C∗(1, ε) and C∗(1, π−1ε) ⊂ C∗(π−1, π−1ε),

because for the first one, π−1ε ∈ D and for the second one 1 ∈ C∗(π−1, π−1ε) (using the

lemma and (π−1ε)τ2/(π−1ε)τ1 ≥ 1 > (π−1)τ2/(π−1)τ1).

We use the lemma to prove the inverse inclusion. If α ∈ C∗(1, ε)∩C∗(π−1, π−1ε),

then we have the two inequalities:

ετ2/ετ1 ≥ ατ2/ατ1 > 1

(π−1ε)τ2/(π−1ε)τ1 ≥ ατ2/ατ1 > (π−1)τ2/(π−1)τ1 .

These two inequalities become the inequality

(π−1ε)τ2/(π−1ε)τ1 ≥ ατ2/ατ1 > 1

and so α ∈ C∗(1, π−1ε).

We now want to show C∗(1, ε−1) ∩ C∗(π−1, π−1ε) = C∗(π−1, 1). We have

C∗(π−1, 1) ⊂ C∗(π−1, π−1ε) as 1 ∈ C∗(π−1, π−1ε), by using the lemma. We also have

C∗(π−1, 1) ⊂ C∗(ε−1, 1), because π−1 ∈ C∗(ε−1, 1).

We now show that C∗(ε−1, 1)∩C∗(π−1, π−1ε) ⊂ C∗(π−1, 1). If α ∈ C∗(ε−1, 1)∩

C∗(π−1, π−1ε), then we have the inequalities 1 ≥ ατ2/ατ1 > (ε−1)τ2/(ε−1)τ1 and (π−1ε)τ2/(π−1ε)τ1 ≥

ατ2/ατ1 > (π−1)τ2/(π−1)τ1 . These inequalities reduce to

1 ≥ ατ2

ατ1
>

(π−1)τ2

(π−1)τ1
,
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thus α ∈ C∗(π−1, 1).

Finally, C∗(εn, εn+1) ∩C∗(π−1, π−1ε) = ∅ for n 6= 0,−1, because D is a funda-

mental domain and π−1 ∈ ε−1D and π−1ε ∈ D.

We see that

∏
n∈Z

εnν(b,ε
nD∩π−1D,Op) = ε

∑
n∈Z nν(b,ε

nD∩π−1D,Op) = ε−ν(b,ε
−1D∩π−1D,Op).

But, we have

−ν(b, ε−1D ∩ π−1D,Op) = −ν(b, C∗(π−1, 1),Op)

= −νb,λ(1, π−1)(Op).

By the 1-cocycle condition for ω, we have

0 = ν(1, 1) = ν(1, ππ−1) = π−1ν(1, π) + ν(1, π−1).

Thus −ν(1, π−1)(Op) = π−1ν(1, π)(Op) = ν(1, π)(πOp).

Putting this all together we see that

g(εb,λ,D,π) = g(ε−ν(b,ε
−1D∩π−1D,Op)) = −g(ε)ν(b, ε−1D ∩ π−1D,Op) = ν(1, π)(πOp)g(ε).

So, this gives us the desired equality:

cg ∩ (ωf,b ∩ ϑ′) = g(Up(b, λ,D)).

3.2 n = 3 case

We prove the case when n = 3. In this case, we prove a lemma that states that

Conjecture 2.2.1 is true in the case n = 3. The validity of this conjecture then implies
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that Conjecture 1.2.13 is true in the case n = 3. To that end, we must show that the

ωb,λ(x1, . . . , xn)(Op) are equal for various specific values of x1, . . . , xn. This will be done

by showing that certain Shintani cones are equivalent modulo the action of a unit. As

the measures are invariant under the action of a unit, this means that the measures are

equal.

Theorem 3.2.1. Conjecture 1.2.13 is true when n = 3.

Proof. The validity of this statement depends on whether or not Conjecture 2.2.1 is

true for n = 3. This will be show in Lemma 3.2.2.

Lemma 3.2.2. Conjecture 2.2.1 is true when n = 3.

Proof. By Corollary 2.1.5 we may suppose that we are working with a Colmez subgroup.

Further, from the calculations in Section 2.2, we must show that the following equations

are true:

∑
n,m∈Z

nνb,λ,εn1 εm2 D∩π−1D(Op)

= − sgn(1, π, πε2)νb,λ,C∗(1,π,πε2)(πOp) + sgn(1, ε2, ε2π)νb,λ,C∗(1,ε2,πε2)(πOp)

and

∑
n,m∈Z

mνb,λ,εn1 εm2 D∩π−1D(Op)

= sgn(1, π, πε1)νb,λ,C∗(1,π,πε1)(πOp)− sgn(1, ε1, πε1)νb,λ,C∗(1,ε1,πε1)(πOp)

then we are finished for the n = 3 case.
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Due to the action of π on the measure and the fact that the sgn function is

invariant if we multiply any column by a positive number, we have

− sgn(1, π, πε2)νb,λ,C∗(1,π,πε2)(πOp) + sgn(1, ε2, ε2π)νb,λ,C∗(1,ε2,πε2)(πOp)

= − sgn(π−1, 1, ε2)νb,λ,C∗(π−1,1,ε2)(Op) + sgn(π−1, π−1ε2, ε2)νb,λ,C∗(π−1,π−1ε2,ε2)(Op)

and

− sgn(1, π, πε1)νb,λ,C∗(1,π,πε1)(πOp) + sgn(1, ε1, πε1)νb,λ,C∗(1,ε1,πε1)(πOp)

= sgn(π−1, 1, ε1)νb,λ,C∗(π−1,1,ε1)(Op)− sgn(π−1, π−1ε1, ε1)νb,λ,C∗(π−1,π−1ε1,ε1)(Op)

We suppose that π−1 ∈ D. We also note in this case that εn1 ε
m
2 D ∩ π−1D = ∅

unless n = 0, 1 and m = 0, 1 by Lemma 2.1.3. That means that we must prove

νb,λ,ε1D∩π−1D(Op) + νb,λ,ε1ε2D∩π−1D(Op)

= − sgn(1, π, πε2)νb,λ,C∗(π−1,1,ε2)(Op)

+ sgn(1, ε2, ε2π)νb,λ,C∗(π−1,π−1ε2,ε2)(Op)

and

νb,λ,ε2D∩π−1D(Op) + νb,λ,ε1ε2D∩π−1D(Op)

= sgn(1, π, πε1)νb,λ,C∗(π−1,1,ε1)(Op)

− sgn(1, ε1, πε1)νb,λ,C∗(π−1,π−1ε1,ε1)(Op).

Further, these two equalities are true if we can show that:

1ε1D∩π−1D + 1ε1ε2D∩π−1D
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and

1C∗(π−1,1,ε2) + 1C∗(π−1,π−1ε2,ε2)

are equivalent modulo the action of a unit. We must also show that

1ε2D∩π−1D + 1ε1ε2D∩π−1D

1C∗(π−1,1,ε1) + 1C∗(π−1,π−1ε1,ε1)

are equivalent modulo the action of a unit. This is because ωb,λ is invariant under the

action of E(f). Additionally, this is because we are working with a Colmez subgroup

and the fact that π−1 ∈ D, thus

− sgn(π−1, 1, ε2) = sgn(π−1, π−1ε2, ε2) = sgn(π−1, 1, ε1) = − sgn(π−1, π−1ε1, ε1) = 1.

(3.1)

Determining this means that we have to determine what the generating cones

of ε1D ∩ π−1D, ε2D ∩ π−1D, and ε1ε2D ∩ π−1D are. To find these generating cones,

we need to look at the intersection of two planes. This intersection will define a line

and we can take the positive ray to define our Shintani cone. We have to look at the

intersection of the planes:

• the plane defined by π−1 and π−1ε1 and the plane defined by ε1 and ε1ε2;

• the plane defined by ε1ε2 and ε21ε2 and the plane defined by π−1ε1 and π−1ε1ε2;

• the plane defined by π−1ε2 and π−1ε1ε2 and the plane defined by ε1ε2 and ε1ε
2
2;

• the plane defined by π−1 and π−1ε2 and the plane defined by ε2 and ε1ε2;
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• the plane defined by π−1ε−11 and π−1 and the plane defined by 1 and ε2;

• the plane defined by π−1ε−12 and π−1 and the plane defined by 1 and ε1.

If a,b, c, and d are vectors in R3 and q, r, s, and t are real scalars, then we can

find the line defined by the intersection of the planes aq+ br = cs+ dt by reducing the

following matrix: (
a b −c −d

)
.

If a,b, and c are linearly independent, then the matrix reduces to
1 0 0 det(−d,b,−c)

det(a,b,−c)

0 1 0 −det(a,−d,−c)
det(a,b,−c)

0 0 1 det(a,b,−d)
det(a,b,−c)

 or


1 0 0 −det(b,c,d)

det(a,b,c)

0 1 0 −det(a,c,d)
det(a,b,c)

0 0 1 det(a,b,d)
det(a,b,c)

 .

So, the basis of the line defined by the intersection of the planes is given by det(b, c,d)a+

det(a, c,d)b = −det(a,b,d)c + det(a,b, c)d.

With this result, we can determine the line that intersects the planes and hence

a decomposition of the Shintani cone. So, with this, we get the following elements

• we have a = π−1,b = π−1ε1, c = ε1, and d = ε1ε2, so

γ1 = det(π−1ε1, ε1, ε1ε2)π
−1 + det(π−1, ε1, ε1ε2)π

−1ε1

= −det(π−1, π−1ε1, ε1ε2)ε1 + det(π−1, π−1ε1, ε1)ε1ε2;

• we have a = π−1ε1,b = π−1ε1ε2, c = ε1ε2, and d = ε21ε2, so

γ2 = det(π−1ε1ε2, ε1ε2, ε
2
1ε2)π

−1ε1 + det(π−1ε1, ε1ε2, ε
2
1ε2)π

−1ε1ε2

= −det(π−1ε1, π
−1ε1ε2, ε

2
1ε2)ε1ε2 + det(π−1ε1, π

−1ε1ε2, ε1ε2)ε
2
1ε2;
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• we have a = π−1ε2,b = π−1ε1ε2, c = ε1ε2, and d = ε1ε
2
2, so

γ3 = det(π−1ε1ε2, ε1ε2, ε1ε
2
2)π
−1ε2 + det(π−1ε2, ε1ε2, ε1ε

2
2)π
−1ε1ε2

= −det(π−1ε2, π
−1ε1ε2, ε1ε

2
2)ε1ε2 + det(π−1ε2, π

−1ε1ε2, ε1ε2)ε1ε
2
2;

• we have a = π−1,b = π−1ε2, c = ε2, and d = ε1ε2, so

γ4 = det(π−1ε2, ε2, ε1ε2)π
−1 + det(π−1, ε2, ε1ε2)π

−1ε2

= −det(π−1, π−1ε2, ε1ε2)ε2 + det(π−1, π−1ε2, ε2)ε1ε2;

• we have a = π−1ε−11 ,b = π−1, c = 1, and d = ε2, so

γ5 = det(π−1, 1, ε2)π
−1ε−11 + det(π−1ε−11 , 1, ε2)π

−1

= −det(π−1ε−11 , π−1, ε2)1 + det(π−1ε−11 , π−1, 1)ε2;

• we have a = π−1ε−12 ,b = π−1, c = 1, and d = ε1, so

γ6 = det(π−1, 1, ε1)π
−1ε−12 + det(π−1ε−12 , 1, ε1)π

−1

= −det(π−1ε−12 , π−1, ε1)1 + det(π−1ε−12 , π−1, 1)ε1.

Further, we note that these are the correct constants, because all of the various determi-

nants are positive, due to Equation 3.1 and the fact that we are working with a Colmez

subgroup. Thus all of the elements are in Rn>0.

We have the decomposition of the Shintani domains (ε1D ∩ π−1D) ∪ (ε1ε2D ∩

π−1D) and (ε2D ∩ π−1D) ∪ (ε1ε2D ∩ π−1D) given by:

• 1ε1D∩π−1D = 1C(γ1,π−1ε1,γ2) + 1C(γ1,γ2,ε1ε2);
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• 1ε2D∩π−1D = 1C(γ4,π−1ε2,γ3) + 1C(γ4,ε1ε2,γ3);

• 1ε1ε2D∩π−1D = 1C(ε1ε2,γ2,π−1ε1ε2) + 1C(ε1ε2,γ3,π−1ε1ε2).

We have two sets of Shintani domains who have the following characteristic

functions:

• 1C(π−1,1,ε2) + 1C(π−1,π−1ε2,ε2) and

• 1C(π−1,1,ε1) + 1C(π−1,π−1ε1,ε1).

These Shintani domains decompose into:

• 1C(1,π−1,γ6) + 1C(π−1,γ6,ε1) + 1C(π−1,ε2,γ1) + 1C(ε1,γ1,π−1ε1), and

• 1C(1,π−1,γ5) + 1C(π−1,γ5,ε2 + 1C(π−1,γ4,ε2) + 1C(γ4,ε2,π−1ε2),

respectively.

We want to show that (ε1ε2) · 1C(1,π−1,γ6) = 1C(ε1ε2,π−1ε1ε2,γ2), which amounts

to showing that ε1ε2γ6 = γ2. We note that as Nm ε = 1, where ε is a totally positive

unit, then we have det(x1, x2, x3) = det(εx1, εx2, εx3). We have

ε1ε2γ6 = det(π−1, 1, ε1)π
−1ε1 + det(π−1ε−12 , 1, ε1)π

−1ε1ε2

= det(π−1ε1ε2, ε1ε2, ε
2
1ε2)π

−1ε1 + det(π−1ε1, ε1ε2, ε
2
1ε2)π

−1ε1ε2

= γ2,

as desired.
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Next, we want to show that ε2 · 1C(ε1,γ1,π−1ε1) = 1C(ε1ε2,γ3,π−1ε1ε2). This means

that we want to show that ε2γ1 = γ3. We have

ε2γ1 = det(π−1ε1, ε1, ε1ε2)π
−1ε2 + det(π−1, ε1, ε1ε2)π

−1ε1ε2

= det(π−1ε1ε2, ε1ε2, ε1ε
2
2)π
−1ε2 + det(π−1ε2, ε1ε2, ε1ε

2
2)π
−1ε1ε2

= γ3,

as desired.

We also wish to show that ε2 ·1C(γ6,π−1,γ1) = 1C(γ4,π−1ε2,γ3) and ε2 ·1C(γ6,ε1,γ1) =

1C(γ4,ε1ε2,γ3). Thus, we would like to show that ε2γ6 = γ4 and ε2γ1 = γ3. For ε2γ6 = γ4,

we have the following calculation:

ε2γ6 = det(π−1, 1, ε1)π
−1 + det(π−1ε−12 , 1, ε1)π

−1ε2

= det(π−1ε2, ε2, ε1ε2)π
−1 + det(π−1, ε2, ε1ε2)π

−1ε2

= γ4,

as desired. For ε2γ1 = γ3, we have the following calculation:

ε2γ1 = det(π−1ε1, ε1, ε1ε2)π
−1ε2 + det(π−1, ε1, ε1ε2)π

−1ε1ε2

= det(π−1ε1ε2, ε1ε2, ε1ε
2
2)π
−1ε2 + det(π−1ε2, ε1ε2, ε1ε

2
2)π
−1ε1ε2

= γ3,

as desired.
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This means that

νb,λ,ε2D∩π−1D(Op) + νb,λ,ε1ε2D∩π−1D(Op) =

− sgn(1, π, πε1)νb,λ,C∗(π−1,1,ε1)(Op) +

sgn(1, ε1, πε1)νb,λ,C∗(π−1,π−1ε1,ε1)(Op).

Now, we show other decomposition. To that end, we want to show that (ε1ε2) ·

1C(1,γ5,π−1) = 1C(ε1ε2,γ3,π−1ε1ε2). It suffices to show that ε1ε2γ5 = γ3. We have

ε1ε2γ5 = det(π−1, 1, ε2)π
−1ε2 + det(π−1ε−11 , 1, ε2)π

−1ε1ε2

= det(π−1ε1ε2, ε1ε2, ε1ε
2
2)π
−1ε2 + det(π−1ε2, ε1ε2, ε1ε

2
2)π
−1ε1ε2

= γ3,

as desired.

Now, we want to show that ε1 · 1C(ε2,γ4,π−1ε2) = 1C(ε1ε2,γ2,π−1ε1ε2). It suffices to

show that ε1γ4 = γ2. We have

ε1γ4 = det(π−1ε2, ε2, ε1ε2)π
−1ε1 + det(π−1, ε2, ε1ε2)π

−1ε1ε2

= −det(ε21ε2, ε1ε2, π
−1ε1ε2)π

−1ε1 + det(π−1ε1, ε1ε2, ε
2
1ε2)π

−1ε1ε2

= γ2,

as desired.

We wish to show that ε1 · 1C(γ5,π−1,γ4) = 1C(γ1,π−1,γ2) and ε1 · 1C(γ5,ε2,γ4) =

1C(γ1,ε1ε2,γ2). This means that we need to show that ε1γ5 = γ1 and ε1γ4 = γ2. For
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ε1γ5 = γ1, we have the following calculation:

ε1γ5 = det(π−1, 1, ε2)π
−1 + det(π−1ε−11 , 1, ε2)π

−1ε1

= det(π−1ε1, ε1, ε1ε2)π
−1 + det(π−1, ε1, ε1ε2)π

−1ε1

= γ1,

as desired. For ε1γ4 = γ2, we have the following calculation:

ε1γ4 = det(π−1ε2, ε2, ε1ε2)π
−1ε1 + det(π−1, ε2, ε1ε2)π

−1ε1ε2

= det(π−1ε1ε2, ε1ε2, ε
2
1ε2)π

−1ε1 + det(π−1ε1, ε1ε2, ε
2
1ε2)π

−1ε1ε2

= det(ε1ε2, ε
2
1ε2, π

−1ε1ε2)π
−1ε1 + det(ε1ε2, ε

2
1ε2, π

−1ε1)π
−1ε1ε2

= γ2,

as desired.

All this put together means that we have

− sgn(1, π, πε2)νb,λ,C∗(1,π,πε2)(πOp) + sgn(1, ε2, ε2π)νb,λ,C∗(1,ε2,πε2)(πOp) =

− sgn(1, π, πε2)νb,λ,C∗(π−1,1,ε2)(Op) + sgn(1, ε2, ε2π)νb,λ,C∗(π−1,π−1ε2,ε2)(Op).

Therefore, we have shown the n = 3 case.
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