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ABSTRACT OF THE DISSERTATION

Building Distributed Systems with Non-Volatile Main Memories and RDMA Networks

by

Jian Yang

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Steven Swanson, Chair

High-performance, byte-addressable non-volatile main memories (NVMMs) allow applica-

tion developers to combine storage and memory into a single layer. These high-performance storage

systems would be especially useful in large-scale data center environments where data is distributed

and replicated across multiple servers.

Unfortunately, existing approaches of providing remote storage access rest on the assumption

that storage is slow, so the cost of the software and protocols is acceptable. Such assumption no

longer holds for the fast NVMM. As a result, taking full advantage of NVMMs’ potential will

require changes in system software and networking protocol.

This thesis focuses on accessing remote NVMM efficiently using remote direct memory

xiii



access (RDMA) network. RDMA enables a client to directly access memory on a remote machine

without involving its local CPU.

This thesis first presents Mojim, a system that provides replicated, reliable, and highly-

available NVMM as an operating system service. Applications can access data in Mojim using

normal load and store instructions while controlling when and how updates propagate to replicas

using system calls. Our evaluation shows Mojim adds little overhead to the un-replicated system

and provides 0.4 to 2.7× the throughput of the un-replicated system.

This thesis then presents Orion, a distributed file system designed from for NVMM and

RDMA networks. Traditional distributed file systems are designed for slower hard drives. These

slower media incentivizes complex optimizations (e.g., queuing, striping, and batching) around

disk accesses. Orion combines file system functions and network operations into a single layer. It

provides low latency metadata accesses and outperforms existing distributed file systems by a large

margin.

Finally, an NVMM application can map files backed by an NVMM file system into its

address space, and accesses them using CPU instructions. In this case, RDMA and NVMM

file systems introduce duplication of effort on permissions, naming, and address translation. We

introduce two changes to the existing RDMA protocol: the file memory region (FileMR) and range

based address translation. By eliminating redundant translations, FileMR minimizes the number

of translations done at the NIC, reducing the load on the NIC’s translation cache and resulting in

application performance improvement by 1.8× - 2.0×.
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Chapter 1

Introduction

Over the past decades, the increasing capacity of DRAM and the prevalence of NAND

flash-based solid state drive (SSDs) revolutionized the design of data center applications. The

emerging non-volatile memories (NVMs) such as spin-transfer torque, phase change, resistive

memories [31, 55, 82], and Intel and Micro’s 3D XPoint [69] technology will offer a storage class

that further dramatic increases the storage system performance. These new types of memory provide

performance characteristics comparable to DRAM and vastly faster than either hard drives or SSDs.

They blur the line between storage and memory, forcing system designers to rethink how volatile

and non-volatile data interact and how to manage non-volatile memories as reliable storage.

The appearance of these non-volatile memories on the processor’s memory bus will offer an

abrupt and dramatic increase in storage system performance. These non-volatile main memories

(NVMM) can communicate directly with a processor’s memory controller and offer the opportunity

to build low-latency storage systems by providing “byte-addressable” storage that survives power

outages.

Taking full advantage of NVMMs’ potential will require changes in system software [7].

The need for such changes is especially acute in large-scale data center environments where storage

systems require more than simple non-volatility. These environments demand reliability, availability

and scalability.

1



When accessing NVMM remotely, media access performance is no longer the primary

determiner of performance. Instead, network performance, software overhead, and data placement

all play central roles. Consequently, the traditional ways of accessing remote storage squander

NVMM performance — the previously negligible inefficiencies quickly become the dominant

source of delay.

This thesis focuses on using Remote Direct Memory Access (RDMA) to build systems

that enable low latency remote NVMM accesses by reducing software and networking overhead.

RDMA is a networking protocol that allows a node to perform one-sided read/write operations

from/to memory on a remote node on pre-registered memory regions. RDMA has become popular

in building memory-intensive applications [3,49,50,51,70,75,90,94,103,104] as it offloads most of

the networking stack onto hardware and provides close-to-hardware abstractions, exhibiting much

better latency compared to heavier protocols like TCP/IP.

This thesis first studies the case of using RDMA to provide reliability and availability to

NVMM. Without this reliability and availability, NVMM will only be suitable as a transient data

store or as a caching layer—it will not be able to serve as a reliable primary storage medium.

Traditionally, data center environments use replication [14,26,34,101,105] or erasure coding

schemes [40, 41] to recover from hardware, software, and network failures. These approaches rest

on the assumption that storage is slow, so the cost of the network and software protocols required to

implement replications is acceptable.

NVMM will change this situation completely, since the networking and software overhead

of existing replication mechanisms will squander the low latency that NVMM can provide. The

interface with NVMM is also different from traditional storage: applications access NVMM directly

with fine-grained memory operations.

We propose Mojim, a system that provides replicated, reliable, and highly-available NVMM

as an operating system service. Applications can access data in Mojim using normal load and

store instructions while controlling when and how updates propagate to replicas using system calls.

Mojim allows applications to build data persistence abstractions ranging from simple log-based

2



systems to complex transactions.

This thesis next studies the case of using NVMM and RDMA to build distributed file

systems. Scalable, enterprise NVMM-based systems will demand distributed access to NVMMs.

File systems are a convenient way to access NVMM because it provides naming and isolation

while allows user applications use both traditional I/O interface or memory map to access file data.

Several NVMM-based file systems have been proposed [21, 27, 29, 111, 112].

For distributed file system on NVMM, the issue of software overhead also applies: disk-

based, distributed storage systems provide scalable access to distributed and replicated data, but

their large software and network overheads obscure the benefits that NVMM should offer. As such,

most distributed file systems have used two-layer designs that divide the network and storage layers

into separate modules. Two-layer designs trade efficiency for ease of implementation. Designers can

build a user-level daemon that stitches together off-the-shelf networking packages and a local file

system into a distributed file system. While expedient, this approach results in duplicated metadata,

excessive copying, unnecessary event handling, and places userspace protection barriers on the

critical path.

Additionally, the conventional balance between network and storage speed has wider impli-

cations as well. If storage is inherently slow, accessing it remotely is not a significant cost, especially

on data center networking with high bandwidth. So, running a distributed file system on a dedicated

set of nodes rather than co-locating the file system with applications does not hurt the performance.

Additionally, techniques such as queuing and striping can effectively improve the overall throughput

of a distributed file system. However, they do not provide substantial benefits when applying on

NVMM.

We present Orion, a distributed file system designed from the ground up for NVMM and

RDMA networks. While other distributed systems [65, 90] have integrated NVMMs, Orion is the

first distributed file system to systematically optimize for NVMMs throughout its design.

Orion merges the network and storage functions into a single, kernel-resident layer optimized

for RDMA and NVMM that handles data, metadata, and network access. This decision allows Orion

3



to explore new mechanisms to simplify operations and scale performance.

Consequently, the location of stored data is a crucial performance concern for Orion. This

concern is an important difference between Orion and traditional block-based designs that generally

distinguish between client nodes and a pool of centralized storage nodes [24, 89]. Pooling makes

sense for block devices, since access latency is determined by storage, rather than network latency,

and a pool of storage nodes simplifies system administration. However, the speed of NVMMs

makes a storage pool inefficient, so Orion optimizes for locality. To encourage local accesses, Orion

migrates durable data to the client whenever possible and uses a novel delegated allocation scheme

to manage free space efficiently.

Finally, This thesis studies the conflicting metadata management between NVMM and

RDMA, which causes expensive translation overhead for userspace remote NVMM accesses.

Local NVMM applications can map a file into their address space then access it using

normal loads and stores, drastically reducing the latency for access to persistent data. Ideally,

we could combine NVMM and RDMA into a unified network-attached persistent memory to

perform remote NVMM access without trapping into the operating system. Unfortunately, NVM

file systems and the RDMA network protocol were not designed to work together. As a result, there

are many redundancies, particularly where the systems overlap in memory. Only RDMA provides

network data transfer and only the NVMM file system provides persistent memory metadata, but

both systems implement protection, address translation, naming, and allocation across different

abstractions: for RDMA, memory regions, and for NVMM file systems, files. Naively using RDMA

and NVMM file systems together results in a duplication of effort and inefficient translation layers

between their abstractions. These translation layers are expensive, especially since RNICs can only

store translations for limited amount of memory while NVM capacity can be extremely large.

Both Mojim and Orion circumvent this issue by letting the operating system perform

networking requests. This thesis introduces a new abstraction to the RDMA protocol, called a

file memory region (FileMR). FileMR combines the best of both RDMA and NVM file systems

into a design that can provide fast, network-attached, file-system managed, persistent memory. It
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accomplishes this goal by offloading most RDMA-required tasks related to memory management

to the NVM file system through the new memory region type; the file system effectively becomes

RDMA’s control plane.

With the FileMR abstraction, a client establishes an RDMA connection backed by files,

instead of memory address ranges (i.e. an RDMA memory region). RDMA reads and writes are

directed to the file through the file system, and addressed by the file offset. The translation between

file offset and the physical memory address is routed through the NVMM file system, which stores

all its files in persistent memory. Access to the file is mediated via traditional file system protections

(e.g. access control lists). To further optimize address translation, we integrate a range-based

translation system, which uses address ranges (instead of pages) for translation, into the RNIC,

reducing the space needed for translation and resolving the abstraction mismatch between RDMA

and NVMM file systems.

The rest of the thesis is organized as follows: In Chapter 2, we survey the technological

opportunities and challenges that motivate the research efforts in this thesis. We use Intel’s Optane

DC persistent memory as a case study to understand real capabilities, limitations, and characteristics

of NVMMs.

In Chapter 3, we present the design, implementation and evaluation of Mojim. Mojim

provides reliable and highly-available NVMM by using a two-tier architecture and efficiently

replicates data in NVMM.

Our evaluation shows that, surprisingly, Mojim reduces the average latency of the un-

replicated system by 27% to 63%, even when it provides strongly consistent copies of data. Mojim’s

performance gain is mainly due to inefficiencies in the current instruction sets the un-replicated

system uses to enforce data persistence. Mojim provides 0.4 to 2.7× the throughput of the un-

replicated system. We also run several popular applications including a file system [29], the Google

Hash Table [36], and MongoDB [72] on Mojim. The MongoDB results are the most striking:

Mojim is 3.4 to 4× faster than the MongoDB replication mechanism and 35 to 741× faster than
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un-replicated MongoDB.

In Chapter 4, we show the design, implementation and evaluation of Orion, a file system

for distributed NVMM and RDMA networks. By combining file system functions and network

operations into a single layer, Orion provides low latency metadata accesses and allows clients to

access their local NVMMs directly while accepting remote accesses. The design of Orion reduces

the file system access latency significantly and provides file system properties similar to a local

NVMM file system, including atomicity of file system operations on data and metadata.

Our evaluation shows that Orion outperforms existing distributed file systems by a large

margin. Relative to local NVMM filesystems, it provides comparable application-level performance

when running applications on a single client. For parallel workloads, Orion shows good scalability:

performance on an 8-client cluster is between 4.1× and 7.9× higher than running on a single node.

In Chapter 5, we introduce and evaluate two modifications to the existing RDMA protocol:

the FileMR and range-based translation, thereby providing an abstraction that combines memory

regions and files. It drastically improves the performance of RDMA-accessible NVMMs by elimi-

nating extraneous translations, while conferring other benefits to RDMA including more efficient

access permissions and simpler connection management. These extensions minimize the amount of

translation done at the NIC, reducing the load on the NIC’s translation cache and improving hit rate

by 3.8× - 340× and resulting in application performance improvement by 1.8× - 2.0×.
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Chapter 2

Motivation and Background

Long-term trends in the performance of data center networking combined with new, ex-

tremely fast storage devices are driving dramatic changes in how large-scale systems store, manage,

and access persistent data. The unique characteristics of NVMMs give system designers flexibility

to use them as memory, as storage, or as both [91], which poses new challenges for system designers

and architects.

Previous research on NVMM has focused on how to use these memories in a single ma-

chine [7, 20, 21, 29, 71, 106, 110], while most mission-critical data resides in distributed, replicated

storage systems (e.g., in data centers). For NVMM to succeed as a first-class storage technology,

it must provide the reliability, availability and scalability that these storage systems require [47],

while preserving the unique characteristics of the NVMM, such as its DRAM-alike access latency.

This section gives a comprehensive introduction to the background and motivation of this

thesis. Section 2.1 describes the characteristics of NVMM. Section 2.2 gives an empirical study

of Intel’s 3D XPoint DIMM, which is one of the first commercially available NVMM. Section 2.3

introduces the RDMA networking protocol, and Section 2.4 introduces the unique challenges of

building distributed NVMM applications.
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2.1 Non-volatile Main Memory

NVMM is comprised of non-volatile DIMMs (NVDIMMs) attached to a CPU’s memory

bus alongside traditional DRAM DIMMs. Battery-backed NVDIMM-N modules are commercially

available from multiple vendors [88], and Intel’s 3DXPoint memory [69] debuted in early 2019.

Other technologies such as spin-torque transfer RAM (STT-RAM) [55], ReRAM [31] are in active

research and development.

Attaching next-generation NVMs to the main memory bus provides a raw storage medium

that is orders of magnitude faster than modern disks and SSDs. NVMMs appear as contiguous,

persistent ranges of physical memory addresses [88] and allow direct access via a load/store

interface.

Researchers and companies have developed several file systems designed specifically for

NVMM [21, 27, 29, 111, 112]. Other developers have adapted existing file systems to NVMM by

adding DAX support [17, 108].

Unlike traditional file systems built for slower block devices, NVMM-aware file systems play

a critical role in providing efficient NVMM access — the DRAM-comparable latency of NVMM

means software overhead can dominate performance. Instead of using block-based interface, file

systems can issue load and store instructions to NVMMs directly. NVMM-aware file systems [17,

108, 111, 112] adapt this ability in two ways:

First, NVMM file systems provide this ability via direct access (or “DAX”), which allows

read and write system calls to bypass the page cache.

Second, they support the direct access mmap (DAX-mmap) capability. DAX-mmap allows

applications to map NVMM files directly into their address spaces and to perform data accesses via

simple loads and stores. This scheme allows applications to bypass the kernel and file system for

most data accesses, drastically improving performance for file access.

Additionally, the file system also must account for the 8-byte atomicity guarantees that

NVMMs provide (compared to sector atomicity for disks). They also must take care to ensure
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crash consistency by carefully ordering updates to NVMMs using cache flush and memory barrier

instructions.

2.2 Case Study: 3D XPoint DIMM

Intel’s Optane DC Persistent Memory Module (which we refer to as 3D XPoint DIMM) is

the first scalable, commercially available NVMM. Compared to existing storage devices (including

the Optane SSDs) that connect to an external interface such as PCIe, the 3D XPoint DIMM has

lower latency, higher read bandwidth, and presents a memory address-based interface instead of a

block-based NVMe interface. Compared to DRAM, it has higher density and persistence.

With its arrival, we can start to understand real capabilities, limitations, and characteristics

of these memories and starting designing and refining systems to fully leverage them.

2.2.1 Intel’s 3D XPoint DIMM

Like traditional DRAM DIMMs, the 3D XPoint DIMM sits on the memory bus, and

connects to the processor’s integrated memory controller (iMC) (Figure 2.1(a)). Intel’s Cascade

Lake processors are the first (and only) CPUs to support 3D XPoint DIMM. On this platform,

each processor contains one or two processor dies which comprise separate NUMA nodes. Each

processor die has two iMCs, and each iMC supports three channels. Therefore, in total, a processor
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die can support a total of six 3D XPoint DIMMs across its two iMCs.

To ensure persistence, the iMC sits within the asynchronous DRAM refresh (ADR) domain

— Intel’s ADR feature ensures that CPU stores that reach the ADR domain will survive a power

failure (i.e., will be flushed to the NVDIMM within the hold-up time, < 100 µs) [87]. The iMC

maintains read and write pending queues (RPQs and WPQs) for each of the 3D XPoint DIMMs

(Figure 2.1(b)), and the ADR domain includes WPQs. Once data reaches the WPQs, the ADR

ensures that the iMC will flush the updates to 3D XPoint media on power failure. The ADR domain

does not include the processor caches, so stores are only persistent once they reach the WPQs.

The iMC communicates with the 3D XPoint DIMM using the DDR-T interface in cache-line

(64-byte) granularity. This interface shares a mechanical and electrical interface with DDR4 but

uses a different protocol that allows for asynchronous command and data timing since 3D XPoint

memory access latencies are not deterministic.

Memory accesses to the NVDIMM (Figure 2.1(b)) arrive first at the on-DIMM controller

(referred as XPController in this thesis), which coordinates access to the 3D XPoint media. Similar

to SSDs, the 3D XPoint DIMM performs an internal address translation for wear-leveling and

bad-block management, and maintains an address indirection table (AIT) for this translation [10].

After address translation, the actual access to storage media occurs. As the 3D XPoint

physical media access granularity is 256 bytes (referred as XPLine in this thesis), the XPController

will translate smaller requests into larger 256-byte accesses, causing write amplification as small

stores become read-modify-write operations. The XPController has a small write-combining buffer

(referred as XPBuffer in this thesis), to merge adjacent writes.

3D XPoint DIMMs can operate in two modes (Figure 2.1(a)): Memory and App Direct.

Memory mode uses 3D XPoint to expand main memory capacity without persistence. It

combines a 3D XPoint DIMM with a conventional DRAM DIMM on the same memory channel

that serves as a direct-mapped cache for the NVDIMM. The cache block size is 4 KB, and the

CPU’s memory controller manages the cache transparently. The CPU and operating system simply

see the 3D XPoint DIMM as a larger (volatile) portion of main memory.
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App Direct mode provides persistence and does not use a DRAM cache. The 3D XPoint

DIMM appears as a separate, persistent memory device. The system can install a file system or

other management layer on the device to provide allocation, naming, and access to persistent data.

3D XPoint-aware applications and file systems can access the 3D XPoint DIMMs with load and

store instructions.

In App Direct mode, programmers can directly modify the 3D XPoint DIMM’s contents

using store instructions, and those stores will, eventually, become persistent. The cache hierarchy,

however, can reorder stores, making recovery after a crash challenging [20, 46, 64, 78, 106].

Intel processors offer programmers a number of options to control store ordering. The

instruction set provides clflush and clflushopt instructions to flush cache lines back to memory,

and clwb can write back (but not evict) cache lines. Alternately, software can use non-temporal

stores (ntstore) to bypass the cache hierarchy and write directly to memory. All these instructions

are non-blocking, so the program must issue an sfence to ensure that a previous cache flush, cache

write back, or non-temporal store is complete and persistent.

In both modes, 3D XPoint memory can be (optionally) interleaved across channels and

DIMMs (Figure 2.1(c)). On our platform, the only supported interleaving size is 4 KB, which

ensures that accesses to a single page fall into a single DIMM. With six DIMMs, an access larger

than 24 KB will access all the DIMMs.

2.2.2 Typical Latency

Read and write latencies are key memory technology parameters. We measure read latency

by timing the average latency for individual 8-byte load instructions to sequential and random

memory addresses. To eliminate caching and queuing effects, we empty the CPU pipeline and issue

a memory fence (mfence) between measurements (mfence serves the purpose of serialization for

reading timestamps). For writes, we load the cache line into the cache and then measure the latency

of one of two instruction sequences: a 64-bit store, a clwb, and an mfence; or a non-temporal store
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Figure 2.2: Best-case latency. An experiment showing random and sequential read latency, as
well as write latency using cached write with clwb and ntstore instructions. Error bars show one
standard deviation.

followed by an mfence.

These measurements reflect the load and store latency as seen by software rather than those

of these underlying memory device. For loads, the latency includes the delay from the on-chip

interconnect, iMC, XPController and the actual 3D XPoint media. Our results (Figure 2.2) show the

read latency for 3D XPoint is 2×–3× higher than DRAM. We believe most of this difference is due

to 3D XPoint having a longer media latency. 3D XPoint memory is also more pattern-dependent

than DRAM. The random-vs-sequential gap is 20% for DRAM but 80% for 3D XPoint memory,

and we believe this gap is a consequence of the XPBuffer. For stores, the memory store and fence

instructions commit once the data reaches the ADR at the iMC. Both DRAM and 3D XPoint

memory show a similar latency. Non-temporal stores are more expensive than writes with cache

flushes (clwb).

In general, the latency variance for 3D XPoint is extremely small, save for an extremely

small number of “outliers”, which we investigate in the next section. The sequential read latencies

for 3D XPoint DIMMs have higher variances, as the first cache line access loads the entire XPLine

into XPBuffer, and the following three accesses read data in the buffer.
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2.2.3 Bandwidth

Detailed bandwidth measurements are useful to application designers as they provide insight

into how a memory technology will impact overall system throughput. We measure 3D XPoint and

DRAM bandwidth for random and sequential reads and writes under different levels of concurrency.

Figure 2.3 shows the bandwidth achieved at different thread counts for sequential accesses

with 256 B access granularity. We show loads and stores (Write(ntstore)), as well as cached

writes with flushes (Write(clwb)). All experiments use AVX-512 instructions and access the data

at 64 B granularity. The left-most graph plots performance for interleaved DRAM accesses, while

the center and right-most graphs plot performance for non-interleaved and interleaved 3D XPoint.

In the non-interleaved measurements all the accesses go to a single DIMM.

The data shows that DRAM bandwidth is both significantly higher than 3D XPoint and

scales predictably (and monotonically) with thread count until it saturates the DRAM’s bandwidth

and that bandwidth is mostly independent of access size.

The results for 3D XPoint are wildly different. First, for a single DIMM, the maximal read

bandwidth is 2.9× of the maximal write bandwidth (6.6 GB/s and 2.3 GB/s respectively), where

DRAM has a smaller gap (1.3×) between read and write bandwidth.

Second, with the exception of interleaved reads, 3D XPoint performance is non-monotonic

with increasing thread count. For the non-interleaved (i.e., single-DIMM) cases, performance peaks

at between one and four threads and then tails off. Interleaving pushes the peak to twelve threads

for store+clwb.

Third, 3D XPoint bandwidth for random accesses under 256 B is poor. This “knee” corre-

sponds to XPLine size. DRAM bandwidth does not exhibit a similar “knee” at 8 kB (the typical

DRAM page size), because the cost of opening a page of DRAM is much lower than accessing a

new page of 3D XPoint.

Interleaving (which spreads accesses across all six DIMMs) adds further complexity: Fig-

ure 2.3(right) and Figure 2.4(right) measure bandwidth across six interleaved NVDIMMs. Inter-
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leaving improves peak read and write bandwidth by 5.8× and 5.6×, respectively. These speedups

match the number of DIMMs in the system and highlight the per-DIMM bandwidth limitations of

3D XPoint. The most striking feature of the graph is a dip in performance at 4 KB — this dip is

an emergent effect caused by contention at the iMC, and it is maximized when threads perform

random accesses close to the interleaving size.

2.2.4 NUMA Effects

NUMA effects for 3D XPoint are much larger than they are for DRAM. The cost is especially

steep for accesses that mix load and stores and include multiple threads. Between local and remote

3D XPoint memory, the typical read latency difference is 1.79× (sequential) and 1.20× (random),

respectively. For writes, remote 3D XPoint memory’s latency is 2.53× (ntstore) and 1.68× higher
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compared to local. For bandwidth, remote 3D XPoint can achieve 59.2% and 61.7% of local read

and write bandwidth at optimal thread count (16 for local read, 10 for remote read and 4 for local

and remote write).

The performance degradation ratio above is similar to remote DRAM to local DRAM.

However, the bandwidth of 3D XPoint memory is drastically degraded when either the thread count

increases or the workload is read/write mixed. Based on the results from our systematic sweep, the

bandwidth gap between local and remote 3D XPoint memory for the same workload can be over

30×, while the gap between local and remote DRAM is, at max, only 3.3×.

In Figure 2.5, we show how the bandwidth changes for 3D XPoint on both local and remote

CPUs by adjusting the read and write ratio. We show the performance of a single thread and four

threads, as local 3D XPoint memory performance increases with thread count up to four threads for

all the access patterns tested.

Single-threaded bandwidth is similar for local and remote accesses. For multi-threaded
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accesses, remote performance drops off much more quickly as store intensity rises, leading much

lower performance relative to the local case.

2.2.5 Lessons Learned

As the first commercially available NVMM, Optane DIMMs can achieve DRAM-level

performance on characteristics such as access latency and read bandwidth. At the same time, it adds

complexity to the storage architecture, causing issues such as scalability and heavier penalties over

NUMA.

These observations have implications to remote NVMM accesses as well: Since networking

traffic is handled by DMA engines on the host and the NIC, access remote NVMMs does not exhibit

issues such as the NUMA penalties and reverse scaling with thread contention. On the other hand,

achieving low-latency fine-grained accesses will become a crucial requirement for systems handling

remote NVMMs.

2.3 RDMA Networking

RDMA has become a popular networking protocol, especially for distributed applications [3,

49,50,51,70,75,90,94,103,104]. Current RDMA protocols are based on virtual interface architecture

(VIA) [30], a user-level memory-mapped communication architecture designed in two decades ago.

RDMA exposes a machine’s memory to direct access from the RDMA network interface

(RNIC), allowing remote clients to directly access a machine’s memory without involving the local

CPU.

The RDMA hardware supports a set of operations (called verbs). One-sided verbs, for

instance, “read” and “write”, directly access remote memory without requiring anything of the

remote CPU, in fact, these verb bypasses the remote CPU entirely. Two-sided verbs, in contrast,

require both machines to post matching requests, for instance, “send” and “receive”, which transfer

data from the memory of the sender, from an address chosen by the sender, to the memory of the
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receiver, to an address chosen by the receiver.

To establish an RDMA connection, an application registers one or more memory regions

(MRs) that grant the local RNIC access to part of the local address space. The MR functions as

both a name and a security domain: To give a client access to a region the local RNIC supplies the

MR’s virtual address, size and a special 32-bit “rkey”. Rkeys are sent with any one-sided verb and

allow the receiving RNIC to verify the client has direct access to the region. For two-sided verbs, a

send/recv operation requires both the sender and receiver to post matching requests, each attached

to some local, pre-registered, memory region, negating the need for rkeys.

2.3.1 Idiosyncrasies of RDMA

As a fast transport layer, RDMA offloads must of its networking stack onto hardware, and

certain access patterns of the verbs will have an impact on its performance:

Registration is expensive: RDMA allows RNICs to translate virtual addresses into physical

(DMA) addresses for the incoming packets. The cost of registering an MR consists of populating

and pinning page table entries and creating a copy of the page table in an RNIC accessible structure,

such as a flat table. For NVMM, the registration cost is linear to the size of the NVMM that accepts

remote accesses. Both Mojim and Orion use physical addresses in verbs, avoiding this cost.

Inbound verbs are cheaper: Inbound verbs, including recv and incoming one-sided read-

/write, incur lower overhead for the target, so a single node can handle many more inbound requests

than it can initiate itself [95]. Orion’s mechanisms for accessing data and synchronizing metadata

across clients both exploit this asymmetry to improve scalability.

RDMA favors short transfers: RNICs implement most of the RDMA protocol in hardware.

Compared to transfer protocols like TCP/IP, transfer size is more important to transfer latency

for RDMA because sending smaller packets involves fewer PCIe transactions [51]. Also, modern

RDMA hardware can inline small messages along with WQE headers, further reducing latency. To

exploit these characteristics, Mojim and Orion aggressively minimize the size of the transfers it
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makes.

2.3.2 RDMA Persistence

For local NVMM, a store instruction is persistent once data is evicted from CPU last-level

cache (via cache flush instructions and memory fences). A mechanism called asynchronous DRAM

refresh (ADR) ensures that the write queue on a memory controller is flushed to non-volatile storage

in the event of a power failure. There are no similar mechanisms in the RDMA world since ADR

does not extend to PCIe devices. Making the task even more difficult, modern NICs are capable of

placing data into CPU cache using direct cache access (DCA) [42], conceivably entirely bypassing

NVMM.

The current workaround to ensure RDMA write persistency is to disable DCA and issue

another RDMA read to the last byte of a pending write [28], forcing the write to complete and

write to NVMM. Alternatively, the sender request that the receiving CPU purposefully flush data it

received; either embedding the flush request in an extra send verb, or the immediate field of a write

verb.

A draft standards working document has proposed adding a commit [97] verb to the RDMA

protocol to solve the write persistency problem. A commit verb lists memory locations that need to

be flushed to persistence. When the remote RNIC receives a commit verb, it ensures the all listed

locations are persistent before acknowledging completion of the verb.

2.4 Challenges of Accessing Remote NVMM

There are several challenges present in building distributed systems that combines NVMM

and RDMA. In this section, we describe these challenges that motivate us building systems in this

thesis.
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2.4.1 NVMM Availability, Reliability, and Consistency

Although NVMM protects against power failure by making the contents of memory per-

sistent, it does not address the other ways that systems fail, including software, hardware, and

networking errors that are common in data centers [32, 73]. Providing availability and reliability in

such environments is important to meet client SLAs [101] and application requirements. Strong

consistency is also desirable in storage systems, since it makes it easier to reason about system

correctness.

Adding redundancy or replication is a common technique for providing reliability and

availability [2, 14, 26, 34, 37, 40, 77, 79, 84, 85, 105, 114]. Various protocols exist to provide different

consistency levels among redundant copies of data [4, 13, 26, 43, 58, 79]. For traditional storage

systems with slow hard disks and SSDs, the performance overhead of replication is small relative

to the cost of accessing a hard drive or SSD, even with complex protocols for strong consistency.

With NVMMs, however, the networking round trips and software overhead involved in these

techniques [13, 43, 58, 105] threaten to outstrip the low-latency benefit of using NVMMs in the

first place. Even for systems with weak consistency [26, 79], increasing the rate of reconciliation

between inconsistent copies of data can threaten performance [37, 52].

Since NVMM is vastly faster than existing storage technologies, it presents new challenges

to data replication. First, NVMM-based systems must deliver high performance to justify their

increased cost relative to disks or SSDs. Existing replication mechanisms built for these slower stor-

age media have software and networking performance overhead that would obscure the performance

benefits that NVMM could provide.

Second, NVMM is memory, and applications should be able to use it like memory (i.e., via

load and store instructions without operating system overheads for most accesses) rather than as a

storage device (i.e., via I/O system calls).
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2.4.2 Issues with Userspace RDMA Accesses

Both Mojim and Orion provide an interface that is processed in operating system services.

Userspace RDMA accesses and NVMM mmapped-DAX accesses share a critical functionality: they

allow direct access to memory without involving the kernel. Broadly speaking, we can divide both

NVMM file systems and RDMA into a data plane that accesses the memory a control plane that

manages the memory exposed to user applications. The data plane is effectively the same for both:

it consists of direct loads and stores to memory. The control plane, in contrast, differs drastically

between the systems.

For both RDMA and NVMM file systems, the control plane must provide four services

for memory management. First, it must provide naming to ensure that the application can find the

appropriate region of memory to directly access. Secondly, it must provide access control, to prevent

an application from accessing data it should not. Thirdly, it must provide a mechanism to allocate

and free resources to expand or shrink the memory available to the application. Finally, it must

perform translation between application level names (i.e., virtual addresses, or offsets from a base

address or within a file) to physical memory addresses. In practice, this final requirement means

that both RDMA and NVMM file systems must work closely with the virtual memory subsystem.

Table 2.1 summarizes the control plane metadata operations for RDMA and NVMM. These

memory management functionalities are attached to different abstractions in RDMA and NVMM

file systems. For RDMA, we use memory regions and for NVMM file systems we use files.

Naming: Names provide a hardware-independent way to refer to physical memory locations.

In RDMA applications, the virtual address of a memory region, along with its “host” machine’s

location (e.g., IP address or GID) serves as a globally (i.e., across nodes) meaningful name for

regions of physical memory. These names are transient, since they become invalid when the

application that created them exits, and inflexible since they prevent an RDMA-exposed page from

changing its virtual to physical address mapping while accessible. To share a name with a client

that wishes to directly access it via reads and writes, the host gives it the metadata of the MR. For
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two-sided verbs (i.e., send/receive) naming is ad-hoc: the receiver must use an out-of-band channel

to decide where to place the received data.

NVMM-based file systems use filenames to name regions of physical memory on a host.

Since files outlive applications, the file system manages names independent of applications and

provides more sophisticated management for named memory regions (i.e., hierarchical directories

and text-based names). To access a file, clients and applications on the host request access from the

file system.

Permissions: Permissions determine what processes have access to what memory. In

RDMA, permissions are enforced in two ways. To grant a client direct read/write access to a

memory location, the host shares a memory region specific “rkey.” The rkey is a 32-bit key that

is attached to all one-sided verbs (such as read and write) and is verified by the RNIC to ensure

the client has access to the addressed memory region. For every registered region, the RNIC driver

maintains the rkey, along with other RDMA metadata that provides isolation and protection in

hardware-accessible structures in DRAM.

Permissions are established when the RDMA connection between nodes is created and are

granted by the application code establishing the connection. They do not outlive the process or

survive a system restart. For two-sided verbs protection is enforced by the receiving application in

an ad-hoc manner: The receiver uses an out-of-band channel to decide what permissions the sender

has.

Access control for NVMM uses the traditional file system design. Permissions are attached

to each file and designated for both individual users and groups. Unlike RDMA memory regions

and their rkeys, permissions are a property of the underlying data and survive both process and

system restart.

Allocation: RDMA verbs and NVMM files both directly access memory, so allocation and

expansion of available memory is an important metadata operation.

For NVMM file systems, the file system maintains a list of free physical pages that can

be used to create or extend files. Creation of a file involves martialing the appropriate resources
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Table 2.1: Control plane roles for RDMA and NVMM. This table shows the features provided
by RDMA and NVMM vs. FileMR.

Role RDMA + File System FileMR
Naming Both (Redundant) FS Managed
Permissions Both (Redundant) FS Managed
Allocation Both (Redundant) FS Managed
Appending Not Allowed FS Managed
Remapping Not Allowed FS Managed
Defragmentation Not Allowed FS Managed
Translation Both (Incompatible) FS Managed
Persistence FS Only FS Managed
Networking RDMA RDMA
CPU-Bypass RDMA RDMA

and linking the new pages into the existing file hierarchy. Similarly, free pages can be linked to or

detached from existing files to grow or shrink the file. Changing the size of DAX-mmap’d files is

easy as well with calls to fallocate and mremap.

Creating a new RDMA memory region consists of allocating the required memory resources,

pinning their pages, and generating the rkey. Note that the physical address of the memory region

out of the programmer’s control (it depends, instead, on the implementation of malloc), and the

page is pinned once the region is registered, leading to a fragmented physical address space.

In addition, changing the mapping of a memory region is expensive. For example, to

increase the memory region size, the host server needs to deregister the memory region, reregister

a larger region, and send the changes to any interested clients. The rereg mr verb combines

deregistration and registration but still carries significant overhead. Alternatively, programmers can

add another memory region to the connection or protection domain, but, as memory regions require

non-negligible metadata and RDMA does not support multi-region accesses, this solution adds

significant complexity.

This fixed size limitation also prohibits common file system operations and optimizations,

such as appending to a file, remapping file content, and defragmentation.

Address Translation: RDMA and NVMM file system address translation mechanisms

ensure that their direct accesses hit the correct physical page.
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As shown in Figure 2.6, RDMA solves the problem of address translation by pinning the

virtual to physical address, that is, for as long as a memory region is registered, its virtual and

physical addresses cannot change. Once this mapping is fixed, the RNIC is capable of handling

memory regions registered on virtual address ranges directly: the RNIC translates from virtual

addresses to physical addresses for incoming RDMA verbs. To do this translation, the NIC maintains

a memory translation table (MTT) that holds parts of the system page tables.

The MTT flattens the translation entries for the relevant RDMA accessible pages and can be

cached in the RNIC’s pin-down cache [102] to accelerate lookups of this mapping. The pin-down

cache is critical for getting good performance out of RDMA — the pin-down cache is small (a few

megabytes ), a miss is expensive, and due to its addressing mechanism, the pin-down cache requires

all pages in a region be the same size. As a consequence of these limitations, researchers have done

significant work trying to make the most of the cache for addressing large memories [38, 51, 74, 75,

90, 95, 104]. While complex solutions exist, the most common recommendation is to reduce the

number of translations needed (e.g., addressing large contiguous memory regions using with either

huge pages, or using physical addresses).

The NVMM file system handles address translation in two ways, both different from RDMA.

For regular reads and writes, the file system translates file names with offsets to physical addresses;

this translation is done in the kernel during the syscall. For memory mapped accesses, mmap

establishes a virtual to physical address mapping from user space directly to the file’s contents in

NVMM, loading the mapping into the page table. The file system only interferes on the page fault

handling when a translation is missing between the user and physical addresses (i.e. a soft page

fault); the file system is bypassed on normal data accesses.

The different translation schemes interfere with each other to create performance problems.

If a page is accessible via RDMA, it is pinned to a particular physical address, and furthermore,

every page within the region must be the same size. As a consequence, the file system is unable

to update the layout of the open file, e.g. to defragment or grow the file. As RDMA impedes

defragmentation of files and prohibits mixing page sizes in RDMA accessible memory, memory
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Figure 2.6: Address translation for RDMA and NVMM.. RDMA (left) uses NIC-side address
translation with pinning, while NVMM (right) allows the file system to maintain the layout of a
file mapped to user address space.
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Figure 2.7: RDMA Write performance over different memory region sizes.. This figure
shows the throughput of 8-byte RDMA writes affected by the pin-down cache misses. Data
measured on Intel Optane DC Persistent Memory with an Mellanox CX-3 RNIC.

regions backed by files must use many, small pages to address large regions, overwhelming the

pin-down cache and decimating RDMA performance.

Figure 2.7 shows the impact of pin-down cache misses on RDMA write throughput. Each

work request writes 8 bytes to a random 8-byte aligned offset. When the memory region size is
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16 MB, Using 4 kB achieves 61.1% of the baseline (sending physical addresses, no TLB or pin-down

cache misses) performance compared to 95.2% when using 2 MB hugepages. When the region size

hits 16 GB, even 2 MB pages is not sufficient — achieving only 61.2% performance.
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Chapter 3

Mojim: A Reliable and Highly-Available

NVMM System

Fast, non-volatile memory technologies such as phase change memory (PCM), spin-transfer

torque magnetic memories (STTMs), and the memristor are poised to radically alter the performance

landscape for storage systems. They will blur the line between storage and memory, forcing designers

to rethink how volatile and non-volatile data interact and how to manage non-volatile memories as

reliable storage.

Data center environments demand reliability and availability in the face of hardware, soft-

ware, and network failures. Without this reliability and availability, NVMM will only be suitable as

a transient data store or as a caching layer—it will not be able to serve as a reliable primary storage

medium.

We propose Mojim, a system that provides replicated, reliable, and highly-available NVMM

as an operating system service. Applications can access data in Mojim using normal load and

store instructions while controlling when and how updates propagate to replicas using system calls.

Mojim allows applications to build data persistence abstractions ranging from simple log-based

systems to complex transactions.

Mojim uses a two-tier architecture that allows flexibility in choosing different levels of
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reliability, availability, consistency, and monetary cost, while minimizing performance overhead.

The primary tier includes one primary node and one mirror node. Mojim can, depending on the

configuration, keep these nodes strongly or weakly consistent. An optional secondary tier provides

an additional level of redundancy with one or more backup nodes that are weakly consistent with

the primary tier.

Mojim efficiently replicates fine-grained data from the primary node to the mirror node

using an optimized RDMA-based protocol that is simpler than existing replication protocols. The

mirror node replicates data to the backup nodes in the background, thus keeping the secondary tier

off the performance-critical path. This design offers good performance and two strongly consistent

copies of data plus more copies of weakly consistent data. To further improve availability and

reliability, Mojim also provides a fast recovery process and atomic semantics that guarantee data

integrity.

In building Mojim, we explore the performance and monetary cost impacts of providing

availability, reliability, and consistency with NVMM, and we explore trade-offs among replication

protocols for NVMM. Interestingly, we find that adding availability, reliability, and consistency

does not necessarily impair NVMM performance, as long as the replication protocols and software

layers are optimized for NVMM.

We evaluate Mojim using raw DRAM as a proxy for future NVMMs and with an industrial

NVMM emulation system. Our evaluation shows that, surprisingly, Mojim reduces the average

latency of the un-replicated system by 27% to 63%, even when it provides strongly consistent copies

of data. Mojim’s performance gain is mainly due to inefficiencies in the current instruction sets the

un-replicated system uses to enforce data persistence. Mojim provides 0.4 to 2.7× the throughput

of the un-replicated system. We also run several popular applications including a file system [29],

the Google Hash Table [36], and MongoDB [72] on Mojim. The MongoDB results are the most

striking: Mojim is 3.4 to 4× faster than the MongoDB replication mechanism and 35 to 741× faster

than un-replicated MongoDB.

The rest of the chapter is organized as follows. We present Mojim and its implementation in
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i n t fd = open ( ” / mnt / mmapf i le ” , O CREAT |O RDWR ) ;
/ / open a f i l e i n mounted Mojim r e g i o n
vo id ∗ base = mmap(NULL, 40960 , PROT WRITE ,

MAP SHARED, fd , 0 ) ;
/ / mmap a 40KB a r e a i n t h e f i l e

u n s i g n e d long ∗ a c c e s s c o u n t p = base ;
/ / a c c e s s c o u n t o f t h e l o g
u n s i g n e d long ∗ l o g s i z e p = base + s i z e o f ( u n s i g n e d long ) ; / / s i z e o f t h e l o g
i n t ∗ l o g = base + 2∗ s i z e o f ( u n s i g n e d long ) ; / / t h e l o g

∗ a c c e s s c o u n t p = ∗ a c c e s s c o u n t p + 1 ;
/ / memory l o a d and s t o r e
msync ( a c c e s s c o u n t p , s i z e o f ( u n s i g n e d long ) , MS SYNC ) ;
/ / c a l l c o n v e n t i o n a l msync

i n t b e a u t i f u l n u m = 2 4 ;
u n s i g n e d long c u r r l o g p o s = ∗ l o g s i z e p ;
/ / memory l o a d and s t o r e
l o g [ c u r r l o g p o s ] = b e a u t i f u l n u m ;
∗ l o g s i z e p = ∗ l o g s i z e p + 1 ;
s t r u c t m s y n c i n p u t { vo id ∗ a d d r e s s ; i n t l e n g t h ; } ;
s t r u c t m s y n c i n p u t i n p u t [ 2 ] ;
i n p u t [ 0 ] . a d d r e s s = &( l o g [ c u r r l o g p o s ] ) ;
i n p u t [ 0 ] . l e n g t h = s i z e o f ( i n t ) ;
i n p u t [ 1 ] . a d d r e s s = l o g s i z e p ;
i n p u t [ 1 ] . l e n g t h = s i z e o f ( u n s i g n e d long ) ;
gmsync ( i n p u t , 2 , MS MOJIM ) ;
/ / c a l l gmsync t o commit t h e l o g append

Figure 3.1: Sample code to use Mojim. Code snippet that implements a simple log append
operation with Mojim.

Sections 3.1 and 3.2. Section 3.3 describes our experience adapting applications to use Mojim. We

then present the evaluation results of Mojim in Section 3.4. Finally, conclude in Section 3.5.

3.1 Mojim Design Overview

Mojim provides an easy-to-use, generic layer of replicated NVMM that ensures reliability,

availability, and consistency, while sacrificing as little of NVMM’s performance as possible. Mojim

uses a two-tier architecture and supports several operating modes to let applications tune Mojim’s

reliability, availability, and consistency to match their particular needs.
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This section discusses Mojim’s interfaces and architecture and the different modes Mojim

provides.

3.1.1 Mojim’s Interfaces

Mojim is an operating system service that provides reliable and highly-available NVMM.

This section describes Mojim’s typical usage scenario and the interface it provides.

To use Mojim, a system configuration file specifies a set of Mojim regions on the primary

node to be replicated, along with a mirror node and a list of backup nodes where the replicas

should reside. The primary node supports reads and writes to the replicated data. The mirror node

and backup nodes support reads only. Kernel modules can access these regions and use them to

build complex, replicated, memory-based services such as a kernel-level persistent key value store,

a persistent disk cache, or a file system. The kernel could also make these services available to

applications via a malloc()-like interface.

While Mojim can serve as the basis for many memory-based services, deploying an NVMM-

aware file system to manage the replicated NVMM region would provide the most flexibility in

application usage models. The file system would provide familiar file-system-based mechanisms

of allocation and naming as well as conventional file-based access for non-performance-critical

applications. The key requirement of the file system is that, for an mmap()’d file, it maps the the

NVMM pages corresponding to the file directly into the applications’ address spaces rather than

paging them in and out of the kernel’s buffer cache. In our experiments, we use PMFS [29] for this

purpose.

With a file system in place, applications can create files in the Mojim-backed file system and

map them into their address space using mmap(). We call the NVMM area mapped by applications

the data area. After an mmap(), applications can perform direct memory accesses to the data area

using load and store instructions on the primary node and load instructions on the mirror node.

Mojim provides a mechanism called a sync point that allows applications to control when
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and what updates in the data area propagate to the replicas. At each sync point, Mojim atomically

replicates all memory regions specified by an application.

Two APIs allow applications to create sync points: msync and gmsync.

Mojim leverages the existing msync system call to specify a sync point that applies to a single,

contiguous address range. The semantics of Mojim’s msync correspond to conventional msync, and

applications that use msync will work correctly without modification under Mojim. Mojim allows

an application to specify a fine-grained memory region in the msync API and replicates it atomically,

while traditional msync flushes page-aligned memory regions to persistent storage and does not

provide atomicity guarantees [76].

Mojim’s gmsync adds the ability to specify multiple memory regions for the sync point to

replicate, allowing for more flexibility than msync.

Mojim provides a mechanism to allow applications to make their data persistent atomically,

but it does not provide primitives for synchronization. It would be possible to add synchronization

primitives to Mojim, but this would increase the complexity of the system and require selecting a

set of synchronization mechanisms to support. A better approach would be to build synchronization

mechanisms that leverage Mojim’s mechanisms.

Figure 3.1 shows a simple example in C of how to use Mojim to manage an append-only log

on Mojim. The program first opens and mmap()s a file in a Mojim region. It then updates the access

count of the log and makes this value persistent with the conventional msync API. Next, it appends

a log entry and updates the size of the log. It makes both these data persistent with an gmsync call.

The atomicity that gmsync provides guarantees that the log size is consistent with the log content on

the replica nodes.

3.1.2 Architecture

Mojim uses a two-tier architecture. The primary tier contains a primary node and its read-

only mirror node; the secondary tier includes one or more backup nodes with weakly consistent,
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Figure 3.2: Mojim architecture. The numbered circles represent different steps in the Mojim
replication process. MLog stands for the metadata log.

read-only copies of data. Figure 3.2 depicts the architecture of Mojim.

Mojim’s primary tier contains a pair of mirroring nodes: a primary node replicates data to

its mirror node at each sync point (i.e., call to msync or gmsync). The application can read and write

data on the primary node, but Mojim only allows reads from the mirror node.

The primary tier offers good performance even when guaranteeing strong consistency, since

it requires only one networking round trip for each sync point. Existing architectures that allow

writes to all replicas (E-writeall) [58], or that use one primary and multiple secondary nodes

(E-chain and E-broadcast) [4, 105], require multiple networking round trips or other performance

overhead to guarantee strong consistency.

To further improve performance, we connect the primary node and the mirror node with

a high-speed Infiniband link and use an efficient software and networking layer to replicate data

between them.

To improve reliability, we place the primary node and the mirror node on different racks,

since failure bursts often happen within the same rack [32, 73].

The optional secondary tier includes one or more backup nodes to maintain additional
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Table 3.1: Replication schemes. Mojim supports a wide range of reliability, availability, consis-
tency, and monetary cost levels (columns 2-5). The reliability column represents the number of
node failures that can be tolerated in a system of N nodes. The last three rows compare Mojim to
other existing replication schemes.

Scheme R A C $
S-unreplicated 0 Worst N/A Low
M-async 1 Good Weak Fair
M-sync 1 Good Strong Fair
M-syncdisk 1 OK Strong Low
M-syncsec N−1 Best Strong+Weak High
M-syncseceth N−1 Good Strong+Weak Fair
E-writeall N−1 Best Strong High
E-chain N−1 Best Strong High
E-broadcast N−1 Best Strong High

copies of data. It provides additional reliability and availability, so that failure bursts will not be

catastrophic. The mirror node replicates data to the backup nodes in the background. Thus, data in

the backup nodes is not strongly consistent with data in the primary tier. By keeping the replication

to the secondary tier in the background and off the performance-critical path, Mojim ensures good

application performance.

With both tiers in operation and a total of N nodes, Mojim can tolerate N−1 node failures.

In most environments, one or a few backup nodes are enough to prevent data loss, since failure

bursts are more likely to involve only a small number of nodes [32, 73]. Also, in most failure bursts,

the nodes do not all fail at the same time; failures are usually separated by a few seconds. A fast

recovery can thus prevent data loss even with few copies of replicated data. We discuss recovery

optimizations in Section 3.2.3.

3.1.3 Mojim Modes and Replication Protocols

Mojim supports several replication modes and protocols that allow users to choose differ-

ent levels of performance, reliability, consistency, availability, and monetary cost depending on

application requirements.

Table 3.1 summarizes these different modes and their properties, and we discuss them below
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using the numbered circles in Figure 3.2 to illustrate the replication process in each mode.

Across all the modes Mojim provides, Mojim achieves most of its performance by adopting a

different architecture than most replicated storage systems. Instead of supporting multiple consistent

replicas, Mojim only supports strong consistency at a single mirror node. This decision makes our

replication protocols much simpler (e.g., there’s no need for multi-phase commit or a complex

consensus protocol) and, therefore, allows for much higher performance.

Mojim achieves the goal of providing its atomic data persistence interface by ensuring that

atomic operations are replicated atomically to the mirror node and the backup nodes, by appending

replicated data to logs on the mirror node and the backup nodes.

Un-replicated without Mojim: A single machine without Mojim (S-unreplicated) must

flush an msync’d memory region from the processor’s caches to ensure data persistence. S-

unreplicated has poor availability and is only as reliable as the NVM devices. Moreover, even

if the NVMM is recovered after a crash, data can still be corrupted. For example, if a crash occurs

after a pointer is made persistent but before the data it points to becomes persistent, the system will

contain corrupted data.

Sync: Mojim’s M-sync mode guarantees strong consistency between the primary and the

mirror node. It provides improved reliability and availability over S-unreplicated, since in the case

of a failure the mirror node can take the place of the primary node without losing data.

In M-sync, when an application calls msync or gmsync ( 1© in Figure 3.2), Mojim pushes

data from the primary node to the mirror node via RDMA ( 3©) and writes the data in the mirror

node log ( 4©). The primary node waits for the acknowledgment from the mirror node ( 5©), and then

returns the msync or gmsync call ( 6©). The mirror node later takes a checkpoint to apply the log

contents to the data area ( 7©). Mojim stores both the mirror node logs and its data area in NVMM

for high performance and fast recovery.

In M-sync, Mojim does not flush data from the primary node’s caches ( 2©). Modern RDMA

devices are cache-coherent, so they will send the most up-to-date data [45,57]. Thus, the mirror node

always gets the latest data and pushing data to the mirror node is sufficient to ensure persistence. If
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the primary node crashes, the mirror node has the most up-to-date data. If the mirror node crashes,

the primary node has all the data, but it may not be persistent, so the primary node immediately

flushes its caches to prevent data loss. This means there is a small “window of vulnerability” after a

mirror node failure during which a primary node failure could result in data loss. On our system,

this window lasts for 450µs, the time required to flush the processor caches.

Surprisingly, our evaluation results show that M-sync offers performance comparable to

or better than S-unreplicated because flushing CPU caches is often more expensive than pushing

the data over RDMA. The current clflush instruction is strongly ordered and cannot utilize the

parallelism offered in modern processor architecture. Intel recently announced two instructions that

are more efficient than clflush and that will be available on future systems [44], which should help

resolve this problem.

Sync with cache flush: To close the window of vulnerability mentioned above, Mojim can

flush data from the primary node’s caches ( 2©) before returning to applications’ msync or gmsync

calls ( 6©). This mode is called M-syncflush, and with M-syncflush, all data can survive simultaneous

failures of the primary node and the mirror node.

Async: M-async provides weaker consistency between the primary node and the mirror

node. M-async ensures that data is persistent on the primary node for each sync point ( 2©) and

pushes the data to the mirror node ( 3©), but it does not wait for the mirror node’s acknowledgment

( 5©) to complete the application’s msync or gmsync call ( 6©). Thus, data on the mirror node can be

out of date relative to the primary node. M-async must flush the primary node CPU caches at each

sync point to ensure that the latest data is persistent.

Sync with slow storage: To reduce the monetary cost of M-sync, Mojim supports a mode

that stores the log on the mirror node in NVMM, but stores the mirror node’s data area on a hard

disk or SSD (M-syncdisk). M-syncdisk has a slower recovery process than M-sync, since Mojim

needs to read data from hard disk or SSD to NVMM before applications can access them.

Sync with the secondary tier: M-syncsec adds the secondary tier to M-sync and increases

reliability and availability by adding more copies of data. Mojim replicates data from the mirror
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node to the backup node in the background ( 8©-11©). M-syncsec provides two strongly-consistent

copies of the data at the primary and mirror nodes and one weakly-consistent data copy at each

backup node. The amount of inconsistency between the mirror node and backup nodes is tunable

and affects the recovery time. Even though the data at each backup node may be out-of-date, it

still represents a consistent snapshot of application data because of the atomic semantics Mojim

provides. Our evaluation results show that M-syncsec delivers performance similar to M-sync

because replication to the backup nodes takes place in the background.

Sync with low-cost secondary tier: M-syncsec requires fast networks between the mirror

node and backup nodes, which increases the monetary cost and networking bandwidth consumption

of the system. A lower cost option, M-syncseceth, uses Ethernet between the mirror node and

backup nodes. M-syncseceth has the worst performance of all the Mojim modes, but it still provides

the same reliability, availability, and consistency guarantees as M-syncsec.

3.2 Mojim Implementation

This section describes our implementation of Mojim in the Linux kernel. The core of Mojim

comprises an optimized network stack and the replication and recovery code.

3.2.1 Networking

The networking delay of data replication is the most important factor in determining Mo-

jim’s overall performance. Mojim uses Infiniband (IB), a high-performance switched network that

supports RDMA. RDMA is crucial because it allows the primary node to transfer data directly into

the mirror node’s NVMM without requiring additional buffering, copying, or cache flushes.

Mojim uses IB-Verbs, a set of native IB APIs based on send, receive, and completion

queues [67]. IB-Verbs requires the application to post send (receive) requests to send (receive)

queues. It uses completion messages in the completion queue to indicate the completion of requests

and supports both polling and interrupts to detect completions. IB-Verbs offers native IB performance
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and outperforms alternative IB protocols such as IPoIB and RDS (see Section 3.4.2). Existing IB-

Verbs implementations are userspace libraries that bypass the kernel. We created a kernel version of

IB-Verbs for Mojim.

Mojim uses a thin protocol based on the reliable transportation mode of IB-Verbs. The

Mojim protocol directly fetches data from the primary node and writes it to NVMM on the mirror

node. For each sync point, the primary node posts a send request on the IB send queue and polls for

its completion. The mirror node posts a set of receive requests in advance and polls for the arrival of

incoming messages. Our measurements show that polling is more efficient than interrupts.

The protocol does not require explicit acknowledgment messages from the mirror node to

the primary node, since we configure the IB link to provide a successful completion notification

for the primary node’s send request only once the data transfer succeeds. In the event of an error

or a timeout, the primary node resends the message to the backup node. After a set number of

unsuccessful re-send attempts, Mojim invokes its recovery process.

To sustain high bandwidth, Mojim creates multiple IB connections to handle client requests.

For each connection, we assign one thread on the mirror node to poll for incoming messages. On

the primary node, we let the application thread perform IB send operations for M-sync and use a

background thread to post these operations for M-async.

3.2.2 Replication

We now describe the Mojim replication process and the techniques that we use to enable

reliable, atomic, and consistent data replication.

Primary tier replication: At each sync point, the primary node posts IB send requests

containing the target memory regions. Mojim ensures that all requests belonging to the same atomic

operation are consecutive and on the same IB connection and marks the last request to let the mirror

node know the end of an atomic operation. Since Mojim’s reliable IB protocol ensures ordering in

each IB connection, these requests will appear in the same order on the mirror node. A unique ID
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Figure 3.3: Example of Mojim replication. An example of Mojim’s replication process. Each
cell represents a request. The letter in the cell stands for the memory address and the number in the
cell represents its unique ID. The upper-left part shows three threads placing three gmsync calls.
The upper-right part shows the data area on the mirror node. The ∗ represents the end mark of a
gmsync operation. The gray cell in the mirror node data area represents the data that is recovered
after a crash.

on each send request allows the mirror node to keep updates ordered across IB connections. For

recovery purposes, the primary node stores the memory addresses of the most recent requests in a

metadata log.

For each IB connection, the mirror node maintains a circular log and a thread that polls

incoming requests. Mojim places the logs in NVMM for good performance and persistence and

pre-allocates fixed-size buffers on the logs for RDMA accesses. With pre-allocated memory slots,

Mojim only needs one IB roundtrip to replicate data from the primary node to the mirror node.

Because the receive buffer size is fixed, we limit the size of each send request on the primary node

and break original memory regions into multiple send requests if needed. Since RDMA writes

directly to NVMM, there is no need to flush the cache on the mirror node.

After all the data for a sync point has arrived on the log, the mirror node can write them

to their permanent locations in the data area. This checkpointing happens periodically after a

configurable number of requests (CHECKPOINT THRESH) have been received, as well as when
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the system is idle and when a log is full. Mojim maintains global pointers to the beginning and end

of each log to indicate data available for checkpointing.

To ensure that read-only applications on the mirror node see a consistent view of their data,

Mojim removes the page table entries of the affected memory locations before a checkpointing

operation. During the checkpointing, an application reading from those pages will generate a page

fault. We changed the page fault handler to wait until Mojim completes the checkpointing and then

restore the page table entries and return the application read.

Secondary tier replication: Replication to the secondary backups occurs in the background

when there is data on the mirror node’s logs. The protocol for replication to the backup node

mimics the replication to the mirror node. The mirror node maintains a pointer for each log to

indicate the amount of data that has not yet been replicated to the backup node. Mojim uses a

threshold (SECONDARY TIER THRESH) to limit the amount of such un-replicated data on the

mirror node and stalls further replication to the mirror node until un-replicated data drops below

SECONDARY TIER THRESH.

Example: Figure 3.3 illustrates an example of Mojim’s data structures and its replication

process. In this example, Mojim uses two IB connections and two mirror node logs. Three application

threads post three gmsync calls to the two IB send queues. To guarantee atomicity, Mojim serializes

thread 2’s requests after thread 1’s requests on the second send queue. Mojim then sends these

requests to the mirror node’s logs. The mirror node threads poll for the completion of these writes

and update the log-end pointers when they have received all requests belonging to one gmsync call.

The checkpointing service processes the logs from the log-begin pointer to the log-end pointer. The

mirror node replicates the log content between the log-bak-begin pointer and the log-end pointer to

the backup node.
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3.2.3 Recovery

Fast recovery is crucial to providing high availability and preventing data loss in the event

of a failure. There are three types of failure scenarios: primary, mirror, and backup node failures.

Mojim uses heartbeats to detect failures, but other techniques [19, 60] are possible.

When the primary node fails, the mirror node becomes the new primary node and a backup

node becomes the new mirror node. The new primary node first sends the un-replicated data in its

logs to the new mirror node and checkpoints its log content to its data area after the failure. For

M-syncdisk, the new primary node needs to load data from the data file on disk to the NVMM.

After these operations, applications can restart on the new primary node. Until these operations

complete, the Mojim contents will be unavailable.

One option for activating a new backup node is to wait for the failed node to come back

online. Rebooting the machine is often sufficient and more efficient than constructing a new

node [32]. When the crashed primary node restarts, it receives the new data accumulated during its

down time from the new primary node. When the failed node cannot reboot fast enough, a human

operator or a system monitoring service selects a new backup node based on its available NVMM

size, its networking topology, and other criteria [18, 92]. The new node receives a complete copy of

the memory region and begins processing updates from the new mirror node.

When the mirror node or the backup node fails, the recovery process is similar. If the mirror

node fails, the primary node first flushes its CPU caches. It also uses its metadata log to locate

un-replicated data and sends them to the backup node. To restart the mirror node or the backup

node, Mojim replays the logs and writes only the completed atomic operation content to the data

area, with the help of the atomic operation end mark and unique IDs. In the example in Figure 3.3,

the mirror node crashes after Mojim checkpoints G. The recovery process will checkpoint C and

discard H. If the failed node cannot restart, a newly chosen node receives replicated data from the

primary node as described above.

When both the primary node and the mirror node fail in quick succession, Mojim falls
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back to the backup node. Now Mojim needs to reconstruct two new nodes that the administrating

node selects. This recovery process is more costly than the recovery of a single node failure.

We reduce the risk of this situation by placing nodes on different racks and by setting a small

SECONDARY TIER THRESH, thus speeding up the recovery process of a single node failure.

3.3 Mojim Applications

We have ported several existing systems to Mojim to illustrate how applications can use

Mojim’s interface. The applications include the PMFS file system [29], the Google hash table [36],

and MongoDB [72].

3.3.1 PMFS

The Persistent Memory File System [29] (PMFS) provides a conventional file-system-like

interface to NVMM, allowing applications to allocate space with file creation, limit access to data

via file permissions, and name portions of the NVMM using file names. The key difference between

PMFS and a conventional file system is that its implementation of mmap() maps the physical pages

of NVMM into the applications’ address spaces rather than moving them back and forth between

the file store and the buffer cache.

PMFS ensures persistence using sfence and clflush instructions. Mojim invokes its replication

when PMFS performs its persistence procedure. Mojim’s M-sync also removes clflush and only

performs sfence on the primary node. Mojim’s change required modifications to just 20 lines of

PMFS source code. Applications can use mmap() to gain load/store access to a file’s contents and

then use fsync, msync, or gmsync to manage replication and data consistency.
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3.3.2 Google hash table

Google hash table [36] is an open source implementation of sparse and dense hash tables.

Our Mojim-enabled version of the hash table stores its data in mmap()’d PMFS files and performs

msync at each insert and delete operation to let Mojim replicate the data. Porting the Google hash

table to Mojim requires changes to just 18 lines of code.

3.3.3 MongoDB

MongoDB [72] is a popular NoSql database. Several aspects of MongoDB make it a good

comparison point for Mojim. First, MongoDB stores its data in memory-mapped files and performs

memory loads and stores for data access—a perfect match for Mojim’s NVMM interface. Second,

MongoDB supports both single node and replication in a set of nodes in several different modes

(called “write concerns”) that trade off among performance, reliability, and availability. Mojim

provides similar functionality with a more general mechanism.

By default, MongoDB logs data in a journal file and checkpoints the data to the memory-

mapped data file in a lazy fashion. With the JOURNALED write concern, MongoDB blocks a

client call until the updated data is written to the journal file. With the FSYNC SAFE write concern,

MongoDB flushes all the dirty pages to the data file after each write operation and blocks the client

call until this operation completes.

MongoDB supports data replication across a set of machines. A primary node in a Mon-

goDB replica set serves all write requests and pushes operation logs to the secondary nodes.

Secondary nodes can serve read requests but may return stale data. The MongoDB write concern

REPLICAS SAFE returns the client request after at least two secondary nodes have received the

corresponding operation log. The REPLICAS SAFE write concern does not wait for journal writes

or checkpointing on the primary node.

Mojim offers another way to provide reliability and availability to MongoDB. With the help

of Mojim’s gmsync API and its reliability guarantees, we can remove journaling from MongoDB
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and still achieve the same consistency level. To guarantee the same atomicity of client requests as

available through MongoDB, we modify the storage engine of MongoDB to keep track of all writes

to the data file and group the written memory regions belonging to the same client request into a

gmsync call. In total, this change requires modifying 117 lines of MongoDB.

An alternative way of using Mojim is to run unmodified MongoDB on Mojim by configuring

MongoDB to place both its data file and journal file in Mojim’s mmap()’d data area. When MongoDB

commits data to the journal or checkpoints the data to the data file, it performs an msync operation,

which will trigger Mojim’s data replication transparently.

Figure 3.4: msync latency with DRAM and NVMM. The average 4 KB msync latency with
PMEP’s DRAM and NVMM modes.

Figure 3.5: msync throughput with DRAM and NVMM. The 4 KB msync bandwidth with
PMEP’s DRAM and NVMM modes.
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Figure 3.6: msync latency with DRAM-based machines. The average 4 KB msync latency with
S-unreplicated and Mojim two-tier architecture.

Figure 3.7: msync throughput with DRAM-based machines. The 4 KB msync throughput with
S-unreplicated and Mojim two-tier architecture.

3.4 Evaluation with DRAM

In this section, we study the performance of Mojim under each of the configurations and

applications we described in Sections 3.1 and 3.3. Specifically, we first evaluate the performance

of different Mojim modes and compare them to existing replication methods. We then evaluate

the effects of different application parameters and Mojim configurations, the performance of

applications ported to Mojim, and Mojim’s recovery costs.
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3.4.1 Test Bed Systems

We use two different systems to evaluate Mojim. The first is an industrial NVMM emulation

system from Intel called PMEP [29]. PMEP augments an off-the-shelf, dual-socket server platform

with special CPU microcode and custom firmware. It partitions the system’s DRAM into emulated

NVMM and regular DRAM. PMEP emulates NVMM read latency, read and write bandwidth, and

data persistence costs. For read latency and read/write bandwidth, PMEP modifies the CPU and the

memory controller. The PMEP platform uses write-back CPU caches and does not emulate NVMM

write latency. It uses software to emulate the cost of data persistence: the kernel running on PMEP

issues clflush instructions followed by an sfence, and adds a write barrier delay to model the cost of

ensuring data persistence in NVMM. In our experiments, we emulate NVMM by setting the read

latency to 300 ns, read and write bandwidth to 5 GB/s and 1.6 GB/s (1/8 of DRAM bandwidth),

and the write barrier delay to 1 ms, the configuration used in Intel’s PMFS project [29].

Each PMEP node has two 2.6 GHz 8-core Intel Xeon processors, 40 MB of aggregate CPU

cache, 8 GB of DDR3 DRAM used as normal DRAM, 128 GB of DRAM used as emulated NVMM,

and a 7200 RPM 4 TB hard disk. They also have 40 Gbps Mellanox Infiniband NICs and are directly

connected to each other via Infiniband without a switch. The platforms run Ubuntu 13.10 and the

3.11.0 Linux kernel.

We have access to only two PMEP machines (located at an Intel facility), so to evaluate

Mojim modes that require more than two machines, we use similar machines in our lab that do

not include PMEP functionality and use ordinary DRAM as a proxy for NVMM. Each of these

machines has two Intel Xeon X5647 processors, 48 GB DRAM, one 40 Gbps Mellanox Infiniband

NIC, and a 1000 Mbps Ethernet. A QLogic Infiniband Switch connects these machines’ IB links.

All machines run the CentOS 6.4 distribution and the 3.11.0 Linux kernel.

In all experiments, unless otherwise specified, we set CHECKPOINT THRESH (the fre-

quency of checkpointing the mirror node logs) to 1 (after each log write) and SECONDARY TIER THRESH

(the threshold for sending un-replicated data to the backup nodes) to 40 MB.
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3.4.2 Overall Replication Performance

We first compare the microbenchmark performance of Mojim modes that only involve two

nodes using the PMEP platforms. To evaluate the impact of NVMM vs. DRAM, we run the same

experiments with both PMEP’s DRAM mode and its emulated NVMM.

Figures 3.4 and 3.5 present the average latency and throughput of msync calls with S-

unreplicated, M-async, M-sync, M-syncflush, and M-syncdisk. For each experiment, we perform

10000 random 4 KB msync calls in a 4 GB mmap()’d file.

Surprisingly, M-sync outperforms S-unreplicated significantly for both DRAM and emulated

NVMM (reducing latency by 45% and 40% respectively). Even though M-sync waits for a network-

ing round trip between the primary node and the mirror node, it still outperforms S-unreplicated

because it does not need to flush data from processors’ caches, while S-unreplicated must flush data

on each msync. M-async’s performance is similar to S-unreplicated, as it also needs to flush primary

node’s caches. M-syncflush has higher latency than S-unreplicated, since it performs both cache

flushes and networking round trips.

Placing the mirror node data on disk adds only 1% to 10% overhead. However, M-syncdisk

does not support read applications on the mirror node and adds an overhead in recovery time (see

Section 3.4.5).

Comparing DRAM and emulated NVMM, the performance with emulated NVMM for all

schemes is close to that with DRAM, indicating that the performance degradation of NVMM over

DRAM only has a very small effect over application-level performance.

Next, to augment the PMEP results with more machines and to test Mojim’s two-tier

architecture, we use three DRAM-based machines in our lab to evaluate the performance of

Mojim’s two-tier modes and two existing schemes that use a one-primary, multiple-secondary

architecture (Table 3.1). One of these existing schemes, E-chain, allows writes only at the primary

node and propagates data replication from the primary node to the secondary nodes in a serialized

order [4, 105]. The other existing scheme, E-broadcast [34], is similar to E-chain but broadcasts
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Figure 3.8: Average msync latency with different msync sizes on emulated NVMM. The
average latency of msync operation on NVMM with request sizes from 8 bytes to 12 KB.
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Figure 3.9: Throughput with different application threads on emulated NVMM. The msync
throughput with 1 to 12 threads performing msync.

updates to the secondary nodes. E-chain and E-broadcast use one primary node and two secondary

nodes interconnected by IB. They use the same IB protocol that we implemented for Mojim.

Figures 3.6 and 3.7 plot the average latency and throughput of using our lab machines to

run the experiments shown in Figures 3.4 and 3.5. Compared to S-unreplicated, Mojim with the

secondary tier does not degrade performance if a fast network connects the backup node. However,

the lower-cost Ethernet configuration degrades performance by 37×, because the mirror node cannot

drain its circular log fast enough and has to stall the primary tier replication.

Both E-chain and E-broadcast are slower than Mojim, increasing latency by 1.8× and 2.8×

respectively, compared to M-syncsec.
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Finally, we compare Mojim with two existing IB kernel protocols, RDS and IPoIB. We find

that they both have worse performance than Mojim’s networking protocol on IB-Verbs, with 4.9×

and 31× slowdown.
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Figure 3.10: Filebench throughput with emulated NVMM. The throughput of three Filebench
workloads with single machine and no replication, the M-async mode, and the M-sync mode.
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Figure 3.11: Google hash table average latency with emulated NVMM. The average latency
of sequentially and randomly inserting key-value pairs to the Google dense hash table.

Overall, Mojim delivers performance similar to or better than no replication while adding

reliability and availability. Mojim’s good performance is due to its efficient replication protocol, its

ability to avoid expensive cache flush operations, and its optimized software and networking stacks.

3.4.3 Sensitivity Analysis

Both Mojim’s configuration parameters and application-level behavior can affect perfor-

mance. In this section, we measure their impact on Mojim’s performance.
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msync Size

The amount of data per msync has a strong impact on performance. Figure 3.8 plots the

average latency of performing msync calls to random memory regions of 8 bytes to 12 KB with

S-unreplicated, M-async, and M-sync using PMEP’s emulated NVMM.

For smaller request sizes, M-async performs much better than S-unreplicated. S-unreplicated

underperforms because of the current way msync call are implemented in Linux, with the msync call

handler checking for the range of the msync memory and rounding it to memory pages (4 KB page

for the default Linux kernel). With Mojim, we modify the msync call handler to allow any memory

address range and only flush and replicate the application-specified memory regions.

M-sync does not perform clflush (since transferring the data to the mirror node guarantees

persistence). As a result, its performance is always better than S-unreplicated and is better than

M-async when msync size is bigger than 1 KB.

Application Threads and Networking Connections

Application thread count and the number of network connections Mojim uses also impact

performance. Figure 3.9 presents the 4 KB msync throughput with one to 12 application threads for

S-unreplicated, M-async, and M-sync using PMEP’s emulated NVMM.

Both M-async and S-unreplicated scale well with the number of application threads, while

M-sync with one IB connection (and thus one log) scales poorly. With more connections, M-sync’s

scaling improves. A tradeoff with increasing networking connections is that Mojim uses more

threads to poll for receiving messages, consuming more CPU cycles.

Checkpoint and Secondary Tier Replication Thresholds

We change the two thresholds Mojim uses in its configurations: we change CHECK-

POINT THRESH, the frequency of checkpointing the mirror node logs, from 1 to 10000, and we

change SECONDARY TIER THRESH, the amount of un-replicated data to the backup node, from
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Figure 3.12: YCSB insert average latency. Average latency of inserting key-value pairs on
emulated NVMM.

40 KB to 400 MB. We find that neither CHECKPOINT THRESH nor SECONDARY TIER THRESH

affects the application performance, because both the checkpointing process and the secondary tier

replication via IB are fast enough not to block the primary tier replication.

3.4.4 Application Performance

In this section, we present the evaluation results for three applications: a file system, a hash

table, and a NoSql database.

PMFS

We use the FileServer, WebServer, and VarMail workloads in the Filebench suite [100] to

evaluate different Mojim modes under PMFS using emulated NVMM. Figure 3.10 presents the

throughput of the three workloads of Filebench. For WebServer and Varmail, both M-async and

M-sync yield performance similar to S-unreplicated. For FileServer, M-async and M-sync have
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Figure 3.13: YCSB insert throughput. Throughput of inserting key-value pairs on emulated
NVMM.

slightly worse performance than S-unreplicated.

Google hash table

We perform sequential and random key-value insertion to the Google Dense Hash Table [36].

Each key-value pair contains an integer key and a random integer value. Figure 3.11 plots the average

latency of S-unreplicated, M-async, and M-sync with emulated NVMM. For both workloads, all

three schemes have similar performance, showing that Mojim has small performance overhead

when it comes to hash table operations.

MongoDB

MongoDB is a natural fit for Mojim. We evaluate how MongoDB and Mojim compare using

micro- and macro-benchmarks.

Microbenchmark: Our microbenchmark inserts key-value pairs to MongoDB. Each insert
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Figure 3.14: YCSB average latency. Average latency of YCSB workloads on emulated NVMM.

Table 3.2: YCSB workload properties. The percentage of different operations in each YCSB
workload.

Workload Read Update Scan Insert Read&Update
A 50 50 - - -
B 95 5 - - -
C 100 - - - -
D 95 - - 5 -
E - - 95 5 -
F 50 - - - 50

operation contains 10 key-value pairs, with each pair containing 100 bytes of randomly generated

data. Figures 3.12 and 3.13 present the average latency and throughput of key-value pair insertions

with PMEP’s emulated NVMM. We set the MongoDB replication method to use two replicas (the

primary node and the secondary node) and connect these nodes with IB.

MongoDB with Mojim outperforms the MongoDB replication method REPLICAS SAFE by

3.7 to 3.9×. This performance gain is due to Mojim’s efficient replication protocol and networking

stack.

Mojim also outperforms the un-replicated JOURNALED MongoDB by 56 to 59× and the

un-replicated FSYNC SAFE by 701 to 741×. JOURNALED flushes journal content for each client
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write request. FSYNC SAFE performs fsync of the data file after each write operation to guarantee

data reliability without journaling. Both these operations are expensive.

To evaluate Mojim’s two-tier architecture with MongoDB, we perform the same set of

experiments using three DRAM-based machines in our lab. Similar to the PMEP results, Mojim’s M-

syncsec outperforms MongoDB’s replication method by 3.4 to 4×, the un-replicated JOURNALED

MongoDB by 35 to 43×, and the un-replicated FSYNC SAFE by 238 to 311×, suggesting that

Mojim’s replication is better than MongoDB replication.

Finally, MongoDB can run unmodified on Mojim by configuring both its journal and data file

to be in a mmap()’d NVMM region. In this case, its performance is similar to JOURNALED, with a

performance overhead of 0.2% to 6%. However, Mojim provides better reliability and availability

than the un-replicated MongoDB.

Macrobenchmark: YCSB [22] is a benchmark designed to evaluate key-value store systems.

YCSB includes six workloads that imitate web applications’ data access models. The workloads

contain a combination of read, update, scan, and insert operations. Table 3.2 summarizes the number

of these operations in the YCSB workloads. Each workload performs 1000 operations on a database

with 1000 1 KB records.

Figure 3.14 presents the latency of MongoDB and Mojim using the six YCSB workloads on

emulated NVMM. For most workloads, both M-async and M-sync outperform the un-replicated and

replicated MongoDB schemes. The performance improvement is especially high for write-heavy

workloads. We also find similar results with three DRAM-based machines.

3.4.5 Recovery

Recovery performance is important because it directly affects availability and may impact

reliability, since Mojim is vulnerable to additional node failures during some recovery scenarios.

To test the robustness of the system, we stop a Mojim node at random and find that the rest of the

system can continue serving client requests correctly. We further measure the recovery time in the
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event of a node failure.

We use a typical recovery scenario to illustrate Mojim’s recovery performance. When

a mirror node fails with M-syncsec, the recovery process requires sending the remaining, un-

replicated data to the backup node, flushing the CPU caches on the primary node, and copying

all the data areas to the new mirror node. Mojim performs these operations in parallel. We set

SECONDARY TIER THRESH to 40 MB and use three machines in our lab to perform the recovery

performance evaluation.

Mojim takes 450 µs to flush the 26 MB CPU caches on the primary node. Before the primary

node flushes all its caches, if it also fails, there will be data loss. The window of vulnerability also

depends on how soon the failure can be detected, thus in practice it will be longer than 450 µs [19].

It takes 14 ms to send 40 MB of data to the backup node and 1.9 seconds to send a 5 GB data

area to the new mirror node. The whole recovery process completes in 1.9 seconds for a 5 GB

NVMM. Even for a 1 TB NVMM, the recovery process will only take 6.5 minutes. Notice that the

vulnerability window depends on how fast primary node detects a failure and flushes its caches, not

on NVMM size.

For M-syncdisk, Mojim also needs to read the data file from the disk to the NVMM before

applications can access the data. In this case, recovery takes 17 seconds for a 5 GB data file, a much

higher cost in availability than when we use NVMM for the data area.

3.5 Summary

We have described Mojim, a system for providing reliable and highly-available NVMM.

Mojim uses a two-tier architecture and efficiently replicates data in NVMM. Our results demonstrate

that Mojim can provide replication with small cost, in many cases even outperforming the un-

replicated system. In doing so, Mojim paves the way for deploying NVMM in data centers that

wish to take advantage of NVMM’s enhanced performance but require strong guarantees about data

safety.
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Chapter 4

Orion: A Distributed File System for

NVMM and RDMA-Capable Networks

In a distributed file system designed for block-based devices, media performance is almost

the sole determiner of performance on the data path. The glacial performance of disks (both hard

and solid state) compared to the rest of the storage stack incentivizes complex optimizations (e.g.,

queuing, striping, and batching) around disk accesses. It also saves designers from needing to

apply similarly aggressive optimizations to network efficiency, CPU utilization, and locality, while

pushing them toward software architectures that are easy to develop and maintain, despite the

(generally irrelevant) resulting software overheads.

This chapter, we introduce Orion, a distributed file system designed from the ground

up for NVMM and Remote Direct Memory Access (RDMA) networks. While other distributed

systems [65, 90] have integrated NVMMs, Orion is the first distributed file system to systematically

optimize for NVMMs throughout its design. As a result, Orion diverges from block-based designs

in novel ways.

Orion focuses on several areas where traditional distributed file systems fall short when

naively adapted to NVMMs. We describe them below.
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Use of RDMA

Orion targets systems connected with an RDMA-capable network. It uses RDMA whenever

possible to accelerate both metadata and data accesses. Some existing distributed storage systems

use RDMA as a fast transport layer for data access [15, 24, 98, 99, 109] but do not integrate it deeply

into their design. Other systems [65, 90] adapt RDMA more extensively but provide object storage

with customized interfaces that are incompatible with file system features such as unrestricted

directories and file extents, symbolic links and file attributes. system structures and interfaces

(Octopus).

Orion is the first full-featured file system that integrates RDMA deeply into all aspects of its

design. Aggressive use of RDMA means the CPU is not involved in many transfers, lowering CPU

load and improving scalability for handling incoming requests. In particular, pairing RDMA with

NVMMs allows nodes to directly access remote storage without any target-side software overheads.

Software Overhead

Software overhead in distributed files system has not traditionally been a critical concern.

As such, most distributed file systems have used two-layer designs that divide the network and

storage layers into separate modules. Two-layer designs trade efficiency for ease of implementation.

Designers can build a user-level daemon that stitches together off-the-shelf networking packages and

a local file system into a distributed file system. While expedient, this approach results in duplicated

metadata, excessive copying, unnecessary event handling, and places user-space protection barriers

on the critical path.

Orion merges the network and storage functions into a single, kernel-resident layer optimized

for RDMA and NVMM that handles data, metadata, and network access. This decision allows Orion

to explore new mechanisms to simplify operations and scale performance.
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Table 4.1: Characteristics of memory and network devices We measure the fisrt 3 lines on
Intel Sandy Bridge-EP platform with a Mellanox ConnectX-4 RNIC and an Intel DC P3600 SSD.
NVMM numbers are estimated based on assumptions made in [113]

.
Read Latency Bandwidth GB/s

512 B Read Write
DRAM 80 ns 60 30
NVMM 300 ns 8 2
RDMA NIC 3 µs 5 (40 Gbps)
NVMe SSD 70 µs 3.2 1.3

Locality

RDMA is fast, but it is still several times slower than local access to NVMMs (Table 4.1).

Consequently, the location of stored data is a key performance concern for Orion. This concern is an

important difference between Orion and traditional block-based designs that generally distinguish

between client nodes and a pool of centralized storage nodes [24, 89]. Pooling makes sense for

block devices, since access latency is determined by storage, rather than network latency, and a pool

of storage nodes simplifies system administration. However, the speed of NVMMs makes a storage

pool inefficient, so Orion optimizes for locality. To encourage local accesses, Orion migrates durable

data to the client whenever possible and uses a novel delegated allocation scheme to efficiently

manage free space.

Our evaluation shows that Orion outperforms existing distributed file systems by a large

margin. Relative to local NVMM filesystems, it provides comparable application-level performance

when running applications on a single client. For parallel workloads, Orion shows good scalability:

performance on an 8-client cluster is between 4.1× and 7.9× higher than running on a single node.

The rest of the chapter is organized as follows. Section 4.1 gives an overview of Orion’s

architecture. We describe the design decisions we made to implement high-performance metadata

access and data access in Sections 4.2 and 4.3 respectively. Section 4.4 evaluates these mechanisms.

Finally, We conclude in Section 4.5.
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Figure 4.1: Orion cluster organization. An Orion cluster consists of a metadata server, clients
and data stores.

4.1 Orion Design Overview

Orion is a distributed file system built for the performance characteristics of NVMM

and RDMA networking. NVMM’s low latency and byte-addressability fundamentally alter the

relationship among memory, storage, and network, motivating Orion to use a clean-slate approach

to combine the file system and networking into a single layer. Orion achieves the following design

goals:

Scalable performance with low software overhead: Scalability and low-latency are es-

sential for Orion to fully exploit the performance of NVMM. Orion achieves this goal by unifying

file system functions and network operations and by accessing data structures on NVMM directly

through RDMA.

Efficient network usage on metadata updates: Orion caches file system data structures

on clients. A client can apply file operations locally and only send the changes to the metadata

server over the network.
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Metadata and data consistency: Orion uses a log-structured design to maintain file system

consistency at low cost. Orion allows read parallelism but serializes updates for file system data

structures across the cluster. It relies on atomically updated inode logs to guarantee metadata and

data consistency and uses a new coordination scheme called client arbitration to resolve conflicts.

DAX support in a distributed file system: DAX-style (direct load/store) access is a key

benefit of NVMMs. Orion allows clients to acces in its local NVMM just as it could access a

DAX-enabled local NVMM file s

Repeated access become local access: Orion exploits locality by migrating data to where

writes occur and making data caching an integral part of the file system design. The log-structured

design reduces the cost of maintaining cache coherence.

Reliability and data persistence: Orion supports metadata and data replication for better

reliability and availability. The replication protocol also guarantees data persistency.

The remainder of this section provides an overview of the Orion software stack, including its

hardware and software organization. The following sections provide details of how Orion manages

metadata (Section 4.2) and provides access to data (Section 4.3).

4.1.1 Cluster Organization

An Orion cluster consists of a metadata server (MDS), several data stores (DSs) organized

in replication groups, and clients all connected via an RDMA network. Figure 4.1 shows the

architecture of an Orion cluster and illustrates these roles.

The MDS manages metadata. It establishes an RDMA connection to each of the clients.

Clients can propagate local changes to the MDS and retrieve updates made by other clients.

Orion allows clients to manage and access a global, shared pool of NVMMs. Data for a file

can reside at a single DS or span multiple DSs. A client can access a remote DS using one-sided

RDMA and its local NVMMs using load and store instructions.

Internal clients have local NVMM that Orion manages. Internal clients also act as a DSs for
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Figure 4.2: Orion software organization. Orion exposes as a log-structured file system across
MDS and clients. Clients maintain local copies of inode metadata and sync with the MDS, and
access data at remote data stores or local NVMM directly.

other clients. External clients do not have local NVMM, so they can access data on DSs but cannot

store data themselves.

Orion supports replication of both metadata and data. The MDS can run as a high-availability

pair consisting of a primary server and a mirror using Mojim-style replication. Mojim provides

low latency replication for NVMM by maintaining a single replica and only making updates at the

primary.

Orion organizes DSs into replication groups, and the DSs in the group have identical data

layouts. Orion uses broadcast replication for data.

61



4.1.2 Software Organization

Orion’s software runs on the clients and the MDS. It exposes a normal POSIX interface and

consists of kernel modules that manage file and metadata in NVMM and handle communication

between the MDS and clients. Running in the kernel avoids the frequent context switches, copies,

and kernel/user crossing that conventional two-layer distributed file systems designs require.

The file system in Orion inherits some design elements from NOVA [111, 112], a log-

structured POSIX-compliant local NVMM file system. Orion adopts NOVA’s highly-optimized

mechanisms for managing file data and metadata in NVMM. Specifically, Orion’s local file system

layout, inode log data structure, and radix trees for indexing file data in DRAM are inherited

from NOVA, with necessary changes to make metadata accessible and meaningful across nodes.

Figure 5.7 shows the overall software organization of the Orion file system.

An Orion inode contains pointers to the head and tail of a metadata log stored in a linked

list of NVMM pages. A log’s entries record all modifications to the file and hold pointers to the

file’s data blocks. Orion uses the log to build virtual file system (VFS) inodes in DRAM along with

indices that map file offsets to data blocks. The MDS contains the metadata structures of the whole

file system including authoritative inodes and their logs. Each client maintains a local copy of each

inode and its logs for the files it has opened.

Copying the logs to the clients simplifies and accelerates metadata management. A client

can recover all metadata of a file by walking through the log. Also, clients can apply a log entry

locally in response to a file system request and then propagate it to the MDS. A client can also

tell whether an inode is up-to-date by comparing the local and remote log tail. An up-to-date log

should be equivalent on both the client and the MDS, and this invariant is the basis for our metadata

coherency protocol. Because MDS inode log entries are immutable except during garbage collection

and logs are append-only, logs are amenable to direct copying via RDMA reads (see Section 4.2).

Orion distributes data across DSs (including the internal clients) and replicates the data

within replication groups. To locate data among these nodes, Orion uses global page addresses
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(GPAs) to identify pages. Clients use a GPA to locate both the replication group and data for a

page. For data reads, clients can read from any node within a replication group using the global

address. For data updates, Orion performs a copy-on-write on the data block and appends a log

entry reflecting the change in metadata (e.g.write offset, size, and the address to the new data block).

For internal clients, the copy-on-write migrates the block into the local NVMM if space is available.

An Orion client also maintains a client-side data cache. The cache, combined with the

copy-on-write mechanism, lets Orion exploit and enhance data locality. Rather than relying on the

operating system’s generic page cache, Orion manages DRAM as a customized cache that allows

it to access cached pages using GPAs without a layer of indirection. This also simplifies cache

coherence.

4.2 Metadata Management

Since metadata updates are often on an application’s critical path, a distributed file system

must handle metadata requests quickly. Orion’s MDS manages all metadata updates and holds the

authoritative, persistent copy of metadata. Clients cache metadata locally as they access and update

files, and they must propagate changes to both the MDS and other clients to maintain coherence.

Below, we describe how Orion’s metadata system meets both these performance and cor-

rectness goals using a combination of communication mechanisms, latency optimizations, and a

novel arbitration scheme to avoid locking.

4.2.1 Metadata Communication

The MDS orchestrates metadata communication in Orion, and all authoritative metadata

updates occur there. Clients do not exchange metadata. Instead, an Orion client communicates with

the MDS to fetch file metadata, commit changes and apply changes committed by other clients.

Clients communicate with the MDS using three methods depending on the complexity of

the operation they need to perform: (1) direct RDMA reads, (2) speculative and highly-optimized
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log commits, and (3) acknowledged remote procedure calls (RPCs).

These three methods span a range of options from simple/lightweight (direct RDMA reads)

to complex/heavyweight (RPC). We use RDMA reads from the MDS whenever possible because

they do not require CPU intervention, maximizing MDS scalability.

Below, we describe each of these mechanisms in detail followed by an example. Then, we

describe several additional optimizations Orion applies to make metadata updates more efficient.

RDMA reads: Clients use one-sided RDMA reads to pull metadata from the MDS when

needed, for instance, on file open. Orion uses wide pointers that contain a pointer to the client’s

local copy of the metadata as well as a GPA that points to the same data on the MDS. A client can

walk through its local log by following the local pointers, or fetch the log pages from the MDS

using the GPAs.

The clients can access the inode and log for a file using RDMA reads since NVMM is byte

addressable. These accesses bypass the MDS CPU, which improves scalability.

Log commits: Clients use log commits to update metadata for a file. The client first performs

file operations locally by appending a log entry to the local copy of the inode log. Then it forwards

the entry to the MDS and waits for completion.

Log commits use RDMA sends. Log entries usually fit in two cache lines, so the RDMA NIC

can send them as inlined messages, further reducing latencies. Once it receives the acknowledgment

for the send, the client updates its local log tail, completing the operation. Orion allows multiple

clients to commit log entries of a single inode without distributed locking using a mechanism called

client arbitration that can resolve inconsistencies between inode logs on the clients (Section 4.2.3).

Remote procedure calls: Orion uses synchronous remote procedure calls (RPCs) for meta-

data accesses that involve multiple inodes as well as operations that affect other clients (e.g. a file

write with O APPEND flag).

Orion RPCs use a send verb and an RDMA write. An RPC message contains an opcode

along with metadata updates and/or log entries that the MDS needs to apply atomically. The MDS

performs the procedure call and responds via one-sided RDMA write or message send depending
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Figure 4.3: Orion metadata communication. Orion maintains metadata structures such as inode
logs on both MDS and clients. A client commit file system updates through Log Commits and
RPCs.

on the opcode. The client blocks until the response arrives.

Example: Figure 5.8 illustrates metadata communication. For open() (an RPC-based

metadata update), the client allocates space for the inode and log, and issues an RPC 1 . The MDS

handles the RPC 2 and responds by writing the inode along with the first log page using RDMA

3 . The client uses RDMA to read more pages if needed and builds VFS data structures 4 .

For a setattr() request (a log commit based metadata update), the client creates a local

entry with the update and issues a log commit 5 . It then updates its local tail pointer atomically
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Figure 4.4: MDS request handling. The MDS handles client requests in two stages: First,
networking threads handle RDMA completion queue entries (CQEs) and dispatch them to file
system threads. Next, file system threads handle RPCs and update the VFS.

after it has sent the log commit. Upon receiving the log entry, the MDS appends the log entry,

updates the log tail 6 , and updates the corresponding data structure in VFS 7 .

RDMA Optimizations: Orion avoids data copying within a node whenever possible. Both

client-initiated RDMA reads and MDS-initiated RDMA writes (e.g.in response to an RPC) target

client file system data structures directly. Additionally, log entries in Orion contain extra space

(shown as message headers in Figure 5.8) to accommodate headers used for networking. Aside from

the DMA that the RNIC performs, the client copies metadata at most once (to avoid concurrent

updates to the same inode) during a file operation.

Orion also uses relative pointers in file system data structures to leverage the linear address-

ing in kernel memory management. NVMM on a node appears as contiguous memory regions in

both kernel virtual and physical address spaces. Orion can create either type of address by adding

the relative pointer to the appropriate base address. Relative pointers are also meaningful across

power failures.
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4.2.2 Minimizing Commit Latency

The latency of request handling, especially for log commits, is critical for the I/O perfor-

mance of the whole cluster. Orion uses dedicated threads to handle per-client receive queues as well

as file system updates. Figure 4.4 shows the MDS request handling process.

For each client, the MDS registers a small (256 KB) portion of NVMM as a communication

buffer. The MDS handles incoming requests in two stages: A network thread polls the RDMA

completion queues (CQs) for work requests on pre-posted RDMA buffers and dispatches the

requests to file system threads. As an optimization, the MDS prioritizes log commits by allowing

network threads to append log entries directly. Then, a file system thread handles the requests by

updating file system structures in DRAM for a log commit or serving the requests for an RPC. Each

file system thread maintains a FIFO containing pointers to updated log entries or RDMA buffers

holding RPC requests.

For a log commit, a network thread reads the inode number, appends the entry by issuing

non-temporal moves and then atomically updates the tail pointer. At this point, other clients can

read the committed entry and apply it to their local copy of the inode log. The network thread then

releases the recv buffer by posting a recv verb, allowing its reuse. Finally, it dispatches the task for

updating in-DRAM data structures to a file system thread based on the inode number.

For RPCs, the network thread dispatches the request directly to a file system thread. Each

thread processes requests to a subset of inodes to ensure better locality and less contention for locks.

The file system threads use lightweight journals for RPCs involving inodes that belong to multiple

file system threads.

File system threads perform garbage collection (GC) when the number of “dead” entries in

a log becomes too large. Orion rebuilds the inode log by copying live entries to new log pages. It

then updates the log pointers and increases the version number. Orion makes this update atomic by

packing the version number and tail pointer into 64 bits. The thread frees stale log pages after a

delay, allowing ongoing RDMA reads to complete. Currently we set the maximal size of file writes
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(b) rebuilding the log on conflicts.

in a log entry to be 512 MB.

4.2.3 Client Arbitration

Orion allows multiple clients to commit log entries to a single inode at the same time using

a mechanism called client arbitration rather than distributed locking. Client arbitration builds on

the following observations:

1. Handling an inbound RDMA read is much cheaper than sending an outbound write. In our

experiments, a single host can serve over 15 M inbound reads per second but only 1.9 M

outbound writes per second.

2. For the MDS, CPU time is precious. Having the MDS initiate messages to maintain consis-

tency will reduce Orion performance significantly.
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3. Log append operations are lightweight: each one takes around just 500 CPU cycles.

A client commits a log entry by issuing a send verb and polling for its completion. The MDS

appends log commits based on arrival order and updates log tails atomically. A client can determine

whether a local inode is up-to-date by comparing the log length of its local copy of the log and the

authoritative copy at the MDS. Clients can check the length of an inode’s log by retrieving its tail

pointer with an RDMA read.

The client issues these reads in the background when handling an I/O request. If another

client has modified the log, the client detects the mismatch and fetches the new log entries using

additional RDMA reads and retries.

If the MDS has committed multiple log entries in a different order due to concurrent accesses,

the client blocks the current request and finds the last log entry that is in sync with the MDS, it then

fetches all following log entries from the MDS, rebuilds its in-DRAM structures, and re-executes

the user request.

Figure 4.5 shows the three different cases of concurrent accesses to a single inode. In (a),

the client A can append the log entry #2 from client B by extending its inode log. In (b), the client

A misses the log entry #2 committed by client B, so it will rebuild the inode log on the next request.

In (c), the MDS will execute concurrent RPCs to the same inode sequentially, and the client will see

the updated log tail in the RPC acknowledgment.

A rebuild occurs when all of the following occur at the same time: (1) two or more clients

access the same file at the same time and one of the accesses is log commit, (2) one client issues

two log commits consecutively, and (3) the MDS accepts the log commit from another client after

the client RDMA reads the inode tail but before the MDS accepts the second log commit.

In our experience this situation happens very rarely, because the “window of vulnerability” –

the time required to perform a log append on the MDS – is short. That said, Orion lets applications

identify files that are likely targets of intensive sharing via an ioctl. Orion uses RPCs for all

updates to these inodes in order to avoid rebuilds.
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4.3 Data Management

Orion pools NVMM spread across internal clients and data stores. A client can allocate and

access data either locally (if the data are local) or remotely via one-sided RDMA. Clients use local

caches and migration during copy-on-write operations to reduce the number of remote accesses.

4.3.1 Delegated Allocation

To avoid allocating data on the critical path, Orion uses a distributed, two-stage memory

allocation scheme.

The MDS keeps a bitmap of all the pages Orion manages. Clients request large chunks of

storage space from the MDS via an RPC. The client can then autonomously allocate space within

those chunks. This design frees the MDS from managing fine-grain data blocks, and allows clients

to allocate pages with low overhead.

The MDS allocates internal clients chunks of its local NVMM when possible since local

writes are faster. As a result, most of their writes go to local NVMM.

4.3.2 Data Access

To read file data, a client either communicates with the DS using one-sided RDMA or

accesses its local NVMM via DAX (if it is an internal client and the data is local). Remote reads use

one-sided RDMA reads to retrieve existing file data and place it in local DRAM pages that serve as

a cache for future reads.

Remote writes can also be one-sided because allocation occurs at the client. Once the transfer

is complete, the client issues a log commit to the MDS.

Figure 4.6 demonstrates Orion’s data access mechanisms. A client can request a block chunk

from the MDS via an RPC 1 . When the client opens a file, it builds a radix tree for fast lookup

from file offsets to log entries 2 . When handling a read() request, the client reads from the DS
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(DS-B) to its local DRAM and update the corresponding log entry 3 . For a write() request,

it allocates from its local chunk 4 and issues memcpy nt() and sfence to ensure that the data

reaches its local NVMM (DS-C) 5 . Then a log entry containing information such as the GPA and

size is committed to the MDS 6 . Finally, the MDS appends the log entry 7 .

4.3.3 Data Persistence

Orion always ensures that metadata is consistent, but, like many file systems, it can relax the

consistency requirement on data based on user preferences and the availability of replication.

The essence of Orion’s data consistency guarantee is the extent to which the MDS delays

the log commit for a file update. For a weak consistency guarantee, an external client can forward

a speculative log commit to the MDS before its remote file update has completed at a DS. This

consistency level is comparable to the write-back mode in ext4 and can result in corrupted data

pages but maintains metadata integrity. For strong data consistency that is comparable to NOVA

and the data journaling mode in ext4, Orion can delay the log commit until after the file update is

persistent at multiple DSs in the replication group.

Achieving strong consistency over RDMA is hard because RDMA hardware does not

provide a standard mechanism to force writes into remote NVMM. For strongly consistent data

updates, our algorithm is as follows.

A client that wishes to make a consistent file update uses copy-on-write to allocate new

pages on all nodes in the appropriate replica group, then uses RDMA writes to update the pages. In

parallel, the client issues a speculative log commit to the MDS for the update.

DSs within the replica group detect the RDMA writes to new pages using an RDMA trick:

when clients use RDMA writes on the new pages, they include the page’s global address as an

immediate value that travels to the target in the RDMA packet header. This value appears in the

target NIC’s completion queue, so the DS can detect modifications to its pages. For each updated

page, the DS forces the page into NVMM and sends an acknowledgment via a small RDMA
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write to the MDS, which processes the client’s log commit once it reads a sufficient number of

acknowledgments in its DRAM.

4.3.4 Fault Tolerance

The high performance and density of NVMM makes the cost of rebuilding a node much

higher than recovering it. Consequently, Orion makes its best effort to recover the node after

detecting an error. If the node can recover (e.g. after a power failure and most software bugs), it can

rejoin the Orion cluster and recover to a consistent state quickly. For NVMM media errors, module

failures, or data-corrupting bugs, Orion rebuilds the node using the data and metadata from other

replicas. It uses relative pointers and global page addresses to ensure metadata in NVMM remain

meaningful across power failures.

In the metadata subsystem, for MDS failures, Orion builds a Mojim-like high-availability

pair consisting of a primary MDS and a mirror. All metadata updates flow to the primary MDS,

which propagates the changes to the mirror. When the primary fails, the mirror takes over and

journals all the incoming requests while the primary recovers.

In the data subsystem, for DS failures, the DS journals the immediate values of incoming

RDMA write requests in a circular buffer. A failed DS can recover by obtaining the pages committed

during its downtime from a peer DS in the same replication group. When there are failed nodes

in a replication group, the rest of the nodes work in the strong data consistency mode introduced

in Section 4.3.3 to ensure successful recovery in the event of further failures.

4.4 Evaluation

In this section, we evaluate the performance of Orion by comparing it to existing distributed

file systems as well as local file systems. We answer the following questions:

• How does Orion’s one-layer design affect its performance compared to existing two-layer

distributed file systems?
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latency communication primitive (a). These lead to basic file operation latencies that are better
than existing remote-access storage system (b) and within a small factor of local NVMM file
systems (c).

• How much overhead does managing distributed data and metadata add compared to running a

local NVMM file system?

• How does configuring Orion for different levels of reliability affect performance?

• How scalable is Orion’s MDS?

We describe the experimental setup and then evaluate Orion with micro- and macrobench-

marks. Then we measure the impact of data replication and the ability to scale over parallel

workloads.

4.4.1 Experimental Setup

We run Orion on a cluster with 10 nodes configured to emulate persistent memory with

DRAM. Each node has two quad-core Intel Xeon (Westmere-EP) CPUs with 48 GB of DRAM,

with 32 GB configured as an emulated pmem device. Each node has an RDMA NIC (Mellanox

ConnectX-2 40 Gbps HCA) running in Infiniband mode and connects to an Infiniband switch

(QLogic 12300). We disabled the Direct Cache Access feature on DSs. To demonstrate the impact

to co-located applications, we use a dedicated core for issuing and handling RDMA requests on

each client.
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We build our Orion prototype on the Linux 4.10 kernel with the RDMA verb kernel modules

from Mellanox OFED [66]. The file system in Orion reuses code from NOVA but adds ∼8K lines

of code to support distributed functionalities and data structures. The networking module in Orion

is built from scratch and comprises another ∼8K lines of code.

We compare Orion with three distributed file systems Ceph [107], Gluster [25], and Oc-

topus [65] running on the same RDMA network. We also compare Orion to ext4 mounted on a

remote iSCSI target hosting a ramdisk using iSCSI Extension over RDMA (iSER) [16] (denoted

by Ext4/iSER), which provides the client with private access to a remote block device. Finally, we

compare our system with two local DAX file systems: NOVA [111, 112] and ext4 in DAX mode

(ext4-DAX).

4.4.2 Microbenchmarks

We begin by measuring the networking latency of log commits and RPCs. Figure 4.7(a)

shows the latency of a log commit and an RPC compared to the network round trip time (RTT) using

two sends verbs. Our evaluation platform has a network round trip time of 7.96 µs. The latency of

issuing an Orion RPC request and obtaining the response is 8.5 µs. Log commits have much lower

latency since the client waits until receiving the acknowledgment of an RDMA send work request,

which takes less than half of the network round trip time: they complete in less than 2 µs.

Figure 4.7(b) shows the metadata operation latency on Orion and other distributed file

systems. We evaluated basic file system metadata operations such as create, mkdir, unlink,

rmdir as well as reading and writing random 4 KB data using FIO [6]. Latencies for Ceph and

Gluster are between 34% and 443% higher than Orion.

Octopus performs better than Orion on mkdir, unlink and rmdir, because Octopus uses a

simplified file system model: it maintains all files and directories in a per-server hash table indexed

by their full path names and it assigns a fixed number of file extents and directory entries to each

file and directory. This simplification means it cannot handle large files or directories.
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Figure 4.8: Application performance on Orion. The graph is normalized to NOVA, and the
annotations give NOVA’s performance. For write-intensive workloads, Orion outperforms Ceph
and Gluster by a wide margin.

Ext4/iSER outperforms Orion on some metadata operations because it considers metadata

updates complete once they enter the block queue. In contrast, NVMM-aware systems (such as

Orion or Octopus) report the full latency for persistent metadata updates. The 4 KB read and write

measurements in the figure give a better measure of I/O latency – Orion outperforms Ext4/iSER

configuration by between 4.9× and 10.9×.

For file reads and writes, Orion has the lowest latency among all the distributed file systems

we tested. For internal clients (Orion-IC), Orion’s 4 KB read latency is 3.6 µs and 4 KB write latency

of 5.8 µs. For external clients (Orion-EC), the write latency is 7.9 µs and read latency is similar to

internal clients because of client-side caching. For cache misses, read latency is 7.9 µs.

We compare Orion to NOVA and Ext4-DAX in Figure 4.7(c). For metadata operations, Orion

sends an RPC to the MDS on the critical path, increasing latency by between 98% to 196% compared

to NOVA and between 31% and 106% compared to Ext4-DAX. If we deduct the networking round
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Table 4.2: Application workload characteristics This table includes the configurations for three
filebench workloads and the properties of YCSB-A.

Workload
#

Threads
#

Files
Avg. File

Size
R/W
Size

Append
Size

varmail 8 30 K 16 KB 1 MB 16 KB
fileserver 8 10 K 128 KB 1 MB 16 KB

webserver 8 50 K 64 KB 1 MB 8 KB
mongodb 12 YCSB-A, RecordCount=1M, OpCount=10M

trip latency, Orion increases software overheads by 41%.

4.4.3 Macrobenchmarks

We use three Filebench [100] workloads (varmail, fileserver and webserver) as well as

MongoDB [72] running YCSB’s [22] Workload A (50% read/50% update) to evaluate Orion.

Table 4.2 describes the workload characteristics. We could not run these workloads on Octopus

because it limits the directory entries and the number of file extents, and it ran out of memory when

we increased those limits to meet the workloads’ requirements.

Figure 4.8 shows the performance of Orion internal and external clients along with other file

systems. For filebench workloads, Orion outperforms Gluster and Ceph by a large margin (up to

40×). We observe that the high synchronization cost in Ceph and Gluster makes them only suitable

for workloads with high queue depths, which are less likely on NVMM because media access

latency is low. For MongoDB, Orion outperforms other distributed file systems by a smaller margin

because of the less intensive I/O activities.

Although Ext4/iSER does not support sharing, file system synchronization (e.g. fsync())

is expensive because it flushes the block queue over RDMA. Orion outperforms Ext4/iSER in most

workloads, especially for those that require frequent synchronization, such as varmail (with 4.5×

higher throughput). For webserver, a read-intensive workload, Ext4/iSER performs better than local

Ext4-DAX and Orion because it uses the buffer cache to hold most of the data and does not flush

writes to storage.

Orion achieves an average of 73% of NOVA’s throughput. It also outperforms Ext4-DAX on

77



metadata and I/O intensive workloads such as varmail and filebench. For Webserver, a read-intensive

workload, Orion is slower because it needs to communicate with the MDS.

The performance gap between external clients and internal clients is small in our experiments,

especially for write requests. This is because our hardware does not support the optimized cache

flush instructions that Intel plans to add in the near future [86]. Internal clients persist local writes

using clflush or non-temporal memory copy with fences; both of which are expensive.

4.4.4 Metadata and Data Replication

Figure 4.9 shows the performance impact of metadata and data replication. We compare the

performance of a single internal client (IC), a single external client (EC), an internal client with

one and two replicas (IC+1R, +2R), and an internal client with two replicas and MDS replication

(+2R+M). For a 4 KB write, it takes an internal client 12.1 µs to complete with our strongest

reliability scheme (+2R+M), which is 2.1× longer than internal client and 1.5× longer than an

external client. For filebench workloads, overall performance decreases by between 2.3% and

15.4%.

4.4.5 MDS Scalability

We measure MDS performance scalability by stressing it with different types of requests:

client initiated inbound RDMA reads, log commits, and RPCs. Figure 4.10 measures throughput for

the MDS handling concurrent requests from different numbers of clients. For inbound RDMA reads

(a), each client posts RDMA reads for an 8-byte field, simulating reading the log tail pointers of

inodes. In (b) the client sends 64-byte log commits spread across 10,000 inodes. In (c) the clients

send 64-byte RPCs and the MDS responds with 32-byte acknowledgments. Each RPC targets one

of the 10,000 inodes. Finally, in (d) we use FIO to perform 4 KB random writes from each client to

private file.

Inbound RDMA reads have the best performance and scale well: with eight clients, the MDS
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Figure 4.9: Orion data replication performance. Updating a remote replica adds significantly
to random write latency, but the impact on overall benchmark performance is small.

performs 13.8 M RDMA reads per second – 7.2× the single-client performance. For log commits,

peak throughput is 2.5 M operations per second with eight clients – 4.1× the performance for a

single client. Log commit scalability is lower because the MDS must perform the log append in

software. The MDS can perform 772 K RPCs per second with seven clients (6.2× more than a

single). Adding an eighth does not improve performance due to contention among threads polling

CQEs and threads handling RPCs. The FIO write test shows good scalability – 7.9× improvement

with eight threads. Orion matches NOVA performance with two clients and out-performs NOVA by

4.1× on eight clients.

Orion uses a single MDS with a read-only mirror to avoid the overhead of synchronizing

metadata updates across multiple nodes. However, using a single MDS raises scalability concerns.

In this section, we run an MDS paired with 8 internal clients to evaluate the system under heavy

metadata traffic.

Orion is expected to have good scaling under these conditions. Similar to other RDMA based

studies, Orion is suitable to be deployed on networks with high bisectional bandwidth and predictable
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end-to-end latency, such as rack-scale computers [23,59]. In these scenarios, the single MDS design

is not a bottleneck in terms of NVMM storage, CPU utilization, or networking utilization. Orion

metadata consumes less than 3% space compared to actual file data in our experiments. Additionally,

metadata communication is written in tight routines running on dedicated cores, where most of the

messages fit within two cache lines. Previous works [8, 62] show similar designs can achieve high

throughput with a single server.

In contrast, several existing distributed file systems [12, 25, 35, 107] target data-center

scale applications, and use mechanisms designed for these conditions. In general, Orion’s design

is orthogonal to the mechanisms used in these systems, such as client side hashing [25] and

partitioning [107], which could be integrated into Orion as future work. On the other hand, we

expect there may be other scalability issues such as RDMA connection management and RNIC

resource contention that need to be addressed to allow further scaling for Orion. We leave this

exploration as future work.

4.5 Summary

This chapter describes Orion, a file system for distributed NVMM and RDMA networks.

By combining file system functions and network operations into a single layer, Orion provides low

latency metadata accesses and allows clients to access their local NVMMs directly while accepting
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remote accesses. Our evaluation shows that Orion outperforms existing NVMM file systems by a

wide margin, and it scales well over multiple clients on parallel workloads.
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Chapter 5

FileMR: Rethinking Userspace RDMA

Networking for Scalable Persistent Memory

We have introduced Mojim and Orion, two systems that combine NVMM and RDMA into

a unified network-attached persistent memory. Both of them work as an operating system service

that indirect user requests into the operating system service.

We need such indirection because NVM file systems and the RDMA network protocol

were not designed to work together. As a result, when an userspace application maps NVMM

into its address space and accepts remote RDMA accesses directly, there are many redundancies,

particularly where the systems overlap in memory. Only RDMA provides network data transfer and

only the NVMM file system provides persistent memory metadata, but both systems implement

protection, address translation, naming, and allocation across different abstractions: for RDMA,

memory regions, and for NVMM file systems, files. Naively using RDMA and NVMM file systems

together results in a duplication of effort and inefficient translation layers between their abstractions.

These translation layers are expensive, especially since RNICs can only store translations for limited

amount of memory while NVM capacity can be extremely large.

In this chapter, we present a new abstraction, called a file memory region (FileMR), that

combines the best of both RDMA and NVM file systems into a design that can provide fast, network-
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attached, file-system managed, persistent memory. It accomplishes this goal by offloading most

RDMA-required tasks related to memory management to the NVM file system through the new

memory region type; the file system effectively becomes RDMA’s control plane.

With the FileMR abstraction, a client establishes an RDMA connection backed by files,

instead of memory address ranges (i.e. an RDMA memory region). RDMA reads and writes are

directed to the file through the file system, and addressed by the file offset. The translation between

file offset and physical memory address is routed through the NVMM file system, which stores all its

files in persistent memory. Access to the file is mediated via traditional file system protections (e.g.

access control lists). To further optimize address translation, we integrate a range-based translation

system, which uses address ranges (instead of pages) for translation, into the RNIC, reducing the

space needed for translation and resolving the abstraction mismatch between RDMA and NVMM

file systems.

Our FileMR design with range-based translation provides a way to seamlessly combine

RDMA and NVMM. Compared to simplying layering traditional RDMA memory regions on top of

NVMM, FileMR provides the following benefits:

• It minimizes the amount of translation done at the NIC, reducing the load on the NIC’s

translation cache and improving hit rate by 3.8× - 340×.

• It simplifies memory protection by using existing file access control lists instead of RDMA’s

ad-hoc memory keys.

• It simplifies connection management by using persistent file names instead of ephemeral

memory region IDs.

• It allows network-accessible memory to be moved or expanded without revoking permissions

or closing a connection, giving the file system the ability to defragment and append to files.

The rest of this chapter is organized as follows. Section 5.1 describes the design of the

FileMR. Section 5.2 describes our proposed changes to RDMA stack and RNICs, and Section 5.3
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introduce two case studies. Section 5.4 provides experimental results. Section 5.5 discusses the

applicability of the FileMR on real hardware and Section 5.6 concludes.

5.1 FileMR Overview

The FileMR extends the existing RDMA protocol to provide remote access to NVMM files.

The FileMR is a new type of memory region that is also an NVMM file. The FileMR provides

an efficient and coordinated memory management layer across the userspace application, the file

system, and the RDMA networking stack.

The FileMR requires minimal changes to existing RDMA networking stack and does not

rely on any specific design of the file systems. The FileMR can coexist with conventional RDMA

memory regions, ensuring backward-compatibility.

As shown in Table 2.1, the FileMR system resolves the conflicting systems of RDMA and

NVMM files that cause unnecessary restrictions and performance degradation through several

innovations.

Merged control plane: With an RDMA FileMR, a client uses a file offset to address memory,

instead of a virtual or physical address. The FileMR also leverages the naming, addressing, and

permissions of the file system to streamline RDMA access.

Range-based address translation: The FileMR leverages the file system’s efficient, extent-

based layout description mechanism to reduce the amount of state the NIC must hold. As files

are already organized in continuous extents, we extend this addressing mechanism to the RNIC,

allowing the RNIC’s pin-down cache to use a space efficient translation scheme to address large

amounts of RDMA accessible memory.

The rest of this section continues as follows. We begin be describing the FileMR abstraction

and range-based address translation. Then, we describe the system architecture required to support

our new abstraction.
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Figure 5.1: FileMR: Control path and data path.. The user application communicates with
the RDMA libraries and file system in control path (green), and access local and remote NVMM
directly in data path (red).

5.1.1 FileMR

Our new abstraction, the FileMR, is an RDMA memory region that is also an NVMM file.

This allows the RDMA and NVMM control planes to interoperate smoothly. RDMA accesses to

the FileMR are addressed by file offset, and the file system manages the underlying file’s access

permissions, naming, and allocation as it would any file. NVMM files are always backed by physical

pages managed by the file system, so, when using a FileMR, the RDMA subsystem can simply reuse

the translation, permission, and naming information already available in the file system metadata

for the appropriate checks and addressing.

Figure 5.1 shows an overview of metadata and data access with FileMR. For metadata,

before creating a FileMR, the application opens the backing file with the appropriate permissions
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(step 1 ). Next, the application creates the FileMR (step 2 ) and binds (step 3 ) the region to a

file, which completes the region’s initialization. Binding the FileMR to the file produces a filekey,

analogous to an rkey, that remote clients can use to access the FileMR. Once the FileMR is created

and bound to a backing file, the file system will keep the file’s addressing information in sync with

the RNIC (step 4 ).

For data access to a remote FileMR and its backing NVMM file, applications use the FileMR

(with the filekey to prove its permissions) and a file offset. The RNIC translates between file offsets

and physical addresses using translation information provided by the file system. In addition to

one-sided read and write verbs to the FileMR, we introduce a new one-sided append verb that

grows the region. When sending the append verb, the client does not include the remote address,

and the server handles it like the an one-sided write with address equal to current size of FileMR.

It then updates the FileMR size and and notifies the file system. As an optimization, to prevent

faulting on every append message, the file system can pre-allocate translation entries beyond the

size of a file. Even while the backing file is opened and accessible via a FileMR, local applications

can continue to access it using normal file system calls or mmaped addresses — any change to the

file metadata will be propagated to the RNIC.

5.1.2 Range-based Address Translation

NVMM file systems try to store file data in large, linear extents in NVMM. FileMR uses

range-based address translation within the MTT and pin-down cache through a RangeMTT and

range pin-down cache, respectively. This change is a significant departure from traditional RDMA

page-based addressing. Unlike page-based translations, which translate a virtual to physical address

using sets of fixed size pages, range-based translation (explored used previously in CPU-side

translation [9, 33, 53, 80]) maps a variably sized virtual address range to physical address. Range-

based address translation is useful when addressing large linear memory regions (which NVMM

file systems strive to create) and neatly leverages the preexisting extent-based file organization.

86



RDMA Verbs
Application

RangeMTT Update
Bind/Destroy
Init/Update
Invalidate

RDMA Lib

File System RDMA Core

RNIC Driver

RNIC

RDMA Commands

Verbs

OS

Userspace

reg_mr(FILEMR)

RangeMTT Miss

RangeMTT Fault Callbacks

RDMA Lib

RNIC

Application

RDMA Verbs
RDMA_APPEND

Remote Node Local Node

Verbs(RangeMTT)

ioctl(FILEMR_BIND)

Figure 5.2: Overview of FileMR components.. Implementing FileMR requires changes in file
system, RDMA stack and hardware (in green).

For the FileMR, range-based address translation has two major benefits: both the space

required to store the mapping and the time to register a mapping does not scales with the number

of variable-sized extents rather than with the number of fixed size pages Registering a page in the

MTT and pin-down cache takes about 5 µs, and this process cannot be parallelized. As a result, a

single core can only register memory at 770 MB/s with 4 kB pages. For NVMMs on the order of

terabytes, the result registration time will be unacceptably long.

5.1.3 Design Overview

The implementation of the FileMR RDMA extension requires coordination and changes

across several system components: the file system, the RNIC, the core RDMA stack, and the

application. Figure 5.2 shows the vanilla RDMA stack (in grey) along with the necessary changes

to adopt FileMR (in green).
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To support the FileMR abstraction, the file system is required to implement the bind()

function to associate a FileMR and a file, and, when necessary, notify the RDMA stack (and

eventually the RNIC’s RangeMTT and pin-down cache) when bound file’s metadata changes via

callbacks (see Table 5.1). These callbacks allow the RNIC to maintain the correct range-based

mappings to physical addresses for incoming RDMA requests. Note that the concept of a file system

is loosely defined for the FileMR, so long as it invokes the correct callbacks to the RNIC. FileMR

can be integrated with a kernel file system, a userspace file system, or an userspace NVMM library

that accesses raw NVMM (also known as device-DAX) and provides naming.

Optionally, the file system can also register a set of callback functions triggered when

RNIC cannot find a translation for an incoming address. This process is similar to on-demand

paging [61, 63] and is required to support our new append verb, which both modifies the file layout

and writes to it.

Supporting the FileMR abstraction also requires changes to the RNIC hardware. With our

proposed RangeMTT, RNIC hardware and drivers would need to adopt range-based addressing

within both the MTT and pin-down cache. Hardware range-based addressing schemes [9, 39, 53, 80]

can be used to implement range-based address lookup. In our experiments we simulate these changes

using a software RNIC (see Section 5.2).

The FileMR also adds incremental, backwards compatible changes to the RDMA interface

itself (see Table 5.2). It adds a new access flag for memory region creation to identify the creation

of a FileMR. After its creation, the FileMR is marked as a being in an unprovisioned state —

the subsequent bind() call into the file system will allocate the FileMR’s translation entries

in the RangeMTT (via the cm bind callback from the file system). The bind() method can be

implemented with an ioctl() (for kernel-level file systems) or a library call (for user-level file

systems). The FileMR also adds the new one-sided RDMA append verb. Converting existing

applications to use FileMRs is easy as the application need only change its region creation code.
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Table 5.1: File system to RNIC callbacks for FileMRs. These callbacks are used by the file
system to notify the RDMA stack and RNIC that file layouts (and consequently address mappings)
have changed.

API Description
cm bind() To notify RNIC of new bound file
cm init() To initialize RangeMTT entries
cm update() To update a RangeMTT entry
cm invalidate() To invalidate a RangeMTT entry
cm destroy() To destroy a file binding

Table 5.2: New/changed RDMA methods. These methods in the RDMA interface are new or
have new flags under the FileMR system.

API Description
bind() Binds an opened file to FileMR
ibv reg mr() Creates a FileMR with FILEMR flag
ibv post send() Posts append w/ APPEND flag (uverb)
ib post send() Posts append w/ APPEND flag (kverb)

5.2 FileMR Implementation

We implemented the FileMR and RangeMTT for both the kernel space and userspace

RDMA stack in Linux, and our implementations support the callbacks described in Table 5.1 and

the changed methods in Table 5.2. The kernel implementation is based on Linux version 4.18, and

userspace implementation is based on rdma-core (userspace) packages shipped with Ubuntu 18.04.

Table 5.3 summarizes our implementation of FileMR with RangeMTT.

For our FileMR implementation on the NIC side, our implementation is based on a software-

based RNIC: Software RDMA over Converged Ethernet (Soft-RoCE) [5, 54]. Soft-RoCE is a

software RNIC built on top of ethernet’s layer 2 and layer 3. It fully implements the ROCEv2

specification. Future research could work to build a FileMR compatible RNIC in real hardware.

To implement our RangeMTT, we followed the design introduced in Redundant Memory

Mappings [53]: each FileMR points to a b-tree that stores offsets and lengths, and we use the offsets

as index. All RangeMTT entries are page-aligned addresses, since OS can only manage virtual

memory in page granularity.

Unlike page-aligned RangeMTT, FileMR supports arbitrary sizes and allows sub-page
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Table 5.3: Summary of FileMR implementation. This table shows the components modified to
implement FileMR. The first column indicates the change is in kernel space (K) or user space (U).

Item Description LOC
FileMR Implementation on RDMA stack

K ibcore Range-based TLB 367
K ibverbs Kernel verbs 293
U libibverbs Userspace verbs 53

FileMR support for RNIC
K rxe Soft-RoCE: device driver 752
U librxe Soft-RoCE: userspace driver 142

FileMR support for file system
K nova a NVMM-aware file system 455

Applications adapting FileMR
U novad allowing remote NVMM access 285
U libpmemlog NVMM log library 198

files/objects. Each RangeMTT entry consists a page address, a length field and necessary bits. These

entries are non-overlapping and can have gaps for sparse files.

To support the append verb, the FileMR allows translation entries beyond its size. The

append is one-sided but does not specify remote server addresses in the WR. On the server side, the

RNIC always attempts to DMA to the current size of the FileMR and increase its size on success.

When the translation is missing, the server can raise a IO page fault when IOMMU is available

and a file system routine will be called to fulfill the faulty entries. Alternatively, if such support is

unavailable, the server signals the client via a message similar to a receiver not ready (RNR) error.

Like most hardware-based RNICs, Soft-RoCE manages the MTT entries as a flat array of

64-bit physical addresses, with lookup compleixty of O(1). For FileMR with a range pin-down

cache miss, the entry lookup will traverse the registered data structures with higher time complexity

(O(log(n))).

Soft-RoCE does not have a pin-down cache since the mappings are in DRAM. To emulate

the pin-down cache, we built a 4096-entry 4-way associative cache to emulate the traditional

pin-down cache, and 4096-entry, 4-way associative range pin-down cache for FileMR. Each range

translation entry consists of a 32 bit page address and a 32-bit length, which allows a maximal

FileMR size of 16 TB (4 kB pages) or 8 PB (2 MB pages).
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We adapted two applications to use FileMR. For a kernel file system, our implementation is

based on NOVA [111], a full-fledged kernel space NVMM-aware file system with good performance.

We added 455 lines of code to implement codebase. We also adapted the FileMR to libpmemlog,

part of pmdk [81], a user-level library that manages local persistent objects, to build a remotely

accessible persistent log. It took 198 lines of code to implement.

5.3 Case Studies

In this section we demonstrate the utility of our design with our two case studies. In Sec-

tion 5.3.1, we demonstrate how to use FileMR APIs to enable remote file accesses with consistent

addressing for local and remote NVMM. In Section 5.3.2, we extend libpmemlog [81], a logging

library designed for local persistent memory into a remotely accessible log, demonstrating how

FileMR can be applied to userspace libraries.

5.3.1 Remote File Access in NOVA

In this section, we demonstrate an example usage of our FileMR by extending a local

NVMM file system (NOVA [111]). By combining the NVMM file system, RDMA, and our new

FileMR abstraction, we can support fast remote file accesses that entirely bypass the kernel.

NOVA is a log-structured POSIX-compliant local NVMM file system. In NOVA, each file

is organized as a persistent log of variably sized extents, where the extents reside on persistent

memory. The file data is allocated and maintained by the file system through per-cpu free lists.

To handle metadata operations on the remote file system, we designed a lightweight user-

level daemon novad. The daemon opens the file to establish an FileMR. It also receives any

metadata updates (e.g. directory creation) from remote applications communicated through a

traditional RDMA memory region and two-sided send/receive verbs and applies them the local file

system. NOVA manages file metadata updates and file layout in NVMM.

On the client side, an application opens the file remotely by communicating with novad and
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Figure 5.3: Enabling remote NOVA accesses using FileMR.. Using FileMR, remote file ac-
cesses share a similar interface over RDMA as local NVMM accesses.
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receiving the filekeys. It can then send one-sided RDMA verbs to directly access remote NVMM.

At the same time, applications running locally can still access the file with traditional POSIX I/O

interface, or map the file to its address space and issue loads and stores instructions.

Our combined system can also easily handle data replication. By using several FileMRs,

we can simply duplicate a verb (with the same or different filekes depending on the file system

implementation) and send to multiple hosts, without considering the physical address of the files

(so long as their names are equivalent).

5.3.2 Remote NVMM Log with libpmemlog

The FileMR abstraction only requires that the backing “file system” to appropriately im-

plement the bind() method, RNIC callbacks, and have access to raw NVMM. For instance, a

FileMR can be created by an application having access to the raw NVMM device. In this section,

we leverage this flexibility build a remote NVMM log based on libpmemlog.

We modify the allocator of libpmemlog to use the necessary FileMR callbacks — that is,

whenever memory is allocated or freed for the log the RNIC’s RangeMTT is updated. The client

appends to the log with the new append verb. On the server side, when the FileMR size is within the

mapped RangeMTT, the RNIC can perform the translation while bypassing the server application.

If not, a range fault occurs and the library expands the region by allocating and mapping additional

memory.

5.4 Evaluation

In this section, we evaluate the performance of the FileMR. First, we measure control plane

metrics such as registration cost, memory utilization of the FileMR, as well as the efficiency of

RangeMTT. Then we evaluate application-level data plane performance from our two case studies

and compare FileMR-based applications with existing systems.
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Figure 5.4: FileMR registration time.. This figure shows the time consumed to register a fixed
size memory region.

5.4.1 Experimental Setup

We run our FileMR on servers configured to emulate persistent memory with DRAM. Each

node has two Intel Xeon (Broadwell) CPUs with 10 cores and 256 GB of DRAM, with 64 GB

configured as an emulated NVMM devices. We setup Soft-RoCE on an Intel X710 10GbE NIC

connected to a switch.

5.4.2 Registration Overhead

Allocated Regions

We measure the time consumed in memory region registration using FileMRs versus con-

ventional user-level memory regions backed by NOVA with 4 kB pages and anonymous buffers with

4 kB and 2 MB pages. This experiment demonstrates the use case when an application allocates and

maps a file directly, without updating its metadata. For FileMR, we also include the time generating
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Table 5.4: Workload Characteristics. Description of workloads to evaluate registration cost of
FileMR and pin-down cache hit rate.

Workload #Th # Files Avg. Size Description
Fileserver 20 7980 6.82 MB File I/Os

Varmail 20 4511 11.3 kB Random I/Os
Redis 12 2 561 MB Write + Append

SQLite 4 1 109 MB Write + Sync
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Figure 5.5: FileMR on fragmented files.. Compared to traditional MRs, FileMR saves registra-
tion cost and RNIC translation entries.

range entries from NOVA logs, which happens when an application opens the file for the first time.

As shown in Figure 5.4, registering a large size memory region consumes a non-trival

amount of time. It takes over 30 seconds to register a 64 GB persistent (File) and volatile (Alloc-4K)

memory region with 4 kB pages. Using hugepages (Alloc-2M) reduces the registration cost to 20

seconds, while it only takes 67 ms for FileMR (three orders of magnitude lower). The FileMR

registration time increases modestly as the region size grows mainly due to the internal fragmentation

of the file system allocator.

For small files, NOVA only creates one or two extents for the file, while conventional MRs

still interacts with the virtual memory routines of the OS, causing overhead.
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Fragmented Files

Another common usage for NVMM file systems is to use POSIX I/O for control plane

operations, and POSIX or mmapped I/O for data plane operations. As a result, the file can often

be fragmented. To evaluate the fragmented case, we first warmed up the file system using four I/O

intensive workloads: varmail and fileserver workloads in filebench [100], Redis [83] and SQLite [93]

(using MobiBench [48]). Once the file system warm and fragmented, we created memory regions

over all files in NVMM. Table 5.4 summarizes the workloads.

As shown in Figure 5.5, running FileMR over the fragmented file still shows dramatic

improvement on region registration time and memory consumption for MTT entries. Fileserver

demonstrates the case with many files, where FileMR only creates 0.5% of the entries of traditional

memory regions, and requires only 6.8% of the registration time. For a metadata-heavy workload

(Varmail), FileMR only reduces the number of entries by 3% (due to the heavy internal fragmentation

and small file size – 11.3 kB), but it still saves 20% on registration time. Redis is a key value store

that persists an append-only file on the I/O path, and flush the database asynchronously — little

internal fragmentation means that it requires 2% of the space and time of traditional memory regions.

Similarly, SQLite also uses logging, resulting in little fragmentation and drastic space and time

savings.

5.4.3 Translation Cache Effectiveness

The performance degradation of RDMA over large NVMM is mainly caused by the pin-

down cache misses (Figure 2.7). Since Soft-RoCE encapsulates RDMA messages in UDP and

accesses all RDMA state in DRAM, we cannot measure the effectiveness of the cache through

end-to-end performance.

Instead, we measure the cache hit ratio of our emulated pin-down cache and range pin-down

cache for FileMR. We collect the trace of POSIX I/O system calls for workloads described in

Table 5.4, and replay them through one-sided RDMA verbs to a remote host.
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Figure 5.6: Translation cache effectiveness.. FileMR signifacntly increases the effectiveness
of the pin-down cache.

Figure 5.6 shows the evaluation result. Our emulated range-based pin-down cache is signifi-

cantly more efficient (3.8× - 340×) than the page-based pin-down cache for fragmented files. For

large allocated files with a few entries, the range-based pind-down cache shows near 100% hit rate

(not shown in figure).

5.4.4 Accessing Remote Files

To evaluate the data path performance, we let a client access files on a remote server running

novad (introduced in Section 5.3.1). The client issues random 1 kB writes using RDMA write verbs,

and we measure the latency between the client application issuing the verb and the remote RNIC

DMAs to the target memory address (memcopy for Soft-RoCE).

We compare FileMR both with mmapped local accesses and other distributed systems

that provide distributed storage access. We implemented datapath-only versions of Mojim-Emu,

LITE-Emu [104] and Orion-Emu for Soft-RoCE. All these systems avoid translation overhead by

sending physical addresses on the wire.
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Figure 5.7: Latency breakdown of accessing remote file.. FileMR can access remote file
location without indirection on data path.

In Figure 5.7, we show the latency breakdown of these systems, omitting the latency of

UDP packet encapsulation and delivery for RDMA-based systems, which dominates the end-to-end

latency. It only takes 1.5 µs to store and persist 4 kB data to local NVMM, FileMR has lower latency

than other systems because it eliminates the need for any indirection layer (msync() syscall for

Mojim, shared memory write for LITE, and POSIX write for Orion).

5.4.5 Accessing Remote NVMM logs

Finally, we evaluate our introduction of the new append verb using our implementation of

remote log implementation, introduced in Section 5.3.2. We compare to a baseline libpmemlog

on using local NVMM (bypassing the network), as well as with logging within the HERD RPC

RDMA library [50, 51].
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Figure 5.8: Latency breakdown of accessing remote log.. With the append verb, Remote
logging with FileMR achieves similar performance to local ones.

Figure 5.8 shows the latency breakdown of creating a 64 Byte log entry. It takes 5.5 µs to

log locally with libpmemlog. FileMR adds 53% overhead for remote vs. local logging, while the

HERD RPC-based solution adds 192% overhead.

5.5 Discussion

The current FileMR implementation relies on software-based RDMA protocols. In this

section, we discuss the protential benefits and challenges of applying FileMR on hardware and other

deeper changes to the RDMA protocol. We consider them to be the future work.

5.5.1 Data Persistence

For local NVMM, a store instruction is persistent once data is evicted from CPU last-level

cache (via cache flush instructions and memory fences). A mechanism called asynchronous DRAM

refresh (ADR) ensures that the write queue on a memory controller is flushed to non-volatile storage
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in the event of a power failure. There are no similar mechanisms in the RDMA world since ADR

does not extend to PCIe devices. Making the task even more difficult, modern NICs are capable of

placing data into CPU cache using direct cache access (DCA) [42], conceivably entirely bypassing

NVMM.

The current workaround to ensure RDMA write persistency is to disable DCA and issue

another RDMA read to the last byte of a pending write [28], forcing the write to complete and

write to NVMM. Alternatively, the sender request that the receiving CPU purposefully flush data it

received; either embedding the flush request in an extra send verb, or the immediate field of a write

verb.

A draft standards working document has proposed adding a commit [97] verb to the RDMA

protocol to solve the write persistency problem. A commit verb lists memory locations that need to

be flushed to persistence. When the remote RNIC receives a commit verb, it ensures the all listed

locations are persistent before acknowledging completion of the verb.

With the introduction of FileMR, implementing data persistence is simplified since there is

no longer need to track modified locations at the client: the RNIC already maintains information

about FileMRs. A commit verb can simply request that all updates to a file before persistent. In

this way, a commit verb becomes analogous to an fsync syscall to a local file. Even better, since

the commit needs little state, a commit flag can be embedded to the latest write verb, reducing

communication overhead.

5.5.2 Connection Management

Orion and several other NVMM-based storage systems [65, 90, 104] store data across

nodes, or use a model similar to distributed shared memory. This model requires establishing N2

connections for N servers with NVMM. For user-level applications, the reliable connection transport

enforces the protection domain within the scope of a process. Thus a cluster with N servers running

p processes will establish N2 ∗ p2 connections.
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Existing works [1, 1, 96] reduces this complexity by sharing queue pairs [96], multiplexing

connections [56] or dynamically allocating connections [1] to reduce the RDMA states. These

optimizations work well for MPI-based applications, but it is challangeing to implement them for

NVMM applications, especially for application with fine-grained access control. In particular, a file

system supports complex access control schemes, which may disallow sharing and multiplexing.

With the FileMR, the file permission is checked at the bind step, and so each server only

requires a single connection to handle all file system requests, drastically reducing the amount of

state required to store on the RNIC.

5.5.3 Page Fault on NIC

Some ethernet and RNICs support page fault or on-demand paging [61, 63] (ODP). When

using ODP, instead of pinning memory pages, the IOMMU marks the page as not present in I/O

virtual addresses. The RNIC will raise an interrupt to operating system when attemping DMA to a

page that is not present. The I/O page fault handler then fills the entry with the mapping.

With ODP, a page fault is very expensive. In our experiment, it takes 475 µs to fulfill an

I/O page fault and complete a 8-byte RDMA write on an Mellanox CX-4 RNIC. In contrast, it

only takes 1.4 µs to complete when the mapping is cached in the RNIC. In general, ODP requires

extensive prefetching to mitigate the expensive page fault.

The design of FileMR is orthogonal to ODP, though it leverages it for the append verb.

Fortunately, the file system is the ideally situated to provide better locality by prefetching ranges

based on the file access pattern.

5.5.4 Multicast

The existing RDMA protocol only supports multicast with restrictions such as using unreli-

able datagram and two-sided verbs. For NVMM, data replication is essential for reliability and avail-

ability. Mojim, Orion and other existing RDMA-aware systems on distributed NVMM [11, 68, 90]
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replicate NVMM data in multiple stages or create verbs and send to multiple hosts. As a result,

when an application replicating data to N replicas, either the end-to-end latency will increase by

N×, or the bandwidth will reduce to 1/N.

Our current implementation of FileMR still requires a connection, yet with proper network

support this requirement can disappear. The RDMA payload on wire is mostly stateless (except for

file key) and can be multicasted by the current network infrastructure, allowing a single RDMA

verb to modify multiple copies of the same file. With a proper FileMR subscription mechanism,

hardware-based multicast support can simplify data replication over RDMA.

5.6 Summary

The conflicting systems on metadata management between NVMM and RDMA causes

expensive translation overhead and prevents the file system from changing its layout. This chap-

ter introduces two modifications to the existing RDMA protocol: the FileMR and range-based

translation, thereby providing an abstraction that combines memory regions and files. It drastically

improves the performance of RDMA-accessible NVMMs by eliminating extraneous translations,

while conferring other benefits to RDMA including more efficient access permissions and simpler

connection management.
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