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Abstract

We generated parietal cortex RNA-seq data from individuals with and without Alzheimer disease 

(AD; ncontrol = 13; nAD = 83) from the Knight-ADRC. Using this and an independent (MSBB) AD 

RNA-seq dataset, we quantified cortical circular RNA (circRNA) expression in the context of AD. 

We identified significant associations between circRNA expression and AD diagnosis, clinical 

dementia severity, and neuropathological severity. We demonstrated that a majority of circRNA 

AD-associations are independent from changes in cognate linear mRNA expression or brain cell-

type proportions. We provided evidence for circRNA expression changes occurring early in pre-

symptomatic AD, and in autosomal dominant AD. We also observed AD-associated circRNAs co-

expressing with known AD genes. Finally, we identified potential microRNA binding sites in AD-

associated circRNAs for microRNAs predicted to target AD genes. Together, these results 

highlight the importance of analyzing non-linear RNAs and support future studies exploring the 

potential roles of circRNAs in AD pathogenesis.

Circular RNAs (circRNAs) are a class of RNAs that result from backsplicing events, in 

which the 3’ ends of transcripts are covalently spliced with the 5’ ends thereby forming 

continuous loops1,2. As RNA sequencing has become widespread, thousands of circRNAs 
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have been identified across eukaryotes3–8. These studies have found circRNAs to be are 

highly expressed in the nervous system and enriched in synapses3,4,8–10. In the brain, 

circRNA expression can occur independently of linear transcript expression8, and may be a 

gene’s most highly expressed isoform3,8,10,11. Brain circRNAs are also regulated during 

development5,10,12 and in response to neuronal excitation8. CircRNAs accumulate in aging 

mouse4 and fly3 brains, possibly due to their lack of free hydroxyl ends conferring resistance 

to exonucleases. Much is still unknown regarding circRNA biology; for example, it was only 

recently demonstrated that circRNAs can be translated in vivo13,14. Thus far, the most well-

established role of circRNAs is in microRNA (miRNA) regulation via sequestration15, 

leading to loss of function.

Alzheimer disease (AD) is a progressive, neurodegenerative disorder and the most common 

cause of dementia, affecting millions worldwide16. AD is neuropathologically characterized 

by the accumulation of amyloid beta plaques and tau inclusions17,18 as well as widespread 

neuronal atrophy which results in dramatic cognitive impairment. Unfortunately, no effective 

preventative, palliative, or curative therapies currently exist for AD.

Previous studies investigating linear transcriptomic (mainly mRNA) differences in the 

context of AD have yielded insight into the pathogenic mechanisms underlying this disease 

as well as potential therapeutic targets19–22. Similar analyses for circRNAs remain 

outstanding, although a single circRNA that regulates specific microRNAs and synaptic 

function23 – CDR1-AS – has been reported to be downregulated in AD brains24. Here, we 

conduct a circular transcriptome-wide analysis of circRNA differential expression in AD 

cases and their correlation with clinical and neuropathological AD severity measures.

RESULTS

Study Design

Our study design included calling and quantifying circRNA counts in two independent 

RNA-seq datasets derived from neuropathologically-confirmed17,25 AD case and control 

brain tissues. In our discovery dataset, we generated 150nt paired-end, rRNA depleted, 

RNA-sequencing (RNA-seq) data from frozen parietal cortex tissue donated by 96 

individuals (13 controls and 83 AD cases). These individuals were assessed at the Knight 

Alzheimer Disease Research Center (Knight ADRC) at Washington University School of 

Medicine and their demographic, clinical severity, and neuropathological information is 

presented in Supplementary Table 1. For replication, we leveraged an independent, publicly-

available Advanced Medicine Partnership for AD: Mount Sinai Brain Bank (MSBB) dataset 

(syn3157743)26. In brief, the MSBB dataset includes 100nt single-end rRNA-depleted RNA-

seq data derived from 195 samples (40 controls, 89 definite AD, 31 probable AD, and 35 

possible AD) of inferior frontal gyrus tissue (Brodmann area (BM) 44) as well as data 

derived from three additional cortical regions (frontal pole (BM10), superior temporal gyrus 

(BM22), and parahippocampal gyrus (BM36)). Demographic, clinical severity, and 

neuropathological information for all individuals in the MSBB dataset, separated by cortical 

region, is presented in Supplementary Tables 2–5.
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We used STAR software27 in chimeric read detection mode to align the reads from both 

RNA-seq datasets to the GENCODE28 annotated human reference genome (GRCh38). 

Chimeric reads were further processed and filtered using DCC software29 to identify 

backsplice junctions. Finally, we collapsed backsplice junction counts onto their linear gene 

of origin to generate a set of high-confidence circRNA counts for downstream analyses 

(ONLINE METHODS). Using this pipeline, we called 3,547 circRNAs in the discovery 

dataset and an average of 3,924 circRNAs in the four regions of the replication dataset 

(Supplementary Table 6). We focused replication analyses primarily on the BM44-derived 

data, as we observed the largest overlap between the circRNAs called in this region and the 

parietal dataset (Supplementary Figure 1), though analyses in the other cortical regions 

yielded similar results.

We performed circRNA differential expression analyses for neuropathological AD case-

control status as well as correlation with AD quantitative traits: Braak score and clinical 

dementia rating at expiration/death (CDR) using DESeq2 software30. Braak score is a 

neuropathological measure of AD severity determined by the number and distribution of 

neurofibrillary tau tangles throughout the brain18. Braak scores range from 0 (absent, at most 

incidental tau tangles) to 6 (severe, extensive tau tangles in neocortical areas). CDR is a 

clinical measure of cognitive impairment with a range from 0 (no dementia) to 3 (severe 

dementia)31. These quantitative measures capture different aspects of the pathological 

mechanisms underlying AD and consequently are not perfectly correlated with each other 

nor AD case status (Supplementary Figure 2). Thus, we analyzed each trait separately, 

modeling the ordinal measures as continuous variables. We adjusted all analyses for post 

mortem interval (PMI), RNA quality as measured by median transcript integrity number 

(TIN)32, age at death (AOD), batch, sex, and genetic ancestry as represented by the first two 

principal components derived from genetic data (ONLINE METHODS). We extended our 

circRNA analyses to pre-symptomatic and autosomal dominant AD (Supplementary Tables 

1–5) to investigate if circRNA expression changes occurred before symptom onset and 

whether these changes were restricted to sporadic AD. Finally, we investigated the AD-

relevance and potential disease-influencing mechanisms of AD-associated circRNAs 

through relative importance, network co-expression, and microRNA binding site prediction 

analyses.

Discovery analysis to identify AD differentially expressed circRNAs

In the circular-transcriptome-wide discovery analysis (nCDR = 96, nBraak = 86, ncontrol = 13, 

nAD = 83), we identified 31 circRNAs significantly correlated with CDR passing a false 

discovery rate (FDR) of 0.05 (Supplementary Table 7). The most significantly correlated 

circRNA, was circHOMER1 (log2 fold change: −0.28 per unit of CDR, p-value: 

8.22×10−12). circCDR1-AS (log2 fold change: 0.17 per unit of CDR, p-value: 3.18 × 10−02) 

was only nominally correlated with CDR, but, in contrast to the previous report24, we 

observed its expression to be upregulated with increasing dementia severity.

We also identified circRNAs significantly associated with the two other complementary AD 

traits: Braak score (nine circRNAs passed FDR, Supplementary Table 8) and 

neuropathological AD versus control status (nine circRNAs passed FDR; Supplementary 
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Table 9). These analyses yielded both AD trait-specific associations as well as circRNAs that 

were consistently associated across all AD traits investigated. Three circRNAs passed FDR 

correction for all three analyses. For example, in addition to the CDR-association, 

circHOMER1 was also significantly associated with Braak score (p-value: 1.19×10−07) and 

AD versus control status (p-value: 2.76×10−06). In general, circRNAs associated with one 

AD trait were also, at least, nominally associated (p-value < 0.05) with the remaining two 

traits. We validated our RNA-seq findings for five circRNAs using an orthogonal qPCR 

approach with 13 discovery dataset RNA samples (ncontrol = 3, nPreSympAD = 3, nAD = 7). 

We demonstrate a strong correlation between RNA-seq-derived counts for the five circRNA 

transcripts and the GAPDH-normalized deltaCt values (median absolute correlation: 0.64, 

Supplementary Figure 3). Importantly, we also observe consistent direction of effect, thereby 

validating our RNA-seq results (Supplementary Figure 3). Altogether, we identified 37 

circRNAs in the discovery analysis of the parietal cortex dataset that were significantly 

associated with at least one AD trait (Supplementary Figure 4).

Replication and meta-analysis of circRNA differential expression using an independent AD 
dataset

We performed replication analyses in the MSBB BM44 dataset (nCDR = 195, nBraak = 188, 

ncontrol = 40, nDefinite AD = 89). Twenty-seven of the 31 circRNAs that were correlated with 

CDR in the discovery dataset also showed, at minimum, a nominal p-value, with the same 

directions of effect and comparable effect sizes (effect size Pearson correlation: 0.97, p-

value: 1.69×10−17, Supplementary Table 10). For example, we replicated decreasing 

circHOMER1 expression with increasing dementia severity (log2 fold change: −0.13 per unit 

of CDR, p-value: 2.27×10−09). A meta-analysis of the discovery and replication results 

revealed a total of 148 circRNAs that were significantly correlated with CDR after FDR 

correction (Supplementary Table 11), with 33 passing the stringent gene-based, Bonferroni 

multiple test correction of 5×10−06 (Table 1), including cirHOMER1 (p-value: 2.21×10−18) 

and circCDR1-AS (p-value: 2.83×10−08).

Similarly, five of the nine circRNAs that were correlated with Braak score in the discovery 

dataset replicated in the MSBB dataset (effect size Pearson correlation: 0.99, p-value: 

9.29×10−06, Supplementary Table 12). A total of 33 circRNAs were significantly associated 

with Braak score after FDR correction in the meta-analysis (Supplementary Table 13). 

Finally, five of nine circRNAs associated with AD case-control status replicated in the 

MSBB dataset (effect size Pearson correlation: 0.99, p-value: 6.12×10−05, Supplementary 

Table 14) and 75 circRNAs associated with AD case-control status after FDR correction 

(Supplementary Table 15) in the meta-analysis.

Overall, we identified 164 circRNAs that were significantly associated with at least one AD 

trait in the meta-analyses (Figure 1). Twenty-eight of these circRNAs, including 

circHOMER1 and circCORO1C, were significantly associated with all three traits 

investigated (Supplementary Figure 5). Nine cross-trait circRNA-associations had p-values 

passing the gene-based stringent threshold of 5×10−06 (Table 1). Altogether, these results 

support a consistent, replicable, and highly significant association between changes in 

circRNA expression and AD traits.
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AD-associated changes in circRNA expression demonstrate independence from AD-
associated changes in their cognate linear mRNAs and AD-associated changes in 
estimated brain cell-type proportions

Circular and their cognate linear mRNAs can demonstrate independent expression8, but 

some level of correlation is expected given the shared genomic origin and biogenesis 

machinery. This correlation is also technically biased because the majority of RNA-seq reads 

covering a circRNA transcript will not contain the circRNA-defining backsplice junction and 

thus be incorrectly counted as originating from a linear mRNA rather than a circRNA 

transcript. For example, linear forms of circCDR1-AS are expressed at such low levels33 that 

they have been historically undetectable23,33. However, we observe ‘linear’ CDR1-AS 

counts in our linear mRNA quantification, consistent with the technical bias. This artifact is 

expected to bias circRNA AD-associations to the null when the relatively less abundant 

circRNAs are included together in the same regression models as their cognate linear 

mRNAs. Nevertheless, we demonstrate that a majority of CDR-associated changes in 

circRNA expression are independent from CDR-associated changes in their cognate linear 

mRNAs using this regression-based approach.

In the meta-analysis of the discovery and replication linear and circRNA combined 

regression results, we observe that 109 of 146 circRNAs retain a significant association (p-

value < 0.05, Supplementary Table 16) with CDR, for example circHOMER1 (p-value: 

3.11×10−06) or circDOCK1 (p-value: 1.65×10−05), demonstrating an independent 

association. In addition, 62 CDR-associated circRNAs had association p-values less than the 

association p-values of their cognate linear mRNA and 78 CDR-associated circRNAs 

explained as much or more of the variation in CDR compared to their cognate linear mRNAs 

(Supplementary Table 16). In a separate analysis, we employ the same regression-based 

approach to demonstrate that most (106 of 148, Supplementary Table 17) CDR-associated 

circRNAs - for example circHOMER1 (p-value: 8.15×10−13) or circDOCK1 (p-value: 

1.03×10−05) - are similarly independent of AD-associated neuronal and other estimated 

brain cell-type proportion changes34 (Supplementary Results). Together, these results 

demonstrate that the majority of AD-circRNA associations are independent of AD-

associated changes in linear mRNA or brain cell-type proportions.

AD-associated changes in circRNA expression are consistent across cortical regions

The MSBB dataset also includes RNA-seq data derived from three additional brain cortical 

regions: BM10 (Supplementary Table 2), BM22 (Supplementary Table 3), and BM36 

(Supplementary Table 4). To determine if AD-associated changes in circRNA expression 

were consistent across the cortex, we performed circular-transcriptome-wide analyses in 

these additional datasets. As before, we investigated for circRNA correlation with CDR 

(Supplementary Tables 18–20) and Braak score (Supplementary Tables 21–23), and 

association with AD case-control status (Supplementary Tables 24–26). We performed three 

sets of meta-analyses with the parietal discovery results, one for each of the additional 

cortical regions: BM10 (Supplementary Tables 27–29), BM22 (Supplementary Tables 30–

32), and BM36 (Supplementary Tables 33–35). We then compared these results with the 

BM44 meta-analysis results to identify consistent AD-associated circRNA expression 

changes.
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We identified 23 circRNAs that were significantly associated with CDR in all four meta-

analyses, with comparable effect sizes and the same directions of effect (overlap p-value: 

1.60×10−94, Supplementary Figure 6A). Similarly, we identified 14 circRNAs that were 

significantly associated with Braak score (overlap p-value: 1.38×10−70, Supplementary 

Figure 6B) and five that were significantly associated with AD case status (overlap p-value: 

3.90×10−26, Supplementary Figure 6C) with consistent directions of effect in all four meta-

analyses. Three circRNAs: circHOMER1, circKCNN2, and circMAN2A1, were 

significantly associated with all three AD traits in all four meta-analyses. Eleven circRNAs 

were associated with the two quantitative AD traits in all four meta-analyses: circDGKB, 
circDNAJC6, circDOCK1, circERBIN, circFMN1, circHOMER1, circKCNN2, 
circMAN2A1, circMAP7, circSLAIN1, and circST18.

The MSBB dataset includes an additional measure of neuropathological severity, mean 

number of amyloid plaques. Results for circRNA correlation with mean number of plaques 

were consistent with the other traits in all MSBB cortical regions (Supplementary Tables 

36–39, Supplementary Figure 7 and Supplementary Results). Together, these results suggest 

that expression changes in some circRNAs are a consistent phenomenon across cortical 

regions in the context of AD.

Evidence supporting circRNA differential expression in pre-symptomatic AD

We investigated for early AD-related changes in circRNA expression in a small number 

(nDiscovery = 6 and nReplication = 6) of individuals with pre-symptomatic AD – i.e., 

neuropathological evidence of AD but, at most, very mild dementia (CDR <= 0.5).

We first compared circRNA expression between pre-symptomatic AD (PreSympAD) versus 

controls (control nDiscovery = 13, control nReplication = 40) in each dataset individually, but 

failed to detect significant circRNA differential expression. Nevertheless, we did identify 

several nominal associations with directions and magnitudes of effect (log2 fold change) 

consistent with those observed in complementary analyses identifying circRNA differential 

expression between symptomatic (CDR >= 1) individuals with AD neuropathology 

(SympAD) versus controls in the BM44 dataset (nSympAD = 137 Supplementary Tables 40), 

but not in the smaller parietal dataset (nSympAD = 77, Supplementary Table 41).

These results suggested that changes in circRNA expression occur in PreSympAD, but we 

had too few individuals to detect this on a transcriptome-wide basis. If this hypothesis is 

correct, then the effect size correlation between nominally PreSympAD-associated 

circRNAs and significantly SympAD-associated circRNAs should be stronger for the 

SympAD-associated circRNAs compared to the background, non-SympAD-associated 

circRNAs. Thus we generated bootstrapped confidence intervals35 for the Pearson 

correlation between effect sizes.

We observed that the bootstrapped effect size correlation coefficient distribution for the 

SympAD-associated circRNAs was significantly higher than the background distribution in 

both the parietal discovery (14 SympAD-associated circRNAs, effect size correlation: 0.67 

[0.43, 0.90] versus 713 background circRNAs, effect size correlation: 0.21 [0.14, 0.29], p-

value: < 2.2×10−16; Figure 2) and the BM44 replication (100 SympAD-associated 
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circRNAs, effect size correlation: 0.78 [0.68, 0.85] versus 1544 background circRNAs, 

effect size correlation: 0.36 [0.31, 0.41], p-value < 2.2×10−16) datasets (Supplementary 

Table 42).

When we extended these analyses to the three other cortical regions of the MSBB dataset 

(Supplementary Tables 43–45), we also observed evidence for pre-symptomatic changes in 

circRNA expression (Supplementary Table 42, p-values: < 2.2×10−16). The SympAD-

associated circRNA effect size correlation distribution width varied by cortical region 

(Supplementary Table 42): BM44 ~ BM36 < BM22 < parietal cortex < BM10, in a sequence 

reminiscent of the observed spatiotemporal progression of AD pathology within the 

cortex18,36. Together, these results support early changes in circRNA expression in multiple 

cortical regions in PreSympAD.

Changes in circRNA expression are more severe in individuals with autosomal dominant 
AD

Autosomal dominant AD (ADAD) is an early-onset form of AD caused by pathogenic 

mutations in APP, PSEN1, or PSEN237. We investigated whether changes in circRNA 

expression also occur in the context of ADAD by generating parietal cortex-derived RNA-

seq data from 21 brains donated by individuals with ADAD who were enrolled in the 

Dominantly Inherited Alzheimer Network (DIAN) study. ADAD participant demographic, 

clinical, and neuropathological data is presented in Supplementary Table 1. We generated 

the ADAD RNA-seq data at the same time as the discovery RNA-seq data and called and 

filtered circRNAs in both datasets simultaneously.

In a circular-transcriptome-wide analysis of circRNA differential expression between ADAD 

(n=21) and discovery dataset controls (n=13), we identified 236 ADAD-associated 

circRNAs that were significant under the FDR threshold (Supplementary Table 46). These 

included almost all (8/9) AD case-control status-associated circRNAs identified in the 

discovery analysis, with consistent direction of effect (Supplementary Figure 8). However, 

the magnitudes of effect were greater in the ADAD versus control analysis (e.g. 

circHOMER1: AD versus control, log2 fold-change: −0.64; ADAD versus control log2 fold-

change: −0.95).

To investigate whether the larger effect size was due to the greater pathological severity in 

the ADAD brains (Supplementary Table 1), we performed a Braak score-adjusted circRNA 

differential expression analysis between ADAD and discovery dataset AD (samples with 

available Braak score: nADAD = 17, nAD = 73). We identified 77 significantly differentially 

expressed circRNAs (Supplementary Table 47) and 59/77 of these were identified in the 

ADAD versus controls analysis (Supplementary Figure 8). As before, these 59 differentially 

expressed circRNAs had consistent directions of effect, and the majority (56/59) had greater 

magnitudes of effect when comparing controls versus AD versus ADAD. Altogether, these 

results demonstrate that changes in circRNA expression also occur in the context of ADAD 

and are more severe in magnitude, even when adjusting for neuropathological severity.
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AD-associated circRNAs explain more of the variation in AD quantitative measures than 
number of APOE4 alleles or estimated neuronal proportion

We performed relative importance analyses38 to assess the contribution of circRNA 

expression to the variation in AD quantitative traits: CDR and Braak score compared to two 

known contributors: number of APOE4 alleles (APOE4) – the most common genetic risk 

factor for AD16 – and the estimated proportion of neurons (EstNeuron)34.

We selected the meta-analysis top 10 most significantly CDR-associated circRNAs for the 

proportion of variation explained analyses. In the discovery dataset (nCDR = 96), these 

circRNAs - included in the same multivariate model as APOE4 and EstNeuron – explained a 

total of 31.1% of the observed variation in CDR (Figure 3A and Supplementary Table 48). 

Our BM44 replication dataset (nCDR = 195) results with the same circRNAs were consistent, 

with the circRNAs explaining a total of 23.8% to the variation in CDR (Figure 3B, 

Supplementary Table 49). In both the discovery and replication datasets, we observed some 

circRNAs individually, and the top 10 circRNAs together, to explain more of the variation in 

CDR compared to APOE4 and EstNeuron (Figure 3A–B). We observed the same pattern 

when assessing the relative contribution of circRNAs to the observed variation in Braak 

score (Supplementary Figure 9 and Supplementary Tables 50–51) and when analyzing the 

other MSBB tissues for contribution of circRNAs to variation in CDR (Supplementary 

Tables 52–54), Braak score (Supplementary Tables 55–57), and mean number of plaques 

(Supplementary Tables 58–61 and Supplementary results). Finally, we also observed that 

circRNAs explain more of the variation in Braak score in individuals with ADAD than 

APOE4 and EstNeuron (Supplementary Table 62 and Supplementary Results).

In addition to the proportion of variation analyses, we also compared the AD predictive 

ability of the same meta-analysis 10 most significant CDR-associated circRNAs to the AD 

predictive ability of baseline models that include number of APOE4 alleles and the 

differential expression covariates. Consistent with the relative importance analyses, we 

found that circRNAs alone provided similar or greater predictive value compared with the 

baseline genetic-demographic models, and even improved the predictive ability when 

combined with the baseline genetic-demographic data (Supplementary Table 63, 

Supplementary Figure 10, and Supplementary Results). Altogether, these results 

demonstrate that circRNA expression is strongly associated with AD quantitative traits and 

contributes significantly to the variation in these AD severity measures.

Differentially expressed circRNAs co-express with AD-relevant genes and pathways

Analyzing circRNA co-expression with linear transcripts provides an opportunity to infer the 

biological and pathological relevance of circRNAs. We computed co-expression networks in 

the discovery parietal dataset (Supplementary Tables 64–65) as well as in each of the 

cortical regions of the MSBB dataset: BM10 (Supplementary Tables 66–67), BM22 

(Supplementary Tables 68–69), BM36 (Supplementary Tables 70–71), and BM44 

(Supplementary Tables 72–73) based on Spearman correlation using MEGENA software39. 

We further calculated the correlation between the eigengenes40 of these networks and CDR.

Dube et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2020 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the parietal dataset, we identified 49 hierarchical co-expression modules that were 

significantly correlated with CDR (Supplementary Table 64) and contained at least one AD-

associated circRNA (Supplementary Table 65). Similarly, in the MSBB BM44 dataset, we 

identified 20 hierarchical co-expression modules that significantly correlated with CDR 

(Supplementary Table 72) and contained at least one AD-associated circRNA 

(Supplementary Table 73). CircHOMER1 expressed in module c1_16 (module correlation 

with CDR, p-value: 5.94×10−04) in the parietal dataset. This module included linear 

transcripts that are significantly enriched for AD pathways (KEGG Alzheimer’s Disease, 

66/156 genes, adjusted p-value: 1.07×10−15) and oxidative phosphorylation-related genes 

(KEGG Oxidative Phosphorylation, 58/115 genes, adjusted p-value: 2.76×10−18). Similarly, 

the AD-associated circRNA, circCORO1C, co-expressed in BM44 dataset module c1_46 

(module correlation with CDR, p-value: 1.52×10−07), which also included the AD genes 

APP and SNCA (Figure 4).

Our MEGENA results in the other cortical regions of the MSBB dataset were consistent 

with AD-associated circRNAs co-expressing with AD-related genes and pathways. For 

example, we observed APP co-expressing with several AD-associated circRNAs 

(Supplementary Table 69) in the BM22 module c1_14 (module correlation with CDR, p-

value: 2.39×10−06). Altogether, these results suggest an important role for circRNAs in AD.

AD-associated circRNAs contain binding sites for microRNAs that potentially regulate AD-
associated pathways and genes

The functional consequences of circRNA expression is an area of active research. While 

recent studies have demonstrated that circRNAs can regulate transcription2 and even be 

translated13,14, their most well-characterized function is in miRNA regulation via 

sequestration2,15. For example, circCDR1-AS contains over 70 binding sites for miR-72,23 

and reducing circCDR1-AS expression results in the downregulation of miR-7 target 

mRNAs2,5,15. However, even a single miRNA binding site on a circRNA appears sufficient 

to regulate miRNA function41.

To identify miRNAs potentially regulated by AD-associated circRNAs, we utilized 

TargetScan70 software42 to predict miRNA binding sites in circRNA sequences 

(Supplementary Tables 74–75). We replicated the previously reported finding of over 70 

miR-7 predicted binding sites in the circCDR1-AS sequence (Supplementary Table 74) and 

predicted binding sites for several intriguing miRNAs in the other AD-associated circRNAs. 

CircATRNL1 contained 18 predicted binding sites for miR-136 (Supplementary Tables 74–

75), an miRNA whose increased expression triggers apoptosis in glioma cells43. 

circHOMER1 contained 5 predicted binding sites for miR-651 (Supplementary Tables 74–

75), which is an miRNA predicted to target the AD-related genes PSEN1 and PSEN242. 

Finally, circCORO1C which we identified as co-expressing with the AD-related genes APP 
and SNCA (Supplementary Table 73) contains two predicted binding sites for miR-105 

(Supplementary Table 74), which is an miRNA predicted to target APP and SNCA42. While 

these bioinformatics results require functional validation in future studies, they suggest that 

some AD-associated circRNAs may exert functional effects through miRNA regulation.
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DISCUSSION

Transcriptional regulation underlies the complexity of the human nervous system, and its 

misregulation can contribute to disease44. Indeed, several studies focused on the linear 

transcriptome have identified co-expression networks and changes in splicing associated 

with AD status19–22. Here, we provide insight into the AD-associated circular transcriptome.

Using two large and independent brain-derived RNA-seq datasets, we establish that changes 

in specific circRNAs are a replicable and highly significant phenomenon in AD. We 

demonstrate that circRNA expression levels are robustly correlated with both 

neuropathological and clinical measures of AD severity, suggesting an important role in the 

disease (Table 1). This role is further supported by evidence for changes in circRNA 

expression in pre-symptomatic AD. The pathological processes underlying AD follow a well 

characterized spatiotemporal progression18 which begins decades before symptom onset. 

Thus, changes in circRNA expression during the pre-symptomatic stage, which we observe 

to occur in a sequence consistent with the known spatiotemporal progression, may directly 

contribute to disease rather than being merely correlated. Our finding that the effect sizes of 

changes in circRNA expression were greater in individuals with the genetically-driven 

ADAD compared to sporadic AD, even after adjusting for neuropathological severity, also 

argues against AD-associated circRNAs being merely correlated with disease. This 

important role is also supported by our network analyses, which demonstrate that AD-

associated circRNAs co-express with genes known to be part of AD causal pathways.

We identify 164 AD-associated circRNAs on meta-analysis and perform network co-

expression and microRNA binding site prediction analyses to infer biological context and 

facilitate the interpretation of our results. For example, circHOMER1, which was 

significantly associated with all three AD traits, co-expressed with linear genes involved in 

AD and oxidative phosphorylation, perhaps suggesting a role for this circRNA in brain 

hypometabolism associated with AD45–47. Brain hypometabolism has also been 

demonstrated in PSEN1 mutation-driven ADAD48,49 and circHOMER1 contains multiple 

predicted bindings sites for miR-651, an miRNA predicted to target PSEN1 and PSEN242. 

Similarly, we identified circCORO1C to co-express with the AD-related genes APP and 

SNCA and further identified the presence of multiple predicted miR-105 binding sites in 

circCORO1C. MiR-105 is predicted to target both APP and SNCA42, suggesting that the co-

expression we observe may be mediated through this microRNA. Importantly, if this and 

other AD-associated circRNAs exert functional effects through miRNA regulation, then 

subtle changes in circRNA expression may have major impacts on downstream gene 

expression.

Our identification of high-confidence circRNA expression is technically limited by the high 

depth of sequencing and large number of samples required to generate sufficient reads for 

calling and stringently filtering backsplice junctions. In addition, circRNAs can only be 

called in ribosomal RNA (rRNA)-depleted RNA-seq datasets which are currently 

uncommon. Our results support the generation of additional AD and control brain rRNA-

depleted RNA-seq datasets. As these datasets become available, it will be important to 

confirm our findings. In particular, our ADAD analyses should be replicated with age-
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matched controls and our PreSympAD findings should be replicated in a larger dataset as 

these are both limitations of our current study. Another limitation of our study is the fact that 

our independent replication dataset is derived from a different cortical region than our 

discovery dataset. Nevertheless, analyzing RNA-seq data from four different cortical regions 

in the MSBB replication dataset allowed us to observe changes in circRNA expression as a 

consistent phenomenon across the cortex in a sequence following the known spatiotemporal 

progression of AD.

Our sensitivity analyses demonstrate that the majority of circRNA AD-associations are 

independent of cognate linear mRNA or cell-type proportion changes associated with AD – 

despite the inherent technical (linear) or biological (cell-type proportion) correlation. 

Nevertheless, the linear-circular technical correlation limits the interpretation of co-

expression modules that include both AD-associated circRNAs and their cognate linear 

mRNAs. In addition, some AD-associated circRNAs may not be independent of their AD-

linear mRNA-associations, but as the biological functions of circRNAs are different, these 

AD-associated circRNAs may still be pathologically relevant. Finally, we observe instances 

where circRNAs rather than their cognate linear mRNAs appear to be driving the association 

with AD. Consequently, circRNA analyses should be conducted alongside traditional linear 

mRNA analyses to test for this possibility in other rRNA-depleted RNA-seq datasets.

Future studies to better understand and functionally characterize AD-associated circRNAs 

may yield novel quantitative trait loci or even biomarkers and therapeutic targets, as has 

been recently demonstrated for acute ischemic stroke41. We observed circRNA expression to 

yield strong predictive ability for AD case status, even in the absence of demographic or 

APOE4 risk factor data. This observation coupled with the relative stability of circRNAs in 

biofluids like CSF and plasma7 and their enrichment in exosomes50 suggests that circRNAs 

will likely have utility as peripheral biomarkers of pre-symptomatic and symptomatic AD 

and potentially other neurodegenerative diseases.

Ethics approval and consent to participate

All research participants contributing clinical, genetic, or tissue samples for analysis in this 

study provided written informed consent, subject to oversight by the Washington University 

in St. Louis or Mount Sinai School of Medicine institutional review boards. All studies 

conducted using Knight ADRC (201105102) and DIAN (201106339) data were approved by 

the Washington University Human Research Protection Office and written informed consent 

was obtained from each participant.

ONLINE METHODS

Code Availability

A description of how all software has been run for this study, including relevant command 

flags, is included in the Online Methods. In addition, the code used for analysis is provided 

in the included Supplementary Software.
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RNA-sequencing

Discovery (Knight ADRC) and Autosomal Dominant AD (DIAN) datasets—We 

generated 151 nucleotide (nt), paired-end, rRNA depleted RNA-sequencing (RNA-seq) data 

from frozen brain parietal cortex tissue. The frozen brain tissues were donated by 

participants in either the prospective Knight Alzheimer’s Disease Research Center (Knight 

ADRC) Memory and Aging Project study at Washington University School of Medicine or 

the Dominantly Inherited Alzheimer’s Network (DIAN) study. All participants consented to 

brain donation and neuropathological analysis. We first disrupted the frozen cortical tissues 

using a TissueLyser LT and purified the RNA from this disrupted tissue using RNeasy Mini 

Kits. (Qiagen, Hilden, Germany). We calculated the RNA Integrity Number (RIN) using a 

RNA 6000 Pico assay on a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA). We 

also quantified the extracted RNA using the Quant-iT RNA assay (Invitrogen, Carlsbad, 

USA) on a Qubit Fluorometer (Fisher Scientific, Waltham, USA). Prior to library 

construction, we introduced External RNA Controls Consortium (ERCC)51 RNA Spike-In 

Mix (Invitrogen, Carlsbad, USA). rRNA depleted cDNA libraries were prepared using a 

TruSeq Stranded Total RNA Sample Prep with Ribo-Zero Gold kit (Illumina, San Diego, 

USA) and sequenced on an Illumina HiSeq 4000 at the McDonnell Genome Institute at 

Washington University in St. Louis. All samples were randomly assigned to a sequencing 

pool prior to sequencing and RNA extraction and sequencing library preparation were 

performed blind to neuropathological case-control status. The average number of raw 

sequencing reads per individual was 58,094,683 (Supplementary Table 6).

Replication Dataset (MSBB)—We downloaded publicly available RNA-seq data from 

the Synapse portal (syn3157743, accessed May 2018) from the Advanced Medicine 

Partnership for AD: Mount Sinai Brain Bank (MSBB) dataset. In short, this dataset was 

generated by sequencing RNA derived from four different cortical regions: frontal pole 

(Brodmann area (BM) 10), superior temporal gyrus (BM22), parahippocampal gyrus 

(BM36) and inferior frontal gyrus tissue (BM44) from 301 individuals. rRNAs was depleted 

using the Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illumina, San Diego, USA). 

Sequencing libraries were prepared using TruSeq RNA Sample Preparation kit v2. From 

these libraries, rRNA-depleted 101nt single-end, and non-stranded RNA-seq data was 

generated via an Illumina HiSeq 2500 (Illumina, San Diego, USA)26. The average number 

of raw sequencing reads per individual was 35,062,514.

Alzheimer Disease Traits

In this study, we investigated differential expression and correlation of circular RNA 

(circRNA) expression in human cortical tissues with Alzheimer Disease (AD) case-control 

status, autosomal dominant Alzheimer Disease (ADAD) case-control status, and two AD 

quantitative traits: clinical dementia rating at expiration/death (CDR) and Braak score.

Case-control status was determined by post-mortem, neuropathological analysis of study 

participant brains following CERAD17 and/or Khachaturian25 criteria. ADAD status was 

determined via pre-mortem sequencing of APP, PSEN1, and PSEN2 genes to identify 

established, pathogenic mutations37. CDR is a clinical measure of cognitive impairment with 

a range from 0 (no dementia) to 3 (severe dementia)31. Braak score is a neuropathological 
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measure of AD severity, as determined by the number and distribution of neurofibrillary tau 

tangles through the brain18. Braak scores range from 0 (absent, at most incidental tau 

tangles) to 6 (severe, extensive tau tangles in neocortical areas). Importantly, the 

neuropathological diagnoses available are based on criteria that require the presence of 

“neuritic” or “senile” plaques and thus individuals with neurofibrillary tau tangles but 

without plaques may still be considered controls. We identified a subset of the AD brains 

that were from individuals with pre-symptomatic or pre-clinical AD. These individuals did 

not have clinically significant dementia (clinical dementia rating <= 0.5, at most, very mild 

dementia) but their brains had evidence of AD neuropathological changes. Finally, the 

MSBB dataset included an additional AD neuropathological quantitative trait, mean amyloid 

plaque number.

Phenotype Processing

Discovery Dataset: Knight ADRC

• We generated genetic ancestry covariates through principal components analysis 

via PLINK v1.9 software52 using previously generated GWAS data. In brief, we 

merged genetic microarray data from the Knight ADRC study participants with 

the HapMap reference panel53, filtered to only include variants with a mean 

allele frequency greater than 5% and a genotype rate greater than 95%, pruned to 

only include those variants that were not in linkage disequilibrium, and used the 

–pca command. We used the first two principal components to represent genetic 

ancestry for downstream analyses. We only included parietal cortex-derived 

samples for differential expression, correlation, and meta- analyses from 

individuals for whom all differential expression analysis covariates (post mortem 

interval (PMI), median transcript integrity number32 (TIN) – a measure of RNA 

quality, age at death (AOD), batch, sex, and genetic ancestry covariates) were 

available.

• We excluded samples from individuals who were neuropathologically classified 

as controls but had mild or worse dementia (CDR >= 1), i.e. demented controls, 

as their dementias can be expected to have non-AD etiologies.

• We excluded four samples as their circular transcriptomic profiles, as measured 

by the first two transcriptomic principal components, were outliers compared to 

the distribution of other parietal region samples.

Replication Dataset: MSBB—We downloaded additional data from the MSBB 

replication dataset, including clinical phenotype and RNA-seq covariates (syn12178045), 

whole genome sequencing (WGS) data (syn10901600), and quality control remapping data 

(syn12178045) from the Synapse portal (accessed, May 2018). We processed this data as 

follows:

• Age at death (AOD) listed as ‘90+’ was reassigned as ‘90’ in order to make the 

variable quantitative.

• Post mortem interval (PMI) was adjusted from minutes to hours in order to 

match the discovery dataset scale.
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• Number of APOE4 alleles was inferred using the WGS data based on the SNP: 

rs429358. After confirming that there existed a high concordance between the 

non-missing number of APOE4 alleles provided in the clinical covariates file and 

this inferred number, we used the inferred number of alleles for all downstream 

analyses as to increase the number of individuals with this data.

• We generated genetic ancestry covariates from the MSBB WGS data through 

principal components analysis via PLINK v1.9 software, as with the discovery 

dataset.

• We assigned missing batch and RIN information to files that had been 

resequenced using information from the original sequencing run, matching the 

two files on the basis of a common barcode.

• Between the originally sequenced and resequenced sample, we selected the 

RNA-seq data with a greater number of mapped reads.

• We excluded individuals and reassigned sample-swap IDs on the basis of 

information provided in the quality control remapping data (syn12178047) file.

• We excluded samples from individuals who were neuropathologically classified 

as controls but had mild or worse dementia (CDR >= 1), i.e. demented controls, 

as their dementias can be expected to have non-AD etiologies.

• We excluded five samples as their circular transcriptomic profiles, as measured 

by the first two transcriptomic principal components, were outliers compared to 

the distribution of other samples from that same cortical region.

• We only included samples for differential expression, correlation, and meta-

analyses from individuals for whom data for all differential expression analysis 

covariates (post mortem interval (PMI), median TIN, age at death (AOD), batch, 

sex, and genetic ancestry covariates) were available.

RNA-seq Data Processing and Alignment

In order to increase detection power, we processed and aligned RNA-seq data derived from 

all available samples in each dataset, not just those from samples that met inclusion criteria 

for downstream analyses. All RNA-seq data processing and alignment was performed blind 

to neuropathological case-control status.

We aligned raw sequencing reads from the discovery RNA-seq dataset to the primary 

assembly of the human reference genome, GRCh38, using STAR v2.5.3a27 in chimeric 

alignment mode using parameters suggested by the documentation of the circRNA calling 

software, DCC29. We first prepared an alignment index with an overhang splice junction 

database overhang of 150 (--sjdbOverhang 150) using the GENCODE v2628 comprehensive 

gene annotation. We then aligned each mate pair individually and together, for a total of 3 

alignments per sample, using the following parameters:

--outSJfilterOverhangMin 15 15 15 15
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--alignSJoverhangMin 15

--alignSJDBoverhangMin 15

--seedSearchStartLmax 30

--outFilterMultimapNmax 20

--outFilterScoreMin 1

--outFilterMatchNmin 1

--outFilterMismatchNmax 2

--chimSegmentMin 15

--chimScoreMin 15

--chimScoreSeparation 10

--chimJunctionOverhangMin 15

The replication MSBB RNA-seq dataset was provided as aligned and unmapped files and 

thus required additional processing prior to alignment. After downloading aligned and 

unmapped files for each sample from the Synapse web portal (syn3157743), we used Picard 

tools’ RevertSam, FastqToSam, and MergeSamFiles (http://broadinstitute.github.io/picard/) 

functions to generate raw, unaligned files. We aligned these generated files as above using 

STAR v2.5.3a but with an alignment index suitable for 101n reads (--sjdbOverhang 100) and 

only once per sample due to its single-ended nature.

For all alignments, we soft-clipped any adapter sequence from the reads based on the 

generic Illumina adapter sequence.

Calling circRNA-defining backsplices

We used DCC software v0.4.429 to detect, annotate, quantify, filter, and call circRNA-

defining backsplices from the chimeric junctions identified during STAR alignment. We 

performed additional filtering following DCC software documentation: backsplice junctions 

were excluded if they were located in repetitive regions of the genome (as defined in the 

UCSC Genome Browser: RepeatMasker and Simple Repeats tables), spanned multiple gene 

annotations, or were located in the mitochondrial chromosome. When analyzing paired-end 

data, DCC software takes into account chimeric junctions identified in both mates 

individually and together to improve sensitivity. DCC software can also assign the circRNA 

strand of origin based on sequence if it is provided with non-stranded data.

For the discovery dataset, we ran DCC in paired-end, stranded mode with the following 

parameters:

-D -R GRCh38_Repeats_simpleRepeats_RepeatMasker.gtf -an 

gencode.v26.primary_assembly.annotation.gtf -Pi -F -M -Nr 1 1 -fg -G -A 

GRCh38.primary_assembly.genome.fa

For the replication dataset, we ran DCC in single-end, non-stranded mode with the following 

parameters:
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-D -N -R GRCh38_Repeats_simpleRepeats_RepeatMasker.gtf -an 

gencode.v26.primary_assembly.annotation.gtf -F -M -Nr 1 1 -fg -G -A 

GRCh38.primary_assembly.genome.fa

We also called backsplices using an additional software package, circRNA_finder3, 

observing an average Pearson correlation of 0.99 between the counts called by the two 

methods. Similar to DCC, circRNA_finder calls backsplices from the chimeric junctions 

identified via STAR, but does not have parameters to adjust for type of RNA-seq data. Due 

to this limitation, the DCC-called backsplices were retained for downstream analyses. 

Backsplice calling was performed blind to neuropathological case-control status.

Filtering and collapsing annotated backsplices to identify high-confidence circRNAs

circRNAs are detected in RNA-seq data by calling backsplices from chimeric junctions. 

Such junctions can form artifactually during library preparation via a template switching 

process54. As these artifactual junctions are formed randomly, filtering called backsplices by 

the number of samples in which they are observed as well as the minimum ratio of linearly-

aligning versus chimerically-aligning reads (circ:linear ratio) at each backsplice junction 

allows for the selection of a high-confidence set of backsplices. In order to empirically 

determine the number of samples and circ:linear ratio filtering thresholds, we called 

artifactual backsplices identified in spiked-in linear (External RNA Controls Consortium) 

ERCC51 RNAs from our discovery dataset. As these spike-in RNAs are linear, backsplices 

identified in ERCC sequences are expected to arise artifactually during the library 

preparation. As before, we aligned the raw sequencing reads using STAR v2.5.3a using the 

same parameters as the discovery dataset but used the ERCC92 fasta and gtf files 

(Invitrogen, Carlsbad, USA) rather than the human reference genome files, in order to 

identify the artifactual junctions. We also used DCC in stranded, paired-end mode, but 

without filtering for human genome annotations. As expected, we were able to detect 

artifactual backsplices in the ERCC spike-in RNA (Supplementary Table 6 and 

Supplementary Figure 11). Based on this data, we selected a highly conservative threshold 

of being observed in at least 3 samples and having a minimum circ:linear ratio of 0.1 for 

inclusion in downstream analyses.

In our discovery, parietal cortex dataset, the majority (5,090/7,450) of the backsplice 

junctions we identified using this calling and filtering approach have been previously 

identified using a different calling algorithm in an independent analysis of healthy parietal 

cortex tissue10,55. After identifying high-confidence backsplice junctions, we collapsed each 

of them on to its annotated linear gene of origin / cognate linear mRNA for downstream 

differential expression and correlation analyses. Backsplices without a linear gene of origin 

annotation were excluded from the analysis. For the MSBB replication dataset circRNA 

calls - which are derived from non-stranded data - we updated the strand and linear gene of 

origin annotation to match that of the stranded parietal dataset, but only if the backsplice 

calls had the same chromosome, start, and end positions.

Overall, we called a total of 3,547 well-supported circRNAs in the discovery dataset and 

4,330 in the larger replication dataset. There were 3,146 well-supported circRNAs common 
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to both the discovery and replication datasets. We visualized the overlap between the 

circRNAs called in each dataset using the Venn tool at: http://bioinformatics.psb.ugent.be/

webtools/Venn/ (Supplementary Figure 1). All circRNA identification was performed blind 

to neuropathological case-control status.

Calling linear transcripts

We called linear transcripts using Salmon software v0.8.256 in quasi-mapping-based 

alignment mode. In short, we generated a quasi-mapping index using the primary assembly 

of the human reference genome, GRCh38, and the GENCODE v2628 comprehensive gene 

annotation. We then quantified the linear transcript expression from the raw, unaligned 

RNA-seq files for both the discovery and replication datasets using the default Salmon 

pipeline parameters. All linear transcript calling was performed blind to neuropathological 

case-control status.

Measuring Transcript Integrity Number

Transcript integrity number (TIN) is measure of RNA quality that is derived from the 

sequencing data and directly measures the degradation of mRNA32. The median TIN score 

for each sample has been demonstrated to have robust concordance with the RNA integrity 

number (RIN) – a commonly used measure of mRNA integrity based on ribosomal RNA 

amounts - in multiple independent RNA-seq datasets. We calculated TIN for representative, 

protein-coding transcripts in each sample using the RSeQC software v2.6.457 in order to 

provide a consistent quality control covariate for our differential expression and correlation 

analyses. In brief, we utilized STAR-aligned RNA-seq data and the representative (annotated 

as “basic”) protein-coding transcript annotations in GENCODE v26 to calculate median TIN 

for each sample in the discovery and replication datasets (Supplementary Table 6).

Differential expression and correlation analyses

We performed differential expression and correlation analyses between the sets of high-

confidence cortical circRNA counts and AD traits using the negative binominal family 

logistic regression and two-tailed statistical Wald test capabilities of DESeq2 v.1.18.130. Our 

analysis approach follows previously published studies that include analyses of circRNA 

differential expression8,10. In general, differential expression analyses assume that the 

background distribution of RNA expression to be equivalent between samples with observed 

differences being attributable to adjustable technical differences (such as sequencing depth / 

library size or RNA quality), adjustable biological differences (such as sex or age of death), 

or finally due to biological traits of interest (such as disease status or severity). Our DESeq2 

analysis approach takes all these factors into account. Prior to performing the logistic 

regression and Wald test, circRNA counts for each sample were normalized on the basis of 

sequencing depth / library size-derived size factor, estimated using circRNA counts from all 

samples derived from the same cortical region. Following this normalization, the samples 

were subsetted as to only include samples for which complete information – including 

differential expression covariate data - was available for the particular AD trait under 

investigation. For example, Braak score was only available for 86/96 participants in the 

discovery dataset and thus the sample size for discovery Braak score circRNA correlation 

analysis was 86. We performed all differential expression and correlation analyses with these 
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subsets, and, in general, adjusted for the following covariates: post mortem interval (PMI), 

median TIN, age at death (AOD), batch, sex, and genetic ancestry - represented by the first 

two principal components derived from genetic data. Importantly, restricting the discovery 

analysis to only individuals of European genetic ancestry, i.e. dropping the 6 black 

individuals (5 AD cases and 1 control), yielded consistent results (effect size, Pearson 

correlation for CDR-associated circRNAs in the European-only vs. original discovery 

analysis: 0.94). We did not adjust the analyses that included ADAD samples for AOD. 

ADAD is early-onset37 and ADAD brains were donated by individuals who had a younger 

AOD compared to both control and AD participants (Supplementary Table 1), rendering 

AOD collinear with status. In addition, as GWAS data to calculate genetic ancestry 

covariates was unavailable for ADAD samples, we substituted self-reported ethnicity for 

genetic ancestry covariates in all analyses that included ADAD samples. We restricted 

analyses to only include samples for which complete information for all included differential 

expression covariates was available. We set a statistical significance false discovery rate 

(FDR) threshold of 0.05 and present uncorrected p-values, noting if they pass FDR 

correction. DESeq2 software automatically filters out circRNAs with low expression prior to 

statistical analyses.

In our discovery and ADAD datasets, we used this approach to investigate for cortical 

circRNAs that are significantly differentially expressed between AD versus controls and 

ADAD versus controls. We also investigated for cortical circRNAs that are significantly 

differentially expressed between ADAD versus AD, adjusting for neuropathological severity 

as measured by Braak score. We investigated for cortical circRNAs that were significantly 

correlated with CDR and similarly, investigated for circRNAs that were significantly 

correlated with Braak score in the discovery dataset samples for which these AD traits were 

available. To replicate these findings, we performed similar analyses in the MSBB datasets. 

We selected BM44 to be our primary replication dataset, but performed the analyses in all 

cortical regions separately. We investigated for differential cortical circRNA expression 

between definite AD versus control status, significant correlation between CDR and cortical 

circRNA expression, and significant correlation between Braak score and cortical circRNA 

expression. Finally, we performed analyses to investigate for significant correlations 

between circRNAs and mean number of plaques in the MSBB dataset. With the exception of 

invalid statistical models due to collinearity between the quality control metric and the 

particular AD trait under investigation, substituting median TIN or RIN quality control 

metrics, yielded similar differential expression and correlation results. For example, the 

effect size Pearson correlation for the 31 discovery analysis CDR-associated circRNAs 

obtained after substituting RIN for TIN is 0.99 (p-value: 5.43×10−26).

Validating RNA-seq Counts and Direction of Effect via Quantitative PCR

We designed divergent primers to the backsplice junction of circHOMER1 (Forward 5’- 

TTTGGAAGACATGAGCTCGA −3’; Reverse 5’- AAGGGCTGAACCAACTCAGA −3’), 

circKCNN2 (Forward 5’- GACTGTCCGAGCTTGTGAAA −3’; Reverse 5’- 

GGCCGTCCATGTGAATGTAT −3’), circMAN2A1 (Forward 5’- 

TGAAAGAAGACTCACGGAGGA −3’; Reverse 5’- TAGCAAACGCTCCAAATGGT 

−3’), circICA1 (Forward 5’- TTGATGATTTGGGGAGAAGG −3’; Reverse 5’- 
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TGGATGAAGGACGTGTCTCA −3’), circFMN1 (Forward 5’- 

GGTGGCTATGCAGAGAAAGC −3’; Reverse 5’- CAGGGAAGACCACAGCTGAG −3’), 

circRNA transcripts based on circRNA fasta sequences extracted via the getcircfasta.py 

script provided with DCC software29. Divergent primers face outwards - as opposed to 

inward facing, typical primers – and as a result they will only produce a PCR product if 

there exists a backsplice junction formed via circularization of a transcript or rarely by 

tandem exon duplication1. We confirmed that these primers were divergent through in silico 
PCR (https://genome.ucsc.edu/cgi-bin/hgPcr) and confirmed that the amplication efficiency 

of each divergent primer pair was suitable for quantitative PCR (qPCR). We then selected 13 

parietal cortex-derived RNA samples from individuals in the discovery study (3 controls, 3 

PreSympAD, and 7 AD) to generate GAPDH-normalized (Forward 5’- 

TGCACCACCAACTGCTTAGC −3’; Reverse 5’- GCCATGGACTGTGGTCATGAG −3’) 

expression values to correlate with our RNA-seq-derived counts. We generated cDNA from 

the RNA samples using SuperScript VILO cDNA synthesis kit (Invitrogen) following the 

manufacturer’s recommended protocol. With this cDNA, we performed the qPCR 

experiment using PowerUp SYBR Green Master Mix (Applied Biosystems) on a 

QuantStudio 12K Flex Real-Time PCR System. We calculated the relative expression 

following the standard DeltaDeltaCt method. In brief, we averaged the triplicate readings of 

Ct for each primer pair and subtracted the average linear GAPDH Ct from the average 

circRNA Ct to calculate DeltaCt. We further calculated the DeltaDeltaCt of each circRNA 

by subtracting the average control (n=3) DeltaCt for each primer from the DeltaCts. Finally, 

we generated relative expression using the following formula: Relative Expression = 2−ΔΔCt.

Meta-analyses and Overlap calculations

We performed meta-analyses of the cortical circRNA differential expression and correlation 

discovery and replication results using the metaRNA-seq R package v1.0.2. We chose to 

combine the p-values of the circRNAs common to both replication and discovery results 

using the inverse/Stouffer method due to the differences in sample size between the datasets. 

As before, we set a statistical significance threshold and false discovery rate (FDR) 

threshold of 0.05 and present uncorrected p-values, noting if they pass FDR correction. We 

visualized the results of our meta-analyses using the CMplot R package v3.3.1.

We visualized overlap between meta-analysis results using the VennDiagram R package 

v1.6.20 and calculated significance of overlap using the SuperExactTest R package V 1.0.0, 

which reports one-tailed p-values58.

Independence of Circular versus Cognate Linear RNA AD-Associations or AD-Associated 
Changes in Estimated Brain Cell-type Proportions via Regression-Based Analyses

To demonstrate the independence of circular versus their cognate linear mRNA AD-

associations, we included library-size normalized counts for the CDR-associated circRNAs 

and their cognate linear mRNAs in the same regression models predicting CDR. The 

regression models also included the differential expression covariates: PMI, median TIN, 

AOD, batch, sex, and genetic ancestry. Given the fact that circRNA expression levels are 

lower than their cognate linear mRNA expression levels, and the majority of RNA-

sequencing reads covering a circRNA will not include the backsplice (thereby inflating the 
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cognate linear mRNA counts); we consider circRNAs to demonstrate an independent 

association with CDR if they retain a significant (p-value < 0.05) association in the 

combined regression model. We perform these regression analyses for the CDR-associated 

circRNAs in both the discovery and replication datasets and combine the results using a 

fixed effects meta-analysis. In addition, we calculate the proportion of variation in CDR 

explained by circRNAs versus their cognate linear mRNAs38 and present the average 

proportion of variation explained in the two datasets. Two of 148 meta-analysis, CDR-

associated circRNAs did not have a cognate linear RNA and were excluded from these 

analyses.

We demonstrated the independence of circRNA AD-associations from AD-associated 

changes in brain cell-type proportions using a similar regression-based approach. We 

included library-size normalized counts for the CDR-associated circRNAs and 

computationally-deconvoluted34 estimated proportions of neurons, oligodendrocytes, and 

microglia. We did not include the deconvoluted estimated astrocyte proportion to avoid 

multicollinearity and also because we have previously reported that astrocyte and neuron 

estimated proportions are strongly inversely correlated34. AD-associated circRNAs that 

retained a significant (p-value < 0.05) association in these combined models are considered 

independent. We perform these regression analyses for all 148 CDR-associated circRNAs in 

both the discovery and replication datasets and combine the results using a fixed effects 

meta-analysis.

Pre-symptomatic AD Bootstrapped Correlation Coefficient Analyses

In our discovery and replication datasets, a small number of individuals with pre-

symptomatic AD (PreSympAD) – i.e., neuropathological evidence of AD but, at most, very 

mild dementia (CDR <= 0.5) were included. We investigated if changes in expression in the 

PreSympAD brains were similar to the changes observed in symptomatic AD (SympAD) – 

i.e., neuropathological evidence of AD and dementia (CDR >= 1).

We first performed a cortical circRNA differential expression analysis between SympAD 

versus controls and then between PreSympAD versus controls, using the same methods as 

described above. Then, for all circRNAs that were not automatically filtered out by DESeq2 

due to low expression, we calculated the correlation between the log2 fold change (log2FC, 

effect size) observed in the PreSympAD analysis and the log2FC observed in the SympAD 

analysis. If the SympAD versus control brain differentially expressed circRNAs demonstrate 

similar changes in expression in the PreSympAD, we expect the correlation between the 

log2FC values for these circRNAs to be stronger than those from the non-significant, 

background circRNAs. We tested this by performing 10,000 bootstrap simulations to 

identify a bias corrected and accelerated35 95% confidence interval for the two log2FC 

correlation coefficients – one for the SympAD-associated circRNAs and the other for the 

non-significant, background circRNAs. We generated p-values for the significantly 

associated distribution being higher than the background distribution using a one-tailed 

Kolmogorov–Smirnov test. We performed this analysis in the discovery dataset and in all 

cortical regions in the replication dataset to assess for regional differences in circRNA 
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expression changes in PreSympAD. Bootstrap correlation coefficients and confidence 

intervals were generated using the boot R package V1.3–20.

Receiver Operating Characteristic (ROC) curve and Area under the curve (AUC) analyses

To evaluate the predictive ability of AD-associated circRNAs, we calculated logistic 

regression models predicting AD case status in both the discovery and replication datasets. 

We subsetted each dataset as to only include definite AD cases and controls and calculated 

three models. The first model (base) included the following as covariates: PMI, median TIN, 

AOD, batch, sex, genetic ancestry, and number of APOE4 alleles. The second model (circ) 

included the top 10 most significantly CDR-associated circRNAs from the meta-analysis. 

The third model (base+circ) combined the variables of the first two models together. We 

calculated ROC curves and AUCs using the R package pROC V1.12.1.

Relative importance analyses

The number of APOE4 alleles – the most common genetic risk factor for AD16 – and the 

estimated proportion of neurons34 are known to contribute to the observed variation in AD 

quantitative traits like CDR and Braak score. We assessed the relative importance of 

circRNA expression compared to these known contributors using the relaimpo R package, 

v2.2.338. To do this, we first selected the library-size normalized counts of the top 10 most 

significant AD-trait associated circRNAs and adjusted them for the same covariates used in 

the differential expression analyses: PMI, median TIN, AOD, batch, sex, and genetic 

ancestry. We then included these normalized, adjusted counts, first individually and then 

together in a multivariate model, with number of APOE4 alleles and estimated neuronal 

proportion in the same linear regression model predicting either CDR or Braak score, or 

mean number of plaques (only available in the replication MSBB dataset). We assessed the 

relative contribution of each of the model variables to the variation in the predicted AD 

quantitative trait using the lmg method of the relaimpo package. Thus, we measured the 

contribution of each of the top 10 most meta-analysis significant circRNAs compared to 

number of APOE4 alleles and estimated neuronal proportion both individually and when 

included together in the same model. We conducted these analyses in both the discovery 

dataset as well as all 4 cortical regions in the replication dataset, selecting the top 10 most 

meta-analysis significant circRNAs from each region-specific meta-analysis.

Network Co-expression Analyses

We computed circRNA and protein-coding linear transcript co-expression networks from 

AD and control samples in order to infer the biological and pathological relevance of 

circRNAs based on the linear transcripts they co-expressed with. We first adjusted library 

size-normalized, circRNA and linear transcript counts, from the same samples, for the 

differential-expression analyses covariates – PMI, median TIN, AOD, batch, sex, and 

genetic ancestry – and then combined them together. We included all circRNAs and the top 

10,000 most variable protein-coding linear transcripts to reduce computational burden. We 

computed gene co-expression networks from these combined counts based on Spearman 

correlation using multiscale embedded gene co-expression network analysis (MEGENA, 

v1.3.639). Briefly, this method leverages planar maximally filtered graph techniques to 

identify compact gene expression networks and has been independently demonstrated to 
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have high module conservation with, and to identify more modules than the older WGCNA 

method59. Importantly, this method identifies hierarchical networks with submodules 

existing within larger parent modules, when possible. As such the same linear transcript or 

circRNA may be assigned to multiple modules. Following module identification, we 

calculated each modules’ eigengene using the WGCNA R package v1.6340. To identify 

significant associations between modules and CDR, we performed two-tailed, p-value 

generating regression analyses between the module eigengenes and CDR adjusting for the 

differential expression covariates. Significance of the module eigengene association with 

CDR was determined using a two-tailed t-test. We identified significant gene enrichment and 

pathway associations for each module by extracting the linear transcript module members 

and processing them through the FUMA software’s hypergeometric – one-tailed – test60, 

with protein coding genes as the background gene list. Finally, we visualized networks using 

the igraph R package v1.2.1.

MicroRNA Binding Site Prediction

We generated a fasta file of circRNA sequences using the getcircfasta.py script provided 

with DCC software29. We predicted microRNA (miRNA) binding sites in these circRNA 

sequences using the targetscan_70.pl script provided with the TargetScan70 database42, 

March 2018 release. When multiple isoforms of the same circRNA were predicted to have 

different number of binding sites for the same miRNA, we selected the greatest number of 

predicted binding sites to present at the gene-level. We identified predicted targets of 

miRNA regulation from the March 2018 release of the TargetScanHuman database42.

Statistical Analysis

We tested for differential expression of circRNAs using DESeq2 v.1.18.130 to perform 

negative binominal family logistic regressions and a two-tailed Wald test to determine 

significance. We tested for circRNA association effect size correlations using Pearson 

correlation with significance determined by a two-tailed t-test. We demonstrated the 

independence of circRNA AD-associations from AD-associated changes in cognate linear 

mRNAs or AD-associated changes in estimated brain cell type proportions using linear 

regression analyses with significance determined by two-tailed t-tests. We calculated one-

tailed p-values for the significance of overlap between different sets of differentially 

expressed circRNAs using the SuperExactTest R package V 1.0.058. We calculated whether 

bootstrapped effect size correlation distributions between SympAD-associated circRNAs 

was greater than the background distribution using a one-tailed Kolmogorov-Smirnov test. 

We calculated the proportion of variation in quantitative AD traits explained by circRNAs 

and other contributors using linear regression followed by relative importance analysis done 

using the relaimpo R package, v2.2.338. We generated circRNA and linear mRNA co-

expression network modules based on Spearmann correlation using MEGENA, v1.3.639. We 

calculated module eigengenes and determined their association with CDR using linear 

regression with significance determined by two-tailed t-tests. Co-expression module 

enrichment for AD-related pathways was determined using a one-tailed hypergeometric test 

performed by FUMA software60. For parametric tests, data distribution was assumed to be 

normal but this was not formally tested. All statistical analysis was done using R statistical 

software61.
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A Life Sciences Reporting Summary for our manuscript is available.

Data Availability

Knight ADRC dataset - NG00083 (https://www.niagads.org/datasets/ng00083)

Sequencing information derived from ADAD samples is protected and requires additional 

authorization from DIAN for access.

Mount Sinai Brain Bank, replication dataset: https://www.synapse.org/#!

Synapse:syn3159438

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Cortical circRNAs are associated with AD traits.
Each circular Manhattan plot presents the results from a meta-analysis of circRNA AD-

association results from discovery (parietal cortex) and replication (inferior frontal gyrus 

(Brodmann Area 44)) datasets. In order from outermost to innermost circular plot, the AD 

traits include: clinical dementia rating at expiration/death (CDR), Braak neuropathological 

severity score, and AD case-control status (AD case). Study-wide significance threshold is 

based on a false discovery rate of 0.05 and depicted by the red, dashed line. circRNAs that 

passed this threshold are displayed with star symbols. Lines extending through all three plots 
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identify circRNAs that are significantly associated with multiple AD traits – dotted line: 2 

traits; solid line: 3 traits.
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Figure 2: Changes in cortical circRNA expression tracks with AD clinical severity.
Presented are boxplots of library-size normalized, differential expression covariate-adjusted 

counts for two AD-associated circRNAs: circHOMER1 and circCORO1C in the Knight 

ADRC parietal dataset. AD: Alzheimer disease. PreSympAD (Pre-symptomatic AD: 

neuropathological evidence of AD but, at most, very mild dementia (Clinical dementia 

rating <= 0.5). Box plot elements: center line (median), box (first and third quartiles), 

whiskers (quartile ± 1.5×interquartile range), dots (outlier points as defined by falling 

outside of whiskers).
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Figure 3: AD-associated circRNAs explain more of the observed variation in clinical dementia 
rating compared to number of APOE4 alleles or the estimated proportion of neurons.
Percent of variation in clinical dementia rating (CDR) explained by the top 10, most meta-

analysis significant CDR-associated circRNAs compared to two known contributors number 

of APOE4 alleles – the most common genetic risk factor for AD – and the estimated 

proportion of neurons. Knight ADRC: PCtx – parietal discovery dataset (nCDR = 96); MSBB 

BM44 – inferior frontal gyrus replication dataset (nCDR = 195).
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Figure 4: AD-associated circRNAs co-express with AD-relevant genes.
Spearman correlation-based network co-expression module c1_46 (module association with 

clinical dementia rating (CDR), p-value: 1.52×10−07) in the MSBB BM44 dataset (n = 195). 

Module association with CDR was determined from a multivariate linear regression with 

module eigengene and differential expression covariates. Significance of the module 

eigengene association with CDR was determined using a two-tailed t-test. KEGG, Kyoto 

Encyclopedia of Genes and Genomes.
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Table 1 |

Cortical circRNAs are significantly associated with AD case status, dementia severity, and neuropathological 

severity

CDR - Discovery CDR - Replication Meta-Analysis

circRNA Chr log2FC p-value log2FC p-value CDR p-value Braak p-value AD Case p-value

circHOMER1 5 −0.28 8.22×10−12 −0.13 2.27×10−09 2.21×10−18 4.77×10−12 4.35×10−10

circDOCK1 10 0.30 8.49×10−06 0.20 7.55×10−08 6.47×10−12 8.68×10−07 3.74×10−06

circKCNN2 5 −0.12 7.27×10−04 −0.12 1.93×10−09 1.47×10−11 4.43×10−08 8.38×10−08

circMAN2A1 5 0.23 2.46×10−04 0.17 2.92×10−07 5.59×10−10 1.25×10−06 3.75×10−09

circST18 8 0.37 1.27×10−04 0.28 6.60×10−07 6.80×10−10 7.30×10−06 1.22×10−09

circATRNL1 10 −0.13 2.42×10−03 −0.13 4.15×10−08 9.47×10−10 4.26×10−05 2.73×10−06

circEXOSC1 10 0.14 3.66×10−02 0.18 8.13×10−09 7.92×10−09 6.22×10−05 1.27×10−06

circICA1 7 −0.16 7.40×10−05 −0.11 2.33×10−05 1.77×10−08 3.43×10−02 2.08×10−06

circFMN1 15 −0.16 1.01×10−04 −0.11 2.13×10−05 2.07×10−08 2.12×10−06 3.79×10−06

circRTN4 2 0.14 8.36×10−03 0.13 2.72×10−07 2.18×10−08 6.96×10−08 4.81×10−09

circCDR1-AS 23 0.17 3.18×10−02 0.19 4.90×10−08 2.83×10−08 1.54×10−03 5.29×10−12

circMAP7 6 0.17 1.83×10−05 0.10 1.66×10−04 5.51×10−08 1.07×10−06 5.41×10−08

circTTLL7 1 0.18 2.59×10−03 0.16 3.42×10−06 6.18×10−08 1.22×10−06 1.07×10−07

circFANCL 2 0.21 9.12×10−03 0.15 9.88×10−07 7.65×10−08 1.75×10−03 1.11×10−03

circEPB41L5 2 −0.13 1.12×10−03 −0.09 1.02×10−05 7.84×10−08 1.71×10−05 2.67×10−04

circCORO1C 12 0.12 7.19×10−04 0.11 2.20×10−05 1.14×10−07 7.97×10−06 2.45×10−07

circDGKI 7 −0.12 3.86×10−02 −0.14 2.42×10−07 1.41×10−07 3.78×10−03 1.05×10−03

circKATNAL2 18 −0.14 2.39×10−02 −0.21 5.78×10−07 1.55×10−07 2.11×10−03 8.74×10−05

circWDR78 1 0.14 5.84×10−04 0.11 3.59×10−05 1.57×10−07 2.62×10−04 2.95×10−05

circADGRB3 6 −0.07 1.10×10−02 −0.07 2.20×10−06 1.94×10−07 5.97×10−03 1.47×10−03

circPLEKHM3 2 −0.19 6.13×10−06 −0.10 1.00×10−03 2.32×10−07 3.77×10−04 4.13×10−06

circERBIN 5 0.25 1.34×10−03 0.17 2.92×10−05 2.67×10−07 2.42×10−04 1.20×10−05

circPICALM 11 0.07 1.29×10−02 0.08 4.63×10−06 4.54×10−07 3.12×10−06 3.35×10−08

circRNASEH2B 13 0.20 3.57×10−03 0.14 3.13×10−05 7.11×10−07 1.72×10−03 4.63×10−03

circPDE4B 1 −0.13 5.84×10−03 −0.11 1.98×10−05 7.47×10−07 1.94×10−03 5.33×10−05

circPHC3 3 0.16 7.43×10−04 0.11 1.40×10−04 7.99×10−07 2.09×10−02 1.01×10−02

circFAT3 11 −0.23 4.75×10−03 −0.21 3.11×10−05 9.31×10−07 8.21×10−03 2.04×10−04

circMLIP 6 −0.08 5.75×10−02 −0.10 3.41×10−06 2.24×10−06 7.22×10−06 2.71×10−07

circLPAR1 9 0.17 2.17×10−02 0.20 1.72×10−05 2.68×10−06 1.49×10−03 4.58×10−06

circSLAIN2 4 0.14 5.25×10−04 0.12 5.62×10−04 2.70×10−06 2.51×10−02 2.63×10−05

circSPHKAP 2 −0.39 1.48×10−03 −0.27 3.16×10−04 3.32×10−06 2.88×10−02 2.44×10−01

circYY1AP1 1 0.20 4.47×10−04 0.11 9.71×10−04 4.40×10−06 1.83×10−04 1.15×10−03

circDNAJC6 1 0.16 6.63×10−03 0.11 1.27×10−04 4.99×10−06 2.04×10−05 8.21×10−06

circRNA association with AD traits in the discovery Knight ADRC parietal dataset, replication MSBB Brodmann Area 44 (BM44) dataset, and 
meta-analyses. Presented are the log2 fold changes (log2FC) and p-values generated via a Wald-log test for the discovery (nCDR = 96) and 

replication (nCDR = 195) analyses and the inverse/Stouffer’s method combined p-values for the meta-analyses. Discovery and replication analyses 
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were adjusted for post-mortem interval, RNA quality (median transcript integrity number), age at death, batch, sex, and genetic ancestry (principal 
components 1–2). Braak, Braak score; CDR, clinical dementia rating at expiration/death; Chr, chromosome.
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