
UC Davis
UC Davis Previously Published Works

Title
Diffusion of DNA-Binding Species in the Nucleus: A Transient Anomalous Subdiffusion 
Model

Permalink
https://escholarship.org/uc/item/0jn0442g

Journal
Biophysical Journal, 118(9)

ISSN
0006-3495

Author
Saxton, Michael J

Publication Date
2020-05-01

DOI
10.1016/j.bpj.2020.03.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0jn0442g
https://escholarship.org
http://www.cdlib.org/


Article
Diffusion of DNA-Binding Species in the Nucleus:
A Transient Anomalous Subdiffusion Model
Michael J. Saxton1,*
1Department of Biochemistry and Molecular Medicine, University of California, Davis, California
ABSTRACT Single-particle tracking experiments have measured escape times of DNA-binding species diffusing in living cells:
CRISPR-Cas9, TetR, and LacI. The observed distribution is a truncated power law. Working backward from the experimental
results, the observed distribution appears inconsistent with a Gaussian distribution of binding energies. Working forward, the
observed distribution leads to transient anomalous subdiffusion, in which diffusion is anomalous at short times and normal at
long times, here only mildly anomalous. Monte Carlo simulations are used to characterize the time-dependent diffusion coeffi-
cient D(t) in terms of the anomalous exponent a, the crossover time tcross, and the limits D(0) and D(N) and to relate these quan-
tities to the escape time distribution. The simplest interpretations identify the escape time as the actual binding time to DNA or
the period of one-dimensional diffusion on DNA in the standard model combining one-dimensional and three-dimensional
search, but a more complicated interpretation may be required. The model has several implications for cell biophysics. 1)
The initial anomalous regime represents the search of the DNA-binding species for its target DNA sequence. 2) Non-target
DNA sites have a significant effect on search kinetics. False positives in bioinformatic searches of the genome are potentially
rate-determining in vivo. For simple binding, the search would be speeded if false-positive sequences were eliminated from
the genome. 3) Both binding and obstruction affect diffusion. Obstruction ought to be measured directly, using as the primary
probe the DNA-binding species with the binding site inactivated and eGFP as a calibration standard among laboratories and
cell types. 4) Overexpression of the DNA-binding species reduces anomalous subdiffusion because the deepest binding sites
are occupied and unavailable. 5) Themodel provides a coarse-grained phenomenological description of diffusion of a DNA-bind-
ing species, useful in larger-scale modeling of kinetics, FCS, and FRAP.
SIGNIFICANCE DNA-binding biomolecules such as transcription factors diffuse in the nucleus until they find their
biological target and bind to it. A biomolecule may bind to many false-positive sites before it reaches its target, and the
search process is a research topic of considerable interest. Experimental results from other laboratories show a truncated
power-law distribution of escape times from the binding sites. I show by Monte Carlo simulations that this escape time
distribution implies that the protein shows transient anomalous subdiffusion, defined as anomalous subdiffusion at short
times and normal diffusion at long times. Implications of the model for controls, experiments, and interpretation of
experiments are discussed.
INTRODUCTION

Many biomolecules in a cell, whether in the nucleus, cyto-
plasm, or plasma membrane, must find their biological tar-
gets in a crowded sticky environment. I consider here the
‘‘sticky’’ aspect: a biomolecule diffuses in the cell and en-
counters a variety of binding sites that are more or less
similar to its biological target. The more similar the site is
to the target, the stronger the binding is, and the longer
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the delay. The false-positive binding sites thus act as traps,
delaying the diffusing species. Eventually, the diffusing spe-
cies reaches its target site, assumed to be the deepest binding
site. The specific situation considered is a DNA-binding
biomolecule in the nucleus, because distributions of escape
times have been measured in single-particle tracking (SPT)
experiments. The corresponding model is a point tracer car-
rying out a random walk on a cubic lattice containing a set
of point traps with a prescribed distribution of mean escape
times.

Long ago, I examined transient anomalous subdiffusion
(TASD) due to traps (1) and the interpretation of TASD in
terms of the search of diffusing particles for their biological
Biophysical Journal 118, 2151–2167, May 5, 2020 2151
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target (2). Experimental advances make it timely to revisit
this topic. SPT experiments have caught up with modeling.
Specifically, three SPT studies reported the escape times
(equivalently, the binding, residence, or dwell times) for
biomolecules binding to DNA in living mammalian cells
and found a truncated power-law (TPL) distribution:
repressor TetR (3), repressor LacI (4), and CRISPR-
Cas9 (5).

The change in the biological context of the model is
important. My earlier work was phrased in terms of cell
membranes and assumed a two-dimensional (2D) triangular
lattice in which the sites had various distributions of binding
energies from the physics literature (1) or a discrete hierar-
chy of traps (2) with escape times satisfying Shlesinger’s
definition of fractal time (6). The work here is phrased in
terms of binding of biomolecules to DNA and assumes a
three-dimensional (3D) cubic lattice with escape time distri-
butions based on experimental distributions in vivo. Qualita-
tively, the behavior here is similar to the discrete case, but
the dependence on the escape time distribution is more
complicated than one would expect from the discrete case.
Furthermore, I begin to examine whether distributions of
binding energies to DNA from the literature are sufficient
to explain the observed distribution of escape times.

As in (2), I discuss TASD in terms of the search of a
biomolecule for its biological target in the nucleus. The
basic picture is that the observed TPL distribution of escape
times from traps leads to TASD on length scales much
greater than the trap spacing, the deepest trap is the biolog-
ical target of the diffusing molecule, and the anomalous
regime represents the search for that target in a background
of competing binding sites.

I consider only diffusion here, not kinetics. Woringer and
Darzacq (7) briefly reviewed the physics literature on fractal
kinetics to assess its applicability to binding to DNA. Work
by Slutsky et al. (8) and by B�enichou et al. (9) examined
anomalous diffusion in the nucleus in terms of the first pas-
sage time, so their results are directly linked to search ki-
netics. The question addressed here is different: what do
SPT measurements reveal about anomalous subdiffusion
in the nucleus? Much work has been done on modeling
chromatin structure, ranging from bottom-up physics start-
ing with simple polymer models to top-down genomics
starting with Hi-C results, reviewed in (10–13), for example.
Examination of these models is beyond the scope of this
work, except for some discussion of the general topic of ob-
structed diffusion.

The problem addressed here is multiscale, organized in
order of increasing lengths as 1) molecular scale: binding
of the mobile species to particular DNA base pair sequences
and a combination of one-dimensional (1D) and 3D diffu-
sion among individual binding sites; 2) SPT localization
scale: binding and diffusion at the resolution of the SPT ex-
periments, around 25 nm; and 3) mm scale: TASD over a
longer length scale, as measured by FRAP, FCS, and long
2152 Biophysical Journal 118, 2151–2167, May 5, 2020
SPT trajectories. In this problem, cause and effect flow
from shorter to longer lengths, but the SPT binding mea-
surements are at the intermediate scale, so the modeling
has to start in the middle.

In this article, I first describe the TPL and summarize the
experimental results in terms of the TPL parameters. Then, I
work backward from the observed TPL form to begin to
examine its molecular origins. Next, I work forward from
the observed TPL form to show that it implies TASD over
longer length scales, and I discuss the relationship of the
TPL parameters to the TASD parameters. Then, I examine
the connections of the TPL model to mechanisms of anom-
alous subdiffusion from the physics literature, and models of
search in the nucleus from the biophysics literature. Finally,
in Conclusions, I consider the implications of the TPL
model for experiment, both the experiments the model sug-
gests and the interpretation of experimental results.
METHODS

Monte Carlo runs in Fortran were used to find the mean-square displace-

ment as a function of time for tracers carrying out a random walk among

TPL traps. Methods are considered in (1,14). The Methods section of the

Supporting Materials and Methods discusses these calculations in detail

(Supporting Materials and Methods, Section S1.1), as well as the analysis

of TASD curves (Supporting Materials and Methods, Section S1.2) and

Monte Carlo calculations in Mathematica (Supporting Materials and

Methods, Section S1.3). In the Monte Carlo results, hr2i is in units of lattice
constants and t is in units of Monte Carlo steps, one attempt to move by one

tracer. The relation between Monte Carlo units and physical units is dis-

cussed in the Conversion to Physical Units.
RESULTS

TPL distribution

Here, I describe the TPL distribution and summarize the
experimental results. I then describe two important proper-
ties of the experimental distributions: the physical reasons
for truncation and the delay between preparation of the sys-
tem and observation.

Definition

In this section and in Supporting Materials and Methods,
Section S2, T is simply a random variable, either the mean
escape time or the observed escape time. In later sections,
these escape times must be distinguished. The published
distributions of observed escape times (3–5) are given in
terms of the survival function

SðtÞ ¼ 1� CDFðtÞ ¼
Z N

t

PDFðt0Þdt0; (1)

where PDF is the probability density function and CDF is
the cumulative density function (15). The PDF is
thus the negative derivative of the survival function, and
S(t) f 1/tm � 1 yields PDF(t) f 1/tm. The experimental
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results give a TPL distribution of escape times T, which is
defined by the PDF

PDFTPLðTÞ ¼
8<
:

0 T <T1;
CTPL=T

m T1%T%T2;
0 T >T2;

(2)
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CTPL ¼
T1�m
2 � T1�m

1

; (3)

specified by a power m > 0, a minimum escape time T1, and
a maximum T2. Power-law distributions are reviewed by
Newman (16). If the PDF is truncated at T1 and T2, the
CDF and survival function are also truncated there. Fig. 1
shows the shape of the distribution in linear and logarithmic
plots, the linear plot to show that most of the traps are
shallow, and the logarithmic plot to show the presence of
the deeper traps, which have a major influence on diffusion.
Fig. 2 shows the dependence on m and on T2 as logarithmic
plots. The cumulative density function of the TPL distribu-
tion is

CDFTPLðTÞ ¼ T1�m � T1�m
1

T1�m
2 � T1�m

1

; (4)
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FIGURE 1 TPL distribution for m ¼ 2.25, T1 ¼ 1, and T2 ¼ 200 as (a)

linear and (b) log-log plots. Vertical lines are means. To see this figure in

color, go online.

Log escape time

FIGURE 2 Log-log plots of TPL distributions for (a) the specified values

of the exponent m at fixed values of T1 ¼ 1 and T2 ¼ 200, and (b) the spec-

ified values of T2 at constant T1 ¼ 1 and m ¼ 2.25. Vertical lines are means.

To see this figure in color, go online.
and the mean is

hTi ¼ 1� m

2� m

T2�m
2 � T2�m

1

T1�m
2 � T1�m

1

: (5)

Further properties are given in Supporting Materials and
Methods, Section S2, and the case m ¼ 1.

Experimental results

Three SPT studies measured the escape times (equiva-
lently, the binding, residence, or dwell times) for biomol-
ecules interacting with DNA in living mammalian cells
and found a TPL distribution: 1) repressor TetR in the nu-
cleus of U2OS human osteosarcoma cells (3). A bacterial
transcription factor was used with an artificially intro-
duced bacterial target site; 2) repressor LacI in the nucleus
of U2OS cells (4); and 3) CRISPR-Cas9 in the nucleus of
3T3 cells (5). Nonsense sgRNA (single-guide RNA) was
used to examine the search phase rather than the bound
phase. In all three studies, the final power-law histograms
were constructed by combining several experimental his-
tograms taken at different frame rates, as shown in the
original figures. All three final distributions have a width
Biophysical Journal 118, 2151–2167, May 5, 2020 2153
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of 2.5 decades, suggesting that the range might result from
experimental constraints. Table 1 lists the TPL parameters
of the experimental TPL curves, which were presented in
the original publications as plots of log S(t) vs. log t,
where S(t) is the survival function (Eq. 1) and m is the cor-
responding exponent in Eq. 2.

In the Monte Carlo calculations here, the typical value of
m is taken to be 2.25, the average of the values from (4,5). A
wide range of m is used to include the value from (3) and the
error bars of (5).

A related study examined CRISPR-Cas9 binding to
DNA curtains (17). Here, DNA strands are anchored at
one end in a microfluidic flow cell and are extended
by fluid flow to form an array of parallel strands. In
some experiments, downstream anchoring groups are
then attached to a support so that the parallel geometry
can be maintained without fluid flow. Fluorescent-
labeled DNA-binding biomolecules are observed by
single-molecule imaging using total internal reflection
microscopy (18). An interesting result is that at the
spatial resolution of the experiments, CRISPR-Cas9
used predominantly a 3D search, both in the DNA cur-
tain and in cells (5,17).

Physical basis for truncation

Why is the distribution truncated at short and long times?
The truncation at short times is somewhat subjective: how
short a delay is scored as binding? Experimentalists must
define a threshold to distinguish binding events from the ep-
isodes of localization that occur by chance in a pure random
walk (19). The truncation at long times may be absolute or
experimental. Absolute corresponds to the escape time from
the target; experimental, to the longest escape time observ-
able given experimental constraints, including the rarity of
extreme escape times.

Experimental delay

The experimental measurements are incomplete. The histo-
gram for TetR (3) covers a range of escape times of roughly
0.01–600 s, but the authors report that practical reasons lead
to a 1 min delay between mixing and the start of the SPT
measurements. The effect of this delay on TASD is dis-
cussed in Supporting Materials and Methods, Section
S4.4, and photoactivation experiments to reduce the delay
are discussed in Supporting Materials and Methods, Section
S4.4.4.

The measurements on CRISPR-Cas9 interacting with a
DNA curtain (17) would have a similar limitation if the
TABLE 1 Experimental Results

DNA-Binding Species jslopej m

TetR 0.69 1.69

LacI 1.12 2.12

CRISPR-Cas 9 1.33 5 0.2 2.33 5 0.2

2154 Biophysical Journal 118, 2151–2167, May 5, 2020
measurement is of a tracer that is already in the DNA cur-
tain because one does not know how long it has already
been there equilibrating. To avoid this problem, observa-
tions ought to be limited to tracers seen to enter the curtain
region.
From binding energies to observed escape
times

Proceeding backward, I start with the observed escape times
on the length scale of SPT localization and examine the un-
derlying molecular binding. I consider the simplest explana-
tion, that the distribution of binding energies leads directly
to the distribution of escape times, and find the explanation
questionable. I also examine the relation between the distri-
bution of observed escape times and the underlying distribu-
tion of mean escape times.

The connection between observed escape times and
binding energies is made in two steps to better match
the literature. First, I find the distribution of mean escape
times corresponding to the distribution of binding en-
ergies. In the physics literature, this is the usual deriva-
tion of a power-law distribution of mean escape times.
In the statistics literature, this is the derivation of the dis-
tribution of a function of a stochastic variable. Second, I
find the distribution of observed escape times t from the
distribution of mean escape times T. In the physics liter-
ature, this is a very common procedure to express the
escape times from a statistical distribution of traps in
terms of a Laplace transform. In the statistics literature,
this is a compound distribution, in which a parameter
of the primary distribution is a stochastic quantity distrib-
uted according to the parameter distribution. (There is no
consensus on nomenclature, but ‘‘compound distribution’’
seems reasonable.) Both steps involve Boltzmann factors,
a deterministic one in the first step and a stochastic one in
the second.

I summarize some basic properties of the mean
escape times T. Attempts to escape occur at the Arrhenius
rate

rate ¼ n expð�DE = kTÞ; (6)

where n is the frequency of escape attempts, DE is the abso-
lute value of the free energy of binding, and boldface kT is
the thermal energy, so the mean escape time is

T ¼ ð1 = nÞ expðþDE = kTÞ: (7)
Time Range Reference

200 ms to 70 s (3), Fig. S30

30 ms to 10 s (4), Fig. 3

120 ms to 37 s (5), Figs. 5, 6, 7, 8, 9, and 10
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The escape probability per Monte Carlo time step is

Pesc ¼ 1=T: (8)

This probability generates the geometrical distribution of
observed escape times in the Monte Carlo simulations.
The Boltzmann factor for a tracer to be in the ith trap is

Pi ¼ expðþ DEi = kTÞ
,X

j

exp
�þ DEj

�
kT

� ¼ Ti=
X
j

Tj:

(9)

Step 1. From binding energies to mean escape times

What is the relation between the distribution of binding en-
ergies and the distribution of mean escape times, and what
is the temperature dependence? The basic physical picture
is that the system is at thermal equilibrium at the ambient
temperature, except that the tracer is not necessarily equili-
brated with the trap distribution. The distribution of binding
energies is f(DE, parameters), where DE has dimensions of
energy and f has dimensions of 1/energy, so that f(DE)dDE
is dimensionless. The parameters are constant values for the
ambient temperature. The distribution of mean escape times
depends on temperature only through the expression for the
escape time T as a function of binding energy.

In this picture, the relation between the distributions is
given by a standard transformation from statistics (20).
The starting point is Eq. 7 with n ¼ 1. Then

DE ¼ þ kT ln T; (10)

dDE=dT ¼ þkT=T: (11)
The distribution of mean escape times g(T) is

gðTÞ ¼
����dDEdT

����fðDEÞ; (12)

obtained by a mapping of CDFs in some probability text-
books, ormore formally as the Jacobian of the transformation.
Then

gðTÞ ¼ kT

T
fðkT ln TÞ: (13)

Here, the mean escape time T is dimensionless, equal to the
number of time steps dt, either Monte Carlo time steps (see
Conversion to Physical Units) or the duration of one frame
in an SPT experiment.

What causes a power-law distribution of mean escape
times? The simplest mechanism is Arrhenius escape
from an exponential distribution of binding energies
(3,16,21–23). Suppose that the binding energies are expo-
nentially distributed on [0, N), so that the PDF is
fðDEÞ ¼ 1

hDEi expð�DE = hDEiÞ; (14)

where hDEi is the mean binding energy. Then, from Eq. 13,

gðTÞ ¼ kT

T

1

hDEi expð � DE=hDEiÞ;

¼ kT

hDEi
�
1

T

�1þkT=hDEi
:

(15)

A pure exponential distribution of binding energies thus
leads to a pure power-law distribution of mean escape times.
A truncated exponential distribution leads to a TPL distribu-
tion, as shown in detail in Supporting Materials and
Methods, Section S3.

Gaussian distributions of binding energies are often
used in the DNA literature (24,25). These distributions
are justified on the grounds that transcription factors typi-
cally bind around 10 nucleotides, range 5–31 (26),
providing enough averaging to give an approximate
Gaussian, whether the protein is reading hydrogen
bonding or elastic interactions. As an aside, this is roughly
enough averaging. One algorithm to generate Gaussian
random numbers is to generate 12 random numbers uni-
formly distributed between 0 and 1, sum them, and sub-
tract 6, though this method gives such poor-quality
results that it is highly unrecommended (14).

Gaussian distributions of binding energies have a very
limited ability to produce a power-law distribution of
mean escape times. The Gaussian distribution is

fðDEÞ ¼
ffiffiffi
2

p

r
1

s
exp

	� ðDE� mÞ2 � 2s2


; (16)

where m is the mean and s is the standard deviation. Pro-
ceeding as in the exponential case yields a log-normal distri-
bution of escape times

gðTÞ ¼ kT

s

1

T
exp

	� ðkT ln T � mÞ2 � 2s2


: (17)

Here kT, m, and s have dimensions of energy, and the mean
escape time T is dimensionless. In the numerical example of
Fig. S3-2, g(T) from the Gaussian case is clearly far from a
power law for the parameters chosen. Log-normal distribu-
tions are known to have tails resembling power-law distribu-
tions over a limited range of the variable (27–29), but not
under the conditions here. Take the logarithm of g(T) and re-
arrange to give

lngðTÞ ¼
�
ln
kT

s
� m2

2s2

�
� �

1�m
�
s2
�
lnT � �

1
�
2s2

�
ln2T: (18)
Biophysical Journal 118, 2151–2167, May 5, 2020 2155
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If s is increased to decrease the quadratic term, the coef-
ficient of the linear term is driven toward�1, which is fine if
one is trying to reproduce Zipf’s law or 1/f noise, but not
useful here. Simultaneously matching the experimental
slope and the range of linearity is difficult or impossible.
Or, to put a more positive spin on it, the experimental signa-
ture of Arrhenius escape from Gaussian traps is a TPL with
a slope near �1, potentially with a range of a few decades
depending on the standard deviation of DE.

Some labs have used modified distributions such as an
asymmetric Gaussian (for example, a saddle-point expan-
sion plus first-order correction (30)), or Gaussian-like
curves with tails that are defined numerically from experi-
ment or bioinformatics (31) or defined analytically on the
basis of an analogy between protein-protein binding and
protein folding (32). But it is hard to see how these modifi-
cations could yield a TPL distribution over 2.5 decades in
three different experimental systems.

Supporting Materials and Methods, Section S3 examines
in detail the distributions of mean escape times from three
truncated binding energy distributions: exponential,
Gaussian, and lognormal. Log-log plots of these distribu-
tions illustrate the limits on power-law dependence from
Gaussian and log-normal binding energies.

It seems difficult to get appropriate TPL distributions of
escape times fromplausible binding energy distributions. Pre-
sumably, a distinct mechanism is responsible. One possibility
is obstruction, say trapping in dead ends, but it is not obvious
how to make dead ends affecting diffusion on a scale<25 nm
out of DNAwith a persistence length of 50 nm. Tightly bent
DNA structures would be required; these structures were re-
viewed by Garcia et al. (33). Similarly, the fractal model of
the nucleus (see, for example, Bancaud et al. (34)) is a
coarse-grained model with beads of diameter 20–40 nm
(35). Another possibility is the combined effects of multiple
traps, recapture, and trap geometry, potentially important
because a 25-nm segment of DNA includes 75 base pairs.
Several groups have examined this effect ((36–38) and Note
S7 of (3)), but furtherwork remains to be done.Other possibil-
ities include viscoelasticity with crowding (39), and a
nonequilibrium state produced by active cellular processes
such as chromatin remodeling. Possible mechanisms will be
examined in future work, beginning with (40).

Step 2. From mean escape times to observed escape times

There are two distinct escape times in the binding site prob-
lem, the observed escape time t for each escape event and
the underlying mean escape time T. The distribution of t
is the experimental histogram of escape times f(t). The
distribution of T is g(T), determined by the distribution of
binding energies f(DE), so it is in principle predictable
from genomics in terms of frequencies of DNA sequences,
free energies of binding to DNA sequences, and the acces-
sibility of particular sequences to the binding species. The
distribution of t is broader than the distribution of T because
2156 Biophysical Journal 118, 2151–2167, May 5, 2020
of the scatter in t for a fixed value of T. For Arrhenius
escape, f(t) is readily calculated for a given g(T), but finding
g(T) from an observed f(t) is problematic, as discussed in
Supporting Materials and Methods, Section S3.2.

For escape from confinement, one representation of the
escape process would be in terms of a mean escape time
that depends on the size and shape of the confining region,
the size of the opening(s), and the initial position of the
tracer. The observed escape time then reflects the statistical
fluctuations in escape time for that specific geometry. One
would then average over initial positions and at least some
of the shape parameters of the confining region.
TASD

Here, I proceed forward, starting with the experimental TPL
on the length scale of SPT localization and ending with
TASD, observed over mm lengths by FCS, FRAP, and long
SPT measurements. I first review the method of analysis of
TASD data: Monte Carlo or experimental. The effects may
be small on the scale of the usual linear plot of mean-square
displacement versus time, but the underlying structure can be
seen by appropriate data analysis. Then, I show how the
TASD varies with TPL parameters, as families of curves in
the text and as plots of TASD parameters versus TPL param-
eters in the SupportingMaterials andMethods. These Monte
Carlo results show first, that the effects, though sometimes
small, vary systematically with the TPL inputs; and second,
that the dependence onTPLparameters here ismore complex
than earlier work on TASD resulting from a discrete distribu-
tion of escape times (2) suggests. Finally, I consider two
important topics for the interpretation of these results: the
conversion from Monte Carlo units to physical units and
the requirement for a nonequilibrium state.

I argue that this structure is worth examining as a signa-
ture of the biological search process. Unfortunately one
cannot in general uniquely invert an observed TASD plot
of log D(t) vs. log t to give the distribution of escape times
responsible for it, particularly when the functional form of
the escape time distribution is not known a priori. But,
one can readily use Monte Carlo simulations to obtain
TASD curves from an assumed escape time distribution
and potentially exclude the distribution.

Analysis of TASD

I review the method of analyzing mean-square displacement
data, either SPT or Monte Carlo, to reveal the TASD sub-
structure. In TASD, diffusion is subdiffusive at short times,
that is, the mean-square displacement is proportional to a
fractional power of time, and diffusion is normal at long
times, that is, the mean-square displacement is proportional
to time, giving
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�
f

�
ta a< 1 t � tcross
t t[ tcross

; (19)
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where hr2i is the mean-square displacement, t is time, a is
the anomalous diffusion exponent, and tcross is the crossover
time. In other words, the diffusion coefficient D(t) f hr2i/t
is time-dependent but reaches a constant value at large
times. In subdiffusion, diffusion is hindered, and a < 1.

The simplest plot of the data is the standard plot of hr2i
vs. time, Fig. 3 a, which gives for the most part an appar-
ently straight line of slope D(N) ¼ constant. In this
example, curvature is evident for t % 128. Taking out the
asymptotic time dependence reveals the structure more
clearly. A plot of hr2i/t vs. t (Fig. 3 b) shows that the time
range of the nonlinear regime is actually larger than Fig. 3
a suggests. The power-law form in Eq. 19 implies that a
log-log plot is needed, and the simple plot of loghr2i vs.
log t in Fig. 3 c shows the change in slope due to the change
in exponent. The plots in Fig. 3, b and c each emphasize the
initial structure, and combining them provides the clearest
depiction of the structure, as shown in Fig. 3 d, loghr2i/t
vs. log t. The plot of Fig. 3 d shows the initial structure by
removing the asymptotic time dependence and can also be
interpreted as the time dependence of log D(t), suitably
normalized (41).

The analysis of this plot (41) is sketched in Fig. 4.
The initial behavior depends on the dynamics used (Brow-
nian versus Newtonian) and on the nature of the trap (point
traps here versus multisite dead ends in a percolating clus-
ter). The anomalous exponent a is given by the slope of
the anomalous region around the vertical midpoint, and
the horizontal region represents normal diffusion with coef-
ficient D(N). The intersection of the slope line and the hor-
izontal D(N) line is one reasonable choice for the crossover
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time tcross, as discussed in Supporting Materials and
Methods, Section S1.2.

Monte Carlo results for TASD

In this section, I present the results of Monte Carlo simula-
tions of subdiffusion (Supporting Materials and Methods,
Section S1.1). Here, T is taken to be the mean escape
time, assumed to follow a TPL distribution as in Fig. 2.
The actual escape time for each visit to a trap site is a
random variate generated in the Monte Carlo program.

Fig. 5 a shows the effect of varying the exponentm at con-
stant minimum and maximum times T1 ¼ 1 and T2 ¼ 200.
The curves are of similar shape, but the value of log tcross
changes with m as discussed in Supporting Materials and
Methods, Section S4.1. Fig. 5 b shows the effect of
e
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FIGURE 3 How to find the TASD structure in

SPT or Monte Carlo data. Various plots of the

same Monte Carlo data for a 3D random walk on

a simple cubic lattice are given. Linear plots: (a)

hr2i vs. t and (b) hr2i/t vs. t are shown. Log-log

plots: (c) loghr2i vs. log t and (d) loghr2i/t vs.
log t are shown. Here, hr2i is in units of lattice con-
stants, and t is in units of Monte Carlo steps. Con-

version of Monte Carlo units to physical units is

discussed in Conversion to Physical Units. The

mean-square displacement hr2i is found by

ensemble averaging, with no averaging over

time segments within a trajectory. This choice

of averaging is essential, as discussed in Nonequi-

librium Requirement. To see this figure in color, go

online.
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increasing T1 at constant T2 and m. As T1 is increased, the
curves flatten and D(t) decreases. In the limit T1 ¼ T2, the
curve is flat with D(t) ¼ 1/T2. Fig. 5 c shows the effect of
increasing T2 at constant T1 and m. As T2 increases, diffu-
sion becomes more anomalous—the slope gets steeper—
for a longer time. The top curve, T2 ¼ T1 ¼ 1, is the control;
uniform traps yield normal diffusion at all times. Fig. 5
d shows that the trap concentration has a major effect on
the anomalous exponent a at constant T1, T2, and m. As
the fraction of traps increases, the curves grow steeper in
the anomalous regime. The crossover time does not change
much, so the change in slope is almost entirely due to the
changes in D(0) and D(N), Eqs. 21 and 25, with each non-
trap site contributing T ¼ 1 to the averages. Much, but not
all, of the concentration dependence in the log D(t) curves
can be removed by rescaling log D(t) as shown in Support-
ing Materials and Methods, Section S4.1. In simulations, the
limiting values of D are trivial to calculate from the TPL pa-
rameters. In experiments, one ought to make good measure-
ments of D(0) and D(N), using fast and slow frame rates if
necessary, to get good values. The amount of averaging
needed to show the TASD structure is discussed in Support-
ing Materials and Methods, Section S4.3.

Four parameters characterize D(t): D(0) and D(N)
describe the initial and final values, the slope a describes
how anomalous the diffusion is, and tcross locates the transi-
tion from anomalous to normal diffusion. Here, D(0) and
D(N) are obtained from simple formulas based on the
TPL, but a and tcross are obtained from Monte Carlo calcu-
lations. Prediction of a and tcross will be discussed in future
work.
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The initial and final diffusion coefficients in a system with
binding are given by a simple argument. The normalized
diffusion coefficient is the product of the squared displace-
ment for a move and the probability of that move. For a sin-
gle step, the squared displacement is 1 in units of the lattice
constant ‘. For the first move, the probability is

hPesciTPL ¼ h1=TiTPL; (20)

where the subscript indicates an average over the TPL dis-
tribution, so

Dð0Þ ¼ h1=Ti (21)

and, from Eq. S2–7,

Dð0Þ ¼ m� 1

m
enspace

T�m
2 � T�m

1

T1�m
2 � T1�m

1

: (22)

Here, D(0) is normalized to 1 when all sites are nonbinding.
For a move at long times, the probability is

hPescith ¼ h1=Tith; (23)

where the subscript th indicates a thermal average over the
TPL distribution, so from Eq. S2–14,

h1=Tith ¼
X
i

Tið1 = TiÞ
,X

Ti ¼ N
.X

Ti ¼ 1=hTi

(24)
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and

DðNÞ ¼ 1=hTi: (25)

From Eq. S2–7,

DðNÞ ¼ 2� m

1� m
enspace

T1�m
2 � T1�m

1

T2�m
2 � T2�m

1

: (26)

More formal arguments for Eq. 26 are given in the literature
(42–44).

The results here for the 3D case are qualitatively similar to
earlier results (1) for the 2D case. The main effect of dimen-
sionality is through the probability that a diffusing particle re-
visits a site in a lattice model. For normal diffusion in an
infinite system, the number of distinct sites visited (DSV)
can be written as a function of number of steps n, as
DSV(1D) f

ffiffiffi
n

p
, DSV(2D) f n/ln n, DSV(3D) f n. These

are the leading terms; there are higher-order correction terms
(45). For anomalous subdiffusion on an infinite fractal, the
DSV depends on the so-called spectral or fracton dimension,
which is not necessarily an integer. This dimension is one of
the standard quantities used to characterize fractals (45).

Conversion to physical units

A key question is how to translate Monte Carlo units into
physical units, particularly how to translate tcross into clock
time. The conversion is based on one of the fundamental
equations of diffusion, in three dimensions

‘2 ¼ 6D0dt; (27)

where ‘ is the lattice constant, D0 the diffusion coefficient in
the absence of hindrances, and dt the unit of time. Choose
any two and calculate the third.

In earlier work on pure obstructed diffusion in 2D mem-
branes (46), the bilayer was taken to be on average a trian-
gular lattice of lipids, ‘ was chosen to be the lipid diameter,
and D0 was chosen as the value for the tracer in a pure lipid
bilayer. The resulting dt is the characteristic time to diffuse
the length of the bond joining adjacent lattice points.

The case of the nucleus is more complicated. Ultimately
one would like to model all four hindrances to diffusion—
binding, obstruction, viscoelasticity, and crowding—but at
this stage, it is appropriate to model binding in isolation,
and take the other hindrances into account approximately
through D0. I choose D0 to be the value from FRAP exper-
iments on green fluorescent protein (GFP) in the nucleus of
H1299 human large cell lung carcinoma cells (47). This is a
long-range diffusion coefficent for a protein that is presum-
ably nonbinding. The value is D0 ¼ 41.6 mm2/s, here
rounded off to 40 mm2/s. What value to use for ‘? Analogy
with the membrane case suggests choosing ‘ to be the size of
a transcription factor binding site, roughly 10 base pairs
(26), so 3 nm. Then dt ¼ ‘2/6D0 ¼ 37.5 ns, which is very
poorly matched to the time resolution of the SPT experi-
ments. A single SPT time step of 5 ms would require over
133,000 Monte Carlo steps. A better choice is to take ‘ to
be the SPT spatial resolution of 25 nm, so that dt ¼ 2.6
ms. This is still not well matched to the SPT experiment; a
single SPT time step corresponds to 1920 Monte Carlo
time steps, and an escape time of 5 s requires 1.8 million
Monte Carlo time steps. But any further increase in ‘ would
make the Monte Carlo resolution less than the experimental
resolution. Better to spend computer time on longer simula-
tions than to throw away hard-earned experimental spatial
resolution. With this choice of ‘, the Monte Carlo calcula-
tions are done on a simple cubic lattice of resels (resolution
elements), which seems appropriate.
Nonequilibrium requirement

The TASD mechanism discussed here requires the system to
be out of thermodynamic equilibrium, at least partially.
Here, I assume that the tracer is in local thermodynamic
equilibrium, so its probability of being in a trap is given
by a Boltzmann factor, as in Eq. 9. But the tracer is not in
global equilibrium with the population of traps, and TASD
reveals this global equilibration process, a process that re-
quires the tracer to sample the population of traps
adequately, as will be discussed in future work.

A fundamental property of diffusion in the presence of
time-independent (quenched) energy traps is that it is highly
sensitive to the initial conditions, specifically the time since
the interaction of the tracer with the traps is turned on. In
the nonequilibrium case, fresh tracer diffuses with a time-
dependent diffusion coefficient D(t) as shown in Fig. 3 d. In
the equilibriumcase, stale tracer diffuseswith a small constant
diffusion coefficient D(N), determined largely by the escape
time from the deepest traps. In the physics literature, this
sensitivity is called ‘‘aging,’’ the dependence of diffusion on
the time elapsed since the initial preparation of the system
(22). Ordinary diffusion is said to be stationary; that is, the
diffusive behavior for a given time interval is statistically
the same as the behavior for any another time interval of the
same duration. There is no absolute clock. For diffusion
with binding to nonuniform static traps, there is an absolute
clock. The search process is that clock, and its zero time is
defined as the laboratory time at which the interaction is
turned on.

In the nucleus, the interaction is turned on by entry of
the tracer into the nucleus, or by biochemical activation.
Normanno et al. (3) reported a time of 1 min between
mixing and the start of observations, a significant delay.
The modeling of delay effects is discussed in Supporting
Materials and Methods, Section S4.4, but the main implica-
tion of the modeling is that experimental data is needed.
Photoactivation of the DNA-binding species would be
very useful experimentally to reduce the delay and to define
‘‘t ¼ 0’’ precisely for ensemble averaging of measured
Biophysical Journal 118, 2151–2167, May 5, 2020 2159
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trajectories. Photoactivated probes are discussed briefly in
Supporting Materials and Methods, Section S4.4.4.

The effect of delay can be illustrated by Monte Carlo cal-
culations in which the tracer takes a prescribed number of
equilibration steps before log D(t) is recorded. (See (2) for
the 2D case.) For an equilibration time of 0, the usual
TASD results are recovered For the largest equilibration
time, diffusion is normal at all times but slow, with D ¼
D(N). Intermediate equilibration times flatten the initial
part of the D(t) curve, as shown in Fig. 6. The theoretical
importance of this result is that one can go smoothly from
pure TASD to slow pure normal diffusion by tuning a single
well-defined parameter. The experimental importance is that
the changes in shape at small times are the signature of par-
tial equilibration of the tracer with the binding sites, for
example, during the delay between mixing and the start of
SPT observations. Importantly, no such changes occur for
pure obstructed diffusion. The plot of log D vs. log t is inde-
pendent of initial delay time (1).
DISCUSSION

How does the model presented here connect to results in the
physics and biophysics literature?
Connections to models of anomalous
subdiffusion in the physics literature

Several different physical mechanisms can lead to anoma-
lous subdiffusion, pure or transient. See, for example, the
book by ben-Avraham and Havlin (48) and recent reviews
(22,49–52). Supporting Materials and Methods, Section
S5 further discusses experiments to distinguish these mech-
anisms and some types of tracers that might be useful in
these experiments.
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Nonequilibrium trapping in energy traps

As already discussed, the tracer must not be in equilibrium
with the system of traps. If it is equilibrated, it diffuses nor-
mally, at a rate dominated by the escape time from the
deeper traps.

Obstruction

Obstruction can lead to anomalous subdiffusion, either pure
or transient (41). There is no dependence on equilibration
time, but obstructed diffusion is highly sensitive to tracer
size, as discussed in the next section.

Anticorrelated motion

In the physics literature, this category has often been taken
to be fractional Brownian motion as defined by Mandelbrot
and Van Ness (53) in terms of a correlation function of
extremely macroscopic inspiration, Hurst’s classic studies
of flooding on the Nile. A more microscopic starting point
for cell biophysics is viscoelasticity (50,54–56).

All of the above

These processes are nonexclusive and can operate in paral-
lel. In a cell, it would be much more surprising to have one
of the processes dominant than to have all three act simulta-
neously. The obvious example is that chromatin can act as
an obstacle and as a set of binding sites. For examples of
how to sort out anomalous subdiffusion mechanisms, see
Golan and Sherman (57) for the T-cell plasma membrane,
Kepten et al. (58) for diffusion of telomeres, Szymanski
and Weiss (59) for a model crowded system, and Thiel
et al. (60) for modeling.

A series of experiments and simulations by Izeddin et al.
(61) addressed the question of physics models. The experi-
ments used PALM SPT to examine motion of two nuclear
factors in U2OS human osteosarcoma cells. Trajectories
were analyzed by plots of mean-square displacement versus
time, histograms of step sizes, and histograms of the angles
between consecutive displacements at various time lags as a
test for anticorrelation on various length scales. Four pro-
teins were used, all with the photoconvertible label Den-
dra2: 1) free Dendra2. It is structurally similar to GFP and
is assumed to be freely diffusing because GFP has no known
binding partners in mammalian cells; 2) Dendra2 fused to
the proto-oncogene c-Myc, which binds directly to DNA.
Fast, slow, and immobile populations were observed, and
the angular distribution of moves was approximately uni-
form; 3) Dendra2 fused to the cyclin T1 subunit of
P-TEFb, which binds to the transcription machinery. Motion
was subdiffusive with a � 0.6, and the angular distribution
of moves favored reversal; and 4) Dendra2 fused to histone
H2B was bound, and the angular distribution favored
reversal. Results were compared to a variety of models
based on the physics literature and interpreted in terms of
target-searching strategies. For c-Myc, the search involved
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global exploration of space, which leaves sites unvisited.
For P-TEPb, the search involved local (compact) explora-
tion of space, thus a redundant search.
Connection to models of the nucleus in the
biophysics literature

Several interpretations are possible of the diffusion model
presented here.

No interpretation is needed

ATPL distribution of mean escape times necessarily implies
transient anomalous subdiffusion, independent of the micro-
scopic mechanism producing the escape times. But it is use-
ful to go beyond this to ask what happens during the escape
time.

Binding

The diffusing particle is bound to an immobile site on the
DNA, escapes, and then diffuses freely or at the rate set
by pure obstruction. This model is the one discussed in
the most detail here.

Facilitated diffusion

To reduce a vast literature to a single paragraph, the key
problem in DNA binding is searching. How does a DNA-
binding species find its biological target fast enough among
the huge number of potential binding sites? The problem is
solved by the classic Berg-von Hippel facilitated diffusion
model (62,63), in which the search is speeded by switching
between 3D and 1D diffusion. A major issue within the
facilitated diffusion model is the speed-stability paradox,
involving the energy landscape of the protein-DNA interac-
tion. A smooth landscape is required for rapid motion, but a
rugged landscape is required for specific binding. A solution
to this problem is the two-state protein model, in which the
protein can exist in recognition and search states (24).
Recent reviews include the very succinct (64), more detailed
discussions in (25,65,66), and a physics perspective in (67),
but see (68) for an argument that the speed-selectivity
paradox is not real.

The simplest mapping between facilitated diffusion and
the model presented here identifies the escape time from a
trap as a period of 1D diffusion, and diffusion between
traps as a period of 3D diffusion, as suggested by Normanno
et al. (3). This mapping is consistent with the resolution of
the experiments. Estimates of the 1D diffusion length
vary among systems; Barbi et al. (69) used a value of
170 base pairs in the model summarized in the next para-
graph. The SPT lateral resolution is 25 nm or 75 base pairs
(1 base pair ¼ 0.332 nm), so a period of 1D diffusion of 170
base pairs is below the 1D detection limit of three points for
a straight line. The persistence length of DNA is 50 nm (13),
so the DNA in one resolution element could be slightly
curved, but not coiled unless bound in a nucleosome. Recent
SPT measurements on RNA polymerase (RNAP) in Escher-
ichia coli cells found three distinct diffusive modes, which
were interpreted as DNA-bound RNAP, RNAP rapidly asso-
ciating and dissociating with DNA, and freely diffusing
RNAP (Bettridge et al. (70,71)).

Modeling by Barbi et al. (69,72) showed that the local en-
ergy landscape for protein binding to DNA can lead to 1D
anomalous subdiffusion of the protein. Combining their
1D results with the 3D results presented here leads to
what might be called nested TASD. The first level is 1D
TASD because of the detailed DNA sequence, resulting
from variations in either the H-bond binding energy
(69,72) or the elastic energy of DNA bent by protein (8).
This 1D diffusion crosses over to normal when the DNA-
binding species has sampled the DNA energy landscape
sufficiently. The second level is 3D TASD because of the
distribution of escape times from the 1D diffusion state.
The nested model must include unbinding and binding
events, and thus some modeling of DNA geometry, at least
at the level of the approximate 3D separation of binding
sites. Nested TASD can be considered a multilevel equili-
bration process.

Obstruction and geometrical traps

Diffusion in the nucleus is likely to be affected by obstruc-
tion, especially by geometrical trapping in dead ends (see
Supporting Materials and Methods, Section S5). Obviously,
the geometrical traps must be large enough for the tracer to
enter, as in size exclusion chromatography. If the trap size is
below the resolution of the SPT measurement, the tracer will
appear to be stationary. If motion in the trap can be resolved,
the well-known form of hr2ðtÞi for confined motion (73) will
be observed, with eventual escape to free diffusion. This
form is distinct from the form for anomalous subdiffusion,
as shown in cartoon form in Fig. 7. It is informative to
make two plots, hr2i vs. t and log D vs. log t. In their
work on TetR diffusion in the nucleus, Normanno et al.
(3) observed some trajectories consistent with pure confine-
ment, with timescales <1 ms and confinement radii in the
range of 0.5–1 mm. (See their Fig. S2, Confined diffusion
analysis, and their Note S4, Single-particle tracking
analysis).

For rigid immobile obstacles, there is a well-defined
percolation threshold. The experimental signature of this
case is that diffusion is highly sensitive to the size of the
tracer. The factor controlling diffusion is not the area frac-
tion of obstacles but the excluded area fraction, which is
highly sensitive to tracer size (for 2D immobile obstacles
(74)). B�enichou et al. (9) modeled chromatin as a 3D perco-
lating cluster at the threshold. They argued that on a large
scale, chromatin is effectively branched as a result of inter-
segmental transfer of the diffusing species.

For soft or mobile obstacles, there is no permanent
obstruction. The escape times depend in part on obstacle dy-
namics, such as mobility, dissociation rates, or rates of
Biophysical Journal 118, 2151–2167, May 5, 2020 2161
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FIGURE 7 Cartoon of hr2i vs. time for geometrical trapping and for pure

anomalous subdiffusion. (a) Pure confinement and transient confinement

with eventual escape and free diffusion. The plateau is a measure of the

corral size. The escape time is random, so in an actual average of SPT tra-

jectories, the transition between confined motion inside the dead end and

free motion outside would be smeared out. (b) Pure anomalous subdiffu-

sion. There is no plateau. To see this figure in color, go online.
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conformational fluctuations. Chow and Skolnick (75) pre-
sent a coarse-grained model of gated diffusion of LacI in
the E. coli nucleoid, in which LacI moves from cage to
cage when the DNAwall moves. Diffusion may still be high-
ly sensitive to tracer size as a result of the lower probability
of large fluctuations. High concentrations of mobile obsta-
cles lead to a glassy state. For a model of the nucleus based
on glassy dynamics, see Kang et al. (76).
CONCLUSIONS

The model has several implications for experiments and the
interpretation of experiments.
Search

Experimental examination of the TASD substructure of SPT
measurements is useful, even though the effect is sometimes
a small one that might be overlooked in the usual linear plot
of mean-square displacement versus time, especially in
noisy data. The phenomenon of aging is important in a static
trap model. That is, the time in a log-log plot of D(t) is the
clock time since the start of the interaction of the tracer with
2162 Biophysical Journal 118, 2151–2167, May 5, 2020
the DNA, so trajectories must be ensemble averaged, not
averaged over time segments within an individual trajectory.
Using a photoactivated tracer (Supporting Materials and
Methods, Section S4.4.4) would be worth the effort because
photoactivation improves the initial time resolution (Sup-
porting Materials and Methods, Section S4.4) and defines
zero time for ensemble averaging.
Escape time distributions

I have shown the relation between the observed escape times
and the mean escape times for a TPL distribution of mean
escape times. The distribution of observed escape times is
broadened by the statistics of escape. The mean escape
time distribution is static; the observed distribution is static
plus dynamic. For binding, the mean escape time distribu-
tion will eventually be predictable from genomics, though
this distribution of binding energies must be corrected for
the physical accessibility of binding sites to a tracer of given
size and shape. For obstruction, constructing the escape time
distribution requires a geometric model of chromatin.
Limiting measurements

The values of D(0) and D(N) capture much of the depen-
dence of D(t) on the TPL parameters. These values are triv-
ial to calculate from the parameters and essential to measure
experimentally, using fast and slow frame rates if necessary.
See Supporting Materials and Methods, Section S4.1.
Experimental controls

As claimed in the section on models of anomalous subdiffu-
sion from the physics literature, binding, obstruction, visco-
elasticity, and crowding may all affect diffusion in a cell
simultaneously. Sorting out these mechanisms requires a va-
riety of experimental controls even more extensive than
usual. As a baseline, D in buffer ought to be measured for
each probe. For comparisons among cell lines and
laboratories, D of eGFP ought to be measured. Two types
of controls are needed for nonspecific binding by the
DNA-binding species of interest: ‘‘specific nonspecific’’
binding, in which the recognition site binds to DNA se-
quences that only partially match the true target site; and
‘‘nonspecific nonspecific’’ binding, in which nonrecognition
sites bind to DNA, say through electrostatic interactions.
Natural selection may have reduced nonspecific binding,
as discussed by Qian and Kussell (77), and Buchanan (78).

The probe for ‘‘specific nonspecific’’ binding ought to be
the DNA-binding species of interest with the binding site in-
activated as unobtrusively as possible. For example, the pio-
neering single-particle measurements of Elf et al. (79) on
transcription factor dynamics used LacI (360 amino acids)
with the DNA-binding domain deleted (41 amino acids);
the fusion to Venus fluorescent protein (238 amino acids)
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was most likely a much larger perturbation. Elf and Barke-
fors (80) recently reviewed single-molecule kinetic mea-
surements in live cells, with an extensive discussion of
labels and perturbations from labeling.

The comparison of nonbinding and binding tracers is
essential to be able to distinguish TASD due to obstruction
from TASD due to binding. A general problem in diffusion
measurements in complex systems is that a measurement of
D or D(t) is not uniquely invertible. By an appropriate
choice of parameters, the three anomalous subdiffusion
mechanisms mentioned above can presumably be tuned to
produce very similar curves, and the mechanisms may
well operate in parallel. Despite this limitation, diffusion
measurements are important to biophysicists because diffu-
sion is important to cells. Diffusion is a means of transport
that uses thermal energy, not metabolic energy.

Histograms of escape times for nonbinding tracers would
help to characterize confinement events due to obstruction,
and apparent confinement events due to fluctuations in
pure random walks, in the context of the experimental con-
ditions and the criteria used to define confinement. These
criteria ought to be described in detail, as in Gorman et al.
(81), for example. Nonspecific binding can be characterized
by comparing the escape time histograms for the DNA-bind-
ing tracer and the corresponding nonbinding control.

The controls for obstruction ought to be done experimen-
tally. Modeling obstruction requires a model of chromatin
organization in the nucleus, a complicated and unsettled
issue at best, requiring multiscale modeling. See, for
example, (10–13,82).
Subresel dynamics

In the three sets of SPT experiments (3–5), the resolution
element was significantly larger than a transcription factor
binding site, so it is necessary to consider the dynamics of
the DNA-binding species within a resel. Experimental
data would be a useful constraint, particularly a histogram
of the escape time from a single resel for a sample of distinct
resels. These histograms ought to be reported for the DNA-
binding species, the nonbinding analogs, and eGFP or
another general calibration protein.
Effect of deep traps

Eliminating deep traps may affect diffusion and kinetics.
First, false-positive sites affect diffusion, and the effect is
greater the more similar they are to the target sequence.
As a result, in bioinformatics searches for binding sites,
the occurrence and frequency of false-positive sites are
important results, not annoying artifacts. (For a general dis-
cussion of weak binding sites on DNA, see Tanay (83).) The
search process in vivo might be speeded by (re)designing the
genome to eliminate false-positive sites, that is, by sepa-
rating the target sequences in affinity space. Hahn et al.
(84) found a mild form of this effect in prokaryotic ge-
nomes. Sheinman et al. (25) used extreme value statistics
to examine the gap in binding energy between the target
site and the deepest false-positive sites and distinguished
the gapped, marginally gapped, and nongapped cases.

Second, overexpression of the diffusing species affects
diffusion. The level of expression is potentially an uncon-
trolled variable affecting TASD or a means of modulating
and studying TASD. In their work on TetR in U2OS cells,
Normanno et al. (3) did a key experiment to address (and
refute for their system) this point. They tracked labeled
TetR with and without 1000-fold excess of unlabeled
TetR. They saw no effect. The traps were not saturable, at
least at this level of excess. Perhaps the traps were highly
abundant geometric traps. This sort of test ought to be stan-
dard practice. As these authors point out, quantifying the
number of binding sites in the nucleus would be very useful.

This effect of eliminating deep binding sites can be
approximated very simply if the concentrations of binding
sites are known. If N unlabeled tracers are added, assume
that they fill the N deepest sites, in effect reducing the upper
limit T2 on the mean escape time and making diffusion less
anomalous for a shorter time as shown in Fig. 5. This
description is somewhat fictitious in that it assumes that N
unlabeled tracers at zero temperature fill the deepest traps
permanently, and then a single labeled tracer at ambient
temperature diffuses, entering into and escaping from the re-
maining traps. But the picture captures enough of the phys-
ics simply enough to be a named model, the step
approximation. A more complete treatment includes the
chemical potential, to allow thermal excitation of all bound
tracers. Such a treatment is a standard result in the field of
diffusion in inhomogeneous catalyst pellets (85–87).
Models of DNA binding that include the chemical potential
are called ‘‘biophysical’’ or ‘‘thermodynamic’’ or ‘‘statistical
thermodynamic.’’ See, for example, (83,88–90). A rigorous
approach takes into account the binding equilibria of multi-
ple species to multiple sites, as in the program of Wasson
and Hartemink (91).
Applications of model

The TASD model provides a simple Monte Carlo prediction
of D(t) based on SPT measurements, suitable for use in
larger-scale modeling of FRAP, FCS, and kinetics. It would
be interesting to do FRAP or FCS on the same system as this
SPTwork, with the corresponding Monte Carlo simulations.

In summary, the Monte Carlo simulations presented here
show that a TPL distribution of escape times leads to tran-
sient anomalous subdiffusion, as expected. I have described
the parameters characterizing each and begun to examine
the connection between the two sets of parameters. I have
discussed the biological interpretation and the experiments
and controls suggested by modeling. Further work will
examine the detailed connection of the TPL and TASD
Biophysical Journal 118, 2151–2167, May 5, 2020 2163
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parameters and the basis for a TPL distribution of escape
times.
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