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Abstract

Theory and Application of Path Probability Functionals in Population Genetics

by

Joshua G. Schraiber

Doctor of Philosophy in Integrative Biology

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Montgomery Slatkin, Chair

Calculations based on the Wright-Fisher process and its limits are the primary tools of
population genetics theory. Decades of theoretical work have elucidated much about the
properties of the neutral Wright-Fisher model, in which different mutations have the exact
same Darwinian fitness. The model becomes significantly more complicated when the action
of natural selection is taken into account, and we are only just beginning to understand the
details of evolution subject to natural selection. In this thesis, I take a path integral approach
to understanding the Wright-Fisher diffusion with selection, in contrast to the typical ap-
proach, using partial differential equations. This allows me to use powerful machinery from
quantum physics and mathematical finance to come up with novel ways to perform difficult
calculations. The work here is composed of three parts. First, I develop a rejection sampling
approach to obtaining Wright-Fisher diffusion paths when the allele frequency trajectory is
conditioned to start and end at certain points (such paths are called bridges). Next, I use
perturbation theory to calculate the transition densities of the Wright-Fisher process with
genic selection, assuming weak selection. Finally, I implemented a Markov chain Monte Carlo
approach to estimating selection coefficients from allele frequency time series that makes use
of aspects of both of the previous chapters.
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Chapter 1

Introduction

From its origins as a primarily theoretical discipline by the hands of R.A. Fisher, Sewall
Wright and J.B.S. Haldane, population genetics has grown into an extensive field encom-
passing both applied and theoretical aspects. For the past several decades, the primary lens
through which both theoretical and empirical observations were made was the neutral theory
(Kimura 1984). From a theoretical point-of-view, the neutral theory provides simple calcula-
tions and clear interpretations. The Wright-Fisher Markov chain, and its infinite-population
limits, serve as primary tools in the theoretician’s toolbox (Ewens 2004). For neutral alle-
les, several results can be obtained, including the stationary distributions (Wright 1931a),
the complete transition density (Kimura 1955a), and certain sampling distributions (Ewens
1972).

Moreover, in the neutral case, it is possible to consider a simple genealogical process,
the coalescent, introduced by Kingman (1982). In this model, first the genealogy of the
individuals in a sample is constructed, and then neutral mutations are laid on top of that
genealogy. The probability of the genetic data obtained can then be computed and used to
fit complicated models of demographic history and population structure (Kuhner et al. 1995,
1998; Drummond et al. 2005; Li & Durbin 2011; Harris & Nielsen 2013).

Because it is easy to determine properties of the data under the neutral model, it can
be used as a null model for interpreting empirical genetic data (Watterson 1978; Tajima
1989; Slatkin 1994; Fay & Wu 2000). In many cases, the goal of such neutrality tests is
to determine whether the observed genetic data have been shaped by natural selection. A
wide array of tests have been developed to detect the signature of selection in linked neutral
variation and applied successfully across numerous species (Nielsen et al. 2005a; Voight et al.
2006; Pickrell et al. 2009). However, going beyond merely rejecting neutrality to estimating
the strength and direction of natural selection has proved difficult.

Part of this difficulty stems from the added complexity entailed by natural selection.
Unlike the neutral case, there is no simple solution for the transition probabilities of the
diffusion limit of the Wright-Fisher Markov chain with selection. Kimura (1955b) made an
early attempt using a separation of variables approach; however, he was unable to come
up with simple expressions for the eigenvalues of the associated differential operator. More
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recently, the work of Song & Steinrücken (2012) (see also Steinrücken et al. (2012)) developed
a computational approach to approximating the transition density, relying on the theory of
orthogonal functions. When Neuhauser & Krone (1997) (see also Krone & Neuhauser (1997))
introduced a genealogical approach—known as the ancestral selection graph—to modeling
natural selection, many hoped that it would be a golden age for inferring natural selection
from population genomic data. Unfortunately, the same difficulties that plagued earlier
approaches to modeling natural selection have ultimately shown that the ancestral selection
graph was not as powerful as initially hoped.

In this thesis, I present a different way of thinking about the Wright-Fisher diffusion.
As opposed to the partial differential equations (PDE) approach that is traditionally used
(Ewens 2004), I use an approach inspired by the path integral formulation of quantum
mechanics, first laid out in Feynman (1948) (but note the influence of Dirac (1933)). In the
setting of quantum physics, each possible path a particle can take between points A and B
is assigned a phase in the complex plane, and by integrating over the (uncountably infinite)
space of paths, one can calculate quantities of interest. As recognized by Kac (1949), this
approach could be extended to diffusion processes by using the theory of Wiener (1921)
related to integrals over the space of Brownian motion. In the context of allele frequency
change, we consider assigning a probability to every possible path that an allele can take in
going from frequency x to frequency y.

While this probability is well defined for the discrete-time Wright-Fisher model, it’s nec-
essary to be very precise when considering the infinite-population limit. Whereas in quantum
systems, transitioning between the PDE viewpoint and the path integral viewpoint corre-
sponds to switching between a Hamiltonian and Lagrangian viewpoint, it is not so simple.
In particular one cannot simply compute the Onsager-Machlup functional (the equivalent of
a Lagrangian) corresponding to the diffusion generator (the equivalent of a Hamiltonian).
This is because many diffusion have a space-dependent diffusion coefficient; thus, they are
equivalent to models on curved spaces (Graham 1977; Dürr & Bach 1978).

To overcome this difficulty, it is necessary to use ideas from stochastic analysis to come
up with appropriate path probability functionals (such objects are functionals because they
are maps from a functional space to R). The key idea, explored throughout this thesis, is to
use Girsanov’s theorem (Girsanov 1960) to compute path densities relative to an appropriate
dominating measure. Because there are many such choices of possible dominating measures,
different choices are suitable for different applications.

In Chapter 2, I explore the utility of path probability functionals for rejection sampling
Wright-Fisher diffusion bridges. This work builds off of the foundation laid by Beskos &
Roberts (2005) and was done in collaboration with Robert C. Griffiths and Steven N. Evans.
I developed an efficient rejection sampler, implemented in R, and used to understand certain
path properties of the Wright-Fisher process conditioned on hitting a specific frequency at
a specific time.

In Chapter 3, I attempt to come up with a simple, analytic approach to compute Wright-
Fisher diffusion transition densities when natural selection is incorporated. I do this by
taking the perturbative approach outlined in Feynman & Hibbs (2012), taking a neutral
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Wright-Fisher diffusion to be a “free propagator” and treating natural selection as a kind of
potential energy.

Finally, in Chapeter 4, I combine these two directions into a Markov chain Monte Carlo
method for estimating natural selection from allele frequency time series. In this work, joint
with Montgomery Slatkin and Steven N. Evans, I implemented C++ software to determine
the posterior distribution of the selection intensity, dominance coefficient and allele age. I
applied this method to empirical data and found striking signals of selection.
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Chapter 2

Rejection Sampling Wright-Fisher
Bridges

2.1 Introduction
The Wright-Fisher Markov chain is of central importance in population genetics and has

contributed greatly to the understanding of the patterns of genetic variation seen in natural
populations. Much recent work has focused on developing sampling theory for neutral sites
linked to sites under selection (Smith & Haigh 1974; Kaplan et al. 1989; Nielsen et al. 2005b;
Etheridge et al. 2006). Typically, the site under selection is assumed to have dynamics
governed by the diffusion process limit of the Wright-Fisher chain, in which case the ge-
nealogy of linked neutral sites can be constructed using the framework of Hudson & Kaplan
(1988). However, due to the complicated nature of this model, analytical theory is neces-
sarily approximate and the main focus is on simulation methods. In particular, a number of
simulation programs, including mbs (Teshima & Innan 2009) and msms (Ewing & Hermisson
2010) have recently appeared to help facilitate the simulation of neutral genealogies linked
to sites undergoing a Wright-Fisher diffusion with selection.

Simulations of Wright-Fisher paths under selection can be easily carried out using stan-
dard techniques for simulating diffusions. Frequently, however, it is necessary to simulate a
Wright-Fisher path conditioned on some particular outcome. For example, to simulate the
path of an allele under selection that is currently at frequency x, a time-reversal argument
shows that it is possible to simulate a path starting at x conditioned to hit 0 eventually
(Maruyama 1974). However, more complicated scenarios, including the action of natural
selection on standing genetic variation, require more elaborate simulation methods (Peter
et al. 2012).

The stochastic process describing an allele that starts at frequency x at time 0 and is
conditioned to end at frequency y at time T is called a bridge between x and y in time T
or a bridge between x and y over the time interval [0, T ]. Wright-Fisher diffusion bridges
appear naturally in the study of selection acting on standing variation because it is necessary
to know the path taken by an allele at current frequency y that fell under the influence of
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natural selection at a time T generations in the past when it was segregating neutrally at
frequency x. Wright-Fisher diffusion bridges are also of interest for their application to
inference of selection from allele frequency time series (Bollback et al. 2008a; Malaspinas
et al. 2012; Mathieson & McVean 2013; Feder et al. 2013). In particular, analysis of bridges
can help determine the extent to which more signal is gained by adding further intermediate
time points.

In addition to their applied interest, there are interesting theoretical questions surround-
ing Wright-Fisher diffusion bridges. For alleles conditioned to eventually fix, Maruyama
(1974) showed that the distribution of the trajectory does not depend on the sign of the
selection coefficient; that is, both positively and negatively selected alleles with the same
absolute value of the selection coefficient exhibit the same dynamics conditioned on eventual
fixation. It is natural to inquire whether the analogous result holds for a bridge between
any two interior points. Moreover, the degree to which a Wright-Fisher bridge with selection
will differ from a Wright-Fisher bridge under neutrality is not known (in connection with
this question, we recall the well-known fact that the distribution of a bridge for a Brownian
motion with drift does not depend on the drift parameter, and so it is conceivable that the
presence of selection has little or no effect on the behavior of Wright-Fisher bridges). Lastly,
the characteristics of the sample paths of the frequency of alleles destined to be lost in a
fixed amount of time are not only interesting theoretically but may also have applications
to geographically structured populations (Slatkin & Excoffier 2012).

Here we investigate various features of Wright-Fisher diffusion bridges. The paper is
structured as follows. First, we establish analytical results for neutral Wright-Fisher bridges.
Then, we derive a novel rejection sampler for Wright-Fisher bridges with selection and use
it to study the properties of such processes. For example, we estimate the distribution of
the maximum of a bridge from 0 to 0 under selection and investigate how this distribution
depends on the strength of selection.

2.2 Background
A Wright-Fisher diffusion with genic selection is a diffusion process {Xt, t ≥ 0} with

state space [0, 1] and infinitesimal generator

L = γx(1− x) ∂
∂x

+
1

2
x(1− x) ∂

2

∂x2
. (2.1)

When γ = 0, the diffusion is said to be neutral; otherwise, the drift term captures the
strength and direction of natural selection.

The corresponding Wright-Fisher diffusion bridge, {Xx,z,[0,T ]
t , 0 ≤ t ≤ T} is the stochastic

process that results from conditioning the Wright-Fisher diffusion to start with value x at
time 0 and end with value z at time T . Denote by f(x, y; t) the transition density of the
diffusion corresponding to (2.1). By the Markov property of the Wright-Fisher diffusion,
the bridge is a time-inhomogeneous diffusion and the transition density for the bridge going
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from state u at time s to state v at time t is

fx,z,[0,T ](u, v; s, t) =
f(u, v; t− s)f(v, z;T − t)

f(u, z;T − s) . (2.2)

The time-inhomogeneous infinitesimal generator of the bridge acting on a test function g at
time s is

Lx,z,[0,T ];sg(u) = lim
t↓s

E[g(Xt) |X0 = x,Xs = u,XT = z]− g(u)
t− s

= u(1− u)
(
γ +

∂

∂u
log f(u, z;T − s)

)
∂g

∂u
(u)

+
1

2
u(1− u)∂

2g

∂u2
(u).

(2.3)

An obvious method for simulating a Wright-Fisher bridge would be to simulate the
stochastic differential equation (SDE) corresponding to this infinitesimal generator. There
are two obstacles to this approach. Firstly, analytic expressions for the transition density f
are only known for the neutral case, and even there they are in the form of infinite series.
Secondly, note that the first order coefficient in the infinitesimal generator becomes increas-
ing singular as s ↑ T ; consequently, an attempt to simulate the bridge by simulating the SDE
would be quite unstable because the drift term in the SDE would explode at times close to
the terminal time T . It is because this naive approach is infeasible that we need to consider
the more sophisticated simulation methods explored in this paper.

In addition to conditioning the process to obtain a particular value at a particular time,
it is possible to condition a process’s long term behavior. The transition densities of the
conditioned process, fh(x, y; t) are related to to the transition densities of the unconditioned
process by the usual Doob h-transform formula,

fh(x, y; t) := h(x)−1f(x, y; t)h(y).

The h-transformed process has infinitesimal generator

Lh := x(1− x)
(
γ +

h′(x)

h(x)

)
∂

∂x
+
x(1− x)

2

∂2

∂x2
. (2.4)

Note that the finite dimensional marginal distribution at times 0 ≤ t1 ≤ . . . ≤ tn ≤ T of the
Wright-Fisher diffusion bridge starting at x at time 0 and ending at y at time T has density

f(x, v1; t1)f(v1, v2; t2 − t2) · · · f(vn, y;T − tn)
f(x, y;T )

whereas the analogous density for the corresponding bridge of the h-transformed process is

h(x)−1f(x, v1; t1)h(v1)h(v1)
−1f(v1, v2; t2 − t1)h(v2) · · ·h(vn)−1f(vn, y;T − tn)h(y)
h(x)−1f(x, y;T )h(y)

=
f(x, v1; t1)f(v1, v2; t2 − t1) · · · f(vn, y;T − tn)

f(x, y;T )
.
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Thus, the the bridges for the two processes have the same distribution.
Typical h-transforms include the conditioning a process to eventually hit a particular

value, and for the sake of future reference we recall from standard diffusion theory (Rogers
& Williams 2000a) that the probability that the Wright-Fisher diffusion started from x
eventually hits y is

pxy =

{
S(x)−S(0)
S(y)−S(0) , if y > x,
S(1)−S(y)
S(1)−S(x) , if y < x,

(2.5)

where S is the scale function given by

S(x) =

{
1−e−2γx

1−e−2γ , if γ 6= 0,

x, if γ = 0.

Thus,

pxy =

{
1−e−2γx

1−e−2γy , if y > x,
e−2γy−e−2γ

e−2γx−e−2γ , if y < x,
(2.6)

when γ 6= 0 and

pxy =

{
x
y
, if y > x,

1−y
1−x , if y < x.

(2.7)

2.3 Rejection sampling Wright-Fisher bridge paths

2.3.1 General framework

When selection is incorporated into the Wright-Fisher model, there is no known series
formula for the transition density (but see Kimura (1955b) and Kimura (1957) for attempts
using perturbation theory, as well as Song & Steinrücken (2012) and Steinrücken et al. (2012)
for methods of approximating an eigenfunction expansion computationally). Therefore, we
develop a rejection sampling method that can sample paths of Wright-Fisher diffusion bridges
with genic selection efficiently for the purpose of investigating their properties. In this work,
we focus on a diffusion with genic selection, instead of general diploid selection, for analytical
convenience. The following approach would apply even in the more general case.

Before we explain how rejection sampling can be used to sample paths of a Wright-Fisher
bridge, we first describe the analogous, but simpler, method for sampling paths of diffusion
bridges that have distributions which are absolutely continuous with respect to that of a
Brownian bridge. Fix x, z ∈ R and T > 0. Let W be the distribution of Brownian bridge
from x to z over the time interval [0, T ], and let P be the distribution of the path of a bridge
from x to z over the time interval [0, T ] for a diffusion with infinitesimal generator

G = a(x)
∂

∂x
+

1

2

∂2

∂x2
. (2.8)
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It follows from Girsanov’s theorem (see, for example, Rogers & Williams (2000a)) that the
probability measure P is absolutely continuous with respect to W with Radon-Nikodym
derivative (that is, density)

dP
dW

(ω) = exp

{∫ T

0

a(ωt) dωt −
1

2

∫ T

0

a2(ωt) dt

}
(2.9)

for the path ω, where the first integral in (2.9) is an Itô integral – see Beskos & Roberts (2005)
for the details of the disintegration argument that concludes this fact about Radon-Nikodym
derivatives with respect to the Brownian bridge distribution from the usual statement of Gir-
sanov’s theorem, which is about Radon-Nikodym derivatives with respect to the distribution
of Brownian motion. Because a Brownian bridge can be constructed using a simple transfor-
mation of a Brownian motion (namely, if B is a standard Brownian motion, then the process
{x + (Bt − t

T
BT ) +

t
T
(z − x), 0 ≤ t ≤ T} has the distribution W), it is computationally

feasible to obtain fine-grained samples of the Brownian bridge. Once we have a sequence of
Brownian bridge paths, (2.9) can be used to compute a likelihood ratio, and a standard re-
jection sampling scheme can then be utilized to obtain realizations of diffusion bridge paths;
see Beskos & Roberts (2005) for examples of extensions to this approach.

2.3.2 Application to Wright-Fisher process

The above method is not immediately applicable to the Wright-Fisher bridge because
its infinitesimal generator is not of the form (2.8). However, it was shown on pp 119-120
of Wright (1931b) that if X is the Wright-Fisher process with infinitesimal generator (2.1),
then the transformation

Yt := arccos(1− 2Xt) (2.10)

suggested in Fisher (1922a) produces a diffusion process Y on the state space [0, π] with
infinitesimal generator

LY =
1

2
(γ sin(y)− cot(y))

∂

∂y
+

1

2

∂2

∂y2
.

Because Y has absorbing boundaries at 0 and π, sampling paths of bridges for Y by
sampling Brownian bridges can involve extremely high rejection rates. More specifically,

1

2
(γ sin(y)− cot(y)) ≈ − 1

2y
, as y ↓ 0,

and so the likelihood ratio (2.9) becomes extremely small for paths that spend a significant
amount of time near 0. A similar phenomenon occurs near π.

To overcome the difficulty near 0, we develop a rejection sampling scheme where the
proposals are realizations of a process other than the Brownian bridge.

As a first step, consider the Wright-Fisher diffusion conditioned to be eventually ab-
sorbed at 1. By the argument given in Section 2, this process has the same bridges as the
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unconditional process. It follows from (2.6) and (2.7) with y = 1 that the probability the
process starting from x is absorbed at 1 is

h(x) :=

{
1−e−2γx

1−e−2γ , γ 6= 0,

x, γ = 0.

The transition densities of the conditioned process, fh(x, y; t), are related to the unconditional
transition densities by the usual Doob h-transform formula

fh(x, y; t) := h(x)−1f(x, y; t)h(y).

The corresponding infinitesimal generator is

Lh :=
{
γx(1− x) coth(γx) ∂

∂x
+ 1

2
x(1− x) ∂2

∂x2
, γ 6= 0,

(1− x) ∂
∂x

+ 1
2
x(1− x) ∂2

∂x2
, γ = 0.

(2.11)

Applying the transformation (2.10) to the process with infinitesimal generator (2.11)
results in a process with infinitesimal generator

LhY :=

{
1
2

(
γ sin(y) coth(γ sin2(y/2))− cot(y)

)
∂
∂y

+ 1
2
∂2

∂y2
, γ 6= 0,

1
2
(sin(y) csc2(y/2)− cot(y)) ∂

∂y
+ 1

2
∂2

∂y2
, γ = 0.

(2.12)

Note that
1

2

(
γ sin(y) coth(γ sin2(y/2))− cot(y)

)
≈ 3

2y
as y ↓ 0 (2.13)

and
1

2

(
sin(y) csc2(y/2)− cot(y)

)
≈ 3

2y
as y ↓ 0. (2.14)

Moreover, if Q is the distribution of a bridge from x to z over the time interval [0, T ] for
some diffusion with infinitesimal generator

G = b(x)
∂

∂x
+

1

2

∂2

∂x2

and P is the distribution of a bridge from x to z over the time interval [0, T ] for the diffusion
with infinitesimal generator (2.8), then

dP
dQ

(ω) =
dP
dW

(ω)
dW
dQ

(ω)

=
dP
dW

(ω)

/
dQ
dW

(ω)

= exp

{∫ T

0

a(ωt)− b(ωt) dωt −
1

2

∫ T

0

a2(ωt)− b2(ωt) dt
}
.
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This suggests that a better rejection sampling scheme for bridges of the process Y with end
points close to zero will result when the proposals come from a diffusion with an infinitesimal
generator having a first order coefficient with a singularity at zero matching the one appearing
in both (2.13) and (2.14).

For such a modified scheme to be feasible, it is necessary to work with a proposal diffusion
for which it is easy to simulate the associated bridges. We now introduce such a process.
The 4-dimensional Bessel process is the radial part of a 4-dimensional Brownian motion.
That is, if {Bt = (B

(i)
t )4i=1, t ≥ 0} is a vector of 4 independent one-dimensional Brownian

motions, then

βt := |Bt| =
√

(B
(1)
t )2 + (B

(2)
t )2 + (B

(3)
t )2 + (B

(4)
t )2, t ≥ 0,

is a 4-dimensional Bessel process (see Revuz & Yor (1999, Section XI.1) for a thorough dis-
cussion of Bessel processes). The 4-dimensional Bessel process is a diffusion with infinitesimal
generator

B :=
3

2

1

x

∂

∂x
+

1

2

∂2

∂x2
.

Letting P (resp. B) be the distribution of the bridge for the process with infinitesimal
generator (2.12), and hence the distribution of the transformed Wright-Fisher diffusion Y ,
(resp. the 4-dimensional Bessel bridge) from x to z over the time interval [0, T ], we have

dP
dB

(ω) =
dP
dW

(ω)
dW
dB

(ω)

= exp

{∫ T

0

1

2

(
γ sin(ωt) coth(α sin2(ωt/2))− cot(ωt)−

3

ωt

)
dωt

− 1

2

∫ T

0

1

4

((
γ sin(ωt) coth(α sin2(ωt/2))− cot(ωt)

)2 − 9

ω2
t

)
dt

}
. (2.15)

We next explain how to simulate a 4-dimensional Bessel bridge. We can construct the
bridge from u ∈ R4 to v ∈ R4 over the time interval [0, T ] for the 4-dimensional Brownian
motion as

Ct :=

(
1− t

T

)
u+

t

T
v +

(
Bt −

t

T
BT

)
,

where B0 = 0. The distribution of u+BT conditional on |u+BT | = z has density proportional
to w 7→ exp(w·u/T ) with respect to the normalized surface measure on the sphere centered at
the origin with radius y, where w ·u is the usual scalar product of the two vectors w, u ∈ R4.
Hence, a 4-dimensional Bessel bridge from x to z over the time interval [0, T ] is given by

γt :=

∣∣∣∣(1− t

T

)
u+

t

T
V +

(
Bt −

t

T
BT

)∣∣∣∣ ,
where B0 = 0, u ∈ R4 is any vector with |u| = x, and V is random vector taking values on the
sphere centered at the origin with radius z that is independent of B and has a density with
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respect to the normalized surface measure that is proportional to w 7→ exp(w · u/T ). Note
that the random vector V/z, which takes values on the unit sphere centered at the origin,
has a Fisher – von Mises distribution with mean vector u/x and concentration parameter
xz/T (see, for example, Mardia et al. (1979, Ch. 15)).

Increasing the strength of natural selection causes the Wright-Fisher bridge to move faster
for intermediate frequencies, but the method proposed above uses the same 4-dimensional
Bessel bridge regardless of the value of the selection parameter γ, and so the rejection rate
can become very high for large values of γ. To deal with this phenomenon, we introduce the
following further refinement to the proposal process.

With P the distribution of the transformed Wright-Fisher bridge from x to z over the
time interval [0, T ] as above, let ωε : [0, T ] → [0, π], ε > 0, be the path with ωε0 = x and
ωεT = z that maximizes

ω 7→ P
{
ω′ : sup

0≤t≤T
|ω′t − ωt| ≤ ε

}
.

Then, ωε converges as ε ↓ 0 to a path ω∗. Heuristically, we can think of ω∗ as the path that
has “maximum probability” or is “modal” for P. This path is sometimes called an Onsager-
Machlup function and it can be found by solving a certain variational problem – see, for
example, Ikeda & Watanabe (1989). For the transformed Wright-Fisher bridge, an analysis
of the variational problem shows that the maximum probability path satisfies the second
order ordinary differential equation

ω̈∗ =
γ2

8
sinω∗ − 3

4
cotω∗ csc2 ω∗ (2.16)

with boundary conditions ω∗0 = x and ω∗T = z.
With a solution to (2.16) in hand, it is possible to construct a better proposal distribution

by linking together bridges that are “close” to the maximum probability path. First, choose
a number of discretization points N and take times 0 < t1 < . . . < tN < T . Then, sample
independent random variables U1, U2, . . . , UN with densities g1, g2, . . . , gN to be specified
later. Put t0 = 0, tN+1 = T , U0 = x and UN+1 = z. Build conditionally independent 4-
dimensional Bessel bridges from Ui to Ui+1 over the time intervals [ti, ti+1]. The distribution
of Ui should be chosen so that Ui is close to the maximum probability path at time ti; we
choose re-scaled Beta distributions with mode at the solution of (2.16) at time ti. More
specifically, we set Ui = πXi, where Xi has the Beta distribution with parameters(

1 +
x∗ti
π
(θ − 2)

1− x∗ti
π

, θ

)
.

for some free parameter θ. We used the particular value θ = 50 for the examples in this
paper, but other value of θ could be used in a given situation in an attempt to optimize the
frequency of rejection.

By stringing these bridges together, we get a path going from x to z over the time interval
[0, T ]. However, the distribution of this path is certainly not that of the 4-dimensional Bessel
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bridge because of the manner in which we have chosen the endpoints of the component
bridges. Therefore, we can’t simply use the Radon-Nikodym derivative (2.15) as it stands
to construct a rejection sampling procedure. Rather, if we let Q be the distribution of the
path built by stringing the bridges together, then we must accept a path ω with probability
proportional to

dP
dB

(ω)
dB
dQ

(ω). (2.17)

Note that
dB
dQ

(ω) =

∏N
i=0 ρ(ωti , ωti+1

; ti+1 − ti)
ρ(x, z;T )

∏N
i=1 gi(ωti)

, (2.18)

where
ρ(x, z; t) := I1

(xy
t

) y2
xt
e−

x2+z2

2t (2.19)

is the transition density of the 4-dimensional Bessel process with Iν the modified Bessel
function of the first kind.

2.3.3 Simulation results

To demonstrate the effectiveness of the rejection sampling scheme, Figure 2.1 shows Q-
Q plots of the one-dimensional marginal at time t of a Wright-Fisher bridge with genic
selection as estimated using the rejection sampler compared to an approximation that uses
the method of Song & Steinrücken (2012) to compute the cumulative distribution function
of the marginal. For both rows, the bridge goes from x = .2 to z = 0.7 over the time interval
[0, T ] = [0, 0.1]. The left panels correspond to t = 0.03 and the right panels correspond to
t = 0.07. The top row corresponds to γ = 10 and the bottom row to γ = 50, demonstrating
the effectiveness of the rejection sampling scheme over a wide range of selection coefficients.

Figure 2.2 demonstrates the behavior of a Wright-Fisher diffusion bridge as the selection
coefficient increases. A bridge from x = 0.01 to z = 0.8 over the time interval [0, T ] =
[0, 0.1] is shown for γ = 0, γ = 50 and γ = 100. As the selection coefficient increases, the
proportion of time the bridge spends near the boundary also increases, because the Wright-
Fisher diffusion moves faster when it is away from the boundaries. In addition, the paths
that the bridge takes become more tightly centered around the most probable path as the
selection coefficient increases.

Being able to sample Wright-Fisher bridge paths makes it very easy to numerically ap-
proximate the distribution and expectation of various functionals of the path. As an example,
Figure 2.3 shows the density of the maximum in a bridge from x = 0 to z = 0 over the time
interval [0, T ] = [0, 0.1] for γ = 0, γ = 50 and γ = 100. Note that the maximum in the bridge
decreases as the strength of selection increases, and also becomes more tightly concentrated
around its expectation.

To gain a more quantitative understanding of the extent to which a bridge for an allele
experiencing natural selection looks different from the bridge for a neutral allele, it is possible
to compute the Radon-Nikodym derivative (i.e. the likelihood ratio) of the distribution under
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Figure 2.1 : Q-Q plot showing the accuracy of the rejection sampling scheme. Theoretical quantiles
were calculated using the method of Song & Steinrücken (2012) and sample quantiles are determined
from 1000 bridges simulated using the method described in the text. The bridge goes from x = 0.2

to z = 0.7 over the time interval [0, T ] = [0, 0.1]. The left panels correspond to t = 0.03 and the
right panels correspond to t = 0.07. The top row corresponds to γ = 10 and the bottom row to
γ = 50.

selection against the distribution under neutrality. Using an argument similar to that which
led to (2.15), the likelihood ratio is

dPγ
dP0

(ω) ∝ exp

{
−1

8

∫ T

0

γ2 sin2(ωt) dt

}
, (2.20)

where the constant of proportionality only depends on the endpoints. A few things are
immediately evident from (2.20). First of all, the likelihood ratio does not depend on the sign
of the selection coefficient, only the magnitude. This is analogous to the result Maruyama
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Figure 2.2 : Plot showing the properties of bridge paths as the strength of selection increases. Each
bridge is from x = 0.01 to z = 0.8 over the time interval [0, T ] = [0, 0.1]. The successive selection
coefficients are γ = 0, γ = 50 and γ = 100. For each selection coefficient, pointwise 0%, 25%, 50%,
75% and 100% quantiles are calculated. Solid line is the 50% quantile, dashed line indicates 25%
and 75% quantiles, and the dotted line indicates 0% and 100% quantiles.

(1974) that, conditioned on eventual fixation, the sign of the selection coefficient is irrelevant
to the distribution of the Wright-Fisher diffusion path. Also apparent is that bridges with
strong natural selection will be more likely to be found near the boundary than bridges under
neutrality. Finally, because 0 ≤ sin2(x) ≤ 1, we see that, very loosely, a bridge will look
approximately neutral if

1

8
γ2T ≈ 0. (2.21)
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Figure 2.3 : Densities of the maximum in a 0 to 0 bridge over the time interval [0, T ] = [0, 0.1] for
the selection strengths γ = 0, γ = 50 and γ = 100.

2.4 Discussion
We have examined the behavior of Wright-Fisher diffusion bridges under both neutral

models and models with genic selection. Although various conditioned Wright-Fisher diffu-
sions have been studied in the past, Wright-Fisher diffusions conditioned to obtain a specific
value at a predetermined time have not been studied extensively. We have elucidated some
of the properties of Wright-Fisher bridges using a combination of analytical theory and
simulations.

In contrast to Brownian motion with drift, for which the distribution of a bridge does not
depend on the magnitude of the drift coefficient, the distribution of a Wright-Fisher bridge
does depend on the magnitude of the selection coefficient. As one might expect, bridges
under strong selection are more constrained than neutral bridges. This can clearly be seen
in Figure 2.2, in which the bridge with γ = 0 has a broad range, but when γ = 100 the
paths of the bridge are highly likely to be confined near the boundary at 0 until quite late
in the bridge. A similar conclusion can be drawn from Figure 2.3 which shows the density of
the maximum in a bridge from 0 to 0 over the time interval [0, T ] = [0, 0.1]. The expected
maximum of a neutral bridge is much higher than one with strong selection, and there is



2.4. DISCUSSION 16

significantly more variance about that maximum under neutrality.
Much of the behavior of Wright-Fisher bridges under selection can be understood in

terms of the likelihood ratio (2.20). Because sin(x) takes its smallest values for x ≈ 0 and
x ≈ π, very strong selection will confine a bridge of the transformed process Y to near these
boundaries. Intuitively, this is because the Wright-Fisher diffusion has the largest magnitude
of drift and diffusion coefficients at x = 0.5, and thus the diffusion moves “faster” when it is
away from the boundaries 0 and 1. In order for a diffusion with a large selection coefficient
to reach an interior point after a large amount of time, it must spend most of that time near
the boundary.

However, these differences between selection and neutrality are mostly apparent in cases
of extreme selection coefficients or very long times. This has important implications for
maximum likelihood inference of selection coefficients from allele frequency time series. Be-
cause the realizations are likely to be quite similar for a selected allele and a neutral allele
when the selection coefficient is moderate, most of the information about the selection coeffi-
cient comes from the end-points. This is consistent with the work of Watterson (1979), who
showed that even with the whole sample path, it is difficult to reject neutrality when selection
is weak. Therefore, in many cases increasing the time-density of samples may not provide
much additional information about the selection coefficient. Because many allelic time-series
are obtained via costly ancient DNA techniques, this is an important consideration for the
many researchers who are interested in the history of selection acting on a particular allele.

In addition to results directly concerning bridges, we have made several technical advances
in the analysis of the Wright-Fisher diffusion. We have developed the theory of first passage
times of a neutral Wright-Fisher diffusion starting from low frequency and we were able to
provide a closed-form for the density of the maximum in a neutral bridge that goes from 0
to 0.

While our rejection sampling scheme is similar to that of Beskos & Roberts (2005) in
some regards, there are several differences. Primarily, we do not provide exact samples, in
the sense that Beskos & Roberts (2005) does. Because we store a discrete representation
of our proposal bridges in computer memory, the calculation of (2.15) is necessarily an
approximation, and hence the samples are only approximate. However, Figure 2.1 shows
that they are extremely accurate. Also, because we are concerned with a specific model, we
used 4-dimensional Bessel bridges, instead of Brownian bridges, in our proposal mechanism.
This choice is superior for the Wright-Fisher diffusion because both the Bessel bridge and the
Wright-Fisher bridge have boundaries at 0 with asymptotically equivalent singularities in the
drift coefficient, while the Brownian bridge can assume negative values and hence result an
unacceptably high rejection rate when it is used as a proposal distribution. Ideally, we would
sample from a proposal distribution that describes a diffusion that was also bounded above
and had a suitable singularity in its drift coefficient at the upper boundary; however, we have
not yet discovered an appropriate diffusion for which it is easy to sample the corresponding
bridges. Finally, we make use of the “most likely” bridge path as a means of guiding samples of
bridges that are likely to be extremely different from those generated by the 4-dimensional
Bessel bridge proposal distribution. This modification is akin to shifting the mean of a
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proposal distribution when doing rejection sampling of a 1-dimensional random variable,
and it greatly increases the efficiency of sampling.
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Chapter 3

A Path Integral Formulation of the
Wright-Fisher Process with Genic
Selection

3.1 Introduction
Modern population genetics theory can be broken down into two broad subclasses:

forward-in-time, in which the generation-to-generation allele frequency dynamics are tracked,
and backward-in-time, in which genealogical relationships are modeled. While forward-in-
time models were developed first, the introduction of the coalescent by Kingman (1982)
ushered in a revolution in our understanding of neutral genetic variation. The success of the
coalescent in providing a simple framework for analyzing neutral loci has inspired a num-
ber of attempts to construct a genealogical representation of models with natural selection
(Krone & Neuhauser 1997; Neuhauser & Krone 1997; Donnelly & Kurtz 1999). However these
models have not been particularly amenable to analysis due to their complicated structure.

The forward-in-time approach remains the most straight-forward method for analyzing
genetic variation under the combined effects of genetic drift and natural selection. This ap-
proach is characterized by the diffusion approximation to the Wright-Fisher model (Ewens
2004). For many important quantities (such as ultimate fixation probabilities), the diffusion
approximation provides a concise, exact analytic expression. These formulas, in terms of
common parameters such as the population scaled selection coefficient α, allow for an under-
standing of how different evolutionary forces impact the dynamics of allele frequency change.
Assuming a constant population size, exact analytic results from the diffusion approximation
can even be used to estimate the distribution of selection coefficients in the genome (Boyko
et al. 2008; Torgerson et al. 2009).

Unfortunately, when both selection and genetic drift affect allele frequency dynamics,
there is no simple analytic expression for the transition density of the diffusion (that is,
the probability that an allele currently at frequency x is at frequency y after t time units
have passed). Recently, interest in the transition density has been fueled by advances in
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experimental evolution (Kawecki et al. 2012) and ancient DNA (Wall & Slatkin 2012), leading
to the development of numerous methods for estimating the population scaled selection
coefficient from allele frequency time series data (Bollback et al. 2008b; Malaspinas et al.
2012; Mathieson & McVean 2013; Feder et al. 2013). Moreover, because the transition
density fully characterizes the allele frequency dynamics, many interesting quantities, such
as the time-dependent fixation probability, could be calculated once the transition density
is known.

While the diffusion approximation allows one to write down a partial differential equation
(PDE) that the transition density must satisfy, it has proved challenging to solve in a robust
manner either analytically or numerically. Numerical solution of the PDE is, in principle,
straightforward by discretization techniques (see Zhao et al. (2013) for a recent approach
that accounts for fixations and losses of alleles). However, because the relative importance
of drift and selection depend on the allele frequency, the discretization scheme must be chosen
wisely. Another drawback of numerical methods is that they can be quite time consuming;
in particular, this is what limits the method of Gutenkunst et al. (2009) to 3 populations
while using a diffusion approximation to find the site frequency spectrum for demographic
inference.

Kimura (1955b) provided an analytical solution to the transitional density with selection,
in the form of an eigenfunction decomposition with oblate spheroid wave functions. How-
ever, he was unable to compute the eigenvalues exactly, instead resorting to perturbation
theory. Motivated by the fact that the eigenfunction decomposition of the model with no
selection is known, Song & Steinrücken (2012) developed a novel computational method for
approximating the transition density analytically. Their method, based on the theory of
Hilbert spaces spanned by orthogonal polynomials, is a significant advance and represents
the state-of-the-art in terms of finding the transition density with selection. This method
still has several limitations, as it needs to be recomputed if a new selection coefficient is
chosen; moreover, for certain values of the selection coefficient and dominance parameter,
computation times can be long because they were required to use high-precision arithmetic.

In this paper, I present a novel method for approximating the transition density of the
Wright-Fisher diffusion with genic selection. This method is based on the theory of path
integration, which was introduced by Wiener (1921) for Brownian motion and has found
substantial success in applications in quantum mechanics (Feynman 1948; Feynman & Hibbs
2012) and quantum field theory (Zee 2010). The key insight of of this approach is to associate
every path from x at time 0 to y at time t with a probability, and then integrate over all
possible paths to find the transition density. While computing this integral exactly is only
possible in the neutral case, I develop a perturbation scheme to approximate it as a power
series in α for the case with genic selection. To facilitate computation of this perturbation
expansion, I demonstrate the use of a mnemonic, called Feynman diagrams, to compute the
transition density to arbitrary accuracy.
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3.2 Methods

3.2.1 Partial differential equation formulation

Here I review some preliminaries about the Wright-Fisher diffusion that will prove useful
in the following. Denoting by φα(x, y; t) the transition density with genic selection and
population-scaled selection coefficient α, standard theory shows that φ satisfies the PDE

∂

∂t
φα(x, y; t) =

1

2

∂2

∂y2
{y(1− y)φα(x, y; t)} − α

∂

∂y
{y(1− y)φα(x, y; t)} , (3.1)

with the initial condition φα(x, y, 0) = δ(x− y) where δ(·) is the usual Dirac delta function
(Ewens 2004).

Kimura (1955a) found that the for the case α = 0, the transition density admits an
eigenfunction decomposition,

4x(1− x)
∞∑
i=1

2i+ 1

i(i+ 1)
C

(3/2)
i−1 (1− 2x)C

(3/2)
i−1 (1− 2y)e−

1
2
i(i+1)t, (3.2)

where the Cλ
i (z) are the Gegenbauer polynomials.

3.2.2 Path integral formulation

The path integral formulation begins by defining a probability density functional, which
assigns a probability density to any path from x to y. Then, the total transition probability
from x to y is computed by integrating this density over all paths from x to y.

This probability density functional can be developed intuitively by considering the “short-
time transition densities”. Standard theory for diffusion processes shows that when δt� 1,
we can approximate

φα(x, y; δt) ≈
1√

2πx(1− x)δt
exp

{
(y − (x+ αx(1− x)))2

2x(1− x)δt

}
A naive approach might be to attempt to approximate the probability density of a path

by dividing the interval [0, t] into n intervals of length δt. Then we approximate with the
probability of the so-called “zig-zag path”,

P [z] ≈
n∏
i=1

φα(zi−1, zi; δt)dzi,

with zi = z(iδt). However, this fails for a variety of reasons, in particular the dependence of
the diffusion coefficient on the current allele frequency (Graham 1977; Dürr & Bach 1978).
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Instead, I compute the relative probability density function for a path with selection com-
pared to a neutral path. This functional, which can be rigorously derived using Girsanov’s
theorem (Rogers & Williams 2000b) can be intuitively developed as

G[z] ≈
∏n

i=1 φα(zi−1, zi; δt)dzi∏n
i=1 φ0(zi−1, zi; δt)dzi

≈

∏n
i=1

1√
2πzi−1(1−zi−1)δt

exp
{

(zi−(zi−1+αzi−1(1−zi−1)))
2

2zi−1(1−zi−1)δt

}
dzi∏n

i=1
1√

2πzi−1(1−zi−1)δt
exp

{
(zi−zi−1)2

2zi−1(1−zi−1)δt

}
dzi

= exp

{
α

n∑
i=1

(zi − zi−1)−
α2

2

n∑
i=1

zi(1− zi)δt
}
.

Thus, as δt ↓ 0 and n ↑ ∞ such that nδt = t, we have

G[z] = exp

{
α(y − x)− α2

2

∫ t

0

z(1− z)ds
}
, (3.3)

in which the time dependence of z is suppressed for notational convenience. Now, we can
write the transition density as the integral over all neutral Wright-Fisher paths of the relative
probability of that path with selection,

φα(x, y; t) =

∫ (t,y)

(0,x)

eα(y−x)−
α2

2

∫ t
0 z(1−z)dsDz (3.4)

where Dz is the measure on path space induced by the neutral Wright-Fisher process.
The path integral (3.4) can be understood as depicted in Figure 3.1. Paths from x to y can

be drawn from the neutral Wright-Fisher path measure, Dz. For each path, the functional
G[·] is evaluated (panel a). This results in a one-dimensional probability distribution for
values of G (panel b). Then, the mean value of of the distribution of G can be computed,
which is equal to the transition density.

3.2.3 Perturbation approximation

I now show how to approximate the transition density using a perturbation expansion.
Note that the first term in the exponential of (3.4) is independent of the path, and hence
we focus on the path integral ∫ (t,y)

(0,x)

e−
α2

2

∫ t
0 z(1−z)dsDz.
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Figure 3.1 : Path integrals. In panel a, neutral Wright-Fisher paths starting at x = 0.2 and ending
at y = 0.7 after 0.1 time units have passed are sampled using the rejection-sampling method
of Schraiber et al. (2013). Paths are colored according to G[z] with α = 5, with darker paths
corresponding to larger G[z] values. In panel b, the density of G[z] is plotted. The path integral
estimate of the transition density for a Wright-Fisher process with α = 5 to go from 0.2 to 0.7 in
0.1 time units is the mean value of the density in panel b, indicated by the vertical line.

We begin by expanding the exponential in a Taylor series about α = 0,∫ (t,y)

(0,x)

e−
α2

2

∫ t
0 z(1−z)dsDz =

∫ (t,y)

(0,x)

∞∑
k=0

(−1)kα
2k

2k
1

k!

(∫ t

0

z(1− z)ds
)k
Dz

=
∞∑
k=0

(−1)kα
2k

2k
1

k!

∫ (t,y)

(0,x)

(∫ t

0

z(1− z)ds
)k
Dz. (3.5)

In the Appendix, I show that the exchange of the summation and the integral is justified
by Fubini’s theorem. This is in stark contrast to the case in quantum physics, in which the
exchange of the sum and integral is often not justified, leading to zero radius of convergence
in the perturbation parameter.

Thus, the task of approximating the transition density with selection is reduced to the
task of computing the functional integrals∫ (t,y)

(0,x)

(∫ t

0

z(1− z)ds
)k
Dz.
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Integrals of this form were considered by Nagylaki (1974) and Watterson (1979) although
they were focused on the case where the allele is eventually fixed or lost, whereas here we
need to consider only those paths that go from x to y in time t. To compute these integrals,
it is useful to introduce a diagrammatic method, known as a Feynman diagram (Feynman &
Hibbs 2012; Chorin & Hald 2006). Borrowing from the language of physics momentarily, we
can regard V (x) = x(1 − x) as a potential energy, and we can consider the allele frequency
being scattered by the potential.

The idea can be seen in Figure 3.2. When the integrand is raised to the kth power, we
imagine that the allele frequency changes neutrally until some time s1, at which point it
interacts with the potential and is scattered. Then, it evolves neutral until time s2, at which
point it again interacts with the potential and is scattered. This proceeds until the scattering
at time sk, after which the allele frequency evolves neutrally to y at time t. Because the
interaction times si could have happened at any time between 0 and t and the allele frequency
zi at time si is random, we integrate over all times and allele frequencies. For example, we
can compute∫ (t,y)

(0,x)

(∫ t

0

z(1− z)ds
)
Dz =

∫ t

0

∫ 1

0

φ0(x, z1; s1)z1(1− z1)φ0(z1, y; t− s1)dz1ds1 (3.6)

and∫ (t,y)

(0,x)

(∫ t

0

z(1− z)ds
)2

Dz =

2

∫ t

0

∫ s2

0

∫ 1

0

∫ 1

0

φ0(x, z1; s1)z1(1− z1)φ0(z1, z2; s2 − s1)z2(1− z2)φ0(z2, y; t− s2)dz1dz2ds1ds2,

where the factor of 2 comes from the two orderings in which the scatterings happened. In
general, the kth order Feynman diagram will come with a factor of k! to count the number
of orderings of the scattering events.

Because we know the neutral transition density, computing the integrals that arise from
Feynman diagrams is straightforward. Unfortunately, the neutral transition density is only
known as an infinite series and in practice computing the integrals is more difficult. In the
Appendix, I show how to achieve efficient computation of these integrals for arbitrary k.

3.3 Results

3.3.1 Accuracy of the perturbation expansion

A simple error bound can be derived for perturbation expansions (Harlow 2009). For the
kth-order perturbation expansion, φ(k)

α (x, y; t), this bound is

∣∣φα(x, y; t)− φ(k)
α (x, y; t)

∣∣ ≤ ∣∣∣∣∣ α2(k+1)

2k+1(k + 1)!

∫ (t,y)

(0,x)

(∫ t

0

z(1− z)ds.
)k+1

Dz
∣∣∣∣∣ . (3.7)
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Figure 3.2 : Feynman diagrams. Feynman diagrams are used to evaluate the integrals that show up
in the perturbation expansion. The allele starts at time 0 and frequency x, evolving neutrally until
time s1, when it has frequency z1 and is perturbed by natural selection. It then evolves to time s2
and allele frequency z2, at which point it is again perturbed by natural selection. This continues
until the final perturbation at time sk and frequency zk, after which it evolves neutrally to time t
and frequency y.

As argued in the Appendix, this bound is less than

α2(k+1)tk+1

8k+1(k + 1)!
φ0(x, y; t),

and when t < 4, it approaches 0 as k → ∞ for any α. Thus, the perturbation expansion
convergences to the true transition density for any α, provided that t is small enough.

The error bound presented above is rather crude. To get a more informative picture of the
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accuracy of the perturbation expansion, I compared to simulations. An interesting quantity
that sums up the overall accuracy of the perturbation approximation is the time-dependent
probability of absorption. This quantity can be calculated analytically as∫ 1

0

φα(x, y; t)dy

and is easily estimated from simulations. The perturbation method proves to be increasing
accurate as more terms are added to the expansion (Figure 3.3). However, even for moderate
values of α, a large number of terms are required for an accurate approximation.

3.4 Discussion
The Wright-Fisher process with selection is a primary tool for elucidating the impact

of natural selection on genetic variation. However, the transient behavior of the process
has been difficult to study, with much work focusing on equilibrium aspects, such as the
stationary distribution (Wright 1931a) or the site frequency spectrum (Sawyer & Hartl 1992).
Nonetheless, transient dynamics have an important impact on natural variation and are
critical to forming a complete understanding of how natural selection shapes genomes. In this
paper, I presented a novel path integral formulation of the Wright-Fisher process with genic
selection. This led naturally to a simple perturbation scheme for computing the transition
density with weak selection.

The perturbation expansion of the transition density can be understood by using Feyn-
man diagrams (Figure 2). Although the traditional motivation for Feynman diagrams comes
from quantum physics (Feynman & Hibbs 2012), they can be interpreted in a population
genetic context. For instance, in the first-order term of the perturbation expansion, an allele
begins drifting neutrally. At a time when the allele frequency is z, there is a rate α2

2
z(1− z)

of a selective event occurring, which has a natural interpretation as an individual of one
allelic type encountering an individual of the other allelic type, weighted by the strength of
selection. The strength of selection enters as α2 because the rate of selective events must
be positive. After the selective event occurs, the allele again drifts neutrally. Higher-order
terms in the perturbation expansion include more selective events. However, the impact of
selective events on an overall neutral trajectory is not sufficient to model the dynamics. The
additional factor of eα(y−x) multiplying the entire perturbation expansion arises to account
for the deterministic effects of selection (Baibuz et al. 1984); intuitively, it acts to increase
the probability that an allele increases in frequency under positive selection or decreases in
frequency under negative selection.

The perturbation scheme described in this paper works best for weak selection. For the
weak selection scheme examined here, this method and the method of Song & Steinrücken
(2012) perform comparably in terms of time taken to obtain an estimate of the transition
density. For stronger selection, other approximation methods, including the Gaussian dif-
fusion approximation (Nagylaki 1990; Feder et al. 2013) may be useful. Also, the model
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Figure 3.3 : Accuracy of the perturbation expansion. The perturbation expansion is compared to
simulations of the Wright-Fisher diffusion. An allele with starting frequency x = .2 evolves under
genetic drift and natural selection for t = .1 with a variety of selection coefficients. The probability
that the allele was not absorbed is then computed. Dots show the values from simulations while
lines indicate successively higher orders of perturbation expansion.

considered in this paper does not have fully general diploid selection. The path integral
approach applies in an equally straightforward fashion to diploid selection, but the details
of the mathematics become significantly more complicated. In that case, the orthogonal
polynomial method of Song & Steinrücken (2012) may be better suited.

Path integral formulations have been used successfully in population genetics in the past.
Rouhani & Barton (1987) made use of a path integral to approximate the probability of
shifting between selective optima in the context of quantitative trait evolution. Their ap-
proximation scheme, however, was quite different than one that I explored. They assumed
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relatively strong selection and expanded the path integral around the most likely path be-
tween the two selective optima, in contrast to the weak selection perturbative approach
taken in this paper. More recently, path integrals have been used to examine fitness flux
(Mustonen & Lässig 2010) and Muller’s ratchet (Neher & Shraiman 2012).

A significant strength of the path integral approach is its adaptability to evolution of a
locus with a large number of alleles, each of which corresponds to a phenotypic value. In
previous contexts, such a model has been used to model quantitative trait evolution, called
a continuum-of-alleles model (Kimura 1965). Earlier approaches to incorporate genetic drift
into a continuum-of-alleles model using the theory of measure-valued diffusions (Fleming &
Viot 1979; Ethier & Kurtz 1987) have made significant advances in understanding the neutral
dynamics of such processes (Dawson & Hochberg 1982; Ethier & Griffiths 1993; Ethier &
Kurtz 1993; Donnelly & Kurtz 1996). However, incorporating selection greatly increases the
difficulty of obtaining analytical results (but see Donnelly & Kurtz (1999); Dawson & Feng
(2001)). It is possible that a path integral formulation of such a process could lead to a
perturbative approach to incorporating selection, in much the same way as the path integral
approach has been successful in perturbative quantum field theory (Zee 2010).

3.5 Appendix

3.5.1 Exchanging the order of integration and summation in (3.5)
is justified

To establish this fact, we first need a simple bound on the functional

Fk[Xs] =
α2k

2kk!

(∫ t

0

z(1− z)ds.
)k

Note that, because z represents a frequency, we know that z is bounded between 0 and 1 for
all s. Thus, ∫ t

0

z(1− z)ds ≤
∫ t

0

1

2

(
1− 1

2

)
ds

=
1

4
t.

Therefore,

Fk[z] ≤
α2ktk

8kk!
.

Now, to apply the general version of Fubini’s theorem, which allows the exchange of the
order of integration in general measure spaces (Bogachev 2007), I must show that∫ (t,y)

(0,x)

(
∞∑
k=0

Fk[z]
)
Dz <∞
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and
∞∑
k=0

∫ (t,y)

(0,x)

Fk[z]Dz <∞

For the first case, observe that∫ (t,y)

(0,x)

(
∞∑
k=0

Fk[z]
)
Dz ≤

∫ (t,y)

(0,x)

(
∞∑
k=0

α2ktk

8kk!

)
Dz

=

∫ (t,y)

(0,x)

e
α2

8
tDz

= e
α2t
8 φ0(x, y; t)

<∞.
An extremely similar calculation shows that the second case is true as well.

3.5.2 Computation of Feynman diagrams

The integrals arising from the Feynman diagrams can only be expressed properly as
infinite sums. In practice, it is necessary to truncate these sums after a finite number of
terms. In this section, I develop an approach efficiently compute the sums. From Kimura’s
spectral representation of the transition density, equation (3.2), and the general form of each
term in the perturbation expansion, for example equation (3.6), it is clear that the kth order
Feynman diagram results in a term

4x(1− x)
∑

i1,i2,...,ik+1

C
(3/2)
i1−1 (1− 2x)C

(3/2)
ik+1−1(1− 2y)

k+1∏
j=1

2ij + 1

ij(ij + 1)

×
k−1∏
j=1

∫ 1

0

z2j (1− zj)2C(3/2)
ij

(1− 2zj)C
(3/2)
ij+1

(1− 2zj)dzj (3.8)

×
∫ t

0

∫ sk

0

· · ·
∫ s1

0

e−(λi1s1+
∑k
j=2 λij (sj−sj−1)+λik+1

(t−sk)ds1 · · · dsk−1dsk,

with λi = i(i+ 1)/2, the eigenvalues of Kimura’s transition density.
The integrals over allele frequencies can be done exactly by using the properties of the

Gegenbauer polynomials. First,∫ 1

0

x(1− x)C(3/2)
i (1− 2x)C

(3/2)
j (1− 2x)dx = − 1

32

∫ 1

−1
(1− z2)2C(3/2)

i (z)C
(3/2)
j (z)dz (3.9)

after making the substitution z = 1 − 2x. This puts the Gegenbauer polynomials on their
natural domain, [−1, 1]. Now, multiplying through by one of the factors of (1− z2),∫ 1

−1
(1−z2)2C(3/2)

i (z)C
(3/2)
j (z)dz =

∫ 1

−1
(1−z2)C(3/2)

i (z)C
(3/2)
j (z)dz−

∫ 1

−1
(1−z2)zC(3/2)

i (z)zC
(3/2)
j (z)dz.
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The first term can be recognized as the orthogonality condition for the Gegenbauer polyno-
mials and hence, ∫ 1

−1
(1− z2)C(3/2)

i (z)C
(3/2)
j (z)dz = δi,j

2(i+ 1)(i+ 2)

3 + 2i
.

To simplify the second term, use the recurrence relation for the Gegenbauer polynomials to
find that,

zC
(3/2)
i (z) =

1

3 + 2i

(
(i+ 1)C

(3/2)
i+1 (z) + (i+ 2)C

(3/2)
i−1 (z)

)
.

Substituting and multiplying through yields∫ 1

−1
(1− z2)zC(3/2)

i (z)zC
(3/2)
j (z)dz =

1

(2i+ 3)(2j + 3)

×
(
(i+ 1)(j + 1)

∫ 1

−1
(1− z2)C(3/2)

i+1 (z)C
(3/2)
j+1 (z)dz

× (i+ 1)(j + 2)

∫ 1

−1
(1− z2)C(3/2)

i+1 (z)C
(3/2)
j−1 (z)dz

× (i+ 2)(j + 1)

∫ 1

−1
(1− z2)C(3/2)

j−1 (z)C
(3/2)
j+1 (z)dz

×(i+ 2)(j + 2)

∫ 1

−1
(1− z2)C(3/2)

i−1 (z)C
(3/2)
j−1 (z)dz

)
.

Again, these integrals can be simplified using the orthogonality of the Gegenbauer polyno-
mials to finally see that the integral in (3.9) equals

− 1

32

(
δi,j

2(i+ 1)(i+ 2)

3 + 2i
+

1

(2i+ 3)(2j + 3)

(
δi,j(i+ 1)2

2(i+ 2)(i+ 3)

5 + 2i

+ δi,j−2(i+ 1)(i+ 4)
2(i+ 2)(i+ 3)

5 + 2i
+ δi,j+2(i+ 2)(i− 1)

i(i+ 1)

1 + 2i

+ δi,j(i+ 2)2
i(i+ 1)

1 + 2i

))
. (3.10)

An important consequence of this fact is that the many of the terms in the sum (3.8) are
equal to zero.

The integrals over the intermediate times can also be evaluated exactly, although I have
not been able to find a general formula. In this case, it is straight-forward to precompute
the integral for all possible sets of equal indices and then substitute into the sum.
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Chapter 4

Bayesian inference of natural selection
from allele frequency time series

4.1 Introduction
The ability to obtain high-quality genetic data from ancient samples is revolutionizing the

way that we understand the evolutionary history of populations. One of the most powerful
applications of ancient DNA (aDNA) is to study the action of natural selection. While
methods making use of only modern DNA sequences have successfully identified loci evolving
subject to natural selection (Nielsen et al. 2005a; Voight et al. 2006; Pickrell et al. 2009),
they are inherently limited because they look indirectly for selection, finding its signature
in nearby neutral variation. In contrast, by sequencing ancient individuals, it is possible to
directly track the change in allele frequency that is characteristic of the action of natural
selection.

Several studies have obtained aDNA at the lactase locus (LCT) in humans. While the
allele of LCT that confers lactase persistence is at high frequency in much of Europe, aDNA
of individuals ranging from 4000-8000 BCE shows that the lactase persistence allele had an
extremely low frequency during that time period (Burger et al. 2007; Malmström et al. 2010;
Lacan et al. 2011; Plantinga et al. 2012). This is interpreted as evidence that the lactase
persistence allele has been under extremely strong selection due to the onset of dairy farming
in Europe.

To infer the action of natural selection more rigorously, several methods have been de-
veloped to explicitly fit a population genetic model to a time series of allele frequencies
obtained via aDNA. Bollback et al. (2008b) extended an approach devised by Williamson
& Slatkin (1999) to estimate the population-scaled selection coefficient, α = 2Nes, along
with the effective size, Ne. To incorporate natural selection, Bollback et al. (2008b) used the
continuous diffusion approximation to the Wright-Fisher model. This required them to use
numerical techniques to solve the partial differential equation (PDE) associated with transi-
tion densities of the Wright-Fisher diffusion to calculate the probabilities of the population
allele frequencies at each time point. Ludwig et al. (2009) obtained an aDNA time series
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from 6 coat-color-related loci in horses and applied the method of Bollback et al. (2008b) to
find that 2 of them, ASIP and MC1R, showed evidence of strong positive selection.

Recently, a number of methods have been proposed to extend the generality of the Boll-
back et al. (2008b) framework. To define their HMM, Bollback et al. (2008b) were required
to posit a prior distribution on the allele frequency at the first time point. They chose to
use a uniform prior on the initial frequency; however, in truth the initial allele frequency
is dictated by the fact that the allele at some point arose as a new mutation. Using this
information, Malaspinas et al. (2012) developed a method that also infers allele age. They
also extended the selection model of Bollback et al. (2008b) to include fully recessive fitness
effects. A more general selective model was implemented by Steinrücken et al. (2013), who
model general diploid selection, and hence are able to fit data where selection acts in an over-
or under-dominant fashion, although they assumed recurrent mutation and hence could not
estimate allele age. The work of Mathieson & McVean (2013) is designed for inference of
metapopulations over short time scales, due to using a discrete approximation to the Wright-
Fisher diffusion. Finally, the approach of Feder et al. (2013) is ideally suited to experimental
evolution studies, because they work in a strong selection, weak drift limit that is common
in evolving microbial populations.

One key way that these methods differ from each other is in how they compute the prob-
ability of the underlying allele frequency changes. For instance, Malaspinas et al. (2012)
approximate the diffusion with a one-step Markov chain while Steinrücken et al. (2013) cal-
culate the likelihood analytically using a spectral representation of the diffusion discovered
by Song & Steinrücken (2012). These different computational strategies are necessary be-
cause of the inherent difficulty in solving the Wright-Fisher PDE. A different approach, used
by Mathieson & McVean (2013) in the context of a densely-sampled discrete Wright-Fisher
model, is to instead compute the probability of the entire allele frequency trajectory in
between sampling times.

In this work, we develop a novel approach for inference of general diploid selection and
allele age from allele frequency time series obtained from aDNA. The key innovation of our
approach is that we impute the allele frequency trajectory between sampled points when
they are sparsely-sampled. This approach to inferring parameters from a sparsely-sampled
diffusion is known as high-frequency path augmentation, and has been successfully applied in
a number of contexts (Roberts & Stramer 2001; Golightly & Wilkinson 2005, 2008; Sørensen
2009; Fuchs 2013). The Wright-Fisher diffusion, however, has several features that are
atypical in the context of high-frequency path augmentation, including a time-dependent
diffusion coefficient and a bounded path-space. We then apply this new method to several
datasets and find that we have power to estimate parameters of interest from real data.
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4.2 Model

4.2.1 Generative model

We assume a randomly mating diploid population that is size N(t) at time t, where t is
measured in units of 2N0 generations for some arbitrary N0. At the locus of interest, the
ancestral allele, A0, was fixed until some time t0 when the derived alelle, A1, arose with
diploid fitnesses as given in Table 4.1.

Genotype A1A1 A1A0 A0A0

Fitness 1 + s 1 + hs 1

Table 4.1 : Fitness scheme assumed in the text.

The frequency of A1 at time t, Xt, is modeled by the Wright-Fisher diffusion. While
many treatments of the Wright-Fisher diffusion take a PDE approach (e.g. Ewens (2004)),
we instead frame this in terms of a stochastic differential equation (SDE). Xt satisfies the
SDE

dXt = αXt(1−Xt)(Xt + h(1− 2Xt))dt+

√
Xt(1−Xt)

ρ(t)
dBt (4.1)

where α = 2N0s and ρ(t) = N(t)/N0. Intuitively, this SDE says that for small δt,

Xt+δt
approx∼ N

(
Xt +Xt(1−Xt)(Xt + h(1− 2Xt))δt,

Xt(1−Xt)

ρ(t)
δt

)
where N (µ, σ2) is a normal distribution with mean µ and variance σ2.

We assume that the at times t1, t2, . . . , tk samples of size n1, n2, . . . , nk chromosomes are
taken, and c1, c2, . . . , ck copies of the derive allele are found at each time point (Figure 4.1).
Note that it is possible that some of the sampling times are more ancient than t0, the age of
the allele.

4.2.2 Path likelihoods

It is possible to compute the likelihood of a diffusion sample path; however, there are
some complications compared to the finite-dimensional random variables that are usually
considered in population genetics inference. Suppose that a diffusion satisfies the SDE

dXt = a(Xt, t)dt+ dBt (4.2)

and let P be the distribution on paths satisfying (4.2). If we denote by W the distribution
on Brownian motion paths, then Girsanov’s theorem (Girsanov 1960) gives the likelihood of
the path {Xs, t0 ≤ s ≤ t} under P relative to W as

dP
dW

(X) = exp

{∫ t

t0

a(Xs, s)dXs −
1

2

∫ t

t0

a2(Xs, s)ds

}
(4.3)
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Figure 4.1 : Taking samples from an allele frequency trajectory. An allele frequency trajectory
is simulated from the Wright-Fisher diffusion (solid line). At each time, ti, a sample of size ni
chromosomes is taken and ci copies of the derived allele are observed. Each point corresponds to
the observed allele frequency of sample i. Note that t1 is more ancient than the allele age, t0.

where the first integral in the exponentiand is an Ito integral.
However, the Wright-Fisher SDE (4.1) is not in the form (4.2). In particular, factor

multiplying dBt depends on both space and time. To deal with this issue, first applying the
time transformation τ = f(t) with

f(t) =

∫ t

0

1

ρ(s)
ds
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to obtain a new SDE with time-independent diffusion coefficient,

dXτ = αρ(f−1(τ))Xτ (1−Xτ )(Xτ + h(1− 2Xτ ))dτ +
√
Xτ (1−Xτ )dBτ . (4.4)

Next, apply an angular transform first suggested by Fisher (1922b), Yτ = arccos(1 − 2Xτ ).
Applying Ito’s lemma (Itô 1944) shows that Yt is a diffusion satisfying the SDE

dYτ =
1

4

(
αρ(f−1(τ)) sin(Yτ )(1 + (2h− 1) cos(Yτ ))− 2 cot(Yτ )

)
dτ + dBτ . (4.5)

Hence, we can write the likelihood of the transformed path relative to its density under a
Brownian motion.

However, the drift coefficient of (4.5) has singularities at the boundaries 0 and π (corre-
sponding to the boundaries 0 and 1 for allele frequencies). While this is acceptable if paths
are confined away from the boundaries, it would be impossible estimate allele age because
any path starting from 0 would have a likelihood of 0. We can accommodate this by letting
Q be the distribution of a diffusion satisfying the SDE

dXt = b(Xt, t)dt+ dBt (4.6)

then we can compute the likelihood of a distribution a path under P (i.e. satisfying (4.2))
relative to Q (i.e. satisfying (4.6)) by

dP
dQ

(X) =
dP
dW

(X)
/ dQ
dW

(X)

= exp

{∫ t

t0

(a(Xs, s)− b(Xs, s)) dXs −
1

2

∫ t

t0

(
a2(Xs, s)− b2(Xs, s)

)
dt

}
(4.7)

So, because

1

4

(
αρ(f−1(τ)) sin(Yτ )(1 + (2h− 1) cos(Yτ ))− 2 cot(Yτ )

)
= − 1

2Yτ
+O(Yτ )

when Yτ is small, a good choice for Q would be one where b(x, t) ≈ −1/(2x) as x ↓ 0. An
appropriate choice, along the lines of suggestions by (Schraiber et al. 2013) and (Jenkins
2013), is the Bessel(0) process, which satisfies

dXt = −
1

2Xt

dt+ dBt. (4.8)

This choice forQ not only ensures that there is no singularity at 0 but has desirable properties
that will be exploited in the development of the Markov chain Monte Carlo algorithm.
The Bessel(0) process is a natural choice to match the Wright-Fisher diffusion at small
allele frequencies, as it can be derived from a branching process approximation to the allele
frequency change (Haldane 1927; Feller 1951).
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4.2.3 The joint likelihood of the data and the path

To write down down the full likelihood of the observations and the path, we make the
assumption that ρ(t) is continuously differentiable except at finitely many times d1 < d2 <
. . . < dM , and we require that the population size function is such that ρ(d+i ) = limt↓di ρ(t)
exists and is equal to ρ(di) while ρ(d−i ) = limt↑di ρ(t) also exists (though it may not necessarily
equal ρ(di)). That is, we assume that ρ is right continuous with left limits.

In the Appendix, we show that the likelihood of the data and the path, given α, h and
t0 can be written

L(D, Y |α, h, t0) = exp

{
A(Yf(tk), t

−
k ) + A(Yf(dm), d

−
m)− (A(Yf(dK), dK) + A(Yf(t0), t0))

+
K∑
i=m

[
A(Yf(di+1), d

−
i+1)− A(Yf(di), di)

]
−
∫ tk

t0

B(Yf(s), s)ds−
1

2

∫ tk

t0

C(Yf(s), s)ds−
1

2

∫ tk

t0

D(Yf(s), s)ds

}
×

k∏
i=1

(
ni
ci

)(
1− cos(Yf(ti))

2

)ci (1 + cos(Yf(ti))

2

)ni−ci
(4.9)

where m = min{i : di > t0} and K = max{i : di > tk}, and

A(y, t) =
log(y)

2
− 1

8
(αρ(t) cos(y)(2 + (2h− 1)) cos(y)) + 4 log(sin(y)))

B(y, t) = −1

8
α
dρ

dt
(t) cos(y)(2 + (2h− 1) cos(y))

C(y, t) =
1

4

(
α(cos(y) + (2h− 1) cos(y)) + 2

csc(y)2

ρ(t)

)
− 1

2y2ρ(t)

D(y, t) =
1

16ρ(t)
(αρ(t) sin(y)(1 + (2h− 1) cos(y))− 2 cot(y))2 − 1

4y2ρ(t)
.

4.3 Method
We developed a Markov chain Monte Carlo method for Bayesian inference of the param-

eters α, h and t0. While updates to α and h do not require updating the path, updating
t0 requires proposing updates to the path. Additionally, we developed proposals to update
small sections of the path without updating any parameters, as well as to update the allele
frequency at the most recent sample time.



4.3. METHOD 36

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

t

Al
le

le
 fr

eq
ue

nc
y

●

●

●

●

●

t

Al
le

le
 fr

eq
ue

nc
y

●

●

●

●

●

t0t0’

ts

t

Al
le

le
 fr

eq
ue

nc
y

●

●

●

●

●

tf

Yt

Yt’

a b c

Figure 4.2 : Illustration of path updates. Filled circles correspond to the same sample frequencies
as in Figure 4.1. The solid gray line in each panel is the current allele frequency trajectory and
the dashed black lines are the proposed updates. In panel a, an interior section of path is proposed
between points s1 and s2. In panel b, a new allele age, t′0 is proposed and a new path is drawn
between t′0 and ts. In panel c, a new most recent allele frequency Y ′t is proposed and a new path is
drawn between tf and t.

4.3.1 Interior path updates

To update a section of the allele frequency, we first choose random times s1, s2 ∈ (t0, tk),
and then propose a new path from s1 to s2 while keeping the values Yf(s1) and Yf(s2) fixed
(Figure ??a). Such a path is called a bridge. Note that bridges must be sampled against
the transformed time scale. The best bridges would be realizations of Wright-Fisher bridges
themselves. However, sampling Wright-Fisher bridges is challenging (but see Schraiber et al.
(2013)), so we instead opt to sample bridges from the Bessel(0) process. Sampling Bessel(0)
bridges can be accomplished by first sampling Bessel(4) bridges (as described in Schraiber
et al. (2013)) and then recognizing that a Bessel(4) process is the same as a Bessel(0) process
conditioned to never hit 0 and hence has the same bridges. We denote by Y ′ the path with
the proposed bridge spliced in between s1 and s2.

Because we are calculating path likelihoods relative to the distribution of Bessel(0) paths,
the proposal probability is simply the inverse of the probability that a Bessel(0) process goes
from y1 = Yf(s1) to y2 = Yf(s2) in time τ = f(s2)− f(s1),

q(Y ′|Y ) =
1

φ(Yf(s1), Yf(s2); s2 − s1)

=
τ

y1
exp

{
y21 + y22
2τ

}
1

I1
(
y1y2
τ

)
where I1(·) is the modified Bessel function of the first kind with index 1. Thus, we accept



4.3. METHOD 37

the proposed update to the path with probability

min

{
1,
L(D, Y ′|α, h, t0)
L(D, Y |α, h, t0)

q(Y |Y ′)
q(Y ′|Y )

}
but note that q(Y |Y ′) = q(Y ′|Y ) and that we only need to compute the likelihood ratio for
the bit of path that changed between s1 and s2.

4.3.2 Allele age updates

Allele age updates proceed in two steps: first, a new allele age, t′0, is proposed, and then
a new section of path is proposed starting from 0 at time t′0 and ending at Yf(ts) where
s = min{i : ci > 0}, i.e. the first sample time with a non-zero count of the derived allele
(Figure ??b). Denote by p(t′0|t0) the proposal density for t′0 given t0 and let q(t′0, Y ′|t0, Y )
be the proposal probability for the update to both the age and the path. Then the proposal
ratio for this update is

q(t0, Y |t′0, Y ′)
q(t′0, Y

′|t0, Y )
= lim

y0↓0

φ(y0, y, τ
′)

φ(y0, y, τ)

p(t0|t′0)
p(t′0|t0)

= exp

{
−1

2
y2
(
1

τ ′
− 1

τ

)}( τ
τ ′

)2 p(t0|t′0)
p(t′0|t0)

where τ = f(ts)− f(t0), τ ′ = f(ts)− f(t′0) and y = Yf(ts). This procedure can be rigorously
justified by considering the entrance law of the Bessel(0) process. Note that the implicit
prior on allele age is π(t0) = ρ(t0) (Slatkin 2001). With this in hand, we accept a newly
proposed allele age with probability

min

{
1,
L(D, Y ′|α, h, t0)
L(D, Y |α, h, t0)

q(Y |Y ′)
q(Y ′|Y )

ρ(t′0)

ρ(t0)

}
where is only necessary to compute the path likelihood L(D, Y |α, h, t0) over the interval
[t0, ts] and the likelihood L(D, Y ′|α, h, t′0) over the interval [t′0, ts].

4.3.3 Most recent allele frequency update

While the allele frequency at sample times t1, t2, . . . , tk−1 are updated implicitly by the
interior path update, the allele frequency at tk must be updated separately. We do this by
first proposing a new allele frequency Y ′f(tk) and then proposing a new bridge from Yf(tf ) to
Y ′f(tk) where tf ∈ (tk−1, tk) is a fixed time (Figure ??c). If p(Y ′f(tk)|Yf(tk)) is the proposal
density for Y ′f(tk) given Yf(tk), then we accept this update with probability

min

{
1,
L(D, Y ′|α, h, t0)
L(D, Y |α, h, t0)

p(Yf(tk)|Y ′f(tk))
p(Y ′f(tk)|Yf(tk))

φ(Yf(tf ), Y
′
f(tk)

; τ)

φ(Yf(tf ), Yf(tk); τ)

}
where τ = f(tk)− f(ts) and it is only necessary to compute the likelihood ratio between tf
and tk.
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4.3.4 Updates to α and h

Updates to α and h are conventional scalar parameter updates. Letting θ be either α or
ρ, and q(θ′|θ) be the proposal density for the new value of θ, we accept the new proposal
with probability

min

{
1,
L(D, Y |θ′, t0)
L(D, Y |θ, t0)

q(θ|θ′)
q(θ|θ′)

π(θ′)

π(θ)

}
.

Here, it is necessary to compute the likelihood across the whole path. For α, we use a
Cauchy(0,100) prior and for h we use a Cauchy(.5,.5) prior, indicating that our prior belief
favors genic selection (h = .5).

4.4 Results
We apply our method to simulated data to assess its performance and then apply it to

several real datasets from humans and horses.

4.4.1 Simulation performance

To both test the accuracy of our MCMC approach and to determine how different sam-
pling strategies impact inference for different allele ages, we simulated data in which alleles
arose at two different times: 0.3 time units ago and 0.7 time units ago. Additionally, we sim-
ulated α ∈ {0, 10, 50} and h ∈ {0, 0.5, 1, 2}. Setting time 0 as the present, we then sampled
20 chromosomes at each time point according to four, progressively more dense, schemes, as
outlined in Table 4.2.

k Additional sample times
3 −1.0, −0.5, 0
5 −0.75−0.25
9 −0.875 −0.625 −0.375 −0.125
17 −0.9375, −0.8125, −0.6875, −0.5625, −0.4375, −0.3125, −0.1875, −0.0625

Table 4.2 : Sampled schemes for simulations. For each k, the additional sample times augment those
of the previous k.

Our MCMC analysis results in a full posterior distribution on parameter values, and
we summarized the accuracy of the estimation procedure in two ways. First, we used the
maximum a posteriori (MAP) value of a parameter as a point estimate and computed the
difference between the MAP estimate and the true value of the parameter for each simulation.
Because the distribution of MAP estimates can be highly skewed (Supplemental Figure 4.1),
we measured the typical bias of the MAP by taking the mode of the sampling distribution,
rather than the mean. Figure 4.3, top panel, shows the behavior of the bias when h = 0.5 and
t0 = 0.3 as the number of samples increases. The solid, dashed, and dotted lines correspond
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to α = 0, 10, and 50, respectively. As expected, as the number of data points increases, the
bias in estimating α is reduced substantially. However, bias in h is relatively unaffected by
increased sampling density; this makes sense as the signal for h is relatively subtle, especially
for a relatively short trajectory. Additionally, bias in estimation of t0 is relatively insensitive
to increased sampling density, likely due to the fact that the bias is already quite small.
Similar patterns can be seen in other parameter regimes (Supplementary Figures 2-8, top
panels).
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Figure 4.3 : Bias of maximum a posteriori estimates and credible interval width. Top panel reports
the modal bias of the sampling distribution of MAP estimates, bottom panel reports the modal
credible interval width. Solid, dashed and dotted lines correspond to α = 0, 10 and 50, respectively.
Here, h = 0.5 and t0 = 0.3.

We also measured the typical width of the 95% credible interval across our simulations.
Again, because the sampling distribution of credible intervals is highly skewed, we assessed
the typical credible interval by reporting the modal credible interval width. Figure 4.3,
bottom panels shows the behavior of the credible interval for the same parameters as in the
top panel. Again, the width of the credible interval is typically reduced as the the sample size
increases. Noteworthy is the extremely large credible intervals associated with estimation
of α from neutral trajectories. This is because many neutral trajectories stay very close to
the boundaries, at which point genetic drift dominates and there is a significant amount of
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uncertainty in the estimate of the selection coefficient. Again, similar patterns can be seen
for other parameter regimes (Supplementary Figures 2-8, bottom panels).

4.4.2 Application to ancient DNA

We began by reanalyzing the ASIP and MC1R data from Ludwig et al. (2009). We
assumed that N0 = 2500, a generation time of 5 years and that population size has been
constant through time. Table 4.3 shows the sample configurations and sampling times cor-
responding to each locus.

Sample time (years BCE) 20,000 13,100 3,700 2,800 1,100 500
Sample time (diffusion units) 0.8 0.524 0.148 0.112 0.044 0.020

Sample size 10 22 20 20 36 38
Count of ASIP alleles 0 1 15 12 15 18
Count of MC1R alleles 0 0 1 6 13 24

Table 4.3 : Sample information for horse data. Diffusion time units are calculated assuming N0 =

2500 and a generation time of 5 years.

For the ASIP locus, we find that the most likely selective mechanism is overdominance
(ĥ = 2.02, α̂ = 10.23; Figure 4.4B,C), in agreement with the conclusion reached by Stein-
rücken et al. (2013). This inference makes sense in light of the allele frequency trajectory
inferred ASIP: the allele quickly rises to intermediate frequency and then stays at an ap-
proximately constant frequency, a hallmark of overdominance (Figure 4.4A). An interesting
feature of the posterior distribution of h is that there is a second mode for h < 0; this corre-
sponds to the fact that when h < 0 and α < 0 is also overdominant. The interplay between
h and α can clearly be seen in Supplemental Figure 9, which shows the joint posterior of α
and h. The posterior is concentrated in two places; in one case, h > 1 and α > 0 and in
the other case, α < 0 and h < 0. We also find that the allele almost certainly arose more
recently than the most ancient time point, at which time zero copies of the derived allele
were found (t̂0 = −0.53, approximately 13, 700 years BCE; Figure 4.4A), concordant with
the analysis of Malaspinas et al. (2012).

The results of analysis of the MC1R locus are again concordant with previous analyses;
the most likely selective regime is positive selection (ĥ = .63, α̂ = 26.27; Figure 4.5A,B).
However, there is again substantial evidence for overdominance and the same pattern can be
seen in the joint posterior of α and h for MC1R as could be seen for ASIP (Supplementary
Figure 10). Although the inferred allele frequency trajectory for MC1R seems most consistent
with positive selection (Figure 4.5A), this result is again concordant with the inference
of Steinrücken et al. (2013) who found that MC1R may have evolved under a regime of
overdominance. Similar to ASIP, we infer that the MC1R allele is almost certainly much
younger than either of the two time points at which it appeared with 0 allele frequency
(t̂0 = −0.16, approximately 4, 400 years BCE; Figure 4.5A).
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Figure 4.4 : Summary of results for the ASIP locus in horses. Panel A shows the posterior dis-
tribution of paths as well as the posterior distribution of allele age. Filled circles are the sample
allele frequencies, while the solid black, red and green lines show the median, interquartile, and
95% credible intervals of the path, respectively. The blue curve shows the posterior distribution
of the allele age. Time is measured in diffusion units relative to the most recent sample (so that
0.0 corresponds to 500 years BCE). Panel B and C show the posterior distribution of α and h,
respectively. In both, solid lines are the posterior while dashed lines show the prior.

We next analyzed the Lactase persistence allele (LCT) in humans. Because no previous
study has formally analyzed the frequency dynamics of LCT, we gathered data from two
sources. Plantinga et al. (2012) obtained LCT sequence from 26 individuals in Basque
Country ranging from 5000 to 4500 years before present. Out of the 52 haplotypes sampled,
12 of them carried the lactase persistence allele. As our source for recent data, Bersaglieri
et al. (2004) obtained LCT sequence for 45 French Basque haplotypes, and found that 32 of
them carried the lactase persistence allele. To account for recent demography of Europe, we
used the demographic history inferred by Tennessen et al. (2012). This model includes two
epochs of recent exponential growth along with a history of ancestral bottlenecks.

Our analysis of LCT shows that lactase persistence has evolved under extremely strong
positive selection in Basques (ĥ = .46, α̂ = 70; Figure 4.6B,C), consistent with other analyses
of LCT that do not include ancient DNA. This is unsurprising given the posterior distribu-
tion on allele frequency trajectories. A striking feature of our inference is the multimodal
distribution of allele age (Figure 4.6A). The reason for this can be seen in Supplementary
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Figure 4.5 : Summary of results for the MC1R locus in horses. Panels are as in Figure 4.4.

Figure 11, which shows the Tennessen et al. (2012) population size history along with poste-
rior of allele age. The first mode, around t = −0.1 corresponds to the allele arising during a
population bottleneck, while the second mode, around t = −0.2 is during a period of much
larger population size. Thus, the fact that the allele is much more likely to have arisen
during a time of a larger population size makes it more probable that the allele arose more
anciently than would have been inferred under a model of constant population size.

4.5 Discussion
Using DNA from ancient specimens, we have obtained a number of insights into evolu-

tionary processes that were previously inaccessible. One of the most interesting aspects of
ancient DNA is that it can provide a temporal component to evolution that has long been
impossible to study. In particular, instead of making inferences about the allele frequencies,
we can directly measure these quantities. To take advantage of this new data, we developed
a novel Bayesian method for inferring the intensity and direction of natural selection from
allele frequency time series. In order to circumvent the difficulties inherent in calculating
the transition probabilities under the standard Wright-Fisher process of selection and drift,
we used a data augmentation approach in which we learn the posterior distribution on al-
lele frequency paths. Doing this not only allows us to efficiently calculate likelihoods, but
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Figure 4.6 : Summary of results for the MC1R locus in horses. Panels are as in Figure 4.4. Here,
time is measured in diffusion time units assuming a generation time of 25 years and N0 = 7, 310.

provides an unprecedented glimpse at the historical allele frequency dynamics.
The key innovation of our method is to apply high-frequency path augmentation methods

(Roberts & Stramer 2001) to analyze genetic time series. The logic of the method is similar to
the logic of a path integral, in which we average over all possible allele frequency trajectories
that are consistent with the data (Schraiber 2014). By choosing a suitable probability
distribution against which to compute likelihood ratios, we were able to adapt these methods
to infer the age of alleles and properly account for variable population sizes through time.
Moreover, because of the computational advantages of the path augmentation approach, we
were able to infer a model of general diploid selection. To our knowledge, ours is the first
work that can estimate both allele age and general diploid selection while accounting for
demography.

Using simulations, we showed that our method performs well for strong selection and
densely sampled time series. However, when selection is weak, even densely sampled time
series result in very large credible intervals. This is unsurprising in light of the work of
Watterson (1979), who showed that even knowledge of the full trajectory results in very
flat likelihood surfaces when selection is not strong. This is because for weak selection, the
trajectory is extremely stochastic and it is difficult to disentangle the effects of drift and
selection.

We then applied our method to real data from horses and humans. In the horses, we
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recapitulated the results of Steinrücken et al. (2013), suggesting that the ASIP locus has
evolved under overdominant selection and that the MC1R locus evolved while experiencing
positive selection (although it is possible that MC1R, too, evolved under overdominance).
The prevalence of overdominance in these data may at least partially reflect the suggestion
of Sellis et al. (2011), that adaptation in diploids is expected to proceed through periods of
heterozygote advantage. In humans, we analyzed the lactase persistence allele in the Basque
population. Consistent with expectations, we found a signature of extremely strong positive
selection affecting lactase persistence. Interestingly, because the allele frequency of Lactase
was low during a population bottleneck in Europeans, it is possible that the lactase allele
is significantly older than the onset of agriculture in Europe, suggesting that it may have
arisen from standing variation.

One key limitation of this method is that it assumes that the aDNA samples all come
from the same, continuous population. If there is in fact a discontinuity in the populations
from which alleles have been sampled, this could cause rapid allele frequency change and
create spurious signals of natural selection. Several methods have been devised to test this
hypothesis (Sjödin et al. 2014), and one possibility would be to apply these methods to
putatively neutral loci sampled from the same individuals, thus determining which samples
form a continuous population. Alternatively, if our method is applied to a number of loci
throughout the genome and an extremely large portion of the genome is determined to be
evolving under selection, this could be evidence for model misspecification and suggest that
the samples do not come from a continuous population.

An advantage of the method that we introduced is that it may be possible to extend it to
incorporate information from linked neutral diversity. In general, computing the likelihood
of neutral diversity linked to a selected site is difficult and many have used Monte Carlo
simulation and importance sampling (Slatkin 2001; Coop & Griffiths 2004; Chen & Slatkin
2013). These approaches average over allele frequency trajectories in much same way as
our method; however, each trajectory is drawn completely independently of the previous
trajectories. Using a Markov chain Monte Carlo approach, as we do here, has the potential
to ensure that only trajectories with a high posterior probability are explored and hence
greatly increase the efficiency of such approaches.

4.6 Appendix

4.6.1 The likelihood of the data and the path

Using equation (4.7), the likelihood of the path can be written

exp

{∫ τk

τ0

(µ1(Yr, r)− µ2(Yr)) dYr −
1

2

∫ τk

τ0

(
µ2
1(Yr, r)− µ2

2(Yr)
)
dr

}
(4.10)

where
µ1(y, τ) =

1

4

(
αρ(f−1(τ)) sin(Yτ )(1 + (2h− 1) cos(Yτ ))− 2 cot(Yτ )

)
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is the infinitesimal mean of the transformed Wright-Fisher process and

µ2(y) = −
1

2y

is the infinitesimal mean of the Bessel(0) process. However, as shown by Sermaidis et al.
(2012), attempting to approximate the Ito integral in (4.10) using a finite representation of
the path can lead to biased estimates of the posterior distribution. Instead, consider the
potential functions

H1(y, τ) =

∫ y

µ1(ξ, τ)dξ

= −1

8

(
αρ(f−1(τ)) cos(y)(2 + (2h− 1) cos(y)) + 4 log(sin(y))

)
and

H2(y) =

∫ y

µ2(ξ, τ)dξ

= − log(y)

2
.

If we assume that ρ is continuous (not merely right continuous with left limits) then Ito’s
lemma shows that we can write∫ τk

τ0

(µ1(Yr, r)− µ2(Yr)) dYr = H1(Yτk , τk)−H2(Yτk)− (H1(Yτ0 , τ0)−H2(Yτ0))

−
∫ τk

τ0

(
∂H1

∂τ
(Yr, r)−

∂H2

∂τ
(Yr)

)
dr

−
∫ τk

τ0

(
∂2H1

∂y2
(Yr, r)−

∂2H2

∂y2
(Yr)

)
dr.

To generalize this to the case where ρ is right continuous with left limits, write∫ τk

τ0

(µ1(Yr, r)− µ2(Yr)) dYr = I0 +
K∑
i=m

Ii

where m and K are defined in the main text,

I0 = lim
τ↑f(dm)

∫ τ

τ0

(µ1(Yr, r)− µ2(Yr)) dYr,

for m < i < K,

Ii = lim
τ↑f(di+1)

∫ τ

f(di)

(µ1(Yr, r)− µ2(Yr)) dYr,
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and
IK = lim

τ↑τk

∫ τ

f(dK)

(µ1(Yr, r)− µ2(Yr)) dYr.

Ito’s lemma can then be applied to each segment in turn. Following the conversion of the
Ito integrals into ordinary Lebesgue integrals, making the substitution s = f−1(r) results in
the path likelihood from (4.9).
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4.7 Supplementary Figures
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Figure 4.7 : Supplementary Figure 1. Distribution of maximum a posteriorio estimates of α for
two cases. In the top panel, the true α = 0 and there is a substantial bias toward negative α̂. In
the bottom panel, the true α = 50 and the bias is largely removed, although there still tends to be
underestimation of α.
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Figure 4.8 : Supplementary Figure 2. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 0 and t0 = 0.3.
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Figure 4.9 : Supplementary Figure 3. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 0 and t0 = 0.7.
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Figure 4.10 : Supplementary Figure 4. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 0.5 and t0 = 0.7.
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Figure 4.11 : Supplementary Figure 5. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 1 and t0 = 0.3.
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Figure 4.12 : Supplementary Figure 6. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 1 and t0 = 0.7.
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Figure 4.13 : Supplementary Figure 7. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 2 and t0 = 0.3.



4.7. SUPPLEMENTARY FIGURES 54

4 6 8 10 12 14 16

−8
0

−6
0

−4
0

−2
0

0

Number of sample times

al
ph

a

4 6 8 10 12 14 16

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

Number of sample times

h

4 6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

Number of sample times
ag

e

Bias

4 6 8 10 12 14 16

50
10

0
15
0

20
0

25
0

30
0

Number of sample times

al
ph

a

4 6 8 10 12 14 16

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of sample times

h

4 6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4

Number of sample times

ag
e

Credible interval width

Figure 4.14 : Supplementary Figure 8. Bias of maximum a posteriori estimates and credible
interval width. Top panel reports the modal bias of the sampling distribution of MAP estimates,
bottom panel reports the modal credible interval width. Solid, dashed and dotted lines correspond
to α = 0, 10 and 50, respectively. Here, h = 2 and t0 = 0.7.
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Figure 4.15 : Supplementary Figure 9. Joint posterior density of α and h for the ASIP locus in
horses. A filled contour plot with the x-axis representing α and the y-axis representing h. Regions
of highest posterior density are shown in blue.
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Figure 4.16 : Supplementary Figure 10. Joint posterior density of α and h for the MC1R locus
in horses. A filled contour plot with the x-axis representing α and the y-axis representing h. Regions
of highest posterior density are shown in blue.
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Figure 4.17 : Supplementary Figure 11. Posterior of allele age at LCT and the demographic
model. The solid lines shows the posterior for the allele age at LCT (the same as the blue solid line
in Figure 4.6). The dashed line shows the assumed demographic model.
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