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ABSTRACT OF THE THESIS

Machine Learning Models for Seizure Prediction and Detection from EEG

by

Ahmed Siddique Ali

Master of Science in Bioengineering

University of California, Los Angeles, 2024

Professor Wentai Liu, Chair

Epilepsy is a disease characterized by having multiple unprovoked seizures; it can cause

serious health complications for the individuals affected. The ability to predict seizures from

EEG recordings can improve the standard of care for epilepsy patients by allowing care to be

provided in a timely manner. In addition, detecting seizure occurrence in electroencephalogram

(EEG) recordings can greatly speed up the time- and labor-intensive process of EEG annotation,

which will also improve the level of care for patients. This study sought to both detect seizures

and predict them by detecting the preictal stage before onset using machine learning (ML)

models. To avoid the need for a manually-annotated preictal phase, a time period known as the

“prediction target” was manually chosen and the signal was considered “preictal” if it fell within

this period before seizure onset; prediction targets of 30 and 60 seconds were tested. A total of

186 features were extracted from the signal in the time-domain, the frequency-domain, and the

time-frequency domain in order to characterize the most information about the signals’ shape
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and frequency content. The extracted features were used with four different ML models: Support

Vector Machine (SVM), random forest, logistic regression, and Multilayer Perceptron (MLP). Of

the 4 models, random forest performed the best, with an average accuracy of 65% on

classification between ictal, preictal and background, and 85% on detection alone. The model

showed strong performance on detecting seizures and an ability to detect the preictal phase. With

further improvements, it could become highly effective for both seizure detection and prediction.
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1. Introduction

The brain is the primary organ in the Central Nervous System (CNS) and is responsible

for controlling all voluntary body functions and thought processes. The brain is made up of cells

called neurons. Neurons receive signals from other neurons or environmental signals, and

transmit them through dendrites to the cell body or soma; these signals can be either excitatory or

inhibitory. Once enough excitatory signals have been reached to cross a certain threshold, the

neuron fires an “action potential”, a depolarization wave, which travels down the axon and ends

by sending a signal to other neurons or cells via synaptics.1

1.1 Epilepsy

Epilepsy is a brain disorder characterized by having chronic seizures. A seizure is an

episode caused by electrical discharges in the brain, during which a patient will lose voluntary

control of their movements. There are two main types of seizures: “partial” or “focal” seizures,

in which only a certain part of the brain is affected, and “generalized” seizures in which the

seizure spreads and affects the whole brain. While it is possible to have a seizure without having

epilepsy, and about 10% of the population will experience one seizure within their lifetime,

epilepsy is defined as having at least two unprovoked seizures. Epilepsy affects about 50 million

people worldwide, disproportionately affecting people from low-income countries: while about

49 people are diagnosed with epilepsy per 100,000 in developed countries, that rate increases to

139 per 100,000 in low-income countries. Epilepsy can have a severe negative impact on a

patient’s quality of life, as they have a higher risk of premature death, as well as increased rates

of physical and psychological injuries. Epilepsy is primarily treated through antiseizure

medication, but this treatment is not universally applicable; in fact, about 30% of epilepsy
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patients cannot have their condition controlled with drugs. Patients who cannot use drug

treatments are usually treated with surgery instead.2,3

1.2. EEG For Epilepsy

The electroencephalogram (EEG) is the most common imaging tool for patients suffering

from seizures or epilepsy. In an EEG scan, electrodes around the patient’s head to detect changes

in voltage, correlated with brain activity. There are two main types of EEG: scalp EEG, in which

electrodes are non-invasively placed on the scalp, and intracranial EEG (iEEG), in which

electrodes are invasively implanted inside the patient’s skull.4

EEG recordings can be used to determine the exact timing of seizure occurrence. It is

typical for such recordings to be annotated to indicate when the seizure starts and stops.

Annotating EEG recordings can be done manually, but this is a time-consuming process. As

such, a significant body of research is dedicated to using machine learning (ML) to detect

seizures automatically in order to speed this process up.5

In addition, EEG can also be used for seizure prediction, using diagnostic tools to predict

when a seizure will happen in the minutes before it occurs. Seizure prediction is possible because

shortly before a seizure or “ictal” period, there is a “preictal” period, also known as an “aura”, in

the brain activity which can be detected. The exact length of the preictal stage is highly variable,

and can last from a few minutes to a few hours. Predicting seizures is important because it allows

patients to make preparations to avoid serious injury, and it allows for timely care and

intervention to prevent adverse effects. The earliest studies in seizure prediction started in the

1970s, and the field has grown quite a bit in the decades since. However, creating a seizure
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prediction program that stands up to scrutiny is challenging; in a 2007 review, it was determined

that many previous studies in seizure prediction used flawed methodology and would not

perform as well as they claimed.2

One major hurdle has been the lack of comprehensive datasets of epilepsy recordings.

Over time, a few databases of epilepsy data have been put together for this purpose, such as the

EPILEPSIAE database, the IEEG.org database, the Temple University Seizure Corpus (TUSZ),

the CHB-MIT dataset, and more.6,7,8,9 A 2023 review by Wong et al. compares the properties of

these publicly available seizure databases.10 The databases vary widely in their properties: while

some, such as TUSZ and CHB-MIT, use scalp EEG recordings, others use iEEG, such as the

IEEG.org.6,8,9 The CHB-MIT dataset is one of the only ones with long-term continuous

recordings lasting over 24 hours, while TUSZ and Siena Scalp have continuous data over shorter

time periods, and the University of Bonn database has no continuous data at all.6,9,11,12 Some

databases already have filtering or artifact removal applied, and many have already applied

selective segmentation to get the specific ictal, preictal or interictal recordings needed. The

University of Bonn and Neurology Sleep Center Hauz Khas databases are the only ones in the

review to have class-balanced data.10,13,14 The length of EEG segments varies a lot as well; while

some such as TUSZ and CHB-MIT have segment lengths of around 1 hour, others are much

shorter, such as the Kaggle UPenn and Mayo Clinic database which is divided into segments of

1-second.6,9,14 With such a wide variety, the choice of database can vastly affect an experiment,

meaning that choosing the most ideal database is important.4,10

3



1.3. Current Methods of Seizure Prediction

Figure 1: The typical step-by-step process for a seizure prediction algorithm.

A typical seizure prediction algorithm takes data on brain activity, usually from EEG;

next, a preprocessing step usually includes filtering out noise, using methods such as the

Butterworth and notch filters, as well as using methods to transform the signal such as wavelet

transform and Empirical Mode Decomposition (EMD). Past studies have shown Fourier

transform, wavelet transform, Butterworth filter, and Common Spatial Filtering to be the best

methods for removing noise, as measured by the signal-to-noise ratio.15 Some studies have also

used channel selection during the initial preprocessing phase; this approach is most useful for

predicting focal seizures, which are focused on a specific area in the brain rather than

generalized.15 Next, feature extraction is used to pull the relevant information from the signal;

extracted features can include statistical features, spectral moments, Hjorth parameters, and

more. The algorithm uses the features to determine if the patient is in the preictal stage and a

seizure is about to occur, and the patient is alerted if a seizure is predicted. The features are then
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fed into an algorithm that decides whether a seizure is about to occur. Finally, an alert is sent to

the patient to warn them if a seizure is predicted.2,15

One of the key decisions that must be made in a seizure prediction algorithm is

determining how far in advance the seizures can be predicted. While earlier seizure prediction is

naturally preferable, past research has shown that if the prediction time is too high, the false

alarm rate increases as well.15 In addition, there is a higher chance a seizure will occur

somewhere in the prediction window simply because there are more chances for that seizure to

occur, so it is possible that random fluctuations in the signal will be incorrectly identified as a

predictive marker, and the algorithm will still appear to perform well due to chance. Therefore, a

balance has to be struck to predict seizures early while still ensuring that the predictions are

providing meaningful information.2

There are multiple methods that can be used to analyze the EEG signal. In time-domain

methods, the signal is kept in the original form measured across time. Methods in the

time-domain include linear prediction and feature-reduction methods such as principal

component analysis (PCA) and independent component analysis (ICA). The signal can also be

transformed into the frequency-domain using a Fourier transform. It is then possible to calculate

the power spectrum, which measures the power of each frequency component of the signal. A

third option is to use a transformation into the time-frequency-domain, which keeps both

temporal and frequency-based information in the signal; this can be accomplished with a Wavelet

transform.4

The feature extraction phase is very important, as the algorithm’s performance depends

heavily on what features it is analyzing. Some of the most common features include statistical
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features, such as mean, variance, skewness, median, etc; these features are very simple to

calculate and can easily capture the most important information about the data, including its

center and shape. Spectral information such as band power is also common, as they provide

important information about the data in the frequency domain. The Hjorth parameters were

specifically designed for signal processing, and so they are also frequently used in seizure

prediction and detection. Other common methods include PCA, a dimensionality reduction

method, and entropy, which represents the amount of uncertainty expected in the variable.4

ML can be divided into two main methodologies: supervised learning and unsupervised

learning. In supervised learning, data is provided with “ground truth” labels that indicate the

correct output, and the ML algorithm finds the parameters that most closely match the ground

truth. In unsupervised learning, no labels are provided, and the algorithm simply forms clusters

of data samples that are the most similar.

Numerous studies into epileptic seizure detection and prediction have been performed.

The earliest studies on prediction were performed in the 1970s using linear measures, with the

field expanding into non-linear methods in the 80s, as well as specifically trying to detect the

preictal stage once it was discovered. Starting in 2002, competitions were held within the

international science community to determine which methods performed best on a common

dataset. Various ML methods have been used, both supervised and unsupervised. Some of the

most common methods include Support Vector Machine (SVM), which has been used by Subasi

et al and Fasil & Rajesh, among many others, and random forest, used by Wang et al and

Tzimoutra et al.16,17,18,19 Other methods include K-Nearest Neighbors (KNN), decision tree,

logistic regression, and dynamic threshold.2 In one study, a very simple set of features,
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consisting of mean, coefficient of variation, dominant frequency, power spectrum mean, and

variance, were used with a linear SVM, which achieved classification rates of over 90%.20 For

detection, some of the most successful studies have used SVM, random forest, and KNN, all

achieving accuracies above 90%.5

Recently, the use of Deep Learning (DL) methods, such as Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN), has begun to gain traction. For

detection, Artificial Neural Networks (ANN), Extreme Learning Machine, and Back-Propagation

Neural Networks have all also achieved over 90% accuracy, comparable to the best non-DL

methods.5 In 2019, Truong et al developed an algorithm using CNN with STFT for preprocessing

which performed very well, reaching 79.8% sensitivity on raw data.21 Several other studies have

used CNN, with some only using it for feature extraction and then feeding the output into

another algorithm such as SVM.15 Other studies have tried using unsupervised learning in order

to get around the lack of labeled data. One study used k-means to achieve 91.43% accuracy, and

in 2021, Yildiz et al proposed a fully-unsupervised deep learning method for seizure prediction,

using variational autoencoder (VAE), with an AUC of 0.83.22,23

The goal of this study was to create a ML model that can predict seizures when trained on

the TUSZ, the largest freely available dataset of scalp EEG recordings from epilepsy patients.

This analysis was done through a feature extraction process that included statistical features,

Hjorth parameters, band power, EMD, continuous wavelet transform (CWT), and PCA. The

extracted features were analyzed using four ML models: SVM, random forest, logistic

regression, and multilayer perceptron (MLP).
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Table 1: list of abbreviations used throughout the paper and their meanings.

Abbreviation Meaning

ANN Artificial Neural Network

AUC Area Under the Curve

CNN Convolutional Neural Network

CNS Central Nervous System

CWT Continuous Wavelet Transform

DL Deep Learning

DWT Discrete Wavelet Transform

EDF European Data Format

EEG Electroencephalogram

EMD Empirical Mode Decomposition

ICA Independent Component Analysis

iEEG Intracranial EEG

IMF Intrinsic Mode Function

KNN K-Nearest Neighbors

ML Machine Learning

MLP Multilayer Perceptron

mV Millivolts

PCA Principal Component Analysis

RBF Radial Basis Function

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

s Seconds

SOP Seizure Occurrence Period
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SVM Support Vector Machine

TUSZ Temple University Seizure Corpus

VAE Variational Autoencoder
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2. Methodology

Figure 2: Pipeline of steps for this model, following the same structure as the pipeline in Figure

1.

For this study, EEG data of epilepsy patients was taken from the TUSZ. Data was

preprocessed by resampling all recordings to 200 Hz, and then applying filters to remove 60 Hz

noise and limit the signal to 0.5-100 Hz, the range relevant for seizure activity. The signal was

then divided into epochs, which were labeled as ictal, preictal, or background based on whether

they fell during a seizure, the prediction target before onset, or neither. Next, 186 features were

extracted, including statistical features, Hjorth parameters, average bandpower, and PCA; in

addition, the signal was processed with EMD and CWT and then had features extracted from the

resulting waveforms. 4 models were tested on the extracted features: SVM, random forest,

logistic regression and MLP. After the models were trained, they were used to decide if a signal

epoch was ictal, preictal, or background.
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2.1. Dataset

The TUSZ is the largest open-source database of seizure recordings. It is a subset of the

Temple University Hospital EEG Corpus, with recordings of patients that experienced seizures,

as detected by a Natural Language Processor that scanned the annotations. The most recent

release has 822 EEG recordings, with 280 containing seizures, from a total of 315 subjects. EEG

recordings are provided in the file format European Data Format (EDF). Many of the subjects

were recorded in multiple sessions, and the recordings were additionally divided into multiple

EDF files labeled as separate tokens. Each recording also has an annotation file, in

Comma-Separated Value format, detailing the start and stop times for events in each channel.

Eleven classifications of seizures are included, each with their own labels. Because recordings

were taken at many different times under different circumstances, they are not uniform, and the

sampling rates vary with some having 250 Hz, 256 Hz, and 400 Hz. The recording sessions are

cut into different “tags” with varying lengths. Recordings in this dataset use the tcp_ar and tcp_le

montages, each with 22 channels, and the tcp_ar_a and tcp_le_a montages, which only have 20

channels. While the annotations are provided for the bipolar channels, the EDF files provide the

raw data for each channel, so each bipolar channel has to be manually added. EEG recordings

were read into Python and processed using the MNE library. Each patient has an eight-digit

identification code to protect their privacy.6

The TUSZ database has a few notable characteristics that make it ideal for this study.

First, it has the most patients of any publicly available database, by far, with 315 subjects; in

comparison, most of the other publicly available databases have fewer than 100 recordings. The

data is also continuous in the short-term and full recordings include the time before and after
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seizures, allowing this study to better simulate the data that would be obtained in a real-world

scenario. The TUSZ also uses scalp EEG data rather than iEEG; this source is useful because

when this is applied in the real world, it is ideal to require the least invasive procedure possible.

One weakness of this database is that only the seizures are manually annotated, not the preictal

stages; however, since this study uses an automated classification of “preictal” data within a

certain range before a seizure, that is not a problem. Another weakness is the general

inhomogeneity of the data, given that recordings take place over multiple years with different

montages, numbers of channels, and recording lengths. However, this database is still usable

because there is enough data per patient to train and test the model on each patient individually,

there is less variance among each patient’s data.6,10
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2.2. Preprocessing

Figure 3: Fourier transforms of a patient’s EEG signal before filtering (left) and after filtering

(right).

Data from the TUSZ database was resampled at 200 Hz so that all recordings would have

a consistent sampling rate. A bandpass filter was applied to eliminate all signals outside the

range of 0.5-100 Hz, since frequencies created by epileptic brain activity generally lie within this

range and any frequencies outside this range were likely due to noise. Additionally, because the

TUSZ contains line noise at 60 Hz, a notch filter was applied to remove the signal at 60 Hz.24 As

the above figure shows, the unfiltered signal includes a massive spike at 60 Hz on the Fourier

13



transform, which is removed by the filtering, and the signal itself is smaller and amplitude and

appears to be less noisy when the filtering is applied.

2.3. Division into Epochs

Figure 4: An example showing epoch division on an EEG signal. The signal is colored orange

during the seizure and blue for background. For this example, there is no overlap, and the

prediction target is 10 seconds.

For this experiment, single-channel analysis was performed. First, an “events” array was

created for each channel, with a binary label at each time point of “0” for background and “1” for
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seizures of any kind. Next, both the EEG file and the events array were cut into five-second

epochs. The epoch division can be applied with an “overlap” to increase the number of epochs

using a sliding window. Epochs are classified as “ictal” if at least 50% of the epoch takes place

during a seizure, as determined by the events array. All epochs within a certain time range,

known as a “prediction target”, before a seizure starts are labeled as preictal. A third

“background” label is applied for all epochs that are neither ictal or preictal, including the

interictal signal. The epoch length, prediction target and overlap are all modifiable and multiple

values were tested over the course of this experiment. For the majority of the tests described in

this thesis, the settings were an epoch length of 5 seconds, overlap of 3 seconds, and a prediction

target of 30 seconds. In order to perform seizure detection without including prediction, the

prediction target was set to 0 seconds so that the preictal label would be removed. The above

figure demonstrates the process. The figure below shows examples of 5-second epochs for all 3

class labels.
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Figure 5: 5-second epochs for each of the three classes.

2.4. Data Balancing

In the original dataset, the number of epochs in each class are very unbalanced. For most

files, the ratio of ictal to preictal epochs ranges from about 2:1 to 3:1, while the ratio of

background to preictal is much higher, reaching values around 100:1. While it is possible to

simply use the entire dataset unbalanced, and simply have the analysis models weighted to match

the class imbalance, this approach is impractical for 2 reasons: first, even with weighting, the

model is susceptible to overfitting to the training data and appearing to be highly accurate by

simply choosing the most common class (in this case “background”) for the majority of epochs.

Additionally, the more data is analyzed, the longer it takes to extract features and train the model,

and it is simply not practical to do this for a large number of patients. In order to balance the
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amount of data in each class, for each recording in a given dataset, the number of epochs for each

of the 3 classes is counted, and the lowest of these 3 values, usually for preictal epochs, is taken

and set as the sample size. Next, random samples of the same sample size are taken from both

other classes so that all 3 classes have equal value.

2.5. Patient Selection

A filtering process was applied to select the patients with the most suitable data for

analysis. First, a spreadsheet was generated with information for each EDF file, including the

patient identifier, the filename, the number of epochs of each label and total, the percentage of

epochs of each label, the number of epochs after balancing. Next, certain filters were applied:

each recording had to have at least 1% of its epochs come from each class, and they had to have

at least 5000 total epochs before balancing. Finally, the total number of files for each patient after

filtering were counted up, and the 10 patients with the highest number of recording files were

chosen for analysis. For these 10 patients, the number of files ranged from 6 to 33. For

simplicity, the 10 patients are renamed Patient 1-Patient 10, with patient 1 having the most files

and Patient 10 having the least.

Table 2: patient IDs in the dataset and their labels in this thesis.

Patient 8-Digit ID

Patient 1 aaaaardk

Patient 2 aaaaapks

Patient 3 aaaaajqo

Patient 4 aaaaakfo
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Patient 5 aaaaates

Patient 6 aaaaanme

Patient 7 aaaaajns

Patient 8 aaaaakkm

Patient 9 aaaaalfs

Patient 10 aaaaammu

2.6. Feature Extraction

A number of different features were extracted from each epoch for use in the SVM:

statistical features, Hjorth parameters, band power, EMD features, CWT features, and PCA.

2.6.1. Statistical Features

The features included the first 4 statistical moments of the signal: mean, variance,

skewness, and kurtosis, according to equations 1-4. The mean represents the center of the

distribution. The variance is a measure of the spread. The skewness measures the asymmetry of

the distribution. The kurtosis measures the distribution’s “tailedness”, or the frequency of

outliers.

2.6.2. Hjorth Parameters

The next features extracted are the Hjorth parameters, statistical properties used in signal

processing. The first Hjorth parameter is the mobility, which represents the proportion of

standard deviation of the power spectrum and is mathematically defined as the square root of the
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variance of the time derivative of the signal divided by the variance of the signal. The other

Hjorth parameter is the complexity, which computes the similarity of the signal with a sine wave,

and is calculated by dividing the mobility of the signal’s derivative by the mobility of the

signal.25

2.6.3. Average band power

The next feature included was the average band power of each “band”, or range of signal

frequencies, measuring how much of the signal is contained within that band. In order to

calculate the band power, first, the Power Spectral Density (PSD), or the proportion of power

over frequency, is calculated using the Welch method; next, the PSD is integrated over the

frequency range of each band to get the power in that band. The average band power was

calculated for 5 bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and

gamma (30-120 Hz).

2.6.4. Empirical Mode Decomposition

EMD is a process that breaks a signal down into several components known as intrinsic

mode functions (IMFs). In each step of EMD, the signal is treated as a fast oscillation

superimposed on a slower oscillation. At each step, the fast oscillation is extracted as an IMF,

and the remainder of the signal is once again split into a fast and slow oscillation. In this model,

the first 5 IMFs were extracted, and the statistical features, Hjorth parameters, and average band

powers were all calculated for each of the 5 IMFs.26
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2.6.5. Continuous Wavelet Transform

In a CWT, the signal is convoluted with a function known as a wavelet function in order

to measure their similarity. Unlike a Fourier transform, a wavelet transform is still a function of

time, so the transformed signal still includes information about the time-based components of the

original signal. The “scale” of the wavelet function stretches or shrinks the signal, and each scale

provides information about different frequencies in the original signal. In this model, 10 scales of

the “morlet” function are applied, corresponding to frequencies between 1 and 100 Hz, and the

statistical features, Hjorth parameters and band powers are extracted from each scale.27

2.6.6. Principal Component Analysis

PCA is a dimensionality reduction technique frequently used to simplify the information

in datasets with high numbers of dimensions. In PCA, the direction of the highest variance in the

original dataset is identified, and a new “axis” is set in this direction, so that the first Principal

Component can be calculated as the values of the data on this new axis. A second orthogonal

axis is chosen in the direction that will explain the second-highest amount of variance, and a

second principal component is calculated in this axis; this process can be repeated for any

arbitrary number of principal components up until the number of dimensions in the original

dataset. In this model, the values of 10 principal components are extracted and added to the set of

features.28

In total, 186 features were extracted for each epoch.
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2.7. Cross-validation

In cross-validation, a dataset is split into training and testing values, so the model can be

fit on the training set and evaluated on the test set. Cross-validation was performed using a

Group K-Fold split. In each fold, data was taken from all the EDF files for one patient, and the

data was grouped based on which specific EDF file it came from. A 5-fold split was performed

with each split being roughly equal in size, meaning that the testing group always contained

about 20% of the data.

In order to tune the hyperparameters of the model, nested cross-validation was

performed. Nested cross-validation is a process in which after the initial split into training and

testing, a “validation” set is withheld from the training set. All possible combinations of the

hyperparameters, or manually tuned parameters, of the models are tested on the validation split

for each fold in a grid-search process, and the best-performing set of hyperparameters is found.

These hyperparameters are used with the testing set and the performance of the model is

evaluated. In this model, the “outer” split into training and testing was done with a 5-fold split,

while the “inner” split was 4-fold; both were done using a Group K-Fold split.

2.8. Models

The prediction model was done using a “pipeline” with two steps. First, the “Standard

Scaler” function in sklearn was used to normalize the features into z-scores. Next, a machine

learning model was fit to the training data, and the accuracy metrics were calculated on the

testing data. Four models were tested: SVM, Random Forest, Logistic Regression, and MLP.
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2.8.1. Support Vector Machine

In an SVM, the model finds hyperplanes in n-dimensional space that separate the features

by labels. Since the features are frequently not linearly separable, it is often necessary to

transform the features into a higher-dimensional space using some function. In order to reduce

the computational complexity of this operation, the “kernel trick” is used, in which dot products

are replaced with less computationally expensive “kernel functions”.29

In this experiment, an SVM was created with a radial basis function (RBF) kernel. The

two hyperparameters tuned are C, which is inversely proportional to regularization, with possible

values of 10, 100, and 1000, and gamma, the kernel coefficient, with possible values of 0.01,

0.001, and 0.0001.

2.8.2. Random Forest

In a random forest classifier, numerous “decision trees” are generated, which make

several decisions at each feature to lead to the final classification. A process known as “bagging”

picks a random subset of data for each tree to analyze, and the final decision is made based on

the highest consensus of decision trees.30

Two hyperparameters were tuned for random forest: the number of estimators, which

could be 10, 100, or 1000, and the formula for max features at a single split in a tree, which

could be either the square root or log-2 of the total number of features.
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2.8.3. Logistic Regression

Logistic regression is a type of regression model that uses a logistic function, which

behaves similarly to an exponential function at low values and to a logarithmic function at high

values. Logistic regression can be used as a prediction model by using the probability of an

outcome, with values between 0 and 1, as the dependent variable. In the data itself, all values

will be set to 0 for a negative outcome or 1 for a positive outcome, and the logistic curve is fit to

the resulting data; using this curve, probability predictions can be made for any given set of

features, and they can be converted to a prediction. For a multiclass case such as this one, a

process known as multinomial logistic regression is used.31

In this study, the logistic solver is applied with 1000 max iterations. The penalty term is

“elastic net”, which adds both the L1 and L2 penalties, and the SAGA solver is used. Two

hyperparameters were tuned: C, a variable inversely proportional to the regularization strength,

which could be 1, 0.1, 0.01 or 0.001; and the L1 ratio, which sets the proportion of the penalty

determined by the L1 penalty rather than the L2, which could be 0, 0.25, 0.5, 0.75 or 1.

2.8.4. Multilayer Perceptron

A multilayer perceptron (MLP) is a type of deep learning (DL) algorithm, also known as

a neural network. In a DL algorithm, individual nodes called “neurons” take inputs with weights

and subject them to some kind of function to get outputs. In an MLP, in-between the input layer

which takes the features and the output layer with the classification, there are multiple hidden

layers each with a certain number of neurons.32
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An MLP was used here with 1000 max iterations, with two hyperparameters to tune: the

number and size of hidden layers, which could range from 1-2 layers with 50 or 100 neurons,

and alpha, which represents the strength of the L2 regularization term and had 4 possible values

between -1 and 1 on a logarithmic scale.

2.9. Evaluation Metrics

Several evaluation metrics were calculated for each patient: accuracy, weighted precision,

weighted recall, weighted F1 score, and Receiver Operating Characteristic (ROC) Area Under

the Curve (AUC). In addition, the F1 scores were calculated for each individual class. The

formulas are as follows:

[Equation 1]𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

[Equation 2]𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

[Equation 3]𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

[Equation 4]𝐹1 = 𝑇𝑃
𝑇𝑃+ 1

2 (𝐹𝑃+𝐹𝑁)

The ROC curve is a curve of the True Positive Rate, AKA recall, over the False Positive

Rate, which is equal to . The statistic here is the AUC for this curve. The ROC AUC is𝐹𝑃
𝑇𝑁+𝐹𝑃

calculated using the “one-vs-one” method, in which every pairwise combination of classes is

used for “positive” and “negative”.
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All metrics were calculated using a weighted average across all 3 classes, except for ROC

AUC. In addition, the F1 scores for each individual class were calculated as well.

2.10. Prediction Target Determination

In order to determine the optimal prediction target, several prediction target values

ranging from 5 seconds to 90 seconds were tested on one patient. The testing and training

accuracies, as well as the F1 scores for each class, were recorded and plotted to compare results.

2.11. Accuracy Over Time

For one patient, after the model was trained, it was used to predict the results on all the

files in one fold, including the data that had been removed during class-balancing. The data was

sorted according to the time relative to seizure onset, and the average accuracy was determined

for each 5-second interval. This process was repeated for prediction targets of 15, 30, and 60

seconds.
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3. Results

Table 3: the means and standard deviations of all accuracy, precision, recall, F1 score, and ROC

AUC across all 10-patients, for each of the 4 models used, with a prediction target of 30 seconds.

Method Accuracy Precision Recall F1 Score ROC AUC

SVM

Test 0.61 ±0.10 0.61 ±0.10 0.61 ±0.10 0.60 ±0.10 0.78 ±0.08

Train 0.73 ±0.09 0.73 ±0.09 0.73 ±0.09 0.73 ±0.09 0.88 ±0.06

Random
Forest

Test 0.64 ±0.09 0.65 ±0.09 0.64 ±0.09 0.63 ±0.09 0.82 ±0.07

Train 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Logistic
Regression

Test 0.58 ±0.09 0.58 ±0.10 0.58 ±0.09 0.56 ±0.10 0.77 ±0.07

Train 0.64 ±0.08 0.63 ±0.10 0.64 ±0.08 0.63 ±0.09 0.81 ±0.07

MLP

Test 0.60 ±0.10 0.61 ±0.10 0.60 ±0.10 0.59 ±0.10 0.78 ±0.08

Train 0.72 ±0.09 0.72 ±0.09 0.72 ±0.09 0.72 ±0.10 0.88 ±0.07
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Table 4: means and standard deviations of class-specific F1 scores with a prediction target of 30

seconds.

Train Test

Method Ictal Preictal Background Ictal Preictal Background

SVM 0.72 ±0.11 0.49 ±0.13 0.58 ±0.10 0.80 ±0.10 0.67 ±0.10 0.71 ±0.09

Random
Forest 0.76 ±0.11 0.51 ±0.12 0.62 ±0.09 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Logistic
Regression 0.70 ±0.09 0.48 ±0.10 0.51 ±0.15 0.74 ±0.08 0.58 ±0.09 0.62 ±0.14

MLP 0.71 ±0.12 0.49 ±0.13 0.57 ±0.10 0.79 ±0.10 0.67 ±0.10 0.70 ±0.09
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Figure 6: Bar chart of average training and testing metrics across all patients for the four

methods, specifically accuracy, precision, recall, f1 score, ROC AUC, and class-specific f1

scores. The length of each error bar is the standard deviation of the 10-patient averages. Red bars

are test values, green bars are training values.

The average accuracy for all patients for each method is displayed above for a prediction

target of 30 seconds, with error bars equal to one standard deviation. The test accuracies are

approximately 0.61, 0.64, 0.58 and 0.61 for SVM, random forest, logistic regression and

multilayer perceptron, respectively. Similar values are observed for precision, recall and F1

score. The ROC AUC score is a little higher, with values of 0.78, 0.82, 0.77 and 0.78,
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respectively. Random forest has the highest scores on all metrics, although all 4 methods are

within one standard deviation of each other. For the class-specific scores, with random forest,

they are 0.74 for ictal, 0.53 for preictal, and 0.63 for ictal.

Figure 7: Average training and testing accuracy for Patient 1 for each method. The length of

each error bar is the standard deviation of the 10-patient averages.

In Figure 7 above, the means and standard deviations of accuracy are included for Patient

1, on whom the model performed the best. Random forest once again proved to perform the best,

and since the standard deviations are smaller, the difference in performance is more significant.

A similar pattern was observed on all patients.
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Table 5: means and standard deviations of performance metrics for a prediction target of 60

seconds.

Method Accuracy Precision Recall F1 Score ROC AUC

SVM

Test 0.61 ±0.09 0.61 ±0.09 0.61 ±0.09 0.60 ±0.10 0.79 ±0.08

Train 0.73 ±0.09 0.73 ±0.09 0.73 ±0.09 0.73 ±0.09 0.88 ±0.06

Random
Forest

Test 0.65 ±0.08 0.66 ±0.08 0.65 ±0.08 0.64 ±0.09 0.83 ±0.06

Train 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Logistic
Regression

Test 0.59 ±0.08 0.59 ±0.08 0.59 ±0.08 0.58 ±0.09 0.77 ±0.07

Train 0.65 ±0.08 0.64 ±0.08 0.65 ±0.08 0.64 ±0.08 0.82 ±0.06

MLP

Test 0.61 ±0.10 0.62 ±0.10 0.61 ±0.10 0.60 ±0.10 0.79 ±0.08

Train 0.72 ±0.09 0.72 ±0.09 0.72 ±0.09 0.71 ±0.09 0.87 ±0.06
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Table 6: means and standard deviations of class-specific F1 scores for a prediction target of 60

seconds.

Train Test

Method Ictal Preictal Background Ictal Preictal Background

SVM 0.73 ±0.12 0.51 ±0.11 0.57 ±0.10 0.81 ±0.10 0.68 ±0.10 0.69 ±0.10

Random
Forest 0.78 ±0.11 0.54 ±0.11 0.62 ±0.10 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Logistic
Regression 0.71 ±0.09 0.49 ±0.10 0.53 ±0.10 0.75 ±0.09 0.58 ±0.09 0.60 ±0.09

MLP 0.72 ±0.12 0.51 ±0.12 0.57 ±0.10 0.80 ±0.09 0.66 ±0.10 0.68 ±0.09
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Figure 8: Performance metrics with a 60-second prediction target. The length of each error bar is

the standard deviation of the 10-patient averages. Red bars are test values, green bars are training

values.

When the prediction target is set to 60 seconds, the results are very similar to the

30-second case, but all the metrics are slightly higher. The same basic patterns are observed as

well: random forest performs the best on all metrics, while logistic regression performs the

worst.
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Table 7: means and standard deviations of performance metrics for 2-class detection.

Method Accuracy Precision Recall F1 Score ROC AUC

SVM

Test 0.80 ±0.09 0.81 ±0.08 0.80 ±0.09 0.80 ±0.09 0.87 ±0.08

Train 0.89 ±0.06 0.89 ±0.06 0.89 ±0.06 0.89 ±0.06 0.94 ±0.04

Random
Forest

Test 0.85 ±0.07 0.86 ±0.06 0.85 ±0.07 0.84 ±0.07 0.92 ±0.05

Train 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Logistic
Regression

Test 0.78 ±0.08 0.79 ±0.07 0.78 ±0.08 0.77 ±0.08 0.85 ±0.08

Train 0.82 ±0.06 0.82 ±0.06 0.82 ±0.06 0.82 ±0.06 0.89 ±0.05

MLP

Test 0.80 ±0.09 0.81 ±0.09 0.80 ±0.09 0.80 ±0.09 0.87 ±0.09

Train 0.88 ±0.06 0.89 ±0.06 0.88 ±0.06 0.88 ±0.06 0.95 ±0.04
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Table 8: means and standard deviations of class-specific F1 scores for 2-class detection.

Train Test

Method Ictal Background Ictal Background

SVM 0.80 ±0.09 0.80 ±0.09 0.89 ±0.06 0.89 ±0.06

Random Forest 0.84 ±0.08 0.85 ±0.07 1.00 ±0.00 1.00 ±0.00

Logistic
Regression 0.78 ±0.07 0.77 ±0.08 0.82 ±0.06 0.82 ±0.06

MLP 0.79 ±0.10 0.80 ±0.09 0.89 ±0.06 0.88 ±0.06

34



Figure 9: Average performance metrics for 2-class detection. The length of each error bar is the

standard deviation of the 10-patient averages. Red bars are test values, green bars are training

values.

The above figure shows the results for two-class detection, with no preictal phase

included. The model performs much better in this case than for prediction and detection

combined. All the accuracy metrics are between 0.75 and 0.85, including the class-specific

metrics, except for the ROC AUC, which is in the 0.85-0.95 range.
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4. Discussion

4.1. Model Performance

Out of the 4 models tested, random forest had the best performance, with an average

accuracy of 0.64, precision of 0.65, recall of 0.65, F1 score of 0.63, ROC AUC of 0.81, and

class-specific F1 scores of 0.75 for ictal, 0.53 for preictal, and 0.63 for background. All of these

measures were at least a few percentage points higher than the same measures for SVM, logistic,

and MLP. Similar patterns were observed on all individual patients. While random forest

performed the best and logistic regression performed the worst, the differences among the 4

methods were relatively small, meaning that any of the 4 methods can be used with similar

effectiveness.

4.2. Detection vs. Prediction

This feature extraction algorithm performs exceedingly well at detecting the ictal state,

making it ideal for detecting seizures. However, while the ictal state is easily distinguishable, it is

more difficult to distinguish between the preictal and background states. In Figure 5, this contrast

is clearly illustrated: ictal epochs clearly have much more activity, with higher frequencies and

amplitude, while the background and preictal epochs are much more similar to each other.

Displayed below is a confusion matrix of the accuracy for Patient 1. Ictal epochs are

almost always labeled correctly, with very few ictal epochs being labeled as preictal or

background. Meanwhile, while preictal and background epochs are usually labeled correctly,

there is a higher number of miscategorizations between the two classes, and very few being

categorized as ictal from either class. For preictal epochs, the proportion of correct classifications
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is 61%, while only 33% are misclassified as background, meaning that the classifications are not

completely random and they are accurate more often than not. For background epochs, the

difference is even more pronounced, with 73% of epochs being classified correctly and only 20%

being misclassified as preictal. This is most likely because epochs that are farther away from any

seizure are more easily classified as background, whereas those closer to the start of the

prediction target are harder to differentiate. The precision of each class is 87% for ictal, 72% for

preictal, and 65% for background, which indicates that positive results can be trusted for the

most part.

Table 9: a confusion matrix of predictions for patient 1.

Ground Truth (rows)
Predictions (columns)

Ictal Preictal Background

Ictal 4159 185 324

Preictal 288 2847 1533

Background 353 927 3388

4.3. Prediction Target

Since our dataset does not have the preictal phase annotated, one of the biggest

challenges was choosing the best “prediction target” to define the preictal phase. This approach

is used very widely in the field, but there are many considerations that have to be taken into

account to choose effectively. If a prediction target is too small, it may not encompass the full

length of the preictal phase, and of course, the less time the patient is informed before the seizure

begins, the less useful it is to alert them. However, if a prediction target is too long, it is more

likely to be correct due to random chance rather than actually picking up a preictal signal.2 In
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past studies, increased prediction time has sometimes led to increased sensitivity, but also

increased false alarm rate, illustrating the pitfalls of increasing the prediction target too far.15

Prediction time has varied widely in existing studies: Bandarabadi et al only uses an 8-second

prediction time, shorter than any we used, while other studies such as Usman et al. use 20-30

minutes, and Yang et al uses prediction time above an hour.4 Truong et al uses a 30 minute

“Seizure Occurrence Period” (SOP), but also factors in a 5-minute “Seizure Prediction Horizon”

before the SOP starts, during which time the patient is alerted.21

Figure 10: Training and testing accuracies, as well as class-specific F1 scores, at different

prediction targets between 5 and 90 seconds.

Figure 10 depicts the accuracy of one patient at different prediction targets. There is very

little variation in the accuracy, at any value from 5 seconds to 90 seconds. Based on this test, 30
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seconds appeared to be the best option. However, the averages across all 10 patients were

slightly higher for the 60-second case than the 30-second case; for random forest, the 30-second

case had an accuracy of 0.64, and class scores of 0.75, 0.51, and 0.62 for ictal, preictal and

background, respectively; the 60-second case, meanwhile, had an accuracy of 0.65, and class

scores of 0.78, 0.54, and 0.62.

Figure 11: Average accuracy over time, relative to the onset of a seizure. Accuracy was averaged

over a 30-second interval, with a 5-second sliding window. The horizontal axis displays the

midpoint of each 30-second window.

In order to determine how the accuracy of the model changes over time, the time before a

seizure was recorded for each epoch, and the total accuracy was taken at each 10-second interval

of time to seizure. The results are displayed in Figure 11 above, with prediction targets of 15
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seconds, 30 seconds, and 60 seconds. Interestingly, lower prediction targets seem to perform

better at timepoints farther away from the seizure onset, while the time closest to the seizure

onset could be predicted most accurately with a higher prediction target.

4.4. Variation By Patient

Figure 12: Scatterplot of weighted F1 scores and preictal F1 scores for each patient. Each

symbol represents a different model: dots for SVM, triangles for random forest, Xs for logistic

regression, and squares for MLP.
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All metrics, on all models, showed very high variance based on what patient they were

used on. The above scatterplot of accuracy and ictal F1 score demonstrates that both metrics vary

widely from patient to patient. While some patients, like Patient 1 and Patient 2, had very strong

performance on all metrics, others, like Patient 5 and Patient 8, performed very poorly.

Figure 13: Scatterplot of random forest accuracy and number of EDF files for each patient, with

a linear regression trendline.

The above figure plots accuracy against the number of EDF files for each patient. The

coefficient of determination is 0.463, and the p-value, relative to a null hypothesis of no
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correlation, is 0.03. This indicates that there is a correlation, although it still clearly does not

explain everything, since Patient 1 and Patient 3 have the same number of files and yet Patient 2

performs much better. Since the number of files does not directly correspond to the amount of

data, it’s likely that the imbalance sizes of each file are causing part of the problem. In this case,

one possible solution is to split large files into multiple small files preferably splitting around

seizure events so each file still includes all 3 classes. Since the files, as they stand right now,

include multiple “tokens” taken from a single session, this would not meaningfully change the

data collection in any way.

One possible explanation could be that certain patients have more noise or artifacts in the

data. An examination of some of the recordings for patient Patient 5, one of the

worst-performing patients, shows some extreme spikes that are not likely to occur naturally.

Figure 14: EEG recordings for Patient 5 (left) and Patient 1 (right).

However, it is unclear if this is the cause of the problem, as a recording from Patient 1,

the best-performing patient, has a similar spike, albeit with lower magnitude.Though it is not

confirmed that it is the cause of the issue, there is a high chance that these spikes are the result of

an artifact and not a natural part of the signal. Therefore, further methods to properly filter the

42



signal should be investigated in order to result in the algorithm performing better and more

consistently across all patients.

4.5. Limitations and Future Improvements

One major limitation of this model is the high runtime for each patient. One of the major

reasons for the high runtime is the feature extraction phase, for which jobs cannot be run in

parallel on separate CPU cores. Future directions could explore reworking the code to allow for

running feature extraction jobs in parallel. Additionally, the model could be run with different

combinations of features to determine which features are most necessary for the highest

accuracy, and features that have little impact could be removed.

Another possible feature that could be implemented is Discrete Wavelet Transform

(DWT). DWT is similar to CWT except that the scaling is done at a coarser set of values,

compared to the finer scaling of CWT.33 DWT has been used in feature extraction in the past in

studies such as Bekalovna et al, which combines DWT with EMD, and Alikovic et al, which

uses DWT in combination with EMD and PCA with multiple ML models and shows very high

performance in distinguishing preictal, ictal and interictal signals.34,35 Liu et al used DWT in a

seizure detection model with SVM and achieved 94% specificity and 95% sensitivity.36 Based on

the high performance shown in these studies, it is possible that including DWT in this feature set

could improve the model’s performance.

Another area for improvement is testing different models with the same features. In

particular, deep learning, also known as neural networks, has been shown to have high
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performance in other studies, so it is likely that a neural network with greater complexity than

the MLP could be constructed to perform well on this set of features.

It is also possible that this model could be improved by using an unsupervised learning

model, as this would eliminate the need for labeled data. While this area of study is still in its

infancy, a few studies have already been conducted. Several studies have used methods like

K-means clustering and Gaussian mixture model on extracted features, and one study uses VAE

for a deep learning method with no feature extraction.33 Unsupervised seizure prediction has

been studied as well, with one method using K-means clustering for various distance metrics and

achieving accuracy above 90%.32

4.5.1. Applications

The algorithm in its current form has limited use in real cases. The most effective use

would be for automating annotation of seizure recordings by allowing a physician to easily detect

the seizures in an EEG recording. This application has value, as manually annotating large

amounts of EEG data takes a very long time and it is useful to speed it up with automation.

However, the most useful application of an algorithm like this is to predict a seizure before it

starts. In order to do so, the algorithm would need to be applicable in real-time. Furthermore, an

alarm system would be needed to alert the patient when the preictal phase has begun, so that they

are not caught off-guard by the actual start of the seizure. In order to prevent false reports, the

best way to do this would most likely be to only send an alert when multiple preictal epochs are

detected in a row. Of course, the tradeoff here is that the more time is required to make a correct

prediction, the less useful that prediction is to the patient. In an ideal situation, this would be

doable on a portable device so that a patient could go about their life and get a warning before a
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seizure occurs; the biggest challenge would be connecting this device to a system that can run the

algorithm at a reasonable running time. For future developments, designing the hardware

component for this system would be the biggest hurdle to apply the system.

4.5.2. Patient-Independent Model

One of the biggest weaknesses in a system like this is that a significant amount of training

data is required from a patient in order to train the algorithm. This means that the algorithm

cannot be used unless the patient has already spent significant time undergoing EEG recording,

and they would have to experience seizures during the recording period; in addition, the original

recordings would have to be manually annotated. While one solution to this problem, as

discussed above, could be using unsupervised learning to avoid the need for manual annotation,

this would not alleviate the need for recording the patient before use. In order to solve this

problem, it would be ideal if an algorithm could be developed that can generalize data across

patients, rather than needing to be trained on each patient individually. Some studies have

already begun on patient-independent seizure detection: a 2021 study successfully performed

patient-independent seizure detection with deep learning with two models 88% and 91%

accuracy.37 This is an emerging innovation in the field of seizure prediction, and further study

could be a crucial advancement. While early tests on a patient-generalized application of this

model were not successful, it is possible that a patient-generalized model could be developed by

building off of this model and feature set, and doing so would open up many new possibilities for

applying this model in real life.
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5. Conclusion

This study demonstrated a model that can perform both seizure detection and prediction,

by detecting the preictal phase. The model performed very well on detecting seizures; using

random forest for detection, it could detect seizures at 85% accuracy averaged across all patients,

and 90% on the best-performing patient. When used for both prediction and detection together,

random forest achieved 64% accuracy average and 79% accuracy for the best patient; for

detecting the preictal phase specifically, the performance averaged at 51% and peaked at 70%,

based on F1 scores. While these accuracy values clearly could be improved, they show that this

feature set includes some characteristics that can be used to distinguish the preictal phase, and

with refinement it could be used for seizure prediction more effectively. For both detection and

prediction, there are many ways that the model could be improved for future applications, but the

current model provides a solid baseline from which to work.

46



Bibliography

[1] Action potentials and synapses. Queensland Brain Institute - University of Queensland.

(2023, April 26).

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses

[2] Kuhlmann, L., Lehnertz, K., Richardson, M.P., Schelter, B., & Zaveri, H.P. (2018). Seizure

prediction — ready for a new era. Nature Reviews Neurology, 14, 618–630 (2018).

https://doi.org/10.1038/s41582-018-0055-2

[3] World Health Organization. (2024, February 7). Epilepsy. World Health Organization.

https://www.who.int/news-room/fact-sheets/detail/epilepsy

[4] Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kwan, P., Kuhlmann, L., O’Brien, T.,

& Razi, A. (2021). Machine learning for predicting epileptic seizures using EEG signals: A

Review. IEEE Reviews in Biomedical Engineering, 14, 139–155.

https://doi.org/10.1109/rbme.2020.3008792

[5] Siddiqui, M. K., Morales-Menendez, R., Huang, X., & Hussain, N. (2020). A review of

epileptic seizure detection using machine learning classifiers. Brain informatics, 7(1), 5.

https://doi.org/10.1186/s40708-020-00105-1

[6] Shah, V., von Weltin, E., Lopez, S., McHugh, J. R., Veloso, L., Golmohammadi, M., Obeid,

I., & Picone, J. (2018). The Temple University Hospital Seizure Detection Corpus. Frontiers in

neuroinformatics, 12, 83. https://doi.org/10.3389/fninf.2018.00083

47

https://doi.org/10.1186/s40708-020-00105-1
https://doi.org/10.3389/fninf.2018.00083


[7] Ihle, M., Feldwisch-Drentrup, H., Teixeira, C. A., Witon, A., Schelter, B., Timmer, J., &

Schulze-Bonhage, A. (2012). EPILEPSIAE - a European epilepsy database. Computer methods

and programs in biomedicine, 106(3), 127–138. https://doi.org/10.1016/j.cmpb.2010.08.011

[8] Kini, L. G., Davis, K. A., & Wagenaar, J. B. (2016). Data integration: Combined imaging and

electrophysiology data in the cloud. NeuroImage, 124(Pt B), 1175–1181.

https://doi.org/10.1016/j.neuroimage.2015.05.075

[9] Shoeb, A. & Guttag, J. (2010). Application of Machine Learning To Epileptic Seizure

Detection. ICML 2010 - Proceedings, 27th International Conference on Machine Learning.

975-982.

[10] Wong, S., Simmons, A., Rivera-Villicana, J., Barnett, S., Sivathamboo, S., Perucca, P., Ge,

Z., Kwan, P., Kuhlmann, L., Vasa, R., Mouzakis, K., & O'Brien, T. J. (2023). EEG datasets for

seizure detection and prediction- A review. Epilepsia open, 8(2), 252–267.

https://doi.org/10.1002/epi4.12704

[11] Detti, P., Vatti, G., Zabalo Manrique de Lara, G. (2020). EEG Synchronization Analysis for

Seizure Prediction: A Study on Data of Noninvasive Recordings. Processes 2020, 8(7), 846;

https://doi.org/10.3390/pr8070846

[12] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001).

Indications of nonlinear deterministic and finite-dimensional structures in time series of brain

electrical activity: dependence on recording region and brain state. Physical review. E, Statistical,

nonlinear, and soft matter physics, 64(6 Pt 1), 061907.

https://doi.org/10.1103/PhysRevE.64.061907

48

https://doi.org/10.1016/j.cmpb.2010.08.011
https://doi.org/10.1016/j.neuroimage.2015.05.075
https://doi.org/10.1002/epi4.12704
https://doi.org/10.3390/pr8070846
https://doi.org/10.1103/PhysRevE.64.061907


[13] Gupta, A., Singh, P., & Karlekar, M. (2018). A Novel Signal Modeling Approach for

Classification of Seizure and Seizure-Free EEG Signals. IEEE transactions on neural systems

and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology

Society, 26(5), 925–935. https://doi.org/10.1109/TNSRE.2018.2818123

[14] Baldassano, S. N., Brinkmann, B. H., Ung, H., Blevins, T., Conrad, E. C., Leyde, K., Cook,

M. J., Khambhati, A. N., Wagenaar, J. B., Worrell, G. A., & Litt, B. (2017). Crowdsourcing

seizure detection: algorithm development and validation on human implanted device recordings.

Brain : a journal of neurology, 140(6), 1680–1691. https://doi.org/10.1093/brain/awx098

[15] Usman, S. M., Khalid, S., Akhtar, R., Bortolotto, Z., Bashir, Z., & Qiu, H. (2019). Using

scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available

methodologies. Seizure, 71, 258–269. https://doi.org/10.1016/j.seizure.2019.08.006

[16] Subasi, A., Kevric, J. & Abdullah Canbaz, M. (2019). Epileptic seizure detection using

hybrid machine learning methods. Neural Computing & Applications 31, 317–325

https://doi.org/10.1007/s00521-017-3003-y

[17] O.K., F., & R., R. (2019). Time-domain exponential energy for epileptic EEG Signal

Classification. Neuroscience Letters, 694, 1–8. https://doi.org/10.1016/j.neulet.2018.10.062

[18] Wang, X., Gong, G., Li, N., & Qiu, S. (2019). Detection Analysis of Epileptic EEG Using a

Novel Random Forest Model Combined With Grid Search Optimization. Frontiers in human

neuroscience, 13, 52. https://doi.org/10.3389/fnhum.2019.00052

49

https://doi.org/10.1109/TNSRE.2018.2818123
https://doi.org/10.1016/j.seizure.2019.08.006
https://doi.org/10.1007/s00521-017-3003-y
https://doi.org/10.3389/fnhum.2019.00052


[19] Tzimourta, K.D., Tzallas, A.T., Giannakeas, N., Astrakas, L.G., Tsalikakas, D.G., Angelidis,

P., & Tsipouras, M.G. (2019) A robust methodology for classification of epileptic seizures in

EEG signals. Health and Technology, 9, 135–142. https://doi.org/10.1007/s12553-018-0265-z

[20] Seng, C. H., Demirli, R., Khuon, L., & Bolger, D. (2012). Seizure detection in EEG signals

using support vector machines. 2012 38th Annual Northeast Bioengineering Conference

(NEBEC). https://doi.org/10.1109/nebc.2012.6207048

[21] Truong, N.D., Ngueyn, A.D., Kuhlmen, L., Bonyadi, M.R., Yang, J., Ippolito, S., &

Kavehei, O. (2018). Convolutional neural networks for seizure prediction using intracranial and

scalp electroencephalogram. Neural Networks, 105, pp. 104-111.

https://doi.org/10.1016/j.neunet.2018.04.018

[22] Chakrabarti, S., Swetapadma, A., Pattnaik, P. K., & Samajdar, T. (2017). Pediatric seizure

prediction from EEG signals based on unsupervised learning techniques using various distance

measures. 2017 1st International Conference on Electronics, Materials Engineering and

Nano-Technology (IEMENTech). https://doi.org/10.1109/iementech.2017.8076983

[23] Yıldız, İ., Garner, R., Lai, M., & Duncan, D. (2022). Unsupervised seizure identification on

EEG. Computer methods and programs in biomedicine, 215, 106604.

https://doi.org/10.1016/j.cmpb.2021.106604

[24] McCallan, N., Davidson, S., Ng, K.U., Biglarbeigi, P., Finlay, D., Lan, B.L., & McLaughlin,

J. (2023). Epileptic multi-seizure type classification using electroencephalogram signals from the

Temple University Hospital Seizure Corpus: A review. Expert Systems with Applications, 234,

121040. https://doi.org/10.1016/j.eswa.2023.121040

50

https://doi.org/10.1007/s12553-018-0265-z
https://doi.org/10.1016/j.neunet.2018.04.018
https://doi.org/10.1016/j.cmpb.2021.106604
https://doi.org/10.1016/j.eswa.2023.121040


[25] Hjorth, Bo; Elema-Schönander, AB (1970). EEG analysis based on time domain properties.

Electroencephalography and Clinical Neurophysiology. 29 (3). 306–310.

doi:10.1016/0013-4694(70)90143-4

[26] Wijayanto, I., Hartanto, R., Nugroho, H. A., & Winduratna, B. (2019) Seizure Type

Detection in Epileptic EEG Signal using Empirical Mode Decomposition and Support Vector

Machine. 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA),

314-319. doi.org/10.1109/ISITIA.2019.8937205.

[27] Continuous wavelet transform and scale-based analysis. MATLAB & simulink. (n.d.).

https://www.mathworks.com/help/wavelet/gs/continuous-wavelet-transform-and-scale-based-ana

lysis.html

[28] What is Principal Component Analysis (PCA)?. IBM. (2023, December 4).

https://www.ibm.com/topics/principal-component-analysis

[29] What are Support Vector Machines?. IBM. (2023, December 12).

https://www.ibm.com/topics/support-vector-machine

[30] What is Random Forest?. IBM. (2021, October 20).

https://www.ibm.com/topics/random-forest

[31] What is logistic regression?. IBM. (2021, August 16).

https://www.ibm.com/topics/logistic-regression

[32] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems, 2(4), 303–314.

51

http://doi.org/10.1109/ISITIA.2019.8937205


[33] Continuous and discrete wavelet transforms. MATLAB & simulink. (n.d.).

https://www.mathworks.com/help/wavelet/gs/continuous-and-discrete-wavelet-transforms.html

[34] Bekbalanova, M., Zhunis, A., & Duisebekov, Z. (2019). Epileptic seizure prediction in EEG

signals using EMD and DWT. 2019 15th International Conference on Electronics, Computer and

Computation (ICECCO). https://doi.org/10.1109/icecco48375.2019.9043270

[35] Alickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode

decomposition, discrete wavelet transform, and wavelet packed decomposition for automated

epileptic seizure detection and prediction. Biomedical Signal Processing and Control, 39,

94–102. https://doi.org/10.1016/j.bspc.2017.07.022

[36] Liu, Y., Zhou, W., Yuan, Q., & Chen, S. (2012). Automatic seizure detection using wavelet

transform and SVM in long-term intracranial EEG. IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 20(6), 749–755. https://doi.org/10.1109/tnsre.2012.2206054

[37] Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2021) Deep

Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals. IEEE

Sensors Journal, 21(7), 9377-9388. https://doi.org/10.1109/JSEN.2021.3057076

52

https://doi.org/10.1109/tnsre.2012.2206054
https://doi.org/10.1109/JSEN.2021.3057076



