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ABSTRACT OF THE DISSERTATION

Synoptic and local influences on boundary layer processes, with an
application to California wind power

by

David K. Mansbach

Doctor of Philosophy in Oceanography

University of California, San Diego, 2010

Joel R. Norris, Chair
Daniel Cayan, Co-Chair

This dissertation examines atmospheric boundary-layer processes.

The equatorial Pacific cold tongue region is examined, with observations showing

that monthly anomalies in low-level cloud amount and near-surface atmospheric temper-

ature advection are negatively correlated. In warm advection, soundings show the surface

layer is stably stratified, inhibiting the upward mixing of moisture, while cold advection

favors a more convective atmospheric boundary layer and greater cloud amount. Two

global coupled climate models fail to simulate this, suggesting specific areas for possible

improvement.

Climatology and low-level wind variability near three California wind farms are

then explored: San Gorgonio Pass and Tehachapi Pass in Southern California, and Solano

xiv



County further north. Each site has a pronounced annual cycle with highest wind speeds

in the warm months. While winter winds depend more on SLP, summertime winds are

stronger, more diurnally dependent, and show more topographic influence on direction,

though SLP variability is lesser.

Self-organizing maps reveal that oceanic high SLP and continental low SLP syn-

optic patterns lead to higher wind speeds. SLP gradients at 100km separation are

strongly correlated to cotemporaneous site wind speeds. Dynamically downscaled re-

analysis data at 10km resolution reveals that a thermally driven flow at the northern

site commences at the coast and propagates inland in a distinct packet. The 10km

model does not resolve the Gorgonio Pass flow, but another model at 2.5km validates

well and shows that the observed winds depend on interactions between solar and lateral

boundary forcing.

A statistical downscaling scheme is developed for relating GCM output to site

winds. The multilinear regression model integrates weather type information and ob-

servational findings to reproduce wind speeds, showing skill for both monthly and daily

data. Monthly mean wind speed changes over the 21st century are implied of up to 0.6

m/s in the summertime in three downscaled coupled climate models under greenhouse

forcing. However, the discrepancies between models prevent consensus. Analysis of the

discrepancies reveal that in one model the western North American surface heating coin-

cides with a decrease in SLP, while others show increased continental SLP. The coupled

models’ representations of these regional patterns are discussed.

xv



Chapter 1

Introduction

The atmospheric boundary layer serves a key role in many processes on Earth.

In marine environments, the boundary layer regulates air-sea exchanges of many things:

gases, horizontal momentum, sensible heat, moisture, and aerosol particles. The presence

and characteristics of boundary-layer clouds can also strongly affect radiative transfer

and column-integrated energy balance. Atmospheric boundary layers over land also

regulate sensible and latent heat, gases, and particulate matter, and can be a major

sink of horizontal momentum, especially in the presence of topography or significant

vegetation. The atmospheric boundary layer is naturally the site where the human,

animal, and ecosystem impacts of most weather and climate phenomena are realized,

and also holds great importance for trace gas and contaminant fate determination. This

dissertation contains studies of both marine and terrestrial atmospheric boundary layers,

looking at processes on a variety of spatial and temporal scales with three main goals: to

better understand the boundary layer marine clouds that are crucial to Earth’s energy

balance, to elucidate the details of low-level circulations that drive wind farms, and to

consider the effects of anthropogenic climate change in these winds.

Although exact definitions vary with setting, atmospheric boundary layers tend

to develop wherever deep convection is not present (Stull, 1988). A qualitative explana-

tion for such a layer’s existence is intuitive for the case of a cool sea surface temperature

(SST) area under an atmospheric subsidence regime. In such a setting the relatively

warmer descending air will naturally settle above the cold area influenced by the ocean

surface, leading to a sharp inversion that caps the boundary layer (Lilly, 1968). For land

areas — our focus being California — the contrast is less dramatic, as subsidence often

1
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overlies air influenced by daytime surface heating, and a boundary layer with more pro-

nounced diurnal variations can develop, as seen in vertical profiles of temperature and

momentum (ie Warner, 2004; Iacobellis et al., 2009). Although the principal elements

of marine boundary layers are present also in continental settings, the more efficient

solar heating of land than water and the presence of vegetation and topography means

that, in practice, the focus is quite different in the two cases. Both marine and conti-

nental boundary layers reflect forcing on many scales. Larger-scale forcing mechanisms

include subsidence related to deep tropical convection, large-scale ocean gyres that dic-

tate SST, or synoptic-scale dynamics such as effects of horizontal momentum excited by

free-tropospheric pressure gradients and frontal passage, while local vertical boundary

forcing mechanisms include patchy oceanic upwelling, surface fluxes into the atmosphere,

and surface drag.

The importance of marine boundary layers, however, is by no means limited

to local scales. Marine stratocumulus clouds reflect far more incoming radiation back

to space than they trap in outgoing longwave radiation emitted from the surface, and

contribute greatly to the global negative radiative forcing role of clouds in the current

climate (Ramanathan et al., 1989). The stability or change in this condition in response

to forcing on different scales under global climate change, however, is unknown, and

motivates the first study in this dissertation (Bony and Dufresne, 2005; Stephens, 2005).

Chapter 2 focuses on marine boundary layer clouds near the low SST region of

the eastern equatorial Pacific cold tongue. The area, which has mainly stratocumulus

clouds as well as some shallow cumulus clouds (Norris, 1998a), provides a sort of natu-

ral laboratory because it holds similar SST ranges and lower-troposoheric conditions as

the eastern subtropical ocean areas where stratocumulus clouds predominate (Klein and

Hartmann, 1993), but the spatial distribution of the SSTs in relationship to the charac-

teristic low-level wind streamlines is markedly different. Rather than a typical condition

of winds blowing from cool to warm areas, the cold tongue region has a notable area of

low-level advection from warm to cool SST areas just south of the equator. Chapter 2

shows how satellite-observed monthly mean cloudiness is related to variations in “SST

advection” by wind, implying that some of the stratocumulus variability explored in

past studies (ie, Klein and Hartmann, 1993; Albrecht et al., 1995, 1988) may not have

explored the full importance of SST advection because it is consistently negative in these

regions. It further demonstrates that several major GCMs fail to capture observed SST
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advection-cloud covariability around the cold tongue region, and suggests that improving

performance in this area could lead to a better representation of low-level clouds and

their variability.

Chapters 3-5 represent a change in focus toward the terrestrial atmospheric

boundary layer and the detailed meteorology and climatology forcing the wind at three

major California wind farms. This is clearly a much more applied topic than Chapter 2,

and overall the studies attempt to walk a careful path between general meteorology and

overspecialization. In particular, although California overall has had large-scale wind

farms for decades, the peer-reviewed literature does not comprehensively diagnose the

interactions between synoptic, topographic, and local forcings that drive the winds at

these sites (Gipe, 1995). Our focus on the most important, previously overlooked aspects

of wind power meteorology, for instance, leads to a focus on variability at the annual,

synoptic, and diurnal time scales, as clearly suggested by spectral analysis for every data

set examined. This focus leans toward the basic meteorological aspect of the problems

as objectively defined by periodograms, while a more applied approach than ours would

give more attention to hourly and seasonal time scales. The reason such a highly applied

study would do so is that the former are of great importance to short-term electricity

markets (McSharry et al., 2005), while the latter are often critical to determining the

level of fuel risk that might harm a wind farm developer’s ability to repay financial obli-

gations. Although these are mentioned in our study, they are not emphasized as much

as the objectively determined scales of variability.

The California wind farm studies in chapters 3-5 touch on annual cycles of re-

gional meteorological conditions, synoptic weather pattern analysis and classification,

and local circulations in areas of complex orography and vegetation patterns. While

much of the work relies on and refers to previous, more general theoretical and observa-

tional studies, the work in the dissertation has relevance to future meteorological studies

beyond the application to wind power. In particular, the analysis of southern California

winds can further inform future work on coastal winds and upwelling (such as previously

examined in Dorman and Winant, 1995; Taylor et al., 2008), southern California climate,

precipitation, and fire risk (Conil and Hall, 2006; Westerling et al., 2004; Hughes and

Hall, 2009), and air pollution meteorology (Zhong et al., 2004; Bao et al., 2008), just as

it draws on these topics in the first place.

The final component of the dissertation, in chapter 5, reconnects with the issue of
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global climate change by examining its possible effects on wind power in California. Since

chapters 3-4 are inspired and based around the complex terrain and presence of local

circulations in California, direct analysis of low-level winds from GCMs is inaccurate and

some form of downscaling is necessary. The chapter serves the twin purposes of showing a

method to relate thorough observational analysis to a statistical downscaling model and

using this model to bracket potential changes in wind speed at the sites of interest under

a certain greenhouse gas emissions storyline. The methodology described could easily be

adapted to different sites or different forcing data sets, and to other fields besides wind

speed. The results of applying the models to forced GCMs, in addition to their relevance

to wind generation and long-term public utility planning, also highlight the strengths

and limitations of using the current crop of forced GCM climate scenarios to inform

questions of regional climate change. Our intention is to show what the downscaling

model implies for wind energy at the same time that we illustrate larger issues and

uncertainties regarding 21st century regional climate change.

For all of the research undertaken, analysis of observations is the principal tool

used to understand the atmospheric boundary layer processes. This is not to belittle

the value of analytic or numerically modeled research; past studies in energy balance

models, dynamics and thermodynamics of boundary layers, and models from regional

scale down through mesoscale to large eddy simulations are constantly referred to in

this dissertation. The chosen approach is simply recognition of the fact that bound-

ary layers fundamentally contain high Reynolds number flow and turbulent fluxes that

cannot be explicitly resolved, and furthermore that uncertainties regarding physical and

microphysical fluxes and processes are important questions the science has not yet fully

captured in theory and models. The overall aim of this dissertation, then, is to use tar-

geted observational analysis to understand boundary layer processes that are not fully

described by current theory and numerical modeling work.



Chapter 2

Low-level cloud variability over the

equatorial cold tongue in observations

and models

2.1 Abstract

Examination of cloud and meteorological observations from satellite, surface, and

reanalysis datasets indicates that monthly anomalies in low-level cloud amount and near-

surface temperature advection are strongly negatively correlated on the southern side of

the equatorial Pacific cold tongue. This inverse correlation occurs independently of rela-

tionships between cloud amount and sea surface temperature (SST) or lower tropospheric

static stability (LTS) and the combination of advection plus SST or LTS explains signif-

icantly more interannual cloud variability in a multilinear regression than does SST or

LTS alone. Warm anomalous advection occurs when the equatorial cold tongue is well

defined and the southeastern Pacific trade winds bring relatively warm air over colder

water. Ship meteorological reports and soundings show that the atmospheric surface

layer becomes stratified under these conditions, thus inhibiting the upward mixing of

moisture needed to sustain cloudiness against subsidence and entrainment drying. Cold

anomalous advection primarily occurs when the equatorial cold tongue is weak or absent

and the air-sea temperature difference is substantially negative. These conditions favor

a more convective atmospheric boundary layer, greater cloud amount, and less frequent

occurrence of clear sky.

Examination of output from global climate models developed by the Geophysical

5
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Fluid Dynamics Laboratory (GFDL) and the National Center for Atmospheric Research

(NCAR) indicates that both models generally fail to simulate the cloud-advection re-

lationships observed on the northern and southern sides of the equatorial cold tongue.

Although the GFDL atmosphere model does reproduce the expected signs of cloud-

advection correlations when forced with prescribed historical SST variations, it does not

consistently do so when coupled to an ocean model. The NCAR model has difficulty

reproducing the observed correlations in both atmosphere-only and coupled versions.

This suggests that boundary layer cloud parameterizations could be improved through

better representation of the effects of advection over varying SST.

2.2 Introduction

Low-level clouds combine a small greenhouse effect with a generally high albedo

and thus contribute significantly to the overall net cooling role of clouds in Earth’s cli-

mate (Ramanathan et al., 1989). Currently, lack of both resolution and appropriate

physical parameterizations prohibit reliable large-scale numerical prediction of cloud-

climate feedbacks (e.g. Stephens, 2005; Bony and Dufresne, 2005). A good strategy for

improving our understanding of climate mechanisms and their numerical simulation is

to carry out focused studies that elucidate specific ocean-atmosphere-cloud relationships

and that can inform and constrain model results. By examining the interannual vari-

ability of low-level clouds in the eastern equatorial Pacific, an area of high atmospheric

and oceanic variability located on the edge of a persistent stratiform cloud deck, we aim

to uncover sometimes-subtle details of marine low-level cloud processes.

Climatologically, low-level stratiform clouds are found in subtropical subsidence

regions over the relatively cool eastern side of oceans, and they are most prevalent in

seasons of high lower-tropospheric static stability (LTS) (Klein and Hartmann, 1993).

The relationship between low-level cloud amount and LTS, or sea surface temperature

(SST), found in the seasonal cycle is also apparent at other timescales. Interannual

anomalies in cloud amount and SST are negatively correlated in eastern subtropical

oceans (Norris and Leovy, 1994), with the maximum effect on clouds occurring 24-30

h downwind from SST anomalies (Klein et al., 1995). There is also evidence of low-

level cloud variations preceding SST anomalies in daily data, though the extent, nature,

and exact mechanisms involved in two-way low-level cloud-SST relationships remain to

be fully analyzed (Klein, 1997; Xu et al., 2005). Low-level stratiform clouds display
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appreciable variability on synoptic, seasonal and interannual scales, with larger regions

generally more showing variability over longer time scales (Rozendaal and Rossow, 2003),

and year-to-year changes in cloud amount can be substantial relative to the climatological

mean.

While most low-level stratiform clouds exist in areas of the subtropics where pre-

vailing winds advect the atmospheric boundary layer equatorward over slowly increasing

SST, one exception is the region of the eastern Pacific equatorial cold tongue. Here

northward trade winds flow over climatologically decreasing SST between 5◦ S and 1◦

S and then over rapidly increasing SST as they approach the Intertropical Convergence

Zone near 8◦ N. Previous studies have demonstrated that the boundary layer is sensitive

to changes in underlying SST (e.g. Yin and Albrecht, 2000) especially on the northern

side of the equatorial cold tongue, where advection over the sharp SST gradient generates

large latent and sensible heat fluxes that favor development of extensive stratocumulus

(Deser et al., 1993). Much less research attention has been devoted to the southern side

of the cold tongue, where advection of relatively warm air over cold SST can produce

shallow and stably stratified layers near the surface (e.g. Paluch et al., 1999). This is

one of the very few areas of the ocean interior where cloudless boundary layers occur at

non-negligible frequency (Norris, 1998b).

The southern side of the equatorial cold tongue provides a unique setting to study

how advection over decreasing SST affects low-level cloudiness. The analysis is simplified

since the trade winds are steady, unlike the case for extratropical latitudes. Moreover,

this area lies on the northern edge of the extensive southeastern Pacific stratiform cloud

region and experiences large year-to-year changes in low-level cloud amount. The present

study describes and explains the driving forces behind these interannual cloud variations

using satellite cloud data, ship-based synoptic reports, and soundings from two different

years in the eastern equatorial Pacific region. In order to see whether the important

elements of our findings are reproduced in climate simulations, we also examine output

from two atmospheric general circulation models (AGCMs) run over prescribed SST and

output from three coupled atmosphere-ocean general circulation models (CGCMs).

2.3 Observational data sources

The primary source of cloud information in this study is monthly mean daytime

low-level cloud amount from the International Satellite Cloud Climatology Project (IS-
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CCP) D2 visible-radiance adjusted cloud amount dataset (Rossow and Schiffer, 1999).

These data are available on a 2.5◦ × 2.5◦ grid during July 1983-September 2001. In

ISCCP, “low-level” refers to clouds whose tops are at a pressure greater than 680 hPa,

and we look at combined low-level cloud coverage of all optical thicknesses. Since a

satellite cannot see low-level clouds when upper-level clouds are obscuring its view, we

adjust ISCCP data by assuming that low-level clouds are randomly overlapped with

upper-level (middle plus high) clouds. Taking satellite-observed upper-level cloud cover,

U , and satellite-observed low-level cloud cover, L, into account, we compute L
′
, the cor-

rected low-level cloud amount, from L
′

= L/(1− U), after Rozendaal et al. (1995). For

convenience, the adjustment for cloud overlap is applied to monthly mean data instead

of adjusting instantaneous values for cloud overlap prior to averaging them to monthly

means. We found that values calculated from the two methods during July and Octo-

ber for the region 20◦S-0◦, 110-85◦W had a correlation of 0.997, and in the rest of our

analysis we therefore use monthly mean low-level cloud amount adjusted for overlap.

The most important large-scale meteorological parameter for our study is advec-

tion by 1000 hPa winds over varying SST: −~V1000 · ∇SST . We refer to this as “SST

advection,” and obtain monthly mean wind and SST data from the National Centers for

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR)

reanalysis (Kalnay et al., 1996). The SST gradient used is the “upstream” gradient, i.e.,

composed of the finite differences centered half a grid box south and east of the corre-

sponding point for which the advection value is indicated, in order to better approximate

the temperature advection in the southeasterly trade winds of the southern tropics.

Since ISCCP cannot provide morphological cloud type information we also exam-

ine data from ship-based surface observers in the Extended Edited Cloud Report Archive

(EECRA) (Hahn and Warren, 1999) from 1983-1997. Observations in the EECRA in-

clude sky coverage by all clouds and by low-level clouds, cloud type, SST, air temperature

and pressure, dew point depression, and wind speed.

As a complement to the EECRA synoptic reports, we also make use of soundings

by research vessels affiliated with the Eastern Pacific Investigation of Climate Processes

in the Coupled Ocean-Atmosphere System (EPIC) program. Of particular interest to

us are data from transects along 95◦ W and 110◦ W in November 1999 and November

2001, described in Pyatt et al. (2005), since these two years correspond to different SST

advection conditions south of the Equator.
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Figure 2.1: (left) June-November climatological overlap-adjusted low-level cloud amount (con-

tours) and standard deviation of interannual monthly anomalies (shading). Units are percent-

cloud-amount. (right) Climatological SST and 1000 hPa wind distribution in these months. The

wind vector in the upper-right corner has a magnitude of 8 m s−1.

After the treatment of observational data, we briefly examine whether modern

general circulation models show a cloud-temperature advection response similar to that

in observations. We examine both CGCM and AGCM simulations over the time period

1983-2001, which most nearly matches the ISCCP period.

2.4 Observational analysis and results

2.4.1 Correlation and multilinear regression analysis

Our analysis focuses on the cool-season months of June through November since

that is the time of year when climatological low-level cloud amount and interannual vari-

ability are largest in the southeastern tropical Pacific, thus implying a greater potential

cloud feedback on the climate system. Nonetheless, our results would be qualitatively

similar if all months were included. Fig. 2.1 shows the June-November climatological

low-level cloud amount and standard deviation of interannual monthly anomalies in the

ISCCP data. The heart of the dense low-level cloud region aligns with areas of cooler

waters off the South American coast, with a secondary area of extensive low-level cloud

amount north of the equatorial SST front.

The area of the northern equatorial cold tongue exhibits high interannual vari-

ability in cloud amount due to changes in SST and SST advection associated with El

Niño-Southern Oscillation (ENSO) events and tropical instability waves (Deser et al.,

1993). The region of pronounced variability east of 110◦ W between 5◦ S and the Equa-
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tor is a region of predominant warm SST advection. Since the sign of meridional SST

gradient and climatological temperature advection reverse at or just south of 0◦, the sign

of SST advection south of the Equator at any time is typically opposite from that north

of the front.
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Figure 2.2: Correlation (contoured) between monthly anomalies in (a) ISCCP low-level cloud

amount and SST; (b) low-level cloud amount and LTS; (c) low-level cloud amount and SST

advection; and (d) SST and SST advection. Shading indicates significance at the 95% (light)

and 99% (dark) confidence levels.

To investigate the conditions associated with low-level clouds in the cold tongue

region, we begin with the satellite data set. From the overlap-corrected ISCCP data,

we subtract 19-year (18 for October and November) averages from the monthly observa-

tions, and using the anomalies proceed with correlation and linear regression analysis at

each 2.5◦ × 2.5◦ grid box. Maps of local correlations between reanalysis meteorological

parameters and low-level cloud amount serve as a starting point in attributing low-level

cloud variability. For such maps, we use the effective sample size and a standard t test
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to compute significance of linear correlations. Our method follows that of Klein (1997),

but on a month-to-month basis rather than daily.

Since SST has been shown to have a close association with low-level stratiform

cloudiness (Norris and Leovy, 1994), we use it as our first correlation parameter. In

Fig. 2.2a, monthly anomalies in SST and cloud amount exhibit the expected negative

correlation over most of the climatological low-cloud region, although the relationship is

statistically significant mainly in the southern region of the stratiform deck and north of

the equatorial SST front. Anomalies in SST are also negatively correlated with anomalies

in low-level cloud optical thickness (not shown). Another parameter that is closely related

to SST and cloudiness is LTS, defined as the difference in potential temperature between

the 700 hPa level and 2 m above the surface (θ700− θ2m) following Klein and Hartmann

(1993). The statistically significant positive correlations between cloud amount and LTS

anomalies on the northern side of the cold tongue displayed in Fig. 2.2b are due almost

entirely to variations in SST rather than variations in 700 hPa temperature.

The sense of SST advection is another meteorological parameter that previous

studies have found to be strongly related to low-level stratiform cloud amount (e.g.

Klein et al., 1995; Klein, 1997; Norris and Iacobellis, 2005), and Fig. 2.2c shows that

statistically significant negative correlations exist between monthly anomalies in SST

advection and low-level cloud amount over the equatorial cold tongue and southwest of

the climatological maximum in cloud amount. Although not shown, SST advection is also

negatively correlated with low-level cloud optical thickness in these regions. The weak

positive cloud-SST advection correlations occur where interannual variability is quite

weak (Fig. 2.1) and consequently are less likely to be influential on the climate system.

Considering that both SST and SST advection are related to variations in low-level cloud

amount, it is instructive to examine how they are related to each other. Figure 2.2d

presents the spatial pattern of correlations between monthly anomalies in SST and SST

advection. The most prominent feature in this plot is the band of positive correlation

north of the Equator and the band of negative correlation south of the Equator. This

is because SST varies most strongly along the near-equatorial SST front, with lesser

variability of the same sign to the North and South. Since monthly-mean SST advection

anomalies in this area are mainly determined by SST variability along the largely steady

wind streamlines, the latitude of greatest SST variability determines the latitude where

the anomalous SST advection changes in sign. At the resolution of the grid used here,
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Figure 2.3: (left) Contours represent increase in variance explained (R2) in ISCCP low-level

cloud amount by regressing monthly anomalies in SST advection inaddition to monthly anomalies

in SST. Contour interval is 0.1. Shading indicates significance at the 95% (light shading) and

99% (dark shading) confidence levels. Also outlined is the southern cold tongue region referred

to in the text. (right) Total low-level cloud variance explained by both SST advection and SST

in the multilinear regression.

that latitude is on or within a degree south of the Equator, the same as the location

of the climatological SST front. On the northern side of the cold tongue, colder SST

is associated with more negative SST advection, both of which favor increased low-level

cloud amount. Contrastingly, on the southern side of the cold tongue, colder SST is

associated with more positive SST advection, thus producing opposing effects on cloud

amount.

The hypothesis that low-level cloudiness is significantly influenced by more than

one meteorological factor may be tested by gauging how much additional variance (R2

statistic) is explained by a second parameter in a multilinear regression at each grid box.

To determine whether the increase in R2 due to adding a second physical parameter

is statistically significant, we employ bootstrap techniques that take into account the

degree of statistical dependence of consecutive months in each grid point as well as the

R2 increase from the second parameter, described in more detail in Appendix A. Fig. 2.3

displays the amount of additional low-level cloud variance that SST advection as a second

regressor accounts for when SST is the first regressor.

Although accounting for little extra variance in much of the domain, SST ad-

vection explains significantly more cloud variance than SST alone in a region on the

southern side of the equatorial cold tongue (5◦S - 0◦, 105◦-95◦W), hereafter called the

“southern cold tongue region.” In this region the fraction of low-level cloud amount vari-
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ance explained using both regressors is around 0.5, whereas with only SST it is closer

to 0.1. Very similar results are obtained if LTS is used instead of SST as the first re-

gressor, and if climatological monthly mean winds are used instead of varying monthly

mean winds. Furthermore, if we use non-overlap-adjusted low-level cloud amount (cor-

responding to an assumption of minimum overlap between clouds of different heights),

or total ISCCP cloudiness (corresponding to a maximum overlap assumption), a very

similar pattern also results. Contrastingly, other second regressor variables such as θ700,

vertical velocity at 700 hPa, or surface divergence do not exhibit any organized pattern

that explains significantly more cloud variance.

The sensitivity of low-level cloud amount on the southern side of the cold tongue

to interannual variations in advection over the SST gradient is due to the fact that

absolute (not anomalous) advection changes sign from year to year. Over most subtrop-

ical stratiform cloud regions, SST advection ranges only from moderately negative to

strongly negative, but in the southern cold tongue region, SST advection ranges from

moderately positive to weakly negative. As listed in Table 1, monthly anomalies in SST

advection averaged over the latter area are inversely correlated with anomalies in local

and Niño 3.4 SST. Table 1 also shows that low-level cloud amount variability in the

southern cold tongue region is more closely related to variability in SST advection than

it is to variability in local SST, Niño 3.4 SST, or LTS.

2.4.2 Cold and warm SST advection composites

Compositing analysis is a useful method to illustrate changes in cloud and surface

meteorological properties associated with variations in SST advection. We do this by

classifying anomalous monthly SST advection values averaged over the southern cold

tongue region into lower, middle, and upper terciles and then examining the cloud and

meteorological anomalies associated with each tercile.

Fig. 2.4 presents mean SST and 1000 hPa wind distributions for lower and upper

SST advection terciles, along with the differences between the two terciles. The very

small magnitude of wind vector differences near the Equator (Fig. 2.4c) indicates that

variations in SST advection are almost exclusively driven by changes in the SST gradient.

The lower tercile, corresponding to cold SST advection in the anomaly sense, occurs

when the equatorial cold tongue is weak and the along-wind SST gradient is nearly flat,

leading to near-zero SST advection in the absolute sense (Fig. 4a). The upper tercile,
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Table 2.1: Correlation coefficients for monthly-mean interannual anomalies of several reanalysis

meteorological fields and ISCCP cloud fields averaged over the southern cold tongue region, 105◦-

95◦W, 5◦S-0◦. Correlations significant at the 90% level are in bold and those also significant at

the 95% level are in italics.

Low-level
cloud
amount

- -0.50 0.16 -0.41 -0.28 0.36

Upper-
level cloud
amount

-0.50 - 0.38 -0.26 0.76 -0.73

Niño 3.4
SST

0.16 0.38 - -0.79 0.74 -0.62

SST advec-
tion

-0.41 -0.26 -0.79 - -0.61 0.49

Local SST -0.28 0.76 0.74 -0.61 - -0.90

θ700 − θ2m 0.36 -0.73 -0.62 0.49 -0.90 -

Low-

level

cloud

amount

Upper-

level

cloud

amount

Niño

3.4 SST

SST

advec-

tion

Local

SST

θ700 −

θ2m
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Figure 2.4: Average SST and 1000 hPa winds for cold anomalous SST advection tercile (a)

and warm anomalous advection tercile (b), and for cold minus warm difference in SST and 1000

hPa wind (c). Southern cold tongue region used for compositing is outlined in each panel. The

wind vector in the upper-right corner of each panel has a magnitude of 8 m s−1.
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Figure 2.5: Low-level (left) and upper-level (right) cloud amount from EECRA (top) and

ISCCP (bottom) datasets averaged over 105◦-95◦ W and months belonging to terciles of cold

anomalous advection (solid and filled circles) and warm anomalous advection (dashed and open

diamonds). Error bars indicate 95% confidence intervals for the zonal means. ISCCP low-level

cloud amount and EECRA upper-level cloud amount have been adjusted for overlapping higher

and lower clouds, respectively.

corresponding to warm SST advection in the anomaly sense, occurs when the equatorial

cold tongue is strong and the along-wind SST gradient is positive on the southern side of

the cold tongue, leading to substantial warm SST advection in the absolute sense (Fig.

4b). The SST difference between terciles is reminiscent of the SST anomaly pattern

from classic El Niño events away from the South American coast, (e.g., Rasmusson and

Carpenter, 1982; Deser and Wallace, 1990), but differs from them in that it does not

have strong equatorial wind anomalies or sizable SST anomalies along the coast.

Fig. 2.5 displays meridional profiles of ISCCP and EECRA cloud amount at low

and upper levels for cold and warm anomalous SST advection terciles. These profiles

were obtained by averaging monthly ISCCP cloud values and individual EECRA cloud
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observations in in 2.5◦ latitude increments between 105◦ and 95 ◦ W, and the error bars

show the 95% confidence interval for each zonal mean using bootstrap methods described

in Appendix B. South of the Equator, satellite and surface data both exhibit substantially

less low-level cloud amount with warm anomalous advection and substantially more

low-level cloud amount with cold anomalous advection. The decrease in ISCCP low-

level cloud amount with warm anomalous advection cannot be attributed to changes

in overlapping higher clouds since ISCCP upper-level cloud amount is climatologically

very small in this region. North of 1.25◦ N, satellite and surface data both exhibit

substantially more low-level cloud amount when warm anomalous advection occurs in

the southern cold tongue region. The opposing changes in low-level cloud amount on

southern and northern sides of the cold tongue are due to the reversal of the anomalous

SST gradient along surface wind streamlines after the steady southeasterly winds cross

the equatorial SST front.

One advantage of the EECRA data is that they include surface meteorological

measurements and morphological cloud type observations that provide a qualitative de-

scription of boundary layer structure (e.g. Norris, 1998a). Figure 2.6 displays meridional

profiles of these variables for cold and warm anomalous SST advection terciles. Warm

anomalous advection is associated with the markedly more frequent occurrence of clear

sky and absence of low-level cloudiness on the southern side of the equatorial cold tongue,

features that are also present in the climatological mean (Norris, 1998b; Park and Leovy,

2004). The decrease in low-level cloud cover with warmer SST advection primarily results

from a decrease in cumuliform cloud cover (defined as cumulus alone and cumulus mixed

with stratocumulus). We attribute this implied weakening of convection to increased

stratification of the atmospheric surface layer produced by advection of warmer air over

cooler water, as is suggested by the near-zero air-sea temperature difference observed

under these conditions.

Figure 2.6 also shows that near-surface relative humidity is larger and wind speed

is smaller for warm SST advection in the southern cold tongue region, indicating that

there is less upward mixing of moisture and downward mixing of momentum (e.g. Wallace

et al., 1989). The enhanced stratiform cloud cover (defined as stratocumulus alone and

stratus) that occurs with warm SST advection may be remnant cloudiness that has

not yet dissipated even though it is no longer in turbulent communication with the

ocean surface. Cold anomalous advection is associated with less frequent clear sky, more
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cumuliform cloud cover, a more negative air-sea temperature difference, and a drier and

windier surface layer (Fig. 2.6). All of these conditions are characteristic of the typical

cloud regime downwind from major stratocumulus decks.

It is worth noting that in Fig. 2.6, the conditions in the tercile of anomalously

cold temperature advection south of the Equator show more cumuliform clouds relative to

the warm advection tercile all the way up to 5◦ N, implying that some of the additional

cumulus clouds formed south of the Equator persist as they are advected northward.

Likewise, the deficit in stratocumulus clouds is evident from 7.5◦S to 7.5◦N. The net

result, shown in both the EECRA and ISCCP data (Fig. 2.5), is that the cold anomalous

advection tercile relative to warm has more low-level cloud cover when averaged over the

extent of the cold tongue, 5◦S-5◦N, in the longitude range 105◦-95 ◦ W.

The changes in surface wind speed and relative humidity, in addition to the cloud

changes, are all consistent with increased boundary-layer vertical mixing as in Wallace

et al. (1989). An alternative hypothesis holds that anomalous SSTs lead to boundary-

layer pressure anomalies, and that the corresponding anomalous pressure gradients cause

anomalous low-level winds (Lindzen and Nigam, 1987). In the eastern tropical Pacific,

Hashizume et al. (2001) and Hashizume et al. (2002) find little evidence for winds re-

sponding to such an effect. The data used in our analysis, focused as they are on

boundary-layer cloud variability, are not suitable for a definitive investigation of the

Lindzen-Nigam mechanism. This is particularly the case for the reanalysis winds in Fig.

2.4 since they are likely to be influenced by the boundary layer parameterization used

in the model. We do note that in Fig. 2.6 the meridional pressure gradient is steadily

negative over the cold tongue region and has a slope that becomes steeper in the tercile

months and latitudes with anomalously cold advection and warm SST. Mean vertical

profiles of wind speed from EPIC soundings (not shown) also show that in addition to

the surface wind tendencies shown in the EECRA data, wind speeds in the upper parts

of the boundary layer were greater over anomalously cold temperature advection and

anomalously warm SST, which is consistent with Lindzen and Nigam (1987). Beyond

these points, the analysis of mean values of ship reports from 15 years of EECRA data

does not allow for precise calculations of momentum budgets and other methods would

be required for more in-depth, quantitative evaluation of the relevant mechanisms.

Quantitative measurements of boundary layer structure are available from EPIC

soundings made during November 1999, a month in the warm anomalous advection
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tercile, and during November 2001, a month on the cool side of the middle advection

tercile. Average vertical profiles for these two months are obtained from all soundings

between the Equator and 5◦ S along transects at 95◦ W and 110◦ W (also described

in Pyatt et al., 2005). In order to preserve structure near the top of the boundary

layer, soundings are scaled by the height of the base of the trade inversion prior to

averaging, and the mean profile is then rescaled by the average inversion base height.

The base of the trade inversion is defined as the lowest elevation where the subsequent

ten data points (usually about 200 m) are warmer and the temperature increases by at

least 1.5 K, and those few soundings without discernable inversions are discarded. We

examine water vapor mixing ratio, saturation water vapor mixing ratio (closely related

to temperature), virtual potential temperature, and equivalent potential temperature

(calculated according to Bolton, 1980). While they are relevant to the structure of most

of the boundary layer and the trade inversion, the soundings do not accurately depict

surface-layer effects. This is due to the fact that the mean soundings miss the bottom

20 to 40 meters of the atmosphere, and moreover that the lowest recordings in many

soundings are biased due to the ship’s effect on the environment and the instrument

sensors (C. Fairall 2006, personal communication; see also Wang et al., 2002).

Fig. 2.7 shows that strong warm SST advection during November 1999 (1.22

K d−1) was associated with a boundary layer that was shallower, cooler, and drier

than that observed for weak warm SST advection during November 2001 (0.50 K d−1).

The differences in boundary layer height in Fig. 2.7 and the cloud type in Fig. 2.6

are in agreement with previous studies noting that subtropical cumulus and cumulus-

with-stratocumulus occur in deeper boundary layers than those for stratocumulus alone

(Albrecht et al., 1995; Norris, 1998a). Pyatt et al. (2005) also report that south of

the Equator, surface relative humidity was greater, surface wind speed was weaker, and

cloud fraction was very much smaller during November 1999 than during November 2001.

These observations demonstrate that stratification of the near-surface layer caused by

warm air flowing over colder water inhibits the upward mixing of moisture needed to

sustain cloudiness. The lower inversion height in 1999 is consistent with subsidence

pushing the trade inversion further down as reduced buoyancy at the surface and cloud-

top radiative cooling act to inhibit entrainment.

Further support for this stratification phenomenon is provided by the study of

Paluch et al. (1999), which documented the occurrence of shallow stable surface layers
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Figure 2.7: Mean EPIC vertical profiles of water vapor mixing ratio (q), saturation water vapor

mixing ratio (qs), virtual potential temperature (θv), and equivalent potential temperature (θe)

averaged as described in the text over 0-5◦ S during November 1999 (dashed) and November

2001 (solid). November 1999 is in the warm anomalous advection tercile and November 2001 is

on the cool side of the middle advection tercile.

beneath warmer layers over the southern side of the cold tongue and areas of coastal

upwelling during September 1996, another month in the warm anomalous advection

tercile. In contrast, measurements taken north of the Equator in the same field campaign

show a deeper dry adiabatic layer starting at the surface, lying beneath a deep moist

adiabatic layer with cloud all the way up to the inversion (Paluch et al., 1999). The

large eddy simulation in de Szoeke and Bretherton (2004), which is forced by boundary

conditions characteristic of the equatorial Pacific along 95◦ W, also clearly shows a stable

surface layer up to the approximate latitude where the SST front is found.

2.5 Comparison with general circulation model output

Previous investigations have demonstrated that atmosphere and coupled ocean-

atmosphere general circulation models produce unrealistic simulations of low-level cloudi-

ness over the eastern tropical Pacific which contribute to large biases in the climate state

(e.g. Ma et al., 1996; Yu and Mechoso, 1999). This motivates comparison of the obser-
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Figure 2.10: Mean SST advection (left) and low-level cloud amount anomalies (right) for the

coldest and warmest SST advection terciles for observational and model output. Terciles are

based on SST advection values for the 5 degrees south of the Equator: red type for anomalously

warm terciles, blue type for anomalously cold. Abscissa denotes the mean anomaly value in

the south of the Equator, ordinate indicates the value in the 5 degrees north of the Equator.

Normal typeface denotes the longtude averaging range is 110◦ - 90◦W, while italic indicates

that the longitude range was adjusted to account for the CGCMs’ detached cold tongues. “O”

indicates obvservations (ISCCP cloud and reanalysis meteorology); “G” indicates GFDL models;

“N” indicates NCAR models. “A” indicates AGCMS; “C” for CGCMs.

vational results of the present study to output from the two leading U.S. GCMs in order

to determine whether they correctly reproduce the observed relationship between cloud

amount and SST advection.

The first model is the Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere-

only AM2 (described in Anderson et al., 2004) and two versions of the coupled ocean-

atmosphere CM2 (described in Delworth et al., 2006). The GFDL AM2 and CM2 use

a prognostic cloud fraction scheme basted on Tiedtke (1993). The planetary boundary

layer is modeled with a nonlocal scheme based on Lock et al. (2000). This scheme is

based on results of various large eddy simulations and classifies the boundary layer as

one of six types, each with a different profile of static stability, decoupling, moisture, and

condensate. It determines cloud vertical extent and boundary layer depth by calculat-

ing the height of neutral buoyancy for rising and sinking parcels using conserved moist
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variables (Lock et al., 2000; Anderson et al., 2004). Because the AM2 was found to be

unreliable in predicting cloud liquid water, the term in Lock et al. (2000) accounting

for buoyancy change due to entrainment drying is omitted and the entrainment param-

eterization adjusted (Anderson et al., 2004). The two versions of the CM2, designated

CM2.0 and CM2.1, primarily differ in their dynamical cores and particular aspects of

cloud tunings. We do not expect that these differences will substantially influence low-

level cloud variability over the equatorial cold tongue aside from producing dissimilar

basic climate states.

The second model set is the National Center for Atmospheric Research (NCAR)

atmosphere-only CAM3 (Boville et al., 2006; Collins et al., 2006b) and coupled ocean-

atmosphere CCSM3 (described in Collins et al., 2006a). The NCAR CAM3 and CCSM3

use a diagnostic cloud fraction scheme based on a relative humidity threshold and an

empirical relationship to LTS obtained from Klein and Hartmann (1993). The boundary

layer is simulated as in Holtslag and Boville (1993). This is another nonlocal scheme that

differs from Lock et al. (2000) in the derivations and values of diffusivities and velocity

scales used in the parameterizations. It also lacks a built-in cloud radiative cooling term

and does not define distinct boundary layer regimes with different mixing characteristics

as Lock et al. (2000) do.

In order to present relevant elements of the climatology and cloud variability

to illuminate the model intercomparison, the calculations for Fig. 2.1 are repeated for

the AGCMs and CGCMs and presented in Figs. 2.8 and 2.9, respectively. Between

the two AGCMs, the CAM3 also shows considerably greater low-level cloud variability,

even though it is forced with observed SST, while AM2 levels of cloud variability more

closely resemble observations. The area of low-level cloud variability in CAM3 is also

concentrated in a band that straddles the Equator, while AM2 shows more variability

north of 0◦. Each coupled model shows a cold tongue that is (unrealistically) detached

from the South American coast. They each also show the low-level June-November cloud

amount variability in unrealistic places in the eastern equatorial Pacific, with CM 2.1

and CCSM3 appearing to show greatest variability over the model cold tongues.

In Fig. 2.10 the essential features of the observations and models are summarized

and presented for intercomparison. The point where each label is plotted in Fig. 2.10

gives the simultaneous mean anomaly values for areas on the south side of the cold

tongue (the abscissa) and the north side (the ordinate) during months in the tercile
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of most anomalously cold (blue label) and anomalously warm (red label) temperature

advection south of the Equator. The labels identify the data set, and the two panels

show cloud and SST anomalies separately. The observed values show SST advection

anomalies of opposite sign across the Equator, consistent with an SST front near 1◦S

latitude and southeasterly trade winds in the region. Not surprisingly, the advection

anomaly values for both of the AGCMs forced with actual SSTs are close to those in the

observations.

The observations show a consistent negative relationship between SST advection

and low-level cloud anomaly, as seen by the cool- and warm-tercile mean values falling

in the upper-left and lower-right quadrants. Thus, there is a cross-equatorial dipole in

cloud anomaly as well as SST advection. Of all the model sets, only the GFDL AM2

data fall in the same quadrants as the observations for cloud amount anomalies, and in

fact fall relatively close to the observed values. The NCAR CAM3 falls in the lower-left

and upper-right quadrants, indicating a cloud response to SST advection different from

that observed in the region.

Previous studies have noted that the NCAR atmosphere model generates too

much low-level cloud amount too quickly for warm SST advection conditions, presumably

due to insufficient turbulent entrainment of drier air from above (Norris and Weaver,

2001; Alexander et al., 2006). Another possible reason is that the CAM3 empirical cloud-

LTS parameterization forces low-level cloud amount to be large for cold SST anomalies

even when they also produce warm SST advection anomalies. Although not shown,

multilinear regression analysis applied to CAM3 output indicates that SST advection

does not explain any additional variance in low-level cloud amount over the cold tongue.

Contrastingly, multilinear regression analysis of GFDL AM2 output results in a pattern

similar to that of Fig. 2.3.

Unlike the case for the atmosphere-only models, the GFDL CM2.0 and CM2.1

and the NCAR CCSM3 do not realistically simulate the north-south dipole behavior of

SST advection anomalies in the 110-90◦ W region. Fig. 2.10 indicates that the CM2.0

and CM2.1 produce SST advection anomalies with identical sign on both sides of the

Equator and that the CCSM3 produces anomalies that have the correct signs but are

much smaller than observed. None of the models exhibit realistic low-level cloud behavior

in the 110-90◦ W region.

Fig. 2.9 indicates that each model has a cold tongue significantly detached from
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the coast (discussed in Wittenberg et al., 2006; Deser et al., 2006). Because some features

in the coupled models are merely shifted in longitude, we searched for other 20◦ longitude

increments that exhibited both a north-south dipole in SST advection anomalies and

sufficient interannual low-level cloud variability. These longitude ranges are 125◦-105◦W

for GFDL CM 2.0 and 130◦-110◦W for both GFDL CM 2.1 and NCAR CCSM3 and, as

shown in Fig. 2.10, also do not exhibit low-level cloud anomalies with the observed cross-

equatorial sign difference and negative relationship to local SST advection anomalies.

The detached cold tongues, along with trade winds south of the Equator that tend to be

slightly more zonal than in observations, lead to SST advection cooler than observations

(never warmer than 0.25 K d−1) in each coupled model in all the averaging regions south

of the Equator and all terciles. As a result, the clouds do not respond to anomalous SST

advection as in the observations, where absolute advection changes more notably between

the averaging terciles.

It is difficult to determine from this analysis whether the poor low-level cloud

simulations in the CM2.0, CM2.1, and CCSM3 result from incorrect cloud or bounday

layer parameterizations or fundamentally different SST and wind distributions. Whereas

the meridional component of SST advection in the cold tongue is of primary importance

in the observations, zonal advection is relatively more important in the models, even

while meridional SST gradients are sharp. This difference might contribute to model

inacuracies in simulating the relationship between low-level cloud and temperature ad-

vection.

2.6 Discussion and conclusions

Satellite and surface cloud observations show that the eastern Pacific south of

the Equator exhibits pronounced low-level cloud variability on interannual time scales.

Although SST and LTS explain some of the variance in low-level cloudiness, advection

over the SST gradient plays an important role in controlling cloud type, cloud frequency

and cloud amount over the equatorial cold tongue, especially in the region extending

approximately 1500 kilometers west from the Galápagos Islands. When SST advection

is warm, the atmospheric surface layer becomes stabilized, thus inhibiting the upward

mixing of moisture from the sea surface. This is evident not only in the ensuing decrease

in cloud amount and more frequent absence of low-level clouds reported by the ISCCP

and EECRA datasets, but also in the greater surface relative humidity, weaker surface
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wind speed, and less negative air-sea temperature difference.

EECRA surface cloud observations indicate that remnant stratiform and cloud-

less conditions occur more frequently and cumuliform clouds occur less frequently for

warm SST advection, suggesting that less moisture is being transported to the cloud

layer to sustain it against subsidence and entrainment drying. EPIC soundings confirm

that warm SST advection is associated with a shallower boundary layer that is drier near

the top.

A question that arises is why SST advection anomalies and surface layer stability

so strongly influence low-level cloud variability in the southern cloud tongue region (5◦

S - 0◦, 105◦ - 95◦ W). Although the 5◦ × 10◦ area immediately west of the southern

cold tongue region has a similar distribution of monthly SST advection values, it is

climatologically warmer and less cloudy, thus restricting the potential magnitude of

interannual cloud variability. Contrastingly, the 5◦ × 10◦ area east of the southern cold

tongue region is climatologically colder and more cloudy, thus reducing the sensitivity

of cloud amount to warm SST advection. The southern cold tongue region is distinct in

that it both experiences large variations in SST advection and climatologically occupies

the phase space between overcast stratocumulus conditions and sparse trade cumulus

conditions.

The observed relationship between low-level cloudiness and SST advection can

be used to constrain and improve the simulation of clouds in global climate models,

especially since it is independent of the relationships between low-level cloudiness and

SST or LTS. The GFDL atmospheric GCM (AM2) run over prescribed observed SST

produces a realistic low-level cloud response to SST advection anomalies on the southern

side of the equatorial cold tongue. Two versions of the GFDL coupled ocean-atmosphere

model (CM2.0 and CM2.1), however, exhibit incorrect relationships between low-level

cloud and SST advection. These results suggest that the necessary advection, SST, and

LTS phase space observed in the southern cold tongue region simply does not occur

anywhere in the CM2.0 and CM2.1 due to their large biases in the SST and surface wind

distributions. The NCAR atmospheric GCM (CAM3) run over prescribed observed SST

does not produce a realistic low-level cloud response to SST advection anomalies, sug-

gesting the presence of incorrect cloud and boundary layer parameterizations. Possible

sources of error are insufficient entrainment of dry air from above the cloud layer or

the parameterized requirement that low-level cloud amount increase with larger LTS,
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irrespective of other meteorological effects. Not surprisingly, the cloud simulation in the

NCAR coupled ocean-atmosphere model (CCSM3) is also unrealistic.

The observed response of low-level cloud amount to varying SST advection over

the southern cold tongue region is likely to be relevant to coastal upwelling areas and

extratropical oceans where advection brings warm air over cooler water. Although be-

yond the scope of the present study to quantify, we note that the observed inverse

relationships between SST and SST advection and between cloud and SST advection

imply the existence of a negative cloud feedback on and about the near-equatorial SST

front. Here, a cold SST anomaly produces anomalously warm SST advection south of

the front, and the decrease in low-level cloud formation south of the front leads to a net

decrease in cloud cover over the equatorial region. Simultaneously, there is decreased

downward mixing of momentum and dry air to the surface in the anomalously warm

SST advection sector, implying a lesser wind speed and greater near-surface humidity

and a decrease in latent and sensible heat fluxes. This wind-heat flux feedback acts in

concert with the cloud-insolation feedback, unlike the case in Ronca and Battisti (1997),

thus underscoring its potential significance. The net increase in insolation and decrease

in surface fluxes is pronounced near the climatological local SST minimum, where the

ocean mixed-layer depth is often less than half of its value several degrees to the north or

south, thus increasing the impact of surface fluxes on SST. The incorrect representation

of this feedback in coupled ocean-atmosphere models may be a contributing factor to

the development of SST biases in the equatorial cold tongue.

2A Methods for calculating multilinear re-

gression confidence intervals

The shaded areas indicating confidence levels in Fig. 2.3 come from rejecting our

null hypothesis using bootstrap resampling techniques at each grid box. In this case,

the null hypothesis is that the increase in cloud variance explained using the time series

of SST advection in addition to SST in a multilinear regression is no greater than the

increase in variance explained using a random, but physically feasible, time series in

addition to SST. For the physically feasible random series, we randomly reshuffle the

portion of the SST advection time series that is linearly independent of the SST series.
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To extract the portion of the advection series not linearly related to SST, we use

ADV(t) = β0 + β1SST(t) + εADV(t) (2.1)

where each βi is optimally determined with a least-squares fit. We then regress low-level

cloud amount (CA) against SST and a randomly reordered sequence of the residuals,

εADV(t) , obtained from equation 2.1:

CA(ti) = γ0 + γ1SST(ti) + γ2εADV(tj) + εCA(ti) (2.2)

Here, the γi coefficients are again optimally determined for this equation, from least-

squares fit. The sequences ti and tj are different series of months chosen randomly, with

replacement, from all the June-Novembers over the 19-year sequence for which there

are ISCCP cloud data. In each box the length of the sequences is equal to the effective

sample size, Neff , given by whichever is lowest among the Neff values for low-level cloud

amount, SST, and SST advection anomaly. For each field, Neff = −N(2 ln(ρ))−1 where

ρ is the one-month autocorrelation after (Leith, 1973).

At every grid box we assemble a distinct εADV(tj) and compute CA(ti) 10000

times. We also find the variance explained by regressions using the complete CA, SST

and ADV fields, ie.,

CA(t) = β′0 + β′1SST(t) + ε1(t) (2.3)

CA(t) = γ′0 + γ′1SST(t) + γ′2ADV(t) + ε2(t) (2.4)

where the primes denote optimally determined coefficients for each regression that can

differ from those in equations 2.1 and 2.2. If the increase in R2 between equation 2.3

and equation 2.4 is greater than the 9500th and 9900th largest values of the change in

R2 between equations 2.3 and 2.2, we reject the null hypothesis at the 95% and 99%

confidence levels, respectively.

2B Confidence intervals for zonally aver-

aged data

We obtain 95% confidence intervals for ISCCP data averaged over a latitude zone

and tercile by calculating the mean of Nind months randomly selected with replacement
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from months belonging to the tercile. All grid boxes in a latitude zone for a particular

month are averaged together. This is repeated 10000 times, and the central 9500 values

of the sequentially ordered random means determine the 95% confidence interval. An

initial value for the effective sample size, Neff , is determined for each latitude zone

using Neff = −N(2 ln(ρ))−1, where ρ is the one-month autocorrelation (Leith, 1973).

We round off the quantity N/Neff and regard ISCCP values separated by this many

months as independent. Months from different years are always considered independent

with this method. We then count the number of independent months in each tercile to

obtain Nind for the ISCCP data.

Confidence intervals for EECRA data averaged over a latitude zone and tercile

are determined in a similar manner, except that Nind individual synoptic cloud reports

are chosen with replacement from all months belonging to the tercile. Since it is very

difficult to establish the degree of independence between individual synoptic reports

scattered over the ocean and in time, we conservatively assume that Nind for the EECRA

data is half the nominal number of observations in a latitude zone and tercile.

This bootstrap resampling method does not rely on any assumptions about the

probability density function of observations and is adaptable so that we can use es-

sentially similar techniques for both the regular gridded ISCCP data and the surface

observations which are irregular in space and time. It is worth noting that the zonal-

mean ISCCP data show very similar error bars at almost every latitude if we simply

assume a normal distribution of observations about their mean and calculate confidence

intervals based on the standard deviation.
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Chapter 3

Climatology and meteorological

influences on California’s wind energy

resource. Part 1: General characteristics

and seasonal cycle

3.1 Abstract

This study explores the climatology and low-level wind variability near three

California wind farms: San Gorgonio Pass and Tehachapi Pass in Southern California,

and Solano County further north. Several decades of weather reports from airfields near

these sites are used. Comparisons show close, consistent relationships between proxy site

wind speeds and limited data available from wind farms themselves, as well as consis-

tency within orographic features, thus supporting the use of the nearby proxies. After

adjusting for instrumental jumps these wind records show that each site has a pro-

nounced annual cycle with highest wind speeds in the warm months: in late spring for

the southern California sites, when reanalysis shows the zonal pressure gradient is great-

est in magnitude, and mid-summer for the northern site. Simultaneous analysis of wind

direction, wind speed, and SLP for each site and season shows a distinct signature of low

pressure corresponding to stronger and more westerly winds in the winter, with moderate

SLP coinciding with more light and variable flow. In contrast, summertime winds are

more diurnally dependent, stronger, and show more topographic influence on direction,

and SLP variability is lesser, indicating the influence of local circulations. Cool-season

33
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variability is relevant to cut-in speeds of turbines and baseline energy production, while

warm-season flow affects production when seasonal demand is often greatest. Correla-

tion analysis among wind series and with climate indices shows that the colder months’

sensitivity to synoptic forcing leads to a broad correlation in wind speed among the

sites, as well as a tendency to greater wind speeds in negative phases of the Pacific-

North American pattern in the cold season. Warm seasons show less pan-Californian

coherence, but correlation between wind speed and nearby SST or inland soil moisture

is negative, consistent with smaller-scale thermal circulations driven by diurnal heating.

Correlation values with offshore buoy winds are limited, highlighting the importance of

the inland processes. Monthly-mean anomaly composite maps reveal that oceanic high

and coastal or inland lows broadly induce high wind speeds in the cold months, while

the role of synoptic-scale forcing is less clear in April-October, when winds are more

energetic and synoptic processes exert less influence.

3.2 Introduction

Electricity generation from wind has a relatively long history in California and

has seen considerable renewed interest and growth in recent years (Hawkins et al., 2007;

Gipe, 1995, pp.30-36). In California as in other regions, typical siting procedures usually

involve a minimum of one full year of on-site high-resolution wind observations, and rarely

more than a decade’s worth of data (Petersen et al., 1999). The climatological literature

is rich with studies discussing the effects of large-scale and regional climate variability on

northeastern Pacific or western United States weather. At the same time, the question

of the specific synoptic, regional, and terrain-modified meteorological conditions most

strongly affecting wind speed variability in the vicinity of wind farm sites, and the likely

effects of interannual climate variability and global climate change on wind at these

locations, have not been thoroughly examined in the Californian context. The present

work focuses on time series of winds recorded at sites representative of California’s wind

energy resource, their annual cycles, seasonal mean properties, and relationships with

large-scale climate variability indices. A companion piece (Mansbach and Cayan, 2010b,

hereinafter Part 2) examines synoptic variability and forcing of site winds, regional flows

over complex terrain, and the diurnal cycles of observed winds.

Previous studies have adopted various perspectives on meteorological aspects of

wind power. Research has examined wind power globally (Archer and Jacobson, 2005;
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Lu et al., 2009) and internationally in regional or national overviews (ie, Haslett and

Raftery, 1989; Pryor et al., 2006; Jimenez et al., 2008; Najac et al., 2009), in addition

to myriad national and continental wind energy resource atlases usually put together by

governmental or cooperative efforts (ie, Elliott et al., 1987). Research on meteorology and

climate variability most relevant to wind power in California has ranged from modeling,

large observational data sets, and nationwide perspectives (Sailor et al., 2000; Breslow

and Sailor, 2002; Archer and Jacobson, 2003; Pryor et al., 2006, 2009) to more focused

work on regional settings, including California’s coastal resources (Jiang et al., 2008;

Dvorak et al., 2010).

Despite the role that wind power already plays in California’s energy infrastruc-

ture, the peer-reviewed literature does not contain a complete analysis of the climatolog-

ical and meteorological processes responsible for low-level winds at the major generation

sites. In addition to the wind power studies mentioned above, regional resource assess-

ments have also been undertaken as part of national efforts (Elliott et al., 1991; Elliott

and Schwartz, 2005), but it is also necessary to look to general studies of atmospheric

variability affecting the region and interpret them in light of their relevance to the wind

power sites. The classic modes of climate variability, among them the Pacific-North

American Pattern (PNA), El Niño-Southern Oscillation, (ENSO), and Pacific Decadal

Oscillation (PDO), all hold implications for California climate variability from synoptic

to interannual timescales. The PNA is associated with SLP and upper-air anomalies

at specified positions. Its positive phase indicates a more meridional upper-level flow

over North America, while the negative phase indicates a more zonal flow (Wallace and

Gutzler, 1981; Leathers et al., 1991). ENSO variability can excite a PNA pattern, and

the positive phase is known to bring warmer ocean temperatures and increased stormi-

ness to Pacific North America, including impacts to the Sonoran desert in California

and Arizona (Woodhouse, 1997). Its typical influences on pressure, precipitation, and

wind fields are widely studied, while the PDO is often characterized as a large-scale

modulation pattern of ENSO variability (Mantua et al., 1997; Gershunov and Barnett,

1998).

To more easily summarize an area’s suitability for wind power development, con-

vention often refers to the seven wind power classes defined in Elliott et al. (1991). In

that study, a site with mean wind power falling in class 5 (250-300 W m−2 at 10m above

ground level, or mean wind speed of 6.0-6.4 m/s given their wind speed distribution as-
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sumptions) or above was considered adequate for ready exploitation of the wind resource,

while it was thought that wind resources down to class 3 (150-200 W m−2, or 5.1-5.6 m/s

at 10 m) could effectively be developed given advances in conversion technology. More

recent wind energy resource maps displayed as part of the US Department of Energy’s

Wind Powering America initiative define the wind classes identically and describe classes

3-5 as “fair,” “good,” and “excellent,” respectively (Elliott and Schwartz, 2005). These

updated maps show numerous areas in northern and southern California with class 4 or

above resources, but the areas are small and spottily distributed — a sharp contrast to

other areas where orography is less prominent, such as the Great Plains of the United

States.

The topography of inland California and its effects on low-level wind flow are

behind the patchy distributions of the areas viable for wind farms. Given an appropri-

ate background flow, the localized amplification effects of orography can be quite large.

Measurements taken with wind blowing directly toward and through well-defined moun-

tain gaps have shown that wind speeds slightly downwind of the narrowest portion of

the gap often reach 2-3 times the speed recorded further upwind, at or just before the

narrowest point (Ramachandran et al., 1980). Increases in wind speed can be similar

for small-scale mountain ridges, hills, and scarps as well (Barry, 2008, pp. 72-87) The

diverse sites established for wind power in California include installations on the edge of

the low-lying, hot Sonoran desert, the higher-elevation Mojave desert, and the Central

Valley between San Francisco and Sacramento. For each of these settings, winds are

particularly strong because of the channeling effect of nearby terrain. To this end, the

present study analyzes wind measurements from ground meteorological stations close to,

and in the same topographical setting as, major wind energy generation facilities: in the

Southern California desert areas near the San Gorgonio and Tehachapi Passes, and in

the Sacramento Valley north of the Straits of Carquinez.

Southern California mountain pass winds have also been the subject of interest

due to their role in channeling Santa Ana winds and, in many cases, bringing increased

wildfire danger. Santa Ana winds can occur from September to March and have been

investigated by Raphael (2003); Westerling et al. (2004); Miller and Schlegel (2006);

Hughes and Hall (2009), usually with a focus on the winds as they blow out of the Great

Basin and Mojave plateaus, are channeled through mountain passes, and accelerate and

warm adiabatically as they descend and move toward the coast. In contrast, the southern
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California wind conversion sites examined here are on the higher-elevation side of the

Tehachapi Pass connecting Mojave to the Central Valley, or on the desert side of the San

Gorgonio Pass. As such, these sites are distinct from the gaps previously identified as

having strong winds or and elevated fire danger during Santa Ana events, and the local

wind behavior during these events has not been studied as extensively.

The objective of this study is to fill the gap in exposition of the meteorological

phenomena driving low-level winds at the major California wind farms. By analyzing the

seasonal cycle of winds and connection to larger-scale circulation in this paper, we address

the first part of that gap. Although each site of our interest has particular characteristics,

we adopt a unified framework to for all three regions in order to integrate the detailed

information into a comprehensive outlook. In this paper we first describe the data used

for analysis and intercomparison. We then present the methods of analysis used and

our findings for individual wind time series, in long-term annual and seasonal means.

We then examine the relationships among the wind time series and climate indices,

considering the cold and warm seasons separately. We finally discuss our findings in a

general sense, including implications for wind energy, and the most appropriate focus for

further investigations of wind variability.

3.3 Data

The primary sources of site data in this study are archived METARs1 weather

reports from airports near the three wind generation sites containing hourly observations

of wind speed, direction, station temperature, barometric pressure, dew-point temper-

ature, cloud cover, cloud height, and visibility. METARs data have the advantage of

being more accessible than actual on-site observations from wind farms and, in many

cases, also cover a longer time period. METARs observations from Palm Springs airport,

Mojave airport, Edwards Air Force Base, and Travis Air Force Base were identified as

sources of relatively long records located close to major California wind energy facilities

with no major topographic features separating the sites from the wind farms. Locations

of observation sites are shown in Fig. 3.1. Previous studies have found neighboring wind

site measurements to be a powerful aid in short-term forecasting for wind farms (Lar-
1The term METAR is derived from a French acronym and denotes a specific, concise format for

reporting various meteorological variables. The reports include the fields most useful to aviators, and
are widely used by airports both small and large.
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Figure 3.1: Overview and two magnified regional maps showing locations of wind power con-

version facilities, nearby METARs stations, and other observation and buoy sites used in the

study. The shading scheme denotes elevation, in meters, scaled separately for each projection.

son and Westrick, 2006), and in our analysis, we present additional findings to support

the supposition that the METARs data from nearby locations are representative of the

climatology and variability of winds at the wind energy sites themselves.

The METARs data were collected at local airports and cover different time pe-

riods for different sites. Recent data — since the late 1990s — use Automated Service

Observing Systems (ASOS) and conform to current standards by reporting hourly wind

as two-minute averages measured at 10 meters above the ground, 24 hours a day. How-

ever, over the several decades that measurements have been recorded, these standards

were not always followed. The National Climatic Data Center provided to us a metadata

listing for each METARs site denoting its history of wind measurement heights. We use

this information to scale wind speed at height h, denoted Vh, to equivalent 10-meter



39

values, V10 using the one-seventh power law (Peterson and Hennessey Jr, 1978):

V10

Vh
=
(

10
h

) 1
7

(3.1)

These scaled speeds are used throughout this paper for all wind speed data derived from

METARs reports.

Palms Springs airport data (METARs code KPSP) were measured on the eastern

side of the San Gorgonio Pass, where the pass has begun widening out into the Sonoran

Desert basin, approximately 10 km from the easternmost turbines in the San Gorgonio

wind energy conversion area (Fig. (3.1)). Data are consistently present from 1973 to

2005, although observations usually were not taken at night. For data representative

of winds at the Tehachapi pass wind energy sites, we use observations from two nearby

locations in the Mojave desert: Mojave Airport (KMHV) near the mouth of the Pass

and within 15 km of wind farm turbines, and Edwards Air Force Base (KEDW) approx-

imately 30 km further east and south from there. While the observed wind energy at

Mojave is greater than at Edwards and the site is closer to Tehachapi, the time period

covered, frequency of observation, and precision of wind measurements are greater at

Edwards Air Force Base. Data from Mojave are available from daylight hours mainly

from 1987 to 2005, whereas Edwards data provide all-day coverage from 1942-2005.

Further north in California, Travis Air Force Base (KSUU) is located close to

the wind energy production site in Solano County, near Rio Vista, and has observations

from all hours of the day over 1944-2009 with no data from 1971-1972, and some months

missing between 2005-2009.

METARs data are augmented by observations taken at a mast located in the

currently operating wind power facility at Montezuma Hills, Rio Vista, in Solano County.

The data cover 2000-2007 and were furnished by the Sacramento Municipal Utilities

District (SMUD). This mast has anemometers at various heights comparable to common

wind turbine hub heights of 30-60m. Whenever we make direct comparisons between

SMUD and Travis data, we take the 50m sensor data and scale the wind speed to the

nominal 10m value as in Eqn. 3.1.

Winds measured at the inland METARs sites are also compared to ocean surface

winds at selected National Data Buoy Center and National Ocean Service weather buoys

offshore California (Hamilton, 1986; Meindl and Hamilton, 1992). These buoy data

are recorded hourly. The weather buoys chosen have several years of overlap with the

observations from the the inland sites. The buoy wind observations are scaled to nominal
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10m values from their measurement height of 5m (Hsu et al., 1994; Taylor et al., 2008).

Coverage is from 1982 to 2005 for the NDBC buoys used, while the NOS buoy near Fort

Point, San Francisco, covers 2005 to 2008.

We draw on SST, SLP, and 500 hPa height data from the NCEP Reanalysis

gridded data, using anomalies calculated by removing climatologies based on 1968-1996

(Kalnay et al., 1996). Our intercomparison of data sets also utilizes climate indices

for the PNA pattern (using the 500hPa heights-based index from Wallace and Gutzler

(1981)), Niño 3.4 SST anomaly (provided by the Climate Diagnostics Center), North

Atlantic Oscillation (NAO; ie, the Northern Hemisphere Annual Modes of Thompson

and Wallace (2000), with rotated principal component-based indices from the Climate

Prediction Center) and the PDO (principal component-based index from University of

Washington/JISAO).

To examine the relationships between inland soil moisture and observed wind

speed, we use output from the Variable Infiltration Capacity Macroscale Hydrologic

Model (VIC; Maurer et al., 2002) over select regions of California and Nevada. The

model has a horizontal resolution of 12 km and is forced with gridded daily maximum

and minimum temperature, precipitation, and wind speed data from 1949-1970. The

regions covered are California’s Central Valley from 37 ◦N to 39 ◦N (essentially, the

meridional center of the valley), the Sonoran Desert, 32.5 ◦N-34 ◦N, 114.75 ◦W-116 ◦W,

the Great Basin, 36.25 ◦N-38.75 ◦N, 113.75 ◦W-116.25 ◦W, and the Mojave Desert area,

a combination of the two boxes 34.5 ◦N-35◦N, 115.75 ◦W-117 ◦W and 34.6 ◦N-35 ◦N,

117 ◦W-118 ◦W.

3.4 Time series characteristics

3.4.1 Power spectra

METARs weather observations are generally made for operational purposes, and

not designed for studies of climate or interdecadal-scale variability. This problem is

particularly acute for studies involving long-term variability of winds, which are very

sensitive to changes in location or height of sensors, to alterations to the surface or

surroundings of an anemometer, or to changes of the instrument itself when sufficient

calibration is not undertaken (von Storch and Weisse, 2008; Karl et al., 1993). Disconti-

nuities that probably can be attributed to such changes become evident from wind speed



41

   10.75 0.6 0.5

10
−2

10
−1

10
0

   7% of power of series
   15% of power of anoms

 17  5  3  21.5

   23% of power of series
   66% of power of anoms

105 60 40 33 25 20

   6% of power of series
   12% of power of anoms

Travis

360270180150120

   64% of power of series
   7% of power of anoms

Period (days)

Fr
a

ct
io

n
 o

f 
to

ta
l v

a
ri

a
n

ce
 p

e
r 

u
n

it
 f

re
q

u
e

n
cy

   10.75 0.6 0.5

10
−2

10
−1

10
0

   14% of power of series
   17% of power of anoms

 17  5  3  21.5

   27% of power of series
   65% of power of anoms

105 60 40 33 25 20

   7% of power of series
   14% of power of anoms

Edwards

360270180150120

   52% of power of series
   4% of power of anoms

Period (days)

Fr
a

ct
io

n
 o

f 
to

ta
l v

a
ri

a
n

ce
 p

e
r 

u
n

it
 f

re
q

u
e

n
cy

   10.75 0.6 0.5

10
−2

10
−1

10
0

   27% of power of series
   45% of power of anoms

 17  5  3  21.5

   13% of power of series
   41% of power of anoms

105 60 40 33 25 20

   4% of power of series
   7% of power of anoms

Palm Springs

360270180150120

   57% of power of series
   8% of power of anoms

Period (days)

Fr
a

ct
io

n
 o

f 
to

ta
l v

a
ri

a
n

ce
 p

e
r 

u
n

it
 f

re
q

u
e

n
cy

Figure 3.2: Power spectra computed from 6-hourly wind speed means and 6-hourly wind speed

anomalies with the annual cycle removed at Travis, Edwards, and Palm Springs. The x-axis

marks period in days, and in each of the four windows the portion of total variance contained

in the corresponding range of periods is indicated. The y-axis is normalized to show variance

density as a portion of total variance.
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time series from Travis, Mojave, Edwards, or Palm Springs sites smoothed with 30−1

d−1 Butterworth low-pass filter (not shown). For the largest of the jumps, coincident

discontinuities in mean wind direction are also apparent. Rather than an actual sudden

and long-term change in wind regime, each jump is almost certainly due to a change in

the anemometer and/or its location or surroundings. Within the time periods between

the visible jumps, our analysis shows no inconsistencies of the wind time series behavior,

power spectra, or relationships to external variables. Without ignoring the possibility of

other shifts, we can make a rough correction for the obvious time series jumps by form-

ing an “adjusted” series of daily anomaly values. We do this by taking the unadjusted

anomaly series and, for the time periods between obvious wind speed jumps, recomputing

each period’s anomalies based on a climatology formed only from observations between

those jumps. This removes the bias introduced by such jumps. Since our computation

of the climatologies includes smoothing the raw means with a 10-day filter, the shape of

the different climatologies used for the piecewise-constructed daily anomaly series match

very closely. Thus, hereinafter when we refer to adjusted daily anomaly time series, we

are describing those made by patching in anomalies computed from the following sites

and time periods: at Travis, from 1944-1952, 1953-1970, 1973-1979, and 1980-1992 in-

clusive; at Palm Springs, from 1973-1975 and 1976-1997, and 1998-2005 inclusive; and at

Edwards, from 1948-1954, 1958-1991, and 1993-2003 inclusive. Because the Mojave wind

measurements contain no clear jumps, we use the un-adjusted series for this site. While

the data quality limits the reliability of any analysis of interdecadal variability, they do

not apparently compromise our ability to investigate variations from sub-daily to annual

scales. These frequencies of variability are related to a wide variety of atmospheric states

and scales of physical influences, and examination of wind behavior at these time scales

should help elucidate the mechanisms responsible for interannual variability.

We begin investigating the wind series using the power spectra of 6-hourly av-

erages and anomalies from 6-hourly climatological means. We omit the results from

Mojave, where most years had no more than 13 hours a day of anemometer coverage.

The spectra in Fig. 3.2 are given for both 6-hourly mean values and 6-hourly interannual

anomalies. They are computed using Welch’s method (Welch, 1967), normalized by the

total power of the data set for periods up to yearly, and the x-axis is labeled with the

time period in days aligning with the frequency (ie, 2 refers to 2 days per cycle, or a

frequency of 1
2 d −1, etc.). For each station we present four panels allowing us to view
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the spectra centered on four different period ranges and the proportion of power in each,

covering the whole resolved range of yearly and shorter periods. We limit our results

from each site to those years when anemometer coverage was at or close to every 24

hours, and this yields a sample size of 13 years for Palm Springs, compared to 45 years

for Edwards and 60 years for Travis. The issue of occasional instrumental changes does

not taint these spectra, as the discontinuous changes occurred every several years and

we limit the examination to annual and higher-frequency variability.

For each station, the sharpest peak in station wind speed is found near the 365-

day period. Since below we describe the shape of the annual cycle in more detail, we

proceed to examine the sub-annual variability by removing the mean annual cycle. This

is accomplished by subtracting long-term mean wind speed of each 6-hour period. After

doing so, the least total power is found in the 110-400 day band. The submonthly-to-

seasonal band, covering 15 to 105 day periods, shows more power, but not as much as

the shorter periods.

After removing the annual cycle, more than 80 % of the wind speed variance at

each station is contained in the daily and synoptic period bands, with significant peaks

around the diurnal (1 d) and longer synoptic periods(3-15 d) (Fig. 3.2). The annual

cycle typically contains wind speeds that vary by 3-4 m/s (Fig. 3.7) from annual peak

to trough. The 3-15 day band represents day-to-day and week-to-week wind speed fluc-

tuations that typically vary by 1-5 m/s. The diurnal peak represents daily fluctuations,

with a typical wind speed change of 2-5 m/s from the afternoon and evening peak hours

to early morning wind minimum (Fig. 3.8-3.10). Our remaining investigation therefore

focuses on describing the annual cycle. In the companion article we describe the patterns

and analyze the atmospheric processes leading to the distinct peaks in variance density

at the diurnal and synoptic scales.

3.4.2 Wind roses

To better describe the annual-mean wind characteristics and closely related sta-

tion atmospheric data, we start by viewing the distributions of METARs-reported wind

intensity, direction, and sea-level pressure for each site and season with the wind rose-

inspired polar histograms in Figs. 3.3-3.6. These polar histograms plot dots that indicate

the distribution within each season of hourly wind speeds and directions, assigning each

dot a color based on the site’s average sea level pressure when it was undergoing winds
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Figure 3.3: Polar histograms showing wind intensity and direction distribution at Travis for

each season. In these polar histogram plots, each dot represents all hourly observations that fall

within a certain direction and speed range bin for the given season and site. Each dot’s angular

location indicates the direction the winds were coming from, while its distance from the origin

indicates the wind speed (the radial distances are marked every 3 m/s). The size of the dot

indicates the frequency with which winds falling into that bin were observed, and the color of

the dot indicates the mean sea-level pressure concurrent with the winds falling into each bin.
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Figure 3.4: As in Fig. 3.3, but for Edwards.

in that speed and direction bin. 2 Also listed for each season is the seasonal mean wind

speed and seasonal mean wind power density. Wind power density is the wind kinetic

energy per unit time and unit area swept by turbine blades, taken as

P =
1
2
ρclimV 3 (3.2)

where V is scalar wind speed, ρclim is the station’s seasonal mean air density, the mean

of hourly air density calculated from sea-level pressure, temperature, and a US Standard

Atmosphere 1976 lapse rate of 6.5 K km−1. Using the mean density results in variations

of less than 1% from the hourly variable air density, while resulting in usable data on any

hour where wind speed is reported, even in the absence of SLP or temperature readings.
2While the instrumental changes and jumps in the series at each site (described above) imply that

a separate figure should have been made for each period between anemometer shifts, in practice the
intensity of the recorded wind appears to have changed by less than 1.5 m/s at each shift. While this
is a significant change in smoothed wind speed or wind speed anomaly time series, such a change would
shift an observation’s place in these polar histogram plots by at most one bin, and given the generally
smooth transitions for frequency and mean SLP in adjacent bins, there would be no substantive difference
realized by producing separate plots for each instrumental epoch.
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Figure 3.5: As in Fig. 3.3, but for Palm Springs.

At the Travis site in Northern California the different seasons take on funda-

mentally different characteristics (Fig. 3.3). Summer is the most energetic season for

winds, and the dominant southwesterly direction points to an inflow from the Straits of

Carquinez and, beyond that, San Francisco Bay. The generally moderate station SLP is

consistent with milder summertime weather patterns, and suggests that transient syn-

optic processes are not a significant factor here. In contrast, winter observations exhibit

a calmer mean wind, but with greater variability in terms of direction and SLP. While

the variance of daily mean wind speeds is comparable for the two seasons, the rela-

tive variance (ie, the quotient of wind speed standard deviation divided by mean wind

speed) is significantly greater in winter. The observations with highest station pressure

are dominated by northeast breezes, while the highest wind speeds come when SLP is

low.

In Fig. 3.3 spring and fall are similar to each other at Travis and are most

concisely described as transition periods. Both exhibit the summerlike tendency toward
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Figure 3.6: As in Fig. 3.6, but for Mojave.

SW winds greater than 5 m/s when station pressure is moderate for the period. At

the same time, both also show proclivities for north or northeast winds in higher SLP

conditions, as in December-February.

The polar histograms for the southern California stations (Figs. 3.4-3.6) display

different characteristics from Travis. Palm Springs shows a preference for winds along

a NW-SE axis, roughly the direction of the mountain ridge line close to the airport

weather station. Edwards Air Force Base does also show some preferred directions, but

not as strongly as Mojave, which, while located within 30 km of Edwards, is closer to

the Tehachapi Pass and the SW-NE line of mountains on the western side of the Mojave

Desert. Southern California sites also show some relationships between mean SLP and

wind characteristics, notably in the high desert sites (Mojave and Edwards), where sta-

tion pressure is notably higher in east and northerly wind conditions. Although some of

this may correspond to Santa Ana conditions, especially the northeasterly winds asso-

ciated with high pressure seen in winter, the presence of the pattern even in the spring
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months, when Santa Anas are rare, implies it is associated with common anticyclonic

circulations centered on the western US and outflow from high pressure areas over the

Great Basin, but not exhibiting the intense temperature, relative humidity, and gravity-

driven wind speed anomalies characteristic of Santa Anas (Raphael, 2003; Hughes and

Hall, 2009). The stronger and more westerly winds in these seasons are also consistent

with transient eastward-moving low pressure systems centered at higher latitudes, which

we examine in more detail in the Part 2. Milder mean SLPs in the summer and predom-

inantly westerly flow are evident at each California site, although the wind is funneled

very effectively into a preferred direction at Palm Springs and less so at Mojave and

Edwards.

Delving further into the role of Santa Ana conditions on Southern California

station climatologies, we compare the characteristics of all observations to those from

days exhibiting Santa Ana conditions as defined by an index based on METARs-reported

station pressure, wind, and dew point in San Diego, California and Tonopah, central

Nevada, from September-March. This index is similar to previous indices used (Raphael,

2003; Miller and Schlegel, 2006) and allows us to define a day as “Santa Ana” or “Non-

Santa Ana.” After removing the observations that coincide with Santa Ana days, the

resulting polar histograms (not shown) still show noticeable northerly to easterly winds

corresponding to higher station pressures, although their frequency is reduced. Of note is

that the polar histograms of only Santa Ana days show lesser mean wind speed and wind

power density at nearly all Southern California sites and applicable periods. The only

exception is at Palm Springs in the wintertime, where observations on Santa Ana days

show a mean wind speed of 6.0 m/s and wind power density of 52.7 W m −2, compared

to 5.9 m/s and 50.6 W m −2 on other days. These measures all indicate that our sites

have average to below average wind speeds on Santa Ana days.

The relatively slow or moderate winds in Santa Ana conditions may seem surpris-

ing. While the conditions are known for strong, warm, and dry winds, this reputation is

founded in part on conditions in highly populated coastal areas and on the downslopes

of mountain passes (Raphael, 2003). Each Southern California site in this analysis, how-

ever, is either on a relatively flat plane (Edwards) or on the upwind side of mountain

passes where offshore flow is uphill, and thus wind speed as the dominant flow travels

upslope are diminished at our sites on the Santa Ana-classified days.

The polar histograms in Figs. 3.3-3.6 also give a sense of the distribution of wind
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speeds at each station and season. Numerous studies have investigated the distribution

of station wind speeds in general and in the wind power setting (ie Garcia-Bustamante

et al., 2008; Li and Li, 2005; Celik, 2004). A variety of theoretical distributions has

been proposed for wind speeds, and the Weibull distribution is often used as a first

approximation that exhibits the positive skewness generally found in wind series. For

the purposes of our inquiry the best theoretical PDF for each wind data set is not

as important as noting the general characteristics found. First, as seen in the origin

of each polar histogram, a large number of zero-wind readings were recorded at each

site. These are separate from the no-value coded entries in the METARs data sets,

tend to be surrounded by zero or low-wind readings, and also come from the hours of

lowest climatological wind (discussed below), indicating that they are plausible, valid

readings. The zero-wind hours are dispersed enough that there is a negligible number

of days of zero mean wind. Although we do not here reproduce the actual PDFs, two

additional points from them are relevant. The distributions have long right tails from

each station and season mean, and the distributions of interannual daily-mean anomalies

also display these long right tails, as this is consistent with transient systems bringing

occasional strong winds. The exception to this pattern is summertime Travis winds,

whose distribution is far more symmetric, and when the wind power density is greatest

in both hourly data and daily means.

3.4.3 Annual cycle

To complement the polar histograms, we present each station’s 10-day-smoothed

annual climatology of wind speed and vector components, as well as the interannual wind

speed standard deviation about the climatological mean in Fig 3.7. While the northern

California site has a maximum in the summertime, with more positive climatological val-

ues of both zonal and meridional 10m wind, the southern sites peak near spring. At each

site, variability rises and falls, but only slightly, roughly in phase with the climatological

wind speed. This means that coefficient of variation (ie, ratio of the standard deviation

to the climatological wind value) is much stronger in the calm, colder-season months,

where it approaches unity, while in the warmer months it is proportionally far smaller.

Figure 3.7 also shows the climatology of the zonal pressure difference, from reanalysis

data in grid boxes neighboring those containing the respective stations, with the sign

reversed so that higher pressure to the west is positive. At each southern California
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station, the annual cycle in mean wind speed roughly tracks with the annual cycle of the

pressure gradient. This is not the case, however, for Travis, where the pressure gradient

also peaks in late spring, but wind speeds are at their highest throughout the summer.

Figure 3.7: Mean annual cycle at each site of wind speed, interannual standard deviation, and

zonal and meridional wind components component. Also shown is the zonal pressure difference,

in hPa, between the reanalysis boxes centered directly to the west and east of each site’s closest

grid box center.

3.4.4 Seasonality of the diurnal cycle

In addition to the seasonal distributions of wind speed and direction, at each

site there may be a considerable diurnal cycle, also suggested from the power spectra

above, which itself displays variability on assorted timescales. In Figs. 3.8-3.10 the

mean temperature and wind speed at each hour (local standard time) is displayed for
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Figure 3.8: Mean diurnal cycle for each season at Travis in wind speed(solid) and temperature

(dashed), with gray area about wind speed denoting ± 1 standard deviation.

each season, as well as error bars denoting ± 1 standard deviation. Edwards shows a

consistent mean diurnal cycle in wind, weaker in the winter months, with calmer morning

breezes giving way to stronger winds later in the day, centered near 15:00-1800 local time.

These extrema are generally a few hours after the corresponding extrema in temperature,

which also has a greater mean diurnal cycle in the warmer months. Given the size of the

error bars, however, it seems clear that a summer day is far more likely to have a diurnal

cycle such as these, and that other seasons may vary from these means significantly.

Palm Springs also shows a diurnal signal that is most defined in the summer, with a

winds lagging temperature by several hours and peaking near 20:00 local time. While

the Travis site does not have as pronounced a diurnal cycle as the southern California

locations, the spring and summer nonetheless show a discernible mean cycle, both with

a maximum at 17:00 local standard time, followed by a wind speed plateau several hours
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Figure 3.9: As in Fig. 3.8, but for the mean daily cycle at Edwards.

long with the wind close to this speed until past midnight. The summertime minimum

wind speed time tends toward 11:00, while in the winter it is 6:00. The corresponding

daily cycle in temperature is also very weak in winter, while significantly stronger in the

other seasons. A wind speed peak in afternoon to early evening hours for wind energy

areas would imply greater electricity generation when demand tends still to be high, a

noteworthy characteristic for planning and operating such sites.

3.5 Intercomparison of wind and climate data

3.5.1 Statistical relationships between wind sites

We turn now to the relationships among the observed winds at METARs sites

near wind farms, observed wind at other locations, and several common climate indices.
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Figure 3.10: As in Fig. 3.8, but for the mean daily cycle at Palm Springs.

One goal in examining wind speed at nearby sites is to understand the degree and the

limits of spatial coherence in wind patterns over various types of terrain. As a first

step we present in Tables 3.1-3.4 the correlation coefficients for various wind time series,

nearby SST, and climate indices for the PNA, Niño 3.4, the NAO, and the PDO. The

SST is taken from reanalysis data — a combination of GISST v2.2 data before 1982 and

Reynolds SST after that. The southern California SST index is based the 2.5 × 2.5 ◦box

centered on 32.5 ◦N, 120 ◦W, while the northern California SST box is centered on 37.5
◦N, 125 ◦W. Since the annual cycles of the wind at our sites of interest were already

compared in Figure 3.7, we focus on how the time series of anomalies vary together. In

addition to the four sites we examined above, we also include daily wind time series from

buoy 46013 offshore of Bodega Bay, California, buoy 46025, in the Santa Monica Basin

south of Los Angeles, and the Bakersfield, CA METARs site in the San Joaquin Valley

northwest of the Mojave site. We examine daily-mean data in order to eliminate the effect
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of the diurnal cycle as well as to eliminate effects of the timing of wind patterns that

might be offset by several hours between sites as weather fronts move through. For the

Palm Springs, Edwards, and Travis sites, we use the series corrected for the most obvious

instrumentation changes, as discussed above. Each correlation coefficient is based on all

the dates where there are data available for both of the time series in question. The

bold numbers in the tables indicate that we can reject, at the 95% confidence level,

the null hypothesis of zero correlation, based on bias-corrected, accelerated bootstrap

confidence intervals (Efron and Tibshirani, 1993). Our confidence estimations are based

on that of Mudelsee (2003), who also showed the validity of these techniques for the

application to climate time series. To account for serial autocorrelation in the daily

time series in Tables 3.1-3.2 we use a stationary bootstrap routine that yields resampled

data sets with more strings of data points that were consecutive in the original time

series than would be expected from a traditional, purely random bootstrap resampling

technique (Politis and Romano, 1994). We follow the formula in Mudelsee (2003) in

how we relate persistence times to the stationary bootstrap’s probability of selecting

consecutive points. The persistence times themselves are found in two steps: first, we

compute persistence times separately for each station and year’s cold and warm season

from −2(ln r1)−1, where r1 is the one-day lagged autocorrelation (Leith, 1973); then,

we conservatively select the longest decorrelation times found for any single station and

season — 2.9 days for the cold season and 2.2 days for the warm season — and use these

as the persistence times for all cold and warm season data sets. We take monthly-mean

wind and some climate index values to be independent, but Niño 3.4 and the PDO index

are known to have persistence times longer than one month, and for these we consider

values separated by more than 6 months to be independent and use the same stationary

bootstrap technique as for daily data. Using the random resampling technique that

accounts for serial correlation, we take 8000 bootstrap samples, compute the corrected,

accelerated confidence intervals, and reject the null hypothesis if an r value of zero is

outside of the central 95% confidence interval.

The highest correlation coefficients in the tables are between nearby sites, in

particular the correlations between Edwards and Mojave and between Travis and the

SMUD site. Several points about these pairs of stations stand out. Edwards and Mojave

are close to each other as well as being located within the same topographical region. In

contrast, the wind speed at Bakersfield, approximately 100 km from Mojave but in the
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Figure 3.11: Scatterplot of Travis (x-axis) and scaled SMUD (y-axis) daily-mean wind speeds

for October-March (top panel) and April-September(bottom). Data are available for both sites

between 2000-2008. The dotted line is drawn along the path of x=y, ie, where points from two

identical datasets would be plotted.
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San Joaquin Valley west of the Tehachapi Pass, is not as highly correlated. Although

Mojave consistently has more energetic winds than Edwards, the two stations exhibit

strong positive correlation on daily and monthly time scales and they have similar annual

cycles. This in turn reinforces our strategy of using longer and more accessible airport

wind records to study the processes determining wind at wind farms. It is reasonable to

extrapolate that winds at Tehachapi Pass itself are also closely related to Mojave winds

but further amplified by the mountain pass, just as Mojave’s proximity to Tehachapi

Pass gives it higher winds than Edwards. The correlation between the sites, and similar

correlation values between each site and other time series, is consistent in both warm

and cold seasons, indicating Edwards and Mojave have similar responses to large winter

synoptic conditions and smaller-scale summer diurnal forcing.

Daily correlation between Travis and SMUD wind speeds is higher than between

Edwards and Mojave. Monthly-mean values are not shown, since the power supply to the

SMUD sensors was turned off repeatedly during the overlapping data period, making for

fewer than 15 separate 30-day periods of valid data in either season. The winds from the

SMUD’s Solano County site were measured from meteorological towers with instruments

at a height of 50 meters. We have again followed common convention and scaled the

winds down to equivalent 10-meter speeds using Equation 3.1. The Solano site data is

available in 10-minute averages, but for this comparison we subsample these data by

choosing only the average speeds covering the ten-minute period ending on each hour,

and compare them directly to the concurrent Travis METARs records, which are two-

minute averages taken each hour. As shown in Figure 3.11, after the power-rule scaling

there is little consistent bias between the two sites in daily mean wind speeds. The major

divergence is in the highest wind data, where SMUD wind speeds fall below the line of

one-to-one relationship. One possible explanation is that the strongest winds occur in

unstable boundary layers with vigorous vertical mixing, so that the most appropriate

power-law scaling term is less than 1/7, which is most ideally suited to neutral conditions

(ie, Hsu et al., 1994). More frequent data sets from high wind episodes could evaluate

this further; but even while relying on Eqn. 3.1 for all wind speeds, Fig. 3.11 shows

a very consistent relationship. The strong daily correlations and the generally low bias

between the two sites indicates that Travis and SMUD are not just closely related in

terms of timing and nature of wind fluctuations, as are Edwards and Mojave, but that

Travis’s long-term wind record can readily be used as a stand-in for both wind speed
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and wind power density values at the SMUD site itself.

Although detailed records from the San Gorgonio Pass wind farm are not avail-

able, summary seasonal data from 1977-1981 are published in Elliott et al. (1987, Ap-

pendix E). These give the mean wind speed and wind power at an observation site

directly at the exit of San Gorgonio Pass. The mean wind speed values for winter,

spring, summer, and fall (defined by the same months as in our study) at a mast height

of 9.1m were 4.2, 7.7, 7.8, and 5.2 m/s. These compare with 10m-height mean wind

speeds at our Palm Springs site of 3.0, 4.9, 4.7, and 3.8 m/s from the same period. The

mean wind power density measurements for each season in San Gorgonio were 153, 526,

489, and 230 W m−2, compared with 40, 162, 145, and 84 W m−2 in Palm Springs

Airport METARs. Almost all Palm Springs METARs reports from this period did not

have data between local 0:00 and 5:00, while cold-season days also tended to have no

data for 23:00 and 06:00. The typical daily cycles calculated from years with 24-hour

coverage indicate that the peak wind was centered on 19:00 local time, with the lowest

value of the day at or close to 04:00 (Fig. 3.10). This indicates that the missing data

likely came from both high and low points of the daily cycle, and their absence does

not greatly affect the daily or seasonal means. Thus we also highlight that in comparing

measured values at the Pass itself to our METARs wind speeds, the relative seasonal

cycle in wind power density was very similar, and the ratio of Pass seasonal mean wind

speed to METARs seasonal mean wind speed was not below 1.4 or above 1.7. While

we are not able compare daily or interannual variability between the two nearby sites,

the close relationship in seasonal cycle, and in seasonal wind distribution implied by the

similarities in wind speed and wind power tendencies, supports the premise of using the

high resolution METARs data to diagnose the behavior at the more energetic neighbor-

ing location. At the same time that the cycles appear closely related, the San Gorgonio

Pass site is sufficiently more energetic that its seasonal means fall in greater windpower

classes than does Palm Springs. San Gorgonio Pass 10m winds place it in classes 3, 7,

7, and 4 for winter-fall, respectively and an annual mean wind power density value cor-

responding to class 6, “outstanding.” Nearby Palm Springs seasonal values, in contrast,

would only fall in windpower classes 1, 3, 2, and 1, with an annual average wind power

density in class 2, “marginal” (Elliott and Schwartz, 2005).

Other, less local relationships are also evident from Tables 3.1-3.4. We high-

light the positive correlation between Travis and the Southern California METARs sites.



58

These are greater (r=0.24 to 0.41, which are statistically significant) in the daily cold sea-

son table (Table 3.1), presumably because this is when synoptic events are strongest and

could affect both regions simultaneously. The relationship between Travis and Edwards

remains strong throughout the year, on both daily and monthly time scales. It is also

interesting to note that throughout the cold months Travis wind speeds are positively

correlated with the nearest ocean winds, at Bodega Bay, but during the the warm season

they exhibit a weak negative correlation. This again reflects more dominant synoptic

forcing in the cold season, while the rest of the year is more given to local circulations

and the regional Delta Breeze that affects the Sacramento Valley.

The positive correlation observed between Buoy 25 off of Santa Monica and the

Southern California sites also indicates a relationship between the coastal ocean wind

speed and the orographically-influenced site recordings scores of kilometers away. Since

the buoy is located south and east of the corner-like feature of Point Conception, it is

sheltered from the climatological along-coast winds dominant north of Point Conception,

especially in the summer (Dorman and Winant, 2000; Taylor et al., 2008). Rather, the

wind speeds at Edwards and Palm Springs reflect weather patterns that may extend or

propagate from the Southern California Bight inland to the wind farm areas.

3.5.2 Relationships to surface forcing

In addition to relationships among wind sites, it is natural to investigate rela-

tionships to surfacing forcing in the area. SSTs near the region provide a starting point,

and their generally negative correlations with site winds are consistent with a circula-

tion driven by the contrast of cool coastal waters with solar heating at inland locations

(Tables 3.3-3.4). To investigate modulations on the other side of that process, we look

at the correlations between wind speeds and soil moisture in the top 10 cm of the land

surface in several arid regions near the sites, as reconstructed by the VIC model. Tables

3.5-3.6 show the correlations between monthly-mean wind speed anomalies at each site

and soil moisture anomalies over the Central Valley, Great Basin, Mojave, and Sonoran

deserts from the VIC model (Maurer et al., 2002). These monthly mean data are once

again separated into warm and cool seasons, with bias-corrected, accelerated stationary

bootstrap techniques used to estimate the correlations’ statistical significance assuming

a characteristic soil moisture decorrelation time of 3 months (Efron and Tibshirani, 1993;

Politis and Romano, 1994; Mudelsee, 2003).
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Table 3.5 shows that while many of the wind speed anomaly series are essentially

uncorrelated with moisture, cool season Palm Springs wind speed shows a negative corre-

lation with soil moisture in the neighboring Sonoran Desert as well as in the Great Basin

and Mojave regions. Lower soil moisture would allow for more effective solar heating

of these areas and development of stronger thermal circulations, as previously shown in

observations and models (Ookouchi et al., 1984; Yan and Anthes, 1988; Segal et al., 1988,

1989). In contrast, we suggest a combination of mechanisms for the positive correlation

between Edwards winds and Central Valley soil moisture. Since Edwards displays in-

creased wind speeds with increased tendency toward continental cyclonic activity (Fig.

3.12 as well as Part 2) the same moisture-bearing low pressure anomalies that bring

precipitation to the Central Valley would also tend to produce strong winds at Edwards.

This is supported by the fact that, if we make monthly soil moisture and wind speed

means only from daily means that were separated by at least two days from measurable

precipitation (using the same data that formed the forcing fields for the VIC model, at

the nearest grid point to each station), the correlation between Edwards wind speeds

and Central Valley soil moisture drops to 0.15. However, the other notable changes in

correlation when we remove precipitation events from the averages are that correlation

between Edwards wind speeds and soil moisture in each of the other three regions drops

from near zero to approximately -0.15. While these indicate that Central Valley soil

moisture and Edwards winds may be affected by the same forcing mechanisms, as op-

posed to the former directly forcing the latter, they also suggest that in the cool months,

moist Central Valley land surface and dry surfaces in the other regions imply stronger

winds, just as seen with Palm Springs.

In the warm season, the wind versus soil moisture correlations reveal different

mechanisms. The negative correlation between Travis winds and soil moisture in the

Central Valley is consistent with a thermally-induced circulation, as in Zhong et al.

(2004). The dominant flow in the warm months is from San Francisco Bay into the

Central Valley in response to the thermally-induced SLP gradient between Sacramento

and San Francisco; this is described in Part 2. A month or season with a moister

land surface would tend to heat less in response to solar insolation, setting up a lesser

temperature difference and SLP gradient between the coast and valley. The opposite is

true for periods with low soil moisture, and previous studies have also shown the sea

breeze strength and penetration to depend on the neighboring land soil moisture levels
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(Yan and Anthes, 1988; Physick, 1980). In further analysis, we find that the relationship

is higher for spring than summertime months; correlation for the time series from months

of April alone is -0.51. The springtime maximum correlation is interesting in that spring

is a period when soil moisture anomalies could be quite wet or quite dry. This is also

possible in winter, but this period does not have the same strong insolation as spring.

In summer, the magnitude of soil moisture anomalies is likely to be small. The same

argument applies to the relationship between Palm Springs winds and soil moisture in

the Sonoran and Mojave areas, much as was seen in the cool season. In contrast to

that season, however, the Great Basin area shows very little correlation to Palm Springs

winds, while the Central Valley shows the opposite, a positive relationship. The positive

correlation between Central Valley moisture and southern California site winds, while

mild, is consistent with the relationships between mesoscale station SLP differences and

observed winds found in Part 2, in that greater soil moisture would tend to produce

lesser warming on the western side of our wind sites, and thus allow the temperature

and SLP differences on opposite sides of the sites to increase as the sun heats the regions

to the east.

3.5.3 Links to monthly climate indicators

While we reserve analyzing the details of local regional circulations until Part

2, it is natural to investigate surrogates of some of the longer-scale processes that may

reasonably be thought to modulate such processes here. While wind speeds at the wind

farm sites exhibit a modest linkage to wind speeds along the California coast, it is not

clear if, or to what extent, they reflect the fluctuations of large-scale atmospheric circu-

lation, as represented by well-known climate indices. While Conil and Hall (2006) find

that neither the PNA nor other major modes of atmospheric variability strongly affect

the the three southern California wind regimes that they identify from high-resolution

MM5 simulations, our study is focused on the wind speed at particular sites in the state,

not the overall flow patterns in the southern region. While their weather regimes are

not inconsistent with our analysis, the emphasis we place on specific in situ wind speed

observations suggests that it may be instructive to perform a separate comparison with

indices of large-scale atmospheric variability.

Regarding the four climate indices examined (Tables 3.3-3.4), the cold season

displays significant correlation between monthly-mean wind speeds and several indices.
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Each of our three principal sites with long data records shows a negative correlation with

the PNA index, somewhat weak but significant at the 95% level. This indicates that

during the negative phase of the PNA, increased westerly flow from the North Pacific and

onshore over California favors higher-than-average wind speed, while during the positive

phase a more meridional flow and anomalous 500 hPa ridging over the continent tends

to provoke a decrease in wind speeds (Leathers et al., 1991). In Part 2, we show in detail

that the common synoptic patterns most associated with stronger than average winds at

the METARs sites in the cold season closely resemble the negative phase of the PNA, and

that the common patterns with weak winds resemble the positive-phase PNA. The PNA

linkage is also a good starting point to understand the relationship between other climate

indices and station winds. ENSO’s extratropical Pacific influences are often discussed in

terms of exciting a PNA or PNA-like pattern (Straus and Shukla, 2002; Yu, 2007), as

well as influencing SSTs off of western North America. In turn the PDO can be viewed

as a modulation of ENSO impacts (Gershunov and Barnett, 1998), or in its positive

phase, the large-scale SST pattern in which upper-air patterns preferentially exhibit

the positive PNA pattern, and vice-versa for the negative phase (Mantua et al., 1997).

This is consistent with the observed negative and statistically significant correlations

between station wind speed series and PDO or Niño 3.4. Although none of these climate

variability indices comes close to explaining a majority of the wind speed variance, the

PNA in the cold season is the best available index to serve as a summary statistic or

infer wind speed behavior over long reconstructed or projected future periods.

A more direct illustration of the common atmospheric state in different station

wind regimes is provided in Fig. 3.12, showing the composite mean 500 hPa height and

SLP anomalies for October-March months whose mean wind speed was in the slowest and

fastest quartiles for the cold season at each site. At Travis and Edwards, the patterns

from the fastest wind months each show an anomalous 500 hPa trough centered over

the northern Rocky Mountain area and extending off the Pacific Northwest coast. In

contrast, a similarly located anomalous ridge is evident in the slowest months’ patterns,

although these also contain an offshore negative anomaly on the northwestern edge of

the plotted domain. Mojave’s composite patterns are similar, but displaced so that the

northerly anomalous trough in the windy months is accompanied by a subtropical oceanic

ridge and the edges of a ridge well inland and poleward. These composites resemble the

negative and positive phases of the PNA, respectively, of Wallace and Gutzler (1981),
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which are historically defined based on winter months. The 500 hPa patterns for windy

months are consistent with increased cyclogenesis over the western portion of the conti-

nent and the lower mean continental SLP in Fig. 3.12, as well as increased subsidence

over the North Pacific and development of anticyclones which support the tendency to

higher mean oceanic anomalous SLP also evident in the figure. The anomalous ridge in

the calmest months supports continental subsidence and anticyclonic development over

the continent, associated with the anomalously high continental SLP anomalies seen,

but cyclonic activity and storminess over the oceanic portion.

At Palm Springs, however, the windy and calm-quartile cold-season months show

a different pattern. The composite from the least windy months contains a distinct

anomalous trough offshore that extends just to the coastline, and a mean anomalous

ridge centered further north and east over the continent. For Palm Springs, the composite

SLP anomalies exhibit a narrower pattern of contrasting high and low pressures than

for the other sites. Rather, the important contrast appears in a more local area about

the site. The low-wind months show decreased SLP in the Southern California Bight

and directly east of the wind farm, with neutral to slightly increased SLP to the west

and south, in the grid boxes approximately covering the Sonoran Desert plain into which

the predominantly westerly site winds blow. This positive anomalous zonal pressure

gradient contrasts with the high-wind days, where the lack of such a pressure gradient

force allows increased westerly wind acceleration. At the same time, the weak local SLP

anomalies allow for the development of smaller-scale circulations at the site.

The warm season station winds are not as consistently or strongly related to the

PNA as the cool months (Table 3.4). The PNA index is defined in the same manner

as for the cold months, even though the PNA pattern is only weakly expressed during

summertime (Barnston and Livezey, 1987; Wallace et al., 1993). Composite-mean 500

hPa anomalies from the slowest wind speed quartile months in April-September at each

southern California station (Fig. 3.13) contain anomalous ridges over the western coast

of North America and eastern North Pacific. Just as in winter, their presence would tend

to inhibit cyclonic development over the continent, and the positive SLP anomalies over

the continent, while not as strong as for the more synoptically active cold season, reflect

this. In the warm season high wind speed monthly means, only Edwards shows a well

organized anomalous trough and negative continental SLP anomalies. The composite

for winds at Mojave shows scattered negative SLP anomalies without an extensive sup-
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Figure 3.12: Composite mean of monthly-mean 500 hPa height (contoured, m) and SLP (color,

hPa) anomalies from months when each station was in the lowest-wind quartile (left column)

and highest-wind quartile (right) in October-March. Shown from top to bottom are maps based

on Travis, Mojave, Edwards, and Palm Springs monthly wind speed anomaly quartiles. Height

contour interval is 10m, the zero contour is bold and negative contours are dashed.
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porting anomaly pattern, indicating that smaller-scale transient systems contribute to

the windier months, although its shorter data record might exclude some periods when

larger-scale storms with upper air support made for strong site winds. Palm Springs

SLP anomaly patterns whose resulting low-level winds, if geostrophic, would translate

to increased westerlies in high-wind months and decreased westerlies in calm months.

Importantly, although the monthly-mean anomalous circulation patterns are

weaker in the warm months than in the cold season, the mean wind speed in the warm

season is significantly greater and wind variability from the climatological mean is some-

what greater. This suggests the influence of more local processes, on scales up to hun-

dreds of kilometers in extent, that drive wind behavior in the warm months but do not

show up clearly in reanalysis monthly means.

For the warm season months with fastest and slowest wind speeds at Travis the

composite 500 hPa anomaly means do not exhibit a similar proclivity to support cyclonic

and anticyclonic development as for the cold season. A weak anomalous ridge in the

windiest months is evident, with its edge directly over the site location; its presence would

prevent synoptic forcing from reaching Travis. However, given the small magnitude and

lack of organization of the mean SLP anomalies as well as anomalous large-scale vertical

motion or 850 hPa temperature (not shown), this analysis does not reveal other major

large-scale influences on warm-season Travis winds at the monthly time scale.

In Part 2 we explore more detail of the summertime circulation here and also show

how summertime wind is found to depend strongly, in differentiated ways for each station,

on mesoscale pressure gradients, boundary-layer stratification, and local circulations that

can develop in a variety of synoptic states. In light of this it is also germane that in the

warm season, Edwards, Palm Springs and Travis each have negative correlation to sea

surface temperature off the coasts of southern and northern California(Table 3.4). This

is consistent with cooler coastal temperatures allowing for greater thermal contrast with

the daytime inland areas, leading to low-level pressure adjustment and down-gradient

flow at these sites. The water’s high thermal inertia provides a counterpoint to the inland

desert areas and their strong variability on diurnal periods. To the extent that coupled

global models display skill in simulating east Pacific circulation and SST, the changes in

SST compared to inland heating may provide an important estimate, both conceptually

and quantitatively in downscaling studies, for warm-season wind power density changes

under climate change.
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Figure 3.13: As in Fig. 3.12, but for April-September.



66

3.6 Summary and Discussion

We have used instrumental records from four sites near wind farms in California

to analyze the climatology of the wind at these locations, its seasonality, its variability,

and the relationships among various wind time series and indices of climate variabil-

ity. Each of the sites is located near one of three established large-scale wind energy

conversion facilities. A cross-comparison of wind time series, including direct analysis

of available, shorter wind records from one such wind farm and seasonal means from

another, indicates that site-recorded wind speeds and wind power density from nearby

locations in the same basin are closely related to each other in terms of climatology,

and variability over a range of scales. Thus, we believe that our findings from the wind

records at Travis, Palm Springs, and Mojave and Edwards are readily applicable to the

Solano County, Palm Springs, and Tehachapi Pass wind power sites, respectively.

Each site displays a clear annual cycle. Mean wind speeds at the southern Cal-

ifornia sites peak in the spring time, in phase with peak seasonal SLP gradients from

reanalysis, but those of Travis peak in the summer when inland temperatures are greater.

The records also reveal that variability about the climatological mean has a somewhat

greater magnitude in the warm months, but the increase in this variability is not com-

mensurate with the increase in the seasonal cycle – the ratio of standard deviation about

the climatological mean to climatological mean wind speed itself on each day of the year,

is highest in the winter. The significance of these different measures of variability likely

depends on the demand, expectations, and integration strategy for any wind power plant.

If the site is needed to maintain a minimum baseline amount of production year-round,

such as to supply electricity for seasonally invariant, general energy use, then the high

wintertime relative variability is of greater concern. Total wind power density is lesser

at these times, and meeting the installed turbines’ cut-in speeds might be an issue on

relatively calm days in the calmer cold season months. On the other hand, if a site is

relied on to cover increased seasonal demand, such as to provide for air conditioning use

in the summer, then the increased variability (in absolute terms) coinciding with the

warm season will be of greater importance to site planners and operators.

Atmospheric flow at the sites in our study area are significantly influenced by

the complex terrain nearby. This is evidenced by the similarities between preferred wind

directions at Palm Springs, Mojave, and Travis and nearby orographic orientation, and

by the stronger winds at San Gorgonio compared to Palm Springs or Mojave compared
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to Edwards. These latter two sites show a strong correlation in wind speed over all the

seasons and time scales examined, but speeds are consistently higher at Mojave airport,

which is closer to Tehachapi Pass. Flows during maximum winds at each of the sites are

oriented from the coast toward the interior. Santa Ana flows, when winds reverse and

blow toward the coast, do not result in unusually strong or persistent wind episodes at

the sites.

The more pronounced diurnal cycle in the spring and summer months for each

station is consistent with the progression of solar intensity. In the spring and summer at

Travis, Edwards, and Palm Springs, maximum wind speed lags the afternoon maximum

temperature by a few hours in the seasonal mean. Mojave data coverage is insufficient

to form a mean 24-hour cycle, and while late afternoon winds are generally the highest

during the hours of observation in the warm months, we are not able to say the exact hour

of peak climatological wind speed. Although even in these seasons individual days can

have a wind speed maximum at any hour, the fact that the cycle is much more consistent

in the seasons when wind power is at its greatest means that significant amounts of

electricity are consistently available in the afternoon and evening hours from these sites.

The fact that the timing of wind power peaks is less consistent in the seasons with lesser

insolation and diurnal cycles points to a topic undertaken in Part 2, that of diagnosing

the weather patterns important to variations in site winds.

In the cool season, correlations indicate a modest tendency for the wind speed

variation at the four observational sites to be modulated by the large scale atmospheric

circulation.The negative phase of the PNA pattern favors strengthened wind speeds over

all. Other modes of modes of climate variability examined — ENSO, the NAO, and

the PDO — exhibit correlations that have statistical significance but it is not clear if

this represents mechanisms independent of their excitation of the PNA pattern. Many

of the monthly-mean 500 hPa patterns corresponding to extreme winds for different

stations and seasons clearly project onto a classical PNA pattern, and likewise imply

clear tendencies for increased cyclonic development over the continent and support of

the oceanic anticyclone in windy months. While the PNA and monthly-mean synoptic

anomaly patterns are stronger in the cool season than warm, it is in the warm months

that climatological wind speeds peak at each site of our analysis, and variability of

daily-mean wind speeds about the climatological mean is also somewhat greater in these

months. This strongly suggests the presence of local processes, on scales too small to
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be evident in the reanalysis data, that drive strong low-level flow and contribute to the

diurnal and synoptic-scale peaks in the power spectra.

In the summer season, no tested climate index shows a broad, statistically signif-

icant relationship to site wind speeds in the region. However, monthly SST anomalies in

the vicinity do show significant relationships to warm-season station winds. This could

indicate a direct role of SSTs in determining land-sea thermal and SLP contrasts, as well

as reflecting larger-scale oceanic and atmospheric anomalies. The SSTs analyzed were

from reanalysis grid boxes containing only ocean, and came only within scores of km of

the coastline. Actual SST measurements from within 50 km of the coast might exert

more influence on summertime winds, and these of course are more rapidly variable due

to coastal upwelling processes, as well as harder to reproduce in large-scale models.

In addition to SSTs and their influence over coastal atmospheric temperatures,

correlation analysis demonstrates a significant association of inland soil moisture on site

wind speeds over monthly time scales. This is particularly pronounced at Palm Springs

and in the warm months at Travis, sites where basin-wide pressure patterns here and

in Part 2 indicate direct synoptic forcing is secondary to more local circulations. The

process that seems most likely to underlie this relationship is the role of soil moisture

in moderating the inland-coastal temperature contrasts, whereas a drier land surface

would allow for greater average solar heating and pressure adjustment over the course

of a month or longer time periods. The longer time scales of variability of SST and soil

moisture fields together suggest them as starting point for any investigation of processes

governing seasonal variability. Beyond this general discussion of seasonal variability,

however, the underlying nature of our observational data becomes a concern, since the

occasional changes in sensor and/or surroundings at most sites only allow for a handful

of reliable, independent data points in assessing seasonal variability before long-term

spurious data trends become a potential problem, even with the first-order homogeniza-

tion performed here. Although this does not rule out a more detailed focus on longer

time-scale variability, the results indicate that the quality of the long-term record is less

of an issue for the shorter time scales that form the focus of the companion study.

The 500 hPa anomaly patterns common to the most and least windy months

indicate that warm-season Travis winds are driven almost entirely by local and regional

processes, and that the synoptic scenario most favorable to strong winds is of very weak

surface and 500 hPa anomalies over the region, allowing the smaller-scale processes to
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proceed unimpeded. This contrasts with the other sites examined, which still show half-

height anomalies conducive to increased large-scale flow near the site in the warm season

as in the cold.

Overall, our analysis brings out some defining characteristics of wind energy

used for electricity generation in California. The locations of sites which produce winds

sufficiently strong to support wind farms are largely a reflection of particular topographic

features. These locations exhibit strong seasonal cycles, as within each season there is a

different mixture of local and large-scale meteorological influences driving the wind. No

single large-scale climate variability index is found to explain the temporal variability

of the wind speed at these sites. However, the wind speed at the sites do reflect some

essential features and important time scales so that the processes driving diurnal and

synoptic events can each be used to detail the variability about the seasonal means.
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Table 3.1: (below and left of main diagonal): pairwise correlation coefficients for October-

March cold season observed daily-mean wind speed anomalies (using adjusted time series for

Travis, Palm Springs, and Edwards, as described in the text). Boldface indicates significance

at the 95% level using the bootstrap tests, accounting for persistence, as described in the text.

Coefficients are calculated within the season and for each pair of time series all of the overlapping

dates of observations in these months are used. Columns correspond to the same data sets as

corresponding rows, but abbreviated labels are used. (above and right of main diagonal): number

of valid overlapping daily observations used for calculating the correlation coefficients.

B13 KSUU SMUD KBFL KMHV KEDW KPSP B25
Bodega
Bay
buoy

– 3718 625 3808 2507 3634 3808 3400

Travis 0.29 – 935 5740 2718 9371 5740 3790
SMUD 0.35 0.74 – 623 530 599 623 533
Bakers-
field

0.21 0.26 0.27 – 2874 5724 5922 3882

Mojave 0.30 0.34 0.26 0.23 – 2733 2874 2670
Ed-
wards

0.28 0.41 0.29 0.33 0.69 – 5724 3716

Palm
Springs

0.12 0.24 0.12 0.09 0.25 0.33 – 3882

Santa
Mon-
ica
buoy

0.23 0.24 0.09 0.40 0.37 0.49 0.34 –
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Table 3.2: As in Table 3.1, but for the April-September warm season.

B13 KSUU SMUD KBFL KMHV KEDW KPSP B25
Bodega
Bay
buoy

– 4000 884 3981 2556 3814 4002 3555

Travis -0.09 – 1171 5894 2789 9522 5914 3903
SMUD -0.04 0.74 – 820 708 810 841 717
Bakers-
field

-0.08 0.14 0.08 – 2837 5721 5956 3936

Mojave 0.17 0.18 0.09 0.27 – 2666 2843 2541
Ed-
wards

0.13 0.23 0.13 0.40 0.63 – 5741 3833

Palm
Springs

0.04 0.10 0.04 0.29 0.29 0.44 – 3936

Santa
Mon-
ica
buoy

-0.01 -0.01 -0.05 0.28 0.23 0.33 0.29 –
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Table 3.5: Pairwise correlation coefficients between monthly-mean site wind speed anomalies

and simultaneous monthly soil moisture anomalies in the top 10cm of the land surface, for the

October-March cool season. Correlations significant at the 95% level using bootstrap methods

are shown in bold .

Central
Valley
soil mois-
ture

Great
Basin
soil mois-
ture

Mojave
Desert
soil mois-
ture

Sonoran
Desert
soil mois-
ture

Travis
wind

0.09 -0.00 0.06 0.03

Edwards
wind

0.35 0.01 0.01 -0.03

Palm
Springs
wind

-0.02 -0.19 -0.26 -0.29

Table 3.6: As in Fig. 3.5 but for the April-September warm season.

Central
Valley
soil mois-
ture

Great
Basin
soil mois-
ture

Mojave
Desert
soil mois-
ture

Sonoran
Desert
soil mois-
ture

Travis
wind

-0.28 -0.21 -0.19 -0.10

Edwards
wind

0.15 -0.05 -0.15 -0.10

Palm
Springs
wind

0.22 -0.08 -0.22 -0.28



Chapter 4

Climatology and meteorological

influences on California’s wind energy

resource. Part 2: Synoptic and diurnal

characteristics

4.1 Abstract

Decades’ worth of observations, reanalysis, and regional model data are used

to examine the variability in atmospheric circulations affecting three major California

wind farms. Self-organizing maps (SOM) reveal that from October-March the common

occurrence of oceanic high SLP and continental low SLP centers are the main large-scale

factors leading to increased wind speeds at wind farms near San Gorgonio and Tehachapi

passes in southern California and Solano County further North. Ocean low/continental

highs have the opposite effect. In addition, Palm Springs is especially sensitive to the SLP

difference between the California Bite and the Sonoran Desert that the site borders.The

reanalysis and in situ SLP gradients (at 100km separation) are strongly correlated

to cotemporaneous site wind speeds, indicating the principal mechanism relating SOM

patterns to wind speeds. Dynamically downscaled reanalysis data at 10km resolution

reveals that the strong down-gradient summertime flow at the northern site commences

at the coast and propagates inland in a distinct packet that is modulated by large

scale conditions and by boundary-layer structure, as revealed by nearby sounding data.

Similarly, summertime flow over Tehachapi Pass and the Mojave desert is seen to merge
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with incoming southerly flow from coastal Los Angeles and accelerate toward the Nevada

Great Basin area on windier days. While the 10km reanalysis does not resolve the Palm

Springs flow, experiments over select days with the Weather Research and Forecasting

model validate very well when run at 2.5km resolution, and additional experiments show

that the essential behavior is not captured when only solar or only lateral boundary

focing is used. These regional flow patterns illustrate processes accounting for several

statistically significant relationships between reanalysis fields and site winds.

4.2 Introduction

As wind power grows and takes a more prominent position in the energy infras-

tructure, the detailed behavior of the wind at existing and potential future conversion

sites grows in importance. This is especially true in California, where wind power de-

veloped before many other locations in the United States (Gipe, 1995), and where the

strong synoptic, diurnal, and orographic forcings combine to influence wind climate and

variability. Site design and operation, as well as market integration mechanisms and

energy policy all benefit from a firm understanding of the underlying energy source, its

general characteristics, and the causes of its variability. In Part 1 of this study (Mans-

bach and Cayan, 2010a) we use hourly wind measurements from meteorological stations

near three of California’s principal wind farms as well as select observations from wind

farms and other data to diagnose the annual cycles, relationships to large-scale climate

indices, and seasonal-mean wind behavior in these areas. We also show that sites located

close to and within the same orographic settings as each other have very closely related

wind behavior on hourly to annual timescales, verifying that our results are applicable

to wind farms themselves. In this paper we expand on these findings by relating wind

observations to synoptic forcing patterns, diurnal cycles, and local flow as channeled by

terrain for the three areas: Palm Springs, near the San Gorgonio Pass wind farm; Mojave

Airport and Edwards Air Force Base, near Tehachapi Pass wind farm; and Travis Air

Force Base, near the Solano County wind farm in northern California.

Electricity demand has secular and long-term variability as well as annual, weekly,

and diurnal cycles (ie Martin-Rodriguez and Caceres-Hernandez, 2005; McSharry et al.,

2005). Importantly, the supply of wind-generated electricity, via the wind forcing, has

significant variations too. In Part 1 we find that wind variability at the sites of interest

has spectral peaks around the annual, synoptic (3-15 day), and diurnal periods. As such,
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an understanding of the synoptic and diurnal forcing, drawn as needed from observations,

analysis, and models, can serve important operational needs. These include matching

likely timing of supply and demand and producing wind and wind power density forecasts

with lead times of hours to days (Giebel et al., 2003). As we have detailed the annual

cycle in Part 1, we proceed now to examine the meteorological processes behind the

synoptic and diurnal wind behavior.

Although peer-reviewed discussions of the meteorological processes specifically

driving California’s inland wind resource variability are not known to us, general studies

of climate variability and meteorological processes affecting the area are highly perti-

nent. Conil and Hall (2006) used a 6-km resolution model over southern California to

diagnose cold-season weather types. They found that winds were largely dominated by

the interplay between regimes of common northwesterly flow, onshore events, and Santa

Ana wind regimes, and that SLP over the Great Basin area (centered on Nevada) was

strongly related to these variations.

Winds adjacent to the California coast are also pertinent to our study subject.

Coastal wind studies have been motivated largely by the relevance to ocean upwelling and

productivity, but at the same time these winds form the boundary forcing for the inland

circulations that impact wind farms. The balance of North Pacific High and continental

low pressure creates a sharp SLP gradient over California in the summer. Subsidence

over the ocean and the thermal low driven by daytime heating in the Southwestern US

lead to strong, nearly geostrophic climatological along-coast winds that are punctuated

by occasional synoptically driven high wind events, as well as modifications to the flow

due to interactions between the marine boundary layer, the coastline, and the coastal

mountains (Dorman, 1987; Winant et al., 1988; Dorman and Winant, 1995; Winant and

Dorman, 1997; Taylor et al., 2008). While the large-scale factors remain important to

inland winds, the breakdown of geostrophy with surface drag and the complex terrain

in the region strongly modify the flow from that offshore.

Santa Ana wind events have also been examined in multiple studies, much of the

interest stemming from their relation to fire weather in southern California. Although

Conil and Hall (2006); Raphael (2003); Miller and Schlegel (2006); Hughes and Hall

(2009) have shown the importance of these winds to southern California climate, in

Part 1 we find that their role in shaping seasonal wind characteristics at the sites of

our principal interest, which in Santa Ana conditions lie upwind of major mountain
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passes, has been minimal. Still, Santa Ana winds provide another relevant example of

the importance of terrain channeling, small-scale thermal variations, and Great Basin

pressure on the region.

The complex topography surrounding the established wind energy sites, the jux-

taposition of the ocean, temperate coastal areas, and more arid inland expanses, and

the strong summertime insolation in California would suggest that locally forced circu-

lations might play a significant role, even as synoptic conditions exert some control. The

classic local, orographically induced circulations include daytime upslope and nighttime

downslope winds, forced by pressure gradients resulting from hydrostatic adjustment to

insolation and longwave cooling, respectively (Barry, 2008, pp. 176-196). Recent obser-

vations in the Intermountain West have shown these processes occurring regularly, along

with the related, larger-scale up-valley and down-valley winds (Stewart et al., 2002; Lud-

wig et al., 2004). In California these processes intermingle with effects of the sea breeze

and land breeze, which can be pronounced when inland temperatures sharply contrast

with upwelling-cooled coastal waters, and which when fully developed may extend as far

inland as the wind farms in question (Miller et al., 2003).

Given the importance of several different scales of wind circulation, this study

makes use of observational records as well as large- and regional-scale model data to

determine the development of common flow patterns, the resulting winds at the wind

farms, and what conditions lead to strengthening or weakening of these circulations.

In this work we first review the data sources from Part 1 and introduce new ones to

help understand synoptic and diurnal processes. We then introduce a powerful and

flexible methodology to identify synoptic patterns, which we apply to gridded weather

information from distinct seasons as well as specially selected subsets therein. We then

examine in more detail several relationships suggested by the synoptic classifications,

including mean hourly regional circulation patterns and their relationship to the larger

scale as well as to station observed winds. We conclude with a discussion of our results.

4.3 Data

Archived METARs observations again serve as the primary source for wind ob-

servations, as in Part 1. We use data from Travis Air Force Base in the Sacramento

Valley as a proxy for wind behavior at the Sacramento Municipal Utilities District’s

(SMUD) Montezuma Hills wind farm in Rio Vista, Solano County. The two sites were
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shown to be highly correlated (r>0.7) at all times of the year over the approximately 5

years for which we have coincident data. Edwards Air Force Base and Mojave Airport

represent the winds at Tehachapi Pass wind energy site. Edwards and Mojave, 30 km

apart in the high desert, are very closely related to each other, and we treat them as

representative of winds at Tehachapi Pass, which is another 15 km from Mojave on the

edge of the desert. Palm Springs airport winds were recorded where the San Gorgonio

Pass begins to widen into the Sonoran Desert, about 10 km to the east of the wind

farm located directly in the pass. The available data showed that the seasonal cycles of

wind and wind power density are very similar at the two sites. Palm Springs data are

present from 1973 onward, Mojave from 1987, and Travis and Edwards since the 1940s.

Coverage at the latter two sites was 24 hours a day most years, while Mojave has only

daytime recordings, and Palm Springs has mostly daytime observations, with 13 of 24

hour coverage. We also make use of additional METARs stations for SLP and wind data

in the vicinity of these sites, as well as wind data from buoys along the California coastal

ocean provided by the National Data Buoy Center and National Ocean Service buoys, as

we did in Part 1 (Hamilton, 1986; Meindl and Hamilton, 1992). Wind speed observations

are scaled using the one-seventh power law to their nominal 10m value using a history of

METARs anemometer heights provided to us by the National Climatic Data Center. For

the longer wind series some instrumental shifts resulted in several obvious jumps spread

over the decades, and so we have made a first approximation at homogenization by cal-

culating a separate mean annual cycle for each period between jumps, and subtracting

these from the observations to produce a corrected anomaly data series.

Larger-scale meteorological conditions, including sea level pressure, 500 hPa

height, surface temperature, and upper-air winds are taken from the NCEP Reanalysis

daily and six-hourly data on a 2.5 ◦× 2.5 ◦grid (Kalnay et al., 1996). Daily anomalies

are computed by subtracting climatologies calculated over 1968-1996.

The California Reanalysis Downscaling at 10km (CaRD10) regional dataset de-

scribed in Kanamitsu and Kanamaru (2007) provides regional-scale circulation and other

meteorological information. This is an hourly, California-centered, 10 km resolution hy-

drostatic dynamical downscaling of the global reanalysis data that covers the same time

period as the global reanalysis. The data are found to replicate land winds better than

the global reanalysis, and also show improvement over the coarser-scale data assimila-

tion North American Regional Reanalysis (NARR; Mesinger et al., 2006), particularly
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in reproducing complex wind patterns such as in Santa Ana and Catalina Eddy events

(Kanamitsu and Kanamaru, 2007; Kanamaru and Kanamitsu, 2007). Because of this

skill in capturing flow over terrain, we use the data set to span the divide between the

directly-measured station data and the gridded reanalysis data available.

4.4 Analysis using self-organizing maps

4.4.1 Cold season

The broad peak in the spectral analysis of daily-mean and daily interannual

anomaly wind speed around the 3-15 day period, shown in Part 1, suggests the impor-

tance of propagating extra-tropical weather systems. To examine atmospheric conditions

associated with site wind variability, we examine the synoptic-scale patterns common to

the western US/eastern North Pacific area, their progression, and the station wind speed

response.

Using NCEP reanalysis data, we seek to organize the gridded meteorological data

in realistic ways that are instructive to the analyst. Basic dynamical concerns suggest

that this could take the form of a geographic arrangement of pressure fields, mandatory

level heights, and/or wind fields in a region about the sites of interest. For this study we

employ self-organizing maps (SOMs) (Kohonen, 2001), which we find stably illustrate

the commonly observed patterns as well as showing connections to site data.

Self-organizing maps are a well-established tool in biostatistics and other sci-

ences, and are gaining traction in atmospheric and climate science as well (Kohonen,

2001; Hewitson and Crane, 2002; Cavazos, 1999). Rather than forming patterns based

solely on eigenvectors or partitioning the sample space of data (ie, the set of weather

maps from a certain region and period) into separate clusters, a self-organizing map is

an unsupervised learning and classification system that describes the extent of the sam-

ple space by representing its characteristic common states with a specified number of

patterns, referred to as nodes.

In this study we use maps of anomalies from daily climatological values. In the

SOM algorithm, a region’s two-dimensional anomaly map of any given day is concate-

nated into a vector and if the map contains multiple fields – such as a 500 hPa height map

overlying a sea-level pressure map – the elements belonging to each field are divided by

their collective standard deviation to normalize across the multiple variables displayed
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on the map. Each day’s scaled, concatenated vector now represents a point in a space

whose dimensionality is determined by the number of gridpoints in the original anomaly

maps. The SOM analysis identifies nodes that best summarize the cloud of points in this

space. The analysis starts with an initial guess as to what these nodes might be, and

this guess for each of the m × n nodes is a different linear combination of the first two

principal component eigenvectors of the sample space. (Random initial states could also

be used with similar results, but are computationally inefficient, according to Kohonen

(2001)). In the next step, each node is then re-positioned based on the locations of the

sample points within a certain vicinity of it, with the nearby points weighted to exert a

greater influence than the more distant ones over the node’s new location. This step is

carried out repeatedly, with the size and weight of the hypersphere of influence shrinking

at each step. Once the influence of all points near a node has shrunk to zero, the nodes

are considered to be determined for this subspace.

Each resulting node is re-scaled and can be plotted as a weather map. There

are several advantages to computing such maps, as became clear in this analysis as well

as discussed in Hewitson and Crane (2002) and Kohonen (2001). A point that is close

to multiple nodes at any step in the process contributes to all of the nodes’ subsequent

positions. In practice this often leads to final maps with less abrupt transitions between

nodes than with k-means clustering, and less chance of qualitatively different final maps

due to variations in the initial guess or due to changes in a small number of sample points.

The resultant nodes can represent differences in one part of the map domain while other

areas are similar, and with appropriate grid dimensions can display a smooth transition

in conditions from node to node and across the grid of final maps. Thus, a self-organizing

map (really a map of several weather maps, in our case) represents the continuum of

possibilities spanned by the weather over the period and region in question. Even a large

SOM (for instance, a grid of 5 × 5 nodes) will often display a smaller and more easily

understood number of key patterns or weather systems, while also allowing the analyst

to easily classify any given day by its place in that continuum.

In Figs. 4.1 and 4.2 we present cool season (October-March) and warm season

(April-September) SOMs for an area extending approximately 1500 km zonally and ap-

proximately 1000 km meridionally from the outline defined by the Travis, Palm Springs,

Edwards, and Mojave METARs sites. The maps show, for each season, the charac-

teristic patterns of SLP anomaly and 2-day change in 500 hPa height anomaly from
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16.2 %
Tr avis v ,s = 0 .64, 2.32
Edwards v ,s = 1 .66, 2.34
Palm Springs v ,s = 0 .50, 1.26

8.7 %
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Edwards v = 1 .24
Palm Springs v = 0 .20
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Tr avis v = 0 .97
Edwards v = 1 .03
Palm Springs v = - 0.20

9.0 %
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5.2 %
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Figure 4.1: Self organizing map for October-March. Colors are composite anomalous SLP;

contours are composite anomalous 2-day change in 500 hPa height. Dashed contours indicate

anomalous troughing. Contour interval is 25m. Listed above each node is the frequency of days

most closely matching that pattern, the mean wind speed anomaly values and for the first node,

the wind speed standard deviation for all days examined, at Travis, Edwards, and Palm Springs.
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1968-1996, as well as the frequency with which these patterns occur and the composite

mean daily wind speed anomaly at each of the three best-sampled sites, adjusted for

instrumental jumps, in the days that best match that map pattern. The corresponding

seasonal climatological states are presented in Fig. 4.3. Also computed, and used later

in our analysis, are the nine SOM time series corresponding to the Euclidean distance

(in scaled SOM hyperspace) between each day’s reanalysis weather pattern and each of

the nine node patterns. Above each node is the wind speed anomaly from all days whose

weather map most nearly resembled that node, at each of the Edwards, Palm Springs,

and Travis sites. Because the Mojave values mirror the trends at Edwards, but are made

up of fewer observations, given the shorter period of years and limited hours of the day

that Mojave reported wind speeds, we have omitted the mean anomalous wind speeds

at Mojave from Figs. 4.1 and 4.2.

Focusing first on the cool season, several patterns are worth noting. The maps

display the push and pull between the patterns of oceanic anomalous high/continental

low and oceanic anomalous low/continental high in SLP anomalies (upper-left to lower-

rightmost maps). The site wind speed anomalies in southern California are most positive

in the oceanic high/continental low SLP cases, and most negative in oceanic low/continental

high scenarios. The corresponding 500 hPa ridging/troughing anomalies (ie, solid or dot-

ted contours, respectively) generally align to support the sustenance and propagation of

the sea-level disturbances, through lower-tropospheric vertical motions implied by quasi-

geostrophic dynamical considerations. In addition to anomaly patterns with contrasting

SLP anomalies over the oceanic and continental areas, there is also a node showing a

broad area of low pressure straddling the coast near the Pacific Northwest, and one

showing the same with anomalous SLP high (lower-left and upper-rightmost panels).

While the Travis wind speed anomalies vary with weather patterns in the same

way as the southern California sites in the upper-left, middle, and lower-rightmost nodes,

this does not seem to be the mode of variability most influential to Travis mean wind

speeds. Rather, the pattern most strongly corresponding to anomalously high winds at

Travis is that of widespread low SLP (the lower-left node), with some 500 hPa troughing

activity downstream to the East of it. In contrast, along the bottom row of the cold-

season SOM, the middle pattern’s SLP depression that is not directly overlying the site

shows near-neutral mean conditions at Travis, and the rightmost node, with a continental

high, shows a negative wind speed response. Higher-density SOM grids (not shown)
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display a smooth transition between patterns where the depression squarely overlies

Travis, to those where it lies to the east and forms a dipole opposite a continental

high, with commensurate smooth transition from positive to negative mean wind speed

anomaly.

In the cool season, the oceanic high SLP pattern, as characterized by the SOMs,

serves to expand the climatological area of North Pacific high pressure northward, while

anomalous continental highs and lows collocate with the climatological high centered

from the Great Basin to the southern Rocky Mountains (Fig. 4.3). The end result

is that the upper-leftmost pattern in the SOM superimposed on the climatology is a

negative zonal sea-level pressure gradient across California. In the opposite case, the

continental high and oceanic SLP depression decrease or weakly reverse such a gradient.

In addition to the ocean-continent dipole pattern of variability, the characteristic sea-

level patterns identified by the SOM algorithm also include oceanic and continental

highs and lows in isolation. Broad disturbed areas covering the greater western U.S. and

eastern North Pacific (the upper-right and lower-left nodes) are visible in the SOM. Conil

and Hall (2006) find that cold-season Southern California winds react to a monopole of

SLP centered over the western US. The composite means of Edwards and Palm Springs

station data show a relationship to such a monopole, particularly along the middle row

of the SOM grid. Here, for over one fifth of the days examined, wind speeds at both

stations show an inverse relationship with Great Basin area SLP anomaly. On the other

hand, the southern California composite anomalies consistently become more negative

as one progresses down any column of the grid, where the major change is a suppression

of the oceanic high or development of the low, indicating that in many cases the station

winds are not varying solely in reaction to a monopole pattern. This pattern is found

for both Palm Springs and Edwards, but the SOMs indicate that Edwards overall has a

stronger response than Palm Springs to these synoptic forcings.

The presentation of the overlying 2-day 500 hPa heights in Fig. 4.1 may at first

seem superfluous, as the centers of downward and upward vertical motion implied by

the ridging and troughing tend to align themselves ahead of the surface highs and lows,

respectively, as one would expect for propagating midlatitude systems. Further exami-

nation, however, shows that they are indeed relevant to the station winds. When SOMs

are used to form patterns and find best-matching days solely based on SLP information

(not shown), very similar SLP distribution patterns are found, but the corresponding
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Figure 4.2: As in Fig. 4.1, but for April-September.

wind speed mean anomaly values at each station are generally lesser in magnitude and

the standard deviation of wind speed anomalies in each group are greater than in the

bivariate SLP/Z500 SOMs presented here. The value of using the Z500 information is

even more evident when we compute SOMs with larger grids (not shown). When us-

ing as many as 25 nodes to find patterns from SLP and Z500, the differences between

adjacent nodes are often largely due to differences in the upper-air patterns. In turn,

the SOMs calculated without using 500 hPa patterns often do not provoke as clear a

response in station wind speeds. This suggests that when upper-level support is present

to sustain and develop anomalous near-surface highs (through 500 hPa ridging activity

east of the SLP high) and lows (through troughing), the station winds have a more

consistent response.
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Figure 4.3: Climatological SLP distributions in hPa (colors) and 500 hPa height (contours,

5700 contour weighted and interval is 25 hPa) for October-March and April-September.

4.4.2 Warm season

For the warm season, the self-organizing map of anomalous SLP (Fig. 4.2) ex-

hibits similar but weaker versions of the cold season patterns, with some northward

displacement. Anomalies are smaller than in Fig. 4.1, indicating lesser synoptic activity

in the warm months, while the 500 hPa levels show little organization or support for

the surface disturbances. Although the nodes exhibit essentially the same, but weaker,

anomalous weather patterns, these occur within a different climatological distribution of

pressure (Fig. 4.3). The summertime eastern North Pacific has a stronger high pressure

center that extends further north than the cold months’ anticyclone, while the conti-

nental high has largely dissipated and the low-lying desert areas of the southwest show

considerably lower pressure. This results in an enhanced zonal sea-level pressure differ-

ence across California in the mean, whose seasonal timing coincides with or has a slight

offset from the mean maximum wind at each station (Part 1).
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Considering all three sites, the main difference in the warm season compared to

the cold is in the Travis composite mean wind speed response. Mean speed anomalies are

negative for the upper-left node, and the slowest winds correspond to the pattern of high

SLP in the northwestern part of the domain (upper-right node). Although there is some

difference in the mean wind speeds corresponding to each pattern, a clear relationship

between synoptic forcing and site winds is not apparent. In fact, for this station and

season, a domain of this size might be bigger than we need. Close examination suggests

a consistent relationship between the meridional SLP gradient near the site and wind

speeds, a topic we explore in section 4.6. In addition to the SLP gradients near the lower

limit of scales resolved by reanalysis, the diminished wind response at Travis leaves open

the possible role of smaller-scale circulations (section 4.7).

While we have utilized SOM analysis to diagnose the forcings of site wind speed

on variability synoptic time scales, the SOMs presented do not explicitly describe the

time development of the synoptic states. There are several other lines of evidence,

however, showing that the large-scale patterns evolve from day to day in concert with the

site wind speed anomalies and as one would expect from general extratropical synoptic

meteorological theory. First, we found the best-matching node for each day’s reanalysis

conditions over many years, and calculated the likelihood of transitioning from any given

node pattern to each other pattern over one, two, or three days’ time. In general,

persistence — having the same SOM node best describe two consecutive daily patterns

— was the most common transition over one day’s time. For days matching the node

indicating broad high pressure (upper-right), for instance, in the cool season there was

a 50% probability that the next day would also best match that node. For the days

when there was a transition to a different node, and for the common two-day changes,

the transition was generally to a neighboring SOM node. For instance, continental high

pressure (the center node on the rightmost column) has a tendency to transition to

oceanic low/continental high (lower-right), with a 60% probability of that transition in

one or two days’ time in the cool season. Transitions to non-neighboring nodes are not

frequent over one or two days’ time, but the likelihood of day 3 matching a node not

neighboring the day 0 node is much greater.

In addition to this analysis, we used SOMs to find the most common patterns

in 4-day wind speed anomalies at every site and season (not shown). The results show

that the common higher-wind events tend to last one or two days before winds go back
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down to climatological values, at each site and season. Pronounced low wind events

can also end after one or two days, although negative anomaly and near-zero anomaly

events are also seen at each site that last as long as 4 days. The only site that shows a

tendency toward 3 or 4 day long high wind events is Travis in the summertime, when a

pattern of four continuous days of 2 m/s anomalous daily-mean wind speed is one of the

principal patterns. Moreover, when we look at the mean SOM synoptic classification for

the days contributing to each of the identified common 4-day patterns, we see that there

tends to be a close relationship between synoptic state and wind speed on each day. For

example, at Edwards and Mojave, one common multi-day wind speed anomaly pattern

is two days of strong winds (2 m/s or more above climatology) followed by two days of

near-zero anomaly wind speeds; these usually occur when the first two days best match

the upper-left and upper-middle SOM nodes, and the next two are weak versions of the

center-bottom and lower-left nodes. Overall, these results provide a useful confirmation

that the SOM patterns do match up with the synoptic variability found in the time series

analysis, as well as illustrating the linkage between synoptic patterns and wind speed

variability across days.

4.5 Synoptic patterns from select windy and calm days

Although the SOM nodes in Figs. 4.1 and 4.2 indicate the station composite

mean wind speed anomaly corresponding to each common synoptic pattern, more detail

about the relevant forcings is evident from separating the windiest from the calmest

quartile days for each station and examining the dominant synoptic patterns in each

set. Figs. 4.4-4.7 show these for the synoptically active months of December-January.

Separate maps (not shown) have shown that similar patterns hold in other seasons, albeit

with weaker anomalies that are somewhat offset northwards. Fig. 4.4 reveals that for

Travis, stronger winds are forced by anomalously high oceanic SLP with 500 hPa ridging

overlying it, much as implied from Fig. 4.1. In addition, however, the low pressure center

associated with stronger winds need not be a purely continental low; strong winds are

often excited when a depression straddles the coastal northeast Pacific and the Pacific

Northwest, especially with anomalous upper-level troughing ahead of it. This might

be a coastal storm approaching the area from the west or north, and the geostrophic

component of the flow around a low-level disturbance such as this would bring westerly

winds toward San Francisco Bay and the anemometer at Travis. For low-wind Travis
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Figure 4.4: As in Fig. 4.1, but only examining conditions from days in the windiest quartile

of December-January days at Travis.

days, the opposite patterns occur (Fig. 4.5): each pattern shows anomalous high SLP

over the western US and northern California. The top and bottom rows of nodes show

that this pattern corresponds to lower station winds whether accompanied by oceanic

high or developing low pressure centers. The top row also shows that a more positive

meridional pressure gradient over California corresponds to weaker circulation at Travis,

in addition to the oceanic/continental contrast identified in the earlier figures.

For Edwards, which shows the strongest response to the patterns identified from

all days in the cold season, the SOM patterns corresponding to calmest and windiest

days are similar to those found in the group of all cool-season days in Fig. 4.1. Fig.

4.6 shows that in addition to the oceanic highs and continental low SLP disturbances,

Edwards also is windy when a coastal low has come onshore and dipped southward toward

southern California. The windiest days contain stronger 500 hPa ridging supporting a
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high and troughing over a low than the patterns from all days in Fig. 4.1. Similarly,

Fig. 4.6 shows that strong winds at Edwards are found when there is an oceanic high

SLP anomaly and/or continental SLP low, with organized 500hPa ridging and troughing

leading the high or low, respectively. The SLP patterns associated with weak Dec-Jan

winds at Edwards in Fig. 4.7 are strikingly inverse symmetric to those for the high

wind cases in Fig. 4.6, although the upper-air anomaly means are lower. Every node in

Fig. 4.7 shows anomalously high SLP over the continental region. The consistency of

this feature with a variety of states of oceanic SLP supports the findings by Conil and

Hall (2006) of a monopole-like center of action for these days in the calmest wintertime

quartile. At the same time, the high wind cases in Fig. 4.6 show that this SLP monopole

does not account for all of the wind response at the site: the mean wind speed anomaly

is about 1 m/s greater for days corresponding to the nodes in the rightmost column of

the SOM than it is in the lower-left and lower-middle nodes. The negative SLP anomaly

over the Great Basin area is comparable in these five nodes, but the anomaly maps along

the rightmost column also show a positive oceanic SLP feature, while the other two do

not. The role of Great Basin pressure is also explored in section 4.7, where we investigate

the daily cycle at Edwards.

We have also examined the SOM patterns characteristic of Dec-Feb high and low

wind days at Palm Springs (not shown). The oceanic high/continental low are present

in some windy quartile nodes, as well as inverse symmetric SLP distributions showing

oceanic low SLP anomalies in nodes for the calmest quartile days. In addition, however,

other windy-quartile patterns are dominated by SLP highs over the western US, and

the central node from the low-wind SOM shows very little anomalous SLP or 500 hPa

heights. Furthermore, several windy-day patterns resemble calm-day patterns, and the

significant differences between patterns found and the most commonly occurring ones in

the cold season (Fig. 4.1) are symptoms of why Palm Springs overall has a less clearly

defined cold season response to synoptic forcing than the other sites (Fig. 4.1). While we

have omitted reproducing or detailing all the features of the Palm Springs composites,

some points are worth comment. The low-wind quartile continental lows that do appear

do not extend as far south as the Palm Springs site itself or the approximate latitude

of the rest of the Sonoran desert, while the continental SLP depressions on high-wind

days extend much further south, well into Mexico. Likewise, continental SLP highs for

low wind composites extend well south and to the eastern limit of the domain, as do the
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Figure 4.5: As in Fig. 4.1, but for days in the least windy quartile of December-January days

at Travis.

continental lows on windy days.

4.6 Role of SLP gradients

Several of the SOM nodes in Figs. 4.1 - 4.7 imply that the common synoptic

patterns affect station winds by setting up anomalous sea-level pressure gradients. The

exact zonal and meridional pressure anomaly gradients, ∂p′

∂x and ∂p′

∂y , can be approximated

by the bulk differences, ∆p′

∆x,y as can the non-anomalous gradients, ∆p
∆x,y . We calculate

these from daily reanalysis SLP located one grid box west and east or north and south of

the reanalysis boxes closest to the stations. The southern California sites are closest to

35◦N, 117.5◦W, while Travis is closest to 37.5◦N, 122.5 ◦W. This results in approximate

values of 450 km for ∆x and 550 km for ∆y.

Tables 4.1 and 4.2 show the relationships between bulk zonal and meridional
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Figure 4.6: As in Fig. 4.1, but for days in the windiest quartile of December-January days at

Edwards.
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Figure 4.7: As in Fig. 4.1, but for days in the least windy quartile of December-January days

at Edwards.

Table 4.1: Pairwise correlation coefficients for zonal SLP difference over 450 km (from reanal-

ysis) and wind speeds at the station labeled in the leftmost column. The left two columns of r

values cover cold and warm seasons, using daily-mean data, while the two rightmost columns use

daily interannual anomalies for wind and pressure data. Every correlation shown is significant

at the 95% level using the bootstrap methods described in the text and Part 1.

cold season
daily data

warm season
daily data

cold sea-
son daily
interannual
anomalies

warm sea-
son daily
interannual
anomalies

Travis -0.21 -0.08 -0.16 -0.16
Edwards -0.52 -0.54 -0.50 -0.50
Mojave -0.48 -0.48 -0.45 -0.40
Palm
Springs

-0.43 -0.55 -0.33 -0.46
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Table 4.2: As in Table 4.1, but pressure differences are over a meridional spacing of 550 km.

cold season
daily data

warm season
daily data

cold sea-
son daily
interannual
anomalies

warm sea-
son daily
interannual
anomalies

Travis -0.27 -0.25 -0.24 -0.29
Edwards -0.51 -0.60 -0.49 -0.58
Mojave -0.40 -0.42 -0.38 -0.35
Palm
Springs

-0.07 -0.45 0.05 -0.37

pressure differences and station winds for Travis, Edwards, Mojave, and Palm Springs.

The range of correlations was quite broad, but since all available daily mean wind speeds

in each season were used, it is not surprising that all correlations were significant at the

95% confidence level using bias-corrected, accelerated bootstrap methods, with station-

ary bootstrap to account for serial dependence (Efron and Tibshirani, 1993; Politis and

Romano, 1994; Mudelsee, 2003, detailed further in Part 1). In general, the correlation

values are similar whether for observed daily mean or interannual daily anomaly values.

Correlations were all negative, indicating that increased pressure gradient in the direction

to reinforce the mean westerly to northwesterly wind flow is associated with increased

wind speed. Edwards winds are the most negatively correlated to pressure gradients,

which is also consistent with Table 4.3. Travis winds are least correlated to zonal pres-

sure differences in the warm season (correlation actually goes to zero when ∆x ≈ 1350

km). Although the reanalysis grid is too coarse to resolve the narrow topography within

California, the stronger correlation between Travis wind speeds and meridional pressure

gradient indicates that reanalysis-scale SLP differences do reflect the along-Sacramento

Valley mesoscale SLP patterns found in Zhong et al. (2004), where lower SLPs further

north in the Sacramento Valley correspond to stronger winds at Travis.

It is worth noting that the highest-magnitude r values in tables 4.1 and 4.2 are

comparable to those between the observed daily wind anomalies and the best-fit line

formed from a multilinear regression using nine SOM time series as the only predictors

in addition to the intercept. In that sense, any one of the high-correlation SLP gradients

from reanalysis essentially explains as much of the wind’s variance as the set of SOM

synoptic types. However, the SOMs are still more valuable in understanding the mete-

orological patterns involved and addressing the combinations of factors that affect wind
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behavior. They also lead to efficient and objective selection of days with similar synoptic

forcing for compositing and other uses. Furthermore, all of these correlation coefficients

are diagnostic of observed past relationships; determining the relative merits of using

SOM time series versus simple SLP differences for forecasting winds or downscaling use

would necessitate additional experiments and independent validation.

We next compute the mesoscale pressure difference recorded between Bakers-

field and Edwards and its correlation to Mojave winds. This is following Green et al.

(1992), who showed a strong relationship between the wind on the Mojave desert side

of Tehachapi Pass and the SLP difference between stations in the southern San Joaquin

Valley and the Mojave Desert, on the opposite side of Tehachapi Pass. In our data, the

wind is indeed closely related to this gradient, showing negative correlation (pressure

difference is defined as negative when SLP at Edwards is lower than at Bakersfield) in

hourly data over all months of the year, with r values ranging from -0.48 in January to

-0.22 in August. Green et al. (1992) found that while the mesoscale pressure difference

across Tehachapi Pass was closely related to San Joaquin Valley-Mojave Desert SLP

difference at most hours, local noontime winds did not exhibit such a relationship. They

ascribed this to diabatic slope heating, noting that Tehachapi Pass data were taken on

the desert side of the pass, and morning insolation could heat the pass, creating pres-

sure perturbations or slope winds. This is worth noting in relation to the winds at the

Tehachapi Pass wind energy conversion facility, although our data from Mojave Air-

port, near Tehachapi but on the generally horizontal desert floor, shows the correlation

between SLP difference at noontime is just as strong as at other times. Correlation be-

tween wind speed and pressure gradient on daily timescales is similar to that on hourly

timescales, reaching -0.50 and -0.36 in January and August, respectively, and -0.39 and

-0.20 in these months for interannual anomaly daily means. The data are summarized

for warm and cold seasons in Table 4.3.

The observations indicate that the anomalous flow is mainly down-gradient, mod-

ified by topography. While the Mojave airport lies close to the roughly northwest-

southeast line between Bakersfield and Edwards, flow is mainly along the southwest-

northeast axis parallel to the nearby mountains (Part 1). The correlation between zonal

wind and the mesoscale pressure gradient in each month is slightly more negative than

that between wind speed and the gradient, indicating westerly flow when Bakersfield

SLP is higher than Edwards. Scatterplots (not shown) of anomalous SLP gradient ver-
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sus anomalous wind direction show that when the SLP difference is negative, direction is

predominantly between 200 and 290 degrees, and between 30 and 100 when it is positive.

This also fits well with the patterns found from the network of observation stations in

Green et al. (1992).

Similarly, Zhong et al. (2004) showed that the pressure difference between Sacra-

mento and San Francisco, lying on either side of Travis, has a strong mean daily cycle

and becomes most negative near midnight, in phase with Travis winds and a few hours

after the peak in mean temperature difference between Sacramento and San Francisco.

Our results using San Francisco and Sacramento airport METARs data is consistent

with this, as shown in Table 4.3 and Fig. 4.11. The correlation table indicates that

the Sacramento-San Francisco pressure gradient plays a role both in hourly and in daily

data with annual cycle removed. While we see reanalysis SLP differences in Table 4.2

begin to approximate the role of measured in-valley ∆SLP
∆y shown in Zhong et al. (2004),

the zonal width of the valley is far too small to be resolved by the global reanalysis;

consequently, the correlation coefficients in Table 4.1, which uses coarse reanalysis SLP

fields for Travis ∆SLP
∆x are much lower than using values from sites separated by smaller

distances, presented in Table 4.3.

Along similar lines, we can examine the role of a mesoscale pressure gradient

across the San Gorgonio Pass on the Palm Springs station winds. The available ob-

servational records, using the best sites available to determine the pressure gradient

— METARs from Blythe Airport in the low desert and Ontario Airport west of Palm

Springs — have data only from 1995-1997. While this observed correlation suggests

that the relationship between observed wind speed and mesoscale pressure difference is

strong, the limited data availability means that this relationship has not formally been

observed over a wide range of climate states.

Zonal pressure gradients at both mesoscale and the lower end of reanalysis-

resolved scales have spectral peaks at the diurnal period, as do the wind time series,

and these have daily and annual timing in phase with the low-level thermal low pres-

sure centered over Arizona (Rowson and Colucci, 1992), stronger winds coinciding with

deeper thermal lows and stronger pressure gradients. Time series of warm season wind

speed and six-hourly reanalysis zonal pressure difference band-pass filtered to focus on

subdaily signals (not shown) show correlation of greater magnitude than those in Table

4.1. While these features seem to indicate that southern California winds simply accel-
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Table 4.3: Pairwise correlation coefficients for station-observed wind speeds and mesoscale SLP

differences at points on opposite sides of each station (ie, Edwards and Bakersfield for Mojave

winds, Blythe and Ontario for Palm Springs winds). Hourly data used are differences from the

daily climatological value, and daily data are interannual anomalies. Every correlation shown is

significant at the 95% level using the bootstrap methods described in the text and Part 1.

Observations,
cold season

Observations,
warm season

Travis, hourly differ-
ence from climatologi-
cal day means

-0.17 -0.47

Travis, daily interan-
nual anomalies

-0.11 -0.35

Mojave, hourly differ-
ence from climatologi-
cal day means

-0.38 -0.35

Mojave, daily interan-
nual anomalies

-0.35 -0.37

Palm Springs, hourly
difference from clima-
tological day means

-0.15 -0.31

Palm Springs, daily in-
terannual anomalies

-0.19 -0.36

erate down the SLP gradient in response to the deepening thermal low centered over

Arizona, the topography of the region, and past studies (Conil and Hall, 2006; Green

et al., 1992), suggest that there is actually fine-scaled structure to the low-level flow.

This is confirmed by the results of the detailed examination in the following section.

4.7 Local circulations and diurnal variability

4.7.1 Northern California

In this section we investigate the regional flow regimes relevant to wind energy

sites, and examine variations therein. While the SOM analysis gives a starting point for

synoptic-scale flow, the combination of topography and smaller-scale processes can lead

to significant variability not directly explained by these patterns. We start with the warm

season wind behavior at Travis, which shows the weakest response to SOM-classified

synoptic systems, and is the season having the most energetic winds (Part 1). In order

to zero in on the pertinent local phenomena, we exclude the spring and fall months, which
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Figure 4.8: Mean hourly wind vectors for days in the slowest wind quartile in June-August

corresponding to each of the SOM patterns in Fig. 4.2 for KSUU station data (black) and

nearest corresponding CaRD10 point (grey). The mean winds for local hour 0-23 are presented.

For scale, the last, offset vector represents a southwest wind at 2 m/s .
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have some characteristics of the large-scale cool-season flow (ie, in the polar histograms

in Part 1), and instead focus on June-August. We divide the summertime days from

1968-1996 into quartiles based on daily-mean wind speed anomaly and compare the

fastest and slowest quartiles. Because the Travis wind speed response to SOM patterns

are weak, a substantial amount of days from each SOM synoptic type are represented in

every wind speed quantile. To avoid averaging together days of dissimilar meteorology

that nonetheless have a similar station mean daily wind speed response, for each of the

fastest and slowest wind quartile days we first separately examine the composite mean

daily cycle corresponding to each SOM pattern, and compare these cycles to the CaRD10

composite means for the same days. We reproduce a representative sample of one such

set of composite means, for slow-wind days at Travis, in Fig. 4.8.

Two patterns stand out in Fig. 4.8. In each wind speed quartile, there is lit-

tle variation in observed hourly composite mean patterns among different SOM nodes.

These low wind speed days, for all SOM patterns, show weak southwest winds in the

early morning and afternoon-evening hours, and around midday the winds slacken and

on many days turn lightly northwest. High wind speed days — not shown here —

are characterized by stronger, persistent southwest to west-southwesterly winds, with a

diminution in speed around noon and an acceleration in the late afternoon, local time.

Another salient feature regards the CaRD10 simulated winds. For late nights, morning,

and midday hours, the model winds show a more negative meridional component than

the observations. For the calm day composites in Fig. 4.8, the model often shows winds

from the north or northwest even when observed winds are from the south or southwest.

This bias appears in the windy days as well (not shown), where the simulated morning

southwesterly winds are weaker in the meridional component than those observed. The

model does faithfully simulate the afternoon southwesterly acceleration of the winds for

both groups of days, however.

Noting these shortcomings in local CaRD10 winds, we proceed to examine the

regional CaRD10 flow. Since variation is minimal between SOM types, we consider the

hourly composite means of all high or low wind speed quartile days in Figs. 4.9 and

4.10. In both figures, a downslope to down-valley flow is evident at local 0:00 to 8:00

on the eastern (inland) side of the coastal mountains north of San Francisco Bay. While

downslope winds are characteristic of mountain-valley systems in the cooler hours, this

CaRD10 flow coincides quite closely with the spurious northerly v component in the wind
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described above. Comparison with the station observations in a typical summer found

in Fig. 2 of Zhong et al. (2004) also suggests that the CaRD10 downslope and down-

valley winds persist too late in the morning and extend too far south. In discussing the

hydrostatic Regional Spectral Model that produced the CaRD10 data we refer to slope

flows. In nature or in nonhydrostatic models, slope heating produces a vertical pressure

gradient force when the low-level air in contact with the heated surface leads to an

anomalous vertical pressure gradient. This comes in addition to the horizontal pressure

gradient force where the surface heating leads to adjustment in the atmospheric column

and horizontal pressure gradient compared to a point on the same surface in the free

atmosphere, not in contact with a heated surface. Slope longwave cooling has analogous

effects for the horizontal and vertical cases (Barry, 2008). Slope winds in a hydrostatic

model are excited only by this horizontal pressure gradient force, which combines with

mass continuity to result in terrain-following flow, but it has been shown that such a

hydrostatic case can accurately reproduce orographically forced flow (Mahrer and Pielke,

1977; Johnson and Uccellini, 1983), and it is understood that this is the case when we

refer to slope winds under the hydrostatic assumption. The CaRD10 downslope flow

nearly totally subsides after noontime, after which upslope flow begins to develop. The

observed and CaRD10 winds at Travis begin to accelerate, and the model’s hourly mean

bias decreases. The CaRD10 simulation indicates that, by noon, a sea breeze has already

commenced at the coast but the leading edge of the packet of stronger west-southwest

winds has still not moved far inland. These winds penetrate the Travis area by 16:00,

and dominate the areas around Travis and the SMUD wind farm with the strongest flow

of the day by 20:00. The vestiges of this wind pulse are still evident south and east of the

sites at 0:00, although, in the model, down-slope flow is beginning to develop at Travis

by this time. Thus, while the mean daily wind speed cycle at Travis is found to be in

phase with pressure gradients between the eastern edge of the valley and the coast (Fig.

4.11; cf.Zhong et al. (2004)), and correlates with the mesoscale pressure gradient in Table

4.3, the model indicates that more than just pressure gradients across the Sacramento

Valley are driving the wind. Rather, a propagating feature occurs consisting of a distinct

front of stronger onshore winds which originate at the coast and move inland, funneling

through the Straits of Carquinez, and results in the rapid afternoon acceleration.

For the least windy days, the CaRD10 composite also exhibits a pulse of accel-

erated southwesterly wind, but it is weaker than that for the high-wind case (Fig. 4.10
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compared to Fig. 4.9). By 12:00, onshore winds have developed and are blowing across

the Bay, but the leading edge has not extended as far inland as in Fig. 4.9. By 16:00

and 20:00 the pulse of faster southwesterly winds is impacting the airfield and wind en-

ergy sites, although the wind is not as fast as in the strong wind composite (Fig. 4.9).

The packet of accelerated west-southwest to southwesterly winds later in the day is also

weaker and less defined.

The pressure difference across the Central Vally, between Sacramento and San

Francisco, is a strong driver of the wind at Travis, and the CaRD10 data show the

patterns and timing of the wind’s development. Additional sub-reanalysis-scale processes

in addition to across-valley SLP difference may also be involved, both in the creation and

in the dissipation of boundary-layer momentum. Zhong et al. (2004) and Bao et al. (2008)

provide evidence that the along-valley pressure gradients play an important role, by

causing the flow to split and accelerate along the valley once it has entered from the coast.

Additionally, to examine dissipation, we use time series of upper-air and surface data

indicative of the strength of the capping inversion above the planetary boundary layer in

the valley. Iacobellis et al. (2009) use twice-daily radiosonde data from Oakland airport

to assess inversion strength by comparing 850 hPa potential temperature to surface

potential temperature. They argue that since 850 hPa temperatures show very little

spatial variation over the region, 850 hPa potential temperature from Oakland compared

to surface potential temperature at observing stations in the Central Valley yield a good

indicator of inversion strength at these locations. We adopt this methodology, utilizing

a time series of soundings from Oakland at 12Z (4:00 local solar time) and simultaneous

surface measurements from selected stations in the Sacramento Valley to find ∆θ850,

indicating the strength of the inversion in this basin. The surface measurements come

from the same network of stations as used in Iacobellis et al. (2009) and, as in that report,

corrections have been made to smooth out obvious jumps in the temperature record,

although the stations were selected in part because minimal corrections were necessary.

The surface stations used are Orland, Chico, Marysville, Davis, and Vacaville, all in the

Sacramento Valley.

We examine the effect of ∆θ850 on wind at Travis, but take care to separate out, as

much as possible, the interrelated factor of San Francisco-Sacramento pressure difference,

∆SLP. We focus on changes in mean Travis wind speed after 2:00 local time, and consider

whether different regimes of ∆θ850 show different values of late night-early morning
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mean wind deceleration, in groups of days with little variation in the hour-by hour SLP

difference pattern. The results are shown in Fig. 4.11, where we plot the proportional

change in hourly-mean wind speed from the 2:00 value, plotting separately the days in

each ∆θ850 tercile within each ∆SLP tercile. Analysis of the CaRD10 regional 850 hPa

flow (not shown) reveals no discernible difference in the composite-mean circulations in

low and high ∆θ850 days within any ∆SLP group. Plotting the proportional, rather than

actual, change in wind speed relative to 2:00, we essentially make a linear correction to

account for the increased drag that is expected of higher-speed boundary layer winds,

since drag depends on wind speed, and thus come closer to isolating the effects of ∆θ850

on 10m wind.

Fig. 4.11 shows that, after controlling for ∆SLP, nights with higher Sacramento

Valley ∆θ850 see greater decrease in Travis wind speed than days with weaker inversions.

The 95% confidence intervals around the plots in the first and third tercile in each panel

are calculated using the bootstrap percentile method (Efron and Tibshirani, 1993). They

show that high-∆θ850 conditions experience significantly more deceleration than low-

∆θ850 days, for every ∆SLP regime. While plots of actual decrease in wind speed from

2:00 (not shown) show that the difference in deceleration is significant at this level for

every ∆SLP regime, in the plots showing proportional decrease — incorporating the

increased surface drag due to increased wind speed — the difference is still significant at

the 95% level except for a few hours in the highest ∆SLP tercile (Fig. 4.11).

The inversion-strength linkage is another mechanism by which large-scale condi-

tions affect wind speed at the wind farm sites, since inversion strength is largely controlled

by the vertical velocity and temperature advection caused by broad scale highs and low

pressure systems (Iacobellis et al., 2009). Several factors likely explain why greater ∆θ850

corresponds to greater boundary-layer wind deceleration in the Sacramento Valley basin.

Although in the daytime, surface heating tends deepen the boundary layer while decreas-

ing ∆θ850 (Tennekes, 1973), at night radiative cooling will cut off the thermal mixing

supporting the daytime boundary layer and allow the inversion base height to fall. Thus,

an increase in ∆θ850 can be thought of as indicating a stronger temperature inversion to

cap the planetary boundary layer, as well as a shallower boundary layer. The momentum

confined to a shallower boundary layer will then be affected more by drag at the surface

or, in the cases where radiative cooling has caused the lower portion of the boundary

layer to become stably stratified, the air up to anemometer height will likely feel the
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effects of surface drag and see wind speed decrease, but have minimal momentum mix

in from above.

The eastward-propagating diurnal pulse of accelerated wind shown in CaRD10

data also fits with observed hourly buoy wind data in San Francisco Bay. Fort Point

Buoy lies just inside the Bay, while the Richmond buoy lies further northward, cut off

from the open ocean and approximately one third of the distance from Fort Point to

the gap at the Straits of Carquinez. The Fort Point Buoy provides the clearest signs

of the sea breeze expanding inland to cause the afternoon wind acceleration at Travis

and, by extension, the Solano wind farm. Over the years 2005-2008 for which Fort Point

data are available, the overall correlation for its hourly summertime wind speed with

simultaneous winds at Travis is 0.21, while that where Travis lags Fort Point is 0.26.

These correlations are based on wind speeds as recorded at the sites, without removing

the mean diurnal cycle, since the phase difference between these diurnal cycles may

reflect the propagating winds we are interested in. In days in the strongest quartile

of ∆θ850, however, the instantaneous Travis -Fort Point wind speed correlation is -0.13,

while the correlation with Travis lagging Fort Point by 7 hours is 0.19, with the significant

difference in correlation presumably due to more pronounced hours of accelerating and

decelerating wind under the stronger inversion and less developed boundary layer. The

Richmond buoy is influenced both by wind flowing from the mouth of San Francisco

Bay and that flowing over the Petaluma Gap in the coastal mountains, further north.

Because of this, it generally shows little increase in correlation when leading Travis wind

speeds. Only on days when both Richmond and Fort Point are in their slowest quartile

of wind speed, is there an appreciable increase in correlation, in this case from 0.16 to

0.29 when at 9 hours lag. This relatively modest difference is not significant at the 95%

level (but is at the 85% level), in contrast to the correlation increase at Fort Point,

using bias-corrected, accelerated bootstrap methods, where the set of days of interest

are resampled and the difference in lagged and instantaneous correlation computed for

each bootstrap realization.

While the lag relationship between wind speeds at Travis and Fort Point has

clear implications for hours-ahead wind energy predictions, especially when soundings

and surface stations show high ∆θ850, the occasional and weaker lag correlation with

wind speed at the Richmond buoy shows that the inland progression of the wind seen

in CaRD10 does not uniformly fill the San Francisco Bay enough to be evident at all
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observation sites. The day-time up-slope winds on the western side of the hills just east

of the Bay may also be exaggerated in CaRD10, since it has shown such biases within

the Central Valley, and these may be contributing to the appearance of a very broad,

distinct climatological sea breeze. Higher-resolution modeling and inspection of more in

situ wind records, including land-based ones located roughly between Fort Point and the

Straits of Carquinez, will likely reveal more details of the conditions under which the

pulse of accelerated winds is best defined. These can then be analyzed with respect to

optimal observation locations and quantitative relationships with Travis or SMUD wind,

as would benefit operational forecasting.

4.7.2 Southern California

Palm Springs

Similar to Travis, the southern California sites also show a weaker warm season

response to SOM synoptic patterns than in the cold season. This suggests that we

might gain insight from the same methods of using CaRD10 to investigate regional

circulations. While not reproduced here, our initial comparison of hourly composite-

mean wind vectors for each SOM type, from high-wind quartile days at Palm Springs,

shows significant differences from the observed winds at the site. In the observations,

the wind is mainly from the Northwest with occasional southeasterly periods, while the

CaRD10-simulated winds include a large amount of southwesterly surface winds. This

direction is rarely observed at Palm Springs, almost certainly because the orographic

setting of San Gorgonio Pass and downward slope into the low desert channels the

winds along a northwest-southeast direction. While the model does capture some of the

afternoon acceleration, the model-observation similarity is not as tight as in the case

of Travis. The low wind speed quartiles (not shown) reveal similar bias and unrealistic

wind direction. This is a case where the 10km horizontal spacing is clearly too coarse

to model some of the important details around the wind farm and airport. Because of

these inaccuracies, we do not here reproduce CaRD10 regional 10 m composite wind

fields for Palm Springs. In our inspection of them, however, there is a diurnal circulation

beginning at the coast (which faithfully reproduces the climatological sea-breeze cycle

observed at locations in coastal Long Beach and Los Alamitos) and a pulse of accelerated

winds that propagates toward Palm Springs. As this pulse moves eastward over complex

topography it becomes less distinct, and the wind vectors near Palm Springs seem more
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dominated by a very local circulation of midday winds upslope San Gorgonio Peak,

northwest of the site. This is reminiscent of the exaggerated model slope winds near

Travis. While this pulse might be a realistic element in the Palm Springs summertime

wind behavior, the overall complicated terrain and exaggerated slope winds warrant

simulations of horizontal resolution of only a few kilometers in future investigations.

As an initial step in examining the region through higher resolution modeling,

we conducted several mesoscale experiments around the Palm Springs area. We chose

the days of 19-21 July 1999, which display a moderate-to-strong 10m wind speed in the

climatologically preferred direction at Palm Springs, and a well-defined diurnal cycle.

Two questions guided the work: Does increasing model horizontal resolution result in

substantially better simulation of Palm Springs 10m winds than CaRD10 in these sum-

mertime conditions? And, what is the relative importance of differential diabatic heating

in the region compared to lateral boundary conditions and advection into the region?

While many factors other than resolution affect the accuracy of a mesoscale

model, and there are often limited gains by going to meshes finer than 5 km, the com-

plexity of topography around Palm Springs makes it a strong candidate to show superior

results with higher resolution (Mass et al., 2002). Thus, two sets of model data addressed

the question of horizontal resolution. The first were higher-resolution runs of the same

hydrostatic Regional Spectral Model that created the CaRD10 data, at equivalent hori-

zontal resolutions of 5km and 2.5km in two separate runs. Model setup and physics were

unchanged from Kanamitsu and Kanamaru (2007), but atmospheric state and topog-

raphy were treated at the higher spectral resolutions. The second model used was the

Advanced Research WRF (Weather Research and Forecasting, Skamarock et al., 2008)

model, version 3.1. WRF was run in its default nonhydrostatic mode, with resolutions

of 10, 5, and 2.5 km, using topography based on 30-second USGS data to resolve the

features around San Gorgonio Pass.

In every case the outermost WRF domain was forced by 3-hourly NARR data

at 32 km resolution (Mesinger et al., 2006). The 10km data presented in the figures was

a single domain case, and the 5km data was from a two-way nested domain inside the

10km domain. The 2.5km case, as well as every experiment with modified boundary

conditions or physics, was from a two-way nested domain of 2.5 km inside the 10 km

domain (Fig. 4.12). (Initial results showed no substantive difference when an additional

intermediate-resolution domain of 5 km was used, other than the increased cost of a



107

third domain.) All domains and WRF runs used the same 35 vertical levels, with more

levels in the bottom kilometer of the atmosphere, and the lowest two eta levels at σ =

1.0, 0.993. Since the focus of the exercise was to see if this model captures the site

winds in a gross sense when run at a horizontal resolution that resolves the topography,

little effort was made to compare physics parameterization options. The boundary layer

parameterization was the Yonsei University (YSU) non-local scheme and the Kain-Fritsch

cumulus parameterization was used in all domains coarser than 2.5 km. Numerical

diffusion was along coordinate surfaces, which may have led to unphysical diffusion along

eta levels in the steep topography.

We summarize the resulting 10m winds from both sets of models at the grid point

nearest the Palm Springs site in Fig. 4.13. We display hours 25-72 of the 3-day period;

the first day served largely for model spin-up and adjustment. From the figures it is clear

that while RSM captures correctly the time of highest wind speeds near the observation

site, the nature of the flow is inaccurate: modeled flow is southerly and considerably

slower than observations, and these problems only increase as model resolution becomes

finer. WRF, on the other hand, shows improvement as model resolution is increased.

The winds from the 10 km model show top speeds on par with those in the observations,

but timing and direction of these winds is wrong. At 5 km resolution, the daily cycle is

captured much better, with a south-southeastward acceleration of winds in the afternoon

and light and variable winds overnight. Only in the 2.5 km model run, however, does

the simulation roughly capture the timing, direction, and magnitude of the observed

wind behavior. Although the modeled winds still show some bias in direction, and the

modeled transition in the daily cycle of winds is not as abrupt as was observed, WRF at

2.5 km shows vast improvement over the other models and bears a striking resemblance

to ground truth.

While these hourly wind summaries give a nominal answer to the question of

the potential improvement and amount of horizontal resolution necessary to capture

the Palm Springs flow, a fuller picture of the low-level flow near the mountain gap

emerges from Figs. 4.14-4.15. The site of the observational station in Palm Springs

apparently makes for a very demanding test: several of the models agree with the highest-

resolution and best-validated WRF model regarding the important feature of jetlike

low-level flow between the two mountain peaks in the domain, leading to consistent

and strong westerlies there, but most of the models do not realistically capture the flow
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at the airport site itself just outside the main jet. Both the WRF 2.5 km and RSM

5 km models show a jet through the pass, capturing the existence of the feature that

allows for the wind farm northwest of the airport to be practical in the first place. The

WRF 5 km model in particular shows a strong and well-defined jet flowing through

San Gorgonio Pass and also shows oscillations between northwest and southwest winds

in the outflow after emerging from the pass, in the same manner as the 2.5 km WRF

runs. However, none of these models shows the edge of the jet reaching the airport

site during the simulation, which explains their inaccuracy in Fig. 4.13. One additional

problematic feature of the RSM runs is the opposing southeasterly flow coming up the

desert plain and meeting the southern leeward extent of the mountain gap jet in both

2.5 km images. This flow, on the easternmost edge of the plotted domain, rarely appears

in any of the WRF runs, but over the course of the two days it tends to flow upslope

in morning hours in the RSM. In contrast, a distinctive feature of the 5 km and 2.5 km

WRF runs is the meandering of the jet downwind of the mountain gap. Animations (not

reproduced here) show that an extended area of winds with speeds of 8 m/s or greater

largely flows northeastward out of the gap, but on both days of the model this strong

flow turns southeastward at some point between 22:00 and 7:00 local time, emptying

into the the low desert. Part of this flow is visible in the bottom-rightmost panel of

Fig. 4.15. The winds blowing up the desert plain in the 2.5 km RSM model, combined

with the model’s tendency to exaggerate diurnal upslope and downslope flows discussed

above, likely figure in the discrepancies between all RSM simulations and observations

at the demanding validation point of Palm Springs.

Another set of model intercomparisons addresses our second motivating question,

regarding the relative importance of domain-boundary forcing versus local differential

heating. We conduct two more runs of the WRF model at 2.5 km. The first one is

altered so that initial and lateral boundary conditions on the outer domain are quiescent

and constant, and thus only insolation and longwave cooling are present to excite the

flow. The second experiment uses the WRF 2.5 km model with full initial and lateral

boundary conditions, but the land surface is constrained to its diurnal mean temperature

and radiative transfer is turned off. Figure 4.18 shows two frames from each of these

experiments at the same times of day as in Figs. 4.14-4.15. The experiment with no

large-scale forcing but radiative transfer turned on was spun up for four days before the

period examined, to compensate for the effects of quiescent initial conditions. Although
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each experiment shows an area of strong westerly winds blowing through San Gorgonio

pass, both in these images and in the full animations (not reproduced here), the jets

are not as strong, wide, or extensive as in the full-physics WRF 2.5 km model (Fig.

4.15). The terrain-following flow upstream of the pass at local 16:00 on 20 July in the

insolation-driven model (upper-left of Fig. 4.18) is very similar to in the full model,

but the outflow downwind is much less extensive. Similarly, at 4:00 the next morning

the heating-driven model again agrees with the full one that the outflow will be blowing

southeastward toward the low desert, although it is much weaker in the reduced-physics

experiment. Analysis of the full model period shows that the flow out of the pass seldom

blows northeastward, unlike the fully forced model. The experiment with radiative

transfer turned off and full boundary and initial conditions shows a more consistent jet

at the eastern end of San Gorgonio Pass, but one that mainly blows W-WSW and does

not extend as far downwind as in the fully forced model.

Since the meandering jet downwind of San Gorgonio Pass is a striking charac-

teristic of the WRF 2.5 km model data, which validates the best at our wind site, but

is not consistent across all models, we make a simple quantitative summary of its be-

havior in Fig. 4.17. By comparing the difference in speed over the box in the northern

pathway for the jet minus that in the southern pathway, we produce a time series that

summarizes the path at every hour: positive when the jet is flowing northward, nega-

tive when it is flowing southward toward the low desert, and zero when it is effectively

split. The first salient feature of the figure is the regular nature of the jet’s changes in

direction in the WRF 2.5 km model. The jet flows northward each day from morning

(local 8:00-9:00) until approximately 16:00, when it veers southward. In addition to the

repetition of this cycle over the three days of the simulation, evidence that the cycle is

excited by local insolation comes from the regular daily uptick in the northward flow

in the insolation-driven WRF model (second from bottom). Here the northward flow

increases around midday and tops out near 20:00, in a peak that is more concentrated

and occurs later than the full-physics model’s. Although the insolation-driven model’s

time series is rougher and does not capture all of the cycle found in the WRF 2.5 km

model, the boundary-condition-driven model fares worse, showing no resemblance to the

full model in this metric. It is the full model dynamics that lead to the WRF 2.5 km

results, not a simple combination of the results of discrete sets of processes. Also in the

figure, the WRF 5 km model shows the same principal downwind jet behavior as the 2.5
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km model. While data is not available to validate the jet meandering over the desert

area, this shows how much the data sets from the 5 and 2.5 km resolution runs have

in common, while those models where solar-driven effects are explicitly separated show

markedly different behavior.

Another summary of the limited-physics experiments is seen in Fig. 4.18, where

the hourly wind vectors for each of the experiments as well as the hourly vector sum of

winds from the two are compared to the full WRF 2.5 km model at two locations near

San Gorgonio. The left-hand column shows winds at the point closest to Palm Spring

airport, while the right-hand column is from the point approximately 15km northwest,

at 33.94 ◦N, 116.64 ◦W and directly in the center of the mountain gap jet. Examining

first the hourly vectors corresponding to the observational site, the model forced only

by insolation clearly has a greater mean wind speed and is closer to the fully forced

model, although the timing of the daily wind acceleration is notably off. Wind speeds of

each of the partially forced models do not capture that of the fully forced model, either

individually or in sum. For the wind time series at this grid point the vector sum of

the model winds resembles those of the insolation-forced model, with notably smaller

wind speed and incorrect phase of the acceleration compared to the full model. The

situation is largely reversed for the point in the center of the low-level jet, in that the

model forced exclusively by initial and boundary conditions has wind speeds closer to

those of the full model, while the insolation-only model simulates a much slower wind

regime. These patterns generally hold if one examines any point or area in the core of

the jet (not shown). Still, the fully forced model has more steady wind and, over these

two days, a smoother and more organized daily cycle. Neither of the partially forced

models nor the vector sum of their winds matches these aspects.

These mesoscale experiments and analysis could be expanded on in several ways.

More runs over a wider variety of summertime conditions would be necessary before

drawing any final conclusions about the physics governing the flow. With more data

to work with, an explicit accounting of the momentum budget around the pass would

probably also be very helpful and allow us to separate the effects of pressure gradients,

converging low-level flow, and vertical momentum mixing in the acceleration of wind near

the gap. Nonetheless, the present experiments they address our motivating questions.

Regarding model resolution, the WRF 2.5 km case does a far superior job of simulating

the wind at Palm Springs and resolving sharp circulation features near San Gorgonio
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Pass than the CaRD10 data. At the same time, the WRF 5km and RSM 2.5 km data

also resolve the mountain gap jet and show many of the same prominent features as the

WRF 2.5 km model, implying that for many applications in the area these models would

likely suffice.

Regarding the importance of local diabatic versus boundary condition forcing, the

experiment realized does not show one set of processes dominating over the other; rather,

comparing the low-level flow at separate points indicates that neither one consistently

captured more of the fully forced model’s behavior than the other. Both differential

heating and boundary conditions, and the interactions between the two sets of processes,

appear fundamentally important to an accurate simulation.

One additional point does emerge, with implications to wind speed prediction.

The WRF model at 5 km and 2.5 km, the RSM model at 2.5 km, and the partially

forced WRF experiments all show a low-level convergence zone directly upwind of San

Gorgonio Pass, inland and behind the Santa Ana foothills, in the vicinity of Perris,

California (Figs. 4.14, 4.15, 4.18). In more detailed hour-by-hour examinations (not

shown), the convergence zone becomes pronounced around midday, after an onshore

breeze at the coast splits, flows around the foothills, and merges again on the inland side

of the mountains. The distance of 30 km separating this area from San Gorgonio Pass

implies that sustained surface wind speeds of 5-8 m/s are 1-3 hours upstream of the pass.

If further modeling studies confirm the consistency of the convergence zone and a lagged

relationship to momentum at the wind site, it could hold promise for short term hours-

ahead prediction of power production and ramp events, with lead times slightly shorter

than those at which Fort Point shows potential predictability for Travis. It would then

be beneficial to examine the historical record for any weather stations in the convergence

zone area, or even to look into the use of broader-coverage wind measurement systems

such as Doppler lidar, to improve short-term forecasts.

Edwards

The agreement between the simulation and observations is better near Edwards,

which we use to describe the regional circulation near Tehachapi Pass. The fewer years

and shorter typical hours of observation at Mojave do not allow for many points of

observation-model comparison, making Edwards the preferred observational record. Us-

ing the same technique of examining each SOM type and wind speed quartile composite
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hourly mean wind vector series separately, as in Fig. 4.8, we assess the main observed

and simulated patterns. At Edwards, for SOM types calculated from fastest and slowest

wind speed quartile days, CaRD10-simulated composite mean hourly winds closely repli-

cate observations. The best agreement is for the model vs. observed means on the days

in the lightest wind quartile at Edwards (Fig. 4.19). This, and the relative similarity

in daily mean cycle among different nodes, justifies an examination of the mean wind

fields every four hours on all fastest and slowest wind speed days. Figs. 4.20 and 4.21

show that two CaRD10-simulated patterns of circulation away from the sites are similar

between the fastest and slowest composite daily cycles. For instance, the wind in the

San Joaquin Valley, west and north of the sites, is very similar in both composite means,

even though Mojave, downwind of the valley, sees stronger wind in the fastest quartile

days. Among the differences present, we note that southerly flow through the mountains

on the southern edge of the desert, especially Cajon Pass south and east of the site, is

greater on windy days and also continues over the desert plain, rather than dissipating

soon after emerging from the pass as it does on calm days. While the wind over the

ocean west of the coast is very similar on both days and is similar as it turns more

westerly and bends around the Southern California Bight in the morning hours, by the

afternoon the ocean winds south of the sites are noticeably stronger and more westerly

on the high wind days. These in turn feed the stronger southerly circulation through

Cajon Pass and the surrounding mountains. Perhaps the biggest difference between the

two composite mean days is the strength and extent of the southerly and southwesterly

circulation across the Mojave desert and through the northern and eastern borders of the

pictured domain. No such southerly flow is apparent in the slowest quartile days. The

stronger and more prolonged winds near Mojave and Edwards feed into this southerly

flow, which is also consistent with the low SLP anomalies over the Nevada desert in the

SOM nodes for the warm season. To determine explicitly if the reanalysis SLP patterns

are similarly related to observed site winds, we calculate the correlation between the

reanalysis SLP in the gridbox centered immediately northeast of the sites, in the Great

Basin, and the site winds. Correlation coefficients over all days in the April-September

warm season between this quantity and Edwards wind speed anomalies is -0.61, while

with Mojave winds the value is -0.46.
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4.8 Summary and Discussion

While California has long been a leader in wind power development, an in-depth

treatment of the meteorological and climatological aspects of the wind resource has

heretofore been lacking. In Part 1 we detailed the annual cycle in the winds at three ma-

jor wind farm sites, as well as showing there are spectral peaks in wind speed variability

at the synoptic and diurnal scales, which we have analyzed in this work. This variability

holds implications for matching wind power supply with demand, producing wind en-

ergy forecasts, and developing an electrical grid that optimally incorporates intermittent

renewable resources.

This analysis has drawn on self-organizing maps (SOM) to classify the weather

patterns driving the peak in wind speed variability in the 3-15 day band that was iden-

tified in Part 1. While similar meteorological patterns might be determined through

principal component or clustering techniques, the SOM is attractive in that its pattern-

identifying abilities are intuitively understandable, it avoids restrictions about orthog-

onality between modes or symmetric positive and negative variability about the mean

state, and it yields results that are generally stable with regard to parameter adjustment.

Our SOM analysis reveals the most common anomalous SLP and 500 hPa anomaly pat-

terns in the region about our stations, but these patterns are more strongly influential

on wind speed at Edwards and cold-season Travis than at Palm Springs. In the warm

season the SOM association at Travis weakens considerably, an indication that local cir-

culations dominate. The essential elements of the general SOM-identified patterns are

large-scale fluctuations in oceanic SLP and in continental SLP. A large positive oceanic

SLP anomaly encourages higher station wind speeds, and a large negative continental

SLP anomaly also corresponds to positive wind speed anomalies. The reverse is true for

oceanic lows and continental highs. Anomalous 2-day change in 500 hPa height shows

anomalous ridging activity over positive SLP anomalies and anomalous troughing over

low SLP disturbances, which implies vertical motions that propagate and support the

surface features. These patterns are not identical to classical PNA patterns or centers

of action such as in Wallace and Gutzler (1981); Leathers and Palecki (1992), but are

related enough to begin to illustrate the significant negative cold season correlation with

the PNA index in Part 1.

The diagnostics of observations and regional model composites near Mojave,

Edwards, and Tehachapi Pass also illustrate circulation consistent with the statistical
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finding that the SLP in the Great Basin is one larger-scale factor that consistently in-

fluences wind speed at these sites. This is true even while the flow in the Mojave desert

interacts with other basins through several mountain passes, including the San Joaquin

Valley and coastal Los Angeles. Although Great Basin pressure in the warm months

depends largely on a thermal low with a strong diurnal component, the area is large

enough to be well represented by reanalysis, and it, as well as its contrast to SST and

SLP in the Southern California Bight, serves as a powerful starting point for describing

the sites’ winds from larger-scale meteorology. While observational stations and record-

ing hours over the Mojave desert itself are sparse compared to the San Francisco-Central

Valley area, and Iacobellis et al. (2009) do not provide a ∆θ850 time series immediately

applicable to the area, the observational analysis used here for Northern California pro-

vides a clear blueprint for observational analysis of such regional flows. Given sufficient

observed data it could easily be applied to diagnose the conditions governing dissipation

and the specifics of low-level SLP gradients for Mojave, Edwards, and Tehachapi Pass.

Palm Springs has a weaker wind response to synoptic weather type variability

than Edwards. The basin wide surface and 500 hPa anomaly patterns in certain subsets

of very windy days at Palm Springs resemble the synoptic state in some of the least windy

days in Dec-Feb. While this makes it harder to succinctly diagnose Palm Springs wind

response to synoptic forcing, it is worth emphasizing that the SLP patterns and gradient

over region immediately adjacent to the site, from the Southern California Bight to the

Sonoran Desert, influence site winds more consistently than the those over the basin as a

whole. The weak response still suggests that even in winter, local circulations whose main

forcing mechanisms are not resolved in the reanalysis can be vital to the wind behavior at

Palm Springs. This, combined with the trouble the CaRD10 model has in resolving the

topography around Palm Springs, point to the need to better understand the interaction

between synoptic-scale and finer-scale, orographically influenced processes in determining

the flow at Palm Springs. Future investigations could use mesoscale simulations down

to several km horizontal resolution to further probe Palm Springs meteorology.

The CaRD10 regional atmospheric reanalysis convincingly explains summertime

observations at Travis. The major feature in summertime at Travis is the strong westerly

wind that occurs in the afternoon, which is broadly exhibited by observations and repli-

cated by CaRD10. It is excited by the thermally induced San Francisco-Sacramento SLP

difference, but is initiated in a propagating packet of westerly wind that emanates from
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the coast. On mean strong wind days, this flow is observed to persist through the next

morning, although CaRD10 has an exaggerated diminution of the wind corresponding

to unrealistically strong nighttime downslope winds on the western side of Sacramento

Valley. However, we find the modeled flow of accelerated westerly winds beginning mid-

day at the coast and flowing eastward to be a coherent explanation for the observed

afternoon wind behavior. This modeled flow is further consistent with the time-lag cor-

relation between buoy winds at the coast and at Travis, and the cooling tendency of the

afternoon winds. This leads us to conclude, since weak-wind days generally have much

calmer winds in the local AM hours, that the variability of summertime Travis winds

depends also on persistence or falloff of winds in the late night and early morning hours.

This nighttime falloff was found to be closely related to the strength of the inversion,

represented by ∆θ850, as well as to the near equilibration of temperatures and pressures

between coast and valley and, to a lesser extent, downslope winds in the valley. Thus,

several specific processes are key to the wind speed variability, including the Sacramento

Valley diabatic heating, nearshore SST, along-valley SLP gradient, longwave nighttime

cooling, large-scale subsidence, inversion strength, and vertical mixing, in determining

the exact strength of the warm-season winds affecting Travis and the SMUD site.

While the sensor network in San Francisco Bay and the Sacramento Valley, in-

cluding data from air pollution transport measurement campaigns, may be able support

purely observational studies focused on this issues, the present results indicate the need

for higher-resolution modeling, including Bay surface temperatures and non-hydrostatic

effects of the diabatic heating patterns.

Together with the findings in Part 1, this diagnosis of the climatology and vari-

ability of California’s inland wind energy resource has several implications for future

study and applications. For instance, on the smaller scale, the mean diurnal circulations

we have analyzed for Edwards and Travis can be used to analyze other sites’ suitabil-

ity for wind conversion facilities in the Mojave Desert and Central Valley. The areas

enjoying similar exposure to orographic and meteorological forcing include Tejon and

Cajon passes north of Los Angeles, and several ridge lines directly between the Straits

of Carquinez and Sacramento. The pressure and temperature cycles found important

to determining the strength of these circulations can be compared to factors influenc-

ing electricity demand and needs. The CaRD10 data also suggest that comprehensive

regional simulations would need to simulate the daily variability at Palm Springs with
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more finely resolved topography and without unrealistically strong slope winds in the

extremely sharp Gorgonio Pass. In the bigger picture, although complex terrain plays

a major role in determining what sites are adequate for wind farms, we have also iden-

tified larger-scale influences that can be used for examinations of wind power capacity

under climate change. The PNA and SST indices found to be significant in Part 1 are

a rough approximation of these. SOM analysis of GCM output, combined with specific

time series of SLP, low-level temperature, and upper-air fields would likely show even

greater fidelity than these rough indices, and could be used directly to estimate site wind

behavior corresponding to a simulated climate from relatively low-resolution data.
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Figure 4.11: Mean proportional change in wind speed from its 10GMT (2:00 local time) value

in different regimes of observed summertime mesoscale pressure gradient and ∆θ850. Each panel

displays mean wind speed, expressed as proportional change from its 10 GMT value, within a

tercile of the June-September San Francisco-Sacramento daily-mean pressure difference (hourly

values are plotted on the right-hand scale). Within each ∆SLP tercile the days are further

divided into terciles based on ∆θ850, using Oakland soundings and local surface data, and these

proportional wind speed changes are plotted. Also plotted are the 95% bootstrap confidence

intervals for the lowest and highest ∆θ850 tercile mean hourly values of proportional change in

wind speed.
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Figure 4.12: The area around southern California, with shaded elevation in meters, and the

domains used for the WRF 2.5 km simulations. The 10 km domain for the 5 and 10 km resolution

scenarios was considerably larger, equivalent to the CaRD10 domain in Kanamitsu and Kanamaru

(2007). The Palm Springs site is marked with a blue asterisk.
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Figure 4.13: Hourly wind vectors as observed at Palm Springs (center), as well as from the

nearest grid boxes in three different resolutions of RSM (top rows) and WRF simulations (bottom

rows), covering 20-21 July 1999, GMT. The color key indicating wind speed in m/s is the same

for every panel. Hours with no vector in the observations have zero wind speed.
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Figure 4.17: At left are two 10m wind fields at different times from the 2.5 km WRF model,

illustrating the northward and southward states of the low-level jet downwind of San Gorgonio

Pass. The thick black line to the lower left is the coast and further to the east is the Salton Sea.

Also shown are the two rectangular boxes, with side lengths from 15-20 km, used to calculate

the jet direction time series. At right is the jet direction time series for five different mesoscale

model runs, with the thick blue line indicating the average speed in the northern box minus the

average speed in the southern box at every hour. All 72 hours of the time series are plotted to

show the repeated signals better, although the first 24 were intended to be spinup. The x axis

shows local time of day over the three days of simulation, with the last 48 hours corresponding

to those plotted in Fig. 4.13
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Figure 4.18: Hourly 10m wind vectors for the fully forced WRF model and each of the partially

forced WRF experimental runs at 2.5 km, as well as the vector sum of winds from the two

experiments. The left column is from the grid point closest to the Palm Springs airport, the

same as for Fig. 4.13, while the right column is for a point approximately 17 km away, in the

center of the inter-mountain low-level jet.
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Figure 4.19: As in Fig. 4.8, but for days in the slowest mean wind-speed anomaly quartile at

Edwards.
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Chapter 5

Formulation of a statistical downscaling

model for California site winds, with an

application to 21st century climate

scenarios

5.1 Abstract

The present study describes a statistical downscaling scheme for relating GCM

output to site winds, covering the model’s formulation, validation, and application to

21st century climate. The multilinear regression model integrates weather type infor-

mation as well as the results of previous observational analysis of low-level winds near

the California wind farms at Solano County, Tehachapi Pass, and San Gorgonio Pass, in

order to reproduce wind speeds with a fidelity that the direct output of GCMs or global

reanalysis do not capture. Validation by comparing downscaled reanalysis data to an

independent period of observed wind speeds in the 20th century shows that the model has

skill for both monthly and daily data. It also has correlation coefficients with observed

speeds that are comparable to those of several higher-resolution mesoscale models. After

applying it to the output of three coupled climate models for 20th and 21st data under

IPCC emissions scenario A1b, it is seen that some monthly and seasonal mean wind

speed changes are implied of up to 0.6 m/s in the summertime. However, the discrep-

ancies between climate models prevent any definitive consensus, and other seasons see

wind speed changes of smaller magnitudes. The model facilitates analysis and physical

131
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interpretation of the disparate processes affecting wind speed at each site. Analysis of

the principal summertime inter-model discrepancies reveals an important pattern: while

in one model the area of major western North American surface heating coincides with

a decrease in SLP, consistent with direct local adjustment response to the heating, other

models have compensating processes that lead to increased continental SLP and opposite

effects on downscaled site winds. Other seasons also exhibit differences in distribution

of the SLP and temperature changes that are milder, but do affect site wind speeds.

The importance of the coupled models’ representation of these regional patterns and

the value of the downscaling scheme as an overview for greenhouse gas-forced climate

simulations is discussed.

5.2 Introduction

While the effects of climate change are often discussed in terms of impacts to

ecosystems or natural resources traditionally used by humans, there is also a need to

examine the effects on the renewable energy resources that are only recently being con-

sumed on large scales. Solar and wind energy production clearly require appropriate at-

mospheric conditions, and more specifically require that sites currently displaying those

conditions can be relied on to do so in the near future. However, the means to evaluate

this are not always straightforward. For wind power, areas of sufficiently energetic low-

level flow are often not well simulated in the general circulation models (GCM) used to

evaluate greenhouse gas-forced climate scenarios, and for areas such as California, the

sub-grid scale topography is also key to the flow near wind farms. At the same time,

dynamically downscaling a GCM can be computationally and logistically demanding,

and by extension impractical for application to multiple emissions scenarios or multiple

GCMs. This points to the need for a downscaling technique for orographically forced

sites that relates large-scale conditions in a GCM to site wind speeds, without the compu-

tational expense incurred by dynamical downscaling. The present study applies previous

observational analysis results to formulate, assess, and apply a statistical downscaling

scheme that inexpensively estimates the effects of climate change on three prominent

wind development areas in California.

The question of climate change’s effect on wind power is not a new one, and has

been addressed in various ways. Breslow and Sailor (2002) analyzed changes in wind

energy in the 10m wind speed field of 2 GCMs, while Sailor et al. (2008) used tree-
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structured regression to downscale GCM data for several sites in the Pacific Northwest,

and Sailor et al. (2000) employed neural-network downscaling of GCMs for three wind

speed sites. Regarding northern Europe, including Scandinavia, Pryor et al. (2005a) used

a regional atmospheric model to dynamically downscale climate change scenarios. While

the downscaling was found to have skill over the historical run, it produced conflicting

results with different 21st century forcings, leading to an overall high uncertainty in wind

speed changes. Pryor et al. (2005b) used a statistical scheme for stations that showed

a Weibull wind speed distribution in observations. Their results detected more wind

speed changes in the period 2081-2100 than 2046-2065, suggesting that for other regions

as well, end-of-century conditions hold more promise to indicate first-order wind speed

changes due to climate change. Najac et al. (2009) combined observational analysis

of numerous wind stations over France with weather typing and analog downscaling

methods to assess the impacts of climate change in 14 different greenhouse gas-forced

models, finding regional and seasonal tendencies in 21st century behavior for both the

centers and tails of wind speed distributions. In contrast, analysis of past wind speed

changes can also inform the question of wind power under climate change. Pryor et al.

(2009) analyzed a combination of wind observations, regional, and global models, and

found discrepancies between data sets regarding long-term trends in the continental US.

Pryor and Barthelmie (2003) examined the low-level flow over the Baltic from global

reanalysis data and found increases in wind speed, especially due to stronger wind events

driven by synoptic systems.

Prior downscaling studies for predictands other than wind speed are also highly

relevant to ours. Temperature is a societally important field with sub-grid-scale vari-

ability, but generally shows more spatial coherence than wind. This is consistent with

the large amount of variance explained in multilinear regression models such as Wigley

et al. (1990) and Solman and Nuñez (1999). These models are constructed in a more

automated process than the one we develop, in that each station is downscaled based

on a small selection of possible predictors, such as the large-scale temperature and coin-

cident and nearby pressure fields. Other, more, complicated methods can also be used,

and often have been for downscaling precipitation. While it is another field of great

interest, precipitation is in may ways more complicated to downscale than temperature

and perhaps wind speed as well, in that it is vary spatially inhomogeneous, tends to

have a very long-tailed probability density function, and often depends on highly non-
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linear, small-scale processes (atmospheric convection). The variety of approaches to

statistically downscaling precipitation include linear and nonlinear regression as well as

weather typing and stochastic methods (Wilby and Wigley, 1997).

This study makes use of observed linear relationships between site winds and

large-scale atmospheric conditions to downscale several global climate models. It is most

similar to the work of Najac et al. (2009), with the important difference that it integrates

atmospheric fields and weather type time series into a multivariate regression model, and

eschews analog methods completely. The methods used to formulate the present model

could also be applied to other settings or other data sets down to intermediate resolution

(ie, regional reanalysis), while potential applications include historical reconstructions of

wind resources or operational large-scale overviews of wind power availability on daily to

seasonal timescales. After verification and error analysis of the downscaling model, we

apply it to downscale several coupled climate models under greenhouse gas forcing. We

analyze the projected 21st century wind changes in each model in terms of the specific

physical mechanisms responsible for the changes, as well as the important differences

they reveal between models.

5.3 Setting and data sources

The downscaling model relates conditions resolved by the NCEP reanalysis (Kalnay

et al., 1996) to interannual anomalies in observed winds at Travis Air Force Base, Ed-

wards Air Force Base, and Palm Springs Airport. These in situ wind data come from

archived METARs reports and, as shown in Mansbach and Cayan (2010a) (hereinafter

MC1), after being processed with a simple homogenization procedure, they are found to

be representative of winds at the Californian wind farms at Solano County, Tehachapi

Pass, and San Gorgonio Pass, respectively. After the model is trained and validated, it

is straightforward to replace NCEP global reanalysis with publicly available output from

GCMs under historical and climate-change runs. Thus, although our understanding of

the processes affecting the site winds draws on other model and in situ data sets de-

scribed in MC1 and in Mansbach and Cayan (2010b) (hereinafter MC2), the time series

used to train the model are not drawn from these in situ and higher-resolution data sets

because they have no 21st century analogs.

The 21st century climate data we consider correspond to specific greenhouse gas

emissions scenarios laid out in the Intergovernmental Panel on Climate Change (IPCC)
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Special Report on Emissions Scenarios (IPCC, 2000) under storyline A1b. This describes

a 21st century world of economic expansion, decelerated population growth, international

cooperation, and a balance between renewable and fossil-fuel based energy sources. From

multimodel mean data, this scenario has a predicted level of21st century global-mean

surface warming and sea level rise in the higher range of the scenarios evaluated, but is

not the highest (Solomon et al., 2008). The A1b GCM output emissions scenario analyzed

were from those submitted to the Climate Model Intercomparison Project Phase 3 in

support of the fourth IPCC Assessment Report (Solomon et al., 2008). Although over a

dozen sets of model output were submitted, this study uses the results from downscaling

three of those models, in order to give sufficient focus to the regional patterns and

physical processes affecting site winds. The models are GFDL 2.1 (Delworth et al., 2006),

ECHAM5 as run by the Max Planck Institute (Roeckner et al., 2003; Marsland et al.,

2003), and CNRM (Guérémy et al., 2005). Data was obtained through the Lawrence

Livermore National Laboratory portal.

5.4 Model formulation and verification

5.4.1 Atmospheric predictors

The downscaling scheme is a a multivariate linear regression model trained with

NCEP Reanalysis data. It is impractical to use model-resolved surface wind speeds

as directly representative of the sites because of the low resolution of the model, the

complex physics affecting boundary-layer winds, and the complex topography of the

region. For instance, as shown in MC1, the Palm Springs and Edwards wind sites

in southern California (representative of winds at San Gorgonio and Tehachapi Pass

wind farms, respectively) correspond to the same grid box in the reanalysis, yet their

daily wind speed correlation with one another is not above 0.45 for any time of year.

To construct the model, we assemble a large number of possible predictors and use a

selection routine and training data to assemble the optimal model subset from these and

assign the regression coefficients for each predictor. We then assess the skill of the model

on an independent verification data set, adjust selection parameters, and re-train and

validate until settling on the final model. This processes is illustrated schematically in

Fig. 5.1.

The general aim of the model is to approximate as best is possible a site’s daily
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Figure 5.1: Schematic representation of the downscaling model formulation and selection pro-

cess.

wind speed time series, Y (t), with a least-sum-of-squares estimate, Ŷ (t). The basic form

of the model is

Ŷ (t) = β0 +
N∑

i=1

Xi(t)βi (5.1)

, where each predictor Xi is a time series from reanalysis data. The optimal time series

used are chosen by an objective backward selection process from a large pool of possible

predictors, and the number of total predictors, N , is determined in the training and

verification phases. Because of the different seasonal patterns of variability at each site,

as described in MC1 and MC2, we select and verify a separate set of Xi and βi for each

site and each of the seasons Dec-Feb, Mar-May, Jun-Aug, and Sep-Nov.

The first step is to summarize the basin-wide synoptic state into several time

series Xi. This is accomplished with self-organizing maps (Kohonen, 2001). For each

day used in training the model we examine the anomalies of SLP and 500 hPa zonal
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and meridional wind over the region. For the southern California sites, the domain’s

extents are 18.75 ◦- 51.25 ◦N, 93.75 ◦- 151.25 ◦W. For Travis, they are 23.75 ◦- 41.25
◦N, 93.75 ◦- 151.25 ◦W. Self-organizing maps are an unsupervised learning and pattern

classification technique that identifies the common, distinct patterns from a large number

of weather states (Kohonen, 2001). SOM patterns describe the major modes of variability

in the region, without the requirements of orthogonality imposed by EOFs or the high

sensitivity to parameter adjustment found in k-means clustering. As shown in MC2,

for instance, an SOM of the northeast Pacific and western United States finds that the

principal patterns found, called nodes, describe a center of action in anomalous SLP

over the ocean and a separate one over the continent, with support from 500 hPa ridging

and troughing anomalies. These SLP patterns can vary separately, leading to conditions

with broad areas of high or low pressure, or of opposing patterns over the ocean as

over the continent. (In referring to the figures in MC2 to illustrate the SOMs used

internally in our model, the 500 hPa anomaly contours generally describe streamlines of

the anomalous 500 hPa flow.) At the same time, it can also be instructive to examine the

SOM patterns found in only certain subsets of a given season. Our tests have indicated

that for some stations and seasons, the model has greater downscaling skill when it uses

the SOM patterns based on only the windiest and least windy quartile of days in the

training period at that site, such as those seen in MC2.

To integrate SOM-defined patterns into the model, we include the time series of

the SOM quantitative error as predictors. The quantitative error for each day and SOM

node is the magnitude of the vector difference between that day’s observed SLP-500 hPa

anomaly map and the pre-defined SOM node, after both are concatenated into vectors

(Kohonen, 2001). Thus, a low quantitative error indicates a high similarity to the given

node, and the βi coefficient for the time series corresponding to a pattern that tends to

excite a positive site wind speed response will be more negative than the βi coefficient

for a pattern that tends to excite a negative wind speed response.

The nsyn synoptic-summary time series from SOM analysis are automatically

included in the model and not subject to the backward selection routine. In numerous

tests this has greater skill in downscaling as it allows the subsequent backward selection

process to choose Xi series that correspond to specific, more local conditions, since the

general background synoptic state is already captured by the SOM series. Thus, after
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taking the synoptic-summary time series into account, the model becomes

Ŷ (t) = β0 +
nsyn∑
i=1

Xi(t)βi +
N∑

i=nsyn+1

Xi(t)βi (5.2)

The value of nsyn is varied in the training process along with the grid dimensions

of the SOM, and depends on whether the synoptic summary time series are based on

a single SOM from all days in the season, or on two separate SOMs formed from the

windiest and least windy days at the site and season in question. One further aspect of

the SOM series integration is varied. The 2-dimensional SOMs used in this and previous

studies intend to map the set of all synoptic states most nearly to a plane, with each

of the m×n nodes demarcating a point on that plane that represents a large number of

states from the training data set. If the nodes were perfectly contained on a plane, then

only three time series of quantitative error would be sufficient to map any subsequent

point to its best-matching location, and the other series could be neglected with no loss

of information. Although in practice that is not observed, most SOMs used here, like

those shown in MC2, do have smooth transitions between adjacent nodes, indicating they

are close to being mapped to a plane. Thus, including only the series of quantitative

errors corresponding to the corner nodes of each SOM results in fewer Xi series and less

risk of overtraining the model, while providing nearly as much information and skill in

reproducing the training data.

The time series that are then made available to the model are built on the results

of MC1 and MC2 regarding what physical fields are observed to relate to site wind

speeds. Complete lists of the fields from which the backward selection model chooses are

in Tables 5.1-5.2, and we here describe reasons for making each group of fields available

to the model.

It is intuitive to use reanalysis-simulated surface wind speed in the grid box

covering each site as a possible predictor. While issues of resolution, complex topography,

and model physics mean that it is not always an accurate predictor of observed wind

speed, it nonetheless often shows a significant and positive correlation to many observed

site-season wind speed series.

Winds at 700 hPa are generally above the heights of the orography in the region,

and may be expected to be better simulated by the GCM. The accurately simulated 700

hPa winds may then be thought of as mixing downward to affect the site wind speeds.

The observed 10 m winds may be most related to total momentum (700 hPa wind speeds)



139

Table 5.1: List of the time series that the backward selection model chose from to to be included,

along with the synoptic type information, for the Travis downscaling model. The time series that

were chosen are indicated by a superscript that denotes the season of the year (DJF=1, SON=4)

and the sign of the corresponding βi least-sum-of-squares coefficient in that season. If the the

backward selection model retained the 1- or 2-day lagged version of the series, that is also denoted

in the superscript by ‘lagX’, where X is the number of days by which it is lagged.

Ncal Zonal SLP gradient at 1 boxes1+

NCal Meridional SLP gradient at 1 boxes
Ncal Zonal SLP gradient at 2 boxes
NCal Meridional SLP gradient at 2 boxes2−,3−,4−

Ncal Zonal SLP gradient at 3 boxes
NCal Meridional SLP gradient at 3 boxes
Ncal Zonal SLP gradient at 4 boxes2−

NCal Meridional SLP gradient at 4 boxes
Ncal Zonal SLP gradient at 5 boxes
NCal Meridional SLP gradient at 5 boxes
SLP at 40, 110 (incl Ely, NV)3−

Site 200 mb U wind (Ncal site:37.5, 122.5)
Site 200 mb V wind (Ncal site:37.5, 122.5)
Site 700 mb U wind (Ncal site:37.5, 122.5)(1lag1+),(3lag1−)

Site 700 mb V wind (Ncal site:37.5, 122.5)1−,(2lag1−),4−

Site 700 mb wind speed (Ncal site:37.5, 122.5)
Site 200 mb wind speed (Ncal site:37.5, 122.5)
SLP at 27.5, -112.5 - Sonora/Sea Cortez
SLP 55 -122.5 (BC)
mean SLP in 7.5degx7.5 deg centered over KSUU
SLP 40 122.5 (KSUU)1−,3+

LTS (850-sfc) at 37.5 122.5
Site (KSUU) - offshore temp(2lag1+),(3lag1+),(4lag2+)

SST at 37.14, 125.6
SW wind at 925 mb West of SF Bay



140

Table 5.2: List of the time series that the backward selection model chose from to to be

included, along with the synoptic type information, for the Edwards and Travis downscaling

models. The time series that were chosen are indicated by a superscript that denotes site the

series was chosen for (Edwards/Palm Springs), the season of the year (DJF=1, SON=4) and the

sign of the corresponding βi least-sum-of-squares coefficient in that season. If the the backward

selection model retained the 1- or 2-day lagged version of the series, that is also denoted in the

superscript by ‘lagX’, where X is the number of days by which it is lagged.

Zonal SLP gradient at1boxesE1-,E2-,E4-,P2-,P3-,P4-

Meridional SLP gradient at1boxesE1-,P3-

Zonal SLP gradient at2boxes
Meridional SLP gradient at2boxes
Zonal SLP gradient at3boxes
Meridional SLP gradient at3boxes
Zonal SLP gradient at4boxes
Meridional SLP gradient at4boxes
Zonal SLP gradient at5boxes
Meridional SLP gradient at5boxes
U 700 at 35N, 117.5WE2+,E3+,E4+

V 700 at 35N, 117.5W
U 200 at 35N, 117.5W
V 200 at 35N, 117.5W
SPD 700 at 35N, 117.5WE1+

SPD 200 at 35N, 117.5W
SPD sfc at 35N, 117.5WE1+,E2+,(E2lag1-),E4+,P1+,P4+

Southern California site SLP (35N 117.5w)P1+

SLP 1 grid box south and east of southern California site (ie, 32.5N, 115W)E3+,P3-

Southern California site temperature
Temperature 1 SE of Southern California site ( 32.5N, 115W)
SLP SSE of Southern California (27.5 N 112.5W)
SLP NNW of Southern California (55N -112.5W)
SLP at 35 N 115 W (1 E of Southern California site)P1-

SLP at 40 N 135 W (Well offshore CA/OR, near summer Pac high center)
Southern California LTS (700 hPa-sfc pot temp)
LTS LTS (700 hPa-sfc pot temp) 1se of SCal site (32.5N 115W)
SLP in Great Basin (ie, 3 box avg: 37.5 115; 40 115; 40 117.5E2-,E3-,E4-,P1+

California Bight SLP (32.5 122.5)(P1lag1+),P2-,(P2lag1+)

Temp diff between Great basin and Cal Bight (ie, 3 box avg: 37.5 115; 40 115; 40
117.5)-(32.5 120)E1-,P3-

2m air temp at 32.5 112.5 - California Bight T2m (32.5 120)E2-,P2-,(P2lag1+),P4-,(P4lag1+)

2m air temp at 32.5 115 - California Bight T2m (32.5 120)E2-,P2-,P4-



141

or to the meridional or zonal components, depending on the mixing mechanisms and the

geometry of the basins in which the sites lie.

In contrast, 200 hPa winds, from the grid boxes containing the sites, are included

as possible predictors, but not because they are thought to directly represent or mix

downward and affect low-level winds. Rather, they form part an important aspect of the

large-scale dynamics of the free atmosphere that can have profound effect on the low-level

flow through quasigeostophic motions. In this sense the separate zonal, meridional, or

total speed anomalies at 200 hPa have a different interpretation than at 700 hPa. Total

and zonal momentum may reflect a more well-developed subtropical jet stream over the

area, for example, while meridional 200 hPa momentum reflects strong troughing or

ridging over the sites – providing more specificity and detail than the general matching

of upper-air patterns from the SOM time series.

Air temperatures at 2 m above ground are also used as possible predictors in

the model due to their relationships to differential heating and important local-scale

circulations (MC2), particularly in the arid inland regions of southern California and

the Great Basin. The grid box containing San Francisco and the Sacramento Valley is

also included because it may roughly approximate the overall heating of the area, even

though in the observations it is actually the sub-grid scale contrast between the inland

heating and the cool marine temperatures at the coast that drives the circulation (MC2

and Zhong et al., 2004).

One note is in order regarding the temperature time series, which in the final

model are always differences in 2m temperature between two grid boxes. The mesoscale

dynamical circulations in the region largely depend on the contrast in temperature and

SLP, which in turn are dictated by diurnal heating and cooling. But, when our model

selection routine, using daily data, tests temperature time series, it tends to find much

more predictive skill in the continental temperature time series, which vary more rapidly

than the oceanic ones. This would result in a model that downscales based on the

continental temperature time series but not the oceanic ones, which in turn would lead to

extreme downscaled wind speed change predictions for a warmed 21st century scenario.

To avoid such spurious predictions we pass to the selection algorithm time series of

temperature differences between land and nearby ocean.

SLP at select locations found to be important in the observations are natural

candidate fields for integration into the downscaling model. Since MC2 found relation-
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ships between observed wind speed for many sites and seasons and reanalysis-resolved

zonal and meridional pressure gradients, these are the first predictor candidates. The

gradients are computed over separations of 1-4 grid boxes on either side of the site, but

the selection algorithm is constrained to choose at most one zonal and one meridional

SLP gradient time series for each station and season. Other locations whose SLP is

a predictor candidate include the Great Basin area (comprising three grid boxes), the

Southern California Bight, the Sonoran Desert, and the grid boxes over the sites them-

selves, as follows from MC1, MC2, and Conil and Hall (2006). In contrast to the case for

2 m temperatures, the objective selection algorithm tends to retain SLP time series in

pairs, usually with βi values of the same order of magnitude, indicating that the statis-

tically skillful predictors tend to correspond to the physically meaningful SLP gradients,

and also assisting the interpretation of the final model.

Lower-tropospheric stability is another predictor candidate, for the importance

it is found to play in boundary-layer momentum dissipation in the Sacramento Valley

(MC2). In this case LTS is defined based on potential temperature at 850 hPa and the

surface, LTS ≡ θ850− θsfc. When measured by nearby radiosondes and surface stations

in the Sacramento Valley, this quantity generally is large when the low-level temperature

inversion is strong and when the planetary boundary layer is shallow (Iacobellis et al.,

2009). However, our initial comparisons of LTS time series from observations, covering

1960-2007, compared to LTS time series from reanalysis, show fundamentally different

seasonal cycles and no correlation between interannual anomalies in the two sets, perhaps

explaining why the selection algorithm tends not to choose LTS to downscale winds from

reanalysis data.

Missing from this pool of predictor candidates are several fields whose inclusion

would provide increased downscaling skill. SOM time series based on SLP and 500

hPa height anomaly patterns would be a natural extension of the SOMs in MC2, and in

downscaling reanalysis they indeed show at least as much skill as those based on 500 hPa

wind components, but are not included here. Likewise, time series of 500 hPa heights at

select grid boxes and of vertical velocity at 700 and 850 hPa were found to improve the

ability of the model to downscale reanalysis for local winds, judging by an independent

verification period. All these were omitted from this study because geopotential height

and vertical velocity are not included for most of the CMIP models whose output is

posted at the Lawrence Livermore/PCMDI data portal that we used as a source for our
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GCM data, and hence it was necessary to construct and train the model only with the

reanalysis fields that are available for CMIP models as well.

In addition to these Xi(t) predictor candidates, we also make available to the

selection algorithm the above time series at one and two days lag. The inclusion of

Xi(t − 1) and Xi(t − 2) allows comparing values of a field on successive days, such

as for instance, the one-day change in 2m temperature, which might indicate thermal

excitation of winds at the sites. It could also, for instance, show the two-day change in

200 hPa meridional winds, indicative of upper-air longwave passing over the area. The

lagged SOM time series, however, are not included as potential predictors. It is worth

clarifying that this model is not capturing autoregressive behavior or Granger causality.

It is simply allowing the selection algorithm to recognize when certain elements of the

atmospheric state on day t-2 or t-1 consistently show skill in predicting the observed

winds on day t. Thus, the final model becomes

Ŷ (t) = β0 +
nsyn∑
i=1

Xi(t)βi +
n0∑

i=nsyn+1

Xi(t)βi +
n1∑

i=n0+1

Xi(t−1)βi +
N∑

i=n1+1

Xi(t−2)βi (5.3)

.

5.4.2 Backward selection phase

The model is chosen via a backward selection algorithm where the time series

whose scaled z-scores fall below a specified threshold magnitude are removed from the

model at every iteration, until all remaining predictors have a satisfactory score. The

scaled z-scores are given as (Hastie et al., 2001):

zj =
βj

σ̂
√
vj

(5.4)

where, if X is the N × p matrix of all Xi not yet eliminated from the model,

then vj is jth diagonal element of (XT X)−1 and σ̂ is the estimate of the variance,

σ̂2 = 1
N−p−1

∑N
i=1(yi − ŷi)2. Since the variance-covariance matrix of the regression

parameters is given by

V ar(β) = (XT X)−1σ2 (5.5)

, (Hastie et al., 2001), the scaled z-scores essentially compare the value of each least-

squares parameter βj to the estimated variance of that parameter, and reject the corre-

sponding candidate Xj when the magnitude of the ratio is below a fixed threshold.
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In the model training process, the size of the SOMs, subset of days they are

based on (whether an SOM for all days or on each from the calmest and windiest days;

subsection 5.4.1), and number of SOM time series used, are tuned and directly affect

nsyn. The z-score threshold for eliminating a predictor is also tuned, which affects

the number of total predictors retained, N . For this study, the goal in tuning these

parameters is to achieve high correlation values and low model mean absolute error

(MAE) with verification data independent from the training data, while still maintaining

a manageable number N of model predictors that can be examined and interpreted for

their corresponding physical mechanism. Although there is some some subjectivity in

the tuning process, we have found these goals overall to be mutually compatible. The

final model selection and coefficients for each site and season reflect a balance of these

three goals.

At this point it is possible to view the results of the model formulation and

training stages. For every case and season it is straightforward to take into account

the time series retained (shown in Tables 5.1-5.2) and the sign and magnitude of the

corresponding regression coefficients, and group these into a smaller number of more

physically meaningful terms — for instance, combining the individual SLP time series

into SLP gradients, grouping lagged and simultaneous fields as single terms describing

the temporal change in the quantity, etc. These groups are shown in Tables 5.3-5.5 and

are also discussed concurrently with the downscaling results in Section 5.6.

While for the most part the groups and their associated regression coefficients

are consistent with the observational findings in MC1 and MC2 and the discussion in

the previous subsection, there is one predictor where the time series’ role in the model

is not as straightforward and merits explanation. The anomalous Southern California

Bight minus Great Basin 2 m temperature predictor is somewhat counterintuitive in

that its correlation with observed Edwards winds is negative (ie, calmer winds when

Bight is anomalously warm and Great Basin temperature cold), but its β coefficient

in this model is positive (ie, more energetic winds when Bight is anomalously warm

and Great Basin temperature cold). In fact, when the regression is carried out over the

training period with the meridional and zonal pressure difference predictors removed, the

resulting coefficient is negative, just like its correlation coefficient. However, when the

meridional and zonal components of SLP gradient are explicitly included in the regression

model, the βi value changes sign, reflecting the component of the temperature-difference
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time series that is independent of the SLP gradients. Thus, the temperature difference

term is effectively a correction to the SLP gradients’ contribution to the estimated wind

speed. While a scenario such as this, where βi is of the opposite sign as the correlation

coefficient, is possible in any multivariate regression, with the present model it happens

seldom, and more commonly is seen in the cases where two separate SLP time series are

retained in the model to effectively form a SLP difference-based predictor.

Table 5.3: Physically motivated groupings and titles of the fields chosen by the backward selec-

tion phase of the model for each season at Edwards. Quantities without a minus sign contribute

positively to wind anomalies when they are themselves anomalously positive; quantities that have

a negative regression coefficient are proceeded by a minus sign and enclosed in parentheses.

Travis DJF
predictor groups

Travis MAM
predictor groups

Travis JJA
predictor groups

Travis SON
predictor groups

-(Zonal SLP
gradient)

-(Meridional SLP
gradient)

-(Meridional SLP
gradient)

-(Meridional SLP
gradient)

-(700 hPa V) -(Zonal SLP
gradient)

Site-Nevada SLP -(700 hPa V)

-(Site SLP) Prev day negative
700 hPa V

-(Prev day 700
hPa U)

2 Days previous
site-offshore temp
diff

Prev day 700 hPa
U

Prev Day
site-offshore temp
diff

Prev Day
site-offshore temp
diff

Table 5.4: As in Table 5.3, but for downscaling predictors for Edwards.

Edwards DJF
predictor groups

Edwards MAM
predictor groups

Edwards JJA
predictor groups

Edwards SON
predictor groups

-(Zonal SLP
gradient)

Zonal SLP 700 hPa speed Zonal SLP

-(Meridional SLP
gradient)

700 hPa U Southern Sonoran
- Great Basin SLP
diff

700 hPa U

700 hPa speed Sfc speed Sfc speed
Sfc speed -(Great Basin

SLP)
-(Great Basin
SLP)

Bight-Great Basin
Temp

Sonoran temp-CA
Bight temp
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Table 5.5: As in Table 5.3, but for downscaling predictors for Palm Springs.

Palm Springs
DJF predictor
groups

Palm Springs
MAM predictor
groups

Palm Springs
JJA predictor
groups

Palm Springs
SON predictor
groups

Sfc speed -(Zonal SLP
gradient)

-(Zonal SLP
gradient with
broadened
continental center)

-(Zonal SLP
gradient)

Site - Sonoran SLP CA bight 1-day
SLP decrease

Meridional SLP Decrease in desert-
Bight temp.
difference

Great Basin -
Sonoran SLP

Temp drop in
Sonoran Desert

CA Bight-Great
Basin temp

Temp drop in
Sonoran Desert

CA BIght prev
day - Sonoran SLP

5.5 Model skill assessment

The model downscales daily data, whose longer-term statistics we are also inter-

ested in, and the decades of data from each site leave ample room for comparing output

to independent observations for error analysis. Numerous different measures could be

used to examine downscaling skill, but here we concentrate on MAE, Pearson product-

moment correlation coefficients, and classification of wind speed terciles from daily time

scales as well as monthly means.

Tables 5.6-5.8 give r and MAE values for daily and monthly-mean wind speeds,

as well as the mean of the absolute value of the anomalies in the data sets as a measure

of variability. Since wind speed anomalies at most sites and seasons display a long right

tail, mean absolute values are displayed instead of root-mean squared error (RMSE) and

standard deviation, so that a relatively small number of extreme positive outliers does not

have a large influence on the skill scores. However, the interpretation is fundamentally

similar to that of the RMSE and standard deviation statistics.

Whereas, in numerical weather prediction, model skill is often defined as increased

accuracy over a forecast of persistence, for longer-term forecasting and hindcasting skill

can be defined as increase in accuracy over climatology. Climatology in this case means

zero anomaly values, ie, Ŷ (t) = 0 for every station and season. In this sense, the model

may be said to have skill if the MAE is less than the mean absolute value of the observed

anomalies (MAVO), which would be equal to the MAE if ∀t, Ŷi(t) = 0. Another way
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to determine skill is by how often the model correctly classifies any period of time as

calm, normal, or windy. If the model correctly identifies periods as being in the lowest,

middle, or highest wind-speed anomaly tercile more than one-third of the time (which

would be the result of guessing all Ŷi(t) = 0), then the model has demonstrated skill

over climatology. This test, as applied here, uses the tercile threshold values for each

season separately based on the respective model or observational data for each season,

averaged over the time scale of interest, and hence removes any consistent biases in the

model data. While this in some ways is less stringent than comparing MAE to MAVO,

which penalizes consistent bias compared to verification data, given that our primary

application of this model is in comparing 20th to 21st century greenhouse-gas forced GCM

output, any consistent bias will be subtracted out anyway, and the tercile-classification

measure is quite relevant.

Tables 5.6-5.8 show several measures of the model skill, both over the daily time

scale on which the model operates, and aggregated into monthly mean data as an indi-

cator of how well they capture longer-term variability. In the daily data, almost every

site and season shows MAE<MAVO, and all show skill in classifying the wind speed

anomaly tercile of daily-mean winds (proportion correct>0.33). The bold numbers in

columns 2 and 3 of the tables indicates that the difference between MAE and MAVO

is significantly different at the 90% level based on bias-corrected, accelerated bootstrap

resampling, with 10000 bootstrap iterations for each difference, after Efron and Tibshi-

rani (1993). The vast majority of sites and seasons, as well as yearly averages based

on daily data, show that MAE is significantly less than MAVO. The exceptions to this

come at Palm Springs. Here, both Dec-Feb and Jun-Aug seasons show that MAE is not

less than MAVO, with the difference statistically significant in winter. This is also the

site where synoptic forcing was found to have the least direct influence on wind speed,

similar synoptic scenarios showed multiple corresponding wind regimes, and few factors

from large- or regional-scale scale models were found to explain the overall wind speed

and small-scale circulation contributions to it, all in MC2. Even in these seasons, how-

ever, the model correctly simulates the wind speed anomaly tercile for 40% of all days,

indicating skill and practical utility in these seasons as well.

The statistics based on monthly means in Tables 5.6-5.8 present a more mixed

assessment. For several sites and seasons, monthly MAE<MAVO, and this is found to

be statistically significant for spring and fall months at Travis. In others, the MAE
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and MAVO quantities are statistically equivalent, while in some cases the MAVO is

significantly greater than MAE. This is the case for winter at Edwards, for example,

even though though 63% of monthly wind speed terciles are correctly diagnosed and

r=0.74 here, which indicates the downscaled time series explains more than half of the

intermonthly variance and is higher than the r value in many cases where monthly

MAE<MAVO. Since the model selection and least-sum-of-squares coefficient estimation

was performed on daily data, it is not surprising that r values tend to be lower on

monthly scales, while the smoothing effects of taking longer-term statistics also decrease

the magnitude of model error and internal variability of model and observational data

sets. For monthly data, the model shows definite skill in classifying calm, normal, or

windy periods, often more than with daily data.

To put some of the skill statistics in context, we note that the r values for obser-

vations and daily cold-season wind speed anomalies in the 6km mesoscale modeling study

of Conil and Hall (2006) were generally between 0.4 and 0.75, but less than 0.6 for sta-

tions in inland and more complex terrain. We also compared output from the California

Reanalysis Downscaling at 10km (CaRD10; Kanamitsu and Kanamaru, 2007) dynami-

cally downscaled data set to site winds kanarsm1. Our analysis shows that the r values

for daily CaRD10 mean wind speed anomalies, separated by seasons, at our three main

sites range from 0.27 to 0.59, and most were under 0.5. The inland winds in CaRD10,

in turn, were shown to be superior to those in NARR in Kanamaru and Kanamitsu

(2007). The monthly r values, broken down by season, for CaRD10 are mainly between

0.2 and 0.4. Thus, as far as indicated by Pearson correlation coefficients, our specific

downscaling model has skill comparable to that of these higher resolution regional and

mesoscale models.

Although the error statistics for downscaled reanalysis indicate that any appli-

cation of the model must be interpreted with care, the skill shown in different metrics

suggest that it is still worthwhile to examine the changes in downscaled site winds under

climate change, as this would likely detect any major shifts in wind speed. With that

in mind we apply the model to downscale several GCMs under the SRES A1b emissions

scenario after integration over the 21st century.

Since the error analysis, for daily and monthly means and at each site, shows

that the variability of the downscaled data is consistently less than the variability of the

observed anomalies, we will not examine the modeled output for extreme episodes. We
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found, for example, that the model largely fails to identify extreme quintiles or more

exacting classifications of wind speed behavior. Rather, the discussion will be restricted

to time means, terciles, or 25th and 75th percentile values of monthly wind speed.

5.6 21st century downscaling results

Bearing the model error results for downscaling reanalysis in mind, we present

the findings from applying the downscaling model to the CNRM, ECHAM5, and GFDL

2.1 models, comparing values within each model from the historical period 1961-2000 to

the period 2081-2100. The overall predicted changes in monthly-mean wind speed and

mean monthly 75th percentile of daily wind speed are summarized for each of the sites,

seasons, and GCMs examined in Fig. 5.2. The fact that the monthly means (horizontal

axis on each panel) and mean monthly 75th percentiles of daily wind speeds (vertical

axis) largely track together indicates that each wind speed distribution, to the extent

it is reproduced by the model, mainly retains its shape under the 21st century climate

change. A preponderance of points in the first quadrant above the line y = x or in the

third quadrant below this line would indicate a widening of the distribution, with more

frequent events that are extreme by 20th century standards; points below y = x in the

first quadrant or above y = x in the third quadrant would mean a narrower distribution.

Since most points are close to this line, for these GCMs, what wind speed changes do

occur are primarily due to an overall shift in the location of the distribution. More

detailed examination of the downscaled wind speed distributions (not shown) confirm

this.

Examining first the December-February results, Fig. 5.2 shows that most wind

speed changes implied by the model are modest. All three GCMs show a wind speed

decrease for Travis on the order of 0.2 m/s, compared to the climatological value of

3.1 m/s in its annual cycle (Table 5.9). The downscaled models disagree about the

sign of wind speed changes for both Edwards and Palm Springs, although none are

very substantial. Spring presents another agreement between the downscaled CNRM

and GFDL models, showing accelerated winds Travis, while the GFDL 2.1 model shows

minimal change. Summer, which has the highest climatological (20th century) wind speed

at Travis (Table 5.9) and which is on par with spring climatological wind speed values

at the other sites, shows the greatest changes, but also the greatest model disagreement.

The maximum magnitude of monthly-mean wind speed change of 0.6 m/s is in the range
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Table 5.6: Skill of the statistical model in downscaling reanalysis for Travis. The model was

trained on observations from 1985-1995 inclusive, and the statistics are based on 1961-2000,

excluding the training years. The first two columns present Pearson correlation coefficient and

mean absolute error, followed by the mean absolute value of the observed anomalies. When

these two quantities are different at the 90% confidence level, both are displayed in bold. The

mean absolute value of the simulated anomalies are then presented to show the variability of

model output, followed by the proportion of time that the model-output wind speed anomaly

tercile is the same as the observed wind-speed anomaly tercile. The statistics for monthly-mean

quantities are presented in the first five rows, followed by the daily-mean data from which the

monthly quantities were derived.

r value MAE Mean abs.
anomalies,
obs

Mean abs.
anomalies,
model

Proportion
of terciles
correct

DJF
monthly
means

0.53 0.63 0.67 0.49 0.51

MAM
monthly
means

0.45 0.70 0.78 0.31 0.42

JJA
monthly
means

0.37 0.85 0.84 0.47 0.41

SON
monthly
means

0.41 0.63 0.68 0.29 0.45

Monthly
means,
entire
year

0.40 0.71 0.74 0.39 0.45

DJF daily
means

0.49 1.55 1.70 1.02 0.49

MAM
daily
means

0.44 1.51 1.76 0.88 0.53

JJA daily
means

0.60 1.53 1.95 1.32 0.48

SON daily
means

0.43 1.72 1.91 1.05 0.41

Daily
means,
entire
year

0.49 1.58 1.83 1.07 0.48
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Table 5.7: As in Table 5.6, but with observed anomalies and model-downscaled data for Edwards

Air Force Base near Tehachapi Pass.

r value MAE Mean abs.
anomalies,
obs

Mean abs.
anomalies,
model

Proportion
of terciles
correct

DJF
monthly
means

0.74 0.82 0.64 0.85 0.63

MAM
monthly
means

0.56 0.58 0.62 0.56 0.54

JJA
monthly
means

0.44 0.73 0.65 0.59 0.48

SON
monthly
means

0.52 0.76 0.53 0.76 0.49

Monthly
means,
entire
year

0.44 0.72 0.61 0.69 0.53

DJF
daily
means

0.77 1.37 1.84 1.39 0.60

MAM
daily
means

0.77 1.26 2.10 1.55 0.62

JJA
daily
means

0.70 1.11 1.52 1.08 0.58

SON
daily
means

0.74 1.30 1.72 1.33 0.62

Daily
means,
entire
year

0.72 1.26 1.80 1.34 0.60
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Figure 5.3: Mean June-August changes in 2m temperature for 2081-2100 compared to 1961-

2000 in each of the GCMs examined. The effect of this field on Travis wind speeds is based on

the difference between the value outlined in red and the value outlined in blue. The effect of

this field on Palm Springs wind speeds is based on the difference between the value outlined in

magenta and the value outlined in green.
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that the downscaling model resolves with skill, but the discrepancies between GCMs calls

for closer examination. Autumn again has inter-GCM agreement regarding Travis, but

with smaller predicted changes and no consensus for the other sites.
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Figure 5.4: Mean June-August changes in SLP for 2081-2100 compared to 1961-2000 in each

of the GCMs examined. The effect of this field on Travis wind speeds is based on the difference

between the value outlined in red and the value outlined in blue. The effect of this field on Palm

Springs wind speeds is based on the difference between the value outlined in magenta and the

value outlined in green.



155

Focusing on the Jun-Aug changes, we examine the spatial distribution of 2 m

air temperature and SLP changes over the 21st century in Figs. 5.3 and 5.4, as well

as the points contributing to each site’s downscaled wind speed. While each model

shows warming overall and greater warming over the ocean than over the continents, the

specific patterns differ. The warming over western North America in GFDL 2.1 is strong

and very widespread, while ECHAM5 shows more in the US Southwest into Mexico and

CNRM more in the northern Rockies and Great Plains. Comparing this to the changes in

the SLP patterns in Fig. 5.4 reveals striking differences. The area of greatest warming

in GFDL 2.1 coincides with lower SLPs, consistent with a direct thermal adjustment

process in response to heating. The other two models show a general increase in SLP.

Whereas the decreased SLP in GFDL 2.1 would merge with the 20th century thermal low

in the Southwest US (ie, Rowson and Colucci, 1992) and lead to a broad area of low SLP

in the summertime western US, the warming in CNRM would effectively coincide with

an elimination of the thermal low. Whether this is because of large-scale circulation

changes, different treatment of the daily timing of the warming and SLP adjustment

processes, or other factors, remains to be investigated. Similarly, ECHAM5 shows a

large area of increased SLP in the late 21st century, centered slightly north and east of

that of CNRM, which would reduce the thermal low. These patterns sharply contrast

with GFDL. Taking these two figures together it is clear why pressure effects combine

with thermal effects in influencing summertime Travis GFDL 2.1 wind speed changes

but oppose one another in the other models, as well as producing discrepancies in wind

speed changes for Palm Springs and Edwards.

In light of these maps, it is also illuminating to investigate the Dec-Feb changes

in downscaled wind speeds and in SLP and 2 m temperature distributions. As seen in

Figs. 5.5-5.6, the discrepancy in downscaled wind speed changes implied by each model

is not large in absolute terms for the winter, although taking the lower climatological

mean wind speed into account (Table 5.9) shows that it still considerable in relative

terms. Moreover, the distributions themselves in Fig. 5.8 and 5.9 show sharply different

patterns the summer patterns in Figs. 5.3 and 5.4. GFDL 2.1 shows only a relatively

moderate degree of continental warming in Dec-Feb, while ECHAM5 is greater in both

continental and oceanic warming in the plotted domain, and CNRM roughly resembles

GFDL 2.1. The corresponding distribution of mean 21st century SLP changes for GFDL

2.1 is a very broad increase in pressure, covering the entire domain but strongest in
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the oceanic center near the US Pacific Northwest. This contrasts with the extensive,

apparently thermal continental low in the GFDL summertime changes (Fig. 5.4), but

once again it is the broadest and strongest SLP change pattern from among these three

GCMs. The ECHAM5 SLP change pattern, in contrast, is quite mild in Dec-Feb, unlike

in the summertime, and does not show any direct relationship to its spatial pattern of

warming. CNRM shows a broad area of increased oceanic SLP but this is centered further

offshore than GFDL’s and is not accompanied by increased continental pressure. While

none of these SLP and 2 m temperature patterns can be explained just by the presence

of simple local thermal relationship between the two fields, as with summertime GFDL

2.1, they still do show significant discrepancies in the amount of near-surface warming,

the oceanic-versus-continental warming, and the circulation effects that lead to SLP

changes. Thus, they again point out key differences among the three models on the

regional level, and the corresponding changes implied for site wind speed show impacts

of the regional-level discrepancies.

At Travis, the downscaled models all show a decrease in mean Dec-Feb wind

speeds. All the models show the zonal pressure gradient across the site becoming more

positive over the 21st century, which contributes to the wind speed decrease (Fig. 5.5). At

the same time, in each model one or both components of the 700 hPa vector winds weakly

compensate for this, just as there is discrepancy regarding the sign of the 700 hPa wind

speed change, which affects Edwards surface winds. At the Edwards site, although zonal

and meridional SLP gradients are consistently seen to become more negative, implying

a net acceleration of winds, the dominant term in the downscaling for each model is

the anomalous temperature difference between the Southern California Bight and the

Great Basin (Fig. 5.6). This predictor has a regression coefficient of the opposite sign

as its correlation coefficient to the observed data. In Section 5.4 it is argued that in

this multivariate model it essentially acts as a correction term to the effects of zonal and

meridional SLP gradient on the predictand, and for every downscaled GCM it does in

fact oppose the effects of these gradients on site winds. The continental warming in each

case makes this quantity more negative, compensating for the SLP gradient changes, and

in the case of ECHAM5 leading to a predicted wind speed decrease of nearly 0.2 m/s.

Palm Springs winter time wind speed changes are governed by a variety of factors. One

of them, for both this site and Edwards, is the GCM-resolved large-scale surface wind

speed, but the changes this metric implies for the local site changes are small compared
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to the changes implied by the GCM-simulated SLP distribution changes. The predictors

retained for Palm Springs winter essentially focus on the Sonoran Desert area SLP as

compared to SLP in the grid boxes containing the site, the Southern Californian Bight,

or the Great Basin. Although the sign of the changes for these SLP differences varies

among the three different GCMs, the overall implied wind speed change for the site is

weakly positive (Fig. 5.7).
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Figure 5.8: Mean December-February changes in 2m temperature for 2081-2100 compared to

1961-2000 in each of the GCMs examined.
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Figure 5.9: Mean December-February changes in SLP for 2081-2100 compared to 1961-2000

in each of the GCMs examined.
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Table 5.8: As in Table 5.6, but for Palm Springs Airport near San Gorgonio Pass. Statistics

are from the verification period 1973-2000, excluding the training years of 1985-1995.

r value MAE Mean abs.
anomalies,
obs

Mean abs.
anomalies,
model

Proportion
of terciles
correct

DJF
monthly
means

0.47 0.49 0.33 0.46 0.50

MAM
monthly
means

0.38 0.41 0.39 0.32 0.51

JJA
monthly
means

0.44 0.39 0.40 0.30 0.43

SON
monthly
means

0.37 0.47 0.35 0.42 0.50

Monthly
means,
entire
year

0.39 0.44 0.37 0.37 0.49

DJF
daily
means

0.56 0.87 0.84 0.65 0.40

MAM
daily
means

0.56 1.09 1.30 0.88 0.49

JJA
daily
means

0.52 0.86 0.94 0.63 0.40

SON
daily
means

0.49 0.92 0.92 0.66 0.45

Daily
means,
entire
year

0.53 0.93 1.00 0.71 0.44
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5.7 Conclusions

We have detailed a statistical method to downscale winds for three sites in Cali-

fornia. Reanalysis and current GCMs do not approach the resolution required to resolve

the nearby topography at these sites, and so use of GCMs for direct diagnosis of the

winds is not accurate. Self-organizing map quantitative error time series incorporate

weather type information into the multilinear regression model with no use of analog

methods, instead assigning positive or negative wind speed anomalies to any given day’s

similarity to several different weather types. Every potential predictor submitted to the

selection algorithm has a basis and rationale from the observational analysis in MC1

and MC2, and hence the predictors that the backward selection algorithm retain in the

final model represent the most statistically important factors in determining a site’s wind

speed anomaly. By avoiding analog methods we rely less on the assumption of stationary

in wind speed-weather type relationships than Najac et al. (2009), yet retain the ability

to view the component processes responsible for wind speed changes in a way gener-

ally unavailable from a neural network approach to downscaling (ie Sailor et al., 2000).

Considering the considerable sub-synoptic scale aspects of the circulations at each site,

as shown in MC2, this could be considered an important quality for downscaling this

region.

The trained model was used to downscaled 20th century reanalysis data and

compared to observations. For the raw, daily-mean downscaled output, each site and

season of the model showed significant skill over climatology in the sense of having

MAE<MAVO, a large proportion of the days classified in the correct tercile, or correla-

tion coefficients between 0.45 and 0.75. It therefore compares well with the corresponding

r values of mesoscale models (Conil and Hall, 2006; Kanamitsu and Kanamaru, 2007)

compared to inland California wind speeds on a daily basis. Its skill scores with these

metrics are generally comparable or slightly worse than those in Najac et al. (2009),

but the downscaled versus observed internal variance as measured by RMSE or mean

absolute deviation within either data set is considerably worse. This is not a surprise in

that our method relies on linear regression in place of analog relationships and uses no

inflation to try to capture the sub-grid scale variability not reflected in GCMs (Zorita

and Von Storch, 1999).

The validation over monthly time scales reveals that the model still has skill over

longer averaging periods, although MAE approaches MAVO. While a decrease in skill
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scores may be expected for a model trained and validated on daily data, it still raises the

question of what methods of formulation could result in a model with greater skill over

long averaging periods, as would be desired for application to long-term climate change.

A regression model that predicts monthly-mean statistics such as mean, median, 25th and

75th percentile of daily-mean wind speeds, could be constructed with largely the same

methods as the present model. Our initial endeavors (not shown) did not, however, result

in significant improvement in monthly-mean wind speed downscaling using the monthly-

mean predictors. The limited reliability of the observational data sets over interannual

to decadal time scales (MC1) may be an explanation, as well as the simple fact that few

independent samples and a lesser sampling of possible atmospheric states are available to

train a model operating on monthly or longer time scales with finite training data. In this

case, a hybrid model be worth exploring, where monthly-mean statistics are characterized

by a weighted average of results from models operating on different time scales. Such a

model might also enjoy the benefits of capturing lower-frequency variability related to

terms like SST or soil moisture (MC1) while also taking into account higher-frequency

atmospheric variations and a more accurate aggregate response to any fields which have

a nonlinear relationship to wind speed anomalies. Such a hybrid model would entail new

questions as well and ample uncertainties in formulation and tuning, and would require

an in-depth investigation of its own.

The results of applying our model to 20th and 21st century GCM output show

mostly weak to moderate changes in monthly-mean and 75th percentile wind speed, but

little consensus regarding those cases where stronger wind speed change may be implied.

One clear pattern is that GFDL 2.1 differs from CNRM and ECHAM5 in the summertime

SLP change over the continental areas where significant warming is found. If specific

analysis of the underlying models could lend support to the GFDL model’s simulation

of 21st century SLP response to warming, or the other models’ simulated compensation

and increase in SLP, then a more definitive statement could be made. In the case that

the GFDL model processes governing the continental summertime SLP were diagnosed

found credible, it would lend more confidence to the findings of increased wind speed at

Travis and Edwards in the summertime. On the other hand, if further study lent more

support to the distributions of SLP changes found in CNRM and ECHAM5, this would

support the predictions of notable decrease in summertime Palm Springs winds.

The fact that the range of possible long-term wind speed changes by season
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roughly tracks with the present climatological seasonal cycle, with larger possible changes

in the more energetic months, holds implications similar to those arising from the to the

seasonal cycle of variability about the climatological mean discussed in MC1. Namely, if

meeting minimum baseline power demands or turbine cut-in wind speeds is of primary

concern, then the small changes implied for the winter seasons will nonetheless be of

importance as they come at the time of year of low wind speeds. Conversely, if meeting

demand in the more energetic wind times of year, or keeping pace with long-term changes

in demand or wind generation facilities is a concern, then the high discrepancies but

potential for greater wind speed changes — increases or decreases — in the summer

cannot be overlooked.

Even beyond the present application to wind speeds, our results show both the

power and limitations of current GCMs. While factors such as greater continental than

oceanic warming are common in greenhouse gas-forced 21st century simulations, spa-

tial temperature and pressure change patterns still show great inter-model discrepancies

(Solomon et al., 2008). Ours is another argument for increased emphasis on regional

climate change, to help identify uncertainties and devise research priorities to overcome

them (ie, Council, 2009). An in-depth study of the type necessary to determine the cred-

ibility of GFDL’s regional summertime results compared to other models’, for instance,

is beyond our present scope but would have powerful implications for any investigation

of climate change in the area. Moreover, development of publicly available dynamically

downscaled data sets through initiatives such as the North American Regional Climate

Change Assessment Program (NARCCAP) could allow dramatic improvements for fu-

ture studies in the vein of our own.

Although the statistical downscaling model is built on multilinear methods that

have clear physical interpretations, it still relies implicitly on various assumptions of sta-

tionarity in the relationships between atmospheric predictors and site winds. In addition

to those relationships already discussed, it is worth mentioning that there is an implicit

assumption of stationarity regarding the change in continental 2 m air temperature and

SLP distribution in the greenhouse gas-forced models. Many of the summertime rela-

tionships between site winds and temperature or pressure are based on the dominant

20th century patterns of strong daytime signals in temperature and SLP, which domi-

nates the daily-mean reanalysis data used to train the model Rowson and Colucci (1992).

Thus, if 21st warming in the US Southwest and Great Basin areas is mainly due to day-
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time temperature increases then the relationships based on 20th century observations

and reanalysis can be expected to hold true for 2081-2100. If 21st century summertime

continental warming is not concentrated in the daytime, however, then this would have

a forcing effect on site winds that is weaker than or even opposite what is implied by our

downscaling model. So, in addition to the gains that a model such as ours might enjoy

from forcing data at a higher spatial resolution, inclusion of a higher temporal resolution

for forcing data could also help resolve this problem. This also it underscores the need for

reliable diurnal cycles in GCMs for the output any such statistical downscaling scheme to

be accurate. In our initial experiments using 6-hourly reanalysis data to predict 6-hourly

mean site wind speeds, constructing separate multilinear regressions for the anomalies

centered at hours 0, 6, 12, and 18Z, overall skill in reproducing verification data was

no better than with the daily model detailed above, over the same averaging periods.

This does not contradict our comments about the value of a higher temporal resolution

for forcing data, however. Since the diurnal circulations we would hope to capture, and

the separation of areas heated differentially on these scales, are mostly smaller than the

2.5 ◦spatial resolution of the 6-hourly reanalysis of our experiments, it simply indicates

that the benefits are more likely to come when higher spatial resolution for forcing data

comes together with higher temporal resolution.

A next-generation statistical downscaling model that relies on a data set such

as those being produced through NARCCAP would enjoy higher-resolution data and a

broader selection of model fields to downscale future climate, leading to improvements

in both skill and scope over GCM-based approaches. In that sense, works such as the

present bring to light important issues for climate change adaptation at the same time

that they inform discussion on one means of mitigation.

Table 5.9: Climatological daily mean wind speeds for each site and season.

DJF MAM JJA SON
Travis 3.37 5.34 7.68 4.60
Palm
Springs

3.36 5.30 5.16 4.02

Edwards 3.09 5.28 5.02 3.42
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Chapter 6

Conclusions

The studies in this dissertation have examined boundary-layer meteorological

processes, whether for their importance to global climate and climate change, as with

marine clouds, or for their importance to human electricity generation, consumption,

and long-term resource stability, as with wind power. Regarding marine boundary-layer

clouds, variability in monthly-mean cloud amount on the southern edge of the equatorial

Pacific cold tongue was related to low-level temperature advection by wind, referred to

as “SST advection.” The physical mechanism relating SST advection to low-level cloud

cover is straightforward: when cool air blows over increasingly warm water, as in equator-

ward flow over an eastern subtropical ocean, the thermal instability of the surface layer

increases sea-air fluxes and vertical atmospheric boundary layer mixing. When down-

wind SST is cold, however, these fluxes and mixing are inhibited. As it is well established

that boundary-layer clouds are poorly simulated in GCMs, with major consequences for

the modeling of cloud-climate feedbacks (Bony and Dufresne, 2005), it is entirely possible

that multiple aspects of physics, thermodynamics, and turbulence closure model com-

ponents must be remedied for more realistic atmospheric and atmosphere-ocean GCM

simulations. Nonetheless, chapter 2 shows that several GCMs do not capture the ob-

served relationships between SST advection and low-level cloudiness, and the chapter

provides both a suggestion for improving cloud parameterizations and a test for the

fidelity of any such parameterization.

Regarding the studies of interior low-level winds, chapter 3 reveals several broad

similarities among three wind farm areas in California. All three peak in the warm

months in the climatological mean, which generally coincides with the climatological

168
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period of the year when large-scale zonal SLP gradient is most negative. Additionally, all

three show greater directional consistency and a more regular diurnal cycle in the summer

months, whereas winter tends to be more dominated by synoptic-scale forcing. The

implications of these tendencies depend on the requirements of the wind farm developer,

much in the same way that the possible changes to wind speed under greenhouse gas

emissions scenario A1b, explored in chapter 5, do. Namely, the variability about the

annual mean values in the cold months, while smaller in terms of m/s, can be significant

to the question of meeting baseline power needs or turbine cut-in wind speeds in the

colder months. The warm-season variability is larger in terms of m/s, both for 20th

century variability about climatology and for 21st century wind speed changes, and this

is most pertinent for meeting increased seasonal power demands such as air conditioning

use.

Conclusions based on chapter 3 also include likely promising starting points for

any inquiry into seasonal summaries or prediction of wind speed at the sites, namely the

PNA, nearshore SSTs, and inland soil moisture. Chapter 4 helps elucidate the physical

mechanisms for these statistical relationships: the role of oceanic high SLP anomalies

and continental lows in exciting increased cold-season station windiness, and the role

of differential heating and coast-inland thermal contrasts for warm-season flows. One

method used to show the larger-scale patterns — the use of self-organizing maps —

is found to be more adaptable than traditional EOF analysis while being more stable

and usable than k-means clustering, and this method holds promise for many aspects of

atmospheric and climate science.

The regional and mesoscale model results in chapter 4, overall, provide more

detail than previously available in the published literature regarding the “Delta Breeze”

in northern California. They simultaneously point out observational sites that could aid

in wind energy prediction as well details of the circulation relevant to Central Valley air

pollution. The WRF model results in southern California provide an estimate of the

horizontal resolution needed to properly capture Palm Springs winds, and while they

do not resolve all questions regarding synoptic influence on Palm Springs winds and

interactions between scales, they do provide a degree of specificity not available from the

CaRD10 data or the in situ and reanalysis data collections.

Chapter 5 provides the the first known site-specific estimates of wind speed

changes under global climate change for the California wind farm areas in question. At
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the same time, however, it highlights several important questions regarding GCMs used

to model climate change under greenhouse gas forcing, and underscores the uncertainties

in regional patterns in the set of models examined. Thus, the details of the methodology

used to formulate the model are of as much interest as the results themselves, and could

serve to guide future studies even when the current dependence on global reanalysis and

GCMs is replaced with higher-resolution regional historical and future data sets.

Besides viewing the effects of climate change on wind power as done here, it

is logical to ask what the effects of extensive wind power conversion on global climate

and weather patterns may be. Although the specifics depend as much on policy, eco-

nomics, engineering, and population dynamics as they do on atmospheric science, some

scenarios have been evaluated from the meteorological perspective. In particular, Keith

et al. (2004) examined several scenarios of widespread large wind turbine deployment,

simulating the effect of the wind power conversion facilities by adjusting the roughness

length or by adding an extra drag term to the boundary layer schemes of two different

GCMs. Although the models indicate negligible net overall effect on global-mean surface

temperature, the study authors did find regional effects on temperature and wind pat-

terns. Simulated extensive wind farm development in the central US, Europe, and East

Asia were found to lead to warming tendencies in the northern subtropics and cooling

further north, although one model also showed cooling to the east of the wind farm areas

in the central US. More evenly distributed global deployment of wind power facilities led

to weaker but broader versions of these patterns, as well as some warming in Southern

Hemisphere subtropical areas. Keith et al. (2004) found that regional climate patterns

induced directly by wind farms might be detectable under some scenarios in the 21st cen-

tury, but could not be expected to be strong or consistent enough to provoke meaningful

research into two-way interactions between wind farm deployment and climate change.

Overall, the work in the present dissertation addresses several important issues

by investigating atmospheric boundary layer processes, mainly through observational

analysis while still conscious of theory and modeling concerns. While the subjects of

marine boundary layer flow, inland winds, and effects of climate change all still contain

numerous unanswered questions, the foregoing has established several important new

findings regarding boundary layers in different settings. Besides methodological con-

tributions, the results are valuable for understanding the climate system and climate

feedbacks, for efficiently harvesting a valuable atmospheric resource, and for planning
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about that resource through understanding it over the long term with climate change

scenarios.
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Mansbach, D., and Cayan, D., 2010a: Climatology and meteorological influences on
california’s wind energy resource. part 1: General characteristics and seasonal cycle.

Mansbach, D., and Cayan, D., 2010b: Climatology and meteorological influences on
california’s wind energy resource. part 2: Synoptic and diurnal characteristics.

Mantua, N., Hare, S., Zhang, Y., Wallace, J., and Francis, R., 1997: A Pacific in-
terdecadal climate oscillation with impacts on salmon production. Bulletin of the
American Meteorological Society, 78(6), 1069–1079.



178

Marsland, S., Haak, H., Jungclaus, J., Latif, M., and Roske, F., 2003: The Max-Planck-
Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean
Modelling, 5(2), 91–127.

Martin-Rodriguez, G., and Caceres-Hernandez, J., 2005: Modelling the hourly Spanish
electricity demand. Economic Modelling, 22(3), 551–569.

Mass, C., Ovens, D., Westrick, K., and Colle, B., 2002: Does increasing horizontal
resolution produce more skillful forecasts? Bulletin of the American Meteorological
Society, 83(3), 407–430.

Maurer, E., Wood, A., Adam, J., Lettenmaier, D., and Nijssen, B., 2002: A long-term
hydrologically based dataset of land surface fluxes and states for the conterminous
United States. Journal of Climate, 15(22), 3237–3251.

McSharry, P., Bouwman, S., and Bloemhof, G., 2005: Probabilistic forecasts of the mag-
nitude and timing of peak electricity demand. IEEE Transactions on Power Systems,
20(2), 1166–1172.

Meindl, E., and Hamilton, G., 1992: Programs of the National Data Buoy Center.
Bulletin of the American Meteorological Society, 73(7), 985–993.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P., Ebisuzaki, W., Jović, D.,
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