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Abstract

We propose a new method inspired from statistical mechanics for extracting geometric

information from undirected binary networks and generating random networks that conform to

this geometry. In this method an undirected binary network is perceived as a thermodynamic

system with a collection of permuted adjacency matrices as its states. The task of extracting

information from the network is then reformulated as a discrete combinatorial optimization

problem of searching for its ground state. To solve this problem, we apply multiple ensembles of

temperature regulated Markov chains to establish an ultrametric geometry on the network. This

geometry is equipped with a tree hierarchy that captures the multiscale community structure of the

network. We translate this geometry into a Parisi adjacency matrix, which has a relative low

energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further

optimized by making block permutations subject to the ultrametric geometry. The optimal matrix

corresponds to the macrostate of the original network. An ensemble of random networks is then

generated such that each of these networks conforms to this macrostate; the corresponding

algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at

different scales of the ultrametric geometry of the network, it is possible to compute its evolution

entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a ne

description of its geometric structure. We demonstrate the performance of this method on

simulated as well as real data networks.
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1 Introduction

A network is a set of objects (also called vertices, or nodes), with connections between

them, also called edges [2,44,54,49,25,48]. As such, it is a mathematical construct that

models the relationships between objects, where relationships look at the connections

between one object and the rest of the network or more generally between subsets of objects,

also referred to as clusters or communities. Networks are therefore tools that can capture

interconnections between objects and allow for the analysis of these connections: they have

become ubiquitous in many areas of science, with different definitions of nodes and edges.

In biology for example, the objects (nodes) can be genes, proteins, neurons, individual

organisms, species, etc. and edges can represent regulatory interactions, binding affinities,

synapses, social associations, predation, gene ow and so on (see for examples

[54,32,58,6,7]). Applications of network analysis also include friendship networks, the

World Wide Web, disease models, among others [48,27].

Formal statistical models for the analysis of network data have emerged as a major research

interests (see recent review articles by Airoldi and colleagues [25] and by Kolacyzk [30]).

There are two main types of such statistical models: the static network models that

concentrate on explaining the observed relationships based on a single version of the

network, and the dynamic network models that are concerned with the mechanisms that

govern changes in the network over time. We focus on the former, namely on untangling the

complicated and convoluted relational patterns contained in a given a network [11, 49].

Static statistical models are common in social network analysis, as they provide a

framework to compute metrics that quantify structures at different levels of organization of

the nodes (individuals, groups, communities). In behavioral ecology for example, these

metrics are then used to test hypotheses regarding the relationships between the attributes of

a node and its position in a network (for review, see Croft et al. [18]). The most common of

such hypotheses is the null hypothesis. Behavioral biologists do recognize that the use of

null hypothesis signi cant tests requires caution [61]. In particular, it requires the definition

of null hypotheses that can conceivably be true, as well as special considerations for its

applications to network data. Indeed, networks represent relational data and metrics that are

not independent [31], rendering statistical methods that assume independence not

appropriate. To account for the dependence in relationships in network, it is believed that the

best approach is to build null models based on randomizations of the networks [40, 18]. In

this paper, we focus on how to generate such randomized networks that conform to an

observed network.

There are many ways to randomize a given network (see [18] for a short review) whose

applications are problem dependent. If the edges of the network are well established, it is

possible to permute the assignments of objects with the nodes of the network, keeping the

edges xed: this enables the measure of the importance of positions within the network. In
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most applications however the null hypothesis focus on relationships, in which case it is

preferable to randomize the edges. There are many options to perform the latter. The

simplest is to assume that interactions are equally likely between nodes in the network, in

which case edges can be rerranged randomly. Most real networks however are unlikely to

satisfy this assumption. It is then necessary to constrain the randomization such that it

conforms with the structure (geometry) of the network. This requires that the geometry of

the network be known, the so-called community extraction problem [46,25,4,21], and that

this geometry be translated into constraints for the random generation of edges. This task

remains a challenge for the network bootstrapping community [20,43,57].

There have been many methods developed for detecting structures in complex networks [4].

Many of these methods focus on maximizing the number of relationships within

communities of the network while minimizing links between communities, using

algorithmic approaches [46]. Another class of methods relies on a statistical model for the

network to estimate its community structure through an optimization process. The block

models are probably the most common among these methods [59,51,1,63]. Most of these

methods suffer from the inability to account for large uctuations in the characteristics of the

nodes that are observed in real-world complex networks (such as differences in the number

of connections they make within a community, the presence of sub-geometries within

communities, the presence of overlapping communities, etc.). There have been recent efforts

to correct for such effects [55,28,65]. It still remains a eld of study.

Traditional methods for generative models of random networks translate the geometry of the

reference network in the form of constraints on the number of connections that each node

make, the so-called degree of a node. This strategy has been implemented in the block

models [45]; it ignores however a property observed in many real-world networks, namely

clustering, or transitivity. Namely, there is a high probability that two nodes that are

connected to a third node are connected to each other. There have been attempts to account

for this clustering effect when generating random networks [56,15,47,37,36,38]. It remains a

problem for generating random graphs.

In this paper, we propose a new approach for generating random networks that “mimic” a

reference network that simultaneously resolve the challenges of detecting the structure of

hierarchical community organization and embedding that geometry in the generation

process. The essence of our approach lies in the meaning we give to the word mimicry: all

bootstrapped networks are constructed such that they possess all (or at least most of) the

global characteristics embedded within the given large network. The global characteristics

of particular interest are those multi-scale features that are computable and that can ideally

untangle complicated and convoluted relational patterns of cluster-wise interactions. These

multi-scale patterns are best represented with a hierarchy upon the subject nodes. This

hierarchy can be seen as a tree consisting of several scale levels of community

decomposition. As a tree is embedded with an ultrametric, this relational hierarchy is a

relational geometry. We argue from a statistical mechanics point of view that this data-

driven geometry is one feasible foundation for solving the aforementioned challenges.
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This paper is organized as follows. In the next section, we provide a complete overview of

our bootstrapping method, underlying its foundation in capturing the ultrametric geometry

of the network of interest. The following section describes the algorithms we developed to

implement this method. The result section describes six applications on simulated and real

undirected binary networks. We conclude the paper with a discussion on the implications of

our method on network modeling, speci cally on computing network entropy.

2 A general framework for geometric network bootstrapping

We focus on bootstrapping upon undirected binary networks, and leave other scenarios, such

as bipartite and directed networks with binary or weighted links for separate studies.

The key principle of our method for network bootstrapping is to generate an ensemble of

networks that “mimic” the original network. As such, the bootstrapped networks retain the

“macroscopic features” that are captured in the so-called “macrostate” of the original

network. This macrostate refers to the computed DCG-based ultrametric tree geometry on

the network together with its Parisi adjacency matrix. The method includes three steps:

1. Capture the geometry of the network by building an ultrametric tree structure on its

nodes,

2. Represent this tree structure using a Parisi adjacency matrix that is further

optimized to minimize an Ising model-like potential eld build upon the matrix,

3. Generate sampling networks that simulate each and every block of the optimized

adjacency matrix.

Steps (1) and (2) are used to define the macrostate of the network, while step (3) allows for

the construction of an ensemble of networks or microstates that conform to the macrostate.

Step 1: capturing the geometry of the network

A complex network that includes a large collection of nodes naturally embeds multi-scale

characteristics and features, generically termed “geometry”. Understanding this geometry is

the foundation for extracting knowledge from the network. We have recently developed a

new methodology, called data cloud geometry-tree (DCG-tree) to resolve this challenge

[22,23]. We believe that this DCG-tree procedure is well suited to network analysis as (i), it

automatically derives a hierarchy of clustering con gurations that captures the geometric

structure of the nodes, and (ii), it includes a built-in mechanism for self-correcting clustering

membership across different tree levels, making it less sensitive to noise. A full description

of the DCG-tree method and algorithm is provided in the original papers [22,23]. It has

already been applied to studying binary networks by Chen and Fushing [16]. We note that

the geometry captured by the DCG procedure is presented as a Parisi adjacency matrix [23].

We illustrate an ultrametric tree and the block structure of its corresponding Parisi adjacency

matrix on a simple arti cial network (Figure 1). In this example, the node-to-node distance is

defined as the minimum of sums of betweenness along shortest paths, see Chen and Fushing

[16] for detail. For the network illustrated in Figure 1(a), it is clear that the ultrametric tree

in Figure 1(b) constitutes the multi-scale community structure, which is in turn manifested

Fushing et al. Page 4

J Stat Phys. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



via the block structure seen in the Parisi adjacency matrix in Figure 1(c). It is noted that the

interaction between two farther away core communities is represented by a corresponding

block with sparsity of 1, re ecting the ultrametric distance of the tree.

Step 2: optimizing the adjacency matrix that represents the macrostate

It is not clear whether the ultrametric tree derived in step 1 actually pertains to the observed

binary network data. To resolve this issue we define a potential eld on the matrix lattice that

is subject to a set of constraints, so called the observed degree sequence. This potential eld is

equivalent to a potential used in a 2D Ising model. Let  be the network of interest,

involving N nodes. We denote as A0 is original adjacency matrix such that A0(i; j) = 1 if the

nodes i and j are connected by an edge in the network and A0(i; j) = 0 otherwise. The DCG

algorithm applied on the network generates a Parisi adjacency matrix, AP (step 1 above). By

construction AP = U*A0U* where U* is a permutation matrix on the collection of nodes. It is

known that the network is in fact invariant with respect to the permutation group, denoted as

. Though A0 and AP correspond to same undirected binary network, their different

arrangements of nodes on rows and columns give rise to very distinct “spin congurations”

on a n × n lattice with reference to the ferromagnetic Ising model framework. Specifically,

let A(U) = [aij(U)] be a n n binary matrix such that A(U) = UA0U for some permutation

matrix U ε . Since we do not allow for self-loops in a binary network, the diagonal of A(U)

is filled with zeros. We define an energy level of A(U) as being the energy level of a

ferromagnetic eld having a “spin conguration” described by  with In

the n × n identity matrix:

(1)

where  is the set consisting of the four nearest

neighbors of (i; j) entry on the lattice (mirroring extensions are required for entries on the

lattice edges). The interaction potential J<ij;i′j′> (= 1) is taken to be constant and equal to one

for simplicity. The negative constant in E(A) implies that, at least heuristically, aggregations

of “spins” 1′s or spins 0′s on the eld of n × n lattices tend to have low energy levels, while

heterogeneous spin con gurations, such as checker board and its likes, give rise to high

energy levels.

The (Parisi) adjacency matrix A(Umin) that achieves the globally lowest energy level under

the Ising model potential eld E[A(U)] (equation 1) corresponds to the ground state. From a

statistical mechanics perspective, this assertion implies that the corresponding ultrametric

tree corresponds to a macrostate for network bootstrapping. All bootstrapped networks have

to conform to such a macrostate.

We note that from an information content perspective, the optimized Parisi matrix reveals

the pertinent information content of the network via its multiscale block structure. It

becomes a natural platform for formulating realistic data-driven null and alternative

hypotheses. Such a macrostate plays the role of an empirical distribution in classic statistical
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bootstrapping under the independently identically distributed (IID) setting. In this setting,

the empirical distribution optimizes a nonparametric maximum likelihood in the process of

estimating the unknown distribution. There has been several reports of efforts put into

proving that such statistical bootstrapping works for nonparametric statistical inferences (see

[19] as well as the discussion paper by DiCiccio and Efron [62]). With respect to the

potential eld introduced here however, we postulate a general and fundamental principle:

bootstrapping conceptually has to conform to a computed data-driven macrostate of the

original system, either being approximated by a network or a data cloud or others data

formats.

Step 3: generating an ensemble of networks based on the macrostate representation of
the network

The optimized Parisi adjacency matrix and its corresponding ultrametric tree serve as

platforms for developing algorithmic computations for network bootstrapping. To ensure

that the randomized sampled networks conform to the macrostate captured by the Parisi

matrix, our bootstrapping algorithm works by simply sampling each block with constraints

on the degrees of its nodes and patching up all the corresponding sub-networks into one

large network. More speci cally, the procedure follows:

i. Pick a “scale” level from the ultrametric tree. The scale defines the attention given

to details in the geometry of the network. At a ne scale level, all blocks of the Parisi

adjacency matrix are considered, defining communities in the network. At the large

scale level, all nodes are included into a single community and the whole Parisi

matrix is considered as a single block. The ultrametric tree defines the number of

scales for the network of interest.

ii. Given the scale level, identify all communities and their corresponding blocks in

the Parisi matrix. We consider the diagonal blocks, that include nodes within a

community and the off-diagonal blocks, that define connections between

communities.

iii. Generate a sample sub-network for each block, with constraints on the degrees of

its nodes. The degree of a node i in a diagonal block B is set to the sum of the ith

row element of the sub-matrix corresponding to B in the Parisi matrix. The degree

of a node j in an off-diagonal block B between two communities C and D is set to

the sum of the jth row or jth column of the corresponding sub-matrix if j belongs to

C or D, respectively. The generating algorithms are derived from Bayati, et al. [8]

and explained in details in the algorithmic section below.

iv. Regroup all sub-networks into a single network

Steps (iii) and (iv) in this procedure are repeated M times to generate an ensemble of M

bootstrapped (randomized) networks. The scale level chosen in step (i) is a central concept

of our procedure. By generating ensembles of networks at different scale levels along the

DCG tree we can monitor how the community structure evolves. The sizes of these

ensembles give us a probabilistic estimate of how likely this evolution occurs. This

probabilistic interpretation has implications for network modeling and hypotheses testing, as

we will discuss below. Ultimately, we want to pick the nest scale level as the corresponding
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bootstrapped networks will retain the geometry of the whole network (in a statistical

mechanics sense, one such sampled network corresponds to a microstate that conforms to

the macrostate captured by the Parisi matrix). If we pick a larger scale, the corresponding

sampled network are likely to lose the structural information associated with the small

communities of the original network. This is illustrated in Figure 2.

3 Algorithmic implementation

To implement the network bootstrap procedure described above we need algorithms for (i)

detecting the community structure of the network of interest, (ii) optimize the Parisi

adjacency matrix that represent this community structure, and (iii) build sample networks

that conform to the structure captured in the optimized Parisi matrix. The following three

subsections describe the algorithms we have implemented.

Detecting the community structure of the network

We solve this problem using clustering. Our algorithm proceeds in two steps. First, we

define a distance between any pair of nodes in the network, following the approach

described in Chen and Fushing [16], and second we cluster the nodes using this definition of

distance and the DCG algorithm we recently developed [22,23]. We provide a brief

description of these two steps below as they are essential for understanding our method.

Let  be a binary network. We write  = , where  =  and  =  denote its

nodes and edges, respectively. The edge betweenness of an existing edge ei;j is denoted

b(ei;j); it is computed as being the number of shortest paths between pairs of nodes that run

along ei;j. For a pair of nodes (ni; nj) in 2, we generate the set of all shortest paths in 

P(ni; nj) that join them. All these paths have the same length, li;j. We represent each of these

paths as a sequence of edges,  to which we associate the corresponding

sequence of edge betweenness, . The distance between the two

nodes ni and nj is then defined as:

(2)

where H(·) is a monotonically increasing kernel function. In Chen and Fushing (2012), we

established that this distance is usually small for a pair of nodes that belong to the same

community, and large for a pair of nodes that belong to different communities. It is therefore

appropriate for community detection in networks using clustering.

Starting from the set of nodes  of the network  and the complete distance matrix  over

these nodes computed with equation 2, we generate a hierarchical tree structure using the

DCG clustering technique. The main idea of the DCG method is to embed the geometry

defined by  into a ferromagnetic potential landscape; its implementation is then based on

two key observations. First, it is observed that  defines a weighted graph onto . By

equating the weight on an edge with a ferromagnetic potential, this weighted graph is seen

as equivalent to a potential landscape, typically characterized by many wells with various
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depths. Second, it is possible to explore this landscape and therefore define its geometry by

using the popular dynamic Monte Carlo approach. A random walk as a function of “time”

will identify the many wells of the potential, as well as the probability of jumping from one

well to another. An additional advantage of using dynamic Monte Carlo is that it provides a

different dimension to explore the geometry of the landscape, characterized with its

temperature parameter T. To bene t from the latter, we define the ferromagnetic eld such that

it places the potential  =  on link eij between nodes ni and nj on the graph, where T

is a parameter mimicking temperature. At a high temperature T, a Markovian walk on the

energy landscape will transition from any node to most of the other nodes with more or less

equal probabilities. At a low temperature however, the Markov chain tends to get trapped in

potential wells for various periods of time depending on the sizes of the well before it can

escape. These two observations led to the following two-device algorithm, named Data

Cloud Geometry or DCG, for deriving the underlying multi-scale geometry of a network. At

a given temperature T, a regulated random walk on the equivalent ferromagnetic landscape

as a function of time detects information about the number of clusters and the corresponding

cluster membership of individual nodes. By repeating this procedure at different

temperatures, the DCG algorithm derives the geometric hierarchy of the set of nodes , as

described in Fushing and McAssey [22]. These temperatures are then taken as energy barrier

heights to define an ultrametric topology onto the network as it is a system on a ground

state. This topology provides measurable and natural distances between clusters. The

ultrametric topological space can then be summarized as a hierarchical tree, the DCG-tree

[23]. This ultrametric tree can be represented as a Parisi adjacency matrix by simply re-

arranging its rows and columns so that it is consistent with the tree structure.

Optimizing the adjacency matrix

The Parisi adjacency matrix AP obtained from step 1 is further optimized by rst defining a

potential eld E on the matrix according to equation 1 and then by searching for the

permutation U that leads to a minimum of E:

(3)

We propose algorithm 1 as a pragmatic resolution to find U*.

It is clear that the DCG-tree provides the initial arrangement of nodes for the initial version

of Parisi adjacency matrix into blocks (step (1)). Step (2) is designed to arrange the

corresponding blocks into order to achieve lower energy level, while Step (3) is set to

arrange the nodes within blocks such that an even lower energy level may be reached. All

arrangements are done subject to the DCG-tree structure. We note that a DCG-tree is

invariant with respect to switching arrangements between branches on the same levels, and

to switching arrangements among nodes within the lowest branches. Step (4) is an attempt to

evaluate the possibility of being too far away from the ground state. From a computational

perspective, the critical idea behind this algorithm is that the DCG-tree, or its DCG-

ultrametric tree, provides a “natural” distance metric in the space of permutation .
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We take the nal permutation, , to be an approximation of U*. If step (4) in the algorithm

does not lead to reduction of the energy, or if this reduction is minimal, we set U = U2. If

step (4) however achieves signi cant reduction of the energy level, we need to reconstruct a

new ultrametric tree and repeat the whole procedure. This was not necessary in all the test

cases presented below. This is by itself not surprising as a low energy Parisi adjacency

matrix is located in a potential well near the ground state. Computer experiments have con

rmed that the process of perturbation implemented in Step (4) tends to push the Parisi matrix

out of the potential well and then wander over the rough and higher energy landscape. This

phenomenon indicates that the betweenness based distance metric used in the DCG-based

ultrametric geometry is reasonable.

Generating random networks that conform to the optimized macrostate

The optimized Parisi adjacency matrix and the corresponding DCG tree serve as support for

generating bootstrapped networks. The generation itself is performed according to step 3

described in the previous section. Brie y, we pick rst a scale level from the DCG tree

(usually the nest level if we want to generate networks that conform to the structure of the

original network), we isolate the corresponding diagonal and off diagonal blocks from the

Parisi matrix, we set the degrees of the nodes belonging to these blocks based on the sums of

their corresponding rows or columns in the block, we generate random sub-networks for all

blocks that are constrained by these degree sequences, and nally we combine these sub-

networks into the nal bootstrapped network. While most of these steps are straightforward,

we need an algorithm for generating a random network on a set of nodes that conforms to

constraints on the degrees of these nodes. We use for this purpose an algorithm proposed by

Bayati, et al. [8], which is derived from works from McKay [41], Steger and Wormald [60],

and Kim and Vu [29]. We give our version of this algorithm for a generic diagonal block of

the Parisi matrix involving the set of nodes A as algorithm 2.

Algorithm 2 is applied to all diagonal blocks of the Parisi matrix, and a slightly modi ed

version is used to generate the bi-partite graphs corresponding to the off-diagonal rectangle

blocks. The number N returned by the algorithm is an estimate of the size of the ensemble of

corresponding random graphs that can be generated for the block considered. The size of the

ensemble of bootstrapped networks for the whole Parisi matrix is then computed by

multiplying the estimated sizes of the sub-networks generated from all blocks considered.

In algorithm 2, the probability of picking a pair of nodes (ai; aj) is taken to be:

(4)

In the original version of this algorithm proposed by Bayati, et al. (2010) the exponent α is

taken to be equal to 1. We noticed however that when one or multiple hubs are present in the

block considered, the algorithm often fails to generate a network that fully satis es the

constraints on the degrees of the nodes. To resolve this problem, we defined:

(5)
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that is, α an indicator function with an empirically chosen thresholding exponent k (i.e. α =

1 if {di − dj| > k and 0 otherwise). This is a pragmatic correction that circumvents the failure

problem, with the side effect of underestimating the size of the corresponding ensemble.

We note that there are other algorithms described in the literature for generating rectangle

binary matrices with prescribed row and column sums (see for example [17] and [5]). These

algorithms rely on the maximum entropy property and provide asymptotic estimates of the

size of the ensemble of random networks that can be generated. The algorithm proposed

here has the advantage to be simple to implement.

4 Simulation studies

We report the application of our method to generate ensemble of randomized networks on

one simulated, and four real undirected binary networks. We note that in the latter cases, the

actual geometry of the network is not known; our discussion is correspondingly more

qualitative than quantitative.

4.1 Simulated network: a symmetric case with 21 motifs

This simulated network, used in Chen and Hsieh [16], consists of 21 cliques each with four

nodes, with a symmetric geometry illustrated in Figure 3. The DCG-tree analysis of this

network reveals a geometry with 3 scales: a ne scale that identi es the 21 cliques (Figure

3(a)), a medium scale with 4 communities, corresponding to the four branches of the

structure built in the network, with the middle clique assigned to one of the branches (Figure

3(b)), and a large scale with all 21 cliques regrouped into a single community (Figure 3(c)).

When we generate networks based on the ne scale, we nd a single solution, the network

itself (Figure 3(d)); this indicates that the network defined as a union of 21 communities is

deterministic. When we generate networks at the medium scale corresponding to 4

communities, we start seeing connections between the cliques that belong to the same

branch, i.e. we lose the internal geometry of these branches in the bootstrapped network (see

one example of such bootstrapped network in Figure 3(e)). The effect is even more

prominent as we move to the large scale with a single community: the sampled networks

start losing the branched geometry of the network (see an example of such bootstrapped

network in Figure 3(f)).

The qualitative differences observed between the networks generated at the three different

scales mentioned above can in fact be quanti ed with an entropy measure. A key feature of

algorithm 2 that we use to generate the sampling networks is that it also provides an estimate

of the size of the ensemble of networks that satisfy the degree constraints (see [8] for a full

discussion of this property). We can use this estimate of size to compute an estimate of the

entropy of the ensemble (where the entropy is simply the logarithm of the size). This allows

us to compute the entropy evolution of the network as it evolves from a ne structure with 21

communities to coarse structures with 4 community and ultimately 1 community. The

corresponding values are 0.3, 261.7, and 474.3, respectively. The near zero entropy for the

21 community representation of the network con rms that this geometry is nearly

deterministic. The large jumps in entropy as the network evolves to coarser geometry with
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less communities indicates that at these scales, the network allows for larger geometric

distortions, as illustrated in Figure 3.

4.2 Real networks

The karate club network—A karate club was observed for a period of three years, from

1970 to 1972 [64]. A formal model of the friendship network within this club, one that

contained sufficient complexity and precision to allow the testing of propositions was

constructed.

This network is often considered as a benchmark for evaluating the effectiveness of

community detection algorithms. The analysis of this network with DCG reveals three stable

scales, a ne scale with three communities, a medium scale with two communities, and a

coarse, or large scale with all nodes regrouped in a single community (see Figures 4(a), 4(b),

and 4(c), respectively There is one additional outlier (i.e. a community with a single node)

that is consistent in the ne and medium scales; this node is shown as white in Figures 4(a)

and 4(b). We generated ensembles of random networks that conform to these three scales;

examples of these ensembles are shown in Figures 4(d), (e), and (f). It is clear that these

networks conform to the corresponding community geometry. The entropies of the

ensembles nearly double as we move from one scale to the other, with values of 29.5 for the

ne level, 64.9 for the medium level, and 122.4 for the coarse level. This is equivalent to

saying the complexity of this network doubles as we merge two of its communities.

The merging patterns observed in the Karate club example differ from the communities

observed in other analyses of the same data set; we believe however that they are sound.

Girvan and Newman [24] for example reported only two communities for the Karate club,

one that maps with the community illustrated in blue and a second one that maps with the

combined red and green communitites (see Figure 4(a)). It is reasonable to consider however

that the smallest “green” community stands alone as its members are all newcomers who

established links to the club through the “instructor”, who appears as a hub in the “red”

community. The more senior members of the Karate club belong to the two larger

communities and they share many inter-community links. In contrast, there are no inter-

community links between members of these large communities with members of the small

“green” communities, the newcomers. This observation is captured by our procedure, as the

two large communities merge rst in the ultrametric tree we build on the Karate Club

network.

An 8-letter doublets words network—There is a popular English word game called

“Doublets”, which was created by the English author Charles Lutwidge Dodgson, the author

of “Alice’s Adventures in Wonderland (1865)” under the pseudonym Lewis Carroll. A

doublets network can be constructed based on this game. All English words serve as nodes

of this network and an edge is drawn between two words if they share the same alphabetic

letters but one. For instance, the words DIVE, DIRE, WIRE, and WIPE form a chain of

edges. Connected components of the whole doublets network contain words of the same

length. Here we consider the largest clique-component of 8-letter words; it contains 291

nodes.

Fushing et al. Page 11

J Stat Phys. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Analysis of this network with DCG reveals three stable scales: a ne scale with four

communities (Figure 5(a)), a median scale level with two communities (Figure 5(b)), and a

coarse level including all nodes (Figure 5(c)). Examples of random networks that conform to

this network at these three levels of community structures are shown in Figures 5(d), 5(e),

and 5(f). Interestingly, the corresponding ensembles do not vary signi cantly in size: their

entropies are 1291, 1521, and 1869 for the ne, medium, and coarse level, respectively. This

would indicate that there is only little speci city in the geometry of the different communities

detected in the network.

Movie-star network—There is large movie and actor data set available at the URL: http//

www3.nd.edu/networks/resources.htm... This data set contains 102,639 movies and 376,021

actors in the form raw data. In this study we consider the connectivity among “movie-stars”

only. A movie-star is an actor that appears at least in 100 movies. There are 747 movie-stars

in this data set. Two movie-stars are considered to be connected (i.e. to form an edge in the

movie-start network) if they have ever performed together in at least one movie. The

corresponding binary network is a network of hubs. We use this example to illustrate the

concept of “scale” and “heterogeneity” in a large network data. That is, we establish the

hub-vs-hub relationship rst. Then its information patterns can be contrastingly compared

with hub-vs-non-hub relationship patterns via a bipartite network.

The multiscale structure of the network is clearly visible from the different heat maps shown

in Figure 6. The original adjacency matrix (noted as A0 in Section 2) has an energy E[A0] =

−981516. After imposing the DCG-tree geometry onto A0, a Parisi adjacency matrix (noted

as AP in algorithm 1) is obtained; its energy is −1267084. After permutation of the blocks in

AP, we obtain a new matrix (noted AP (U1)), whose energy is −1289456. The reduction of

energy for the different Parisi adjacency matrices generated with algorithm 1 are consistent

with the assertion that we have reached the macrostate of the binary network.

World-wide major airport network—Open Flights is a tool that allows its users to map

ights around the world, and to search and lter them, thereby providing valuable information

about air traffic. It is available at the URL http//www.openflights.org. Using this tool, we

generated information about airports and ights for the year 2012 from the original

OpenFlights/Airline Route Mapper Route Database, which contains 59036 routes between

3209 airports on 531 airlines spanning the globe. We then defined “major airports” as

airports from which at least ten direct ights originate. There are 668 such major airports.

Two major airports are connected if and only if there is a direct ight connects them. This

definition of connectivity leads to a network with a total number of edges 10861 and a mean

degree for its vertices of 32.5. We use this example is to illustrate the concordance between

known landmark information for the vertices of a network and the DCG-based ultrametric

geometry pertaining to the network. In Figure 7, we show two levels of the ultrametric tree

computed on the major airport network using DCG, as two different temperature. At a

relatively low temperature (Figure 7a), twelve clusters are identi ed; these clusters match

reasonably well with geographic landmarks.

Major airports in America continent form three clusters that cover three distinct areas that

are geographically consistent: 1) Alaska Area; 2)North and Central America; 3) and south
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America, for the lower temperature level of the DCG-based ultrametric geometry. Only the

rst two clusters merge at higher temperatures, while the cluster covering South America

remains constant. Major airports in Europe and Africa form two clusters matching with a

Europe-Africa Region and a Russia-Eastern Europe Region. These two clusters merge with

the airport cluster covering East Asia at a higher temperature. Across the two temperatures,

the cluster of major airports covering Southern Asian-Australian Region remains separated

from the other clusters. These matching patterns between clusters and geographic landmarks

together with their emerging patterns support the pertinence of our DCG-based ultrametric

geometry.

5 Discussion

Statistical physics has been very successful in deducing interplays of fundamental laws to

explain complex phenomenons in nature. In this manuscript, we illustrate its application on

complex networks, which are nowadays popularly used for approximating complex systems.

Our first key development is that a network is viewed and properly redened as a

thermodynamic system equipped with an Ising potential energy. Its ground state is then

postulated to be the state that contains the actual network pattern information. The task of

computing this information is thereby converted into the task of finding its ground state, i.e.

a discrete combinatorial optimization problem. It is well known that the computational

complexity of solving this problem via a direct search algorithm is untraceable, especially

when the number of nodes in the network is large. This leads to our second key

development: to resolve this computational complexity by constructing a data-driven

geometry on the node space such that nearly all non-viable up-and-down spin con gurations

are automatically excluded from our search algorithm. This device is an ultrametric (tree)

geometry based on Data Cloud geometry (DCG) computations [22].

The data-driven tree geometry that is constructed with the DCG method reveals patterns of

multiscale blocks on the adjacency matrix representation of the network. This multiscale

block pattern is consistent with the Parisi ultrametricity conjecture [52,53]. We consequently

refer to this matrix representation as the Parisi adjacency matrix; it is assumed to correspond

to the macrostate of the network. The concept of multiscale features in a network is

consistent with the hierarchical structure identi ed by Herbert Simon [26] as well as with the

concept of scales and complexity suggested by Philip. W. Anderson [3]. Henceforth we are

con dent that an authentic network structure is necessary multiscale. This has been

emphasized in [38,16,23]. Any microstate of the thermodynamic system pertaining to the

network of interest has therefore to conform to this macrostate. Four our purpose, this

translates to the fact that any random network designed to mimic a given network has to

conform with the multiscale block structure of this network.

We emphasize the need to build an ultrametric geometry for a network. This geometry is

data-driven and nonparametric. as such, it is not built from any modeling or embedding

assumption. The DCG-based construction starts from a “betweenness” based distance, in

which basic network characteristics, such as node degrees and centrality, are contained.

Nodes sharing same motifs, or core clusters, tend to have similar betweenness. The whole
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network is then somehow properly summarized into a distance matrix. Furthermore the

different levels in the resultant DCG-tree structure are correspondingly derived to embrace

major phase-transitions of the cluster-merging process.

We note that this data-driven geometry contrasts sharply with the concept of hyperbolic

geometry embedded onto a network [12,13,35,34,14,33]. The hyperbolic geometry is built

by theoretically distributing nodes randomly on a R2 disk, for instance, with a tuning

constant curvature and is taken as a “continuous and smooth” version of a “tree” geometry.

Though this hyperbolic geometry of network also bring out many characteristics, such as

degree heterogeneity, strong clustering and many power-laws related manifestations, its

structural features and patterns are difficult to visualize.

To search for the ground state of the network, we optimize its adjacency matrix AP such that

it leads to a minimum for an Ising-like 2D potential E on the network (equation 1. To

perform this optimization, we consider the group of permutations U on AP and nds the

permutation of the rows and columns that lead to a minimum of E (equation 3). We note that

all permutations in the permutation group, including the optimal permutation U, keep the

original binary network unaltered. If perturbations on the original network were allowed, for

instance subject to degree sequences pertaining to any level of the Parisi adjacency matrix,

then it is expected that we could nd even lower energy levels. In general however, it is

difficult to search directly the ensemble of matrices subject to a set of observed degree

sequences as this ensemble is far too large. The algorithm we proposed (algorithm 1)

provides an effective computational solution to this problem. From a statistical mechanics

perspective, it is reasonable to conjecture that all the spin-glass states of the minimum

energy Hamiltonian are represented by a collection of Parisi adjacency matrices. To nd the

optimal matrix, we need only to consolidate the connectivity of on-diagonal blocks

pertaining to the nest scale level. One approach to obtain this consolidation is the so called

checkerboard unit switch found in ecology literature (see for example [39]). Such a

functional switch would reduce the energy level.

Once the geometry of a network is known, we use an algorithm originally proposed by

Bayati and colleagues [8] to generate random networks that conform to this geometry. There

are two primary reasons for using this algorithm: (i) its capability of generating nearly

“uniform” random matrices with computational simplicity, and (ii) its feature of providing

an estimate for the size of the ensemble of random networks that can be generated. A simple

algorithm that can achieve uniformity is typically ideal because of its computational

reliability. This is an essential aspect for implementing network bootstrapping in statistical

inferences. We note that the popular standard con guration model in random graph literature

is not a viable alternative for the algorithm we have used, as it is only capable of generating

undirected random graph with a xed degree distribution [42,50,38].

The generation of random networks that conform to the geometric structure of the network

can be repeated at the different levels encoded in this geometry. As the algorithm we use

provides an estimate of the sizes of these different ensembles of networks, we can compute

the evolution of the entropy of the network with respect to its multiscale block structure.

From a practical perspective, this entropy evolution provides a mean to test whether a scale-
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specific block structure is realistic or not. This is one of the main applications of network

bootstrapping in network based hypothesis testing as commonly encountered in biology and

ecology (for review, see Croft, et al. [18]). We believe that the method we proposed here is

well adapted to such testing. The Parisi adjacency matrix and its several levels of network

ensembles would not only provide a platform for formulating null and alternative

hypotheses, but also pave the way for proper nonparametric statistical inferences.

Bianconi [9,10] recently proposed an alternate method for computing the complexity of

randomized ensembles of networks that is also based on statistical mechanics. In her reports,

she considered three types of such randomized ensembles with either xed degree sequence,

degree-degree correlation, or community constraints. She then proposed a method for

approximating the partition function of these networks, using standard tools from

mathematical physics. An entropy is computed based on the partition function and this

entropy is used to define an index of network complexity under the corresponding structural

constraint. In contrast, the method we have proposed is data-driven and as such, it alleviates

the problem of estimating a partition function. We rely on the structural patterns of the

network to generate ensembles of randomized networks that capture the different scales

present in the network; the sizes of these ensemble provide not only a measure of the

complexity of the network itself, it provides a measure of its evolution as we move from its

coarse to ne community content.
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Fig. 1. A network and its hierarchical structure
(a) A undirected binary network, (b) the DCG-based ultrametric tree built on its nodes, and

(c) the corresponding Parisi adjacency matrix. Color online.
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Fig. 2.
Effects of the scale level on the quality of the bootstrapped networks. Let us consider a

simple binary network with 20 nodes. The DCG procedure applied to its nodes identi es

three scales, ne (a), medium (b), and large (c), with 4, 2, and 1 communities, respectively. A

random network selected to conform to the ne scale level maintains the structure of the

network (panel d). Random networks that conform to the medium scale and to the large

scale shown in panels (e) and (f), respectively, lose the geometric information from the

small communities that are not identi ed at those scale levels, such as the “blue” community.

Color online.
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Fig. 3. The 21-motif example
This network was designed to illustrate the importance of geometry when sampling

networks. The DCG analysis of this network reveals three stable scale levels, with 21 (a), 4

(b), or 1 (c) communities, respectively. In each of the panels (d), (e), and (f), we show one

example of a bootstrapped network at the corresponding scale levels. While the network is

nearly deterministic at the ne level (d), it becomes blurry at the large level (f). See text for

details. Color online.
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Fig. 4. The Karate Club friendship network (Zachary, 1977)
DCG analysis of this network reveals a geometry with three levels, one with three

communities (a), one with two communities (b), and one where all nodes belong to the same

community (c). In panels (d), (e), and (f), we show examples of randomized networks that

were generated to conform to the karate club network at these levels. Color online.
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Fig. 5. A 8-letter word doublets network
Panels (a), (b), and (c) show the network with 4, 2, and a single communities, respectively,

where the communities were identi ed using DCG. In each of the panels (d), (e), and (f), we

show one example of a bootstrapped network at the corresponding scale levels. Color online.
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Fig. 6.
Parisi adjacency matrices for the network of 747 Movie stars, who were actors in more than

100 movies (see text for details). (a) The heatmap of the network original adjacency matrix

A0; (b) The heatmap of the Parisi adjacency matrix AP; (c) The heatmap of the Parisi matrix

AP (U1) obtained after permutations of the blocks of AP; this matrix has a lower energy,

namely −1289456. Color online.
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Fig. 7.
Two levels of the ultrametric geometry on the network of the world-wide major airports. (a)

At a relatively low temperature, 12 major clusters are detected (a cluster is deemed major if

it contains at least four airports). The marginal clusters (i.e. with less than four airports) are

represented with black crosses. Flight routes are shown as red line just for illustration

purpose; there are no indications on the frequency of ights along these routes; (b) At a

higher temperature only six major clusters are observed. Clusters 1 and 3, and clusters 4, 5

and 6 observed at the lower temperate are merged at this level (see text for details). Color

online.
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