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Abstract

Addressing Data Explosion Issue in Emerging Deep Learning Applications

by

Zheng Qu

With the continuous booming development of deep learning, many kinds of model

variants are being proposed to tackle more difficult machine learning tasks, such as

Transformers, Deep Learning Recommendation Models, and Graph Neural Networks.

These emerging deep learning models, while being sufficiently better than prior methods,

also require much more hardware resources to train and deploy. To systematically tackle

this issue, we approach it from a data-centric perspective and argue that the root cause of

the software-hardware imbalance is the data explosion in emerging deep learning models.

To continue the scaling of deep learning applications and bridge the gap between

hardware performance and application requirements, this dissertation proposes to lever-

age data redundancy to effectively reduce model cost and benefit hardware design. We

first categorize the data in a deep learning model into three types, namely input dataset,

model parameters, and computational results. While parameter redundancy has been ex-

tensively studied in prior work, data representation and computational redundancy are

rarely discussed. On the base of this observation, we introduce four software-hardware

co-designs to explore the other two types of data redundancy and thus improve deep

learning efficiency. Specifically, in order to reduce the cost of intermediate computa-

tional results in Transformer models, the first two designs leverage dynamic runtime

approximation with customized GPU kernel and ASIC design. To release the memory

and computation burden caused by massive input training data, the third and fourth

design focuses on using high-order tensor decomposition with domain-specific knowledge

ix



to achieve high-quality and aggressive data compression. Training on the compressed

dataset leads to comparable model accuracy with much less hardware consumption.

Overall, this dissertation demonstrates opportunities and approaches to tackle data

explosion in emerging deep learning models. Our methods cover both dynamically gen-

erated data and offline trainable data, both deep learning training and inference, and

both general computing platforms (e.g., GPGPU) and customized accelerators.
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Chapter 1

Introduction

Over the past years, deep learning based approaches have been driving enormous break-

throughs in various scientific applications, and have changed people’s lives in all kinds

of aspects. Different kinds of model variants are being proposed to incorporate domain-

specific knowledge, such as Convolutional Neural Networks (CNNs) for computer vi-

sion [1], attention-based Transformer Neural Networks (Transformers) for language mod-

eling [2], Deep Learning Recommendation Models (DLRMs) for personalization [3], and

Graph Neural Networks (GNNs) for bioinformatics [4, 5]. While the model structure

varies a lot among different applications, one general trend is commonly shared. That

is, the size of these models, as well as the associated data during training and inference,

has been scaling at a dramatic speed.

Using larger data and bigger models is one of the most reliable ways to improve the

application performance [6]. With larger data, we can support the training and inference

procedure with more important and valuable information. With more parameters, the

capacity and representative power of the model can be improved to deal with compli-

cated tasks. Unfortunately, all of the above techniques do not come as a free lunch. In

fact, following the big-data big-model approach almost certainly leads to more and more

1



Introduction Chapter 1

hardware consumption. Moreover, the scaling of the algorithm complexity is significantly

faster than the scaling of hardware computational power and memory capacity. As a re-

sult shown in [7], we are witnessing a continuously increasing software-hardware gap in

emerging deep learning applications. The time we spent on training a state-of-the-art

deep learning model has increased from hours to days and even months.

Such imbalance has led to other critical issues including environmental and economic

costs. Summarizing the data presented in [8], the estimated carbon footprint of training

a Transformer model (with fine-tuning and experimentation) is 7x of a human being’s

CO2 emission per year. The number is from 2019 and it has increased even more since

then. Therefore, in order to maintain a fast development of deep learning research and

production, it is vital for us to find effective methods to bridge the gap between algorithm

consumption and hardware efficiency.

1.1 Problem Formulation and Analysis

While the above introduction gives the overall scope and motivation for this work,

the underlying problem to be solved is still unclear. To unveil the pain point, here we

provide a systematic formulation of the problem to facilitate a comprehensive analysis.

Specifically, we approach the current situation from a data-centric perspective, where each

deep learning model is composed of three types of data, namely dataset representation,

model parameters, and intermediate computational results. As shown in Figure 1.1, no

matter how the application and model structure change, these three types of data always

exist and lay at the core of the deep learning models. Algorithms and Hardware platforms

are the methods that we leverage to associate the interaction and transition among these

data types.

For example, a single pass of forward propagation starts from a batch of input samples,

2



Introduction Chapter 1

Figure 1.1: A data-centric perspective to understand the data explosion issue in deep
learning models.

and uses the current version of the model parameters to generate a batch of computational

results. These computational results may only be the final output if the model is used for

inference, or contain intermediate hidden feature maps when a backward propagation is

required. Memory system is used to store the data, and arithmetic units are implemented

to perform the computations. It is true that the final performance of a deep learning

application is a joint consequence of software and hardware design. But here we formulate

the problem as Figure 1.1 to highlight the impact of data, because we believe that it is the

explosion of the data that leads to many unseen challenges and results in the increasing

algorithm-hardware gap we observed today.

Based on this problem formulation, we can now fit in different deep learning models

and analyze the specific type(s) of data explosion it contains. The variance in data

type also leads to different challenges and solutions, as we will illustrate throughout this

dissertation.

3
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1.2 Opportunities and Challenges

The most important observation of this dissertation is that: Where there is data

explosion, there exists data redundancy.

1.2.1 Parameter Redundancy

During the past decade, exploring and leveraging parameter redundancy has been one

of the most popular topics in deep learning research. The underlying idea is that, instead

of having a dense, large, and precise model, we can train a sparse, smaller, and quan-

tized model while maintaining an on-par model accuracy. Various techniques have been

proposed to achieve this objective, such as model pruning [9], knowledge distillation [10],

model quantization [11], and so on. For emerging deep learning models, this idea can be

even more important, because the number of parameters has been exponentially growing,

causing significant challenges to model training and deployment.

Despite the convenience to apply previous techniques to larger models, the outcome

is unsatisfying. This is because these techniques, due to the limitation of their compres-

sion mechanism, only allow for a moderate compression ratio. Usually, the reduction

of model size is at most tens of times. As a consequence, for models with extremely

large parameter sets, such as Deep Learning Recommendation Models (DLRMs), it is

insufficient to address the hardware challenges. Because the weights can still occupy

tens of Gigabytes or even Terabytes of space, which exceeds the memory capacity of the

computing platforms such as GPUs. Therefore, a more revolutionary approach is needed

to address the exponential growth of model parameters and opens up new performance

optimization opportunities.

4
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1.2.2 Representation Redundancy

Deep learning applications are essentially statistical methods to understand and an-

alyze real-world instances. Models are built on the representation of these instances.

For example, we typically use 3D RGB data to represent images and add another di-

mension if the object has other information such as time sequence [12]. Also, different

images use completely independent representations. While this formulation is straight-

forward and suitable for certain applications like image and video processing, it may be

over-representative for others.

In many emerging deep learning applications such as DLRM and GNN, there exist

relationships between different samples. For example, customers in the same category

might have similar purchasing behavior, and related papers are usually connected in a

citation network. These properties indicate there exists redundancy in the current rep-

resentation system of the dataset, and reveals opportunities to represent different data

samples with partially shared features [13, 14]. However, it is non-trivial to design appro-

priate new representations for emerging applications. There are several challenges: (1)

We need to effectively identify the underlying relationship between the samples. Such

methods are usually application- and dataset-specific. (2) We need to find a new mathe-

matical representation for the samples. This new representation not only needs to allow

feature sharing, but should also preserve a certain amount of unique information for each

sample to be independently identified. (3) After the new mathematical representation is

designed, the computation characteristics and memory access behavior are also affected.

Therefore, it poses new challenges to the hardware design, and we need to optimize cer-

tain software infrastructures and even hardware architecture to efficiently execute the

new models.

5
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1.2.3 Computational Redundancy

Finally, during the processing of deep learning models, a massive amount of interme-

diate data is generated and stored, such as the output activations of each layer. Moreover,

due to the firing mechanism of neuron synapses and the use of non-linear activation func-

tions, these outputs usually contain many small and even zero values. Prior work has

extensively discussed the opportunities to leverage weight sparsity and input activation

sparsity [15, 16, 17, 18]. However, previous work suffers from a major limitation, that

is the activation should still be completely generated before it can be pruned and used

as input sparsity for the following layer. In emerging deep learning applications such as

Transformer models, a majority of the computations and memory access are spent on

computing and moving these intermediate data back and forth. Therefore, the conven-

tional pruning method is incapable of handling these scenarios since it does not reduce

the cost of the current layer which generates the activations. In order to fully lever-

age dynamic sparsity, we need to identify the redundancy prior to the execution of the

layer and avoid the computation as well as memory access in advance. Obviously, this

requires innovations in all different levels of the system, including algorithms, software,

and hardware.

1.3 Contributions and Organization

Given the analysis above, we make the following contributions as we organize the

thesis accordingly.

In Chapter 2, we introduce the background of different emerging deep learning models

that will be discussed in this thesis, including Transformers and Graph Neural Networks.

We also give a basic introduction to Tensor-train decomposition, which is the key method

that we leverage to explore data representation redundancy.

6
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Chapter 3 proposes DSA, an efficient algorithm to exploit dynamic computational

redundancy during the execution of Transformer models. Specifically, we introduce an

attention approximation module that can evaluate the attention values in advance. Given

the approximated attention score, we can avoid computing and storing the unimportant

attentions. We also leverage dimension reduction and quantization to reduce the cost

of the attention approximation module, and guarantee the selection accuracy by jointly

optimizing the attention approximation module with the rest of the model.

Chapter 4 discusses the challenge and opportunities to implement DSA on GPU plat-

forms. Following the discussion, we propose to identify structural sparse attention instead

of fine-grained sparsity for GPU-based solutions. We also implement customized GPU

kernels to reduce attention approximation overhead as well as improve sparse attention

performance.

Chapter 5 presents an accelerator architecture, DOTA, to fully take advantage of the

DSA mechanism. Unlike GPUs, ASIC design is able to benefit from customized hardware

unit as well as specialized dataflow to improve performance and energy efficiency. In

DOTA, we propose to reorder the computation sequence of the attention matrix, such

that different rows of the attention matrix can be generated in parallel with minimized

memory bandwidth requirement. In other words, the performance of fine-grained sparse

attention is significantly improved compared with GPU solutions, and a better trade-off

can be achieved between model accuracy and hardware efficiency.

Chapter 6 introduces TTD Engine, an efficient software-hardware co-design for run-

time data compression using Tensor-train decomposition. Specifically, we optimize the

decomposition algorithm of Tensor-train by leveraging low-rankness of the original data,

and accelerate the method using specialized architecture. We also presents a new algo-

rithm to implement 2D convolution using both tensor-train format input and tensor-train

format weights. A full-TT layer leverages both input activation redundancy and param-

7
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eter redundancy, significantly outperforms prior one-side Tensor-train layer.

Chapter 7 is a demonstration of exploring dataset representation redundancy in Graph

Neural Networks. We propose TT-GNN, an algorithm and hardware co-design to accel-

erate large scale training of GNNs. In TT-GNN, instead of having each node represented

as one feature vector, we represent the complete graph embedding matrix as a tensor-

train matrix. Therefore, different nodes will partially share some tensor slices depending

on their index. We reorder the graph index according to the vertex connection such that

similar nodes will share more partial features. As a result, we are able to represent the

graph with a much compact data structure. On the base of this algorithm, we discuss

the challenge and opportunities of implementing TT-GNN on both GPUs and ASICs.

Finally, we use Chapter 8 to conclude the thesis and discuss future research oppor-

tunities.

8



Chapter 2

Background and Related Work

In this section, we first summarize the preliminary knowledge of Transformer Neural

Networks and Graph Convolutional Networks, followed by the introduction of Tensor-

train Decomposition. Finally, we discuss the related work on efficient NN compression

method and hardware acceleration.

2.1 Transformer Neural Networks

In recent years, Transformer Neural Networks have drawn a surge of interests from the

deep learning community. Lots of Transformer models have been proposed and demon-

strated superior performance over traditional Deep Neural Networks (DNNs) [19, 2]. The

use of Transformers has spanned over a wide range of application domains including lan-

guage understanding [20, 21, 22], image processing [23, 24, 25], and generative modeling

[26, 27, 28].

A typical Transformer model is composed of stacked encoder (decoder) blocks as

shown in Figure 2.1. At the beginning, the input sentence with n tokens is first trans-

formed into an embedding matrix X ∈ Rn×d. Then, the input embedding matrix is

9
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Figure 2.1: Transformer model architecture.

processed by blocks of encoders. We split each encoder into three stages, namely Linear

Transformation, Multi-Head Attention, and Feed-Forward Network (FFN). In the trans-

formation stage, we multiply the input with three weight matrices to obtain Query (Q),

Key (K), and Value (V) as

Q,K, V = XWQ, XWK , XWV (2.1)

After linear transformation, the attention weights A ∈ Rn×n is defined as

A = SoftMax(
QKT

√
dk

) (2.2)

where SoftMax(·) is computed row-wise. Finally, the output values are generated by

10
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multiplying attention weights A with the projected values V as

Z = AV. (2.3)

The output of the Multi-Head Attention is added with the encoder’s input through

a residue connection, and a layer normalization is applied afterwards. Finally, a Feed-

Forward Network (FFN) containing two fully-connected (FC) layers, followed by another

residual connection and layer normalization is applied to generate the output of the

encoder. As presented in Figure 2.1, the same encoder structure is repeated and stacked

for multiple times in a single Transformer. Usually, a classifier is added at the end to

make predictions.

2.2 Graph Convolutional Neural Networks

Originating from spectral graph analysis and fueled by the success of machine learn-

ing, graph neural networks (GNNs) have drawn a surge of interest and have been applied

to various applications involving non-Euclidean graph-structured data. During the past

few years, a wide range of GNN models [29, 30, 31, 32] have been proposed to solve

graph-related problems. Exciting progress has been achieved by GNNs in domains such

as recommendation systems [33], relation prediction [34], chemistry analysis [35], financial

security [36], protein discovery [4, 5], EDA [37, 38, 39] and so on.

As shown by a toy model presented in Figure 7.2. Given an undirected graph, we

denote it as G = (V,E), where |V | is the number of nodes and |E| is the number of

edges in the graph. Each node is described by a feature vector of length F , and all the

node features together forms a 2D feature matrix X ∈ R|V |×F . In most cases, matrix X

is dense and of large-scale due to the massive amount of nodes contained in real-world

11
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Figure 2.2: Illustration of a sample GNN model.

graphs.

During GNN processing, each GNN layer follows a two-stage procedure, namely Ag-

gregation and Combination. As shown in Figure 7.2 and equations in below, during

aggregation, each node v will collect feature vectors from its sampled neighborhood N(v)

to generate an aggregated feature akv . The aggregation operator can be flexibly designed,

where common choices include Mean, Max, MLP and so on. After this, the aggregated

feature is combined with source node v’s feature vector h(k−1)v . The combination operator

utilizes these two vectors to generate hidden representation hk(v) of node v.

akv = Aggregate(u : u ∈ N(v) ∪ v)

hk
v = Combine(akv , h

(k−1)
v )

12
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2.3 Tensor-train Decomposition

Tensor-train Decomposition (TTD) is originally proposed by Oseledets in [40]. The

overall procedure of the naive TTD algorithm is given in Alg. 3. In TTD, we try to

approximately represent a given tensor A with tensor B, which can be described as:

Bi1,i2··· ,id = G1(i1)G2(i2) · · ·Gd(id). (2.4)

Each Gk(ik) is an rk−1 × rk matrix, where rk is called the TT-rank that can be either

predefined before the decomposition or decided during runtime according to the required

decomposition accuracy. Gk is an rk−1 × Ik × rk tensor core extracted from the original

high-order tensor. In each TTD iteration, we need to perform Singular Value Decompo-

sition (SVD) of an auxiliary matrix to get a tensor core. Therefore, it takes d sequential

TTD iterations to finish the decomposition of a given tensor. Besides, at the beginning

of each iteration, we need to reshape the given matrix into the required size before we can

perform SVD. With the TT-format data, we can simply contracting these tensor cores

together to reconstruct the approximated tensor which is close to the original tensor A.

Notice that, the product of these parameter-dependent matrices in Equation (7.2) is

a matrix of size r0 × rd, this indicates the boundary condition of r0 = rd = 1. Moreover,

since r0 = rd = 1, TTD can also be visually represented by a graph called linear tensor

network, as shown in Figure 6.3. There are two different types of nodes in this graphical

representation. The rectangles are the tensor cores with the spatial indices (ik from the

original tensor) and auxiliary indices αk. The circles are indeed links to connect two

adjacent tensor cores with same auxiliary index αk. This means that these two tensor

cores are contracted together, and further being contracted with the following tensor

cores to form the final d-dimensional tensor.

13
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Figure 2.3: A tensor-train network.

Figure of a 3-way tensor

The most important step of TTD is how to extract these tensor cores from the

original high order tensor. In this work, we focus on the classical TT-SVD approach,

which computes such TTD using d-sequential SVDs of auxiliary matrices.

Algorithm 1 TT-SVD

Require: d-dimensional tensor A, approximation error ϵ.
Ensure: Tensor cores G1, ..., Gd of the TT-approximation B in the TT format with TT-

ranks rk equal to the δ-ranks of the unfoldings Ak of A. The approximation error
satisfies:

||A − B||F ≤ ϵ||A||F
1: {Initialization} Compute the truncation parameter:

δ = ϵ
√
d− 1||A||F

2: Temporary tensor: C = A, r0 = 1.
3: for k = 1 to d− 1 do
4: C =reshape(C, [rk−1Ik, numel(C)/(rk−1Ik)])
5: Compute δ-truncated SVD:

C = USV T + E, ||E||F ≤ δ, rk = rankδ(C)
6: New tensor core: Gk =reshape(U , [rk−1, Ik, rk])
7: C = SV T

8: end for
9: Gd = C
10: Return tensor B in the TT format represented by tensor cores G1, ..., Gd.

14
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2.4 Related Work on Data Redundancy Elimination

in Neural Networks

In this section we present the literature survey related to data redundancy of Neural

Networks, as well as hardware acceleration for emerging Neural Network models.

2.4.1 Data Redundancy in Neural Networks

As previously mentioned, static weight pruning is the most commonly applied tech-

nique to explore data redundancy, as it helps to decrease memory footprint and data

access directly from the model prespective. Fine-grained weight sparsity can be applied

to DNN and utlized by NN accelerators through compressed storage and computation

skipping of zero weights [15, 16, 41, 42, 43, 44]. Due to the hardware inefficiency, coarse-

grained weight sparsity is further proposed to mitigate the indexing overhead and irreg-

ular access [45, 46, 47, 48].

As compared to static parameter redundancy, other studies leverage dynamic redun-

dancy and focus on improving runtime efficiency with intelligent dataflow mapping and

compute orchestration strategy. One typical solution is to use ReLU -induced activation

sparsity as either input sparsity detection [15, 17, 18, 49, 50, 51, 47, 44, 52] or output spar-

sity prediction [53, 54, 55, 56]. Besides, some work proposes channel-wise compression

and gating methodology to reduce computations of certain NN layers [45, 57, 58].

2.4.2 Related Work on Transformer Acceleration

There have been a few recently proposed works targeting the acceleration of attention

and Transformer. MnnFast [59] skips the computation of specific value vectors if its

attention weights is lower than the threshold. This method can only benefit the attention
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output computation rather than attention weights computation. A3 [60] is the first

work to apply approximation to the attention weights for computation reduction. A3

involves a sorting-based preprocessing phase that needs to be done outside the accelerator.

ELSA [61] improves the approximation method by directly using sign random projection

to estimate the angle between query and key vectors. SpAtten [62] proposes cascade

token pruning and head pruning to reduce the cost of both self-attention block and

subsequent layers in the Transformer model. The proposed method can be regarded as

adding structured sparsity constraints to the attention matrix, as it directly removes

several rows and columns. As for hardware design, SpAtten supports both decoder

and encoder processing. Finally, OPTIMUS [63] proposes a GEMM architecture to

accelerate Transformer inference. It focuses on accelerating sequential decoding process

and proposes technique to maintain resource utilization.

2.4.3 Related Work on Tensor-train-based Neural Network

Tensor-train Decomposition (TTD) [40] is originally used to decompose high order

tensor data and break the curse of dimensionality through efficient implementation of

basic operations. [64] sees the opportunity of adopting TTD to reduce the modes size

and computation complexity of Convolution Neural Networks (CNNs). The key idea is

to change the 2D weight matrix into a parameterized tensor-train weight and train the

entire model from scratch. In other words, this approach can be regarded as replacing

the FC and Conv layer in CNNs with a Tensor-train (TT) layer. TT layer has fewer

parameters and less computation complexity for inference. Since then, TT layer has

also been used in other DNN models such as RNNs [65] and Transformers [66]. The

unique computation pattern of Tensor-train also inspires research effort on customized

accelerator design [67] for these Tensorized Neural Networks (TNNs). Tensor-train is also
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leveraged to replace the large embedding layer used in Deep Learning Recommendation

Models [13]. The central idea remains the same as before. The difference is that none

of the previous DNN models have such large weight matrix that consumes more than

99% of the model capacity with up to TBs of memory consumption. Therefore, this

work demonstrates the important potential of tensor-train method in such extreme-scale

models, which could potentially help control the explosive demands on computational

infrastructure.
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Chapter 3

Dynamic Approximation for

Computational Redundancy in

Transformer Models

This chapter presents our work on exploring dynamic computational redundancy using

efficient runtime approximation. Specifically, we present dynamic sparse attention, an

algorithm to reduce self-attention complexity used in Transformer Neural Networks

3.1 Motivation

Before we describe our method in detail, we first introduce the preliminaries of the

standard attention mechanism used in vanilla Transformers. Then, we discuss the chal-

lenge of serving long sequences under the quadratic complexity of attention. Finally,

we demonstrate that redundancy exists in attentions and dynamic sparse patterns are

naturally expressed in attention.
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3.1.1 Preliminaries of Attention

The attention mechanism is the essential component of Transformers [19]. Self-

attention operates on input representations of length l, X ∈ Rl×d, with three linear

projections namely, query, key, and value as

Q,K, V = XWQ, XWK , XWV (3.1)

, where Q ∈ Rl×dk denotes the queries, K ∈ Rl×dk denotes the keys, and V ∈ Rl×dv

denotes the values. After linear projections, the attention weights A ∈ Rl×l is defined as

A = ϕ(
QK⊤
√
dk

) (3.2)

where ϕ is the row-wise softmax(·) function. Finally, the output values are computed

by multiplying the attention weights A with the projected values V as

Z = AV. (3.3)

Serving Transformer-based models is challenging when the input sequence length l

is large. When using long sequences, computing Eq. (3.2) and Eq. (3.3) consumes the

majority of operations and becomes the bottleneck of model evaluation. The asymptotic

complexity of attention O(l2dk + l2dv) is quadratic to sequence length l.

3.1.2 Intrinsic Sparsity in Attention Weights

A number of efficient Transformer variants have been proposed to mitigate the quadratic

complexity of self-attention [25, 68, 69, 70]. One straightforward way to exploit the in-
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trinsic redundancy in attention is forming sparse patterns as in

A = ϕ(QK⊤ − c(1 −M)), (3.4)

where M ∈ {0, 1}l×l represents the sparse attention pattern, c is a large constant (1e4)

such that where Mij = 0, indicating unimportant attention, Aij = 0 after softmax nor-

malization. Here, we omit
√
dk for simplicity. The sparse patterns can be pre-determined

into global, block, random, or a combination of different patterns. Another way to de-

termine sparse patterns is through trainable masks. However, all these methods explore

static or fixed sparse patterns, restricting viable attention connections.

3.1.3 Dynamic Sparse Patterns in Attention

A common motivation of sparse attention methods is that not all attention weights,

i.e., probabilities, are equally important in Eq. (3.3). A large portion of attention weights

do not contribute to attention output and are redundant. In other words, only a small

portion of attention weights are useful. However, we find that sparse patterns in attention

are inherently dynamic and data-dependent.

Here, we further support our hypothesis by showing the original attention weights ma-

trix (after softmax normalization) in Figure 3.1. The model used here is a vanilla Trans-

former and the benchmark is Text Classification from Google Long-Range Arena[71].

Figure 3.1 indicates that only a small amount of attention weights are with large mag-

nitude and a significant portion is near zero. We want to emphasize that this shows

the raw attention weights without forcing any sparsity constraints or fine-tuning, which

indicates that redundancy naturally exists in attention. In short, attention mechanism

exhibits the focused positions on a set of important tokens.

More importantly, the attention weights have dynamic sparse patterns. As shown in
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Figure 3.1: Visualization of attention weights from different inputs and attention
heads. Only a small amount of attention weights are important. Note values > 0.005
are clamped to show as 0.005.

Figure 3.1, the sparse patterns in attention weights are dynamically changing depending

on the input sequence. Different heads in multi-head attention also have different sparse

patterns. The characteristic of dynamic sparsity in attention weights motivates us to

explore effective methods to eliminate the redundancy and save computations. Prior

work on static or fixed sparse patterns cannot capture the dynamically changing atten-

tion weights. Recent studies reveal similar dynamic sparse patterns in attention using

modified attention [72, 73]. Instead, we promote the intrinsic dynamic sparse patterns

in attention of standard transformers, and our focus is on practical acceleration of long

sequences. A recent study shows that pruning near-zero attention values during inference

has limited effect on accuracy [74]. The problem that our work is targeting is not only

pruning unimportant attention values but also predicting which attention values to prune
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and saving more computations of attention scores as in Eq. 3.2

3.2 Dynamic Sparse Patterns in Attention

From Section 3.1, we show that attention weights have intrinsic sparse patterns,

and the positions of important attention weights are dynamically changing as different

input sequences. While attention exhibits dynamic sparse patterns, how to efficiently

and effectively obtain the dynamic sparse patterns remains challenging. We formulate

the process of identifying sparse attention patterns as a prediction problem. The key

challenge is how to obtain an approximate attention predictor that can accurately find

the sparse patterns while keeping the prediction overhead small.

Here, we present Dynamic Sparse Attention (DSA) that exploits sparse patterns in

attention weights to reduce computations. The principle is to effectively search for dy-

namic sparse patterns without enforcing strict and static constraints on attention while

keeping the searching cost small. Our approach leverages trainable approximation to

predict sparse patterns. As shown in Figure 3.2, we use a prediction path based on

low-rank transformation and low-precision computation. The prediction path processes

input sequences functionally similar to query and key transformations but at much lower

computational costs. Given the prediction results that approximate QK⊤ well, we can

search sparse patterns based on the magnitude of prediction results.

3.2.1 Design of Prediction Path

We denote attention scores as S = QK⊤ and omit the scaling factor for simplicity.

As shown in Figure 3.2(a), two general matrix-matrix multiplication kernels (GEMM)

and one softmax kernel consume the majority of computations in self-attention. We

construct a pair of approximate query and key transformations in the prediction path to
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Figure 3.2: (a) Standard full attention; (b) Dynamic sparse attention with approxi-
mation-based prediction and sparse computation.

compute for approximate score S̃, as in

Q̃, K̃ = XPW̃Q, XPW̃K . (3.5)

Here P ∈
√

3
k
· {−1, 0, 1}d×k is a sparse random projection matrix shared by both paths,

and W̃Q ∈ Rk×k, W̃K ∈ Rk×k are parameters in approximating query and key.

Then, we have approximate attention scores S̃ = Q̃K̃⊤. From S̃, we can predict

sparse attention masks M using thresholds, where the threshold values are either fixed

by tuning from the validation set or determined by top − k searching. When S̃ is well

approximated with accurate attention scores S, the large scores in S̃ are also large in S
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with high probability. The resulting sparse attention weights Ā is used to multiply the

value matrix V similar to Eq. 3.3.

Optimization of Approximation. The random projection matrix P is constant

after initialization and shared by two approximate transformations. We obtain the train-

able parameters, W̃Q and W̃K , through minimizing the mean squared error (MSE) as the

criterion to optimize for approximation:

LMSE =
1

B
||S − S̃||22 =

1

B
||QK⊤ − Q̃K̃⊤||22 (3.6)

where B is the mini-batch size.

Given the motivation of finding dynamic sparse patterns, the hypothesis of our

method is that there exist oracle sparse patterns that perform well. Such that the op-

timization target is to approximate full attention scores S well enough to predict sparse

patterns. We further give the results of applying oracle sparse patterns by directly drop-

ping small-magnitude attention weights during inference without fine-tuning the model.

As listed in Table 3.1, around 90% (up to 97%) of small attention weights can be dropped

with negligible accuracy loss.

Table 3.1: Sparsity in attention weights, where values < θ are set to zero. A significant
portion of attention weights that have small magnitude are redundant. The accuracy
metrics are Exact Match (EM) and F1 Score.

Case Sparsity EM F1

Base 0% 81.49 88.70
θ = 0.001 75% - 95% 81.50 88.70
θ = 0.01 94% - 97% 80.51 87.85

3.2.2 Model Adaptation

When sparse attention scores are masked out to generate sparsity in attention, the

remaining attention weights, i.e., the important weights, are scaled up as the denominator
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becomes small. Leaving the disturbed attention weights intact will degrade model quality.

As a countermeasure, we propose to fine-tune model parameters with dynamic sparse

constraints, referred to as model adaptation. With adaptation, the model evaluation

accuracy can recover to be on par with full attention baselines, while the computational

costs are significantly reduced.

We do not change the computational graph and the loss function of the original

model, except adding dynamic sparse constraints in attention as mask M . As a result,

the new attention Ā are sparse and only have important weights from prediction. Given

a pre-trained model, our method jointly fine-tunes the model parameters and parameters

of the prediction path as in

L = LModel + λLMSE (3.7)

where λ is the regularization factor of MSE. Our method can also train from scratch with

initialized model parameters.

Our method approximates the original attention score with a low-rank matrix S̃.

When training the model with loss function in Eq. 3.6, the gradient from LMSE will

be passed to both the low-rank approximation S̃ and the original attention score S.

Intuitively, this loss function not only makes S̃ a better approximation of S, but also

makes S easier to be approximated by a low-rank matrix, i.e., by reducing the rank

of S. On the other hand, the loss LModel guarantees the rank of S to be high enough

to preserve the model accuracy. In other words, the joint optimization of LModel and

LMSE implicitly learns a low-rank S with a learnable rank depending on the difficulty of

the task. Our design brings two advantages. First, the rank of S will be automatically

adjusted to tasks with different difficulty levels. Hence, our method can potentially

achieve higher accuracy on difficult tasks and higher speedup on simple tasks compared

with low-rank approximation methods using fixed rank. Second, as the rank of S̃ only
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implicitly influences the rank of S, the final result is less sensitive to the hyper-parameter

k.

3.2.3 Computation Saving Analysis

DSA introduces additional computations in the prediction step, but the overall com-

putation saving from sparse attention kernels is fruitful and can have practical speedup.

The original full attention takes O(l2dk + l2dv) MACs (multiply-and-accumulate oper-

ations) asymptotically. However, the asymptotic analysis does not consider practical

concerns such as sparsity, quantization, and data reuse. Here, we augment the tradi-

tional asymptotic analysis with a sparsity factor α and a quantization factor β. In this

way, DST prediction takes O(βldkk+βl2k) MACs; DST attention takes O(αl2dk +αl2dv)

MACs. Both α and β are determined depending on tasks and underlying hardware plat-

forms. In our settings, we choose α between 90% and 98% and our GPU kernels can

achieve practical speedups. We assume the baseline model uses FP32 as the compute

precision and set prediction precision to be INT4. The execution time on softmax is

not revealed in asymptotic analysis but is one of the major time-consuming components.

Our method can also save the time of softmax kernel with the same sparse attention

patterns.

3.2.4 Implications for Efficient Deployment

Compared with standard attention, DSA exhibits two new features that can poten-

tially affect model deployment. Firstly, a light-weight prediction path is attached to the

attention layer to search for dynamic sparse patterns. The prediction involves approxima-

tion of attention scores, which is essentially a low-precision matrix-matrix multiplication

(GEMM). While NVIDIA GPUs with Tensor Cores support data precision as low as
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INT8 and INT4, DSA prediction can tolerate INT2 computation on certain benchmarks.

Therefore, specialized hardware is preferable when seeking ultra-efficient attention esti-

mation.

Secondly, the predicted sparse patterns can be used to reduce unnecessary attention

computations. In other words, instead of computing QK⊤ and AV as two dense GEMM

operations, we can reformulate QK⊤ as a sampled dense dense matrix multiplication

(SDDMM) and AV as a sparse matrix-matrix multiplication (SpMM). When processing

SDDMM and SpMM kernels on GPU, data reuse is the key disadvantage that limits its

performance compared with GEMM. Therefore, we extend DSA to support structural

sparsity that can improve the data reuse of both SDDMM and SpMM kernels. We

implement customized kernels that take advantage of the sparsity locality to improve

kernel performance, achieving practical runtime speedup on NVIDIA V100 GPU. Also,

we demonstrate our choice of structural sparsity pattern and that DSA is able to maintain

the model expressive power with the extra constraints.

As for specialized hardware, the advantage of DSA can be fully exploited as the

specialized architecture and dataflow is able to deal with fine-grained sparsity, therefore

achieving optimal sparsity ratio and computation reduction. However, the challenge

also arises as irregular sparsity causes load imbalance and under-utilization of processing

elements. Moreover, instead of independently executing SDDMM and then SpMM, we

point out that more optimization opportunities can be explored when considering the

whole process as a two-step SDDMM-SpMM chain.

3.3 Algorithmic Evaluation

In this section, we evaluate the performance of DSA over representative benchmarks

from Long-Range Arena [71]. We first compare the model accuracy of DSA with dense
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vanilla transformers and other efficient transformer models. Then, we present a sensitivity

study over different configurations of the prediction path. By choosing different number

of prediction parameters, DSA is able to achieve flexible trade-offs between computational

cost and model accuracy. Finally, we study the model efficiency of DSA by analyzing the

computational cost (MACs) and relative energy consumption.

3.3.1 Experiment Settings

The datasets used are from Long-Range Arena (LRA), which is a benchmark suite for

evaluating model quality under long-sequence scenarios. In LRA, different transformer

models are implemented using Jax 1 API and optimized with just-in-time (jax.jit) com-

pilation. We implement DSA on top of the vanilla transformer provided by LRA and

compare it with other models included in LRA. Specifically, the self-attention layer in

the vanilla transformer is augmented by the DSA method as described in Section 3.2.

All the other model configurations are kept the same for a fair comparison.

We incorporate three tasks from the LRA benchmark in our experiment, including

Text Classification, Document Retrieval, and Image Classification. The Long ListOps

and Pathfinder tasks are excluded. We provide benchmark descriptions and experiment

configurations in the supplemental material.

3.3.2 Accuracy

Figure 3.3 presents the overall model accuracy of DSA on different LRA tasks. In

this experiment, the DSA model is fine-tuned from a pre-trained vanilla transformer by

jointly updating the model parameters and prediction parameters using the combined

loss of LMSE and LModel. Different percentage numbers indicate the sparsity ratio that

1https://github.com/google/jax
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Figure 3.3: Overall model accuracy of DSA (fine-tuned from a pre-trained check-
point) compared with vanilla dense transformer.

we applied to the DSA models. For instance, DSA-90% means that we only keep 10%

of the attention weights in each row of the attention matrix, while masking out all the

other 90% of the weights. The sparsity ratio constraint is uniform for all the heads and

attention layers in the DSA model.

As shown in Figure 3.3, for all the evaluated tasks, dense transformer possesses a

considerable amount of redundancy in the attention matrix under the long-sequence con-

dition, which supports our previous claim in Section 3.1. Specifically, we can safely mask

out up to 95% of the attention weights without suffering from any accuracy degradation.

In fact, by jointly optimizing the model parameters to adapt dynamic sparse attention,

DSA delivers slightly higher performance with 90% and 95% sparsity ratio. Even with up

to 99% of sparsity, DSA still demonstrates promising performance with negligible accu-

racy drop compared with the dense baseline. We also compare DSA with other efficient

Transformer methods on the LRA benchmark and show that DSA maintains a strong

performance compared with related work.

The encouraging performance of DSA mainly comes from two aspects. Firstly, joint
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Figure 3.4: Oracle attention mask generated by top-k selection.
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Figure 3.5: Sparse attention mask generated by DSA prediction.

optimization ensures that the DSA model can well adapt to the sparse attention patterns

for computing the attention output. Secondly, the trainable prediction path is able to

accurately capture the input-dependent patterns. Figure 3.4 shows the oracle sparse pat-

terns of four different input sequences obtained from top-k selection over the original full

attention matrix. The yellow dots indicate that the important positions in the attention

matrix, while the purple region is masked out. Figure 3.5 shows the sparsity patterns

generated by DSA prediction. As we can see from the two figures, horizontally, the sparse

attention pattern changes with different input sequences. Vertically, the predicted pat-

terns are very close to the oracle patterns. In our experiments, the prediction accuracy

is around 85 ∼ 95%.

To make sure the high performance of DSA comes from our proposed approach rather

than the pre-trained model itself, we further test two cases on the Text Classification
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Table 3.2: Change of DSA-90% model accuracy when sweeping random projection
scale σ and quantization precision.

σ 0.1 0.16 0.2 0.25 0.33 Base

DSA-90% 65.32 65.25 65.17 65.46 65.63 65.12

Precision Random INT2 INT4 INT8 FP32 Base

DSA-90% 60.42 64.23 65.56 65.69 65.63 65.12

dataset. Firstly, we apply a 99% sparsity constraint on the vanilla transformer, but with

a static local attention pattern. Secondly, we use a short sequence with dense attention,

and let the total number of tokens in the short sequence matches with the number of

important tokens in the long-sequence scenario. The results show that these two cases

perform very poorly on the task, delivering a model accuracy of only 53.24% and 54.16%

compared with 64.04% accuracy achieved by DSA-99%. This further supports our

previous discussion.

3.3.3 Design Space Exploration of Prediction Path

One of the most important design choices of DSA is the configuration of the Prediction

Path. Overall, we want the predictor to accurately capture dynamic sparse patterns.

However, we also want to minimize the cost of prediction while maintaining DSA model

accuracy. Thus, while we involve trainable parameters for prediction, we also introduce

random projection matrix P ∈ {−1, 0, 1}d×k to control the prediction parameters (W̃Q ∈

Rk×k, W̃K ∈ Rk×k), and use low-precision to reduce the computation overhead. Here, we

present the sensitivity results regarding different choices of the reduced dimension size

and quantization precision.

We first sweep over different sizes of k and evaluate the accuracy of DSA-90% on the

LRA Text Classification task. Here, we use σ = k/d ∈ (0, 1] to represent the size of the

predictor. A Larger σ value indicates more prediction parameters and better representa-
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tion power, but also larger computation overhead. As we can see from Table 3.2, DSA

demonstrates relatively stable performance with different σ values. Even with σ = 0.1,

DSA-90% still achieves a slightly higher accuracy compared with vanilla transformer.

We believe this is because we use predictor to indicate the positions of the important

attention weights, while passing the accurate attention weights to the output. There-

fore, our predictor module can tolerate highly approximate computation as long as it can

capture the relative importance in the attention matrix.

To further study the performance and the impact of the predictor, we conduct an-

other experiment to sweep over different quantization precision, while fixing σ to be 0.25.

As shown in Table 3.2, DSA-90% achieves good accuracy with quantized precision as

low as 4-bit. Accuracy degradation occurs when the precision further scales down to

2-bit. As we go deeper into the predictor module, we collect and show the prediction

accuracy in each attention block of this 4-layer DSA model. The prediction accuracy is

defined by the percentage of the correct guesses among the total number of predictions.

For example, for a DSA-90% model working on a sequence length of 2000, for each row

of the attention matrix, the predictor will output 200 positions to be important. If 100

of these 200 locations actually matches with the top-k results, the prediction accuracy

is 50%. As shown in Figure 3.6, the predictor is able to maintain its prediction accu-

racy even with 4-bit quantization. When the precision is 2-bit, the prediction accuracy

suffers a significant degradation, dropping from 60 ∼ 90% to 25 ∼ 55%. Despite this,

the overall model accuracy is acceptable, with only 0.89% degradation compared with

the baseline transformer. We believe this is because, for the binary Text Classification

task, it is more crucial to capture the very few most important attentions. Although

the prediction accuracy becomes lower, the most important positions are preserved and

therefore maintaining the overall model accuracy. Finally, in Figure 3.6 and Table 3.2 we

include a special case of randomly selecting 10% important positions. With this random
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Figure 3.6: The prediction accuracy of DSA in a 4-layer DSA-90% model with
different quantization precision.

mask applied to the model, the prediction accuracy is less than 10%, and overall model

accuracy directly drops to 60.42%. This result supports our previous analysis.

3.3.4 Model Efficiency

Before diving into the implementation of DSA on different hardware platforms, we

first provide a theoretical analysis to illustrate the model efficiency. We start with pre-

senting the number of required MAC operations for each attention layer. We use MAC

number as the computational cost metric because the majority of the operations in the

self-attention layer are matrix multiplications. We break down the total MAC operations

into three parts: (1) Linear: General Matrix-matrix Multiplication(GEMM) for comput-

ing Query, Key, and Value. (2) Attention: GEMM for computing attention weight matrix

and output Value. (3) Other: Other GEMMs inside the attention block like Feed-Forward

layers. As we introduced earlier, the two GEMM operations in the part (2) scale quadrat-

ically with the sequence length, and we transform them to be SDDMM and SpMM in our

DSA model to reduce both computation and memory consumption. Based on this set-

ting, the computational cost breakdown of different models used in our LRA experiment

is shown in Figure 3.7. Comparing different tasks, the tasks with longer sequence length
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(Text and Retrieval) are more bounded by the Attention part. The benefit of using DSA

is also more significant on the 4K tasks. Comparing within each task, it is obvious that

DSA model with higher sparsity ratio delivers higher computation savings. Overall, DSA

achieves 2.79 ∼ 4.35× computation reduction without any accuracy degradation.
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Figure 3.7: Computational cost measured in the number of MACs.
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Figure 3.8: Relative energy consumption projected to vanilla transformer.

Note that we do not include the computation overhead of the prediction path for

generating the sparsity mask. This is because the computations conducted in prediction

are in reduced precision rather than full-precision. Besides, it is inappropriate to directly

project the number of low-precision MACs to the number of FP32 MACs.

Furthermore, we show the the energy consumption of DSA relative to the dense
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attention. We use DSA-95% as an example and choose σ = 0.25 and INT4 quantization.

Each INT4 MAC’s energy cost is projected to the relative factor of FP32 MAC, where

the factor number is referenced from industry-level simulator [75] with 45nm technology.

From the figure we can see that, even with the predictor overhead considered, the overall

benefit is still compelling by virtue of the high dynamic sparsity ratio and low-cost

prediction.

3.4 Conclusion

In this chapter we introduce an approximation-based algorithm to explore dynamic

computational redundancy in Transformer Neural Networks. By jointly optimizing the

proposed attention detector and Transformer model, we are able to achieve more than

90% of attention sparsity with zero accuracy degradation. We also provide a theoretical

analysis of the proposed algorithm regarding MAC reduction and energy consumption

reduction.
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Chapter 4

Software Hardware Co-design for

GPU-based Efficient Transformer

Acceleration

In this Chapter, we discuss the challenge of implementing DSA on GPUs and provide

our solution to achieve practical speedup using dynamic sparse attention.

4.1 GPU Deployment of DSA

In Section 3.3.4, we analyze the potential of DSA in terms of reducing the total cost

of Transformers. While the estimated number of MAC operations and relative energy

consumption present very promising results, it remains challenging to achieve practical

speedup and energy reduction on real hardware systems. In this section, we dive deeper

into this problem as we discuss the implementation of DSA on GPUs. Specifically, we

evaluate the challenge of mapping DSA onto GPU architectures, and demonstrate the

flexibility of DSA to enable efficient algorithm-hardware co-designs.
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Figure 4.1: Overall GPU operator pipeline of DSA. ⊙ indicates element-wise multiplication.

4.2 DSA Operator Pipeline

The GPU execution pipeline of DSA is shown in Figure 4.1. We first perform quan-

tization over the input feature map X. The quantized feature map Xq is multiplied with

low-precision weight matrices W̃Q and W̃K to generate approximated Query and Key

matrices Q̃, K̃. We implement Q̃ ∗ K̃ with a low-precision GEMM kernel to generate the

approximated attention weights S̃. Important attention connections are selected based

on the values of S̃. The selected attention locations are represented as a CSR matrix M .

Given this attention sparsity, we can reformulate QK⊤ as the sampled dense dense matrix

multiplication (SDDMM) and AV as the sparse matrix-matrix multiplication (SpMM).

Various open source sparse matrix multiplication kernels [76, 77, 78] can be leveraged to

perform these two operations.

There are mainly two challenges when implementing DSA on GPU. Firstly, the la-

tency of attention approximation and selection needs to be carefully handled, such that

it can be fully covered by the savings from sparse matrix computation. Secondly, due

to irregular memory access and low data reuse, sparse matrix operations are difficult to

significantly outperform dense matrix operations on state-of-the-art GPU systems [76].

Thus, we need to adapt algorithms to help improve kernel efficiency, while satisfying

model accuracy requirements. Based on this analysis, we present the implementation
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details of each kernel within the execution pipeline.

4.3 Quantization and Random Projection

Normally, a quantization operator can be implemented as an epilogue of the previous

kernel, such that the previous kernel directly outputs quantized results. However, since

we also need the un-quantized feature map X to compute sparse attention, in DSA we

fuse quantization with the subsequent kernel instead of the preceding kernel. Specifically,

as shown in Figure 4.1, the quantization is performed together with random projection

and Q̃, K̃ computations. Each time we load a tile of X from global memory to GPU

shared memory. After quantizing this tile, we keep it inside the shared memory to be

directly used by the following operators. Therefore, we can save a round trip to the

global memory for the quantized feature map.

Furthermore, as shown in equation 3.5, Xq is back to back multiplied with random

projection matrix P and low-precision weight matrices W̃Q, W̃K . Since both P and

[W̃Q, W̃K ] are fixed during inference, we can pre-compute the result of P ∗ [WQ,WK ] and

store it as a equivalent weight matrix W̃ . Therefore, the consecutive linear transforma-

tions can be represented by a single low-precision weight matrix.

To sum up, as shown in Figure 4.1, by applying pre-computation and quantization

fusion, we are able to generate [Q̃, K̃] using input X with just one single kernel.

4.4 Attention Approximation and Selection

As shown in Figure 4.1, we compute the approximated attention weights using a

low-precision dense GEMM kernel. The precision is together decided by model tolerance

and hardware support. While DSA achieves no accuracy degradation with INT4 com-

38



Software Hardware Co-design for GPU-based Efficient Transformer Acceleration Chapter 4

putation, Nvidia V100 GPU only offers INT8 arithmetic. On the contrary, the latter

GPU architectures such as Ampere and Turing offer INT4 support, and are able to fur-

ther exploit algorithm potential. After generating the approximated attention values, we

perform attention selection by either comparing the results with pre-trained thresholds

or by perform local top-K selection. Kernel fusion is leveraged again, as we directly do

the pruning right after the results are computed and cached in shared memory. There-

fore, the kernel only outputs the sparsity mask without having to write the approximate

attention values.

4.5 Sparse Attention Computation

The key enabler for DSA’s performance improvements is the use of sparse GPU ker-

nels for attention computation. Specifically, we use SDDMM kernel to compute attention

score, and use SpMM kernel to compute the final attention output. There are multiple

open source implementations can be utilized. For example, under fine-grained sparsity

and single precision, the SDDMM and SpMM kernel proposed in [79] can outperform

dense GEMM kernel under > 71% and > 90% sparsity, respectively. Besides, cus-

parse [78] also achieves practical speedup at > 80% sparsity for single precision data.

However, it is far from enough to solely beat single precision GEMM operation, be-

cause inference engine is usually deployed under half (FP16) precision using advanced

Tensor Core architectures. When half precision (FP16) is used for computation, above

fine-grained kernels can hardly compete with GEMM kernel [76]. Consequently, the per-

formance gain on sparse matrix multiplication can hardly mitigate the overhead of com-

puting the prediction path in DSA. To tackle this problem, structural dynamic sparsity

can be introduced to the attention selection. Specifically, instead of selecting independent

attention weights, we can enforce block-wise and vector-wise constraints. Also, trade-off
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Figure 4.2: Column-vector sparse encoding [76].

can be made by adjusting the block size, as larger blocks deliver higher speedup but can

potentially cause accuracy loss.

In our work, we experiment on vector sparsity using the Text Classification bench-

mark. The performance statistics can be generalized to other benchmarks as long as a

similar model configuration and comparable sparsity ratio can be guaranteed. As shown

in Figure 4.2, we choose column-vector sparse encoding, where the attention elements

are pruned in a column-vector granularity. Column-vector sparsity provides the same

data reuse as block sparsity, but its smaller granularity makes it more friendly to model

training [76]. Table 4.1 gives the corresponding kernel speedup and model accuracy un-

der 90% sparsity ratio. The data type is FP16 for 1 × 4 and 1 × 8 sparsity and FP32

for fine-grained sparsity. As we can see, DSA can be flexibly combined with different

sparsity patterns, achieving practical runtime speedup on GPU while maintaining on-par

model accuracy with full attention.

To shed some light on the results, we can trace back to the visualizations of the at-

tention matrix in Figure 3.1. As shown by the figure, despite the sparse and dynamic

characteristics of the attention matrix, the distribution of important attention connec-

tions exhibits a certain degree of locality. For example, there exist some global tokens
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Table 4.1: Model accuracy and kernel speedup over cuBLASHgemm. We implement
customized SDDMM/SpMM kernel for 1 × 4/1 × 8 sparsity and reuse the kernel in
[79] for fine-grained sparsity. Experiments are done on NVIDIA V100 GPU. Baseline
accuracy is 65.63.

Sparsity Pattern vec 1×4 vec 1×8 Fine-grained

SpMM Speedup 1.57× 1.94× 1.85×

SDDMM Speedup 0.94× 1.15× 1.09×

Accuracy(%) -0.02 -0.1 +0.5

that attend to most of the tokens within a sequence. Therefore, some columns of the

attention matrix will contain many important positions. Besides, local attention also in-

dicates row-wise locality, as a token is likely to be influenced by its neighbors. Therefore,

row-vector sparsity can be added to DSA for performance/accuracy exploration as well.

While these fixed locality patterns have been well discussed in prior work [69, 68], DSA

illustrates the dynamic distribution which motivates us to propose the prediction path

to efficiently locate these important connections.
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Figure 4.3: Speedup of softmax with different sparsity ratios.

4.6 Sparse Softmax Computation

Under the long-sequence scenario, the softmax function could be a bottleneck. Let

h, l, and d be the number of head, sequence length, and feature dimension of each head,
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respectively. Our profiling result shows that with h = 8, l = 4096, d = 64, softmax

contributes 47% of the total execution time of the multi-head self-attention layer. By

sparsifying the attention matrix, DSA directly saves both memory access and compu-

tation consumption of the softmax function to reduce execution time. We evaluate the

latency of the pytorch-implemented softmax function on NVIDIA V100 GPU. Follow-

ing the configuration in Text Classification Benchmark, we set batch size=16, h = 4,

l = 2000 and enforce different sparsity ratios. Figure 4.3 shows that the reduced softmax

achieves 3.0 ∼ 709.9× speedup compared with dense softmax function.

4.7 Evaluation and Comparison

With the above implementation strategy, we demonstrate the overall performance of

DSA on an Nvidia V100 GPU under half precision inference scheme. Specifically, we eval-

uate the latency and memory footprint of the attention mechanism of DSA, and compare

it with other methods, including the dense vanilla Transformer and three representative

efficient transformers (Performer [80], Reformer [81], and Linformer [82]). We also exper-

iment on different sparsity ratios of DSA. Finally, we present the end-to-end speedup of

DSA over dense vanilla Transformers. We do not compare the end-to-end performance of

DSA with other efficient Transformers, because the result is also affected by the design

of non-attention modules. For DSA we are able to keep the other Transformer layers the

same as dense Vanilla Transformer and therefore providing a fair end-to-end comparison.

As shown in Figure 4.5, for all the evaluated benchmarks, DSA with vector sparsity

is able to achieve practical speedup over dense Vanilla Transformer under a 95% spar-

sity ratio. The result comes from all the software-hardware co-design techniques that we

proposed above, including hardware-efficient attention approximation, vector-sparsity en-

coding, and customized kernel design. For DSA-90, the benefit of sparse computation
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Figure 4.5: Normalized memory consumption of different attention methods relative
to the dense Vanilla Transformer. For DSA we select 1 × 8 attention sparsity with
sparsity ratio set to 90% and 95%.

failed to cover the INT8 approximation overhead, but DSA still has comparable perfor-

mance as dense Transformers. On the other hand, many existing efficient Transformers,

despite having a linear computation complexity, cannot deliver actual wall-clock speedup

due to additional overhead caused by their customized attention mechanisms. We do

observe those efficient Transformers demonstrating a good scalability, indicating their

potential to be applied to ultra-long sequences, such as 8K and 16K.

As for memory consumption, we collect the peak memory allocated during the atten-

tion computation, and compare the result across different models. As shown in Figure 4.4,

both DSA-90 and DSA-95 can achieve significant memory reduction compared with dense
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attention. Our kernel design plays a very important roll here. Although DSA computes a

dense approximated attention, which is supposed to have a quadratic memory footprint.

However, we perform attention selection right after the results is computed on-chip, with-

out being written back to GPU global memory. Therefore, we avoid the most expensive

data movement of DSA. For the original attention computation path, DSA reduces the

memory consumption by using the CSR format for the involved sparse matrices.

Finally, we compare the end-to-end Transformer inference performance of DSA with

dense vanilla Transformer on the Text Classification benchmark. We evaluate both 1× 4

and 1× 8 vector sparsity with 95% sparsity ratio. As shown in Table 4.2, DSA is able to

achieve a 1.19 ∼ 1.71× speedup with less than 0.12% of accuracy degradation.

Table 4.2: End-to-End Performance Speedup. Baseline accuracy is 65.06.

Sparsity (95%) Self-Attention End-to-end Accuracy

1×4 1.23× 1.19× -0.06

1×8 1.97× 1.71× -0.12

4.8 Conclusion

While DSA is able to sparsify a significant part of the attention map, naively map-

ping the algorithm to GPU platforms is undesirable due to the overhead of attention

approximation and the limited performance of sparse kernels. In this chapter, we present

a complete implementation pipeline of DSA to address these challenges. By sacrificing a

small portion of sparsity flexibility and ratio, we are able to improve the kernel perfor-

mance to a point where an overall speedup is achievable. Experiments show that with

1×4 and 1×8 vector sparsity and 95% sparsity ratio, we can deliver a 1.19 ∼ 1.71×

speedup with less than 0.12% of accuracy degradation.
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Chapter 5

DOTA: Detect and Omit Weak

Attentions for Scalable Transformer

Acceleration

In this Chapter, we move one step further to discuss the opportunities of using ASIC

design to fully leverage the algorithmic potential of DSA. We present DOTA, a customized

architecture for efficient Transformer inference acceleration.

5.1 DOTA System Design

We present DOTA’s hardware system, which is capable of performing scalable Trans-

former inference by efficiently utilizing the detected attention graph. We specifically

address three system-level challenges. First, long-sequence Transformer models involve

large GEMM/GEMV computations with configurable hidden dimensions. Therefore, to

effectively execute different Transformer models, we need to disassemble the algorithm

and identify the essential components. We provide abstraction of the model that helps
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Figure 5.1: DOTA system design. (a) The abstraction of a single encoder block.
We divide each encoder into three sequential stages. Each stage contains multiple
GEMM operations that can be further cut into chunks (represented by different colors)
and mapped to different compute Lanes. (b) Overall system design of DOTA. Each
compute Lane communicates with off-chip DRAM for input feature. The intermediate
results are summed up in the Accumulator. (c) Computation mapping between the
algorithm and hardware. Each DOTA accelerator processes one input sequence, and
each Lane computes for one chunk (color).

us to design a scalable and unified architecture for different Transformer layers, achiev-

ing good area- and power-efficiency. (Section 5.1.1). Second, apart from implementing

normal precision arithmetics, DOTA also needs to support low-precision computations

required by the attention detection. Instead of separately implementing all the arith-

metics, a reconfigurable design would be preferred as it can dynamically balance the

computation throughput of multi-precision computations. (Section 5.1.2). Finally, to

efficiently compute over the detected attention graph, we should tackle the workload

imbalance and irregular memory access caused by attention sparsity (Section 5.1.3).

5.1.1 Overall System Architecture

We use Figure 7.10 to illustrate the overall system architecture of DOTA, and explain

how it execute a single encoder block. Running decoders can be considered as a special
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case of encoder with strict token dependency. As depicted by the figure, DOTA processes

one input sequence at a time. Different input sequences share the same weights while

requiring duplicated hardware resources to be processed in parallel. Therefore, we can

scale-out multiple DOTA accelerators to improve sequence-level parallelism.

For each encoder, we split it into three GEMM stages namely Linear Transformation,

Multi-Head attention, and FFN. The GEMM operations in different stages need to be

computed sequentially due to data dependency, while each GEMM can be cut into mul-

tiple chunks and processed in parallel. Therefore, as shown by Figure 7.10, we locate 4

compute Lanes in the DOTA accelerator and dedicate each Lane to the computation of

one chunk. For example, during Transformation stage, each Lane contains a fraction of

weight WQ,WK ,WV and generates a chunk of QKV. We make the chunk’s size equal to

the attention head size hd. Thus, for Multi-Head Attention, each Lane can directly use

the chunks previously generated by itself to compute for self-attention, keeping the data

local during execution. Finally, the FC layers in the FFN stage can be orchestrated in a

similar way.

As we can see, different compute Lanes share the same input at the beginning of a

encoder, whereas the weights and intermediate results are unique to each Lane. Therefore,

we avoid data exchanging as well as intermediate matrix split and concatenation among

the Lanes. An exception of the above discussion is that, at the end of Multi-Head

attention and each FC layers in FFN, we need to accumulate the results generated by

each Lane. In DOTA, this is handled by a standalone Accumulator. We locate four

Lanes in one DOTA accelerator because 4 is the least common multiple of the attention

head numbers across all the benchmarks we evaluated. More Lanes can be implemented

for higher chunk-level parallelism.

Inside each Lane, as shown in Figure 5.2, there is an SRAM buffer, a Reconfigurable

Matrix Multiplication Unit (RMMU), a Detector for attention selection, and a Multi-
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Figure 5.2: Architecture of each compute Lane.

Function Unit for special operations such as Softmax and (De)Quantization. As discussed

above, one large RMMU is utilized to execute all different-precision GEMM operations in

each stage. Specifically, RMMU first computes low-precision (IN2/4) estimated attention

score. The low-precision results are sent to the Detector to be compared with preset

threshold values for attention selection. Besides selecting important attentions to be

calculated later, the Detector also contains a Scheduler to rearrange the computation

order of these important attention values. We incorporate this reordering scheme to

achieve balanced computation and efficient memory access (Section 5.1.3).

After obtaining the reordered attention selection results, RMMU starts to compute

the attention output under FX16 precision (equation 2.2, 2.3). In order to avoid overflow

during the computation, we need to dequantize the FX16 computation results of Q ∗K

into floating-point numbers before applying the softmax function. This is done in the

Multi-Function Unit, and scaling factors are stored in the global SRAM buffer, which

is accessible to the MFU. Thus, the exponent and division are done using floating-point

arithmetic. The softmax results are quantized again to keep the consecutive computation

(A ∗ V ) still in fixed-point format.
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5.1.2 Reconfigurable Matrix Multiplication Unit

As presented in Figure 5.2, each compute Lane contains a Reconfigurable Matrix

Multiplication Unit (RMMU) which supports MAC operation in different precision. Low-

precision computation occurs during the attention detection. Naively, we can support

this feature with separate low-precision arithmetic units, but with the cost of extra

resources to implement all supported precision levels. Besides, the decoupled design

can only provide constant computation throughput for each precision, but the ratio of

attention detection with respect to the other parts of the model varies from benchmark

to benchmark. Thus, we need to dynamically control the computation throughput of

attention detection and computation to achieve better resource utilization and energy-

efficiency.

To tackle this problem, we present RMMU as shown in Figure 5.3. The key idea is to

design computation engine with configurable precision. As we can see from Figure 5.3,
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RMMU is composed of a 32 × 16 2-D PE array, where each PE is a fixed-point (FX)

MAC unit. The PE supports FX16, INT8, INT4, and INT2 computations. FX16 is

used for important attention computation and the rest are for attention detection. The

RMMU can be configured to different precision at a row-wise granularity. Therefore, we

can flexibly control how many rows of PE use FX16 for computation and how many rows

adopt low precision to balance the computation throughput.

We design the multi-precision multiplier based on two common knowledge of com-

puting arithmetic. Firstly, a fixed-point multiplier is essentially an integer multiplier,

only with a different logical explanation of the data. Secondly, we can use low-precision

multipliers as building blocks to construct high-precision multipliers [83]. Without loss of

generality, we present the implementation of an FX4/INT2 multiplier in Figure 5.3 (c).

As we can see, each operand is divided into MSBs and LSBs and then sent to an INT2

multiplier. A INT2 multiplier takes one fraction from each operands and generates a 4-bit

partial sum. Therefore, we need four INT2 multipliers to generate all the required partial

sums. The four partial sums are shifted and accumulated to give the final 8-bit result. On

the other hand, if the multiplier is in INT2 computation mode, the four INT2 multipliers

is able to provide four times higher computation throughput. Note that, we need 16-bit

input and 16-bit output each cycle to facilitate all the INT2 multipliers. However, an

FX4 multiplication only requires half the bit-width (8-bit for input/output). We address

this problem by keeping half the input stationary in the multiplier, and accumulate the

INT2 multiplication results before sending them out. Therefore, the input bit-width is

the same as FX4 computation while the output consumes 6-bit instead of 16-bit. In other

words, when working on INT2 data, we utilize the multiplier as a tiny input-stationary

MAC unit which can perform 4 INT2 multiplications and accumulations each cycle.

To summarize, we implement multi-precision PEs in the RMMU and ensure a scalable

computation throughput when using the low-precision data. Our final design implements
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FX-16 multiplier built up from low-precision INT multipliers as discussed above.

5.1.3 Token-Parallel Dataflow for Sparse Attention Computa-

tion

After RMMU generates estimated attention scores, we use the Detector unit to select

important attention connections. Specifically, as depicted in Figure 5.2, the Detector

loads estimated attention scores from SRAM and compare them with preset thresholds.

A binary mask is generated after the comparison, with 1s representing the selected con-

nections. The Scheduler further processes the binary mask to rearrange the computation

order for each token, and stores the reordered connection IDs in the Queue. Later, RMMU

will load Key and Value vectors according to these IDs to compute the attention output.

Multiple tokens are processed in parallel, each corresponding to one row of the attention

matrix. We name this Token-parallel dataflow, which can improve Key/Value data reuse

and reduce total memory access. In this subsection, we use three different examples to

demonstrate the benefits, challenges, and our solutions to compute the attention output

with the detected attention graph and Token parallelism.

Token-Parallel Dataflow. As shown by the example in Figure 5.4, the 4 × 5 matrix

is the sparse attention graph with important connections marked with crosses. Prior

work process each Query (Token) one by one, meaning that the attention weights and

output are computed row by row. As a result, we need to load ten keys from the

memory, even though only four different keys are required. On the contrary, processing

all four queries in parallel, as shown in Figure 5.4, significantly reduces the total memory

accesses because some key vectors can be loaded once and shared by multiple rows. This

example shows that exploring token-level parallelism benefits memory accessing when

attention weight matrix has such row-wise localities. We observe similar locality in real

51



DOTA: Detect and Omit Weak Attentions for Scalable Transformer Acceleration Chapter 5

k1 k2 k3 k4 k5

q1

q2

q3

q4

Dataflow Procedure
Total 
Mem 

Access

Row-by-Row
Load k2, k3, k1, k2, k5, 

k2, k3, k1, k3, k5
10 Key 
Vectors

Token-Parallel
(w/o reorder)

Load (k1, k2), 
Load(k2, k3), Load(k5)

5 Key 
Vectors

× ×
× × ×

× ×
× × ×

× ×
× × ×

× ×
× × ×

Figure 5.4: Token-level parallelism reduces key/value vector memory access.

attention graphs. On one hand, there are usually some important tokens in one sentence

that attend to multiple tokens. On the other hand, a token is likely to attend to its

neighbor tokens within a certain window size. We perform design space exploration (see

Section 5.2.5) and find that processing four queries in parallel is a good trade-off point

for hardware resources consumption and memory access savings. Thus, in DOTA, each

Header processes four query vectors in parallel.

Workload Balancing. One challenge of parallel token processing is the workload im-

balance issue among different rows. Figure 5.4 shows that different queries may have

various numbers of important key vector pairs, which may further cause resource under-

utilization and performance degradation. One solution is to let early-finished PEs switch

to the processing of other queries. However, this will generate extra inter-PE commu-

nications as well as query reloading. Therefore, we tackle this problem directly from

algorithm perspective without affecting the underlying hardware. Specifically, we add

a constraint to force all the rows in the attention matrix to have the same number of

selected attention connections. This constraint ensures that each vertex in the selected

sparse attention graph have same number of incoming edges. We will further prove in

Section 5.2.2 that the added constraint has negligible influence on model accuracy.
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Out-of-Order Execution. Finally, we propose hardware-enabled out-of-order execu-

tion to further improve key/value reuse and reduce total memory access. As shown in

Figure 5.5, suppose all four queries have balanced workload and are processed in parallel.

With left-to-right computation order, we first compute (q1, k1), (q2, k2), (q3, k3), (q4, k3),

and then (q1, k2), (q2, k3), (q3, k5), (q4, k4), and finally (q1, k3), (q2, k4), (q3, k6), (q4, k5).

Consequently, some originally shared keys will have to be reloaded and the locality is

broken. In this example, the required total memory access is 11 vectors, which is only

one vector less compared with no parallelism.

To address this problem, we design a locality-aware scheduling algorithm to reorder

the computation of each query. As shown in Figure 5.5 and 5.6, we start with issuing

the keys that are shared by most queries. When scheduling partially shared keys like

k2, we also need to schedule computations for the unassigned query, which is q4. To

do so, we first look for keys that belong to q4 alone. If not found, we move on to

keys shared by q4 and another query, and so on. In this example, there are no key

vectors that are owned by q4. Therefore, we go to the second best choice, which is k5.

Thus, in the first round, we schedule k2 for q1,2,3 and k5 for q4. Although this breaks

the locality of q5, the greedy search ensures overall minimal memory access. Besides,

since each query is scheduled for exactly one connection at each round, and they have

same total connections, this ensures the synchronization of each rows and maximizes

resource utilization and performance. The complete scheduling algorithm is presented

in Algorithm 2. Note that, the scheduling only needs to be performed once, and the

generated computation order is reused for computing attention output using attention

weights A and Value matrix V .

We design a Scheduler to implement the scheduling algorithm. As shown in Figure 5.6,

the Scheduler first stores each connection ID in the corresponding buffer according to the

4-bit binary mask generated after threshold comparison. For example, according to
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Figure 5.5: Even with token parallelism, the computation order of each row still
matters and affects total memory access.

Algorithm 2 Locality-Aware Scheduling Algorithm.

Require: A set of buffers B that store the selected connection IDs for query q1, q2, q3, q4.
e.g., B0110 stores IDs that are required by q2 and q3.

Ensure: A computation order that achieves optimal Key and Value data reuse.
1: Issue all the IDs in B1111 (required by all 4 queries)
2: while B1110 is not empty do
3: Issue an ID in B1110

4: if B0001 is not empty then
5: Issue an ID in B0001

6: else
7: Search and Issue an ID in Bxxx1

8: Move the issued ID from Bxxx1 to Bxxx0

9: end if
10: end while
11: Repeat 2-10 for all the other buffers.

Figure 5.5, ’1’ is stored in buff-1000, ’2’ is stored in buff-1110. Then, the Scheduler starts

issuing computations from buff-1111. Besides, when k5 is scheduled for q4 during the

step-1, ’5’ will be moved to buff-0010, meaning that now it only belongs to q3. We use a

Finite-State Machine to implement the condition statements and control logic.
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In summary, we explore token-level parallelism with software-enabled workload-balancing

and hardware-enabled out-of-order execution to efficiently compute the attention output.

The proposed strategy can be generalized and used in other applications with the same

two-step matrix multiplication chain as shown in equation 5.1. (SoftMax is optional.)

O = (Q ∗K) ∗ V = A ∗ V (5.1)

More importantly, even with out-of-order execution, the final result is automatically gen-

erated in a regular order. Because the irregular computation only affects the intermediate

matrix A, which is completely consumed during the computation. In contrast, exploring

same reordering in CNN would require a crossbar-like design to correctly store the output

result [84].

5.1.4 System Design Completeness

Decoder Processing For decoders, since the input tokens have to be processed sequen-

tially, the core operation would be GEMV and the performance is memory-bounded.

DOTA reduces total memory access by efficiently filtering out majority of the attention

connections.

Memory Modules The on-chip memory is implemented as banked SRAM module that

can be configured to store different types of data. We implement a custom simulator

to obtain the capacity and bandwidth requirement of the SRAM module. We facilitate

each Lane with a 640KB SRAM (10 64KB banks). Therefore, DOTA has a total on-chip

SRAM capacity of 2.5MB. The bandwidth requirements of embedding layer and decoders

are significantly higher than other layers. Therefore, we make sure the SRAM bandwidth

meets the need of the computation-bounded layers, while leaving embedding and decoder

to be memory-bounded.
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Figure 5.6: Design of the Scheduler and the scheduling process of Figure 5.5.

5.2 Evaluation

In this section we present the evaluation results of DOTA.
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5.2.1 Evaluation Methodology

Benchmarks. Our experiments include series of representative Transformer bench-

marks with challenging long-sequence tasks. We first run BERT (large) [2] on question

answering task (QA) using the Stanford Question Answering Dataset (SQuAD) [85] v1.1

with a sequence length of 384. To scale our evaluation to longer sequences, we further se-

lect three tasks from Long-Range-Arena [86] (LRA), which is a benchmark suite tailored

for long-sequence modeling workloads using Transformer-based models. Specifically, the

first benchmark performs image classification on CIFAR10 [87], where each image is pro-

cessed as a sequence length of 1K. The second task is a text classification problem built

on the IMDb reviews dataset [88] with a sequence length of 2k. The third task aims

to identify if two papers in the ACL Anthology Network [89] contain a citation link.

The papers are modeled as 4k input sequences to the Transformer model. Finally, we

use GPT-2 [26] to evaluate causal language modeling (LM) on Wikitext-103 [90] using

sequences of 4K length.

Software Experiment Methodology. We implement our attention detection mecha-

nism on top of each baseline Transformer, and jointly optimize the model with attention

selection enabled. We study the effectiveness of our method by evaluating the model

performance in terms of accuracy or perplexity with respect to the retention ratio of

the sparse attention graph. Besides, we further compare DOTA’s accuracy with state-of-

the-art algorithm-hardware co-design (ELSA [61]) and pure software Transformer models

presented in LRA [86].

Hardware Experiment Methodology. The system configuration and consumption

of DOTA is shown in Table 5.1. We implement DOTA in RTL, and synthesize it with

Synopsys Design Compiler using TSMC 22nm standard cell library to obtain power and

area statistics. The power and area of SRAM module are simulated by CACTI [91]. We
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Table 5.1: Configurations, Power, and Area of DOTA under 22nm Technology and
1GHz Frequency.

Hardware
Module

Configuration Power(mW )Area(mm2)

Lane
4 Lanes

per accelerator
2878.33 2.701

Lane

RMMU 32*16 FX-16 645.98 0.609
Filter Token Paral. = 4 9.13 0.003

MFU
16 Exp, 16 Div

16*16 Adder Tree
60.73 0.060

Accumulator 512 accu/cycle 139.21 0.045
DOTA

(w/o SRAM)
2TOPS 3017.54 2.746

SRAM 2.5MB 0.51(Leakage) 1.690

implement a custom simulator for performance and energy-efficiency evaluation. The

simulator is integrated with the software implementations of the Transformer models.

We further conduct design space exploration to search for optimal system design choices.

Hardware Baselines We quantitatively compare DOTA with NVIDIA V100 GPU and

ELSA [61], while qualitatively discuss the difference between DOTA and other customized

hardware (See Section 5.3). When comparing with GPU, we scale up DOTA’s hard-

ware resource to have a comparable peak throughput (12 TOPS) as V100 GPU (14

TFLOPS). The energy consumption of DOTA is also re-simulated for fair comparison.

When comparing with ELSA’s performance, we extend and validate our simulator to sup-

port ELSA’s dataflow. Then, we re-synthesize DOTA with the same data representation,

computation resources and technology node as ELSA to compare the energy-efficiency.
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Figure 5.8: (a) Speedup of DOTA over GPU and ELSA on attention block. (b)
End-to-end speedup over GPU. Red dots indicate the theoretical performance up-
per-bound of an accelerator. (c) Normalized latency breakdown of DOTA. DOTA-F
means to compute the Full attention graph with DOTA without detection and omis-
sion. DOTA-C (Conservative) and DOTA-A (Aggressive) both adopt attention detec-
tion, while DOTA-C allows for an accuracy degradation less than 0.5% and DOTA-A
allows for 1.5%.

5.2.2 Algorithm Performance

We present the model accuracy of DOTA in Figure 5.7, and compare it with dense

Transformer model as well as other software baselines. For DOTA, we first add the row-

wise attention connection constraint and then select optimal quantization precision and

dimension reduction factor (σ) based on design space exploration (Section 5.2.5). For

ELSA, our implementation delivers aligned results on QA compared with the original

paper, and we extend it to other datasets.

As we can see, across all the tested benchmarks, DOTA is able to achieve comparable

or slightly higher model accuracy compared with the dense baseline, while selecting only

3 ∼ 10% of the attention connections. Furthermore, DOTA significantly outperforms

ELSA in accuracy-retention trade-offs. For example, on QA task with 1.5% of accuracy

degradation interval, DOTA delivers 3.3× higher reduction ratio by keeping 6% of the

connections, while ELSA needs to keep 20%. The gap becomes even larger on long-

sequence benchmarks, which indicates that our detection method is more scalable with

long sequence. Furthermore, we also provide leading results given by the LRA [86]
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benchmarks on image classification, text classification, and document retrieval tasks. As

shown in the figure, DOTA achieves on-par or better accuracy than LRA’s leading results

with 5% to 10% of retention ratio.

5.2.3 Speedup

Figure 5.8 presents the speedup of DOTA over the baselines. We evaluate both stand

along attention block as well as the end-to-end performance improvements. We provide

two versions of DOTA by setting the accuracy degradation of DOTA-C (Conservative)

to be less than 0.5%, and limiting the degradation of DOTA-A (Aggressive) within 1.5%.

As for ELSA, although it fails to reach the above accuracy requirement, we follow the

original setting [61] and set the retention ratio to be 20% for performance evaluation.

As we can see, comparing with GPU, DOTA-C achieves 152.6× and 9.2× average

speedup on attention computation and Transformer inference, respectively. On the other

hand, DOTA-A achieves on average 341.8× and 9.5× speedups at the cost of a slightly

higher accuracy degradation. The speedup mainly comes from three aspects. Firstly,

DOTA benefits from highly specialized and pipelined datapath. Secondly, the attention

detection mechanism significantly reduces the total computations. Finally, the Token-

parallel dataflow with workload balancing and out-of-order execution further improves

resource utilization.

The end-to-end speedup is lower than that of attention computation, since the pro-

posed detection method is tailored to the cost reduction of self-attention blocks. We

add another baseline by assuming the accelerator always works at its peak throughput,

and the attention computation has a ignorable cost. Combining this peak throughput

assumption and Amdahl’s law [92], we can derive the theoretical speedup upper bound

for DOTA. As we can see, the real performance of DOTA is relatively close to the upper
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bound by virtue of the extremely small retention ratio and hardware specialization. We

only compare DOTA and ELSA on attention computation performance, because ELSA

does not support end-to-end Transformer execution. As we can see from Figure 5.8 (b),

on average, DOTA-C is 4.5× faster than ELSA and DOTA-A is 10.6× faster. This

improvements mainly come from lower retention ratio and Token-parallel dataflow.

The latency breakdown in Figure 5.8 (c) delivers two key messages. Firstly, the la-

tency of attention estimation is negligible compared with the overall consumption. There-

fore, the Detector is both accurate and hardware efficient as we expected. Secondly, with

the proposed detection method and system architecture, the cost of attention has been

significantly reduced. The new performance bottleneck is Linear computation, which

can be optimized with weight pruning and quantization. These classic NN optimization

techniques can be fluently transplanted on DOTA, because our system is designed on top

a GEMM accelerator with multi-precision arithmetic support and sparse computation

dataflow. Overall, DOTA delivers scalable Transformer inference acceleration.

5.2.4 Energy-Efficiency

As shown in Table 5.1, each DOTA accelerator consumes a total power of 3.02W.

RMMU and Accumulator are the two major contributing factors to the dynamic power

consumption, whereas SRAM and RMMU together occupies the most chip area. We com-

pare DOTA’s energy-efficiency with GPU and ELSA. The results are shown in Figure 5.9.

As we can see, DOTA-C achieves 618∼5185× and 1.97∼5.14×energy-efficiency improve-

ments over GPU and ELSA, while DOTA-A achieves 1236∼8642× and 3.29∼12.20×

improvements over these two baselines. The energy saving mainly comes from two

parts. Firstly, despite the attention estimation overhead, the proposed attention detec-

tion largely reduces overall cost of attention computation and memory access. Secondly,
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Figure 5.9: Energy-efficiency comparisons.

both external memory access and on-chip SRAM access are saved to a large extent. On

one hand, the hardware specialization helps improve intermediate data reuse between

the pipeline stages. On the other hand, Token-parallel dataflow effectively utilizes at-

tention connection locality to improve Key/Value data reuse. The energy breakdown of

DOTA exhibits similar pattern as the latency breakdown. That is, with effective atten-

tion reduction, FC-layer consumes around 84.9∼99.3% of the total energy cost, while

attention detection only consumes 0.11∼0.34%. This further illustrates the efficiency of

the proposed algorithm-hardware co-design.

5.2.5 Design Space Exploration

We search and select optimal architectural settings for DOTA through design space

exploration.

Dimension Reduction Scale As discussed above, the dimension reduction scale σ

directly affects the size of the input and weight matrices involved in attention detection.

Therefore, a small σ can effectively control the overhead of attention estimation, but the

Detector’s performance will also be limited. We experiment on the Text classification

benchmark, fixing the retention ratio and quantization precision while only adjusting the

scale values. The results are shown in Figure 5.10 (a).
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As we can see, for Text classification, the scale factor can be as small as 0.2 without

affecting the overall model accuracy. Therefore, the hidden dimension in approximation

is floor(64*0.2)=12, compared with the original dimension 64. Besides, σ is a hyper-

parameter which does not influence the underlying hardware. Therefore, each benchmark

can use its own optimal σ value.
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Figure 5.10: Influence of (a) dimension reduction factor σ and (b) quantization preci-
sion on overall model accuracy using Text classification benchmark. Retention ratio
= 10%.

Precision of Attention Detection Another factor that affects the attention detection

cost is the choice of quantization precision. Furthermore, the precision also influences the

design complexity of RMMU. For each benchmark, we fix σ and retention ratio and sweep

over different quantization precision. Figure 5.10 (b) presents the experiment results on

Text classification benchmark. As we can see, the quantization precision could be as low

as 2-bit with negligible accuracy degradation. After our experiments, we found that INT4

is a safe precision for all the benchmarks, while some can tolerate INT2 computations.

Therefore, our final RMMU design supports INT2, INT4, and INT8 apart from FX16.

INT8 computation is required when X, W̃Q, and W̃K are INT4 data. As the estimated

Q̃ and K̃ will be in INT8 precision.

Token Parallelism Our token-parallel dataflow leverages locality among important at-

tention distribution to improve memory access. Higher parallelism increases data reuse

and reduces total memory access, but also results in growing size of the Scheduler unit.

Therefore, we aim to find an optimal trade-off point that achieves lowest overall energy
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consumption. Figure 5.11 shows the case on Text classification benchmark with Reten-

tion ratio to be 10%. The left axis indicates the normalized memory access cost of Key

and Value, while the right axis is the required number of buffers in the Scheduler. Figure

5.11 mainly delivers two key messages. Firstly, as shown by the solid blue bar, leveraging

row-parallelism does help reduce memory accesses, but increasing the parallelism has

diminishing returns. This is because attention distribution exhibits certain but only a

limited degree of locality. Secondly, increasing row-parallelism causes exponential growth

in scheduling overhead. In Figure 5.11, this is shown by the red line (buffer requirement)

and the dotted blue bar (scheduling energy consumption). After summing up the mem-

ory cost (solid blue bar) and scheduling cost (dotted blue bar) together, we choose the

shortest one because it represents the sweetest spot with the lowest total energy con-

sumption. As we can see, parallelism 4 has the lowest total height, which means 4 is

the best setting for Text classification. We also evaluate on other benchmarks and most

benchmarks have an optimal parallelism to be or around 4. Therefore, we choose 4 as

the final setting in DOTA.
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Figure 5.11: Key/Value memory access (left axis) and Scheduler buffer requirement
(right axis) with different Token parallelism. The hatched area is the projected cost
of Scheduler.
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5.3 Related Work

In this Section, we mainly discuss related work on efficient Transformer models

from the algorithm perspective and hardware accelerators for Transformers and Self-

Attention. For general DNNs, quantization and low-precision support have been pro-

posed [93, 94, 95, 96, 97]. While sharing the high-level similarity, our method focuses on

attention operations that are not parameterized. Hence, those methods applied on model

parameters are not applicable to our scenario. Our work is in the scope of dynamic prun-

ing on attentions as we discussed and compared with other related work. Approximation

for DNNs is also a line of related work [98, 99, 100, 101]. Finally, hardware accelera-

tors for DNNs are related to executing the non-attention components of Transformers

[102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114].

5.3.1 Efficient Transformer Models

Recent studies propose efficient variants of Transformer models to mitigate the quadratic

memory complexity of long sequence modeling [81, 115, 116]. However, these methods are

impractical for efficient inference as they focus on training memory footprint reduction

while trading off more computations for clustering or grouping.

Another line of work exploit static or fixed sparse patterns in attention, such as local

windows, block-wise, dilated, or a combination of static patterns [69, 25, 117]. However,

as discussed in Section ??, the sparse attention graphs are inherently dynamic depending

on input sequences. Hence, these approaches lack the capability of capturing dynamic

sparse attentions.
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5.3.2 Attention and Transformer Accelerators

There have been a few recently proposed work targeting the acceleration of attention

and Transformer. MnnFast [59] skips the computation of specific value vectors if its at-

tention weights is lower than the threshold. This method can only benefit the attention

output computation rather than attention weights computation. A3 [60] is the first work

to apply approximation to the attention weights for computation reduction. However,

A3 involves a sorting-based preprocessing phase that needs to be done outside the ac-

celerator, causing inevitable performance and energy overhead. ELSA [61] improves the

approximation method by directly using sign random projection to estimate the angle

between query and key vectors. Although the approximation becomes much more hard-

ware friendly, the detection accuracy and model quality is hurt. DOTA addresses all

of the above limitations by simultaneously concerning detection accuracy and efficiency.

In terms of hardware design, prior work only implements attention block with no token

parallelism, while DOTA supports end-to-end inference acceleration with Token-parallel

dataflow to improve system performance.

SpAtten [62] proposes cascade token pruning and head pruning to reduce the cost of

both self-attention block and subsequent layers in the Transformer model. The proposed

method can be regarded as adding structured sparsity constraints to the attention ma-

trix, as it directly removes several rows and columns. Based on our visualization and

experiments, we believe that despite a certain degree of locality, such constraint is not

flexible enough to capture the irregularly distributed attention connections. As for hard-

ware design, SpAtten supports both decoder and encoder processing, but it is also mostly

tailored to attention acceleration with very few discussions on end-to-end execution.

Finally, OPTIMUS [63] proposes a GEMM architecture to accelerate Transformer

inference. It focuses on accelerating sequential decoding process and proposes technique
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to maintain resource utilization. Although OPTIMUS avoids computing redundant at-

tention weights, such redundancy is due to naturally existed token dependency, rather

than the weak connections we discussed in this work. Thus, the self-attention still has

quadratic cost and OPTIMUS does not scale on longer sequences.

5.4 Conclusion

In this work, we address the challenge of scalable Transformer inference. Specifically,

we first propose algorithm optimization to reduce the quadratic cost of self-attention

mechanism. Our method efficiently detects and omits weak connections in attention

graphs to skip the corresponding computations and memory accesses. Furthermore, we

provide system-level support for end-to-end large Transformer model inference. We first

effectively abstract the Transformer model to design a scalable and unified architecture.

Then, we implement the proposed attention detection method with efficient hardware

specialization techniques. Our final evaluation results sufficiently demonstrate the effec-

tiveness of the proposed algorithm and system design.

67



Chapter 6

Efficient Runtime Data Compression

with Tensor-train Decomposition

In the previous three chapters, we introduce a complete top-down design flow to explore

dynamic computational redundancy in the acceleration of Transformer models. In the

following two chapters, we discuss the opportunities on the data structure side. Specifi-

cally, we apply tensor-train decompositions to the representation of the data to achieve

efficient compression. Using tensor-train significantly changes the memory consumption

of the model, while also imposing multiple new hardware challenges, as we will further

discuss in the below content.

6.1 Introduction

Tensor is a high-dimensional generalization of vector and matrix, and is a natural

choice for efficiently solving high-dimensional big data analysis problems. Compared

with matrix analysis, multiway data processing is more versatile and has the potential to

capture multiple interactions and couplings [118]. Previous studies have demonstrated
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its use in diverse branches of data analysis, such as EDA, signal and image processing,

biometrics, quantum computing, and so forth [119, 120, 121, 118, 122, 123]. Neverthe-

less, processing big data with tensor-based approaches is challenging due to the high

dimensionality and large data size. Therefore, more and more attentions are drawn to

tensor decomposition to compress tensors in terms of both dimension and size, which has

been playing an important role in data mining, pattern recognition, object detection and

classification [124, 125, 126, 127, 128, 129, 130].

Tensor-train decomposition (TTD)[40] is one of the most popular tensor decompo-

sition methods because of its ability in providing highly compressed tensor data while

keeping significant computation accuracy with customizable constraints. More impor-

tantly, it also enables efficient data processing on the base of TT-format data. However,

there are still challenges existed in TT-format data processing. The reasons are of two

folds. First, obtaining the TT representation, the initial step for TT-based data process-

ing, is time consuming because of the iterative decomposition procedure over large-scale

tensor data. In each of the TTD iteration, a truncated singular value decomposition

(SVD) is used to decompose a large intermediate matrix, which is both memory- and

compute-intensive. Second, there is a big gap to adapt a typical algorithm to the TT-

based method. On one hand, normal operations like addition and multiplication cause

the TT-rank to grow significantly [40], which require us to approximate the TT result

afterwards. On the other hand, some simple element-wise operations like ReLU in neu-

ral networks, can be very complicated for TT-format data, because each of the original

element is now represented as a sequence of matrix multiplication. Therefore, additional

efforts are needed if we want to effectively take advantage of the TT-format data analysis.

Previous work have mainly focused on directly using TT-format data to perform simple

computations like matrix multiplications [120, 130]. However, efficient execution of TTD

itself and implementing more complicated operations in TT format are rarely touched.
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In this work, we aim at addressing the mentioned problems with the following ap-

proaches. (1) To reduce the TTD overhead, we propose TTD Engine, the first customized

architecture for efficient execution of the TTD algorithm. Instead of naively implement-

ing the original TTD algorithm, we adapt it by virtue of the special high-order tensor

data structure as well as data sparsity and symmetricity. (2) To bridge the gap between

TT-format data and application algorithms, we move forward by proposing a decom-

posed computation pattern for element-wise operations and resolving the rank-growth

issue with the help of TTD Engine. We conduct a case study on the base of TTD En-

gine to implement convolutional operations over TT-format data, which are considered

to be difficult and inefficient for TT-based data processing. We show that with special-

ized hardware support and algorithm design, it is possible and beneficial to reformulate

the existing operations in various applications using the TT format to achieve better

efficiency.

Our contributions in this work are summarized as follows:

• We develop a hardware friendly computing scheme for TTD by adjusting the com-

putation pattern of SVD within each TTD iteration. The modified SVD explores

data sparsity and symmetricity during the computation process to reduce the over-

all compute cost.

• Based on the proposed scheme, we present the first TTD accelerator with decoupled

PE array design and optimized dataflow. Experimental results show that TTD

Engine achieves up to 36.9× and 9.9× speedup over state-of-the-art CPU and

GPU implementations respectively, while providing significant improvements on

energy efficiency. We further use a real-world MRI image dataset to perform image

compression as a demo application on the proposed TTD accelerator.

• We demonstrate the benefit of hardware-enabled TT-format data analysis by ad-
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dressing the rank-growth issue with TTD Engine and proposing a decomposed

computation pattern for element-wise operations. A case study is presented to use

TTD Engine to accelerate data convolution which shows considerable speedup over

CPU when dealing with large-scale vectors.

6.2 Background

6.2.1 Tensor Knowledge and Notations

Tensors are multidimensional data arrays, which can be viewed as natural generaliza-

tions of vectors and matrices. Each dimension has its own coordinates and length. An

N -way tensor, also called an Nth-order tensor, is a tensor with N dimensions or modes.

For example, a third-order tensor has three indices, and can be visually described by Fig-

ure 6.1. Under this setting, vectors can be viewed as first-order tensors and denoted as a,

while matrices are second-order tensors that we denote as A. Finally, high-dimensional

tensors are represented with A in the further content. A real-valued tensor of order N

can be denoted as A ∈ RI1×I2×···×IN and its entry is ai1,i2,...,iN .

By using only a subset of the indices in the original tensor and fixing the rest, we

can get a subtensor. Particularly, a vector-valued subtensor, also termed as a fiber, is

generated by using only one index from the original tensor. A matrix-valued subtensor

uses two indices, and is therefore called a slice as shown in Figure 6.2.

The unfolding matrix of a tensor is generated by reordering the elements of the

original N -way tensor into a matrix. In our paper, we focus on the special case of the

unfolding matrix, which is called the mode-n unfolding matrix. Its definition is concise.

Specifically, for a tensor A ∈ RI1×I2×···×IN , its mode-n unfolding matrix is generated by

arranging the mode-n fibers to be the column of the target matrix, and is denoted as
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Figure 6.1: A 3rd-order tensor.

A(n). The notation of the unfolding matrix will be further used when we describe the

TTD algorithm.

Generalized from matrix multiplication, two tensors can also be multiplied together

to form up a new tensor, such process is called tensor contraction. The full defini-

tion and procedure of tensor multiplication is much more complicated than those in

the matrix case, which are detailed for example in [131]. Here in this work, we only

consider the mode-n contraction, i.e., multiplying a tensor by a matrix (or vector).

Given tensor A ∈ RI1×I2×···×IN and matrix M ∈ RJ×In , then the mode-n product

A×n M ∈ RI1×···×In−1×J×In+1×···×IN is obtained by the contraction over the nth dimension,

i.e. each element of A×n M equals
∑In

in=1 xi1xi2 · · · iN ×mjin .

6.2.2 Tensor Train Decomposition (TTD)

TTD is originally proposed by Oseledets in [40]. The overall procedure of the naive

TTD algorithm is given in Alg. 3. In TTD, we try to approximately represent a given
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(a) Mode-1 Fibers: x:jk (b) Frontal Slices: x::k

Figure 6.2: Fibers and slices of a 3rd-order tensor.

tensor A with tensor B, which can be described as:

Bi1,i2··· ,id = G1(i1)G2(i2) · · ·Gd(id). (6.1)

Each Gk(ik) is an rk−1 × rk matrix, where rk is called the TT-rank that can be either

predefined before the decomposition or decided during runtime according to the required

decomposition accuracy. Gk is an rk−1 × Ik × rk tensor core extracted from the original

high-order tensor. In each TTD iteration, we need to perform Singular Value Decompo-

sition (SVD) of an auxiliary matrix to get a tensor core. Therefore, it takes d sequential

TTD iterations to finish the decomposition of a given tensor. Besides, at the beginning

of each iteration, we need to reshape the given matrix into the required size before we can

perform SVD. With the TT-format data, we can simply contracting these tensor cores

together to reconstruct the approximated tensor which is close to the original tensor A.

Notice that, the product of these parameter-dependent matrices in Equation (7.2) is

a matrix of size r0 × rd, this indicates the boundary condition of r0 = rd = 1. Moreover,
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Figure 6.3: A tensor-train network.

Algorithm 3 TT-SVD

Require: d-dimensional tensor A, approximation error ϵ.
Ensure: Tensor cores G1, ..., Gd of the TT-approximation B in the TT format with TT-

ranks rk equal to the δ-ranks of the unfoldings Ak of A. The approximation error
satisfies:

||A − B||F ≤ ϵ||A||F
1: {Initialization} Compute the truncation parameter:

δ = ϵ
√
d− 1||A||F

2: Temporary tensor: C = A, r0 = 1.
3: for k = 1 to d− 1 do
4: C =reshape(C, [rk−1Ik, numel(C)/(rk−1Ik)])
5: Compute δ-truncated SVD:

C = USV T + E, ||E||F ≤ δ, rk = rankδ(C)
6: New tensor core: Gk =reshape(U , [rk−1, Ik, rk])
7: C = SV T

8: end for
9: Gd = C
10: Return tensor B in the TT format represented by tensor cores G1, ..., Gd.

since r0 = rd = 1, TTD can also be visually represented by a graph called linear tensor

network, as shown in Figure 6.3. There are two different types of nodes in this graphical

representation. The rectangles are the tensor cores with the spatial indices (ik from the

original tensor) and auxiliary indices αk. The circles are indeed links to connect two

adjacent tensor cores with same auxiliary index αk. This means that these two tensor

cores are contracted together, and further being contracted with the following tensor

cores to form the final d-dimensional tensor.

The most important step of TTD is how to extract these tensor cores from the

original high order tensor. In this work, we focus on the classical TT-SVD approach,

which computes such TTD using d-sequential SVDs of auxiliary matrices.
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6.3 SVD Algorithm Adaptation

As introduced above, the computation of TTD is dominated by sequential SVD de-

compositions over the temporary auxiliary matrices. Therefore, reducing the SVD latency

is vital for accelerating TTD algorithm. In this section, we present our observations

of these auxiliary matrices that motivate us to design an adapted SVD decomposition

that directly reduces the overall latency from algorithmic level. The proposed SVD

also enables more efficient hardware implementation which will be demonstrated in Sec-

tion 6.4&6.5.

First, consider a given matrix A ∈ Rm×n, the singular value decomposition of A is

defined by:

A = USV T (6.2)

where U and V are orthogonal matrices of m × r and n × r, as UUT = Im, V V T = In

(Im is the identity matrix of size m × m, same for In). S is a diagonal matrix such

that S = diag(σ1, σ2, · · · , σr), σk are the singular values of A. Among the existing

numerical methods to compute SVD decomposition, one-sided Jacobi [132] is considered

to be the most hardware friendly because of its fast convergence rate and good algorithm

parallelism. The basic idea is to zero out off-diagonal elements using a series of orthogonal

transformations between each pair of the matrix columns, and repeat this procedure for

multiple iterations until convergence. Prior works[133, 134, 135] have proposed several

customized accelerators for SVD using Jacobi method.

However, directly using the Jacobi method for TT-SVD is inefficient. To be more

specific, in TTD, the auxiliary matrices to be decomposed are both large and unbalanced

(i.e., one dimension is significantly longer than the other). For example, the first matrix

to be decomposed is the first-mode unfolding matrix whose size is I1× I2I3 · · · IN . While
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Algorithm 4 Adapted SVD Algorithm

Require: 2-dimensional matrix Am×n where n ≫ m, total iteration number N .
Ensure: Approximate decomposition of A = U × SV T with an orthonormal matrix U

and orthgonal matrix SV T .
1: {Initialization} i = 0, B = AAT , B ∈ Rm×m, QH = In
2: Compute Arnoldi Iteration: QT

kHQk = B, where H is a symmetric and tridiagonal
matrix since B is symmetric.

3: while i ≤ N do
4: d = H[n− 1, n− 1]
5: H = H − dIn
6: QiRi = qr(H)
7: H = RiQi + dIn, H stays symmetric and tridiagonal.
8: QH = QHQi

9: end while
10: U = QkQH

11: SV T = UTA
12: Return U, SV T

Jacobi method requires multiple iterations to converge, within each iteration, we need to

load and update the whole matrix. For tensor data, the size of such matrix can easily

exceeds the capacity of caches (in CPU and GPU) and on-chip buffers (in customized

accelerators). As a consequence, significant latency and energy consumption will be

caused by excessive data access from the main memory module (e.g., DRAM). Moreover,

designing multiple levels of memory hierarchy is also ineffective since there are no data

reuse between different iterations of the Jacobi method.

Therefore, on the base of our observations and analysis, we propose an adapted SVD

algorithm targeted for the large-scale unbalanced matrix. As shown in Alg. 4, the mod-

ified approach can be divided into three phases. Given an auxiliary matrix A, we first

compute a matrix transpose multiplication B = A×AT . As a result, B is an m×m sym-

metric matrix whose size is much smaller compared with A. Then, to obtain A = USV T ,

we can instead compute the eigenvalue decomposition (EVD) of B. In our approach, we

use the Arnoldi method [136] followed by the shifted QR algorithm to compute the EVD
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result. Applying the Arnoldi method on matrix B gives us an orthonormal basis Qk of

B’s Krylov subspace, and a symmetric tridiagonal matrix H where H = QkBQT
k . We

then apply the shifted QR algorithm to obtain the eigenvectors of matrix H, which we

denote as QH . Note that, QH is called the Ritz vectors of B that can be used to compute

the eigenvectors of B. Finally, after we obtain the eigenvectors, which are indeed the left

singular vectors of matrix A, we can compute SV T with SV T = UTA.

Mathematically, the proposed SVD provides same results as typical Jacobi-based

SVD. However, when dealing with large unbalanced matrix, it has following advantages:

(1) We avoid constantly loading and updating (writing) matrix A. Such operations are

inefficient as matrix A is often stored in high-cost memory, e.g., off-chip DRAM. (2) Both

the Arnoldi method and the QR algorithm can be implemented based on modified Gram-

Schmidt orthogonalization (MGS), which can be efficiently mapped onto our proposed

architecture in Section IV. (3) The symmetric property of B greatly simplifies the process

of Arnoldi method and QR algorithm. For Arnoldi method, when the input matrix is

symmetric, the output matrix H will automatically become symmetric and tridiagonal.

Therefore, we can directly skip the computations regarding the zero elements in H (out-

put sparsity). For QR algorithm, since the input matrix H is symmetric and tridiagonal,

the complexity of each iteration is significantly reduced. More importantly, matrix H

will stay symmetric and tridiagonal after each iteration, which means such characteristic

will benefit every QR iteration through out the whole process.

6.3.1 SVD Algorithm Evaluation

Table 6.1: Computation complexity & external memory access

Method Computation Complexity Memory Access
Jacobi iter1 ×O(m2n) iter1 ×O(m2n)
Ours O(m2n) + iter2 ×O(m2) O(mn)
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Table I lists the algorithm complexity and memory consumption between the proposed

SVD and standard one-sided Jacobi SVD, where m,n are the matrix dimensions and

iter1, iter2 denote the number of iterations performed in each approach. As we can see

from Table I, our approach is more computational efficient when iter2 is comparable or

smaller than iter1. We will demonstrate in Section 6.3.B and Section 6.7 that, when we

seek for a low-rank output tensor-train(high compression ratio), which is normally the

case of using TTD, then we only need approximate SVD results. Therefore, iter2 would

be close to the number of iterations in Jacobi method, which makes the above analysis

reasonable.

Moreover, as for memory footprint, the Jacobi method updates the whole matrix(A)

within each iteration. Since A is of large-scale, it needs to be stored in DRAM rather

than on-chip SRAM. Thus, constant access to matrix A will suffer from lower off-chip

memory bandwidth and cost higher energy consumption. On the contrary, the proposed

approach mainly operates on matrix B, which is much smaller and can be stored on-

chip. Although the on-chip data movement will be more frequent, we prove in Section

6.6 with our experiments that this benefits the overall performance while lowering the

energy consumption.

The final advantage of using the adapted SVD algorithm is its impacts on the hard-

ware design. By enabling symmetricity and sparsity in matrix B, we open more hardware

possibilities to reduce the decomposition latency with a dedicated accelerator. These

properties are hard to be adopted by the conventional computing platforms like CPU

and GPU.
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6.3.2 Influence on TTD Accuracy

With the less computation complexity and memory footprints for processing the tar-

geted large-scale unbalanced matrix, we further demonstrate the decomposition accuracy

when applying the proposed SVD in TTD decomposition. To do so, we implement a cus-

tomized TTD based on our adapted SVD algorithm, and compare it with the standard

TTD function integrated in tntorch [137]. The accuracy of our proposed SVD algorithm

can be controlled by the iteration number N , which further reflects on the end to end

accuracy of the Tensor-Train decomposition. In our experiments, we set N to be 5, 10

and 15. In contrast, the Jacobi-based-SVD typically requires more rounds of iterations

(around 30 or even higher) with longer per iteration latency. We use randomly generated

tensor data as the input and decompose it using different TTD implementations. Then,

we contract the tensor cores together to reconstruct the tensor data. The error between

the reconstructed tensor and the original tensor is defined by the following equation,

where A′ is the reconstructed tensor, A is the original tensor and norm is the Euclidean

norm:

error =
norm(A′ −A)

norm(A)
. (6.3)

We compare the accuracy of the proposed TTD and the standard TTD by dividing

their error values. Therefore, the higher the number is, the larger error it has compared

with the standard TTD. We show the comparison in Figure 6.4, where y-axis is the

relative error and x-axis is the compression ratio. A higher compression ratio means

that the TT ranks are set to be lower to get smaller tensor cores. As we can see from

the results, the proposed approach can achieve comparable accuracy with the standard

TTD when the TT ranks are low (i.e., high compression ratio). When the compression

ratio is up to 42.6, we can achieve nearly the same accuracy compared with the standard
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Figure 6.4: Accuracy comparison between the proposed TTD and the standard TTD.

TTD under all the three settings of N . For N = 15, the relative error is even smaller

than 1, indicating that it even has less error than the standard TTD. As the compression

ratio decreases, the relative error will increase, which implies that the proposed TTD is

less accurate than the standard TTD when the TT ranks are high. Fortunately, such

case rarely happens in practice because TTD is designed to be used to compress high

order tensor with low TT ranks for good compression ratios. For example, when being

used to compress weight matrices in deep neural networks(DNNs), prior work [138, 139]

achieve acceptable accuracy loss with the compression ratio to be 82.87× for CNNs on

the CIFAR-10 [140] dataset.

6.3.3 Discussion

Numerical Stability

In order to increase the efficacy of computing the QR factorization, we use the Gram-

Schmidt orthogonalization. However, the classical GS method can be numerically un-

stable due to the rounding error when processing with finite precision. We solve this

problem by using the stabilized modified Gram-Schmidt method (MGS). Specifically,

traditional GS method computes a new vector by subtracting it with all of its projection
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vectors based on the existing unit vectors. In the modified GS method, for a new given

vector, we start with eliminating the projection vector of the first unit vector to get a

new candidate vector. The second projection vector to be eliminated is computed based

on the new candidate vector instead of directly using the original vector. It is proved

that this approach gives the same result as the original formula in exact arithmetic and

introduces significantly smaller errors in finite-precision arithmetic.

Novelty

The problem of numerically computing singular value decomposition (SVD) has al-

ready been well studied. However, in terms of implementing TTD, prior work have not

proposed the idea of transferring the large unbalanced SVD problem to a symmetric small

eigenvalue decomposition (EVD) problem. Moreover, using the Arnoldi method and the

shifted QR algorithm to approximate the EVD result is normally not suggested, as the

number of iterations grows rapidly when requiring a particularly high decomposition ac-

curacy. In our work, we take the advantage of the low-rank property of TTD to explore

more efficient implementations while maintaining overall decomposition accuracy. Such

low-rank property comes from our observations across different practical applications

where TTD is adopted, like CNN/RNN, image compression, and quantum analysis. In

these applications, TTD is used to achieve very high compression ratio without influ-

encing much on the overall application accuracy. Thus, this high-compression condition

ensures the low-rank settings for our previous analysis. Finally, as we mentioned above,

the objective of using our proposed SVD is to eventually benefit the hardware imple-

mentation and reduce the execution complexity, which will be further demonstrated in

Section 6.4-6.6.
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Based on the analysis above, we present the overview of our TTD Engine in this

section. We focus on addressing two key challenges during the hardware design. On one

hand, the hardware should efficiently implement the proposed TTD algorithm, providing

acceptable performance speedup and efficiency improvement. We call this, the Special-

ization of the hardware. On the other hand, it should also have the flexibility to support

general matrix/tensor and even tensor-train operations, so that it can be further adopted

to accelerate different applications using the tensor-train processing scheme. We call this,

the Generality of the hardware.

With these two design objectives, we show the top-level architecture of TTD Engine

in Figure 6.5. The off-chip DRAM stores the original tensor data that are unable to
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be fitted on-chip. Therefore, the accelerator communicates with the external DRAM

through a bidirectional data bus and stores intermediate data in the Global Buffer (GLB)

for on-chip data reuse. The computing resources are mainly organized into two modules,

the Tensor Multiplication Unit (TMU) and the SVD Core. Both of the two modules

adopt a spatial 2D processing element (PE) array architecture. TMU efficiently handles

regular matrix/tensor operations, including matrix-matrix, matrix-tensor multiplications

and so forth. TMU and SVD core can work together to execute the modified TTD

algorithm proposed in Section 6.3. The Permute Unit reshapes the auxiliary matrices to

be decomposed between each TTD iteration.

As illustrated in Figure 6.5, TTD Engine applies the Spatial Architecture (SA) de-

sign of domain specific accelerators (DSAs) [141]. The SA-style DSAs exploit high com-

pute parallelism by direct communication between the PE array. Besides, the hierar-

chical memory organization from GLB to the PE’s local memory further improves data

reuse, achieving higher bandwidth utilization and energy efficiency. Therefore, SAs are

widely used to accelerate deep learning algorithms like Convolutional Neural Networks

(CNNs)[142, 143], Recurrent Neural Networks (RNNs) [144, 145] and Personalized recom-

mendations [146]. In TTD Engine, while such generality is well preserved, we further add

specialized Permute Unit and SVD Core to achieve the efficient execution of Tensor-train

Decomposition.

In the rest of this section and Secion 6.5, we focus on illustrating the specialized

architecture and dataflow design of TTD Engine when processing Tensor-train Decom-

position algorithm. We will dive more into the generality with real world application

demos presented in Section 6.7.
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6.4.1 Overall Dataflow

We use Figure 6.6 to illustrate how we implement the proposed TTD algorithm. To

do so, we first provide an abstraction of the algorithm to extract the key operators as

shown in Figure 6.6(a). We also mark the special characteristics of these operators’

input/output data, which can further simplify the hardware design. Corresponding to

the key operators, Figure 6.6(b) demonstrates the data movement in TTD Engine.

In each decomposition iteration, we first compute Bi = A(i)A
T
(i), where 1A(i) is the

current auxiliary matrix. This step is essentially matrix-matrix multiplication, but the

input matrix has unbalanced size where its width n is much longer than its height m. To

execute this step on TTD Engine, we load A(i) patch by patch from off-chip memory to

GLB. Tensor Multiplication Unit (TMU) and SVD Core work together as a larger PE

array to compute matrix 2Bi.

During the EVD decomposition of matrix Bi, both the Arnoldi iteration and the

Shifted QR algorithm can be represented by a two-step process: column orthogonaliza-

tion & data update. While the former step is realized using modified Gram-Schmidt

(MGS), the latter step is nothing but matrix-vector/matrix-matrix multiplication. In

TTD Engine, we use SVD core to perform MGS, the resulting matrix will be generated

column by column, and will be sent to TMU immediately to perform data update. We

use such decoupled design of TMU and SVD core to pipeline the two-step EVD while

increasing local data reuse.

After we obtain the left singular matrix of Bi, which we denote as 3Ui, we can directly

permute and output Ui as the extracted tensor core. We then load matrix 4A(i) again to

compute 5SiV
T
i = UT

i A(i). The result will be reshaped by the permute unit and sent out

as the auxiliary matrix to be decomposed in the next TTD iteration.

As the iteration continues, the matrix to be decomposed would become smaller and
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more balanced. TTD Engine can also support these cases by storing the matrix com-

pletely in GLB and using the Jacobi method for SVD decomposition.

6.5 TTD Engine Architecture

In this section, we present the detailed architectures of different modules in TTD

Engine. We also discuss how we take advantages of the data’s special characteristics to

efficiently map the algorithm onto hardware.

6.5.1 Tensor Multiplication Unit (TMU)

Figure 6.7 presents the 2D PE architecture of TMU. Each PE could communicate

with its neighbors and also the GLB through an NoC. FIFOs are used at the I/O interface

of each PE to balance the data movement between the NoC and the computation. The

PE consists of a MAC unit for Multiply-and-Accumulate (MAC) operation, local buffers

for matrix and partial sum data, and the PE’s local control logic. For normal matrix

multiplication, TMU can work as a systolic array to provide high computation throughput

with simplified control flow. However, apart from the general matrix multiplication, we

still need to consider the following special cases during the computation of TTD.

Large-scale matrix × small-scale matrix

Each of the TTD iteration ends up with a matrix-matrix multiplication between the

current auxiliary matrix A(i) and the left singular matrix Ui. In most cases, A(i) is much

larger than Ui and is stored off-chip. Therefore, in order to reduce the high-cost memory

access, we keep a patch of A(i) stationary in TMU and load the corresponded blocks of

Ui from the GLB. After finishing all the computations associated with the current patch,

we load another patch of A(i) and repeat the process. In this way, although we need
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Figure 6.7: TMU architecture. The blue-colored logic only exists in PEs inside SVD Core.

to traverse matrix Ui several times in GLB, the large-scale matrix A(i) is loaded only

one time from the off-chip DRAM. Therefore, the high-cost off-chip memory access is

replaced with low-cost local memory access.

Large-scale matrix transpose multiplication

The first step of the proposed SVD algorithm is to perform a matrix transpose mul-

tiplication using the unbalanced matrix A(i). Since we already know that the result

will be a symmetric matrix, we can save almost half of the redundant computations by

only calculating the upper triangular part of the output matrix. For illustrative pur-

pose, we use Figure 6.8 to demonstrate the matrix transpose multiplication for a matrix

A = {a1, a2, ...a16} ∈ R8×16 with a 4 × 4 TMU PE array. The resultant matrix B can be

considered as the sum of 16 submatrices where each submatrix Bi = ai × aTi . Therefore,

we can group up 4 PEs as a PE set to compute a specific submatrix. The reasons for

us to choose outer product to compute B are of two folds. First, using outer product

only requires a single traversal through the original matrix to finish the computation.

This is especially beneficial as matrix A is stored in high-cost off-chip DRAM. Second, in

normal cases, buffering the output submatrices for accumulation can be expensive, but

since the columns of matrix A are short, the submatrices computed by these columns
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become much smaller and easier to buffer on chip.

As shown in Figure 6.8(b), inside the PE set, each PE is distributed with two ele-

ments of a specific column ai. During each loop, the PE multiplies these two elements

together to generate a single element in the submatrix. After each loop, different PEs

from the same PE set will exchange data between each other. The data exchanging order

is predetermined according to the column length. In this example, the red arrow indi-

cates the data movement direction after each multiplication. Such order avoids all the
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redundant computations. Finally, all the submatrices are accumulated together to get

the result. Note that, if the column is too long, each PE may contain multiple elements

of the column. In such case, the PE will generate a small block of the output submatrix

after each computation loop.

Tensor core contraction

TTD Engine is also designed to be able to perform tensor core contraction to recover

the original tensor data. For tensor core contraction, each time we contract the last

mode of the current tensor with the first mode of the next tensor core. Therefore, we

only need to permute the tensor core and load the existing tensor in its original order.

We assume the tensors are always stored by incrementing the mode-1 index, then the

second mode index, and so on. To be more specific, suppose we have finished contracting

the first m tensor cores which gives us tensor Ĝ ∈ RI1×I2···×Im×rm . The next step is

to contract Gm+1 ∈ Rrm×Im+1×rm+1 with Ĝ. Thus, we first permute Gm+1 using TTD

Engine’s permute unit and store it in the GLB as Ĝm+1 = rm × Im+1rm+1. Then, we can

treat both of them as matrices and perform matrix-matrix multiplication.

6.5.2 SVD Core

As introduced previously, the process of the adapted SVD algorithm can be repre-

sented by MGS and data update. Data update is essentially matrix-vector/matrix-matrix

multiplication that can be efficiently mapped onto TMU. As for MGS, there are two prob-

lems need to be addressed. First, the orthogonalization between two columns requires

the division operation. Thus, as shown in Figure 6.7, PEs inside the SVD core are fur-

ther facilitated with dividers for the operation. Second, the MGS algorithm consists of

multiple column orthogonalizations between different pairs of columns that have inter
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data dependency. Thus, it is important to design a mapping strategy that can maximize

the computation resource utilization without breaking the data dependency.

Here we use Figure 6.9 to demonstrate the data dependency and mapping strategy. As

shown in Figure 6.9, each parenthesis indicates an orthogonalization operation between

two columns. For instance, (2, 1) means to orthogonalize column 2 over the reference

column 1. Therefore, only column 2 will be updated after this operation. According to

MGS, there are two types of data dependency during the computation.

The first type is that, we cannot use a column as a reference column until it is

finalized. For example, column 3 needs to be orthogonalized with column 2 and column

1. Therefore, we need to perform (3, 1) and (3, 2) before we can perform operations that

use column 3 as the reference column, e.g., (4, 3), (5, 3) · · · . The first type is marked

by red arrows in Figure 6.9. The second type of data dependency is that, we cannot

simultaneously orthogonalize the same column with two different reference columns. For

example, (3, 1) and (3, 2) cannot be executed at the same time. The second type is

represented by blue lines in Figure 6.9. It also shows that each time we cannot choose

more than one operations from the same line.

Based on the analyses above, we propose the mapping of the MGS algorithm as

shown in Figure 6.9. The idea is to choose as many operations as possible from the

same vertical line. When we reach the end of one line and have to move across another

line, we move to its adjacent line and start from the top. Both two types of data

dependencies are avoided to the utmost extent using this mapping. In this example,

suppose the SVD core can at most orthogonalize 3 pairs of columns in the same cycle.

Then, we first choose (2, 1), (3, 1), (4, 1), and then (5, 1), (3, 2), (4, 2). Due to the second

type of data dependency, we can only execute (5, 2), (4, 3) at the third cycle, (5, 3) in

the fourth cycle, and (5, 4) in the final cycle. Thus, it takes 5 cycles to finish the MGS

process. If we increase the computation resources to support 4 pairs of columns. We
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Figure 6.9: Mapping the GS orthogonalization onto SVD Core. Operations in the
same dotted rectangle are executed simultaneously.

can reach a maximum throughput of 4 cycles to finish the MGS process. However, the

resource utilization will be lower. Therefore, we design a lightweight SVD core that can

achieve near-optimal performance with better resource utilization. Also, choosing most

operations from the same vertical line increases the data reuse of the reference column

that can further improve energy efficiency.

6.5.3 Permute Unit

The tensor permute unit is located between the GLB and external DRAM to reshape

the input/output tensor/matrix data. It is used in the below cases: (1) During tensor

core contraction, we use the permute unit to reshape the small tensor core; (2) After we

compute the left singular matrix U , we permute it into a 3-mode tensor core. (3) After

we multiply the current auxiliary matrix A with UT , we need to permute the result to

be the input matrix for the next TTD iteration.

6.6 Evaluation

6.6.1 Evaluation Methodology

Evaluation Platform. The proposed TTD Engine is implemented in RTL and

synthesized in Synopsys Design Compiler with TSMC 45nm standard cell library to
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obtain the area and power estimation. The timing and energy of on-chip memory are

simulated with CACTI [91]. We also develop a cycle-accurate simulator based on RTL

implementations to evaluate the performance of TTD Engine.

Baselines. We compare our TTD Engine with the state-of-the-art CPU and GPU.

The CPU baseline is an Intel Core i7 8700 processor (14nm), which has 12 SMT cores

running at 3.2GHz and 12MB LLC. For GPU comparison, we use NVIDIA Titan V GPU

(12nm) that is equipped with 5120 tensor cores and 12GB HBM2. We choose the Tensor

Toolbox [147] as the software implementation on CPU and TnTorch [137] on GPU.

Benchmarks. We use synthetic data for the performance evaluation, with ten-

sor sizes of 64KB, 4MB, 256MB, 1GB, and 8GB. The synthetic data are generated

with built-in functions in each open-source library. For example, in TnTorch, we use

torch.rand()/torch.randn() to generate the tensor data. For the decomposition speed

comparison, we don’t care about the actual value and distribution of the synthetic data.

But for accuracy comparison, we keep the data identical across different implementa-

tions. We also set different decomposition parameters to examine how the performance

is sensitive to the ranks of tensors. It is worth mentioning that, using synthetic data does

not affect the generality of the experiments at all. Instead, it is because of the flexibility

of synthetic benchmarks that enables us to evaluate TTD Engine’s performance over

various input patterns, including the cases that are frequently or rarely encountered in

practical applications.

6.6.2 TTD Engine Summary

Table 6.2 presents the summary of the TTD Engine specifications. We use 16-bit

fixed point arithmetics to implement our design. As listed in the table, with 16×16

PEs in TMU and 8×8 PEs in SVD Core running at 400MHz, our accelerator yields a
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peak performance of 128GMAC/s. Each PE has a 128B register, therefore, TMU and

SVD core together have a 40KB of SRAM capacity. The global SRAM buffer is 1MB.

Therefore, the total on-chip memory capacity is 1064KB. We show the area and power

breakdown in Figure 6.10, from which we can see that the power is dominated by fixed-

point operators as a fraction of 76%, while the total area is dominated by on-chip SRAM

with a ratio of 62%.

Table 6.2: TTD configuration summary.
Item Specification

Technology TSMC 45nm GP standard VT

Total Area 6.94mm2

Total Power 2.89W

Number of PEs 256 (TMU) + 64 (SVD Core)

Global Buffer 1MB (SRAM)

Register per PE 128B

Arithmetic Precision 16-bit fiexed-point

Frequency 400MHz

Peak Performance 128GMAC/s

Fixed-Point 
Arithmetic

76%

Global Buffer
16%

Local Register
7%

Controller and Other
1%

Power BreakdownFixed-Point Arithmetic

Global Buffer

Local Register

Controller and Other

Fixed-Point Arithmetic
23%

Global Buffer
62%

Local Register
13%

Controller and Other
2%

Area Breakdown Fixed-Point Arithmetic

Global Buffer

Local Register

Controller and Other

Figure 6.10: Power and area breakdown.

6.6.3 Overall Performance and Energy Efficiency

We compare the performance of our TTD Engine with CPU and GPU over synthetic

data that have different sizes ranging from 64KB to 8GB. For each fixed input tensor
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size, we manually set the targeting output tensor ranks to 3 different levels to adjust

the compression ratio. For example, for a single 4MB tensor, a low-rank decomposition

means we generate a low-rank tensor-train from the original tensor data, which indicates

a higher compression ratio with larger decomposition error compared with a high-rank

result. Usually in real world applications, the rank matches with the low-rank and

medium-rank cases in our experiments.

We first evaluate the decomposition accuracy among different implementations. The

accuracy is measured with the absolute reconstruction error as expressed by equation (6.3),

Section 6.3. Figure 6.11 shows the reconstruction error under different rank-levels av-

eraging over all sizes of the input tensors. As we can see from the figure, in all three

different rank levels referring to different compression ratios, the reconstruction accu-

racy scores among the implementations are comparable. Also, the proposed approach

performs closer to (or even better than) the standard TTD when we are expecting a

low-rank output tensor-train.
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Figure 6.11: Average reconstruction error of CPU/GPU and TTD Engine under dif-
ferent rank-levels(compression ratio).

Then, we compare the decomposition speed of TTD Engine with CPU and GPU.

As we can see from the results in Figure 6.12(a), TTD Engine significantly outperforms
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CPU’s performance. On average, it is 14.9× ∼ 36.9× faster than the CPU implemen-

tation. Compared with GPU, TTD Engine can achieve speedup on benchmarks that

are smaller than 1GB. If the input tensor size exceeds this limit, the speedup over GPU

decreases. The reason is because when the tensor size keeps growing, the whole com-

putation process tends to be dominated by the matrix transpose multiplication of the

first few TTD iterations. For extremely large-scale matrix multiplication, TTD Engine

is limited by computation resource and memory bandwidth, which dilutes the benefit of

the proposed algorithm and dataflow optimization. However, in real cases, datasets are

usually large for its number of samples rather than the size of each sample. Therefore,

typically we do not need to consider a single tensor with a size of 8GB or even larger. Be-

sides, the good scalability of TTD Engine makes it efficient to improve the performance

by increasing the on-chip resources.

Also, for a given tensor, the lower the needed TT-ranks are, the higher speedup TTD

Engine can achieve. This is because TTD Engine computes the singular vectors in the

order of the singular values, and stops the computation as soon as the first r vectors are

obtained. Whereas a typical truncated-SVD computes the complete SVD first, and then

choose r vectors to output. This makes TTD Engine particularly suited for low-rank

decompositions of a tensor.

Finally, we compare the energy efficiency of TTD Engine with CPU and GPU imple-

mentations over the same benchmarks. As shown in Figure 6.13, TTD Engine consumes,

on average, 47.2x and 231.6x less energy than CPU and GPU, respectively. Such im-

provement is mainly gained from two aspects. First, we exploit low-cost data movement

through the algorithm-hardware co-design while reducing high-cost external memory ac-

cess. Second, we exploit the data sparsity and symmetricity during the computation

process that helps to reduce both compute and memory consumption. Besides, when

dealing with larger tensor, the energy efficiency improvements over GPU tends to be
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lower and less separable between different bars. Similar with the above analysis, when

the decomposition process is more dominated by the matrix-transpose multiplication,

the savings that come from adopting symmetricity and sparsity during the computation

contributes less to the overall improvements.
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Figure 6.12: Speedup of TTD Engine over CPU and GPU.
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Figure 6.13: Energy reduction of TTD Engine over CPU and GPU.

6.6.4 Benefits Breakdown

In Section 6.6.C, we compare the overall performance between TTD Engine and

CPU/GPU implementations. Here, we further decouple the contribution of the proposed
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Figure 6.14: Performance contribution breakdown

SVD algorithm and accelerator design to separately demonstrate their benefits. We first

run the proposed TTD and standard TTD algorithm on the same CPU to collect the de-

composition time. Then, the proposed TTD algorithm is executed on TTD Engine to be

compared with the other two cases. As we can see from Figure 6.14, by using the adapted

SVD algorithm alone, we are able to achieve, on average, 2.7× speedup over the original

CPU baseline. This speedup mainly comes from the computation reduction brought by

the algorithm modification with a small number of iterations(iter2). However, without

dedicated architecture design and specialized dataflow, the sparsity and symmetricity of

the matrices are hard to be utilized to benefit the overall performance. This introduces

unnecessary computations which dilutes the final speedup. Thus, when TTD Engine is

finally used, it further brings another 8.7× times speedup over the TTD-proposed-CPU

and provides a final 23.5× speedup over the TTD-standard-CPU baseline.
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6.7 Application Demo

Through Section 6.3 to Section 6.6, we demonstrated the effectiveness of TTD Engine

when processing TTD with the proposed algorithm-hardware co-design approach. In this

section, we will further illustrate how TTD Engine can be extended to accelerate different

applications.

The first application we choose is medical image compression. TTD is now being used

in a wide range of disciplines, including EDA design and simulation, machine learning,

medical imaging, etc. One of the direct benefits of TTD is that, it saves considerable

amount of memory space for storing the big data required by these applications. More-

over, with the decomposed results, many previous complex computations could be exe-

cuted much faster and easier. To demonstrate such effectiveness, we first choose medical

image compression as an example demo. We use the proposed accelerator to generate

TTD results for a real-world magnetic resonance imaging (MRI) image benchmark, which

significantly reduces the size of the benchmark while preserving good image quality.

In addition, we further illustrate the benefits of using TT-format data by proposing

a TT-based convolution scheme. The proposed TT-convolution algorithm directly uses

the TT-format data as input and performs convolution operations based on the convo-

lution kernel. With the decomposed TT-format data, we can greatly reduce the overall

computational complexity as well as memory consumption.

6.7.1 Medical Image Compression

We take medical imaging application as our first example. MRI is a safe and painless

technique and is therefore widely used to generate detailed images of the brain and

the brain stem. For general research purpose, numerous brain images are required and

the data can easily reach to several gigabytes and even terabytes. Thus, it is very
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memory consuming to store the dataset. In our experiment, we choose a typical brain

image dataset that contains 766 brain images of size 512×512 and is in total about

420MB large. The image dataset is compressed with TTD Engine and other open-

source libraries running on CPU and GPU. We compare the decomposition performance

between different architectures in terms of compression time and reconstruction error

under a specific compression ratio of 7.1×.

The experimental results are shown in Table III. As for decomposition time, TTD

Engine achieves 20.4× and 13.9× speedup over CPU and GPU, respectively. The speedup

is close to the 4MB bar in Figure 6.12 even though the dataset is 420MB. This is because

we compress each 512×512 image (1MB) separately, which gives us a higher performance

speedup compared with compressing the dataset as a large single tensor. As for the

reconstruction error presented in Table III, the proposed TTD achieves slightly better

decomposition accuracy compared with standard TTD library given the same targeting

compression ratio. This matches the conclusion we presented in Section III.A, that the

proposed approach is able to generate comparable result when the compression ratio is

not very low. Here, we also use equation (6.3) to measure the absolute reconstruction

error.

Finally, to provide an intuitive comparison, four pairs of original images and recon-

structed images are randomly selected from the dataset and presented in Figure 6.15.

Table 6.3: Decomposition Performance&Accuracy

Hardware Comp. Ratio Speedup over CPU Error
CPU 7.1× 1x 0.158
GPU 7.1× 1.47x 0.158

TTD Engine 7.1× 20.40x 0.157

Finally, TTD is compared with other compression techniques like PCA and SVD

under this specific application scenario. We sweep through different compression factors

and compare the reconstruction error between different methods. Figure 6.16 delivers
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Figure 6.15: Comparison between original and decomposed MRI images.

the results and implies several conclusions. Firstly, TTD achieves lower absolute error

compared with SVD in all the test cases. Secondly, when being compared with PCA,

TTD tends to perform better in the cases with larger compression ratios, while doing

worse in the low-compression cases. This indicates its advantage for providing highly

compressed data with rather low error, which matches our previous analysis. Finally,

PCA and SVD cannot deliver highly compressed images. As shown in the figure, no

matter how we reduce the SVD/PCA parameters, SVD cannot deliver the two highest

compressed cases and PCA cannot reach the compression ratio as high as 1638×. This

is because SVD and PCA are pure 2D data processing techniques and are limited by

the dimensions of the original image. On the contrary, TTD is able to first consider the

2D image (matrix) as a high-dimension tensor and then perform decomposition on all

of its dimensions to achieve aggressive compression. In real applications, we can flexibly

choose the desired compression technique based on different requirements for accuracy

and compression ratio.
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Figure 6.16: Comparing TTD with PCA and SVD for MRI image compression.

6.7.2 One-Dimensional Convolution

As aforementioned, there is a gap between decomposing a tensor and using the decom-

posed data to develop TT-based algorithms for practical applications. Previous work [40]

has proved that basic TT operations like TT-Addition, TT-Multiplication, TT-GEMV,

and scalar product have less complexity than directly operating on original large-scale

tensor data. Moving forward, for the first time, we introduce how to use TTD Engine as

the base architecture to perform TT-format data convolution on the decomposed data.

We believe data convolution is a promising example to demonstrate the potential and

benefit of using TTD for more complicated operations and applications. On one hand,

element-wise operations are commonly used but rarely studied for TT-format data. On

the other hand, multidimensional convolution stands at the core of many important ap-

plications including image processing, machine learning, and EDA.

For illustrative purposes, we first consider an 1D data convolution with an 1 × 3

convolution window sliding over an 8-element vector v. The vector is reshaped into a

2 × 2 × 2 tensor V and then represented with 3 TT-cores, G1, G2, G3. As shown in
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Figure 6.17, if we reverse core G3’s second dimension by exchanging the purple column

with the pink column, the order of tensor V ’s third dimension is also reversed. This

is further equivalent to switching every two consecutive elements in v. Similarly, if we

reverse core G2’s second dimension, it is equivalent to switching every two consecutive

pairs of elements in v.

a b c d e f g h
G1

1*2*2 2*2*2 2*2*1

G2 G3

n1
n2

n3

G1

1*2*2 2*2*2 2*2*1

G2 G3’
n1

n2

n3’

b a d c f e h g

Original Space TT Space

Figure 6.17: Demonstration of TT data and its characteristics.

Therefore, we demonstrate the process of TT-based 1D convolution in Figure 6.18.

Without loss of generality, we assume all the weights to be equal to one. We already know

that, we can operate on a specific dimension by modifying its corresponding tensor core.

Thus, we can represent the final convolution result by the sum of several sub-vectors. The

principle is to ensure that the TT-format of each sub-vector can be efficiently obtained

from the original tensor-train format data.

As shown in Figure 6.18, for this specific 1D convolution example, the final result is

represented with the sum of 3 sub-vectors. Taking the first one as an example, in every

consecutive pair, the first element is the sum of the original two elements, and we keep

the second element unchanged. Therefore, to get the TT-format of this sub-vector, we

can simply sum up G3’s second dimension to form up a new column and replace the first
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Figure 6.18: 1D Convolution in TT-format.

one, while leaving the second column the same as before. The other sub-vectors require

similar operations. After this, we add the 3 tensor-train format sub-vectors to obtain the

final convolution result. Note that, TT-Addition requires no computations but to merge

the corresponding tensor cores together.
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Figure 6.19: Speedup over CPU and GPU when performing 1D convolution.

In TTD Engine, we first load or compute the original tensor-train format data. Then,

the remaining operations are simple vector/matrix additions and multiplications over the

tensor cores. TMU and SVD core can work together as an efficient 2D PE array to handle
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these operations. This idea can be further generalized to vectors with longer length and

with different convolutional kernel sizes. Moreover, even if the vector’s length increases

dramatically, the tensor cores stay small, which makes the TT-format processing much

more efficient. We implement the TT-format 1D convolution based on our TTD Engine,

and compare it with baseline 1D convolution kernel running on CPU and GPU. As shown

by the results in Figure 6.19, when comparing with CPU, TTD Engine achieves significant

speedup ranging from 38.7× to 21725×. Also, the speedup almost scales linearly after

the 4MB bar. This is because as soon as the vector’s size reaches a certain limit, the

processing time of CPU grows proportional to the size of the tensor. However, with

TT-format convolution scheme, the total computation is greatly reduced and much less

influenced by the size of the vector. Therefore, the speedup of TTD Engine over CPU will

grow rapidly for larger tensor. On the contrary, the speedup over GPU is more stable,

ranging from 9.0× to 14.2×. This is because when the vector’s size is small, the GPU

execution time is not dominated by the computation, but other non-computation cost

like kernel launching time. Only when the size is large enough, like from 256MB to 1GB,

the computation time increases and the advantage of TTD Engine will be more obvious.

For even larger input vector, we believe TTD Engine can achieve higher speedup over

GPU as long as the TT representation of the vector is available.

6.7.3 Generalization to high-order convolution

Using the same idea, the TT-based 1D convolution scheme can be further general-

ized to high-order convolutions so that it can support various applications such as image

processing and machine learning. Here we show how to apply the TT-based data pro-

cessing to the 2D convolution problem. Firstly, the TT-format representation of a matrix

W ∈ RM×N is given as follow:
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W = G1 ∗G2 ∗ · · · ∗Gd (6.4)

Where Gi ∈ Rri−1×mi×ni×ri ,
∏

mi = M,
∏

ni = N .

Different from TT-format vectors, each tensor core now has four dimensions, including

two rank-dimensions, an m-dimension and an n-dimension. Using an example shown in

Figure 6.20, suppose we have an M × N image where M = N = 8, and we want to

perform a 2D convolution with a kernel of size 3 × 3. First, we can decompose this

matrix into 3 tensor cores with a shape of 1×2×2× r1, r1×2×2× r2 and r2×2×2×1,

respectively. We know that, a 2D convolution can be considered as two 1D convolutions

along each of the dimension. This can be directly applied to TT-based convolution. Thus,

we first perform a 1D convolution along the m dimension. In the 1D case, reversing the

third core’s second dimension is equivalent to switching every two consecutive pairs in

the original vector. Here, as illustrated in Figure 6.20, if we reverse the m-dimension of

the third core, every two consecutive rows in the original matrix will be exchanged. In

other words, modifying the m-dimension of the tensor core is equivalent to operating on

the whole rows of matrix W .

After changing the m-dimension, we indeed get several sub-matrices with modified

rows. Similarly, we can further modify the columns of these sub-matrices by operating on

the n-dimensions of the tensor cores. As illustrated in the example in Figure 6.20, if we

reverse the n-dimension of core G1, the left half of the matrix will be exchanged with the

right half. Finally, we add these sub-matrices together, to get the 2D Convolution result.

Similar to the 1D convolution, the high order convolution can also be efficiently executed

on TTD Engine once the original tensor-train is obtained. After this, the proposed TT-

convolution ensures the remaining computations to be executed only on certain slides of

the few tensor cores. More importantly, if operations like TT-Addition cause the result
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Figure 6.20: TT-based 2D Convolution.

tensor-train to have high TT-ranks, we can directly re-decompose the tensor-train with

TTD Engine to get a new approximation with much lower TT-ranks.

In this section, we present three case studies using TTD Engine for different appli-

cations. Medical image compression shows the straightforward benefits to decompose

high order data using TTD to reduce memory consumption. Furthermore, we propose

tensor-train data convolution to show the effectiveness of the TT-based data processing

in terms of reducing computational complexity.
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6.8 Related Work

Tensor Decomposition Algorithms. Tensor decomposition attempts to compress

and represent a high-dimensional tensor with a smaller number of factor tensors. In this

work, we aims at accelerating the TTD algorithm. In fact, there are also other efficient

tensor decomposition methods apart from TTD. Polyadic Decomposition (PD) expresses

an n-way tensor as the sum of r rank-1 terms. Particularly, when r is the minimal rank,

the decomposition is called Canonical Polyadic Decomposition (CPD) . It is also called

Canonical Decomposition (CANDECOMP) or Parallel Factor (PARAFAC) in the tensor

community [148, 149]. Tucker decomposition[150, 151, 152] treats a tensor as a multilin-

ear transformation of a core tensor G by the factor matrix B. It can be considered as an

expansion in rank-1 terms that is not necessarily canonical. Among all the decomposition

methods, TTD is preferred for high-order tensors since its resulting tensor factors have a

low storage requirement linearly dependent on the number of orders and the dimension

depth. Moreover, TT has a unique feature, that is it can be implemented with cross

approximation [153] without knowing the whole tensor.

SVD Hardware Accelerators. To the best of our knowledge, TTD Engine is the

first work to accelerate TTD. In fact, the whole tensor hardware community is still lacking

exploration. Previous work have more focused on the acceleration of matrix decomposi-

tion. Accelerator design for SVD is a huge fraction [133, 134, 135]. However, these works

have some restrictions that motivate us to conduct the algorithmic adaption together

with our TTD hardware design. First, many of previous SVD accelerators target only

matrices with a certain shape or size. For instance, some can only support the square-

shape matrices, while others cannot work when the input matrix’s dimension exceeds

the predefined dimension length. Second, directly applying Hestenes-Jacobi method to

large-scale unbalanced matrices is extremely memory-inefficient, as it requires constant
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reads and writes for the original matrix that cannot be stored in local memory.

Tensor Hardware Accelerator. As aforementioned, the study of the tensor hard-

ware, especially tensor-decomposition hardware is still at the early stage. [154] proposes

the first FPGA-based accelerator for tucker decomposition. It focuses purely on the ac-

celeration of Tucker decomposition, while the data processing techniques using Tucker-

format tensor data are not covered. Other work [155, 156] mainly address the problem of

designing general computation kernels for dense/sparse tensor data. While efficient hard-

ware implementations for general Tensor-Tensor multiplications, Tensor-matrix multipli-

cations are proposed, these work still suffer from the curse of dimensionality essentially

due to the lack of decomposed tensor data.

6.9 Conclusion

This paper presented the first customized architecture to accelerate TTD, a promising

tensor technique that is increasingly used in EDA optimization, big data analysis, and

machine learning. Experimental results show the proposed TTD Engine is at least 14.9×

and 4.1× faster than its CPU and GPU counterparts, respectively. We scale a demo of

our TTD Engine on an FPGA board and perform medical imaging compression tasks

to demonstrate the application potential. Moreover, we have conducted a case study

to use TT-method to implement convolutional operations. The TT-based convolution

has shown significant advantages when dealing with large-scale data. With customized

algorithm design and specialized hardware support, TTD has the potential to break the

curse of dimensionality of big data processing, and this work may stimulate more efforts

on this topic.

In the future, we plan to extend TTD Engine following two directions. 1) Since

advanced TT Decomposition employs cross-approximation for low-rank matrix factoriza-
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tion, we plan to add the corresponding support in TTD Engine. Therefore, the users can

choose the specific matrix factorization method they want to adopt when decomposing

the tensor. 2) We plan to further demonstrate the effectiveness of TTD Engine when

performing end-to-end applications using the introduced TT-format data processing pat-

tern.
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Chapter 7

TT-GNN: Efficient On-Chip Graph

Neural Network Training via

Embedding Reformation and

Hardware Optimization

7.1 Introduction

Originating from spectral graph analysis and fueled by the success of machine learn-

ing, graph neural networks (GNNs) have drawn a surge of interest and have been applied

to various applications involving non-Euclidean graph-structured data. During the past

few years, a wide range of GNN models [29, 30, 31, 32] have been proposed to solve

graph-related problems. Exciting progress has been achieved by GNNs in domains such

as recommendation systems [33], relation prediction [34], chemistry analysis [35], financial

security [36], protein discovery [4, 5], EDA [37, 38, 39] and so on.

Despite the great application potential, training GNNs on large graphs is challeng-
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Figure 7.1: Illustration of typical minibatch training pipeline and TT-GNN training pipeline.

ing due to the need to store graph data and move them along the memory hierarchy.

Given the increasingly large problem size, minibatch training is currently the most widely

adopted approach to train a GNN model[29]. As shown in Figure 7.1, each minibatch

takes two steps. The first step is to sample a subgraph from the original graph. The

structure of the subgraph and its corresponding node embeddings together form a mini-

batch of training data. In this paper, we consider the case where the graph is very large,

such that the graph data are stored in a host system memory. Consequently, the sub-

graph preparation is handled by the host processor, such as a host CPU. After obtaining

the minibatch training data, it is sent to training hardware such as GPU to execute the

model training. In this second step, we perform forward and backward propagation on

the subgraph to update model parameters.

To speed up minibatch GNN training, prior works have proposed diverse software

and hardware techniques targeting different stages of the training pipeline. Some work
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[157, 158, ?] aims at improving GNN computation efficiency with algorithmic and soft-

ware optimizations. Others focus on reducing neighbor sampling latency [159] and data

loading cost [160] to hide the subgraph preparation overhead. However, they all as-

sume an unchangeable setting, that is each node of the graph should be independently

represented by a feature vector. This assumption further leads to the explosion of the

graph representation when the number of nodes scales to millions and billions. Eventu-

ally, memory capacity is saturated and training performance is compromised. According

to our profiling experiments, collecting node features from the host memory can take

27.9 ∼ 61.1% of the training time on a typical CPU-GPU system.

In this work, we tackle this problem by effectively compressing the graph feature

matrix and storing it closer to computation resources for faster memory access. Specif-

ically, we observe that different graph node features contain inter-relationships that can

be well preserved even after applying low-rank approximation. Therefore, we consider

using Tensor-train (TT) to represent the graph feature instead of using a 2D embed-

ding matrix. In this way, we can represent the graph using a much more compact TT

data structure while maximally preserving the representation capability. As shown in

Figure 7.1, the resultant TT graph embedding can be stored in the accelerator’s on-chip

buffer, and the embedding is jointly trained with the Graph Neural Network with much

less memory consumption.

Although the algorithmic modification greatly reduces the memory cost of training

GNNs, it imposes several new hardware challenges. (1) During the forward pass, TT-

format embeddings need to be decompressed into the original vector format before being

processed by the GNN model. Reversely, we also need to generate the TT-format gradient

during the backward pass. Naively handling these TT-related computations is expensive,

yet, exploring effective intermediate data reuse is non-trivial. (2) Although we can store

the TT-format embedding in the on-chip buffer, the decompressed features used in each
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minibatch might still exceed on-chip memory capacity. Therefore, we need a more fine-

grained dataflow to further split each minibatch into smaller compute graphs.

To tackle the aforementioned challenges, we propose TT-GNN, a training system that

incorporates software and hardware co-optimizations for efficient GNN learning at scale.

Firstly, to mitigate TT computation overhead, we propose a unified algorithm to jointly

handle TT decompression and TT gradient derivation. The proposed algorithm can be

flexibly configured to be more compute-efficient by caching more reusable results, or

more memory-efficient by tolerating some recomputation overhead. Secondly, by evalu-

ating on-chip memory capacity and training configuration, TT-GNN dynamically breaks

down a minibatch into smaller microbatches that can be fitted on-chip. To reduce redun-

dant computations caused by neighbor sharing across different microbatches, we cache

the last few layers of the GNN model on-chip, and only fan out from an intermediate layer

if necessary. The microbatch composition and scheduling order is designed to maximize

data reuse both across and within microbatches. Finally, we explore the reuse oppor-

tunities of aggregated partial sums which benefit both neighbor aggregation in forward

propagation and gradient scattering in backward propagation.

Combining the algorithm and architecture co-design, TT-GNN achieves 1.55∼4210×

training speedup and 2.83∼2254× energy efficiency improvements compared with the

baseline CPU-GPU system on a series of GNN benchmarks. The key contribution of this

work is summarized as follows:

• We perform in-depth characterization of GNN training on a standard CPU-GPU

system, locating the training pipeline bottleneck being the feature collection and

uncovering the underlying causes.

• Motivated by the profiling results, we propose to compress the feature matrix such

that it can be held in faster memory. We also conduct preliminary experiments to
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demonstrate that performing on-chip decompression is more efficient than retrieving

the feature from off-chip memory.

• We propose a training system with software hardware co-optimizations tailored for

efficient GNN training. In our design, only the graph sampling is executed in the

host system, while the graph embedding collection, as well as GNN training, are

fully handled on-chip.

• We evaluate TT-GNN on a series of GNN datasets, demonstrating the effective-

ness of the proposed design and the possibility to train large GNNs with limited

resources.

7.2 Background and Motivation

In this section, we first present the basics of Graph Neural Networks. We then

introduce our in-depth GNN training characterization on a GPU system, which motivates

us to propose TT-GNN.
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Figure 7.2: Illustration of a sample GNN model.
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7.2.1 GNN Basis and Minibatch Training

We start with introducing some basic notations in GNNs. Given an undirected graph,

we denote it as G = (V,E), where |V | is the number of nodes and |E| is the number of

edges in the graph. Each node is described by a feature vector of length F , and all the

node features together forms a 2D feature matrix X ∈ R|V |×F . In most cases, matrix X

is dense and of large-scale due to the massive amount of nodes contained in real-world

graphs.

During GNN processing, each GNN layer follows a two-stage procedure, namely Ag-

gregation and Combination. As shown in Figure 7.2 and equations in below, each node v

will collect feature vectors from its sampled neighborhood N(v) to generate an aggregated

feature akv . The aggregation operator can be flexibly designed, where common choices

include Mean, Max, MLP and so on. After this, the aggregated feature is combined

with source node v’s feature vector h(k−1)v . The combination operator utilizes these two

vectors to generate hidden representation hk(v) of node v.

akv = Aggregate(u : u ∈ N(v) ∪ v)

hk
v = Combine(akv , h

(k−1)
v )

To train a GNN model, we typically adopt the minibatch strategy. As illustrated

in Figure 7.3, for each minibatch, we fan out from a group of target nodes. When

considering the receptive field, we sample a fixed-size set of neighbors instead of using

the full neighborhood for each node. This results in a funnel-shaped network, where the

cost of each layer follows a decreasing order. To perform the GNN computation, we start

from the input nodes of the first layer, use their feature vectors and follow the graph

structure to perform aggregation and combination. The generated hidden node features
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will be further used as the input to the next layer.
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1-hop

2-hop Target nodes

1-hop

2-hop

batchsize = 2, fanout = [3,2]
GNN Layer-1

Figure 7.3: Sampling-based minibatch GNN training.

7.2.2 GNN Training Characterization

As mentioned above, there are mainly two types of data structures used in minibatch

GNN training, the graph structure represented in CSR format, and corresponding feature

embedding stored in a 2D matrix. Since a real-world graph may contain a massive amount

of nodes and edges, both graphs CSR and embedding matrix can consume large memory

space.

We observe that the location of the graph data significantly affects the overall training

performance. When both graph structure and embedding matrix can be fit into GPU

device memory, we can directly perform sampling and feature collection on GPU [161],

therefore avoiding transferring data between host memory and device memory. However,

if the data exceeds GPU’s memory capacity, the sampled data will have to be sent via

the system interconnect (e.g., PCIe). To illustrate the performance gap, we conduct a

profiling experiment using a popular GNN model (GraphSAGE [29]) and a real-world

benchmark (ogbn-products [162]). The model is implemented in DGL [161], and experi-

ments are done on an Nvidia 3090 GPU using Nsight System.
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Figure 7.4: Average Latency(ms) Breakdown of Training One Minibatch on 3090.
The batchsize is set to 500, with a 3-hop neighbor fan-out of [5, 10, 15]

Figure 7.4 shows the training latency comparison when the graph is stored in GPU

HBM or in the host DRAM. The end-to-end latency is broken down into different steps.

As we can see from the figure, under the same batchsize, for each epoch, training on

HBM is 3.74 ∼ 8.77× faster than training on host DRAM. The performance difference

purely comes from the sub-graph preparation stage. When the graph is completely stored

in HBM, GPU performs parallel graph sampling and directly fetches node features from

HBM. Therefore, the combined latency of sampling and feature collection is shorter than

the latency of forward and backward propagation. This further indicates opportunities

to fully hide the subgraph preparation overhead with pipelined execution.

On the contrary, CPU-based graph sampling and feature collection are much slower,

uncovering the subgraph preparation cost. To improve graph sampling efficiency, we

can issue multiple threads (#worker) to simultaneously perform sampling for different

minibatches. The generated subgraphs will be stored in a task queue to be fetched later.

As a result, when #worker is set to 4, the per-minibatch sampling latency only consumes

15.5% of the total training time, as opposed to 61.8% in single thread implementation.

However, compared with graph sampling, it is non-trivial to address the embedding
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collection overhead. The datapath is inevitably longer because we need to first copy the

required features from host memory to device memory through PCIe. This additional

step is long enough to be a deal breaker of a perfect execution pipeline.

In our experiments, we also notice that the feature collection kernel does not fully

saturate PCIe bandwidth due to insufficient memory requests to be issued. As shown in

the Table below, the average PCIe bandwidth utilization for different batchsizes is 32.1 ∼

35.2%. Therefore, we projected a theoretical lower bound of feature collection latency

as shown in the second line of Figure 7.4. The result indicates that improving PCIe

utilization with locality-enhancing techniques such as graph partitioning is beneficial,

but insufficient to address the problem, as the total latency of sub-graph preparation is

still longer than the combined latency of GPU forward and backward propagation.

Table 7.1: Avg. PCIe utilization under different batchsizes.
Batchsize 500 1000 2000 4000

Utilization(%) 33.18 32.10 34.10 35.20

In summary, to fully address the subgraph preparation problem, a more effective

way is to shorten the datapath by storing the embedding matrix closer to computation

resources. In this work, we achieve this by utilizing a much more compact embedding rep-

resentation structure. We also customize the system dataflow and hardware accelerator

which enables a more efficient on-chip GNN training scheme.

7.2.3 TT Decomposition and TT Representation

Before going into the details of TT-GNN, we introduce the fundamental idea of using

Tensor-train Decomposition (TTD) to compress a matrix. TTD has been originally

proposed as a generalization of Singular Value Decomposition for high order tensors [40].

Given a d-dimension tensor A ∈ RI1×I2×···×Id , TTD decomposes it into a sequence of
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3-dimension tensors. Therefore, each scalar in A can be derived as follows:

A(i1, i2 · · · , id) ≈ G1(:, i1, :)G2(:, i2, :) · · · Gd(:, id, :). (7.1)

Gk is a tensor of size rk−1 × Ik × rk, where rk is called the TT-rank. r0 and rd are set

to 1 such that the product of the above matrix sequence is a scalar. Other TT-ranks can

be either predefined before the decomposition or decided during runtime according to the

required decomposition accuracy. Higher TT-ranks increase the decomposition accuracy

but also increase the size of the TT-format representation.

Apart from decomposing tensors, TTD can also be utilized to deal with large vectors

and matrices. Specifically, in order to apply TTD on a matrix X of size M ×N , we need

to factorize M into
∏d

k=1 mk and factorize N into
∏d

k=1 nk. This allows us to reformat

matrix X as a 2d-dimension tensor X ∈ R(m1×m2×)×(m2×n2)···×(md×nd). Thus, the matrix

can now be decomposed with TTD and represented as follows:

X ((i1, j1), (i2, j2) · · · , (id, jd)) ≈ G1(:, i1, j1, :) · · · Gd(:, id, jd, :). (7.2)

Prior works have leverage TTD to compress weight matrices in Neural Network mod-

els, such that the number of model parameters is significantly reduced [163, 164, 165, 13].

7.3 TT-format GNN Training

In this section, we introduce the workflow of applying Tensor-train decomposition

on Graph Neural Networks, which is originally proposed in [14]. Essentially, we need

to add a one-time preprocessing step prior to the model training to define a trainable

TT-format embedding. The key idea is to align graph topological information with the

Tensor-train data structure. Specifically, as shown in Figure 7.5, we first perform a
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Figure 7.5: Illustration of TT-GNN workflow.

hierarchical graph partition (e.g., METIS [166]) to group the nodes into multiple levels

of clusters. Then, we reorder the graph nodes based on the partition results, such that

nodes in the same partition will have continuous indices. In this way, we can directly

reflect graph homophily in the embedding representation. For example, suppose we apply

a three-level METIS partition over the graph, which results in a [10,10,10] index system.

In this setting, node 101 will be mapped to [1,0,1], and its embedding will be represented

by G1(:, 1, :, :) · G2(:, 0, :, :) · G1(:, 1, :, :). Similarly, node 102 will be mapped to [1,0,2], and

node 312 will be mapped to [3,1,2]. As a result, node 101 and 102 will share the first two

tensor core representations, while being more different from node 312. In this way, we

are able to adjust the degree of feature sharing across different nodes by reordering the

node indices according to the neighborhood similarity.

Originally, each node is represented with a feature vector of length F , and all the

node features together form a 2D feature matrix X ∈ RN×F (N = |V |). By applying

TTD to X, the feature matrix is now represented as:

X = G1 ∗ G2 ∗ · · · ∗ Gd (7.3)
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where Gi ∈ Rri−1×ni×fi×ri , N =
∏d

i=1 ni and F =
∏d

i=1 fi.

To extract the kth row from the feature matrix, it is equivalent to first finding the

projection index (nk
0, n

k
1, · · · , nk

d), fixing each corresponding n-index in Gk, and finally

calculating the product of the tensor sequence.

X(k, :) = G1(:, n
k
0, :, :) ∗ G2(:, n

k
1, :, :) ∗ · · · ∗ Gd(:, n

k
d, :, :) (7.4)

Finally, as shown in Figure 7.5, after defining the TT embedding structure and node

indices with graph partitioning results, we further need to initialize the TT-format em-

bedding parameters. Prior work [14] has demonstrated the superiority of orthogonal

initialization regarding convergence effectiveness. In TT-GNN we adopt the same strat-

egy to initialize the parameters, and the TT-format embedding will be jointly trained

with the GNN model.

7.3.1 Compression Ratio and Model Accuracy

Since Tensor-train allows partial feature sharing across graph nodes, it is naturally a

much more compact embedding representation. Before we need O(NF ) space to store the

uncompressed features, with TT-GNN, we only need O(dNfir
2) elements to represent

all the node features in the graph. To provide an intuition, Reddit[29] contains 232965

nodes and the length of each feature vector is 602. In our experiments, we have d = 7,

r = 5, ni and fi within [3, 5]. Therefore, the compression ratio is 60976×, reducing the

size of the embedding matrix from 534.99 MB to 8.98 KB.

In the table below we list the accuracy and compression ratio (CR) of TT-GNN on

different benchmarks. We compare TT-GNN with two baselines, ORIG EMB means

training the GNN model on the original embedding matrix, and TRAINABLE means

training a 2D embedding together with the GNN model. As we can see from the results,
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TT-GNN achieves orders of magnitude compression ratio and better accuracy compared

with 2D trainable embeddings. On the other hand, applying TT causes accuracy degrada-

tion on certain benchmarks. Overall, TT-GNN is more suitable under the scenario where

we lack node features, thereby requiring learning the embeddings during training [14].

Table 7.2: TT-GNN Accuracy and Compression Ratio.
Dataset Orig EMB Trainable TT CR

Cora 81.4% 60.7% 78.1% 6189×
Reddit 95.6% 91.1% 93.3% 60976×

ogbn-arxiv 72.3% 72.1% 72.2% 32546×
ogbn-products 78.9% 73.4% 74.2% 132268×

7.4 Challenge and Opportunity

In this section, we describe the opportunities and challenges when adopting TT-GNN

for efficient training of Graph Neural Network models. We also present the experiments

and preliminary analysis that we conducted, which leads to the dedicated architecture

and dataflow in the following section.

The straightforward benefit of using a compressed format embedding is that we can

store it closer to the compute unit, thus reducing the time required for fetching these

embeddings for training. As mentioned earlier in section 7.2, moving the embedding to

GPU’s HBM is efficient enough to hide the embedding fetching latency. While this seems

to be a free lunch for TT-GNN, it also leads to new hardware challenges.

Decompression Overhead: The new TT-format embedding brings us a significant

compression ratio but also introduces computation overhead when we decompress the TT-

feature back to the original feature vector. As shown by equation 7.4, fetching one feature

vector now becomes a sequence of matrix multiplication, as we need to gradually contract

out all the rank dimensions when recovering the embedding. To provide some intuition

over the cost, we compare the theoretical decompression complexity to the computation
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cost of forward propagation of the GraphSAGE [29] model on the Reddit dataset. The

GraphSAGE model has two graph convolution layers, with a neighbor fan-out to be

{10, 25}. The forward function can be expressed as equation 7.5. Since TT-rank affects

the computation complexity of the decompression, we sweep over multiple possible rank

values. We also select different batchsizes as it will influence the portion of shared

neighbors, and eventually the decompression complexity as well.

hk
v = σ(W ·MEAN({hk−1

v } ∪ {hk−1
u ,∀u ∈ N (v)})) (7.5)
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Figure 7.6: Per-minibatch computation complexity of TT decompression relative to
the forward propagation complexity of a two-layer GraphSAGE model.

The results are shown in Figure 7.6. For each minibatch size and each rank value, we

normalize the computation cost of TT-decompression to the cost of forward propagation.

The first thing to be noticed is that, TT computation overhead increases exponentially

with the rank values. The cost of decompressing one minibatch is almost the same as

running the whole network when TT-rank is equal to 10, not to mention an even larger

rank value. Secondly, TT-GNN is in favor of larger minibatch sizes. This is because

when more target nodes are considered in one minibatch, they will share more common
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neighbors at the input layer, resulting in sublinear increase of the input nodes. On the

other hand, the forward propagation cost is mainly affected by the number of sampled

edges, which is decided by the preset fan-out as long as the nodes have enough neighbors

to be sampled. In conclusion, the decompression of TT-GNN can have a comparable cost

as running the GNN model, thus should be efficiently handled.

Trading Computation for Memory Efficiency In the problem above we argue

that TT-GNN prefers a larger minibatch size, as more shared neighbors help avoid redun-

dantly decompressing the same input nodes. However, as we further show with Table 7.3,

this strategy only holds true when prior decompressed features can be cached on-chip.

In Table 7.3 we compare the energy consumption of accessing one original feature vec-

tor from HBM, with the energy consumption of accessing the corresponding TT-format

embedding in an SRAM buffer and decompressing it on-chip. For HBM estimation, we

borrow the data from prior work [167] and assume a 3.97 pJ/bit of energy consumption.

We use CACTI [91] to get the simulated result of the SRAM buffer and borrow data from

prior work [168] to estimate the energy consumption of floating point operations. From

the comparison, we find that when using a relatively small rank value, directly perform-

ing TT-decompression on-chip consumes less energy compared with fetching the feature

vector from off-chip memory. This indicates a potential design choice to eliminate off-

chip feature access by performing TT decompression whenever needed. The challenges,

however, are of two folds. On one hand, using small rank values will introduce larger

compression errors, which may have a negative impact on model accuracy. On the other

hand, replacing memory access with TT decompression will cause a massive amount of

features to be recomputed. We want to reduce such repetitive computation as much as

possible by efficiently utilizing limited on-chip memory.
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Table 7.3: Energy consumption comparison between fetching original feature from
off-chip HBM and decompressing corresponding TT-feature from on-chip SRAM.

Dataset TT(r=3) TT(r=5) TT(r=10) TT(r=20)

SRAM(pJ) 633 1339 4099 13882
TT-decomp.(pJ) 13082 41860 222640 1332160

HBM(pJ) 64075 64075 64075 64075
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Figure 7.7: TT-GNN Training dataflow

7.5 TT-GNN Training Dataflow

To exploit the algorithmic potential of tensor-train, we present the TT-GNN dataflow

in this section. Overall, we address the training problem with a top-down design, as we

gradually decompose the problem to be fitted on-chip. Specifically, the proposed dataflow

mainly consists of three main parts. (1) To completely eliminate off-chip memory access

under dynamic training configurations (e.g., minibatch size, GNN configuration), we

introduce the Hybrid Minibatch-Microbatch tiling strategy to adaptively control the size

of the subgraph being trained on the accelerator. To reduce the redundant computations

caused by neighbor sharing across microbatches, as well as maximize data reuse within

each microbatch, we customize the microbatch composition and scheduling order. (2)

We propose a unified algorithm to handle TT decompression during forward pass and

TT-gradient computation during backward pass. The proposed algorithm exploits data
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reuse among these two operators and provides a flexible mechanism to trade-off between

compute efficiency and memory consumption. (3) Finally, we improve the aggregation

and gradient scatter efficiency by offline reorganizing the microbatch subgraph as soon

as it is generated. In this section, we provide a detailed walkthrough of our TT-GNN

dataflow assuming a two-layer (two levels of neighbor fan-out) GraphSAGE model with

a MEAN function as the aggregating operator.

7.5.1 Highlevel Training Dataflow

Figure 7.7 presents the computation graph of a TT-GraphSAGE model. We use

squares to indicate the data at each layer and use arrows to illustrate the operations that

transform these data between each other. As shown in the figure, 182 the forward prop-

agation starts with a TT-layer, where the TT-format embeddings will be decompressed

into a minibatch of input vectors to be sent to the model. The decompression operation,

as we show in section 7.2, is essentially a sequence of small tensor contractions which

can be implemented as matrix multiplications. 183 After we obtain these input feature

vectors, each node in the hidden layer will fetch its neighbor features and perform the

aggregation function. In this case, the aggregation is simply a MEAN function. 184 The

aggregation is followed by an Apply function, where typically the hidden node feature

and the aggregated neighbor feature are combined together using a Fully Connected layer

to generate the hidden node features. This two-step message passing is repeated n times

depending on the number of hidden layers in the GNN model. 185 Finally, we apply the

SoftMAX operation to obtain the final classification result.

186 Reversely, the backward propagation starts from the classification loss and ends

at the TT-layer. 187 At each GNN layer, the output gradient is first propagated through

the NN layer with matrix multiplication. 188 Then, the hidden feature gradient needs
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to be scattered back to the input nodes. In other words, the gradient of each hidden

node will be scattered and accumulated to all the used input nodes during the forward

aggregation. 189 Finally, after the gradient of the model input features is obtained, we

use equation 7.6 to compute the gradient of TT-embeddings.

∂L

∂Gi(:, nk
i , :, :)

=
i−1∏
j=1

Gj(:, n
k
j , :, :) ∗

∂L

∂X(k, :)
∗

d∏
j=i+1

Gj(:, n
k
j , :, :) (7.6)

7.5.2 From Minibatch to Microbatch

As illustrated in Figure 7.8 (a), the biggest difference between minibatch GNN train-

ing and conventional full-batch GCN training is the inconsistent cost of each layer caused

by neighbor fan-out. Due to the neighbor sampling mechanism, there will be more and

more nodes and edges as we approach the input layer. This also indicates an increasing

memory and computation cost. The selection of minibatch size, which is essentially the

number of destination nodes (2 in this sample), will also affect the sampled graph size

and the corresponding minibatch training cost. Generally, as shown by Figure 7.8 (b),

when we process the who minibatch layer by layer, if any of the layers exceeds on-chip

memory capacity, we will have to use off-chip memory for temporary storage. The white

circles indicate node features stored off-chip, and red dashed lines represent associated

off-chip memory access. with Tensor-train format embedding and on-chip decompression,

we naturally eliminate inefficient off-chip embedding loading, as shown in Figure 7.8 (c).

However, the intermediate node features can still cause off-chip storage. Therefore, we

propose to further break the minibatch into smaller groups which we called microbatch,

which can be completely fitted on-chip.

Intuitively thinking, a microbatch can be obtained by simply selecting a portion of

the destination nodes from the original minibatch. As shown in Figure 7.8 (d), a smaller
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subgraph can be sampled from the selected nodes and their neighborhoods. This is equiv-

alent to setting the minibatch size to be a smaller value in the first place, except that we

do not update the model parameter after the backward pass of the microbatch. However,

this naive strategy will incur redundant computations and memory access across different

microbatches. In this example, suppose we are breaking this minibatch with 2 destina-

tion nodes into two microbatches, each with 1 destination node. Due to neighborhood

sharing, although the destination nodes of the two microbatches are completely different,

they could share common nodes in the hidden layer, and even more in the input layer.

Consequently, all the computations related to these shared nodes will be redundantly

computed unless we can cache the previously computed node features. However, the

limited on-chip memory capacity only provides us with a tight reuse distance budget.

Even if we can cache the shared nodes, the memory access over the shared nodes is still
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inevitably repeated across different microbatches. The situation gets worse with larger

batchsize, deeper network architecture, and with the added TT-layer at the beginning.

To tackle the above-mentioned challenge and enable efficient on-chip training with as

little overhead as possible, we propose our Hybrid Minibatch-Microbatch tiling strategy.

Hybrid Minibatch-Microbatch Tiling: As presented in Figure 7.8 (e), the first

insight is that the last few layers in a GNN model are much smaller compared with the

beginning layers. In other words, the cost of caching all the destination nodes and their

close neighbors is relatively low. Therefore, instead of breaking the minibatch directly

from the output layer, we keep the last few layers the same as the original minibatch

and start tiling at an intermediate layer. In this example, we reserve the space for all

two destination nodes and break the minibatch into microbatches at the hidden layer.

The benefit is very straightforward. As we can see from figure (e), for each microbatch,

after the target hidden nodes are generated, it can be directly used to compute the last

layer. The hidden node feature will be added to the partial sum of the destination nodes

which are always on-chip. In this way, there will be no shared hidden nodes across the

microbatches, and all the hidden node features only need to be computed and used one

single time. We call this Hybrid Minibatch-Microbatch Tiling as it works in a microbatch

fashion at first but eventually merges into the minibatch output. Another benefit of using

this strategy is that it reduces the number of shared neighbors at the first (few) layers.

As shown by the example in Figure 7.8 (e), since each microbatch contains less nodes

compared with (d), the shared neighbors in the input layer are also reduced, which leads

to fewer redundant TT-decompression.

The method works similarly in backward propagation. First, the gradient of the

hidden nodes only needs to be computed and stored for one time as there is no neigh-

bor sharing across microbatches. On the other hand, for shared neighbors in the first

layer, the gradient derived from one microbatch is only a partial sum. We seek to avoid
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Figure 7.9: The contraction flow of TT decompression as well as the gradient compu-
tation during the backward pass.

caching these partial sums to be accumulated because the first layer is the most memory-

consuming layer. Therefore, we can directly use the gradient in each microbatch to derive

the TT-format gradient of the TT embeddings. The TT-format gradient consumes much

less space and is always stored on-chip. An exception is that we will delay the computa-

tion of TT gradient only if we know the gradient of a specific node will be accumulated

in the next consecutive microbatch (only consider one-step reuse). This information is

available to us as we decide the composition and scheduling order of the microbatches

when we perform minibatch sampling. In either way, we avoid caching the vector format

gradient of the first layer, so that to control memory consumption.

Microbatch Selection and Scheduling Order As mentioned above, the shared

neighbors in the first few layers can still cause redundant TT decompression and TT-

gradient computation. To address the problem, we further propose to customize the

microbatch composition and scheduling order to maximize intra- and inter-microbatch

data reuse. Figure 7.8 (d) and (e) provide an illustration. Originally in Figure 7.8 (d),

we group node 3 and node 2 into one microbatch, and group node 1 and 4 in another

microbatch. This results in two shared neighbors at the first layer. One solution is to

schedule these two microbatches next to each other, so that the shared neighbors can
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be cached on-chip and reused. For another solution, as shown in Figure 7.8 (f), we can

group nodes with similar neighborhoods into the same microbatch. In this case, if we

select node 1 and 2 to be the first microbatch, and node 3 and 4 to be the second, then

there would be only one shared neighbor across these two microbatches. Reducing the

overhead of redundant computation even if these two microbatches are not processed

consecutively.

As we can see, these two strategies tackle the problem at different levels. Thus, in

TT-GNN, we combine them into a unified strategy. Recall that at the beginning of the

TT-GNN training, we first reorder the graph nodes according to the METIS partition

results. Therefore, the reordered node index naturally indicates neighborhood similarity.

In other words, nodes with close index values should be grouped into the same minibatch.

Therefore, given a set of hidden nodes to be scheduled, we first sort these nodes according

to their indices. After this, we can simply traverse the index list and group consecutive

nodes into one microbatch. Besides, the consecutive microbatches will also be scheduled

sequentially. In this way, we can efficiently obtain the microbatch composition as well as

scheduling order together with one single pass.

7.5.3 Microbatch Dataflow Walk-through

In the above subsections, we have managed to break the minibatch into microbatches

with minimized overhead, such that the microbatch can be completely processed on-

chip. We further argue that there still exists performance improvement opportunities

within each microbatch. Therefore in this subsection, we walk through the forward and

backward pass of each microbatch to illustrate our intra-minibatch optimizations.

TT Decompression and Update As shown in Figure 7.7, TT decompression is

required during forward propagation, and during the backward pass we need to compute
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the TT-gradient to update TT-embeddings. The corresponding equations used for these

two operations are presented earlier in equation 7.4 and 7.6.

We observe that both TT decompression and TT-gradient can be considered as con-

tracting a tensor-train network. We use Figure 7.9 as an illustration. In this example, we

have four TT cores. To obtain an input feature vector from the TT-embedding, we need

to extract a small tensor from each TT-core that together forms a tensor-train network.

This is shown as the top tensor-train (G1 − G2 − G3 − G4) in Figure 7.9 (b). On the

other hand, in the backward pass, we need to separately compute the gradient of the four

tensors, which is represented as the bottom four tensor-trains in Figure 7.9 (b). As we

can see, although the operation is still tensor-train contraction, one of the tensors should

be replaced by the gradient of the feature vector.

To effectively explore data reuse in this problem, we propose to compute the required

tensor-trains with the combination of prefix and suffix array. As shown in Figure 7.9 (a),

during forward pass, we use an array to store the intermediate prefix contraction results.

On the contrary, we only need to maintain a single suffix contraction result to generate

the output gradient of each tensor. For example, as shown in Step-1 of Figure 7.9 (c),

we first use the vector gradient and the cached G1−G2−G3 to generate the last tensor-

train. Then, we update the suffix contraction result by multiplying ∂x with G4, and use

another cached prefix result to generate the next tensor-train. Eventually, we can obtain

all the TT-gradients with the stored prefix array and a suffix contraction result.

Note that, we are able to flexibly trade-off between compute efficiency and memory

consumption with this algorithm. For example, we can choose to skip storing the prefix

array during the forward pass and recompute it in the backward pass. This can signifi-

cantly reduce the memory cost. On the other hand, we can simultaneously compute the

prefix and suffix array in the forward pass, thereby reducing the sequential computation

flow in the backward pass at the cost of higher memory consumption.
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Neighbor Aggregation and Gradient Scatter Neighbor aggregation and gradient

scatter are two important operations in a GNN model. During forward pass, we collect

the neighbor information of each target node and generate the aggregated feature vector.

In the back pass, we need to scatter the gradient of the target node back to all its

neighbors. From a message flow perspective, these two operations are reversed from

each other. However, computationally both of them can be formulated into a Sparse-

Dense Matrix Multiplication (SpMM) operation, where the sparse matrix operator is the

adjacency matrix of the subgraph. Moreover, the sparse matrix of the scatter SpMM is

simply the transpose of the aggregation SpMM.

To improve the compute efficiency of such SpMM operation, prior works have pro-

posed searching algorithms [169, 170] to exploit intermediate data reuse. The key idea is

to introduce a new set of aggregation nodes, where these nodes are essentially the partial

sums of the input nodes. By identifying the popular partial sums as the aggregation

nodes, we can avoid redundantly aggregating the associated input features, with very

little memory overhead. In TT-GNN, we use a similar method but apply it to both

forward pass and backward pass to save computations.

7.6 System and Accelerator Architecture

In this section, we introduce the complete design of the TT-GNN training system.

The overall system-level architecture is presented in Figure 7.10. The proposed training

dataflow is implemented in a dedicated accelerator, which is further attached to a host

processor. Since TT-GNN does not compress the graph structure, the adjacency list is

stored in the host memory. During training, the host processor is responsible for sampling

minibatches from the graph adjacency list. To facilitate an efficient on-chip learning pro-

cedure, the host processor will further execute two tasks. (1) It will analyze the memory
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Figure 7.10: Overview of the TT-GNN Training System.

consumption of the minibatch and decompose the minibatch into microbatches if neces-

sary. The procedure used for microbatch selection and scheduling is already discussed

above in Section 7.5.2. (2) After the microbatches are decided, the host processor will

further preprocess the compute graph to identify the intermediate aggregation set. As

we mentioned in Section 7.5.3, this helps improve the SpMM efficiency. As soon as one

microbatch is generated, it will be pushed to a task queue together with the dataflow

configuration. The accelerator will execute the microbatch training based on the sched-

uled tasks. At the same time, the host processor can simultaneously prepare multiple

minibatches and generate the associated microbatches.

As shown in Figure 7.10, TT-GNN accelerator mainly consists of the following mod-

ules: (1) A Contraction Unit that handles TT-decompression and TT-gradient compu-

tation. (2) A PE Array that is responsible for GNN related operations, including FC

forward and backward computation, neighbor aggregations, as well as gradient scattering.

(3) On-chip SRAM modules that store different types of data, including TT embeddings,

microbatch subgraph structure, dataflow configuration, node features, model parameters,

and all the computed gradients. (4) An overall Control Unit that orchestrates the mem-
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Figure 7.11: Relative training throughput compared with baseline CPU-GPU system.

ory and computation resources using the dataflow configuration file provided by the host

processor.

Contraction Unit and PE Array Although the TT Contraction Unit and the

PE Array handle different stages of the GNN training, the underlying computation pat-

tern is common. For TT-decompression and TT-gradient computation, the operation

is tensor-train contraction, which can be further decomposed into sequences of matrix

multiplications. For GNN-related computation, the PE array takes care of matrix mul-

tiplication in the FC layer and the vector-wise addition used during aggregation and

gradient scattering. Therefore, both TT contraction Unit and PE Array adopt a classic

2D Mac array architecture so that we can efficiently map the parallel vector operations

to the modules. We decouple the design of the Contraction Unit as well as the PE array

so that they can operate in a pipelined manner. Since we do not need to update the TT-

embeddings across different microbatches, we can decompress the input node features

for the next microbatch while processing the forward and backward pass of the current

microbatch.

Special Function Unit The Special Function Unit incorporates floating point arith-

metics that can handle functions including division, exponential operations, modular op-

erations, and so on. These basic operators are composed together to implement SoftMax
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Table 7.4: Summary of dataset statistics
Dataset #Node #Edge #Label Feat Len

Cora 2,708 10,556 7 1,433
Reddit 232,965 114,615,892 41 602

ogbn-arxiv 169,343 1,166,243 40 128
ogbn-products 2,449,029 61,859,140 47 100

function, index projection between node IDs and TT-index, Optimizer-related computa-

tions (e.g., parameter update in Adam [171]), batch normalization, and so on.

On-chip Memory TT-GNN has multiple on-chip SRAM buffers for storing different

types of data used during training. The TT-embeddings and TT-gradients are stored in

TT -Buffer. The microbatch graph structure, as well as the dataflow configuration file

generated by the host processor, are stored in the Subgraph-Buffer. The Input-Buffer

caches the decompressed input node features before being processed by the GNN model.

It also stores the vector-format feature gradient. Weight-Buffer stores GNN model pa-

rameters and parameters gradients. Output-Buffer caches all the activation maps as well

as the gradients of the hidden nodes. Finally, we specifically allocate a fraction from

the Output-Buffer as the Aggregation-Buffer to store intermediate aggregated partial

sums. As we discussed in Section 7.5.3, this helps improve the computation efficiency

of Neighbor Aggregation and Gradient Scattering. The size of the Aggregation-Buffer

is configurable and will be adjusted depending on the benchmark characteristics. This

information is obtained from microbatch generation and is included in the microbatch

configuration file.

7.7 Evaluation Methodology

In this section, we present the designed experimental methodology to evaluate TT-

GNN.
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7.7.1 Benchmark and Implementation

We implement both TT-GNN training and baseline GNN model training with Deep

Graph Library [161]. We also implement the proposed Microbatch generation and prepro-

cessing strategy in software and integrate it into the training pipeline. After a minibatch

is sampled by CPU, the subgraph will go through the microbatch generation stage. We

take the model architecture, training configuration, as well as TT-GNN hardware pa-

rameter as input and generate a sequence of microbatches tailored for on-chip TT-GNN

training. Finally, we use GraphSAGE [29] as the model architecture and select a series of

GNN benchmarks to evaluate TT-GNN, including Cora, Reddit, and two node property

prediction datasets from Open Graph Benchmark [162]. The basic attributes of each

graph benchmark are listed in Table 7.4.

7.7.2 Hardware Performance

Hardware Implementation and Modeling. The system configuration and hard-

ware consumption of TT-GNN are shown in Table 7.5. Power and area statistics of

customized modules are obtained from synthesizing RTL implementation using Synop-

sys Design Compiler under TSMC 22nm standard cell library. The latency, power, as

well as area of SRAM modules, are simulated with CACTI [91]. For performance and

energy-efficiency evaluation, we implement a custom simulator that is integrated with

the software framework to capture real training traces. The simulator is also used to

perform design space exploration.

Hardware Baseline We compare TT-GNN with a standard CPU-GPU training

system containing a single Nvidia 3090 GPU and an AMD Ryzen Threadripper 3970X

32-Core CPU. In the baseline system, graphs are originally stored in host DRAM and

loaded to device memory during training. Sub-graph sampling is offloaded to CPU, and
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Table 7.5: Configurations, Power, and Area of TT-GNN under 22nm Technology and
1GHz Frequency. The on-chip SRAM is divided into a 64KB Subgraph Buffer, a 64KB
TT Buffer, a 32MB Input Buffer, a 2MB Weight Buffer, and a 4MB Output Buffer.

Hardware
Module

Configuration Power(mW )Area(mm2)

Contraction Unit16×16 FP16 MAC 441.94 0.41
PE Array 32×16 FP16 MAC 968.97 0.93

SFU 16 Exp, 16 Div 78.21 0.071
SRAM Buffer 38.125MB 1048.44 27.15

we issue multiple threads to achieve the shortest sampling latency. For TT-GNN, the

TT-format embedding can be stored on-chip, while the graph edge list and sub-graph

sampling are executed on the host system. For performance comparison, we scale up

TT-GNN’s configuration to have the same peak computation throughput as the 3090

GPU.

7.8 Evaluation Results

With the above experimental methodology, we present the evaluation of TT-GNN in

this section.

7.8.1 Performance Evaluation

Training Throughput

We first compare the training performance between TT-GNN and the baseline CPU-

GPU training system across different benchmarks and minibatch sizes. As shown in

Figure 7.11, overall, TT-GNN achieves 1.55∼4210× throughput improvement over the

baseline. The speedup mainly comes from three aspects. First, TT-GNN avoids fetch-

ing off-chip embedding through effective compression and on-chip decompression. This

significantly reduces the latency of minibatch collection. In our design, the minibatch
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sampling and TT decompression are pipelined with the on-chip GNN training. This im-

proves compute resource utilization while also hides the subgraph preparation latency.

Second, the proposed Hybrid Minibatch-Microbatch dataflow improves both inter- and

intra-microbatch data reuse to reduce computation and memory access. Finally, we

leverage aggregation redundancy within each microbatch subgraph by caching the par-

tial sums during neighbor aggregation and gradient scattering. Besides the overall trend,

we also observe that TT-GNN achieves higher speedup under smaller batchsizes. This is

because GPU suffers from severe resource under-utilization when the batchsize is small.

The fixed latency such as kernel launching overhead and idleness caused by subgraph

sampling also accounts for a larger fraction with small batchsizes.

Latency Breakdown

Figure 7.12 presents the average latency breakdown of executing one minibatch. Over-

all, the minibatch sampling and TT computation have a comparable latency with forward

and backward propagation. This supports our pipelined design to fully hide the subgraph

preparation overhead. Besides, on benchmarks such as ogbn-arxiv, the number of input

nodes per destination node is much less. As a result, the computation is more dominated

by FC layers, leading to a larger portion of forward and backward propagation. Note

that, the TT-rank value will significantly change the complexity of Tensor-train contrac-

tion, and thus affecting the latency of TT decompression and TT-gradient computation.

In TT-GNN, we reduce this impact by caching the prefix contraction result during the

forward propagation, and reuse it for TT-gradient computation. Overall, as we discussed

in Section 7.5.3, we are able to generate all the required Tensor-trains with a complexity

equal to contracting only two tensor-trains.
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Figure 7.12: Training latency breakdown of one minibatch.

Impact of Different Techniques

We use the Reddit dataset to demonstrate the effect of the proposed techniques. As

shown in Figure 7.13, we break down the speedup of TT-GNN to the specific techniques

we discussed above. Overall, the specialized accelerator design and on-chip learning

mechanism bring 11.2× of performance improvements. This benefit is further amplified

by 1.25× with Hybrid Microbatch-Minibatch dataflow, and by 1.11× with the aggregation

partial sum reuse. In our experiment, we observe that the benefit of reusing intermediate

partial sum is less than the reported number in literature [170, 169]. This is because we

can only operate on the microbatch-level compute graph, where neighbor sharing is less

effective.

7.8.2 Energy-efficiency

Finally, we show the energy-efficiency improvements of TT-GNN with Figure 7.14. As

we can see, TT-GNN has 2.83× to orders of magnitude better energy efficiency than the

baseline system. Apart from the natural benefit of using specialized dataflow and ASIC

design, the most important advantage is that we completely avoid off-chip memory access
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Figure 7.14: Relative energy-efficiency improvements of TT-GNN over baseline
CPU-GPU training system.

during the microbatch execution. This is a significant portion of the energy consumption

in the original training setting. Similar to the speedup analysis, the advantage of a

dedicated on-chip training accelerator over GPU is larger on smaller batchsizes, as GPU

suffers from resource under-utilization and fixed energy consumption.
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7.9 Related Work

Tensor-train Decomposition (TTD) [40] is originally used to decompose high order

tensor data and break the curse of dimensionality through efficient implementation of

basic operations. [64] sees the opportunity of adopting TTD to reduce the modes size

and computation complexity of Convolution Neural Networks (CNNs). The key idea is

to change the 2D weight matrix into a parameterized tensor-train weight and train the

entire model from scratch. In other words, this approach can be regarded as replacing

the FC and Conv layer in CNNs with a Tensor-train (TT) layer. TT layer has fewer

parameters and less computation complexity for inference. Since then, TT layer has

also been used in other DNN models such as RNNs [65] and Transformers [66]. The

unique computation pattern of Tensor-train also inspires research effort on customized

accelerator design [67] for these Tensorized Neural Networks (TNNs).

Recently, [13] proposes to use TT-layer to replace the large embedding layer used

in Deep Learning Recommendation Models. The central idea remains the same as be-

fore. The difference is that none of the previous DNN models have such large weight

matrix that consumes more than 99% of the model capacity with up to TBs of memory

consumption. Therefore, this work demonstrates the important potential of tensor-train

method in such extreme-scale models, which could potentially help control the explosive

demands on computational infrastructure.

7.10 Conclusion

In this paper, we propose TT-GNN, a training system that adopts Tensor-train De-

composition to compress the memory-consuming feature embedding matrix, which leads

to an on-chip learning implementation. TT-GNN adaptively breaks down a minibatch
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into smaller microbatches that can be fitted on-chip. The microbatch composition and

scheduling order are designed to maximize data reuse and reduce redundant computa-

tions both across and within microbatches. We also propose a unified algorithm to jointly

handle TT decompression during forward propagation and TT gradient derivation during

backward propagation. Combining the software and hardware optimizations, the pro-

posed software-hardware solution is able to outperform existing CPU-GPU training sys-

tems on both training performance (1.55∼4210×) and energy efficiency (2.83∼2254×).
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Chapter 8

Conclusion and Future Work

In this thesis, we discuss the systematic and architectural challenges brought by the

emerging development of machine learning models. We identify the root cause being the

explosion of data used by these applications, including explosive training dataset, ever-

scaling model parameters, and exponentially increasing intermediate results. We envision

a future where such a situation will continue to be more and more severe, making the

gap between algorithm and hardware systems even larger.

Therefore, to tackle the problem and maintain a healthy development of the AI indus-

try, we argue that it is important to intelligently identify and leverage different types of

data redundancy in these emerging models. To achieve this, we need to understand both

the machine learning models as well as the underlying hardware platform. Most time an

algorithm and hardware co-design is required to achieve final performance and energy-

efficiency improvements. Specifically in this thesis, we propose two different methods

that correspond to two types of data redundancy in existing machine learning models

that are rarely discussed in prior work.

In large models like Transformers, the cost of computing self-attention scales quadrat-

ically with respect to the input sequence. However, a lot of connections evaluated by the
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dense attention are unnecessary. Therefore, we propose to use approximated attention

as a means of estimating the importance score and thus avoid computing the unimpor-

tant attention. Such approximation-based redundancy elimination is very useful when

the intermediate activation contains many unimportant values which have a very lim-

ited impact on the final output. Similar use cases include extreme classification [172],

CNNs [173], and RNNs [173]. Adopting runtime attention approximation introduces low-

precision operators as well as sparse operators to the model. Therefore, depending on

the underlying platforms, we customize our hardware implementation strategies as well.

For GPU acceleration, we introduce small structure sparsity to balance kernel efficiency

and model accuracy. On the other hand, we fully support irregular sparse attention with

specialized accelerator architecture design.

There are cases where large datasets or embedding tables are utilized in a neural

network model, such as DLRM [3] and GNN [29]. Conventional model compression

techniques fail to address such data explosion issues due to insignificant reduction ra-

tios. Furthermore, these applications usually contain inter-node or inter-sample similarity

which indicates opportunities to adopt a more compact data representation. Based on

this analysis, we propose two software-hardware co-designs utilizing Tensor-train decom-

position to reduce the cost of data representation in emerging neural network models.

Adopting Tensor-train to the data representation completely changes the computational

pattern, which leads to a differentiated hardware system design.

With the contribution of this dissertation, we would like to emphasize the following

statements:

• The size of the neural network models will continue to scale at an extremely fast

speed, causing more challenges to the underlying hardware systems.

• A possible angle to approach this problem is by analyzing it from a data-centric
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perspective. This is because any type of neural network model can be regarded

as an interacting system between the dataset, model parameter, and computation

results (activations). The data explosion always happens among one or multiple

types of data in this problem formulation. Therefore, we can identify different types

of data redundancy based on this formulation and address the issue directly from

the root cause.

• While application-level hints can lead to innovative algorithmic designs to exploit

data redundancy, achieving practical hardware performance improvements requires

more effort. Therefore, algorithm, software, and hardware co-design is an effective

way to trade-off between model performance and hardware efficiency.

Finally, with the booming development of large foundation models, future neural net-

work models are more likely to adopt a Transformer-based architecture. Although this

may reduce the diversity of neural network architecture, the scaling problem still exists,

and our data-centric problem formulation also stands. As a result, efficient and inno-

vative techniques for leveraging data redundancy will always be an important direction.

Furthermore, when solving domain-specific problems, the ability of current LLMs is still

insufficient. Therefore, it would be promising to apply domain-specific models like CNNs

and GNNs to the design of such domain-specific large foundation models. The resulting

large models will exhibit features from both Transformers and prior domain-specific mod-

els. Thus, experience from accelerating prior backbone models will guide future hardware

solutions as well. We wish the idea and practice from this dissertation can serve as a

basis to help push forward the research of future AI software hardware co-optimization.
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