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Abstract 
 

Inflammation is governed by the inflammasome:  a large multiprotein complex necessary 

to trigger an inflammatory response. The inflammasome adaptor ASC is responsible for 

mediating inflammasome formation. ASC exists as 4 isoforms: ASC, ASCb, ASCc, and 

ASCd. Of the four isoforms ASC and ASCb are capable of eliciting an inflammatory 

response, however ASC is able to produce a stronger response compared to ASCb. 

Structurally, ASC and ASCb are multidomain proteins containing a PYD and CARD 

(Death Domain proteins) necessary to participate in homotypic interactions and drive 

inflammasome formation. ASC contains a 23 amino acid linker separating the two domains 

while ASCb contains a significantly shorter linker, 4 amino acids. Self-association 

capabilities of ASC and ASCb as a result of linker length mediate inflammasome 

formation. To further study the effects of linker length, an engineered the isoform ASC3X 

with identical PYD and CARD connected by a 69-amino acid long linker (i.e., three-times 

longer than ASC’s linker) was used to test the influence of linker length on the self-

association capabilities of ASC3X. To understand the self-association capabilities of each 

isoform:  real-time NMR (RT-NMR) was used to determine differences in their self-

association ability. dynamic light scattering (DLS) and size-exclusion chromatography 

were performed to monitor their oligomer size distribution. Microstructures formed by 

each isoform were images using transmission electron microscopy (TEM). DLS data 

indicate ASC is able to form uniform structures in solution compared to ASCb and ASC3X. 

Interdomain dynamics of each isoforms reveal the effect of linker length on domain 

flexibilty. The shorter linker of ASCb restricts the PYD and CARD domain causing ASCb 

to tumbles as a rod. Increasing the length of linker allowed the PYD and CARD of ASC 

and ASC3X to tumble semi-independently of each other. Altogether, our data suggest that 

ASC’s linker length is optimized by allowing enough flexibility to favor intermolecular 

homotypic interactions and simultaneously keeping both domains sufficiently close for 

essential participation in self-assembly. In addition, our results help explain at the 

molecular level the differences in inflammatory response by ASC isoforms. 
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Chapter 1 

Introduction 
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1.1 Role of innate immunity in inflammation 
 

The immune system is comprised of a large network of cells, proteins, and organs 

working together to protect the body from bacteria, viruses, and pollutants (1, 2). Response 

and removal of pathogens by the immune system is accomplished through two separate 

mechanisms necessary to distinguish self from non-self, innate and adaptive immunity (3, 

4). Innate immunity is the first line of defense against any intruding pathogen. As the first 

line of defense, it is capable of recognizing a broad range of foreign agents and signals (5). 

Innate immunity lacks immunological memory to previous infections, instead relying on 

its ability to respond to pathogens effectively and rapidly (6). Adaptive immunity is highly 

dependent on previous exposure to pathogens, relying primarily on tailored made immune 

receptors from previous infections (4, 7). Immunological memory from repeated exposure 

to pathogenic material improves response time and removal from the host upon repeated 

infection (4, 6, 7).  These specialized cells of the adaptive immune system include naïve T 

cells, memory T cells CD4+ and CD8+ cells and antibody-producing B cells (Figure 1)  

The innate immune system is a highly conserved defense system amongst mammals, 

plants, and invertebrates (8–10). Innate immunity comprises of multiple defensive barriers 

designed to protect against invading pathogens: skin, mucous membrane, low pH, chemical 

mediators, phagocytic cells and inflammatory cell death (3, 9). Innate immunity involves 

a wide range of various myeloid cells (macrophages, mast cells, neutrophils, basophils, 

dendritic cells, and natural killer cells) necessary for the detection, signaling, and activation 

of pro-inflammatory cytokines in response to a multitude of pathogens (Figure 1) (2, 11). 

Activation of the innate immune system leads to an inflammatory response, characterized 

by symptoms of redness, swelling, pain, and loss of tissue function (12). Although it is 

nonspecific, the innate immune system is equipped with pattern recognition receptors 

(PRRs) aimed in the identification of pathogen-associated molecular patterns (PAMPs) and 

damage-associated molecular patterns (DAMPs) (13, 14).  
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Figure 1. Cells of the innate and adaptive immune system. Innate immune system is the first line of 

defense against foreign objects. Initiation of the innate immune system is rapid, occurring hours within 

infection. Innate immune cells include macrophages, basophils, mast cells, dendritic cells, and natural killer 

cells. Adaptive immunity response is slower occurring days following infection. Adaptive immunity consists 

of antibodies secreted by B cells and CD4+/CD8+ cells secreted by T cells. Communication between innate 

and adaptive is facilitated by γδ T cells and natural killer T cells. Figure adapted from ref (15). 

 

PAMPs are a diverse set of microbial motifs that share various recognition patterns 

or evolutionary conserved structures common to many pathogens (10). While DAMPs are 

endogenous molecules released from damaged/dying cells (10). Recognition of PAMPs 

and DAMPs are mediated by either membrane bound PRRs, Toll-like receptors (TLRs), 

C-type lectin receptors (CLRs), or one of the three intracellular sensors, RIG-I-like 

receptors (RLRs), NOD-like receptors (NLRs), and absent in melanoma 2 like receptor 

(AIM2) (14). Activation of TLRs by a PAMP or DAMP signals the activation of the 

inflammasome complex. Inflammasomes are large multiprotein platforms that necessitate 

the recruitment and activation of inflammatory caspases in the presence of PAMPs and 

DAMPs (15,16). Inflammasome formation is mediated by the protein adaptor ASC 

(apoptosis-associated speck like protein containing a CARD) (18). ASC functions as an 

adaptor bridging the inflammatory sensor (NLRs, Pyrin, and AIM2) to the effector 

procaspase-1 via homotypic interactions (18, 19). Recruitment of procaspase-1 to the 

inflammasome results in the autocleavage of procaspase-1 to its bioactive form caspase-1. 

Once active, caspase-1 initiates an inflammatory form of cell death known as pyroptosis, 

consisting in swelling of the cell membrane and release of pro-inflammatory cytokines to 

the extracellular milieu (20). Active caspase-1 cleaves immature inflammatory cytokines 
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pro-IL-18, and pro-IL-1β into their active form. Simultaneously, caspase-1 serves to cleave 

gasdermin-D into its active N-terminus form initiating the assembly of 10 – 20 nm pores 

on the plasma membrane causing cellular swelling and lysis of the cell (21).  

 

1.2 Inflammation in health and disease 
 

As mentioned previously innate immunity serves to rapidly detect and remove 

infectious agents/pollutants from the host via the inflammatory response. However, 

overstimulation of the inflammasome by either disease or genetic background can have a 

profound effect on the inflammatory pathway leading to excessive (chronic) inflammation 

or insufficient inflammation. Dysregulation of either the sensor, adaptor or effector are 

associated with various inflammatory diseases. Overproduction of IL-1β, due to high 

caspase-1 activity, is prevalent in hereditary diseases such as cryopyrin-associated periodic 

syndromes (CAPS), and familial Mediterranean fever (FMF) (22, 23). Dysregulation of 

inflammatory sensors and ASC are associated with Psoriasis (24), Type 1 (25, 26) and 2 

Diabetes (27, 28), Inflammatory bowel disease (29, 30), and have been linked to 

Alzheimer’s disease (30, 31).  

1.2.1 Hereditary autoinflammatory disease 

Cryopyrin-associated periodic syndromes are a spectrum of rare hereditary diseases 

related to inflammasome dysfunction (23). In order of severity, these include familial cold 

autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal-

onset multisystem inflammatory disease (NOMID) (33). Mutations in the inflammasome 

sensor, NLRP3, result in the overstimulation of the inflammatory response leading to a 

higher-than-normal production of IL-1β. Overproduction of IL-1β results in repeated bouts 

of systemic inflammation throughout the body. Although, genetically similar each 

cryopyrinopathy has distinct symptoms unique to each syndrome (33, 34). FCAS is 

characterized by recurrent urticaria, arthralgia, and fever upon exposure to cold 

temperatures. MWS can appear spontaneously without any apparent trigger and is 

characterized by conjunctivitis and renal amyloidosis. NOMID being the most severe of 

cases, involves central nervous system degradation that can result in hearing loss and 

meningitis. Treatment of CAPS is performed by targeting IL-1β with known IL-1β 

inhibitors such as anakinra, rilonacept, and canakinumab (33, 34).  

1.2.2 Neuroinflammation in neurodegenerative diseases  

 Chronic neuroinflammation is associated in the pathogenesis of Alzheimer’s 

disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) (35, 36). 

Neuroinflammation is characterized as the clearance of pathogens, misfolded proteins, and 

cellular debris from the central nervous system (CNS) (37).  The CNS is composed of glial 
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cells, consisting of astrocytes, microglia, and oligodendrocytes serving as regulators of the 

inflammatory response. Currently, NLRP1, NLRP2, NLRP3, NLRC4 and AIM2 have been 

implicated in the progression of neurodegenerative disease. Alzheimer’s is a 

neurodegenerative disease associated with a loss of memory and cognitive functions over 

time (38). Alzheimer’s is characterized by the presence of Amyloid-beta plaques and tau 

tangles (38). Under normal conditions amyloid beta (Aβ) is cleaved into its Aβ-40 fragment 

by β-secretase; however, during the onset of AD, amyloid beta is cleaved into its neurotoxic 

form, Aβ-42, causing it to aggregate into Aβ plaques (38, 39). Accumulation of Aβ has 

been shown to activate the NLRP3 inflammasome in microglia (40). In addition, ASC is 

able to associate with Aβ clusters  inducing pyroptosis in surrounding microglia leading to 

a mass release of ASC-Aβ clusters (31). Overproduction of IL-1β as a result of chronic 

inflammation induces brain damage and affects synaptic plasticity (41, 42). Several 

strategies have been shown to prevent and ameliorate the brain inflammatory response, 

such as, an IL-1β blocking antibody and small-molecule NLRP3 inhibitor (JC-124) (43, 

44). Parkinson’s is a neurodegenerative disorder characterized by the presence of α-

synuclein and loss of dopaminergic neurons leading to a loss of motor functions. Studies 

have shown the ability of α-synuclein to activate the NLRP3 inflammasome in monocytes 

and microglia (45, 46). In agreement with these studies, the caspase-1 inhibitor AC-

YVAD-CMK in NLRP3 knockout mice was shown to prevent the loss of dopaminergic 

neurons typical of Parkinson’s (47, 48). 

 

Figure 2. Inflammation in Alzheimer’s and Parkinson’s Disease. In Alzheimer’s disease, the production 

of Aβ plaques induce NLRP3 inflammasome formation in microglia cells. a-synuclein produced by 

dopaminergic neurons are sensed by microglia cells activating the NLRP3 inflammasome producing an 

overabundance of IL-1β. Pyroptosis of microglia releases IL-1β causing the degeneration of dopaminergic 

neurons. 
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1.2.3 Inflammatory bowel disease 

 Inflammatory bowel disease are recurrent chronic inflammatory events of the colon 

and small intestine (29, 30). Damage and or disruption of the gut microbiome and mucosal 

barrier elicit strong inflammatory responses in the gut (49). Several studies have recently 

reported a role of the inflammasome sensor NLRP3 in the pathogenesis of in Inflammatory 

bowel diseases (49–51). IBD is comprised of ulcerative colitis and Crohn’s disease. 

Complications in ulcerative colitis can range from abdominal pain to weight loss and lead 

to inflammation of joints and ultimately colon cancer. Multiple studies have linked NLRP3 

SNPs (single nucleotide polymorphisms) to susceptibility of ulcerative colitis (52, 53). 

Interestingly, the food additive, titanium dioxide (TiO2) nanoparticles, were reported to 

damage intestinal mucosal barrier resulting in the activation of the NLRP3 inflammasome 

and increase in IL-1β  and IL-18 (54). Similarly, NLRP3 dysregulation is implicated in the 

progression of Crohn’s disease. CARD8, a negative regulator of NLRP3, normally binds 

to the NLRP3 inflammasome and inhibits its binding to ASC (51). Mutations in CARD8 

resulting in a loss of function were found to prevent CARD8 from binding to NLRP3 and 

resulted in an increase severity of Crohn’s disease (51). 

 

1.2.4 Skin disease 

The skin is an essential barrier that is permanently exposed to the environment. As 

the interface between environment and host it is the primary defense against environmental, 

physical, and biological threats (55, 56). Secondly, the skin serves as a mode of 

thermoregulation and water retention. As such, it is composed of two main parts, the 

epidermis and dermis layers.  The epidermis, consisting of multiple layers of tightly packed 

keratinocytes, functions as a strong physical barrier against external stimuli. Formation of 

the epidermis is driven by a programmed process of differentiation, whereas migration of 

keratinocytes to the surface cause morphological and biochemical changes to the cell (57). 

Keratinocytes serve two roles: to act as a physical barrier against bacterial and viral agents 

and promote the release of anti-microbial peptides and proinflammatory cytokines (58). 

The dermis layer contains specialized adaptive and innate immune cells as well as 

providing support to the epidermis layer (Figure 3). Human keratinocytes have been found 

to express inflammatory components ASC, procaspase-1, and notably NLRP1. Exposure 

to ultraviolet B radiation (UVB) has been shown to induce activation of the NLRP1 

inflammasome leading to sunburns (59, 60). Inflamed skin due to atopic dermatitis and 

psoriasis has become increasingly linked to AIM2 inflammasome activation. Abundant 

cytosolic DNA released by psoriatic lesions were found to trigger release of IL-1β via 

AIM2 inflammasome activation. 
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Figure 3. Immune cells of the skin. The skin is composed of two layers: the epidermis and the dermis. The 

epidermis is composed of four different layers made of keratinocytes in diverse differentiated states. 

Inflammatory producing cells include Langerhans cells, melanocytes, and keratinocytes. The dermis layer 

harbors immune cells of both the innate and adaptive systems. Reprinted by permission from Springer Nature 

Customer Service Centre GmbH: Springer Nature. Reviews Immunology. Skin immune sentinels in health 

and disease, Frank O. Nestle et al, Copyright (2009). (56). 
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Chapter 2 

Molecular components involved in the 

inflammatory response 
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2.1 Death Domain Superfamily 
 

The Death Domain superfamily is a large collection of structurally similar proteins 

involved in cellular death (61, 62). It is comprised of four subfamilies: death effector 

domain (DED), death domain (DD), caspase recruitment domain (CARD), and the pyrin 

domain (PYD) (61).  The human genome is composed of 32 DDs, 7 DEDs, 28 CARDs, 

and 19 PYDs (61). A common feature amongst the death domain superfamily is the 

presence of six α-helices arranged in a Greek key bundle (63). The six α-helices are variable 

among the four subfamilies, differences in orientation and length of each helix result in 

differences in the structural configuration of each subfamily (61). Homotypic interactions 

within each subfamily facilitate the assembly of structural scaffolds necessary for the 

activation of either apoptosis or pyroptosis. Both apoptosis and pyroptosis are forms of 

cellular death, initiated in response to host infection by pathogenic or viral agents (20, 64). 

Apoptosis is characterized by nuclear/cytoplasmic condensation and cellular fragmentation 

into apoptotic bodies (65). Pyroptosis is an inflammatory form of cell death that results in 

the rapid swelling and rupture of macrophage cells (20, 65). The integral role of the Death 

Domain family in both apoptosis and pyroptosis is evidenced by the requirement of 

multiple death domain proteins needed for cellular signaling and self-association leading 

to either apoptosis or pyroptosis. Death domain members interact with each other through 

three distinct interactions Type I, Type II, or Type III (66–68). Self-association of death 

domain proteins leads to an increase in the local concentration of effector proteins involved 

in signal transduction such as, ubiquitin ligases, deubiquitinases, kinases, and caspases 

(66).   

 

2.1.1 CARD domain  

Currently, ~ 33 CARD containing proteins have been identified in humans (69). 

The CARD domain is a protein consisting of ~ 90 amino acids and serves to function in 

protein-protein interactions necessary for pyroptosis, apoptosis, and cellular signaling (61, 

70, 71). Generally, CARD containing proteins are classified into two categories: adaptor 

proteins involved in scaffolding/signaling, and prodomain caspases containing a CARD at 

the N-terminus. CARD containing caspases include caspases, -1, -4, -5, and -12 involved 

in inflammation and caspase-8 and caspase-10 in apoptosis (64, 69, 72). As the second 

largest family member and mediator of both apoptosis and pyroptosis, CARD-CARD 

interactions are necessary for the formation of large molecular platforms for signaling 

processes. CARDs contain the conserved six-helical bundle common to the death domain 

family. Unique to the CARD family is the presence of a bent/broken H1 splitting the first 

helix into two separate helices termed H1a and H1b (61, 69). A comparison of CARD 

domains from ICEBERG, CARMA1, procaspase-1, and ARC CARD show similar 

structural homology and surface charge distribution (Figure 4). The surface charge of 
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CARD proteins indicates CARD proteins mainly interact through electrostatic interactions. 

Interactions between CARD-CARD dimers were first demonstrated from the crystal 

structure of Apaf-1 complexed with the CARD of procaspe-9 (Figure 4E) (67). The 

binding is primarily driven by numerous salt bridges formed between helices H1 and H4 

of the CARD of procaspase-9 with helices H2 and H3 of Apaf-1. These are termed type I 

interactions (67). Recently, the crystal structure of apoptosis repressor with caspase 

recruiting domain (ARC) has also revealed an altered form of the CARD protein distinct 

from other death domain proteins (73). ARC CARD contains a 5-helix fold motif instead 

of the conserved six-helix fold unique to death domains (73). H6 was instead found to be 

disordered and not necessary for the function of ARC CARD. Notably, CARD containing 

proteins have also shown the ability to self-associate and form filaments utilizing type I, 

type II, and type III interactions. Cryo-EM structures of ASCCARD and NLRC4CARD 

demonstrate the ability of the CARD domain to form tightly packed helical filaments of ~ 

8 nm in diameter utilizing type I, II, and III interactions to self-associate (74).  

 

Figure 4. Structural similarities between the CARD family. (A)-(C) Structural similarity of the CARD 

domain from different proteins depicting the broken H1 and similar bipolar charge distribution of ICEBERG 

(pdb 1DGN) (75), CARMA1 (pdb 4I16) (76), Caspase-1 CARD (pdb 5FNA) (77). (D) depiction of ARC 

CARD (pdb 4UZ0) (73) containing the characteristics typical of CARD domains but lacking H6 common to 

the death domain family. Ribbon diagrams (top) and electrostatic surfaces (bottom) are shown. (E) Type I 

interaction between H2 and H3 of APAF-1 and H1 and H4 of Caspase-9 card (pdb 3YGS) (67). Add helix 

numbers in A-D. 
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2.1.2 Pyrin Domain 

The PYD domain, originally discovered in the Pyrin protein Marenostrin (MEFV), 

is a 90 amino acid protein containing the six anti-parallel α-helices stabilized by a 

conserved central hydrophobic core (61, 78–80). The PYD domain is present in 23 human 

genes and appears exclusively at the protein N-terminus (79). The hydrophobic core is 

stabilized by residues belonging to H1, H2, H4, H5, and H6, whereas H3 does not 

contribute to the formation of the hydrophobic core. A structural analysis of PYDs present 

in the NLR family, ASCPYD, ASC2, and AIM2PYD indicates structural homology among 

them, and points to a distinctive long loop connecting H2 and H3, with the exception of 

AIM2 with a shorter H2-H3 loop, and an overall shorter H3 compared to other death 

domain proteins (Figure 5) (79–81). Alterations in H3 of the PYD containing proteins is 

considered vital in PYD-PYD interactions. PYD-PYD interactions are primarily facilitated 

by charged and hydrophobic residues (79). PYD proteins can exist as part of multi domain 

proteins (NLRs, AIM2, ASC) or as PYRIN domain-only proteins (POPs) (70). POPs are 

small proteins (10-13 kDa) that serve as negative regulators of inflammasome formation. 

Presently, there are three POPs that have been identified, POP1, POP2, and POP3 (82–84). 

However, PYDs present as part of a multidomain protein are necessary for inflammasome 

formation.  

 

Figure 5. Structural comparison of different PYD domains. (A) 3D NMR solution structure of NNLRP3 

PYD (pdb 2NAQ) (85). (B) NMR structure of ASC PYD (pdb 1UCP) (86). NMR solution structure of ASC2 

(pdb 2HM2) (87). Crystal structure of AIM2 PYD (pdb 3VD8) (81). Ribbon diagrams (top) and electrostatic 

surfaces (bottom) are shown. 
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  2.2 Inflammasome receptors  
 

Formation of the inflammasome complex is necessary for caspase-1 activation and 

initiation of pyroptosis. Numerous cytosolic inflammasome sensors have been identified 

in inflammasome formation including: NLRP1, NLRP2, NLRP3, NLRC4 NLRP6, 

NLRP7, NLRP12 AIM2, Pyrin, and IFI16 (Figure 6) (17, 19, 88). Each inflammasome 

sensor consists of multiple subunits. Sensors can contain the following subunits: caspase 

activation and recruitment domain (CARD), nucleotide-binding and oligomerization 

domain (NACHT), Pyrin Domain (PYD), leucine rich repeat (LRR) etc... (Figure 6) (17, 

88). Each sensor can uniquely respond to specific stimuli designating its use for 

inflammasome complexation. For example, NLRC4 and NLRP1 are prompted for 

inflammasome formation by gram-negative bacteria, while double stranded DNA (dsDNA) 

exclusively binds to AIM2, triggering the formation of the AIM2 inflammasome (89–91). 

PAMPS and DAMPS produced by Gram-negative and Gram-positive bacteria result in 

NLRP3, NLRP2, NLRP7, and NLRP12 inflammasome formation (92–94). Activation of 

these cytoplasmic sensors leads to the activation and nucleation of the adaptor protein ASC 

and subsequent recruitment of procaspase-1.  

 

Figure 6. Inflammasome receptor. Inflammasome receptors carry multiple protein domains. 

Inflammasome sensors can contain a combination of the following domains: pyrin domain (PYD), 

nucleotide-binding and oligomerization domain (NACHT), leucine rich repeat domain (LRR), caspase 

activation and recruitment domain (CARD), HIN200 domain, B30.2 domain, coiled-coil domain (C-C), a B-

box domain (bBox), and a function-to-find domain (FIIND).  
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2.2.1 NLRP3 inflammasome 

The inflammasome complex is a multimeric protein complex that is composed of 

three primary components: a sensor, adaptor, and an effector. NLRP3 inflammasome 

complexation is unique in its ability to respond to a multitude of stimuli (95). NLRP3 has 

been shown to respond to various PAMPs such as bacterial lipopolysaccharides, O 

antigens, and peptidoglycan (93). Similarly, DAMPs such as ATP, monosodium urate 

(MSU), and calcium pyrophosphate dehydrate (CPPD), as well as notable environmental 

triggers such as silica, asbestos, and aluminum can activate the NLRP3 sensor (96–98). 

Depending on the stimulus, NLRP3 can be activated through a canonical or non-canonical 

pathway. Canonical activation of NLRP3 is a two-step process requiring a priming step for 

the transcription of NLRP3 and inflammatory cytokines pro-IL-1β and pro-IL-18 and an 

activation step to initiate NLRP3 inflammasome formation (Figure 7) (93, 99). Priming of 

the cell requires either a DAMP or PAMP activating TLR4 or tumor necrosis factor 

receptor 1 (TNFR1) to upregulate NLRP3 and pro-IL-1β and pro-IL-18 in a NF-κB-

dependent way (100). Simultaneously, a second signal is needed to activate the NLRP3 

sensor to trigger inflammasome assembly. The secondary signal can range from alteration 

in cellular concentration of K+ through efflux, increases in intracellular Ca2+, or release of 

mitochondrial DNA (mtDNA) to the cytosol (93, 101, 102). NLRP3 begins to self-

associate through the NACHT domains and recruits ASC via its PYD domain (103). ASC 

subsequently recruits procaspase-1 via its CARD domain enabling the activation of 

procaspase-1 by proximity-induced self-cleavage into its active form . Caspase-1 cleaves 

pro-IL-1β and pro-IL-18 into its active forms while simultaneously cleaving Gasdermin-D 

into a N-terminus and C-terminus fragment (21, 104). The N-terminus is transported to the 

plasma membrane and forms 10-20 nm size pores (105, 106). The production of the pores 

causes the cell to undergo an inflammatory form of programmed cell death known as 

pyroptosis. During pyroptosis the cell begins to swell and eventually ruptures releasing IL-

1β and IL-18. 
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Figure 7. Canonical NLRP3 inflammasome activation. NLRP3 activation requires a priming signal (left) 

and an activation signal (right). Priming involves the presence of a PAMP or DAMP interacting with TLR4 

or TNFR increasing the transcription of NLRP3 and proinflammatory cytokines pro-IL-1β and pro-IL-18. 

Activation of NLRP3 is achieved by multiple upstream signaling events: mtDNA, K+ efflux, Ca2+ flux, ROS 

production, and lysosomal disruption. NLRP3 activation recruits ASC and caspase-1 to the inflammasome 

complex. Activated caspase-1 cleaves gasdermin-D, initiating gasdermin-mediated pyroptosis. Originally 

published in Frontiers Cell and Developmental Biology. NLRP3 Inflammasome: A Promising Therapeutic 

Target for Drug-Induced Toxicity. Wei Shanshan et al. © 2021. CC BY. (107). 

 NLRP3 inflammasome activation can also proceed through a non-canonical 

fashion. Specific gram-negative bacteria such as Escherichia coli, and Vibrio cholerae 

have been known to activate an alternative NLRP3 pathway (108). Activation of the 

NLRP3 non-canonical pathway is mediated by the TLR4-TRIF recognition of LPS 

necessary for the upregulation of Type I IFN (Figure 8) (109, 110). Type I and Type II 

IFN are required for expression of caspase-4/5/11, an important prerequisite for non-

canonical inflammasome activation. In contrast to canonical inflammasome activation, 

caspase-4/5/11 act as both the sensor and effector molecules for LPS (111, 112). Caspase-

4/5/11 are able to directly interact with LPS through their CARD domain (111, 112). 

Binding of caspase-4/5/11 initiates self-association into the active forms. Simultaneously, 

NLRP3 inflammasome formation is activated indirectly due to the stress of molecular 

events surrounding the cell leading to the activation of caspase-1 (112). Activated caspase-

4/5/11 and caspase-1 can directly cleave gasdermin-D into its active N-terminus fragment 

initiating pyroptosis of the cell.  

 

https://creativecommons.org/licenses/by/4.0/
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Figure 8. Non-canonical NLRP3 inflammasome activation. LPS recognition by TLR4 and Type I & II are 

required for the expression of casapase-4/5/11. Extracellular LPS internalized by endocytosis interacts 

directly with caspase-4/5/11. Simultaneously, PAMPs/DAMPs activate NLRP3 inflammasome resulting in 

caspase-1 activation. Caspase-1/4/5/11 can activate gasdermin-D resulting in pyroptosis of the cell. 

Originally published in Molecular Aspects of Medicine. An overview of the non-canonical inflammasome. 

Kevin P. Downs et al. © Elsevier 2020. CC BY. (112). 

2.2.2 NLRP1 

NLRP1 was the first cytosolic inflammasome receptor linked to the activation of 

proinflammatory caspases (16). Activation of inflammatory caspases was achieved by a 

multiprotein complex consisting of NLRP1, ASC, and caspase-1 termed the inflammasome 

(16). In contrast to the rest of the NLR family, NLRP1 contains two unusual features. 

NLRP1 possesses both a N-terminal PYD domain and a C-terminal CARD domain and a 

proteolytic function-to-find-domain (FIIND) required for NLRP1 inflammasome 

activation (Figure 6) (113). Only one NLRP1 gene is believed to be encoded in humans 

compared to the multiple NLRP1 orthologs encoded in mice (114). Understanding of 

human NLRP1 stems from the numerous experiments performed using the murine 

analogue NLRP1b. Notably, Bacillus anthracis Lethal Toxin (LeTx) was shown to activate 

murine NLRP1b inducing an inflammatory response (115). N-terminal proteolysis by B. 

Anthracis lethal toxin was necessary for the activation of murine NLRP1b, as well (116, 

117). Introduction of proteasome inhibitors negated murine NLRP1b activity (118).  

Similarly, Toxoplasma gondii, Shigella flexneria, and Listeria monocytogenes have been 

https://creativecommons.org/licenses/by/4.0/
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demonstrated to activate human NLRP1. Based on the N-terminal cleavage of NLRP1b a 

functional degradation model was proposed for its activation (Figure 9) (119). As proposed 

by the model, N-terminal cleavage of the PYD domain results in proteasome-dependent 

NLRP1b activation (119). Destabilization of the N-terminus by lethal factor (LF) cleavage 

and subsequent ubiquitinoylation of the N-terminus by UBR2 marks the NLRP1b sensor 

for degradation (119, 120). During proteasome degradation the FIIND domain auto cleaves 

releasing the FIINDUPA-CARD allowing it to interact with the ASCCARD and the caspase-

1CARD forming the NLRP1b inflammasome (120). 

 

 

Figure 9. Functional degradation model for NLRP1b activation. Lethal factor (LF) cleaves at the N-

terminus allowing UBR2 to recognize and ubiquitinate the N-terminus of NLRP1B. UBR2-mediated 

ubiquitination induces the proteosome degradation of NLRP1b. The C-terminal UPA-CARD is liberated and 

forms the NLRP1b inflammasome. Originally published in Immunological Reviews. The NLRP1 and 

CARD8 inflammasomes. Cornelius Y. Taabazuing et al. © John Wiley & Sons A/S 2020. CC BY. (120). 

2.2.3 NLRC4 inflammasome 

The organization of NLRC4 is similar to that of other NLR family members; it is 

composed of a C-terminal LRR, NACHT domain, followed by a N-terminal CARD domain 

instead of the usual PYD domain. NLRC4 is mainly activated by flagellin, type III (T3SS) 

and type IV secretion systems (T4SS) by various gram-negative bacteria, including 

Shigella flexneri, Legionella pneumophila, and Pseudomonas aeruginosa (121–123). To 

date, no association between the components of the T3SS, T4SS and flagellin have been 

shown to directly interact with NLRC4, instead it is presumed pathogen detection is 

facilitated by the upstream regulators from the NAIP (neuronal apoptosis inhibitory 

proteins) family (124). NAIPs are tripartite proteins containing a Baculovirus inhibitor of 

apoptosis protein repeat (BIR-domain), a central nucleotide binding and oligomerization 

domain (NOD) and C-terminal leucine rich repeat (LRRs). NAIP proteins function as co-

receptors for NLRC4 by detecting specific PAMPs and initiating NLRC4 self-association 

(124, 125). Murine genome encodes for multiple NAIPs while the human genome only 

encodes a single NAIP gene (126–128). The central NOD domain of NAIPs dictates its 

specificity for various PAMPs. For example, NAIP5/6 are able to detect bacterial flagellin, 

whereas NAIP1 binds to T3SS needle protein (129, 130). Since humans encode a single 

https://creativecommons.org/licenses/by/4.0/
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NAIP, different isoforms of the NAIP gene as a result of alternative splicing are assumed 

to confer similar specificity to PAMPs (128). As shown in Figure 10 interferon regulatory 

factor 8 (IRF8) is present in the cell under basal conditions; in the presence of IFN/LPS 

IRF8 induces transcriptions of various NAIPs. Ligand bound NAIP complexes with 

NLRC4 initiating rapid self-association of NLRC4. It has been noted NLRC4 is able to 

directly interact with the CARD domain of caspase-1 without the need of the adaptor 

protein ASC; however procaspase-1 activation is reduced (131). Incorporation of ASC to 

the NLRC4 complex leads to an enhancement of procaspase-1 activation, thus promoting 

a higher inflammatory response.   

 

Figure 10. NLRC4 inflammasome activation. NLRC4 activation requires NAIP for PAMP recognition. 

Upon stimulation by IFNs and LPS, transcription factor IRF8 induces the expression of various NAIPs. 

NAIPS sense T3SS, T4SS, and bacterial flagellin of gram-negative bacteria. Binding of NAIP to PAMPs 

allows it to complex with NLRC4 initiating NLRC4 inflammasome formation. Reprinted from Cell, 173, 

Rajendra Karki, IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation, pg 920-933, 

Copyright 2018, with permission from Elsevier. (127) 

 

2.2.4 Aim2 inflammasome 

AIM2 is a critical inflammatory receptor necessary for the recognition of cytosolic 

DNA (90, 91). AIM2 consists of a N-terminal PYD domain connected to a C-terminal 
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hematopoietic interferon-inducible nuclear protein with a 200-amino acid repeat (HIN200) 

domain (81). Furthermore, the HIN200 domain is subdivided into two OB 

(oligonucleotide/oligosaccharide binding) folds necessary for nucleic acid binding, termed 

OB1 and OB2 (132). OB1 and OB2 are connected by a long linker composed of a helix-

loop-helix motif (133). OB1 and OB2 folds consist of highly conserved topological 

arrangement of five β-strands; interaction between the two folds is accomplished through 

extensive hydrophobic interactions (134).  A comparison of ALR HIN domains reveals 

structural similarities in three different sub-classes; HIN-A, HIN-B, and HIN-C, each with 

their own function and DNA binding affinity (135). Under basal conditions the HIN200 

domain serves a secondary purpose, to keep AIM2 in an autoinhibited state through 

AIM2PYD-HIN200 interactions (136). As shown in (Figure 11) binding of cytosolic DNA 

to the HIN200 domain releases it from its autoinhibited state. Both OB1 and OB2 contain 

positively charged patches of arginine and lysine residues that directly interact with the 

DNA phosphate backbone (136). Binding of HIN200 to dsDNA allows for multiple 

monomers of AIM2 to bind the dsDNA. Clustering of AIM2 leads to the nucleation of the 

AIM2PYD (137), which recruits ASC through AIM2PYD-ASCPYD interactions (137). This 

assembly carries ASCCARD for caspase-1 recruitment and activation, leading to pyroptosis. 

 

Figure 11. AIM2 inflammasome activation. Prior to AIM2 activation, N-terminal PYD and HIN200 region 

are complexed maintaining AIM2 in an autoinhibitory state. The presence of dsDNA activates AIM2 and 

interacts with the HIN200 domain of AIM2. Multiple copies of AIM2 interact with the dsDNA causing the 

recruitment of ASC through the AIM2PYD domain and procaspase-1 through the ASCCARD domain forming 

the AIM2 inflammasome complex. Activated caspase-1 cleaves gasdermin-D and pro-IL-1β into active forms 

resulting in pyroptosis and release of IL-1β. 
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2.2.5 Pyrin 

Pyrin is a large 86 kDa protein located in immune cells (138–140). Pyrin is 

composed of four functional domains: a pyrin domain (PYD), a zinc finger domain (bBox), 

coiled coil domain (CC), and a B30.2/SPRY domain (138). Unlike the rest of the 

inflammasome sensors Pyrin reacts to pathogen activity indirectly rather than through the 

direct recognition of PAMPs (141). Activation of Pyrin is dependent on the modification 

of Rho/A/B/C GTPases by bacterial toxins/effectors (101, 141, 142). Modification of Rho 

GTPases include adenylation, glycosylation, and ADP-ribosylation (141). Modified Rho 

GTPases haves been shown to affect microtubule dynamics, specifically actin 

polymerization (141, 143). Changes in actin polymerization are sensed by Pyrin, leading 

to its activation. Prior to Pyrin activation, Pyrin exists in an autoinhibited state. Pyrin 

contains two phosphorylation sites, Ser-208 and Ser-242, which are required for 14-3-3 

binding (143). Following bacterial virulence and Rho GTPase modification, 

dephosphorylation of both serine sites removes 14-3-3 releasing Pyrin from its 

autoinhibited state. Once in active form, Pyrin self-associates through its coiled-coil 

domain, leading to the recruitment of ASC through its PYD domain and the recruitment of 

procaspase-1.  

 

2.3 ASC 
 

2.3.1 ASC Structure  

The inflammasome adaptor ASC is a 195 amino acid protein consisting of a N-

terminal PYD domain and a C-terminal CARD domain connected by a 23-amino acid 

linker (Figure 12) (144). Both the PYD and CARD domain of ASC adopt the six helical 

bundle motif typical of the Death Domain superfamily (145, 146). The PYD domain of 

ASC shares structural similarities common to other PYD domains, such as a long loop 

connecting H2 and H3, and a short H3. The ASCPYD surface is highly bipolar composed of 

negatively charged amino acid residues located at H1 and H4, and a positively charged 

surface containing positively charged residues located at H2 and H3 (61, 86). The large 

charge-charge interaction is largely conserved among PYD domains and is the predominant 

interaction involved in ASCPYD self-association. ASCPYD type I interaction involves 

residues E13 (H1), D51 (H4), H5, and D48 (H3-H4 loop) interacting with residues 

K21(H2), R41(H3), and C-terminus of H5 (85, 137). Furthermore H2 and H3 are orientated 

perpendicular to H1 and H4, allowing ASCPYD binding motifs to further interact with other 

available ASCPYD during self-association (103). Additionally, ASCPYD-ASCPYD type I 

interactions are supported by various hydrophobic interactions. Three solvent exposed 

residues L25, P40, and L45 were found to interrupt ASCPYD self-association (147). P40 is 

involved in a type III interaction between H2-H3 loop of one  ASCPYD with H1-H2 corner 

of another ASCPYD (137). Particularly, L25A mutations have been shown to disrupt 
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ASCPYD self-association; as confirmed by NMR-based chemical shift analysis, L25 

mutations structurally perturb the preceding residue K24 resulting in the destabilization of 

H3, thus reducing the ability of ASCPYD to self-associate (85). In addition, 11 conserved 

hydrophobic residues (I8, L12, L15, L20, F23, L27, L52, L56, L68, V72, M76) buried 

within the PYD core are necessary for the stabilization of ASCPYD structure and filament 

formation (86, 147). Mutations at any of these amino acid residues result in loss of ASCPYD 

self-association capabilities and collapse of the ASCPYD. Cryo-EM structure of the ASCPYD 

filament reveal the formation of a tightly packed helical filament with a hollow center of ~ 

20 Å and an outer diameter of ~90 Å (137). Type I, II, and III interactions were shown to 

play an important role in the formation of the helical filament. The type I interaction is 

predominant resulting in buried surface area of 880 Å2 compared to 540 Å2and 360 Å2 

buried surface area from type II and Type III interactions, respectively (137).  

    

Figure 12. Structure of ASC. 3D solution structure of ASC as determined by NMR (pdb 2KN6) (145). PYD 

and CARD domain of ASC are shown in orange and blue, respectively. N and C denote the N-terminus and 

C-terminus of the protein. H1-H6 denotes the conserved six helix bundle representative of the death domain 

superfamily. Ribbon diagram was generated using ChimeraX (148). 

ASCCARD adopts the conserved six helical bundle present in death domains. 

However, ASCCARD contains several unique features compared to other CARD containing 

proteins. ASCCARD does not display a fragmented helix 1 (H1a and H2b), H2 and H3 have 

a different orientation, and the electrostatic surface has an even distribution of positive and 

negatively charged residues on the surface (67, 145). NMR chemical shift analysis 

indicates the presence of  three contacting regions involved in ASCCARD- ASCCARD self-

association; these regions located at the N- and C- terminus of H1, H6, N- and C-terminus 

of H5 and H6, and H2 and H3 constitute the type I, II, and III interactions involved in self-

association (145). Cryo-EM structures of ASCCARD indicate the ability of ASCCARD to self-



22 

 

associates into helical filaments with an inner diameter of ~ 10 Å and an outer diameter of 

~ 80 Å (74). Similar to ASCPYD, ASCCARD filament formation is mediated by Type I, II, 

and III interactions. Type I interactions involve contacts between residues R119 (H2) with 

residues E130, D134, and R160 of H1 and H4 (74). These residues are complementary 

pairs and are the predominant interaction in filament formation. Type II interactions 

involve contribution from the hydrophobic residues W169 (H4-H5 loop) and Y187 (H6). 

Lastly, type III interactions involve residue R160 (H4) interacting with residue D143, and 

E144 of H3 (74). Mutations of the aforementioned residues in Type I, type II, and Type III 

were found to completely abolish filament formation, confirming their importance to 

filament formation (74).  

 2.3.2 ASC Function 

ASC was originally discovered in leukemia HL-60 cells, it was detected as an 

aggregate speck-like complex in apoptotic cells indicating a role for ASC as an inducer of 

the apoptotic pathway in the presence of certain anti-cancer drugs such as etoposide or 

vincristine (144). Regulation of ASC expression was shown to be affected by aberrant 

methylation of its promoter region; increased methylation of the ASC promoter region 

effectively silences ASC expression providing breast cancer and various cancer lines the 

ability to escape death and continue proliferation (149, 150). As a result of its ability to be 

methylated in various cancer cell lines, ASC was deemed a pro-apoptotic factor and was 

alternatively named Target of Methylation-induced gene Silencing 1 (TMS1). Early in its 

inception, ASC(TMS1) was determined to be caspase-9-dependent leading to the 

redistribution of ASC in the cytosol to form perinuclear aggregates (ASC specks) similar 

to the spherical structures originally seen by Matsumoto et al. (151). Although ASC was 

originally described as a pro-apoptotic protein, it quickly became evident that it played a 

vital role in pyroptosis. Under basal conditions ASC localizes to the nucleus in resting 

macrophages (18). Activation of the inflammatory response by PAMPs or DAMPs prompts 

the self-association of ASC from the nucleus to the cytosol. Formation of the ASC 

pyroptosome is mediated mainly by ASC self-association resulting in a large molecular 

platform with a dimeter of ~ 1 μm necessary for procaspase-1 activation (152). It has been 

determined that only one ASC speck forms per cell and ASC speck formation is a fast 

process occurring within minutes of a PAMP/DAMP stimulus. Additionally, super-

resolution microscopy studies of full-length ASC have shown that ASC self-associates to 

form rings (ASC specks) of ~ 0.6 - 0.7 μm that interact with similar ring-like structures of 

NLR, situating pro-caspase-1 in the center and initiating pyroptosis (153). Furthermore, 

TEM studies of full-length ASC show its propensity to form filamentous macrostructures. 

ASC tends to form long filaments (600- 800 nm) of 6.4 ± 0.8 nm average width (154). ASC 

filaments stack laterally and are composed of 2-7 filament bundles. Interestingly ring-like 

structures observed in TEM agree with the ASC dimer model derived from molecular 

docking using HADDOCK, suggesting the ASC dimer is a necessary step for ASC self-

association (154).   
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2.3.4 ASC isoforms 

Besides the ability of ASC to act as an adaptor between inflammatory sensor and 

effector, ASC is thought to also play a role in modulating the inflammatory response. ASC 

exists as four different isoforms. Canonical ASC containing a PYD, and CARD connected 

by a 23-amino acid linker, ASCb structurally similar to ASC, but with a 4-amino acid 

linker, ASCc consisting of a CARD domain and linker, but lacking H3-H6 of the PYD, 

and ASCd containing H1 and H2 of the PYD linked to a novel 69 amino acid domain 

(Figure 13) (18).  The CARD, PYD and linker region of ASC is encoded by 3 exons. Exon 

1 encodes for the PYD, exon 2 for the linker region, and exon 3 for the CARD domain 

(155). Generation of ASCb, ASCc, and ASCd is accomplished through alternative splicing 

of the 3 exons to generate the different isoforms of ASC (155).  Generated isoforms display 

different characteristics compared to ASC.  

    

Figure 13. ASC isoforms. (A) Canonical ASC containing a PYD and CARD domain connected by a 23 

amino acid linker. (B) ASCb containing both the PYD and CARD domain connected by a 4 amino acid 

linker. (C) ASCc contains the CARD domain and linker region but is missing H3-H6 of the PYD domain. 

(D) ASCd represents a novel domain connected to a partial PYD domain. 

ASC is shown to localize to the nucleus in resting macrophages. During an 

inflammatory event, ASC migrates to the cytosol forming the ASC speck (18). Formation 

of the ASC speck was found to localize with NLRP3 through PYD-PYD interactions and 

procaspase-1 through CARD-CARD interactions, thus promoting the activation and 

release of IL-1β from immune cells (18). ASCb does not display a similar localization 

pattern to ASC, instead ASCb is diffused throughout the cytoplasm. With the only 

difference being the length of the linker, it is presumed a specific linker length is required 

for nucleus localization. Unlike ASC, ASCb is incapable of forming the prototypical ASC 

specks, instead forming irregular filaments. ASCb contains the CARD and PYD domain 

retaining its ability as an inflammasome adaptor. The preserved CARD and PYD domain 
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are able to interact with both NLRP3 and procaspase-1 eliciting an inflammatory response, 

albeit lower compared to ASC (18). Likewise, ASCc is present in the cytoplasm of resting 

macrophages as long filamentous structures. The lack of a PYD domain renders it 

incapable of interacting with the inflammasome sensor NLRP3. However, the intact CARD 

domain was shown to be able to interact with procaspase-1, though an inflammatory 

response was not produced (18). Lastly, ASCd is present diffused throughout the cytoplasm 

and is unable to interact with either NLRP3 nor procaspase-1 (18).  

Expression of each isoform was found to vary based on the cell line used. PMA 

differentiated THP-1 cells were found to predominantly express ASC, ASCb, and very low 

levels of ASCc (18). In contrast, human peripheral blood macrophages (PBM) were shown 

to upregulate ASCb expression in the presence of LPS, while mouse J774A1 macrophages 

showed high expression of ASCc compared to ASC and no expression of ASCb was 

observed (18). The co-expression of multiple isoforms in either differentiated cells or LPS 

treatment suggest a level of regulatory control in inflammasome complexation resulting in 

varying efficacies. Co-expression studies of ASC, ASCb, and ASCc notably influenced the 

localization of each isoform. ASC co-expresses with ASCc in the perinuclear aggregates, 

eliminating the irregular ASC filaments observed when expressed alone. However, ASC 

and ASCb co-expression did not form the perinuclear aggregates seen in ASC. Instead, 

both ASC and ASCb were recruited to the nucleus and formed irregular perinuclear 

aggregates.  

2.4 Caspase-1  
 

Caspases are cysteine-aspartic proteases involved in regulating cellular death 

through either apoptosis or pyroptosis (156). Caspases are categorized into two distinct 

groups based on their ability to activate inflammatory or apoptotic pathway. Caspases 

involved in apoptosis include caspase-2, caspase-3, caspase-6, caspase-7, caspase-8, 

caspase-9, and caspase-10; whereas inflammatory caspases include caspase-1, caspase-4, 

caspase-5, and caspase-12 (Figure 14). Activation of the inflammasome complex generally 

involves the recruitment of procaspase-1 for pyroptosis to occur in the cell. It is synthesized 

in an inactive precursor. Procaspase-1 is a multidomain protein consisting of a N-terminal 

CARD connected to a large p20 subunit by a CARD domain linker (CDL) and a smaller 

p10 subunit connected to the p20 subunit by an interdomain linker (IDL). Formation of the 

inflammasome complex serves as a molecular platform attracting and increasing the local 

concentration of procaspase-1 to facilitate autocatalytic processing. As identified by cell 

studies, confocal imaging shows colocalization of procaspase-1 to the ASC speck. 

Procaspase-1 specks are smaller ~ 0.4 μm in diameter and occupies the central area of the 

ASC speck. Recruitment of procaspase-1 to the inflammasome complex is facilitated 

through CARD-CARD interactions between ASCCARD and the CARD of procaspase-1. 

Activation of procaspase-1 to its active form requires self-processing at both its CDL and 

IDL to generate multiple p20/p10 fragments to form a tetramer composed of two p20 and 
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two p10 fragments (157). The newly formed tetramer is generally considered the active 

form of caspase-1. Activated caspase-1 is necessary for the activation of pro-inflammatory 

cytokines pro-IL-1 β and pro-IL-18 and gasdermin-D.  

 

 

 

Figure 14. Hierarchal representation of caspases involved in apoptosis and inflammation. Caspases 

consist of a large p20 subunit, smaller p10 subunit, and a CARD or DED domain.  Inflammatory caspases-

1/4/5/12 contain a CARD domain allowing for direct participation in inflammasome complexation (caspase-

1) or direct interaction with LPS (caspase-4/5/12) resulting in pyroptosis of the cell. Caspases involved in 

apoptosis are broken into two categories, imitator caspases (caspase-9/2/8/10) involved in upstream signaling 

events and executioner caspases (caspase-3/6/7) that facilitate apoptosis of the cell. 

2.4 Gasdermin-D  
 

The cytosolic substrate responsible for permeabilizing the cell membrane and 

initiating pyroptosis was identified as Gasdermin-D (GSDMD). Two independent studies 

confirmed the existence of gasdermin-D as the executioner in pyroptosis of the cell. A 

research study using genome wide CRISPR-Cas-9 knockout of murine macrophages 

identified a gRNA sequence highly conserved between mice and human involved in 

pyroptosis known as gasdermin-D (21). Simultaneously, another group identified the 

existence of gasdermin-D using quantitative mass spectrometry to detect molecules 

directly interacting with the NLRP3 inflammasome (104). Gasdermin-D is a 53 kDa 

protein cleaved into a 31 kDa N-terminal fragment and a 22 kDa C-terminal fragment by 

capsase-1. The C-terminal fragment plays an auto-inhibitory role in preventing gasdermin-
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D from misfiring. The active N-terminal fragment has increased affinity for 

phosphatidylinositol (4)-phosphates, phosphatidylinositol (4,5)-bisphosphate, and 

phosphatidylserine (PS) on the cellular membrane (105). Binding of the N-terminal 

fragment to the cell membrane induces the formation of a pore. The pore formed is 

estimated to contain between 16-24 monomers of gasdermin-D with an inner diameter 

between 10 20 nm, allowing for the passage of IL-1β and IL-18 outside the cell and leading 

to pyroptosis (158, 159). 
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Chapter 3 

Experimental Techniques 
 

  



28 

 

3.1 NMR spectroscopy 
 

Nuclear magnetic resonance (NMR) spectroscopy relies on the existence of the nuclear 

spin, which is an intrinsic property of each nucleus that depends on the rotational motion 

of the nucleus about its own axis. The nuclear spin is given by the spin angular momentum 

I. The total angular momentum of each spin is quantized and represented by the angular 

momentum vector L (160): 

|𝐿| = ℏ√𝐼(𝐼 + 1) 

Eq (1) 

Where ħ is Planck’s constant divided by 2π and I is the nuclear spin quantum number. By 

convention, the angular momentum in the z-direction is represented by the following 

equation (160, 161): 

𝐼𝑧 = ℏ𝑚 

Eq (2) 

Where m is a magnetic quantum number ranging from -I,-I+1,…,I-1,I representing the 

direction of the spin about the z-axis. For example, a spin of I = ½ will possess two possible 

quantized states +½ and –½ along the z-axis. All nuclei with non-zero spin quantum 

number possess a magnetic moment (Figure 15A) defined as (160–162): 

𝜇 = 𝛾𝐼𝑧 

Eq (3) 

Where μ is the magnetic moment, γ is the gyromagnetic ratio, and I is the angular 

momentum vector. Nuclei possessing spin are classified as magnetically active, while those 

containing no spin are termed NMR silent (160, 162). Nuclei with odd mass numbers 

having a half-integer spin quantum number (1H, 13C, 15N, 31P, and 19F) are considered 

magnetically active. Nuclei with even mass number and even atomic number have a spin 

value of I = 0 and are NMR silent. Nuclei with even mass number and odd atomic number 

have a spin value of I = 1 (2H and 14N). 

In the absence of a magnetic field, nuclei are orientated randomly, however, in the presence 

of a magnetic field nuclei will adopt a specific orientation with respect to the magnetic 

field, either parallel (with the magnetic field) or anti parallel (against the magnetic field) 

(Figure 15B) (160, 162, 163). This effect, known as Zeeman splitting, orientates nuclei 

with I = ½ into a low energy state (α spin) and a high energy state (β spin) separated by an 

energy gap (Figure 15B) (160, 162). The energy needed to excite from the α state to the β 

state is given below (160): 
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𝛥𝐸 = ℏ𝑦𝐵0 

Eq (4) 

Where ħ is Planck’s constant divided by 2π, γ is the gyromagnetic ratio, and B0 is the 

strength of the magnetic field. Increasing the strength of the magnetic field (B0) increases 

the energy of separation. As seen in Figure 15A the stationary magnetic field B0 generates 

a torque on nuclei possessing spin causing it to precess about the z-axis (Figure 15A). For 

reference purposes, we consider precession to be clockwise for nuclei with positive 

gyromagnetic ratio and counterclockwise for nuclei with negative gyromagnetic ratio. 

Precession about the z-axis is given by the Larmor frequency: 

𝜔 = −𝑦𝐵0 

Eq (5) 

In solution, nuclei with I = ½ exist in either the α or β state. For nuclei with negative 

gyromagnetic ratio the β state has a lower energy and is more populated at equilibrium. For 

nuclei with positive gyromagnetic ratio the α state is lower energy and more populated at 

equilibrium. The relative population of each nuclei in the α and β state can be calculated 

using the Boltzmann equation below (160, 161, 163). Where Nα and Nβ are the number of 

nuclei in each state, k is the Boltzmann constant, and T is temperature. 

𝑁𝛼

𝑁𝛽
= ⅇ

−𝛥𝐸
𝑘𝑇  

Eq (6) 
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Figure 15. Precession of nuclei and Zeeman energy level diagram. (A) Stationary magnetic field B0 

generates a torque on the nuclei causing it to precess about the z-axis. (B) In a magnetic field, magnetically 

active nuclei with I= ½ orient with (α spin) or against (β spin) the magnetic field. 

 

 

3.1.1 Chemical shift 

Chemical shifts report on the local magnetic environment of the nuclei. For protein and 

peptide studies using NMR, chemical shifts are used for the identification of torsion angles, 

hydrogen bonding and secondary structure (164). The chemical shift (δ) is expressed 

mathematically as follows (160–162): 

𝛿(𝑝𝑝𝑚) =
𝑣𝑖 − 𝑣𝑟𝑒𝑓

𝑣𝑟𝑒𝑓
 𝑥 106 

Eq (5) 

Where νi is the frequency of the nucleus, νref is the resonance frequency for a reference 

nucleus. The resonance frequencies observed are associated with differences in the 

chemical environment as this, in turn, influences the magnetic environment. Each nucleus 

experiences three major effects: shielding, dipolar coupling, and scalar coupling affecting 

the observed frequency (161, 163). The orbital motion of electrons around the nucleus 

creates a small magnetic field that opposes the applied external magnetic field, thus 

reducing the magnetic field experienced by the nucleus. This effect is known as shielding 

the nucleus from the applied magnetic field. A highly shielded nucleus (greater electron 

density) will absorb at lower frequency compared to a deshielded nucleus (Figure 16D). 

Because the chemical shift depends on the electron density around the nucleus, 
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electronegative groups attached to molecules will result in significant differences in the 

chemical shift of each nucleus (Figure 16A). 

Similarly, the resonance frequency of a nuclei can be influenced by the spin state of another 

nucleus via a “through-space” interaction known as dipolar coupling (160, 161, 163). The 

dipolar coupling interaction is strongly dependent on the distance between two nuclei, at 

distances greater than 5 Å the effect largely disappears (161, 163). In a magnetic field, 

molecule can align with or against the magnetic field. As shown in Figure 16B, the field 

experienced by nucleus A can be either enhanced or decreased depending on the orientation 

of nucleus B. The magnitude of this effect is given by the following equation (160, 162, 

163): 

𝑑 =
𝜇0𝛾𝐴𝑦𝐵ℎ

8𝜋2𝑟3
 

Eq (6) 

Where μ0 is the magnetic permeability of free space, γA and γB are the gyromagnetic ratios 

of each nucleus, r is the distance between the two nuclei, and h is Planck’s constant. Lastly, 

electrons shared through chemical bonds can also alter the electron shielding of each 

nucleus. This effect known as scalar coupling is generally weaker compared to shielding 

or dipolar coupling (Figure 16C). Unlike dipolar coupling and shielding effects, scalar 

coupling does not depend on the external magnetic field and is mediated through bonds 

rather than the “through-space” effect of dipolar coupling. The magnitude of this effect 

decreases with increasing number bonds. 
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Figure 16. Factors affecting the chemical shift. (A) Shielding due to the presence of electronegative atoms. 

(B) Dipolar coupling between two nuclei within 5Å of each other. (C) Scalar coupling: the spin state of 

nearby nuclei are affected by nearby nuclei through the electrons in covalent bonds. (D) Effects of shielding 

and deshielding on the observed frequencies. 

 

3.1.2 NMR relaxation 

Nuclear Magnetic Resonance (NMR) allows us to obtain information related to 
biomolecules at the atomic scale (165, 166). Proteins are dynamic; they sample a wide 
range of conformational ensembles to achieve a specific functionality. NMR is uniquely 
suited for reporting on protein dynamics as it provides resolution at the atomic scale. The 
time behavior of each nuclei (spin) can be extracted to provide information related to the 
dynamics of the protein (162, 163, 167). Time scales relevant for protein functionality can 
be monitored with different NMR parameters tailored to each time regime. As shown in 
Figure 17, different motional regimes correspond to different dynamic information related 
to the protein. The ps-ns timescale (fast regime) describes the local motion of the protein 
backbone and overall tumbling (166, 167). Intermediate motion on the μs-ms timescale 
features important biological functions such as catalysis, ligand binding, and allostery (162, 
167). Slower dynamics (ms-s timescale) include protein folding/unfolding and aggregation 
(167, 168). 15N NMR relaxation is routinely used to obtain information related to protein 
dynamics (160, 161, 163). 15N relaxation experiments allow for the characterization of the 
backbone N-H bond vector. 15N relaxation is dependent on the orientational motion of the 
N-H vector with respect to the external magnetic field. The quantification of these motions 
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generally includes three types of experiments: longitudinal relaxation T1, transverse 
relaxation T2, and the heteronuclear 1H-15N NOE (160, 162, 163).  

 

Longitudinal relaxation (T1) represents the time required for the magnetization to 
return to thermal equilibrium. T1 is primarily affected by interactions between magnetic 
dipoles. As previously described, the effect of these interactions consists in the magnetic 
dipole of one nucleus influencing the local magnetic field of nearby nuclei (160, 161, 163). 
The magnitude of the dipole-dipole interaction strongly dependens on the distance between 
the two nuclei. The dipole-dipole interaction is stronger at distances < 5 Å (160, 161, 163). 
The 15N-1H bond distance is 1.02 Å making it the dominant relaxation mechanism. 
Measurement of T1 is generally performed using 1D inversion-recovery NMR 
experiments. As shown in Figure 18A, a 180° pulse inverts magnetization from the +z axis 
to -z magnetization. The magnetization in the -z axis is allowed to return to thermal 
equilibrium at varying delay times, resulting in changes in the magnitude of the net 
magnetization (160, 161, 163, 165). A 90° pulse is then applied to bring the magnetization 
to the xy plane for acquisition. However, T1 relaxation experiments are generally 
performed using a 2D 15N-HSQC pulse sequence with Freeman-Hill cycling to obtain 
better peak resolution and avoid peak crowding (160, 165). Use of the 2D 15N-HSQC T1 
pulse sequence results in an exponential decay; the longer the delay time the less signal 
present during acquisition (Figure 18B). 

 

 

 

 

Figure 17. Timescales experienced by proteins. NMR techniques used to probe various timescales are shown 

above. 15N relaxation experiments T1, T2, and NOE probe the ps-ns and μs-ms timescale. 
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Figure 18. Measurement of T1. (A) Vectorial representation of the inversion-recovery experiment. 

Longitudinal relaxation is measured as return of magnetization to equilibrium. Varying the delay results in 

signal intensity changes. (B) Graph showing the results of the inversion-recovery experiment. 2D 15N-HSQC 

implementation results in an exponential decay. 

Transverse relaxation (T2) results from the loss of phase coherence of the 
magnetization in the x-y plane. Experimentally, T2 is recorded via a spin echo and allows 
for the simultaneous quantification of motion in the ps-ns and μs-ms timescales (Figure 

19) (160, 161, 165). The predominant factor affecting T2 relaxation is the anisotropy of the 
chemical shift (CSA) and its orientation rate with respect to the external magnetic field. 
The electron density surrounding the 15N nucleus is anisotropic, resulting in chemical shift 
anisotropy. The asymmetric distribution of electrons around the 15N nucleus causes the 
amide to experience different local magnetic fields depending on its orientation, thus 
resulting in a loss of phase coherence in the transverse plane. In contrast to solid-state 
NMR, molecules tumble fast enough in solution that the CSA effect is averaged over time 
in chemical shift measurements. However, the CSA effect can be determined in relaxation 
experiments in solution, particularly for large macromolecules such as proteins that tumble 
slowly, which enhances magnetic relaxation via CSA (160–162). As shown in spin echo 
experiment (Figure 19), the magnetization in +z is rotated to the x-y plane using a 90° 
pulse; modulating the delay affects the loss of coherence, afterwards, a 180° pulse is 
applied to refocus magnetization followed by a delay of equal length to the first one, 
acquisition is then recorded after the echo, varying the delay allows for determination of 
T2 (161–163). 
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Figure 19 Measurement of T2.  Vectorial representation for experimentally determining T2 via a spin 

echo. A 90° pulse is applied to place the magnetization in the transverse plane (x-y plane). During the 

delay, the spins lose coherence. After the delay, a 180° pulse inverts the spins refocusing them. Varying the 

delay time directly affects signal intensity, allowing for the determination of T2. 

The steady-state [15N-1H]-NOE represents the cross-relaxation occurring between the 
backbone 15N-1H bond.  The 15N-1H NOE gives information in the ps-ns timescale (Figure 
17). The 15N-1H distance is fixed at 1.02 Å and variations within the NOE correlate to 
differences in motion (165). Fast motions, NOE values < 0.6 are indicative of flexible 
loops, linkers, and disordered regions, while NOE values > 0.8 reflect rigid regions such 
as the presence of secondary structures. NOE data is typically acquired using two different 
spectra: with and without proton saturation. Experimentally, the NOE ratio is typically 
determined using two experiments: a saturated experiment in which the NOE is occurring 
by saturating (making equal) the populations of one spin and measuring the change in 
intensity of nearby nuclei (< 5 Å apart), and an unsaturated experiment used as reference 
where the NOE does not occur because no saturation is applied. The NOE is calculated 
using the following equation  (161, 165, 166): 

𝑁𝑂𝐸 =  
I_Saturated

I_Unsaturated
 

Eq (7) 

Where I_Saturated is the intensity of the NMR signal corresponding to the nucleus affected 

by NOE, and I-Unsturated is the intensity of the NMR signal corresponding to the same 

nucleus in the absence of NOE (no saturation). 

The equations relating the relaxation parameters, T1, T2, and NOE, with the spectral 

density functions (J()) can be derived from the perturbing Hamiltonian of the relaxation 

mechanisms affecting the spins. These equations, reflecting the amount of motion at each 

frequency (), are shown below: 

𝑅1 =
1

𝑇1
= 3𝐴𝐽(𝜔𝑛) + 𝐴𝐽(𝜔𝐻 − 𝜔𝑛) + 6𝐴𝐽(𝜔𝐻 + 𝜔𝑁) + 𝐵𝐽(𝜔𝑁) 

Eq (8) 

With A representing the dipolar constant: 
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𝐴 =
𝜇0𝛾𝐴𝑦𝐵ℎ

8𝜋2𝑟3
 

Eq (11) 

J(𝜔) representing the motion at a particular frequency: 

𝐽(𝜔) =
𝜏𝑐

1 + 𝜔2𝜏𝑐
2
 

Eq (12) 

 

𝑅2 =
1

𝑇2
= 2𝐴𝐽(0) +

𝐴

2
𝐽(𝜔𝐻 − 𝜔𝑁) +

3𝐴

2
𝐽(𝜔𝑛) + 3𝐴𝐽(𝜔𝐻) + 3𝐴𝐽(𝜔𝐻 + 𝜔𝑁)

+
2𝐵

3
𝐽(𝜔𝑛) +

𝐵

2
𝐽(0) 

Eq (13) 

B representing the effects of anisotropy: 

𝐵 =
(𝛥𝜎)2(𝐵0𝑦𝑁)2

3
 

Eq (14) 

 

𝑁𝑂𝐸 = 1 +
𝑦𝐻

𝑦𝑁

𝜎

𝑅1
, 𝜎 = −𝐴𝐽(𝜔𝐻 + 𝜔𝑁) + 6𝐴𝐽(𝜔𝐻 − 𝜔𝑁) 

Eq (15) 

 

 

 

 

 

 

 

 

 



37 

 

3.1.3 Model-free  

The model-free formalism is commonly used to extract dynamic information from 
relaxation parameters. In this approach, a correlation function is approximated and used to 
calculate the spectral density functions. Thus, no specific model of the motion is assumed, 
hence “model-free.” The correlation function of the model-free formalism assumes that the 
internal motion of each N-H vector is independent from the overall motion of the protein 
(169). The correlation function C(𝜏) in the model-free formalism adopts the form: 

𝐶(𝜏) = 𝐶0(𝜏)𝐶𝐼(𝜏) 

Eq (16) 

Overall tumbling of the protein for isotropic diffusion is given by C0  

𝐶0 =
1

5
ⅇ

−𝜏
𝜏𝑚 

Eq (17) 

and internal motion is given by CI 

𝐶𝐼(𝑡) = 𝑆2 + (1 − 𝑆2)ⅇ
−𝜏
𝜏𝑒  

Eq (18) 

S2 is a generalized order parameter measuring the amplitude of motion of the N-H bond 
vector, τe is the internal correlation time, and τm is the overall tumbling motion for isotropic 
diffusion (1/τm = 6D) (169). Considering molecules with isotropic diffusion, the spectral 
density function adopts the form shown below:  

𝐽(𝜔) =
𝑆2𝜏𝑚

1 + (𝜔𝜏𝑚)2
+

(1 − 𝑆2)𝜏

1 + (𝜔𝜏)2
 

Eq (19) 

With J(𝜔) is the spectral density function, 𝜔 is the frequency, τm is the overall motion, with τ 

defined as: 

1

𝜏
=

1

𝜏𝑚
+

1

𝜏𝑒
 

Eq (20) 

The first term represents the overall tumbling of the molecule with contributions 
from S2. The generalized order parameter (S2) can range in values from 0 to 1. S2 value of 
0 represents a completely unrestricted motion of the N-H bond vector, while a value of 1 
represents a fully restricted N-H bond vector (165, 169). The second term reflects the 
overall tumbling of the molecule with contributions from the internal motion. However, 
the model-free does not consider slow motions that can occur between the ns-ps timescale 
and motions closer to global tumbling. An extended model-free spectral density function 
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is used to account for these motions by adding an additional exponential term to account 
for these motions (170):  

𝐽(𝑤) =
𝑆2𝜏𝑚

1 + (𝜔𝜏𝑚)2
+

(1 − 𝑆𝑓
2)𝜏𝑓

1 + (𝜔𝜏𝑓)
2 +  

(𝑆𝑓
2 − 𝑆2)𝜏𝑠

1 + (𝜔𝜏𝑠)2
 

Eq (21) 

With  

1

𝜏𝑖
=

1

𝜏𝑚
+

1

𝜏𝑖
 

Eq (22) 

With i = f, s.  

 

 

 

3.2 Transmission Electron Microscopy 
 

3.2.1 Electron wavelength   

Transmission electron microscopy (TEM) is a powerful technique that uses a beam 

of electrons to obtain images of matter at a resolution typically higher than that achieved 

with optical microscopy. The high resolution allows for imaging at the angstrom level, but 

it is also used for visualization of cells, organelles, viruses, and nanoparticles (171). 

Theoretically, for a given optical system the resolution limit of the system is given by 

Rayleigh’s criterion (172, 173): 

δ =
0.61𝜆

𝑛 sin 𝛼
 

Eq (23) 

δ is the resolution limit, λ is the wavelength, n is the refractive index between the sample 

and lens, and α is the angle of collection of the magnifying lens. nsinα is commonly referred 

to as the numerical aperture (NA). Utilization of shorter wavelengths increases the 

resolution limit according to Rayleigh’s criterion. In regular optical microscopy, it is 

typically not possible to lower the resolution under 200 nm (172). To  overcome this 

limitation, electrons are used in TEM due to their wave-like properties according to the de 

Broglie wave equation (172, 174): 



39 

 

𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
 

Eq (24) 

Where p is the momentum of the electron, m is mass of electron, ν is the velocity of the 

electron and h is Planck’s constant. the kinetic energy in electron volts of an electron 

subjected to an electric potential difference (V) created by an electric field is shown below 

(172, 174): 

ⅇ𝑉 =
𝑚𝑣2

2
 

Eq (25) 

Where e and m and  are the charge, mass and velocity of the electron. 

 

Rearranging the equation gives the electron wavelength: 

𝜆 =
ℎ

√2𝑚ⅇ𝑉
 

Eq (26) 

At high electric potential (> 100 kV), the total kinetic energy of the electron increases 

substantially as ν increases (relativistic mass) and must be taken into account (174).  

Considering the relativistic effects of the electron at higher energies the relativistic 

wavelength of the electron is given (172, 174): 

𝜆 =
ℎ

2𝑚0ⅇ𝑉 (1 +
ⅇ𝑉

2𝑚0𝑐2)
 

Eq (27) 

Where h is Planck’s constant (6.626 × 10−34 N⋅m⋅s), m0 is the rest mass of the electron 

(9.109 × 10−34 kg), e is the charge of electron (−1.602 × 10−19 C), V is the acceleration 

voltage (V), and c is the speed of light in a vacuum (2.998 × 108 m/s). As shown in Table 

1, increasing the accelerating voltage decreases the wavelength of the electron beam. At an 

accelerating voltage of 200 kV the electron wavelength is 2.51 pm, which increases the 

resolution limit according to the equation 20. 
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Table 1 Voltage and corresponding wavelength 

Accelerating voltage (kV) Electron wavelength (nm) 

100 0.00370 

120 0.00335 

140 0.00307 

160 0.00285 

180 0.00267 

200 0.00251 

 

 

 

 

3.2.2 Electron sources 

The electron beam can be generated from two main sources, a thermoionic gun or 

a field-emission gun (FEG). A thermionic gun generates electrons when heated at 

temperatures. Thermionic sources use materials such as tungsten filaments, lanthanum 

hexaboride (LaB6), or cerium hexaboride (CeB6) that are capable of being heated to 

temperatures over 1,700 K (172, 174). Tungsten filaments are easier to maintain and 

cheaper but have poor resolution due to the high operating temperature needed to produce 

electrons. LaB6 crystals have a lower operating temperature, a 1 μm fine tip, and a higher 

current density compared to tungsten filaments. The result is an electron source capable of 

working at lower temperatures increasing its operating life, brightness levels (10x) greater 

than tungsten filaments, and a smaller crossover (minimum cross-sectional area of the 

beam) angle improving the coherence of the electron beam (172). However, due to the 

volatile nature of LaB6 a higher vacuum is needed to reduce carbon contamination. FEG’s 

uses an applied electric field on a tungsten needle with a tip radius of < 0.1 μm to emit 

electrons (173, 174). FEG’s can provide ~ 100 times brightness, highly coherent beam, and 

a smaller beam size compared to thermoionic guns. Two types of FEG’s are commonly 

used; a Schottky FEG or a cold FEG. Schottky FEG uses a tungsten emitter or, in the case 

of hot-FEG, a zirconium oxide (ZrO2) coated tip to increase electrical conductance (173, 

174). Typically, these FEG’s have an operating temperature between 1,600 – 1,800 K and 

offer an energy spread of 1 eV. For energy spreads lower than 0.5 eV a cold FEG is used 

at a significantly lower operating temperature (300K) compared to other electron sources 

(174).  
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Figure 20. SEM images of electron sources. (A) LaB6 crystal electron source and (B) A FEG displaying 

the fine tip of the tungsten needle. Reprinted by permission from Springer Nature Customer Service Centre 

GmbH: Springer Nature. Springer eBook. Electron Sources, David B. Williams, C. Barry Carter, Copyright 

(2009). (172). 

 

3.2.3 Electromagnetic lenses 

The TEM is equipped with electromagnetic lenses capable of focusing the electron 

beam. As shown in Figure 21 the electron beam travels down the optical axis as it is 

refocused and magnified several times by multiple magnetic lenses. Magnetic lenses are 

constructed using two soft iron materials wrapped in Cu coils to generate a magnetic field 

(173, 174, 174). The magnetic field aids in converging the beam to a focal point. The 

electron beam passes through a first set of lenses; the condenser lenses C1 and C2. The C1 

lens controls the spot size of the electron beam. The C2 lens is used to control beam 

brightness and converges the beam onto the sample. The diffraction of the electron beam 

from the specimen is then passed through the objective lens. The objective lens is necessary 

for focusing and magnifying the specimen and further magnification of the image is 

accomplished by the intermediate lens and projector lens. It should be noted the 

electromagnetic lenses presented above suffer from both spherical aberrations (Cs) and 

chromatic aberrations (Ca) (172, 174). Spherical aberrations are the result of electrons 

deviating from the optical axis affecting the focus of the sample. Chromatic aberrations are 

due to differences in electron energies as they are accelerated. The different electron 

energies form a disk instead of a focal point making it difficult to properly focus the image. 
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Figure 21 Electromagnetic lenses used in TEM. (A) Schematic diagram of electromagnetic lenses. Current 

passing through the copper coils magnetizes the iron pole pieces deflecting electrons back to the optical axis. 

(B) Ray diagram of a TEM microscope showing the multiple electromagnetic lenses and apertures used. 

 

3.2.4 TEM sample preparation 

TEM grids are commonly used for sample support. They can be composed of a 

variety of materials (Cu, Ni, Au, Mo, Ti, Be, and stainless steel) and can be further modified 

by coating the grid with different support films (carbon, formvar, SiO, etc..) of varying 

thickness (173). Copper grids with carbon films are commonly used due to their low cost, 

nonmagnetic properties, chemical stability, and electrical conductivity. TEM grids are 3 

mm in diameter and range in thickness from 5 – 30 μm (173). Samples composed of 

polymers, biological materials and specific light elements (C, O, H, and N) that are too thin 

or transparent can be negatively stained to enhance their contrast (175). Negative staining 

involves the use of heavy metals such as phosphotungstic acid (PTA) or uranyl acetate to 
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surround the sample with dense metals, blocking incoming electrons around the sample 

(175). Because electrons cannot pass through the dense material the sample appears 

brighter relative to the dark background. Positive staining involves enhancing the contrast  

of a sample by coupling a heavy metal (lead citrate, osmium tetroxide) to polymers, and 

biological samples(175).  

3.3 Dynamic light scattering 
 

Dynamic light scattering (DLS) uses a monochromatic light source to illuminate 

particles in solution. The scattered light reports on the shape and size of macromolecules 

(176). The benefits of DLS are its versatility in using a wide range of buffers and 

temperatures. In addition, DLS only requires a small sample size. DLS is widely used in 

the characterization of micelles, proteins, nanoparticles, and nucleic acids.  Assuming a 

spherical shape, DLS is routinely used to determine the size of molecules and nanoparticles 

in solution as well as the homogeneity of the sample (176, 177). Additionally, DLS is 

useful in monitoring aggregate sizes and distribution due to the scattering intensity being 

proportional to sixth power of the molecular radius (178). Therefore, different populations 

of oligomers can be reported. Furthermore, protein-protein interactions, protein-RNA 

interactions, and protein-small molecule interactions can be monitored in solution (176). 

Changes in hydrodynamic sizes are readily observed and correlated to protein complexes. 

 

Figure 22. Schematic representation of a DLS instrument. A laser is used as a light source. The laser passes 

through an attenuator to reduce the intensity of light prior to illuminating the sample. Detection can 

be accomplished either with a backscatter detector at 175° degree or at 90°. Finally, the scattering 

intensity is processed through a correlator. 
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3.3.4 Dynamic light scattering theory 

DLS relies on the principle of Brownian motion for determining particle size. 

Larger molecules diffuse slowly whereas smaller molecules tend to diffuse rapidly (Figure 

23). When molecules are illuminated by a monochromatic source, in this case an infrared 

laser, the intensity of the scattered light fluctuates as a function of time given by the 

correlation function G(τ) (176): 

𝐺(𝜏) = 𝐼(𝑡)𝐼(𝑡 + 𝜏) 

Eq (28) 

Where τ is the difference in time between the two measurements. The average of the 

function with time, shown in equation 26, provides a measure of how fast the intensity of 

the scattered light decays and how fast it changes orientation (176, 177): 

𝑔(𝛥𝜏) =
𝑓(𝑡)𝑓(𝑡 + 𝜏)

𝑓(𝑡)𝑓(𝑡)
 

Eq (29) 

The dependence of the correlation function with time is approximated to an exponential 

function where B is the baseline, A is the amplitude, and Γ is the decay rate of the scattered 

intensity (Figure 23) (176, 177): 

𝐺(𝜏) = 𝐵 + 𝐴ⅇ(−2𝛤𝜏) 

Eq (30) 

 

Figure 23. Dependence of the correlation function with time.  The decay rate of the intensity of the 

scattered light changes depending on the particle size. The intensity of the scattered light decays faster for 

smaller particles compared to larger particles. 
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Γ is proportional to the scattering vector (q) and the diffusion constant (D) with the 

scattering vector being proportional the refractive index (η), the wavelength of the light (λ) 

and the scattering angle (θ) (176, 177). 

𝛤 = 𝐷𝑞2 = 𝐷 (
4𝜋𝜂 sin

𝜃
2

𝜆
)

2

 

Eq (31) 

Determination of the diffusion constant (D) allows for the calculation of the hydrodynamic 

radius (particle size) using the Stokes-Einstein equation (176, 177): 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟ℎ
 

Eq (32) 

Where kB is Boltzmann constant (1.380 × 10−23kg.m2.s−2.K−1), T is the absolute 

temperature, η is the viscosity of the medium and rh is the hydrodynamic radius of the 

molecule 
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4. Project aims 
 

The objectives of this doctoral thesis are as follows: 

1. Objective 1: Determine a biological role for the ASC isoform, ASCb, using 

biophysical techniques. 

a. Determine the capabilities of  ASC and ASCb in regulating inflammasome 

complexation at the molecular level. 

b. Identify differences in ASC and ASCb that affect their ability to self-

associate. 

 

2. Objective 2: Determine the role played by the protein interdomain linker in the 

self-association capabilities of ASC and ASCb. Can this linker be optimized to 

increase inflammasome activity.? 

a. Develop an engineered isoform of ASC, called ASC3X, to monitor the 

effects of linker length on protein self-association. 

b. Determine whether there is an optimal linker length by comparing ASC, 

ASCb and ASC3X behavior at the molecular level. 

c. Determine the influence of the linker length on the interdomain dynamics 

between the PYD and CARD. 
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5. Results 
 

Objective 1 

 

Publication 1 

 
Diaz-Parga, P., & de Alba, E. (2022). Inflammasome regulation by adaptor 

isoforms, ASC and ASCb, via differential self-assembly. Journal of Biological 

Chemistry, 298, 101566. 

 

Objective 2 

 

Publication 2  

 
Diaz-Parga, P., Gould, Andrea & de Alba, E. (2022). Natural and engineered 

inflammasome adaptor proteins reveal optimum linker length for self-assembly. 

Journal of Biological Chemistry. 
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Diaz-parga, and Eva de Alba. Inflammasome regulation by adaptor isoforms, ASC and 
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Society for Biochemistry and Molecular Biology  
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7. Discussion 
 

Regulation and formation of the inflammasome complex depends on the inclusion 

of the inflammatory adaptor ASC to the inflammasome complex. ASC plays a pivotal role 

in cellular death. The discovery of multiple isoforms of ASC (ASCb, ASCc, and ASCd) in 

macrophages further exemplifies its role in regulating pyroptosis. Each isoform has been 

shown to be expressed biologically depending on the cell type and serve to either lower 

inflammatory activity or inhibit inflammasome activation. Specifically, the biological 

activity of ASC relies on three integral parts: PYD domain, CARD domain, and linker 

length. As previously reported changes in either the domains or linker length have a 

significant effect on inflammasome activity. The studies presented above focused on 

establishing key differences between ASC and its isoform ASCb, in addition to, the effects 

of the linker on the dynamics between the PYD and CARD domain. The naturally 

occurring isoform, ASCb, and the engineered isoform, ASC3X, provide an ideal 

experimental design at two different extremes.  

As shown by NMR, modulation in linker length does not alter the overall secondary 

structures the PYD and CARD domain. At a linker length of 3 aa (ASCb) and 23 aa (ASC) 

both domains remain intact and retain biological activity being able to complex with the 

PYD of NLRP3 and the CARD of procaspae-1 (18, 155). Similarly, at 69 aa (ASC3X) both 

domains also retain their secondary structure. As demonstrated by RT-NMR changes in 

linker length directly influence the self-association rate of each protein. At longer linker 

lengths > 23 amino acids the self-associating rate occurs in two kinetic phases, an initial 

fast phase, proceeded by a slower kinetic phase. While at smaller linker lengths self-

association occurs as one slow kinetic phase or two identical slow phases. Analysis of the 

PYD and CARD domain at the amino acid level reveal equal participation of the PYD and 

CARD in ASCb self-association. At longer linker lengths the data suggests one domain 

predominantly drives the self-association process.  At 23 aa acids the PYD-PYD interaction 

drives the self-association of ASC allowing it to produce the prototypical ASC speck. At 

69 aa acids the CARD-CARD interaction drives the self-association process and forms a 

stable oligomer in solution. 

Unexpectedly, as suggested by the RT-NMR data at longer linker lengths (ASC3X) 

the CARD-CARD interaction is the primary driver in self-associating behavior. The 

unusual loss of signal intensity for CARD residues suggests the formation of an stable 

CARD oligomer with non-interacting PYD domains as noted by the residual loss of signal 

intensity seen for PYD residues. Inexplicably, a CARD driven oligomer as a result of a 

longer linker does not allow for further PYD-PYD interactions; furthermore, the presence 

of a longer linker does not seem to increase the flexibility and thus, the interaction volume 

of each domain. Rather the added length seemingly acts as a deterrent for further PYD-

PYD interactions reducing the overall effectiveness of its self-association properties. In 
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direct contrast, at significantly shorter lengths, ASCb, both the PYD and CARD domain 

drive the self-association process simultaneously resulting in a slower rate of self-

association. Notably, at an intermediate linker length, ASC self-association is primarily 

driven by the PYD domain followed by the CARD-CARD interaction. The intermediate 

linker confers enough flexibility allowing both domains to interact through homotypic 

interactions. As evidenced by DLS studies of ASC, ASCb, ASC3X, indicate that at either 

extreme both ASCb and ASC3X lose the ability to form compact structures.   

SEC studies monitoring the effects of pH, time, and concentration further enhance 

the self-association capabilities of each protein. Curiously, SEC studies of ASC3X appear 

to show the presence of a long-lived dimer indicating the presence of a stable dimer and 

monomer in solution. However, under similar conditions this phenomenon was not 

observed in both ASC and ASCb. Both ASC and ASC3X follow a similar trend, at longer 

linker lengths the self-association ability of each protein is enhanced readily producing an 

oligomer > 600 kDa in size. At a linker length of 3 aa ASCb retains a monomeric population 

after 2 days and at higher pH’s compared to ASC and ASC3X. Despite differences in linker 

length, at neutral pH ASC, ASCb, and ASC3X assemble into similarly sized filaments. 

Further insight into the interdomain dynamics using NMR relaxation reveal an 

already optimized linker length suited for inflammasome regulation. As previously stated, 

changes in linker length did not affect the overall structure of the PYD and CARD domain 

as indicated by [1H-15N] NOE values. Furthermore, the linker region remains disordered 

and highly flexible even at a significantly increased length. From the data, it is evident a 

reduced distance between both domains, as seen with ASCb, causes them to tumble 

together as a rod rather than two separate entities, resulting in a protein mimicking the 

behavior of a larger protein. The lack of a sufficiently long linker and interdomain 

flexibility between the two domains interferes with the capabilities of each domain to 

participate in homotypic interactions resulting in different behavior and biological function 

compared to ASC; increasing the distance between the two domains at longer linker lengths 

(69 aa) also produced behavior different from ASC. Surprisingly, the presence of a 69 aa 

linker did not produce a substantial change in both T1 and T2 values suggesting an upper 

limit to the effects of linker length on interdomain dynamics. Further increases would result 

in similar values as the linker would still provide sufficient drag to each domain.  The 

flexibility afforded to each domain offers diminished returns at longer lengths and is 

comparable to that of ASC.   

 The results obtained from these studies demonstrate the importance of linker length 

on biological function. Changes in linker length have a dramatic effect on the inherent 

capabilities of the inflammasome adaptor ASC. ASCb and ASC3X fail to produce uniform 

structures in vitro instead forming different sized populations in solution. It is known ASCb 

produces a lower inflammatory response compared to ASC and that both ASC and ASCb 

can colocalize in the cell producing irregular sized filaments presumably affecting 

inflammasome complexation. Further studies monitoring the rate of formation of ASC and 
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ASCb colocalization are needed to determine the rate of formation as well as the specific 

type of macrostructures formed in solution. Secondly, RT-NMR experiments on the 

ASCPYD and ASCCARD are needed in determining the inherent rate of self-association for 

each domain. Determination of the rate for each domain will allow for a comparison to the 

PYD and CARD domain of ASC at longer linker lengths. Lastly, in vitro experiments 

monitoring the activity of ASC, ASCb, and ASC3X to the activation of procaspase-1 are 

necessary to further correlate linker length to biological function.  
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