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ABSTRACT OF THE DISSERTATION

Coding for Distributed Storage and Flash Memories

by

Pengfei Huang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2018

Professor Paul H. Siegel, Chair

A modern large-scale storage system usually consists of a number of distributed storage nodes,

each of which is made up of many storage devices, like flash memory chips. To maintain the data integrity

in the system, two independent layers of data protection mechanisms are deployed. At the system level,

erasure codes, e.g., maximum distance separable (MDS) codes, are used across a set of storage nodes. At

the device level, error-correcting codes (ECCs), e.g., Bose-Chaudhuri-Hocquenghem (BCH) codes, are

employed in each flash memory chip. The main research goal of this dissertation is to design new erasure

codes for distributed storage and new ECCs for flash memories.

The first part of this dissertation is devoted to studying a new class of erasure codes called locally

repairable codes (LRCs) for distributed storage. We focus on LRCs over small fields; in particular, the
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binary field. We investigate the locality of classical binary linear codes, e.g., BCH codes and Reed-Muller

codes, and their modified versions. Then, we derive bounds for LRCs with availability and present several

new code constructions for binary LRCs. In addition, we study erasure codes that can locally correct

multiple erasures. Such codes are referred to as multi-erasure locally repairable codes (ME-LRCs). Our

constructions based on generalized tensor product codes generate several families of optimal ME-LRCs

over small fields.

The second part of this dissertation aims to construct new ECCs and analyze the fundamental

performance limits for flash memories. We propose a general framework for constructing rate-compatible

ECCs which are capable of adapting different error-correcting capabilities to the corresponding bit error

rates at different program/erase (P/E) cycles. Next, we present a new family of shared-redundancy ECCs

called ladder codes. Using ladder codes, multiple codewords from good and bad pages in a flash memory

block can share some common redundancy. Finally, based on the channel models obtained from empirical

data, the performance of multilevel flash memories is studied by using multi-user information theory. The

results provide qualitative insight into effective coding solutions.
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Chapter 1

Introduction

A modern large-scale storage system consists of a number of distributed storage nodes, each

of which is made up of many storage devices, like traditional magnetic hard disk drives or recent flash

memory chips. To maintain the data integrity in the system, two independent layers of data protection

mechanisms are deployed. At the system level, erasure codes, such as repetition codes and more generally

maximum distance separable (MDS) codes, are used across a collection of storage nodes. At the device

level, error-correcting codes (ECCs), such as Bose-Chaudhuri-Hocquenghem (BCH) codes and low-density

parity-check (LDPC) codes, are employed in each storage device.

Information theory [19, 23, 70] and coding theory [34, 47, 49, 63, 64, 66] are two effective tools

to analyze and design wireless communication and data storage systems. This dissertation is focused on

studying modern data storage by using these powerful theories. The research goal of this dissertation can

be divided into two parts: for the higher system level, we aim to design new erasure codes for distributed

storage; with respect to the lower device level, we will construct new ECCs and analyze the fundamental

performance limits for flash memories.

1.1 Distributed Storage

Modern large-scale distributed storage systems, such as data centers and peer-to-peer storage

systems, are required to tolerate the failure or unavailability of some of the nodes in the system. The
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simplest and most commonly used way to accomplish this task is replication, where every node is replicated

several times, usually three. This solution has clear advantages due to its simplicity and fast recovery from

node failures. However, it entails a large storage overhead which becomes costly in large storage systems.

In order to achieve better storage efficiency, erasure codes, e.g., Reed-Solomon codes, are deployed.

Reed-Solomon and more generally MDS codes are attractive since they tolerate the maximum number of

node failures for a given redundancy. For example, the [14, 10] Reed-Solomon code used by Facebook

has only 40% storage overhead which is much smaller than the 200% overhead associated with the

three-replication scheme [67]. However, they suffer from a very slow recovery process, in the case of a

single node failure, which is the most common failure scenario. Hence, an important objective in the design

of erasure codes is to ensure fast recovery while efficiently supporting a large number of node failures.

There are several metrics in the literature to quantify the efficiency of rebuilding failed nodes. Three of the

most popular consider the number of communicated bits in the network, the number of read bits, and the

number of accessed nodes. In this dissertation, we study erasure codes with respect to the last metric.

Locally repairable codes (LRCs) are a class of erasure codes in which a code symbol can be

recovered by accessing at most r other symbols, where r is a predetermined value [30, 55, 75]. More

specifically, consider a code of length n, with dimension k. A code symbol has locality r if it can be

reconstructed by accessing at most r other symbols in the code. It is said that the code has all-symbol

locality r if every symbol is recoverable from a set of at most r symbols. If the code is systematic and only

its information symbols have this property, then we say that the code has information locality r.

Codes with small locality were initially studied in [35, 38, 53]. In [30], Gopalan et al. formally

introduced the interesting notion of locality of a code symbol. The trade-off between code minimum

distance and information locality was investigated, and a Singleton-like upper bound on the code minimum

distance was derived. Following [30], there exist many works on bounds and constructions for LRCs [13,

31, 55, 71, 73, 75, 77, 81, 92]. Furthermore, some erasure codes with small locality were implemented in

data storage systems, such as Windows Azure Storage [39] and Facebook clusters [67].

LRCs have been generalized in several directions so far. Besides locality, another important

property of LRCs is their symbol availability, meaning the number of disjoint sets of symbols that can

be used to recover a given symbol. High availability is a particularly attractive property for so-called
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hot data in distributed storage. Bounds and code constructions for LRCs with availability have been

studied in [6, 7, 31, 54, 60, 74, 75, 82, 83, 92]. In addition, erasure codes which can locally repair multiple

erasures have received considerable attention since simultaneous node failures are becoming common, in

view of the increasing trend towards replacing expensive servers with low-cost commodity servers in data

centers [7, 10, 11, 17, 27, 58, 59]. In this dissertation, we develop new bounds and constructions for LRCs

and their generalizations over small fields.

1.2 Flash Memory

NAND flash memory is a versatile non-volatile data storage medium, and has been widely used in

consumer electronics as well as enterprise data centers. It has many advantages over traditional magnetic

recording, e.g., higher read throughput and less power consumption [8, 14]. The basic storage unit in a

NAND flash memory is a floating-gate transistor referred to as a cell. The voltage levels of a cell can

be adjusted by a program operation and are used to represent the stored data. The cells typically have 2,

4, and 8 voltage levels (1, 2, and 3 bits/cell, respectively) and are referred to as single-level cell (SLC),

multi-level cell (MLC), and three-level cell (TLC), respectively. Cells are organized into a rectangular

array, interconnected by horizontal wordlines and vertical bitlines, that constitute a block. A flash memory

chip comprises a collection of such blocks. During program (i.e., write) operations, the voltage level of a

cell cannot be decreased. In order to do so, the entire containing block must be erased and reprogrammed.

Repeated program/erase (P/E) operations induce wear on the cells in the block, with a detrimental effect

on the lifetime of the memory.

In an MLC flash memory, the two bits in the cells connected along a wordline are assigned to two

separate pages, which represent the basic unit for program and read operations. The most significant bit

(MSB) is assigned to the lower page while the least significant bit (LSB) is assigned to the upper page. We

denote the four nominal voltage levels in the MLC as A0, A1, A2, and A3, in order of increasing voltage.

The program operation is not perfect, so the actual cell levels are distributed around the nominal levels, as

depicted in Figure 1.1. A particular mapping of 2-bit patterns, namely ‘11’, ‘10’, ‘00’, and ‘01’, to the

voltage levels, is also shown in the figure. We refer to this mapping as the Gray labeling.
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Figure 1.1: The four voltage levels and Gray labeling for a cell in MLC flash memories. A total of three
reads are employed for decoding two pages.
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Figure 1.2: The eight voltage levels and Gray labeling for a cell in TLC flash memories. A total of seven
reads are employed for decoding three pages.

Similarly, the three bits belonging to a TLC are separately mapped to three pages. We refer to the

first bit as the most significant bit (MSB), the second bit as the center significant bit (CSB), and the third bit

as the least significant bit (LSB). The corresponding pages are referred to as the lower page, center page,

and upper page, respectively. Figure 1.2 depicts the programmed cell level distributions around the eight

nominal TLC voltage levels, denoted by B0, B1, B2, B3, B4, B5, B6, and B7, along with the corresponding

Gray labeling, ‘111’, ‘110’, ‘100’, ‘101’, ‘001’, ‘000’, ‘010’, and ‘011’.

Several different types of errors can be introduced at any point during the P/E cycling process,

e.g., program errors, inter-cell interference (ICI) errors, data retention errors, and read disturb errors [14].

Error characterization of flash memories is important and has been studied extensively [15, 79, 89, 90]. It

is well known that the raw bit error rate (BER) increases as the P/E cycle count grows; see [15, 79, 90]

for MLC flash memories and [89] for TLC flash memories. Therefore, at a higher P/E cycle count, a

stronger ECC is needed to maintain the data integrity. Rate-compatible codes are promising to satisfy this

requirement, since they are capable of adapting different error-correcting capabilities to the corresponding

bit error rates. It has also been observed that the bit error rates of different pages vary with respect to their

locations in a block [15, 89, 90]. To enhance the reliability of all the pages, instead of deploying strong
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ECCs for all these pages, a more storage-efficient way is to employ relatively weaker ECCs in these pages

and allow them to share some common redundancy. To this end, new ECCs with shared redundancy need

to be designed. Moreover, many experiments have shown the asymmetry of bit errors in MLC and TLC

flash memories [15, 79, 89, 90]. The threshold voltage distributions of flash memory cells were studied

in [14, 16, 56]. Thanks to these flash memory channel models, the fundamental performance limits of flash

memories can be analyzed by using information theory. This performance analysis gives insight into the

design of practical error-correcting coding schemes.

1.3 Dissertation Overview

In this dissertation, we first study LRCs over small fields for distributed storage. Then, we propose

new error-correcting coding schemes for flash memories and also analyze the fundamental performance

limits of multilevel flash memories from a multi-user perspective. The dissertation is organized as follows.

In Chapter 2, we study the locality of classical binary linear codes. We first investigate the locality

of a variety of well known binary linear cyclic codes, e.g., Hamming codes and simplex codes. Similarly,

we study the locality of binary Reed-Muller codes. We then discuss the locality of codes which are obtained

by applying the operations of extend, shorten, expurgate, augment, and lengthen to binary linear cyclic

codes. Several families of such modified codes are considered and their optimality is addressed.

In Chapter 3, we present an upper bound on the minimum distance of LRCs with availability.

Then, we construct LRCs using phantom parity-check symbols and a multi-level tensor product structure,

respectively. Finally, availability of LRCs is studied. We investigate the locality and availability properties

of several classes of one-step majority-logic decodable codes, including cyclic simplex codes, cyclic

difference-set codes, and 4-cycle free regular LDPC codes. We also show the construction of a long LRC

with availability from a short one-step majority-logic decodable code.

In Chapter 4, we study multi-erasure locally repairable codes (ME-LRCs). We first develop an

upper bound on the minimum distance of ME-LRCs. We then propose a general construction of ME-LRCs

based on generalized tensor product codes, and study their erasure-correcting properties. A decoding

algorithm tailored for erasure recovery is given, and correctable erasure patterns are identified. Next, we
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prove that our construction yields optimal ME-LRCs with a wide range of code parameters, and present

some explicit ME-LRCs over small fields. Finally, we show that generalized integrated interleaving (GII)

codes can be treated as a subclass of generalized tensor product codes, thus defining the exact relation

between these codes.

In Chapter 5, we first study the lower bounds for rate-compatible ECCs, thus proving the existence

of good rate-compatible codes. Then, we propose a general framework for constructing rate-compatible

ECCs based on cosets and syndromes of a set of nested linear codes. We evaluate our construction from

two points of view. From a combinatorial perspective, we show that we can construct rate-compatible

codes with increasing minimum distances. From a probabilistic point of view, we prove that we are able to

construct capacity-achieving rate-compatible codes. Performance of two-level rate-compatible codes is

evaluated for MLC flash memories.

In Chapter 6, we propose a new class of linear error-correcting codes, called ladder codes, whose

codeword structure consists of multiple codewords of certain component codes and also their shared

redundancy. First, we give a general construction for ladder codes, determine the code length and

dimension, and also derive a lower bound on the minimum distance. Then, we study correctable error-

erasure patterns of ladder codes and give a corresponding decoding algorithm. Finally, we compare a

two-level ladder code with a concatenated code, and show that the former can outperform the latter in

many cases. Ladder codes have potential to be used for data protection in flash memories where only a few

pages may suffer from severe errors in a block.

In Chapter 7, we study the performance of different decoding schemes for multilevel flash

memories where each page in every block is encoded independently. We focus on the MLC flash memory,

which is modeled as a two-user multiple-access channel suffering from asymmetric noise. The uniform

rate regions and sum rates of treating interference as noise (TIN) decoding and successive cancellation

(SC) decoding are investigated for a P/E cycling model and a data retention model. We examine the effect

of different binary labelings of the cell levels, as well as the impact of further quantization of the memory

output (i.e., additional read thresholds).
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Chapter 2

Locality of Classical Binary Linear Codes

2.1 Introduction

Locally repairable codes (LRCs) are a class of codes in which a single code symbol can be

recovered by accessing at most r other symbols, where r is a predetermined value [30, 55, 75]. For a

length-n code with dimension k, it is said that the code has all-symbol locality r if every symbol is

recoverable from a set of at most r symbols. If the code is systematic and only its information symbols

have this property then the code has information locality r. LRCs are well studied in the literature and

many works have considered bounds and code constructions for such codes. In [30], an upper bound,

which can be seen as a modified version of the Singleton bound, was given on the minimum distance of

LRCs. More specifically, if an [n, k, d]q linear code has information locality r, then

d ≤ n− k−
⌈

k
r

⌉
+ 2. (2.1)

In [55], it was proved that the bound (2.1) holds also for non-linear codes with all-symbol locality. Code

constructions which achieve bound (2.1) were given in [38,39,71,75,77]. However, for some cases, bound

(2.1) is not tight, so several improvements were proposed in [59, 73, 81].

Recently, a new upper bound on the dimension k of LRCs was presented in [13]. This bound

takes into account the code length, minimum distance, locality, and field size, and it is applicable to both
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non-linear and linear codes. Namely, if an (n, M, d)q code has all-symbol locality r, then

k ≤ min
x∈Z+

{
xr + k(q)opt(n− x(r + 1), d)

}
, (2.2)

where M denotes the codebook size, k = logq M, Z+ is the set of all positive integers, and k(q)opt(n
′, d′)

is the largest possible dimension of a length-n′ code with minimum distance d′ and a given field size q.

There also exist some constructions of LRCs over small fields, e.g., binary field, in [31, 72, 76, 92].

Our main goal in this chapter is to study the locality of classical binary linear codes, in particular,

binary linear cyclic codes. The remainder of this chapter is organized as follows. In Section 2.2, we

formally define the problem and state some preliminary results. In Section 2.3, we prove the locality of

linear cyclic codes and show that such a code has locality that equals the minimum distance of its dual code

minus one. We also study similar properties for Reed-Muller codes. In Section 2.4, we study the locality

of codes which are obtained by the operations of extend, shorten, expurgate, augment, and lengthen. We

conclude the chapter in Section 2.5.

2.2 Definitions and Preliminaries

In this section, we give the basic definitions and preliminaries that will be used in this chapter. We

use the notation [n] to define the set {1, . . . , n}. For a length-n vector v and a set I ⊆ [n], the vector vI

denotes the restriction of the vector v to coordinates in the set I , and wH(v) represents the Hamming

weight of the vector v. A linear code C over Fq of length n, dimension k, and minimum distance d is

denoted by [n, k, d]q, and a non-linear code is denoted by (n, M, d)q where M is the number of codewords;

the field size q may be omitted if it is clear from the context. The dual code of a linear code C will

be denoted by C⊥. We use the notation S(c) to denote the support of a codeword c. We follow the

conventional definition of locally repairable codes [55, 58, 75], which is stated as follows.

Definition 2.2.1. The ith code symbol, i ∈ [n], is said to have locality r if there exists a repair set Ri of

size at most r, such that if it is erased then it can be recovered by reading the symbols from the set Ri. A

code C is said to have all-symbol locality r if all its symbols have locality r. Similarly, a systematic code
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C is said to have information locality r if all its information symbols have locality r.

In many papers, a code with all-symbol locality which attains the bound (2.1) is called an optimal

LRC. Here, we prefer a slightly different definition of optimality.

Definition 2.2.2. An [n, k, d]q linear code C with locality r is said to be d-optimal, if there does not exist

an [n, k, d+ 1]q code with locality r. Similarly, it is called k-optimal if there does not exist an [n, k + 1, d]q

code with locality r, and it is called r-optimal if there does not exist an [n, k, d]q code with locality r− 1.

Example 2.2.1. Consider the binary simplex code C with parameters [2m − 1, m, 2m−1]. It was proved

in [13] that this code has all-symbol locality r = 2 and it is r-optimal for these given parameters. Since this

code satisfies the Plotkin bound, it is d-optimal and k-optimal as well. �

In the rest of this chapter, we consider only codes with all-symbol locality, and thus when saying

that a code has locality r we refer to all-symbol locality.

2.3 Locality of Classical Codes

In this section, we study two classes of classical binary linear codes, namely, cyclic codes and

Reed-Muller codes.

2.3.1 Locality of Cyclic Codes

First, we give our main result for cyclic codes, and also present several examples. We start with a

simple observation about the locality of code symbols. Even though it has been mentioned before, see

e.g., [30, 58, 59], we state and prove it here for completeness.

Claim 2.3.1. For a binary linear code C, if its ith coordinate, i ∈ [n], belongs to the support of a codeword

in C⊥ with weight r + 1, then the ith code symbol has locality r.

Proof. Assume that there exists a codeword c′ ∈ C⊥ such that c′i = 1 and wH(c′) = r + 1. Let Ri =

S(c′) \ {i}. Then for all c ∈ C, ci = ∑ j∈Ri
c j and from Definition 2.2.1, the ith symbol has locality r. �

The next lemma is an immediate consequence of the preceding claim.
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Lemma 2.3.2. Let C be an [n, k, d] binary linear cyclic code, and let d⊥ be the minimum distance of its

dual code C⊥. Then, the code C has locality d⊥ − 1.

Proof. The dual code C⊥ has a codeword of weight d⊥. Since C is a linear cyclic code, its dual code C⊥ is

also a linear cyclic code. Thus every i ∈ [n] belongs to the support of some codeword of weight d⊥ in C⊥.

From Claim 2.3.1, every coordinate has locality d⊥ − 1. Thus, the code C has locality r = d⊥ − 1. �

Next, we give several examples to illustrate how the locality of specific codes can be determined

from Lemma 2.3.2 and then study their optimality.

Example 2.3.1. Let C be the [n = 2m − 1, k = 2m − 1−m, d = 3] cyclic binary Hamming code. Its dual

code is the [2m − 1, m, 2m−1] cyclic binary simplex code. Therefore, the Hamming code has locality

r = 2m−1 − 1. Since it is a perfect code, it is both d-optimal and k-optimal. In order to show r-optimality,

let us assume on the contrary that there exists an [n, k, d] code with locality r̂ = 2m−1 − 2. According to

bound (2.2) for x = 1, we have that

k ≤xr̂ + k(2)opt(n− x(r̂ + 1), d) = 2m−1 − 2 + k(2)opt(2
m−1, 3)

(a)
<2m−1 − 2 + 2m−1 − (m− 1) = 2m −m− 1,

where step (a) is from the Hamming bound. Thus, we get a contradiction to the value of k. We also get

from Lemma 2.3.2 that the simplex code has locality 2. This gives an alternative proof to the one given

in [13] in case the code is cyclic. �

Example 2.3.2. Here we consider the [23, 12, 7] cyclic binary Golay code C. Its dual code C⊥ is the

[23, 11, 8] cyclic binary code. Hence, we conclude that C has locality r = 7 and the dual code C⊥ has

locality r⊥ = 6. The code C is both d-optimal and k-optimal since it is a perfect code. C⊥ is d-optimal due

to the Hamming bound, and k-optimal according to the online table [68]. The r-optimality of these two

codes is proved in a similar way to the optimality proof in Example 2.3.1. �

Example 2.3.3. Let C be the cyclic double-error-correcting binary primitive BCH (DBCH) code with

parameters [2m − 1, 2m − 1− 2m, 5] where m≥ 4. Its dual code C⊥ has parameters [2m − 1, 2m, 2m−1 −

2bm/2c] [47]. Therefore, we conclude that C has locality r = 2m−1 − 2bm/2c − 1, and C⊥ has locality
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Table 2.1: Parameters of DBCH codes and their dual codes.

C n k d r d-opt k-opt r-opt
m = 4 15 7 5 3 X X X
m = 5 31 21 5 11 X X ?
m = 6 63 51 5 23 X X ?
m = 7 127 113 5 55 X X ?
m = 8 255 239 5 111 X X ?
C⊥ n⊥ k⊥ d⊥ r⊥ d-opt k-opt r-opt

m = 4 15 8 4 4 X ? ?
m = 5 31 10 12 4 X X ?
m = 6 63 12 24 4 ? ? ?
m = 7 127 14 56 4 X ? ?
m = 8 255 16 112 4 ? ? ?

r⊥ = 4. We utilize bound (2.2) and the online table from [68] to check the d-optimality, k-optimality, and

r-optimality of the DBCH codes and their dual codes. The results are summarized in Table 2.1 (whereX

indicates that we could prove optimality while ? means that we could not). �

2.3.2 Locality of Reed-Muller Codes

Reed-Muller (RM) codes form another important class of codes. They are simple to construct and

rich in structural properties. This motivates us to study their locality. Recall that a µth-order binary RM

codeRM(µ, m) has code length n = 2m, dimension k = ∑
µ
i=0 (

m
i ), and minimum distance d = 2m−µ.

In [61], two classes of codes with locality 2 and 3 were constructed based on the non-binary RM

codes of first and second orders. Here, we focus on the binary RM codes of any order, and determine their

locality as follows.

Lemma 2.3.3. The µth-order binary RM codeRM(µ, m) has locality r = d⊥ − 1 = 2µ+1 − 1.

Proof. It is known that the dual code of RM(µ, m) is RM(m− µ − 1, m), and the minimum weight

codewords of an RM code generate all of its codewords [47]. Therefore, every coordinate i, i ∈ [n], belongs

to the support of a certain minimum weight codeword of RM(m− µ − 1, m). To see that, assume on

the contrary that there exists a coordinate j, j ∈ [n], in which all the minimum weight codewords of

RM(m− µ − 1, m) have value 0. Thus, any linear combinations of the minimum weight codewords
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cannot produce the all-one codeword 1, which is a valid codeword. Thus, we get a contradiction, which

implies thatRM(µ, m) has locality r = d⊥ − 1 = 2µ+1 − 1. �

Finally, we mention that a µth-order cyclic binary RM code C is a [2m − 1, ∑
µ
i=0 (

m
i ), 2m−µ − 1]

punctured binary RM code, represented in a cyclic form [47]. Its dual code C⊥ is also cyclic and is a

[2m − 1, ∑
m
i=µ+1 (

m
i )− 1, 2µ+1] binary code. From Lemma 2.3.2, C has locality r = 2µ+1 − 1, and C⊥

has locality r⊥ = 2m−µ − 2.

2.4 Locality of Modified Classical Codes

In this section, we show how to find the locality of codes which are obtained by applying the

standard code operations of extending, shortening, expurgating, augmenting, and lengthening to existing

LRCs. For a binary vector c, let c represent the complement vector of c. For a binary code C, define

C = {c : c ∈ C}.

2.4.1 Extend Operation

The extended code of an [n, k, d] binary code C is an [n + 1, k, dext] code Cext with an overall

parity bit added to each codeword,

Cext =

{
(c1, . . . , cn, cn+1) : (c1, . . . , cn) ∈ C , cn+1 =

n

∑
i=1

ci

}
,

where dext = d + 1 for odd d and dext = d for even d. In the following, we use the notation C⊥ext to denote

the dual code of Cext.

Lemma 2.4.1. Let C be an [n, k, d] binary code with locality r. If the maximum Hamming weight of

codewords in C⊥ is n− r, then the extended code Cext has locality rext = r.

Proof. For every i ∈ [n], there exists a set Ri of size at most r such that the ith symbol is recoverable from

the set Ri. Thus, we only need to prove this property for the (n + 1)st symbol. Since the maximum weight

of codewords in C⊥ is n− r, there exists a codeword c ∈ C⊥ such that wH(c) = n− r. Note also that

the vectors (c, 0) and 1 are codewords in C⊥ext. Therefore the vector c′ = (c, 0) + 1 is a codeword in C⊥ext
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and its Hamming weight is r + 1. Hence, from Claim 2.3.1, we get that the (n + 1)st symbol can also be

recovered by a set of r other symbols. �

We have the following corollary for binary linear cyclic codes, for which we have already seen

that r = d⊥ − 1.

Corollary 2.4.2. Let C be an [n, k, d] binary cyclic code and let d⊥ be the minimum distance of its dual

code. If the maximum Hamming weight of codewords in C⊥ is n + 1− d⊥, then the extended code Cext

has locality rext = d⊥ − 1.

Example 2.4.1. Let C be the [2m − 1, 2m − 1−m, 3] cyclic binary Hamming code. Its extended code Cext

has parameters [2m, 2m − 1−m, 4]. The dual code C⊥ is the simplex code, whose nonzero codewords

have constant Hamming weight 2m−1. Hence, the condition from Corollary 2.4.2 holds and we conclude

that the extended Hamming code Cext has locality rext = d⊥ − 1 = 2m−1 − 1. Cext is both d-optimal and

k-optimal according to the Hamming bound. To show that it is also r-optimal, let us assume on the contrary

that there exists a [2m, 2m − 1−m, 4] binary code with locality r̂ = 2m−1 − 2. According to bound (2.2)

for x = 1, we have

kext ≤2m−1 − 2 + k(2)opt(2
m−1+ 1, 4)

(a)
= 2m−1 − 2 + k(2)opt(2

m−1, 3)

(b)
<2m−1 − 2 + 2m−1 − (m− 1) = 2m −m− 1.

Thus, we get a contradiction to the value of kext. In the above proof, step (a) follows from the property that

A(n, 2s− 1) = A(n + 1, 2s), where A(n, d) denotes the largest number of codewords M in any binary

code (n, M, d) [49]. Step (b) follows from the Hamming bound. �

Next, we determine the locality of the dual of the extension of a cyclic code.

Lemma 2.4.3. Let C be an [n, k, d] binary cyclic code with odd minimum distance d. Then, the code C⊥ext

has locality r⊥ext = d.

Proof. Since d is odd, each codeword with weight d in C generates a parity-check bit 1. Since C is cyclic,

for any i ∈ [n], i belongs to the support of some codeword (c, 1) ∈ Cext, where c has weight d. Moreover,
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the support of (c, 1) also contains coordinate n + 1. Thus, from Claim 2.3.1, every symbol of C⊥ext has

locality d. �

Example 2.4.2. Let C be the [n = 2m − 1, k = 2m − 1−m, d = 3] cyclic binary Hamming code. Corre-

spondingly, C⊥ext is the biorthogonal code [n⊥ext = 2m, k⊥ext = m + 1, d⊥ext = 2m−1] [41]. From Lemma 2.4.3,

C⊥ext has locality r⊥ext = d = 3. C⊥ext is both d-optimal and k-optimal according to the Plotkin bound. To

show that C⊥ext is r-optimal, we utilize bound (2.2) with x = 1, and have the following constraint on the

dimension of the code,

k⊥ext = m + 1 ≤ r⊥ext + k(2)opt(2
m − (r⊥ext + 1), 2m−1)

(a)
≤ r⊥ext + log2

2 · 2m−1

2 · 2m−1 − 2m + (r⊥ext + 1)

= r⊥ext + m− log2(r
⊥
ext + 1),

where step (a) is from the Plotkin bound. Therefore, we obtain r⊥ext ≥ log2(r⊥ext + 1) + 1. Thus, we have

r⊥ext ≥ 3. Therefore, the code is r-optimal. �

2.4.2 Shorten Operation

For an [n, k, d] binary code C, its shortened code Cs of C is the set of all codewords in C that are

0 in a fixed position with that position deleted. Let the last one of the coordinates of C be the position

deleted, then the shortened code Cs is

Cs =

{
(c1, . . . , cn−1) : (c1, . . . , cn−1, 0) ∈ C

}
.

We assume here that there is a codeword c ∈ C such that cn = 1. Otherwise, we will remove another

coordinate satisfying this condition. The code Cs has parameters [n− 1, k− 1, ds ≥ d] and its dual code is

denoted by C⊥s .

Lemma 2.4.4. Let C be an [n, k, d] binary code with locality r ≥ 2. The shortened code Cs has locality r

or r− 1.
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Proof. Since C has locality r, for all i ∈ [n− 1], the ith code symbol has a repair set Ri with respect to C

of size at most r. If n /∈ Ri then this symbol has the same repair set also with respect to the shortened code

Cs. Otherwise, note that if c ∈ Cs then (c, 0) ∈ C, so we conclude that the ith symbol is recoverable also

from the set Ri \ {n}. �

The following is an immediate consequence of Lemma 2.4.4 for binary cyclic codes.

Corollary 2.4.5. Let C be an [n, k, d] binary cyclic code whose dual code has minimum distance d⊥ ≥ 3.

Then, the code Cs has locality either d⊥ − 2 or d⊥ − 1.

The next example shows that the shortened code can in fact have locality r− 1.

Example 2.4.3. Let C be the [2m − 1, 2m − 1−m, 3] cyclic binary Hamming code. Its shortened code

Cs is a [2m − 2, 2m − 2−m, 3] code and from Corollary 2.4.5 it has locality d⊥ − 2 or d⊥ − 1, where

d⊥ = 2m−1. We show that it has locality d⊥ − 2. According to the proof of Lemma 2.4.4, it is enough to

show that for every i ∈ [n− 1], the ith code symbol has a repair set Ri of size 2m−1− 1 which contains the

nth coordinate. Or, according to Claim 2.3.1, it is enough to show that there exists a codeword c ∈ C⊥ such

that ci = cn = 1 and wH(c) = 2m−1. We can omit the last requirement on the weight since all nonzero

codewords in C⊥ have the same weight 2m−1. Let c1, c2 ∈ C⊥ be two codewords such that c1,i = c2,n = 1.

If c1,n = 1 or c2,i = 1 then we are done. Otherwise, the codeword c1 + c2 satisfies this property. The

d-optimality, k-optimality, and r-optimality of Cs are proved in a similar way to the previous examples. �

2.4.3 Expurgate, Augment, and Lengthen Operations

For an [n, k, d] binary code C having at least one odd weight codeword, the expurgated code Cexp

is a subcode of C which contains only the codewords of even weight; that is,

Cexp =

{
c : c ∈ C , wH(c) is even

}
.

Cexp is an [n, k− 1, we] code, where we denotes the minimum even weight of nonzero codewords in C. We

denote by C⊥exp the dual code of Cexp and note that C⊥exp = C⊥ ∪ C⊥.
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For an [n, k, d] binary code C which does not contain the all-one codeword 1, the augmented code

Ca is the code C ∪ C with parameters [n, k + 1, min{d, n− wmax}], where wmax denotes the maximum

weight of codewords in C. We use the notation C⊥a to denote the dual code of Ca.

According to these definitions, if the code C is cyclic then the expurgated and augmented codes of

C are cyclic as well. Hence, for an [n, k, d] binary cyclic code C, we have the following two observations:

a) If C has an odd weight codeword, then Cexp has locality rexp = min{d⊥, n−w⊥max}− 1, where

w⊥max is the maximum weight of codewords in C⊥. (Here, we assume w⊥max < n− 1, since w⊥max = n− 1

is not an interesting case.)

b) If C does not contain the all-one codeword 1, then Ca has locality ra = w⊥e − 1, where w⊥e is

the minimum even weight of nonzero codewords in C⊥.

For an [n, k, d] binary code C which does not contain the all-one codeword 1, the lengthened code

C` is obtained as follows. First, the code C is augmented to the code Ca = C ∪ C. Then, Ca is extended.

Thus, C` = {(c1, . . . , cn, cn+1) : cn+1 = ∑
n
i=1 ci and (c1, . . . , cn) ∈ C ∪ C}. After the lengthen operation,

the length and dimension of the code are increased by 1. By leveraging the results from the augment

and extend operations, we conclude that if the minimum even weight of nonzero codewords in C⊥ is w⊥e ,

and the maximum weight of codewords in C⊥a is n + 1− w⊥e , then the lengthened code C` has locality

r` = w⊥e − 1.

Our results on locality of classical binary codes and their modified versions are summarized in

Table 2.2, whereX means we can prove the optimality of the given codes, whereas ? means we have not

verified their optimality. In Table 2.2, TBCH stands for triple-error-correcting BCH.

2.5 Conclusion

In this chapter, we studied the locality of classical binary linear codes and their modified versions

obtained from standard code operations. The optimality of these codes was also investigated. The locality

properties of these codes can be used for constructing many other binary LRCs.
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Table 2.2: Locality of classical binary codes and their modified versions.

C n k d r d-opt k-opt r-opt
Hamming code 2m − 1 2m − 1−m 3 2m−1 − 1 X X X
Simplex code 2m − 1 m 2m−1 2 X X X
Golay code 23 12 7 7 X X X

Dual of Golay code 23 11 8 6 X X X
DBCH code (m ≥ 4) 2m − 1 2m − 1− 2m 5 2m−1 − 2bm/2c − 1 Table 2.1 Table 2.1 Table 2.1

Dual of DBCH code (m ≥ 4) 2m − 1 2m 2m−1 − 2bm/2c 4 Table 2.1 Table 2.1 Table 2.1
Extended Hamming code 2m 2m − 1−m 4 2m−1 − 1 X X X

Extended Golay code 24 12 8 7 X X X
Extended DBCH code (m ≥ 4) 2m 2m − 1− 2m 6 2m−1 − 2bm/2c − 1 X ? ?
Extended TBCH code (m ≥ 5) 2m 2m − 1− 3m 8 2m−1 − 2bm/2+1c − 1 X ? ?

Biorthogonal code 2m m + 1 2m−1 3 X X X
Expurgated Hamming code 2m − 1 2m − 2−m 4 2m−1 − 2 X X X

Expurgated DBCH code (m ≥ 4) 2m − 1 2m − 2− 2m 6 2m−1 − 2bm/2c − 2 X ? ?
Expurgated TBCH code (m ≥ 5) 2m − 1 2m − 2− 3m 8 2m−1 − 2bm/2+1c − 2 X ? ?

Augmented simplex code 2m − 1 m + 1 2m−1 − 1 3 X X X
Shortened Hamming code 2m − 2 2m − 2−m 3 2m−1 − 2 X X X
Shortened simplex code 2m − 2 m− 1 2m−1 1 X X X

RM(µ, m) 2m
∑
µ
i=0 (

m
i ) 2m−µ 2µ+1 − 1 ? ? ?

CyclicRM(µ, m) 2m − 1 ∑
µ
i=0 (

m
i ) 2m−µ − 1 2µ+1 − 1 ? ? ?

Dual of cyclicRM(µ, m) 2m − 1 ∑
m
i=µ+1 (

m
i )− 1 2µ+1 2m−µ − 2 ? ? ?
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Chapter 3

Binary Linear Codes with Locality and

Availability

3.1 Introduction

In Chapter 2, we studied the locality of classical binary linear codes and their modified versions. In

addition to symbol locality, another important property of locally repairable codes (LRCs) is their symbol

availability, meaning the number of disjoint sets of symbols that can be used to recover a given symbol.

High availability is a particularly attractive property for so-called hot data in a distributed storage network.

More precisely, a code C has all-symbol locality r and availability t if every code symbol can be recovered

from t disjoint repair sets of other symbols, each set of size at most r symbols. We refer to such a code as

an (r, t)a-LRC. If the code is systematic and these properties apply only to its information symbols, then

the code has information locality r and availability t, and it is referred to as an (r, t)i-LRC.

Several recent works have considered codes with both locality and availability properties. In [82],

it was shown that the minimum distance d of an [n, k, d]q linear (r, t)i-LRC satisfies the upper bound

d ≤ n− k−
⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
+ 2. (3.1)

In [60], it was proved that bound (3.1) is also applicable to (n, M, d)q non-linear (r, t)i-LRCs. In the same
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paper, it was also shown that if each repair set in a linear (r, t)i-LRC contains only one parity symbol, then

the minimum distance d of the code satisfies the following upper bound

d ≤ n− k−
⌈

kt
r

⌉
+ t + 1, (3.2)

and codes achieving bound (3.2) were constructed using maximum distance separable (MDS) codes and

Gabidulin codes [26]. For (r, t)a-LRCs with parameters (n, M, d)q, it was shown in [74] that d satisfies

d ≤ n−
t

∑
i=0

⌊
k− 1

ri

⌋
. (3.3)

There are several constructions of LRCs with availability. In [75], two constructions of (r, 2)a-

LRCs were proposed. One relies on the combinatorial concept of orthogonal partitions, and the other one

is based on product codes. In [54], a class of (r, t)a-LRCs was constructed from partial geometries. A

family of systematic fountain codes having information locality and strong probabilistic guarantees on

availability was introduced in [6]. More recently, in [31, 92], constructions based on the simplex code

were proposed. In [83], a family of LRCs with arbitrary availability was constructed, and it outperforms

the direct product codes with respect to the information rate.

In this chapter, we study bounds and constructions for linear LRCs over a fixed field size; in

particular, we focus on binary linear LRCs. Binary LRCs are of particular interest in practice because of

their relatively lower encoding and decoding complexity compared to non-binary LRCs. We first develop

field size dependent upper bounds that incorporate the availability t, based on the work by Cadambe and

Mazumdar [13]. For constructions, we make contributions in the following two aspects.

Tensor product codes, first proposed by Wolf in [86], are a family of codes defined by a parity-

check matrix that is the tensor product of the parity-check matrices of two constituent codes. Later, they

were generalized in [40]. As shown in [87], the encoding steps of tensor product codes involve using

phantom syndrome symbols, which only appear in the encoding procedure and will disappear in the

final codewords. Motivated by these ideas, we give three constructions (Constructions A, B, and C)

of LRCs that leverage phantom parity-check symbols. These constructions are effective for LRCs with
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small minimum distance. To obtain LRCs with higher minimum distance, we present another construction

(Construction D) based on a multi-level tensor product structure. All our constructions are flexible and

generate a variety of high-rate LRCs with different localities. Some of these codes are proved to have

optimal minimum distance.

One-step majority-logic decodable codes were first formally studied by Massey [47, 50]. Histori-

cally, these codes were introduced for low-complexity error correction. Every symbol of such codes has

several disjoint repair sets, and is decoded according to the majority of the values given by all of its repair

sets. In this chapter, we make the connection between one-step majority-logic decodable codes and LRCs

with availability. We also demonstrate how a long (r, t)a-LRC can be constructed from a short one-step

majority-logic decodable code using a multi-level tensor product structure.

The remainder of this chapter is organized as follows. In Section 3.2, we formally define the

problem and present field size q dependent bounds on the minimum distance d and the dimension k of

[n, k, d]q linear (r, t)i-LRCs. In Section 3.3, we construct various families of (r, 1)i-LRCs and (r, 1)a-LRCs

using phantom parity-check symbols and a multi-level tensor product structure. In Section 3.4, we review

several families of one-step majority-logic decodable codes, and identify the locality and availability of

these codes. We conclude the chapter in Section 3.5.

3.2 Definitions and Bounds

We begin with several basic definitions and notational conventions. We use the notation [n] to

define the set {1, . . . , n}. For a length-n vector v and a set I ⊆ [n], the vector vI denotes the restriction of

the vector v to coordinates in the set I . A linear code C over Fq of length n, dimension k, and minimum

distance d will be denoted by [n, k, d]q, where the field size q may be omitted if it is clear from the context,

and its generator matrix is G = (g1, . . . , gn), where gi ∈ Fk
q is a column vector for i ∈ [n]. We define

kI(C) = logq |{cI : c ∈ C}|, and, for simplicity, we write kI instead of kI(C) when C is clear from the

context. The dual code of a linear code C will be denoted by C⊥.

We follow the conventional definitions of linear LRCs with availability, as established in [60,74,82].

Definition 3.2.1. The ith code symbol of an [n, k, d]q linear code C is said to have locality r and availability
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t if there exist t pairwise disjoint repair sets R1
i , . . . ,Rt

i ⊆ [n]\{i}, such that 1) |R j
i | ≤ r, for 1 ≤ j ≤ t,

and 2) for each repair setR j
i , 1 ≤ j ≤ t, gi is a linear combination of the columns gu, u ∈ R j

i .

Definition 3.2.2. Let C be an [n, k, d]q linear code. A set I ⊆ [n] is said to be an information set if

|I| = kI = k.

1) The code C is said to have all-symbol locality r and availability t if every code symbol has locality r and

availability t. We refer to C as a linear (r, t)a-LRC.

2) The code C is said to have information locality r and availability t if there is an information set I

such that, for any i ∈ I , the ith code symbol has locality r and availability t. We refer to C as a linear

(r, t)i-LRC.

Note that when t = 1, Definition 3.2.2 reduces to the definition of linear LRCs. It is straightforward

to verify that the minimum distance d of a linear (r, t)a-LRC satisfies d ≥ t + 1. We now present upper

bounds on the minimum distance and the dimension of linear (r, t)i-LRCs, based on the framework

established in [13]. The following lemma and theorem are extensions of Lemma 1 and Theorem 1

from [13], respectively.

Let r and x be two positive integers and y = (y1, . . . , yx) ∈ ([t])x be a vector of x positive integers.

We define the integers A(r, x, y) and B(r, x, y) as follows,

A(r, x, y) =
x

∑
j=1

(r− 1)y j + x,

B(r, x, y) =
x

∑
j=1

ry j + x.

Lemma 3.2.3. Let C be an [n, k, d]q linear (r, t)i-LRC. Assume that x ∈ Z+ and y = (y1, . . . , yx) ∈ ([t])x

satisfy 1 ≤ x ≤ d k
(r−1)t+1e and A(r, x, y) < k. Then, there exists a set I ⊆ [n] such that |I| = B(r, x, y)

and kI(C) ≤ A(r, x, y).

Proof. See Section 3.6 Appendix A. �

Now, let d(q)`−opt[n, k] denote the largest possible minimum distance of a linear code of length n

and dimension k over Fq, and let k(q)`−opt[n, d] denote the largest possible dimension of a linear code of

length n and minimum distance d over Fq. Applying Lemma 3.2.3, we get the following upper bounds on
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d and k for [n, k, d]q linear (r, t)i-LRCs.

Theorem 3.2.4. For any [n, k, d]q linear (r, t)i-LRC, the minimum distance d satisfies

d ≤ min
1≤x≤d k

(r−1)t+1 e, x∈Z+ ,
y∈([t])x ,

A(r,x,y)<k

{
d(q)`−opt[n− B(r, x, y), k− A(r, x, y)]

}
,

(3.4)

and the dimension k satisfies

k ≤ min
1≤x≤d k

(r−1)t+1 e, x∈Z+ ,
y∈([t])x ,

A(r,x,y)<k

{
A(r, x, y) + k(q)`−opt[n− B(r, x, y), d]

}
.

(3.5)

Proof. See Section 3.7 Appendix B. �

Remark 3.2.1. Since a linear (r, t)a-LRC is also a linear (r, t)i-LRC, bounds (3.4) and (3.5) hold for linear

(r, t)a-LRCs as well. �

Remark 3.2.2. We note that for linear codes with availability t = 1, bound (3.5) in Theorem 3.2.4 becomes

k ≤ min
1≤x≤d k

r e−1

{
xr + k(q)`−opt[n− x(r + 1), d]

}
= min

x∈Z+

{
xr + k(q)`−opt[n− x(r + 1), d]

}

which coincides with bound (2.2). As was proved in [13], this implies that, for t = 1, Theorem 3.2.4 is at

least as strong as bound (3.1). In fact, the latter statement holds for all values of r and t. For r = 1, this

can be readily verified by evaluating the expression in bound (3.4) at x = k− 1 and y = (t, t, . . . , t). For

r, t ≥ 2, we can similarly validate the claim by means of a suitable choice of x and y, as we now show.

We consider two cases.

Case 1: Assume that either k(mod((r− 1)t + 1)) = 0 or k(mod((r− 1)t + 1)) > r. Here we choose

x = d k
(r−1)t+1e, y1 = · · · = yx−1 = t, and yx = d

k−(x−1)
(
(r−1)t+1

)
−1

r−1 e − 1. Note that 1 ≤ yx ≤ t and

A(r, x, y) < k. Bound (3.4) implies that

d ≤ d(q)`−opt[n− B(r, x, y), k− A(r, x, y)] ≤ n− k + 1− (x− 1)t− yx,
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where the latter inequality follows from the Singleton bound. So we only need to show that

(x− 1)t + yx ≥
⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
− 1.

If the condition k(mod((r− 1)t + 1)) = 0 holds, we verify that

(x− 1)t + yx = xt− 1 =
kt

(r− 1)t + 1
− 1 ≥

⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
− 1.

On the other hand, if k(mod((r− 1)t + 1))> r, we can write k = (x− 1)
(
(r− 1)t + 1

)
+γ, for some

r < γ ≤ (r− 1)t, and then we see that

(x− 1)t + yx = (x− 1)t +
⌈
γ − 1
r− 1

⌉
− 1 ≥ (x− 1)t +

⌈
(γ − 1)t + 1
(r− 1)t + 1

⌉
− 1 =

⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
− 1.

Case 2: Assume that 1 ≤ k(mod((r− 1)t + 1)) ≤ r. Here we choose, x = d k
(r−1)t+1e − 1 and y =

(t, · · · , t). Note that A(r, x, y) < k. Here bound (3.4) leads to

d ≤n− k + 1− xt

so we need to verify that

xt ≥
⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
− 1.

Setting k = x((r − 1)t + 1) + γ, where 1 ≤ γ ≤ r, and noting that (k−1)t+1+(r−γ)t
(r−1)t+1 is an integer, we

find that

xt =
(k−γ)t

(r− 1)t + 1

=
(k− 1)t + 1 + (r−γ)t

(r− 1)t + 1
− 1

≥
⌈
(k− 1)t + 1
(r− 1)t + 1

⌉
− 1.

Hence, we conclude that the bound in Theorem 3.2.4 is at least as strong as bound (3.1) for all r, t ≥ 1. �
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IV

I II III

Figure 3.1: An (r, 1)i-LRC using Construction A. Information symbols are in block I, local parity-check
symbols are in block II, phantom symbols are in block III, and global parity-check symbols are in
block IV.

3.3 Construction of Binary LRCs

In this section, we focus on constructing binary LRCs. We first present constructions of LRCs

with small minimum distance (i.e., d = 3, 4, and 5) by using phantom parity-check symbols. Then, in

order to obtain LRCs with higher minimum distance, we propose another construction which is based on a

multi-level tensor product structure.

3.3.1 Construction Using Phantom Parity-Check Symbols

We first consider constructing binary linear (r, 1)i-LRCs with minimum distance 3 and 4. The

general framework is depicted in Figure 3.1. We specify an [n′, k′, d′] systematic binary code as a base code,

Cbase. The following construction produces an (r, 1)i-LRC of length n = (k′ + 1)`+ n′ − k′, dimension

k = k′`, and information locality r = k′.

Construction A

Step 1: Place an `× k′ array of information symbols in block I.

Step 2: For each row of information symbols, (µi1, . . . ,µik′), 1 ≤ i ≤ `, compute local parity-check

symbols pLi = ∑
k′
j=1µi j, 1 ≤ i ≤ `, and place them in the corresponding row of block II.

Step 3: Encode each row of information symbols in block I using Cbase, producing parity-check symbols

(pi1, . . . , pi,n′−k′), 1 ≤ i ≤ `. Place these parity-check symbols in block III. (These symbols are referred
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to as phantom symbols because they will not appear in the final codeword.)

Step 4: Compute a row of global parity-check symbols, pG j = ∑
`
i=1 pi j, 1 ≤ j ≤ n′ − k′, by summing the

rows of phantom symbols in block III. Place these symbols in block IV.

Step 5: The constructed codeword consists of the symbols in blocks I, II, and IV. �

Note that for r|k, Pyramid codes are optimal (r, 1)i-LRCs over sufficiently large field size [38].

A Pyramid code is constructed by splitting a parity-check symbol of a systematic MDS code into k/r

local parity-check symbols. However, for the binary case, it is hard to find a good binary code first and

then conduct the splitting operation. In contrast, we take a different approach. We first design the local

parity-check symbols, and then construct the global parity-check symbols.

If Cbase has an information-sum parity-check symbol, a parity-check symbol which is the sum of

all its information symbols, we can simply modify Step 3 of Construction A to reduce the code redundancy

as follows. After encoding each row of information symbols in block I, define the corresponding row

of phantom symbols to be the computed parity-check symbols with the information-sum parity-check

symbol excluded, and store them in block III. Then proceed with the remaining steps in Construction A.

We refer to this modified construction as Construction A′. It is easy to verify that the resulting code is an

(r, 1)i-LRC with length n = (k′ + 1)`+ n′ − k′ − 1, dimension k = k′`, and information locality r = k′.

Now, if we use a Cbase with minimum distance 3, we have a lower bound on the minimum distance

of the constructed LRC, as stated in the following lemma.

Lemma 3.3.1. If Cbase is an [n′, k′, d′ = 3] code, the (r, 1)i-LRC produced by Construction A (or Construc-

tion A′, if appropriate) has minimum distance d ≥ 3.

Proof. We prove that the minimum distance of the constructed (r, 1)i-LRC from Construction A is at

least 3 by verifying that it can correct any two erasures. We consider the following 2-erasure patterns,

where we refer to their locations in the blocks in Figure 3.1. We refer to block I-II as the union of block I

and block II. 1) Two erasures are in the same row in block I-II, e.g., µ11 and pL1 are erased in the first

row. We can first recover parity-check symbols (p11, . . . , p1,n′−k′), based on which two erased symbols

can be recovered. 2) Two erasures in different rows in block I-II can be recovered individually from the

local parity-check equation. 3) Two erasures in block IV can be recovered from all existing information
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symbols. 4) One erasure is in block I-II and one erasure is in block IV. First, the erasure in block I-II can

be recovered from the local parity-check equation. Then, the erasure in block IV can be recovered from all

the existing information symbols.

The proof for the constructed (r, 1)i-LRC from Construction A′ follows the same ideas and is

thus omitted. �

Based on Lemma 3.3.1, we have the following theorem on the construction of (r, 1)i-LRCs with

optimal minimum distance d = 3.

Theorem 3.3.2. Let Cbase be an [n′, k′, d′ = 3] binary code with an information-sum parity-check symbol

and assume that d(2)`−opt[n
′, k′] = 3. The (r, 1)i-LRC obtained from Construction A′ has parameters

[n = (k′ + 1)`+ n′ − k′ − 1, k = k′`, d = 3] and r = k′. Its minimum distance d = 3 is optimal.

Proof. From Construction A′, the length, dimension and locality of the (r, 1)i-LRC are determined. From

Lemma 3.3.1, the minimum distance satisfies d ≥ 3. On the other hand, from bound (3.4), with x = `− 1

and t = 1, d ≤ d(2)`−opt[n− (k′ + 1)(`− 1), k− k′(`− 1)] = d(2)`−opt[n
′, k′] = 3. Therefore, d = 3 and it

is optimal. �

We give some examples of (r, 1)i-LRCs with d = 3. First, let Cbase be the [7, 4, 3] systematic

binary Hamming code whose parity-check matrix is

H[7,4,3] =


0 1 1 1 1 0 0

1 1 1 0 0 1 0

1 1 0 1 0 0 1

 .

Using Construction A, we obtain an (r, 1)i-LRC with parameters [5`+ 3, 4`, 3] with r = 4. However, the

upper bound on the minimum distance from bound (3.4) is 4. To construct an (r, 1)i-LRC whose minimum

distance is optimal with respect to bound (3.4), we use a [6, 3, 3] shortened binary Hamming code as the

Cbase whose parity-check matrix H[6,3,3] is obtained by deleting the first column of H[7,4,3],

H[6,3,3] =


1 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

 .
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Now, the Cbase has an information-sum parity-check symbol and d(2)`−opt[6, 3] = 3. From Theorem 3.3.2,

the (r, 1)i-LRC generated by Construction A′ has parameters [4`+ 2, 3`, 3] and r = 3. Moreover, its

minimum distance d = 3 is optimal.

The above [6, 3, 3] base code Cbase can be generalized as follows. Let C be a [2m − 1, 2m − 1−

m, 3] systematic binary Hamming code with parity-check matrix

H =



h1,1 h1,2 . . . h1,2m−1−m 1 0 . . . 0

h2,1 h2,2 . . . h2,2m−1−m 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

hm,1 hm,2 . . . hm,2m−1−m 0 0 . . . 1


,

whose columns range over all the nonzero vectors in Fm
2 . The first 2m − 1−m coordinates of C form

the systematic information symbols. The parity-check matrix Hs of the shortened binary Hamming code

Cs is obtained by deleting any ith column of H, if 1 ≤ i ≤ 2m − 1−m and h1,i = 0. As a result, Cs is

systematic and has an information-sum parity-check symbol.

Lemma 3.3.3. The code Cs has parameters [2m−1 + m − 1, 2m−1 − 1, 3], and its minimum distance

is optimal.

Proof. The first row of H has 2m−1 ones and 2m−1 − 1 zeros, since it is a nonzero codeword of the

[2m− 1, m, 2m−1] binary simplex code. According to the shortening operation, we delete in total 2m−1−m

columns from H, so the length of Cs becomes 2m−1 + m− 1 and the dimension becomes 2m−1 − 1. Since

the shortening operation does not decrease the minimum distance, and there always exist three dependent

columns in Hs (e.g., [1, 1, 0, . . . , 0]T, [1, 0, 0, . . . , 0]T, and [0, 1, 0, . . . , 0]T), the minimum distance remains 3.

Lastly, we have that d(2)`−opt[2
m−1 + m− 1, 2m−1 − 1] = 3 from the anticode bound [2]. The anticode

bound states that the size of any binary code of length n with minimum distance D is bounded above by

2n/A(D− 1), where A(D− 1) is the size of the largest anticode of diameter D− 1. In particular, for

D = 4 this implies that the largest size of a length-n code with minimum distance 4 is 2n/(2n) and hence

there does not exist a code of length 2m−1 + m− 1, minimum distance 4, and dimension 2m−1 − 1. �

The following example is a direct result of Theorem 3.3.2 and Lemma 3.3.3.
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Example 3.3.1. Let Cbase be the shortened binary Hamming code Cs in Lemma 3.3.3. The (r, 1)i-LRC

obtained from Construction A′ has parameters [2m−1`+ m− 1, (2m−1 − 1)`, 3] and r = 2m−1 − 1. Its

minimum distance is optimal. �

Next, we use a code Cbase with minimum distance 4, and have the following lemma.

Lemma 3.3.4. If Cbase is an [n′, k′, d′ = 4] code, the (r, 1)i-LRC produced by Construction A (or Construc-

tion A′, if appropriate) has minimum distance d ≥ 4.

Proof. The proof is similar to the one of Lemma 3.3.1. �

Based on Lemma 3.3.4, we have the following two theorems on the construction of (r, 1)i-LRCs

with optimal minimum distance d = 4.

Theorem 3.3.5. Let Cbase be an [n′, k′, d′ = 4] binary code with d(2)`−opt[n
′ + 1, k′] = 4. The (r, 1)i-LRC

obtained from Construction A has parameters [n = (k′ + 1)`+ n′ − k′, k = k′`, d = 4] and r = k′. Its

minimum distance d = 4 is optimal.

Proof. The proof is similar to the one of Theorem 3.3.2. �

Theorem 3.3.6. Let Cbase be an [n′, k′, d′ = 4] binary code with an information-sum parity-check symbol

and d(2)`−opt[n
′, k′] = 4. The (r, 1)i-LRC obtained from Construction A′ has parameters [n = (k′ + 1)`+

n′ − k′ − 1, k = k′`, d = 4] and r = k′. Its minimum distance d = 4 is optimal.

Proof. The proof is similar to the one of Theorem 3.3.2. �

We give examples of (r, 1)i-LRCs with d = 4 using expurgated or extended binary Hamming code

as Cbase. The following lemma gives properties of expurgated and extended binary Hamming codes.

Lemma 3.3.7. For m ≥ 4, the [2m − 1, 2m − 2−m, 4] systematic expurgated binary Hamming code has

no information-sum parity-check symbol, and d(2)`−opt[2
m, 2m − 2−m] = 4. For m ≥ 3, the [2m, 2m −

1−m, 4] systematic extended binary Hamming code has no information-sum parity-check symbol, and

d(2)`−opt[2
m + 1, 2m − 1−m] = 4.

Proof. For the expurgated binary Hamming code, in its dual code, except the all-one codeword with weight

2m− 1, there is no codeword with weight larger than 2m−1. If the expurgated binary Hamming code has an
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Figure 3.2: An (r, 1)i-LRC using Construction B.

information-sum parity-check symbol, then in its dual code there is a codeword with weight 2m − 1−m,

which is larger than 2m−1 for m ≥ 4. We have d(2)`−opt[2
m, 2m − 2−m] = 4 from the Hamming bound.

Similarly, for the extended binary Hamming code, in its dual code, except the all-one codeword with weight

2m, there is no codeword with weight larger than 2m−1. If the extended binary Hamming code has an

information-sum parity-check symbol, then in its dual code there is a codeword with weight 2m−m, which

is larger than 2m−1 for m ≥ 3. We have d(2)`−opt[2
m + 1, 2m − 1−m] = 4 from the Hamming bound. �

The following example presents (r, 1)i-LRCs with d = 4 from Theorem 3.3.5 and Lemma 3.3.7.

Example 3.3.2. Let Cbase be the [2m − 1, 2m − 2−m, 4] expurgated binary Hamming code, where m≥ 4.

The (r, 1)i-LRC obtained from Construction A has parameters [(2m− 1−m)`+m+ 1, (2m− 2−m)`, 4]

and r = 2m − 2−m. Its minimum distance 4 is optimal. Similarly, let Cbase be the [2m, 2m − 1−m, 4]

extended binary Hamming code, where m ≥ 3. The (r, 1)i-LRC obtained from Construction A has

parameters [(2m − m)` + m + 1, (2m − 1 − m)`, 4] and r = 2m − 1 − m. Its minimum distance 4

is optimal. �

Next, we give a construction of (r, 1)i-LRCs for d = 5. Let Cbase be an [n′, k′, 5] systematic

binary code, and let C ′base = {c[k′+w] : c ∈ Cbase}, i.e., restrict Cbase to k′ information coordinates and w

parity-check coordinates, where w is chosen properly such that C ′base has minimum distance at least 3. The

following new construction is based on two rows of global parity-check symbols as shown in Figure 3.2.

Construction B

Step 1: Follow Steps 1, 2, and 3 of Construction A to get local parity-check symbols and phantom symbols.
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Step 2: Divide phantom symbols into two parts: w columns in block III(a) and the rest of the columns in

block III(b).

Step 3: Compute global parity-check symbols in block IV: 1) Follow Step 4 of Construction A to get

the first row (pG11 , · · · , pG1,n′−k′ ). 2) Use an [`+ 2, `, 3] systematic MDS code over F2w to encode the

phantom symbols in block III(a) to get the second row (pG21 , · · · , pG2,w), by taking each row in block

III(a) as a symbol in F2w . This systematic MDS code should have the property that its first parity-check

symbol is the sum of all its information symbols.

Step 4: The constructed codeword consists of the symbols in blocks I, II, and IV. �

For example, the [`+ 2, `, 3] MDS code can be chosen as a doubly-extended Reed-Solomon code.

Letα be a primitive element in F2w , and `≤ 2w− 1. Then, the parity-check matrix for the doubly-extended

Reed-Solomon code in Construction B is

H =

 1 1 1 · · · 1 1 0

1 α α2 · · · α`−1 0 1

 .

Note that an alternative to the doubly-extended Reed-Solomon code is an EVENODD code [9].

Theorem 3.3.8. The (r, 1)i-LRC obtained from Construction B has parameters [n = (k′ + 1)`+ n′ − k′ +

w, k = k′`, d ≥ 5], where ` ≤ 2w − 1. It has information locality r = k′.

Proof. From Construction B, the code length, dimension, and locality are determined. As in the proof

of Lemma 3.3.1, to prove that the minimum distance of the (r, 1)i-LRC is at least 5, we only need to

enumerate all possible 4-erasure patterns and then verify they can be corrected. In the following, we show

how to recover two typical 4-erasure patterns in Figure 3.2. Other patterns can be verified in a similar way

and hence are omitted.

1) There are two erasures in a row in block I and two erasures in another row in block I. Without

loss of generality, assume they appear on the first two rows (µ11, . . . ,µ1k′) and (µ21, . . . ,µ2k′) in block I.

We can recover this 4-erasure pattern as follows. First, with (pG11 , . . . , pG1,w) and (pG21 , . . . , pG2,w), we

can recover (p11, . . . , p1,w) and (p21, . . . , p2,w). Then, two erasures in the first row (µ11, . . . ,µ1k′) can be

recovered since only two erasures appear in the codeword (µ11, . . . ,µ1k′ , p11, . . . , p1,w) which belongs to a
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code with minimum distance at least 3. Similarly, two erasures in the second row (µ21, . . . ,µ2k′) can be

recovered since only two erasures appear in the codeword (µ21, . . . ,µ2k′ , p21, . . . , p2,w).

2) There are two erasures in a row in block I, one erasure in (pG11 , . . . , pG1,w) in block IV, and

one more erasure in (pG21 , . . . , pG2,w) in block IV. For simplicity, we assume that the erasures are located

in positions µ11, µ12, pG11 , and pG21 . We can recover this 4-erasure pattern as follows. First, with

(pG12 , . . . , pG1,n′−k′ ), we can recover (p12, . . . , p1,n′−k′). Then, µ11 and µ12 can be recovered since only

three erasures appear in the codeword (µ11, . . . ,µ1k′ , p11, . . . , p1,n′−k′). Finally, pG11 and pG21 can be

recovered. �

Example 3.3.3. Let Cbase be the [2m − 1, 2m − 1− 2m, 5] binary BCH code where m ≥ 4. For the case

of m = 4, exhaustive search shows that we can choose w to be 4. For ` ≤ 15, the (r, 1)i-LRC from

Construction B has parameters [n = 8`+ 12, k = 7`, d = 5] and r = 7. An upper bound on d from bound

(3.4) is 8. For the case of m = 5, exhaustive search shows that we can choose w to be 6. For ` ≤ 63, the

(r, 1)i-LRC from Construction B has parameters [n = 22`+ 16, k = 21`, d = 5] and r = 21. An upper

bound on d from bound (3.4) is 8. �

We finish this subsection with a construction of (r, 1)a-LRCs with minimum distance 4 by using

phantom parity-check symbols. We start with an [n′, k′, d′] systematic binary code as a base code, Cbase.

For simplicity, we assume that k′ ≥ n′− k′. We use Figure 3.1 to illustrate our construction of (r, 1)a-LRCs

as follows.

Construction C

Step 1: Place an `× k′ array of symbols in block I. The first `− 1 rows are all information symbols.

The last row has 2k′ − n′ information symbols (i.e., µ`1, . . . ,µ`,2k′−n′) and n′ − k′ zero symbols (i.e.,

µ`,2k′−n′+1 = 0, . . . ,µ`,k′ = 0).

Step 2: Encode each row of symbols in block I using the code Cbase, producing parity-check symbols

(pi1, . . . , pi,n′−k′), 1 ≤ i ≤ `. Place these parity-check symbols in block III as phantom symbols.

Step 3: Compute a row of global parity-check symbols, pG j = ∑
`
i=1 pi j, 1 ≤ j ≤ n′ − k′, by summing the

rows of phantom symbols in block III. Place these symbols in block IV.

Step 4: Let µ`,2k′−n′+ j = pG j , 1 ≤ j ≤ n′ − k′. For each row of symbols, (µi1, . . . ,µik′), 1 ≤ i ≤ `,
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compute local parity-check symbols pLi = ∑
k′
j=1µi j, 1 ≤ i ≤ `, and place them in the corresponding row

of block II.

Step 5: The constructed codeword consists of the symbols in blocks I and II. �

The resulting code is an (r, 1)a-LRC of code length n = (k′ + 1)`, dimension k = k′`− (n′ − k′),

and all-symbol locality r = k′.

We present the following theorem on the construction of (r, 1)a-LRCs with optimal minimum

distance 4.

Theorem 3.3.9. Let Cbase be an [n′, k′, d′ = 4] systematic binary code with k′ ≥ n′ − k′ and d(2)`−opt[k
′ +

1, 2k′ − n′] ≤ 4. The (r, 1)a-LRC obtained from Construction C has parameters [n = (k′ + 1)`, k =

k′`− (n′ − k′), d = 4] and all-symbol locality r = k′. Its minimum distance d = 4 is optimal.

Proof. From Construction C, the length, dimension, and locality of the (r, 1)a-LRC are determined. On

the one hand, the minimum distance d ≥ 4 since the (r, 1)a-LRC can correct any 3 erasures (The proof

is similar to the one of Lemma 3.3.1, so we omit it here). On the other hand, from bound (3.4), with

x = `− 1 and t = 1, d ≤ d(2)`−opt[k
′ + 1, 2k′ − n′] ≤ 4. �

We give the following example of (r, 1)a-LRCs with d = 4.

Example 3.3.4. Let Cbase be the [n′ = 2m − 1, k′ = 2m − 2− m, d′ = 4] expurgated binary Hamming

code, where m ≥ 4. Since d(2)`−opt[k
′ + 1, 2k′ − n′] = d(2)`−opt[2

m −m− 1, 2m − 2m− 3] ≤ 4 due to the

Hamming bound, from Theorem 3.3.9, the (r, 1)a-LRC obtained from Construction C has parameters

[(2m − 1 − m)`, (2m − 2 − m)` − 1 − m, 4] and all-symbol locality r = 2m − 2 − m. Its minimum

distance 4 is optimal. Similarly, let Cbase be the [2m, 2m − 1 − m, 4] extended binary Hamming code,

where m ≥ 3. The (r, 1)a-LRC obtained from Construction C has parameters [(2m − m)`, (2m − 1−

m)`− 1−m, 4] and all-symbol locality r = 2m − 1−m. Its minimum distance 4 is optimal. �

The binary LRCs constructed in this subsection are summarized in Table 3.1.

3.3.2 Construction Using Multi-Level Tensor Product Structure

In the previous subsection, we presented constructions of binary LRCs with small minimum

distance (i.e., d = 3, 4, and 5) based on phantom parity-check symbols. Here, we propose a new
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Table 3.1: Constructed binary LRCs in Section 3.3.1.

(r, 1)i-LRCs n k d r
Example 3.3.1 2m−1`+ m− 1 (2m−1 − 1)` 3 2m−1 − 1
Example 3.3.2 (2m − 1−m)`+ m + 1 (2m − 2−m)` 4 2m − 2−m
Example 3.3.2 (2m −m)`+ m + 1 (2m − 1−m)` 4 2m − 1−m
Example 3.3.3 8`+ 12 (` ≤ 15) 7` 5 7
Example 3.3.3 22`+ 16 (` ≤ 63) 21` 5 21
(r, 1)a-LRCs n k d r

Example 3.3.4 (2m − 1−m)` (2m − 2−m)`− 1−m 4 2m − 2−m
Example 3.3.4 (2m −m)` (2m − 1−m)`− 1−m 4 2m − 1−m

construction by using the multi-level tensor product structure [40], leading to (r, 1)a-LRCs with higher

minimum distance.

We start by presenting the tensor product operation of two matrices H
′

and H
′′
. Let H

′
be the

parity-check matrix of a binary code with length n′ and dimension n′ − v. H
′

can be considered as a v

(row) by n′ (column) matrix over F2 or as a 1 (row) by n′ (column) matrix of elements from F2v . Let

H
′
= [h

′
1 h

′
2 · · · h

′
n′ ], where h

′
j, 1 ≤ j ≤ n′, are elements of F2v . Let H

′′
be the parity-check matrix of a

code of length ` and dimension `− λ over F2v . We denote H
′′

by

H
′′
=


h
′′
11 · · · h

′′
1`

...
. . .

...

h
′′
λ1 · · · h

′′
λ`

 ,

where h
′′
i j, 1 ≤ i ≤ λ and 1 ≤ j ≤ `, are elements of F2v .

The tensor product of the two matrices H
′′

and H
′

is defined as

H
′′⊗

H
′
=


h
′′
11H

′ · · · h
′′
1`H

′

...
. . .

...

h
′′
λ1H

′ · · · h
′′
λ`H

′

 ,

where h
′′
i jH

′
= [h

′′
i jh
′
1 h

′′
i jh
′
2 · · · h

′′
i jh
′
n′ ], 1≤ i≤ λ and 1≤ j≤ `, and the products of elements are calculated

according to the rules of multiplication for elements over F2v .

Our construction of (r, 1)a-LRCs is based on the multi-level tensor product structure proposed
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in [40]. Define the matrices H
′
i and H

′′
i (i = 1, 2, . . . ,µ) as follows. H

′
i is a vi × n′ matrix over F2 such

that the (v1 + v2 + · · ·+ vi)× n′ matrix

Bi =


H
′
1

H
′
2

...

H
′
i


is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · − vi, d

′
i] binary code. H

′′
i is a λi × ` matrix over F2vi ,

which is a parity-check matrix of an [`, `− λi,δi]2vi code.

We define a µ-level tensor product code as a binary linear code having a parity-check matrix in the

form of the following µ-level tensor product structure

H =


H
′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

...

H
′′
µ

⊗
H
′
µ

 . (3.6)

We denote this code by CµTP. Its length is n = n′` and the number of parity-check symbols is n− k =

∑
µ
i=1 viλi.

Let us give an example of a 2-level tensor product code C2
TP.

Example 3.3.5. Let H
′
1 = [1 1 1 1 1 1 1] over F2, and

H
′
2 =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


over F2. Let H

′′
1 = [1 1 1] over F2 and

H
′′
2 =

 1 1 0

1 0 1
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over F8. Hence, in this construction, we use the following parameters: n′ = 7, ` = 3, v1 = 1, v2 = 3,

λ1 = 1, λ2 = 2, δ1 = 2, δ2 = 3, d′1 = 2 and d′2 = 4. The binary parity-check matrix H of the 2-level tensor

product code C2
TP is

H =

 H
′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1



.

The code length is n = n′`= 21 and the dimension is k = n− ∑
2
i=1 viλi = 14. It is possible to verify that

every 3 columns of H are linearly independent, but columns 1, 2, 5 and 6 of H are linearly dependent.

Therefore, the minimum distance of the code is d = 4. �

Next, we give the following lemma on the minimum distance of a µ-level tensor product code CµTP.

Lemma 3.3.10. Assume the following inequalities hold: 1) d′µ ≤ δ1, and 2) d′µ ≤ δid′i−1, for i = 2, 3, . . . ,µ.

Then, the minimum distance d of the µ-level tensor product code CµTP is d′µ.

Proof. First, we show that d ≤ d′µ. For i = 1, 2, . . . ,µ, let H
′
i = [h

′
1(i), h

′
2(i), . . . , h

′
n′(i)] over F2vi ,

and let [h
′′
11(i), h

′′
21(i), . . . , h

′′
λi1(i)]

T over F2vi be the first column of H
′′
i . Since the code with parity-

check matrix Bµ has minimum distance d′µ, there exist d′µ columns of Bµ, say in the set of positions

J = {b1, b2, . . . , bd′µ}, which are linearly dependent. That is ∑ j∈J h
′
j(i) = 0, for i = 1, 2, . . . ,µ. Thus,

we have ∑ j∈J h
′′
p1(i)h

′
j(i) = h

′′
p1(i)

(
∑ j∈J h

′
j(i)
)
= 0, for p = 1, 2, . . . ,λi and i = 1, 2, . . . ,µ. That is, the

columns in positions b1, b2, . . . , bd′µ of H are linearly dependent.

The inequality d ≥ d′µ is shown in the proof of Theorem 2 in [40]. �

Remark 3.3.1. Lemma 3.3.10 is a modified version of Theorem 2 in [40], which incorrectly states that the

minimum distance of a µ-level tensor product code CµTP is the largest integer dm satisfying the following
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inequalities: 1) dm ≤ d′µ, 2) dm ≤ δ1, and 3) dm ≤ δid′i−1, i = 2, 3, . . . ,µ. If this were true, the 2-level

C2
TP code in Example 3.3.5, with δ1 = 2, δ2 = 3, d′1 = 2 and d′2 = 4, would have minimum distance 2.

However, the true minimum distance is 4. Theorem 2 only gives a lower bound on the minimum distance,

which we have used in the proof of Lemma 3.3.10. �

We now present a construction of (r, 1)a-LRCs based on the multi-level tensor product structure.

Construction D

Step 1: Choose vi × n′ matrices H
′
i over F2 and λi × ` matrices H

′′
i over F2vi , for i = 1, 2, . . . ,µ, which

satisfy the following two properties:

1) H
′
1 = [1, 1, · · · , 1], i.e., a length-n′ all-one vector, and H

′′
1 = I`×`, i.e., an `× ` identity matrix.

2) The matrices H
′
i and H

′′
i are chosen such that d′µ ≤ δid′i−1, for i = 2, 3, . . . ,µ.

Step 2: Generate the parity-check matrix H of the (r, 1)a-LRC according to (3.6) with the matrices H
′
i

and H
′′
i , for i = 1, 2, . . . ,µ. �

Theorem 3.3.11. The binary (r, 1)a-LRC from Construction D has length n = n′`, dimension k =

n′`− ∑
µ
i=1 viλi, minimum distance d = d′µ, and all-symbol locality r = n′ − 1.

Proof. According to Construction D, the code length n = n′` and dimension k = n′`− ∑
µ
i=1 viλi are

determined by the construction of the multi-level tensor product codes. From property 1) in Step 1, the

tensor product matrix H
′′
1
⊗

H
′
1 in H gives all-symbol locality r = n′ − 1. Since δ1 = ∞ (H

′′
1 is the

identity matrix), d′1 = 2, and d′µ ≤ δid′i−1, we conclude from Lemma 3.3.10, that the minimum distance of

the constructed (r, 1)a-LRC is d = d′µ. �

Construction D gives a general method to construct (r, 1)a-LRCs, but not an explicit construction.

Next, we give a specific code design.

Let n′ = 2m − 1 andα be a primitive element of F2m . In Construction D, for i = 2, 3, . . . ,µ, we

choose H
′
i = [β0,β1, · · · ,βn′−1] where β =α2i−3. Thus, Bi is the parity-check matrix of an expurgated

binary BCH code, so we have d′i = 2i. We also choose H
′′
i to be the parity-check matrix of an [`, `− λi,δi =

d µi−1e]2m code, so we have d′µ = 2µ ≤ δid′i−1 = 2(i− 1)d µi−1e. We refer to the (r, 1)a-LRC constructed

according to the above design as CLRC, and conclude with the following corollary.
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Corollary 3.3.12. The (r, 1)a-LRC CLRC has parameters [(2m − 1)`, (2m − 2)` − m ∑
µ
i=2 λi, 2µ] and

all-symbol locality r = 2m − 2.

In particular, for the construction of the CLRC, in order to minimize the value of λi, we can choose

H
′′
i to be the parity-check matrix of an [`, `− δi + 1,δi = d µi−1e]2m MDS code, where we require that

` ≤ 2m + 1 only for the case µ > 2. Thus, the resulting (r, 1)a-LRC has parameters [(2m − 1)`, (2m −

2)`−m ∑
µ
i=2(d µi−1e − 1), 2µ] and all-symbol locality r = 2m − 2. We refer to this particular (r, 1)a-LRC

as CI. We give some instances of CI as follows.

Example 3.3.6. For µ = 2, CI is a [(2m − 1)`, (2m − 2)`−m, 4] LRC with r = 2m − 2. It has an optimal

minimum distance with respect to bound (3.4). For µ = 3 and ` ≤ 2m + 1, CI is a [(2m − 1)`, (2m −

2)`− 3m, 6] LRC with r = 2m − 2. For µ = 4 and ` ≤ 2m + 1, CI is a [(2m − 1)`, (2m − 2)`− 5m, 8]

LRC with r = 2m − 2. �

In the design of the code CLRC, we can also choose H
′′
i to be the parity-check matrix of a non-MDS

code to remove the length constraint on `. We illustrate this design with the following example.

Example 3.3.7. For the CLRC with µ = 3, we choose H
′′
2 to be the parity-check matrix of an [` =

2ms−1
2m−1 , 2ms−1

2m−1 − s, 3]2m non-binary Hamming code and H
′′
3 = [1, 1, · · · , 1]. The resulting (r, 1)a-LRC has

parameters [2ms − 1, (2
m−2)(2ms−1)

2m−1 − (s + 1)m, 6] and all-symbol locality r = 2m − 2. For the CLRC

with µ = 4, we choose H
′′
2 to be the parity-check matrix of an [` = 22m + 1, 22m − 3, 4]2m non-binary

code (see problem 3.44 in [64]), H
′′
3 = [1, 1, · · · , 1], and H

′′
4 = [1, 1, · · · , 1]. The resulting (r, 1)a-LRC

has parameters [(22m + 1)(2m − 1), (22m + 1)(2m − 2)− 6m, 8] and all-symbol locality r = 2m − 2.

In general, we can choose the matrix H
′′
i for i = 2, 3, . . . ,µ to be the parity-check matrix of an [` =

2ms − 1, `− λi ≥ `− s(d µi−1e − 1),δi ≥ d µi−1e]2m non-binary BCH code [49]. The resulting (r, 1)a-LRC

has parameters [n = (2ms − 1)(2m − 1), k ≥ (2ms − 1)(2m − 2)− ms ∑
µ
i=2(d µi−1e − 1), d = 2µ] and

all-symbol locality r = 2m − 2. We refer to this code as C ′I . �

Remark 3.3.2. There exist other choices of the matrices H
′
i and H

′′
i in Construction D. For example,

we can choose H
′
i so that Bi is the parity-check matrix of an extended binary BCH code, and choose

H
′′
i to be the parity-check matrix of an MDS code. Then, the resulting (r, 1)a-LRC has parameters
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Table 3.2: Constructed binary (r, 1)a-LRCs in Section 3.3.2.

Code n k d r
CI (2m − 1)` (2m − 2)`−m ∑

µ
i=2(d µi−1e − 1) 2µ 2m − 2

CI(µ = 2) (2m − 1)` (2m − 2)`−m 4 2m − 2
CI(µ = 3) (2m − 1)` (2m − 2)`− 3m 6 2m − 2
CI(µ = 4) (2m − 1)` (2m − 2)`− 5m 8 2m − 2
CII 2m` (2m − 1)`−m ∑

µ
i=2(d µi−1e − 1) 2µ 2m − 1

CII(µ = 2) 2m` (2m − 1)`−m 4 2m − 1
CII(µ = 3) 2m` (2m − 1)`− 3m 6 2m − 1
CII(µ = 4) 2m` (2m − 1)`− 5m 8 2m − 1

Example 3.3.7 2ms − 1 (2m−2)(2ms−1)
2m−1 − (s + 1)m 6 2m − 2

Example 3.3.7 (22m + 1)(2m − 1) (22m + 1)(2m − 2)− 6m 8 2m − 2
C ′I (2ms − 1)(2m − 1) (2ms − 1)(2m − 2)−ms ∑

µ
i=2(d µi−1e − 1) 2µ 2m − 2

[2m`, (2m − 1)`− m ∑
µ
i=2(d µi−1e − 1), 2µ] and all-symbol locality r = 2m − 1, where we require that

` ≤ 2m + 1 if µ > 2. We refer to this code as CII. �

The (r, 1)a-LRCs constructed in this subsection are summarized in Table 3.2, where for CI and CII,

we require ` ≤ 2m + 1 when µ > 2.

3.3.3 Comparison to Existing Results

In this subsection, we summarize our constructions of binary LRCs and compare them with

previous results.

Our constructions of binary (r, 1)i-LRCs and (r, 1)a-LRCs have the following features.

1) They provide LRCs with a wide range of values of minimum distance and locality. This diversity

is based on the flexible choices of the base code Cbase for Construction A, B, C, and of the matrices H
′
i

and H
′′
i for Construction D. This feature of our constructions makes it possible to satisfy different design

requirements on the code parameters.

2) They produce high-rate LRCs. For example, for the family of code CI(µ = 2), its code rate

asymptotically approaches r
r+1 as `→∞. Moreover, for all of the constructed binary LRCs with d = 3 or

d = 4, the minimum distance is optimal with respect to bound (3.4).

There exist several other constructions of binary (r, 1)a-LRCs, which are summarized in Table 3.3.

Goparaju and Calderbank [31] and Zeh and Yaakobi [92] focused on constructing high-rate binary (r, 1)a-
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Table 3.3: Existing constructions of binary (r, 1)a-LRCs.

Code n k d r
[31] 2m − 1 (2|m) 2

3 (2
m − 1)−m 6 2

[31] 2m − 1 (2|m) 2
3 (2

m − 1)− 2m 10 2
[92] 2m + 1 (2 - m) 2

3 (2
m + 1)− 2m 10 2

[92] (2r + 1)(r + 1) (2r − 1)r 6 r
[72] 2m − (s

2)− 1 (s ≤ m) m 2m−1 − b s2

4 c 2
[72] 2m − 2t + t + 1 (t ≤ m) m 2m−1 − 2t−1 + 2 2
[72] 2m−1 − 1 m 2m−2 − 1 3
[72] 3 · 2m−2 m 3 · 2m−3 2
[76] 45 30 4 8
[76] 21 12 4 5

LRCs with fixed small locality 2 and small minimum distance. In [92], another construction for LRCs with

arbitrary locality and fixed minimum distance 6 was given. In contrast, Silberstein and Zeh [72] proposed

constructions of low-rate binary (r, 1)a-LRCs with fixed small locality but large minimum distance. In [76],

Tamo et al. gave some specific examples of cyclic binary (r, 1)a-LRCs from subfield subcodes.

Compared to these previous code constructions, our constructions offer more flexibility with regard

to the possible code parameters. First, we compare our results to those in [31, 92]. Roughly speaking, for a

given length and minimum distance, our codes generally offer higher rate but at the cost of larger locality.

For example, Goparaju et al. give a [255, 162, 6] LRC with locality r = 2 and rate 0.6353. Zeh et al. give

a [198, 155, 6] LRC with locality r = 5 and rate 0.7828. By comparison, referring to Table 3.2, we can

use CI(µ = 3) and parameters m = 4 and ` = 16 to construct a [240, 212, 6] LRC with locality r = 14

and rate 0.8833.

We also compare our constructions to some of those examples given in [76]. One example is a

[45, 30, 4] binary (r, 1)a-LRC with r = 8, while we can construct a [45, 35, 4] binary (r, 1)a-LRC with

r = 8 from Construction C using a [13, 8, 4] binary base code Cbase. Another example in [76] is a [21, 12, 4]

binary (r, 1)a-LRC with r = 5. In contrast, we can construct a [20, 12, 4] binary (r, 1)a-LRC with r = 4

from Construction C using an [8, 4, 4] binary base code Cbase. In these cases, our codes offer higher rates

with the same or smaller locality.

Finally, we apply bound (2.2) to give an upper bound on the dimension of the constructed (r, 1)a-

LRC CI from Construction D, which has parameters [n = (2m − 1)`, k = (2m − 2)`−m ∑
µ
i=2(d µi−1e −
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1), d = 2µ] and r = 2m − 2. For x = `− 1, bound (2.2) gives an upper bound kub,

kub =xr + k(q)opt(n− x(r + 1), d)

=(2m − 2)(`− 1) + k(2)opt
(
(2m − 1)`− (2m − 1)(`− 1), 2µ

)
=(2m − 2)(`− 1) + k(2)opt

(
2m − 1, 2µ

)
(a)
≥(2m − 2)(`− 1) + 2m − 2− (µ − 1)m

=(2m − 2)`− (µ − 1)m,

where step (a) follows from the existence of an [n = 2m− 1, k = 2m− 2− (µ− 1)m, d = 2µ] expurgated

BCH code.

For small µ, the gap between k and the upper bound kub is small, e.g., for µ = 3, kub − k = m,

and for µ = 4, kub − k = 2m. For large µ, the gap between k and kub becomes large.

3.4 Binary LRCs with Availability

In this section, we study binary (r, t)a-LRCs based on one-step majority-logic decodable codes [47].

Definition 3.4.1. An [n, k, d]q linear code C is said to be a one-step majority-logic decodable code with t

orthogonal repair sets if the ith symbol, for i ∈ [n], has t pairwise disjoint repair setsR j
i , j ∈ [t], such that

for every j ∈ [t] the ith symbol is a linear combination of all symbols inR j
i .

According to Definition 3.4.1, it is evident that if C is a one-step majority-logic decodable code

with t orthogonal repair sets, and if the size of all repair sets is at most r, then C has all-symbol locality r

and availability t. Moreover, referring to a well known result (Theorem 8.1 in [47]), we can see that for an

[n, k, d]q one-step majority-logic decodable code with t orthogonal repair sets, all of the same size r, the

availability t satisfies

t ≤
⌊

n− 1
r

⌋
. (3.7)
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Table 3.4: Difference-set codes.

C n k d r t tu du du
1 du

2
m = 2 21 11 6 4 5 5 6 8 9
m = 3 73 45 10 8 9 9 12 23 24
m = 4 273 191 18 16 17 17 31 71 72
m = 5 1057 813 34 32 33 33 80 219 220

Note that for a cyclic code, once t repair sets are found for one symbol, the repair sets for all other

symbols can be determined correspondingly from the cyclic symmetry of the code. Therefore, most of

one-step majority-logic decodable codes found so far are cyclic codes. There are several constructions of

one-step majority-logic decodable codes, such as doubly transitive invariant (DTI) codes, cyclic simplex

codes, cyclic difference-set codes, and 4-cycle free regular linear codes [47]. The following examples

present two families of one-step majority-logic decodable cyclic codes, and we give their locality and

availability.

Example 3.4.1. Consider a cyclic binary simplex code with parameters [n = 2m − 1, k = m, d = 2m−1]. It

is a one-step majority-logic decodable code with 2m−1 − 1 disjoint repair sets [47]. It is easy to verify that

every repair set has size 2. Therefore, it has all-symbol locality r = 2 and availability t = 2m−1 − 1. This

code has the optimal minimum distance, due to the Plotkin bound. This locality and availability property

of the simplex codes was also observed independently in [43]. �

Example 3.4.2. Consider a cyclic binary difference-set code with parameters [n = 22m + 2m + 1, k =

22m + 2m − 3m, d = 2m + 2]. It is a one-step majority-logic decodable code with 2m + 1 disjoint repair

sets [47]. We can verify that every repair set has size 2m. Thus, this code has all-symbol locality r = 2m

and availability t = 2m + 1. For the codes with 2 ≤ m ≤ 5, Table 3.4 gives the upper bound tu on t from

bound (3.7) and the upper bound du on d from bound (3.4). The table also gives the upper bounds du
1 and

du
2 from bounds (3.1) and (3.3), respectively. In all of the examples, we see that du is smaller than du

1 and

du
2 , meaning that bound (3.4) is tighter. �

Another important class of one-step majority-logic decodable codes is 4-cycle free linear codes that

have a parity-check matrix H with constant row weight ρ and constant column weight γ. Obviously, such

codes have all-symbol locality r = ρ− 1 and availability t = γ. In particular, 4-cycle free (ρ,γ)-regular
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Table 3.5: Two-dimensional type-I cyclic (0, m)th-order EG-LDPC codes.

C n k d r t tu du du
1 du

2
m = 2 15 7 5 3 4 4 5 7 7
m = 3 63 37 9 7 8 8 12 22 22
m = 4 255 175 17 15 16 16 30 69 70
m = 5 1023 781 33 31 32 32 80 218 218

low-density parity-check (LDPC) codes have this property. Based upon this observation, a family of codes

with all-symbol locality and availability were constructed using partial geometries in [54]. The authors

of [54] also derived lower and upper bounds on the code rate; however, the exact dimension and minimum

distance of these codes are still not known.

Many 4-cycle free regular LDPC codes have been constructed by leveraging different mathematical

tools, e.g., finite geometries, algebraic methods, and block designs [47]. Here we consider a family of

such codes based on Euclidean geometry (EG), and we give explicit expressions for their code length,

dimension, and minimum distance, as well as their locality and availability.

Example 3.4.3. Consider the class of binary 4-cycle free regular LDPC codes called in [47] the two-

dimensional type-I cyclic (0, m)th-order EG-LDPC codes, with parameters [n = 22m − 1, k = 22m −

3m, d = 2m + 1]. From the structure of their parity-check matrices, they have all-symbol locality r = 2m− 1

and availability t = 2m. Table 3.5 lists the parameters of these codes for 2 ≤ m ≤ 5 and gives the upper

bound tu on t from bound (3.7) and the upper bound du on d from bound (3.4). The table also includes the

upper bounds du
1 and du

2 from bounds (3.1) and (3.3), respectively. We see that, in all of these cases, du is

smaller than du
1 and du

2 . �

Finally, we briefly show how to get a long LRC with availability from a short one-step majority-

logic decodable code based on a multi-level tensor product structure. We modify Step 1 in Construction D

to provide availability by using the parity-check matrix of a one-step majority-logic decodable code as H
′
1.

We illustrate this modification with the following example where we use for H
′
1 the parity-check matrix of

the [15, 7, 5] binary BCH code, which is a one-step majority-logic decodable code with all-symbol locality

r = 3 and availability t = 4 [47].
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Example 3.4.4. Let n′ = 15 andα be a primitive element of F16. Let

H
′
1 =

 α0 α1 · · · α14

(α3)0 (α3)1 · · · (α3)14


and H

′
2 = [(α5)0, (α5)1, · · · , (α5)14]. Let H

′′
1 = I`×` and H

′′
2 = [1, 1, · · · , 1]. The parity-check matrix H

of the constructed LRC is

H =

 H
′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

 .

This LRC has parameters [15`, 7`− 2, 7] with all-symbol locality r = 3 and availability t = 4. �

3.5 Conclusion

In this chapter, we presented several constructions of binary LRCs by using phantom parity-check

symbols and a multi-level tensor product structure. Compared to other recently proposed schemes which

produce binary LRCs with fixed minimum distance or locality, our constructions are more flexible and

offer wider choices of the code parameters, i.e., code length, dimension, minimum distance, and locality.

We also showed that our binary LRCs with minimum distance 3 or 4 are optimal with respect to the

minimum distance. Finally, we studied the locality and availability properties of one-step majority-logic

decodable codes, and demonstrated a construction of a long binary LRC with availability from a short

one-step majority-logic decodable code.

3.6 Appendix A

In this section, we give the proof of Lemma 3.2.3.

Proof. Assume that x ∈ Z+, y = (y1, . . . , yx) ∈ ([t])x satisfy the condition x ≤ d k
(r−1)t+1e in the lemma.

Also, assume without loss of generality that the first k symbols of the code C form an information set.

The set I is constructed according to the following procedure.

Procedure A

1) Let I0 = ∅.
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2) For j = 1, . . . , x

3) Choose an integer a j ∈ [k] and a j /∈ I j−1, such that kI j−1∪{a j} = kI j−1 + 1.

4) I j = I j−1 ∪ {a j} ∪R1
a j
∪ · · · ∪ Ry j

a j .

5) End

6) Let I = Ix ∪ S , where S ⊆ [n] \ Ix is a set of cardinality min{n, B(r, x, y)} − |Ix|. �

This completes the construction of the set I .

First, let us show that the construction of the set I is well defined.

Claim 3.6.1. In step 3), it is always possible to find a coordinate a j ∈ [k], for 1 ≤ j ≤ x, that satisfies the

condition in this step.

Proof. To see this, we show that on the jth loop, for 1 ≤ j ≤ x, the value of kI j−1 satisfies kI j−1 < k, and

thus at least one of the first k coordinates does not belong to the set I j−1. Since the value of kI j−1 increases

with j, it is enough to show that kIx−1 ≤ k− 1.

Let Sa j = {a j} ∪R1
a j
∪ · · · ∪ Ry j

a j for j ∈ [x]. First, we show that kSa j
≤ (r− 1)t + 1. Let G =

[g1, . . . , gn] be a generator matrix of the code C. For the repair setRu
a j

, u ∈ [y j], ga j is a linear combination

of the columns gm, m ∈ Ru
a j

, so there exists a coordinate bu
j ∈ Ru

a j
such that ga j = ∑m∈Ru

a j
\{bu

j }αmgm +

βbu
j
gbu

j
, whereαm,βbu

j
∈ Fq and βbu

j
6= 0. Thus, k{a j}∪Ru

a j
\{bu

j } = k{a j}∪Ru
a j

. Therefore, we have

kSa j
= kSa j\{∪

y j
u=1bu

j }

(a)
≤ |Sa j\{∪

y j
u=1bu

j }| ≤ (r− 1)y j + 1 ≤ (r− 1)t + 1,

where (a) follows from the fact that kM ≤ |M| for any setM⊆ [n].

From the construction of the set I , we have that Ix−1 = ∪x−1
j=1Sa j and therefore

kIx−1 = k∪x−1
j=1Sa j

(a)
≤

x−1

∑
j=1

kSa j

(b)
≤ (x− 1)[(r− 1)t + 1]

(c)
≤
(⌈

k
(r− 1)t + 1

⌉
− 1
)
[(r− 1)t + 1] <

k
(r− 1)t + 1

[(r− 1)t + 1] = k,
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where (a) follows from the fact that kM1
⋃M2 ≤ kM1 + kM2 for any setsM1,M2 ⊆ [n] and a simple

induction. Inequality (b) follows from kSa j
≤ (r− 1)t + 1, and (c) follows from x ≤ d k

(r−1)t+1e. �

It is clear to see that the set I has size of |I| = min{n, B(r, x, y)}.

Next, we show that kI ≤ A(r, x, y). To do this, in Procedure A, for each jth iteration, let us add

the following coordinate selection steps between step 3) and step 4).

3.1) For ` = 1, . . . , y j

3.2) Choose an integer a`j ∈ R`
a j

and a`j /∈ I j−1, such that k{a j}∪R`
a j
\{a`j} = k{a j}∪R`

a j
.

3.3) End

We next show that the above steps are well defined.

Claim 3.6.2. In step 3.2), it is always possible to find an integer a`j , for 1 ≤ j ≤ x and 1 ≤ ` ≤ y j, that

satisfies the condition in this step.

Proof. First, assume on the contrary thatR`
a j
⊆ I j−1. Then, we conclude that kI j−1∪{a j} = kI j−1 , which

violates the selection rule in step 3). Second, for the case ofR`
a j
* I j−1, since ga j is a linear combination of

gi, i ∈ R`
a j

, there exists at least one coordinate a`j ∈ R`
a j

and a`j /∈ I j−1 such that ga j = ∑i∈R`
a j
\{a`j}αigi +

βa`j
ga`j

, where αi,βa`j
∈ Fq and βa`j

6= 0. Therefore, ga`j
can be expressed as a linear combination of the

columns gi, for i ∈ {a j} ∪R`
a j
\{a`j}, so we have k{a j}∪R`

a j
\{a`j} = k{a j}∪R`

a j
. �

Now, let P be the set of coordinates chosen in steps 3.1) – 3.3): P = {a1
1, . . . , ay1

1 , . . . , a1
x, . . . , ayx

x }.

From the construction, the integers a1
1, . . . , ay1

1 , . . . , a1
x, . . . , ayx

x are all different, i.e., |P| = ∑
x
j=1 y j.

Next, we prove that kI ≤ A(r, x, y) by showing that kI\P ≤ A(r, x, y) and kI = kI\P .

Claim 3.6.3. kI\P ≤ A(r, x, y).

Proof.

kI\P ≤ |I\P|
(a)
= min{n, B(r, x, y)} −

x

∑
j=1

y j ≤ B(r, x, y)−
x

∑
j=1

y j = A(r, x, y),

where (a) follows from |I| = min{n, B(r, x, y)} and |P| = ∑
x
j=1 y j. �

Claim 3.6.4. kI = kI\P .
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Proof. Showing that kI = kI\P is equivalent to showing that for any two codewords c and ĉ in code C, if

cI\P = ĉI\P , then cP = ĉP .

Assume on the contrary that there exist two codewords c = (c1, . . . , cn) and ĉ = (ĉ1, . . . , ĉn) in

code C that cI\P = ĉI\P , but cP 6= ĉP . Let E = {i : ci 6= ĉi, i ∈ P}. We order the elements in E according

to the lexicographical order ≺ defined as follows:

1. If i < j, then au
i ≺ av

j , for i, j ∈ [x], u ∈ [yi], and v ∈ [y j].

2. If u < v, then au
i ≺ av

i , for i ∈ [x], u, v ∈ [yi].

Suppose that the smallest element with respect to the lexicographical order≺ in E is au
i . According

to the construction steps, we have ({ai} ∪ Ru
ai
\{au

i })
⋂E = ∅ and ({ai} ∪ Ru

ai
\{au

i }) ⊆ I . Since

cI\E = ĉI\E , we have c{ai}∪Ru
ai
\{au

i } = ĉ{ai}∪Ru
ai
\{au

i }, but cau
i
6= ĉau

i
. This violates the selection rule in

step 3.2) for au
i : k{ai}∪Ru

ai
\{au

i } = k{ai}∪Ru
ai

, which indicates that if c{ai}∪Ru
ai
\{au

i } = ĉ{ai}∪Ru
ai
\{au

i } then

cau
i
= ĉau

i
. Thus, we get a contradiction and conclude that there do not exist two codewords c and ĉ in code

C that cI\P = ĉI\P , but cP 6= ĉP . �

From Claims 3.6.3 and 3.6.4, it is clear to see that we have kI ≤ A(r, x, y). Therefore, there exists

a set I ⊆ [n], |I| = min{n, B(r, x, y)}, such that kI ≤ A(r, x, y). Finally, choose a set I , produced

by Procedure A, satisfying A(r, x, y) < k. Since kI ≤ A(r, x, y) < k and k[n] = k, we conclude that

B(r, x, y) < n and |I| = min{n, B(r, x, y)} = B(r, x, y).

�

3.7 Appendix B

In this section, we give the proof of Theorem 3.2.4.

Proof. We follow similar steps to the proof in [13] which consists of two parts. First, from Lemma 3.2.3,

for any [n, k, d]q linear code C with information locality r and availability t, for all x ∈ Z+ and y =

(y1, . . . , yx) ∈ ([t])x satisfying 1 ≤ x ≤ d k
(r−1)t+1e and A(r, x, y) < k, there exists a set I ⊆ [n], |I| =

B(r, x, y), such that kI ≤ A(r, x, y).

For the second part of the proof, for any x ∈ Z+ and y = (y1, . . . , yx) ∈ ([t])x, the I ⊆ [n] is

constructed as in the first part. Then, we consider the code C0
I = {c[n]\I : cI = 0 and c ∈ C}. Since the
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code C is linear, the size of the code C0
I is qk−kI and it is a linear code as well. Moreover, the minimum

distance D of the code C0
I is at least d, i.e., D ≥ d.

Thus, we get an upper bound on the minimum distance d,

d ≤ D ≤ d(q)`−opt[n− |I|, k− kI ] ≤ d(q)`−opt[n− |I|, k− A(r, x, y)].

Therefore, we conclude that

d ≤ d(q)`−opt[n− |I|, k− A(r, x, y)] = d(q)`−opt[n− B(r, x, y), k− A(r, x, y)].

Similarly, we also get an upper bound on the dimension k,

k− kI ≤ k(q)`−opt[n− |I|, D] ≤ k(q)`−opt[n− |I|, d].

Therefore, we conclude that

k ≤ k(q)`−opt[n− |I|, d] + kI ≤ k(q)`−opt[n− B(r, x, y), d] + A(r, x, y).

�
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Chapter 4

Multi-Erasure Locally Repairable Codes

over Small Fields

4.1 Introduction

In this chapter, we extend our previous construction for binary LRCs in Chapter 3 to construct

erasure codes that can locally correct multiple erasures. In particular, we consider erasure codes with both

local and global erasure-correcting capabilities for a ρ× n0 storage array [11], where each row contains

some local parities, and additional global parities are distributed in the array. The array structure is suitable

for many storage applications. For example, a storage array can represent a large-scale distributed storage

system consisting of a large number of storage nodes that spread over different geographical locations.

The storage nodes that are placed in the same location can form a local storage cluster. Thus, each row

of the storage array can stand for such a local storage cluster. Another example is a redundant array of

independent disks (RAID) type of architecture for solid-state drives (SSDs) [11, 28]. In this scenario,

a ρ× n0 storage array can represent a total of ρ SSDs, each of which contains n0 flash memory chips.

Within each SSD, an erasure code is applied to these n0 chips for local protection. In addition, erasure

coding is also done across all the SSDs for global protection of all the chips.

More specifically, let us give the formal definition of this class of erasure codes as follows.
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Definition 4.1.1. Consider a code C over a finite field Fq consisting of ρ× n0 arrays such that:

1. Each row in each array in C belongs to a linear local code C0 with length n0 and minimum distance

d0 over Fq.

2. Reading the symbols of C row-wise, C is a linear code with length ρn0, dimension k, and minimum

distance d over Fq.

Then, we say that C is a (ρ, n0, k; d0, d)q Multi-Erasure Locally Repairable Code (ME-LRC).

Thus, a (ρ, n0, k; d0, d)q ME-LRC can locally correct d0− 1 erasures in each row, and is guaranteed

to correct a total of d− 1 erasures anywhere in the array.

Our work is motivated by a recent work by Blaum and Hetzler [11]. In their work, the authors

studied ME-LRCs where each row is a maximum distance separable (MDS) code, and gave code construc-

tions with field size q ≥max{ρ, n0} using generalized integrated interleaving (GII) codes [36, 78, 88].

Our Definition 4.1.1 generalizes the definition of the codes in [11] by not requiring each row to be an

MDS code. There exist other related works. The ME-LRCs in Definition 4.1.1 can be seen as (r,δ) LRCs

with disjoint repair sets. A code C is called an (r,δ) LRC [58], if for every coordinate, there exists a

punctured code (i.e., a repair set) of C with support containing this coordinate, whose length is at most

r + δ− 1, and whose minimum distance is at least δ. Although the existing constructions [58,75] for (r,δ)

LRCs with disjoint repair sets can generate ME-LRCs as in Definition 4.1.1, they use MDS codes as local

codes and require a field size that is at least as large as the code length. A recent work [7] gives explicit

constructions of (r,δ) LRCs with disjoint repair sets over field Fq from algebraic curves, whose repair sets

have size r + δ− 1 =
√

q or r + δ− 1 =
√

q + 1. Partial MDS (PMDS) codes [10] are also related to but

different from ME-LRCs in Definition 4.1.1. In general, PMDS codes need to satisfy stricter requirements

than ME-LRCs. A ρ× n0 array code is called an (r; s) PMDS code if each row is an [n0, n0 − r, r + 1]q

MDS code and whenever any r locations in each row are punctured, the resulting code is also an MDS

code with minimum distance s + 1. The construction of (r, s) PMDS codes for all r and s with field size

O(nρn0
0 ) was known [17]. More recently, a family of PMDS codes with field size O(max{ρ, nr+s

0 }s) was

constructed [27].
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However, the construction of optimal ME-LRCs over any small field (e.g., the field size less

than the length of the local code, or even the binary field) has not been fully explored and solved. The

goal of this chapter is to study ME-LRCs over small fields. We propose a general construction based on

generalized tensor product codes [40, 86]. It extends our previous construction in Chapter 3 to the scenario

of multi-erasure LRCs over any field. In contrast to [11], our construction does not require field size

q ≥max{ρ, n0}, and it can even generate binary ME-LRCs. We derive an upper bound on the minimum

distance of ME-LRCs. For 2d0 ≥ d, we show that our construction can produce optimal ME-LRCs with

respect to (w.r.t.) the new upper bound on the minimum distance. We also present an erasure decoding

algorithm and its corresponding correctable erasure patterns which include the pattern of any d− 1 erasures.

We show that the ME-LRCs from our construction based on Reed-Solomon (RS) codes are optimal w.r.t.

certain correctable erasure patterns. So far the exact relation between GII codes [11,78,88] and generalized

tensor product codes has not been fully investigated. We prove that GII codes are a subclass of generalized

tensor product codes. As a result, the parameters of a GII code can be obtained by using the known

properties of generalized tensor product codes.

The remainder of this chapter is organized as follows. In Section 4.2, we give notation and derive

a field size dependent upper bound for ME-LRCs. In Section 4.3, we propose a general construction of

ME-LRCs. The erasure-correcting properties of these codes are studied and an erasure decoding algorithm

is presented. In Section 4.4, we study optimal code construction and provide several explicit optimal

ME-LRCs over different fields. In Section 4.5, we prove that GII codes are a subclass of generalized tensor

product codes. We conclude the chapter in Section 4.6.

4.2 An Upper Bound for ME-LRCs

We begin this section by giving some notation that will be used in this chapter. We use the notation

[n] to denote the set {1, . . . , n}. For a length-n vector v over Fq and a set I ⊆ [n], the vector vI denotes

the restriction of the vector v to coordinates in the set I , and wq(v) represents the Hamming weight of the

vector v over Fq. The transpose of a matrix H is written as HT. For a set S , |S| represents the cardinality

of the set. A linear code C over Fq of length n, dimension k, and minimum distance d will be denoted
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by C = [n, k, d]q or [n, k, d]q for simplicity. For a code with only one codeword, the minimum distance is

defined as ∞.

Now, we give an upper bound on the minimum distance of a (ρ, n0, k; d0, d)q ME-LRC, by

extending the shortening bound for LRCs in [13]. The upper bound obtained here will be used to prove the

optimality of our construction for ME-LRCs in the following sections.

Let d(q)opt[n, k] denote the largest possible minimum distance of a linear code of length n and

dimension k over Fq, and let k(q)opt[n, d] denote the largest possible dimension of a linear code of length n

and minimum distance d over Fq.

Lemma 4.2.1. For any (ρ, n0, k; d0, d)q ME-LRC C, the minimum distance d satisfies

d ≤ min
0≤x≤d k

k∗ e−1, x∈Z

{
d(q)opt[ρn0 − xn0, k− xk∗]

}
, (4.1)

and the dimension satisfies

k ≤ min
0≤x≤d k

k∗ e−1, x∈Z

{
xk∗ + k(q)opt[ρn0 − xn0, d]

}
, (4.2)

where k∗ = k(q)opt[n0, d0].

Proof. For the case of x = 0, it is trivial. For 1 ≤ x ≤ d k
k∗ e − 1, x ∈ Z+, let I represent the set of the

coordinates of the first x rows in the array. Thus, |I| = xn0. First, consider the code CI = {cI : c ∈ C}

whose dimension is denoted by kI , which satisfies kI ≤ xk∗. Then, we consider the code C0
I = {c[ρn0]\I :

cI = 0 and c ∈ C}. Since the code C is linear, the size of the code C0
I is qk−kI and it is a linear code as

well. Moreover, the minimum distance d̂ of the code C0
I is at least d, i.e., d̂ ≥ d.

Thus, we get an upper bound on the minimum distance d,

d ≤ d̂ ≤ d(q)opt[ρn0 − |I|, k− kI ] ≤ d(q)opt[ρn0 − xn0, k− xk∗].

Similarly, we also get an upper bound on the dimension k,

k− kI ≤ k(q)opt[ρn0 − |I|, d̂] ≤ k(q)opt[ρn0 − xn0, d].
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Therefore, we conclude that

k ≤ k(q)opt[ρn0 − xn0, d] + kI ≤ k(q)opt[ρn0 − xn0, d] + xk∗.

�

4.3 ME-LRCs from Generalized Tensor Product Codes

In this section, we first introduce generalized tensor product codes over a finite field Fq. Then, we

give a general construction of ME-LRCs from generalized tensor product codes. The minimum distance of

the constructed ME-LRCs is determined, a decoding algorithm tailored for erasure correction is proposed,

and corresponding correctable erasure patterns are studied.

4.3.1 Generalized Tensor Product Codes over a Finite Field

We start by presenting the tensor product operation of two matrices H
′

and H
′′
. Let H

′
be

the parity-check matrix of a code with length n′ and dimension n′ − v over Fq. The matrix H
′

can be

considered as a v (row) by n′ (column) matrix over Fq or as a 1 (row) by n′ (column) matrix of elements

from Fqv . Let H
′

be the vector H
′
= [h

′
1 h

′
2 · · · h

′
n′ ], where h

′
j, 1≤ j≤ n′, are elements of Fqv . Let H

′′
be

the parity-check matrix of a code of length ` and dimension `− λ over Fqv . We denote H
′′

by

H
′′
=


h
′′
11 · · · h

′′
1`

...
. . .

...

h
′′
λ1 · · · h

′′
λ`

 ,

where h
′′
i j, 1 ≤ i ≤ λ and 1 ≤ j ≤ `, are elements of Fqv .

The tensor product of the matrices H
′′

and H
′

is defined as

HTP = H
′′⊗

H
′
=


h
′′
11H

′ · · · h
′′
1`H

′

...
. . .

...

h
′′
λ1H

′ · · · h
′′
λ`H

′

 ,
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where h
′′
i jH

′
= [h

′′
i jh
′
1 h

′′
i jh
′
2 · · · h

′′
i jh
′
n′ ], 1≤ i≤ λ and 1≤ j≤ `, and the products of elements are calculated

according to the rules of multiplication for elements over Fqv . The matrix HTP will be considered as a

vλ× n′` matrix of elements from Fq, thus defining a tensor product code over Fq.

Our construction of ME-LRCs is based on generalized tensor product codes [40]. Define the

matrices H
′
i and H

′′
i for i = 1, 2, . . . ,µ as follows. The matrix H

′
i is a vi × n′ matrix over Fq such that the

(v1 + v2 + · · ·+ vi)× n′ matrix

Bi =


H
′
1

H
′
2

...

H
′
i


is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · − vi, d′i]q code C ′i , where d′1 ≤ d′2 ≤ · · · ≤ d′i. The

matrix H
′′
i is a λi × ` matrix over Fqvi , which is a parity-check matrix of an [`, `− λi,δi]qvi code C ′′i .

We define a µ-level generalized tensor product code over Fq as a linear code having a parity-check

matrix over Fq in the form of the following µ-level tensor product structure

H =


H
′′
1
⊗

H
′
1

H
′′
2
⊗

H
′
2

...

H
′′
µ

⊗
H
′
µ

 . (4.3)

As the matrix HTP, each level in the matrix H is obtained by operations over Fq and its extension field.

We denote this code by CµGTP. Its length is nt = n′` and the dimension is kt = nt − ∑
µ
i=1 viλi.

By adapting Theorem 2 in [40] from the field F2 to Fq, we directly have the following theorem on

the minimum distance of CµGTP over Fq.

Theorem 4.3.1. The minimum distance dt of a generalized tensor product code CµGTP over Fq satisfies

dt ≥min{δ1,δ2d′1,δ3d′2, . . . ,δµd′µ−1, d′µ}.

Proof. A codeword x in CµGTP is an n′`-dimensional vector over Fq, denoted by x = (x1, x2, . . . , x`), where

53



xi in x is an n′-dimensional vector, for i = 1, 2, . . . , `.

Let s j
i = xi H

′T
j , for i = 1, 2, . . . , ` and j = 1, 2, . . . ,µ. Thus, s j

i is a v j-dimensional vector over

Fq, and is considered as an element in Fqv j . Let s j = (s j
1, s j

2, . . . , s j
`), an `-dimensional vector over Fqv j ,

whose components are s j
i , i = 1, 2, . . . , `. To prove Theorem 4.3.1, we need to show that if xHT = 0 and

wq(x) < dm = min{δ1,δ2d′1,δ3d′2, . . . ,δµd′µ−1, d′µ}, then x must be the all-zero vector 0.

We prove it by contradiction and induction. Assume that there exists a codeword x such that

xHT = 0, wq(x) < dm, and x 6= 0.

We first state a proposition which will be used in the following proof.

Proposition 4.3.2. If xHT = 0 and s1 = s2 = · · · = s j = 0, then wq(xi) ≥ d′j for xi 6= 0, i = 1, 2, . . . , `.

Proof. The condition s1 = s2 = · · · = s j = 0 means that xiBT
j = 0 for i = 1, 2, . . . , `; that is, xi is a

codeword in the code defined by the parity-check matrix B j, whose minimum distance is d′j. Therefore, we

have wq(xi) ≥ d′j for xi 6= 0, i = 1, 2, . . . , `. �

Now, if s1 6= 0, then wq(x) ≥ wqv1 (s1) ≥ δ1 ≥ dm, which contradicts the assumption. Thus, we

have s1 = 0.

Then, consider the second level. If s2 6= 0, then wq(x)
(a)
≥ wqv2 (s2)d′1 ≥ δ2d′1 ≥ dm, where step

(a) is from Proposition 4.3.2. This contradicts the assumption, so we have s2 = 0. By induction, we must

have s1 = s2 = · · · = sµ−1 = 0.

For the last level, i.e., the µth level, if sµ 6= 0, then wq(x) ≥ wqvµ (sµ)d′µ−1 ≥ δµd′µ−1 ≥ dm,

which contradicts our assumption. Now, if s1 = s2 = · · · = sµ = 0, then wq(x) ≥ d′µ ≥ dm, which also

contradicts our assumption.

Thus, our assumption is violated. �

4.3.2 Construction of ME-LRCs

Now, we present a general construction of ME-LRCs based on generalized tensor product codes.

Construction A

Step 1: Choose vi × n′ matrices H
′
i over Fq and λi × ` matrices H

′′
i over Fqvi , for i = 1, 2, . . . ,µ, which

satisfy the following two properties:
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1) The parity-check matrix H
′′
1 = I`×`, i.e., an `× ` identity matrix.

2) The matrices H
′
i (or Bi), 1 ≤ i ≤ µ, and H

′′
j , 2 ≤ j ≤ µ, are chosen such that d′µ ≤ δ jd′j−1, for

j = 2, 3, . . . ,µ.

Step 2: Generate a parity-check matrix H over Fq according to (4.3) with the matrices H
′
i and H

′′
i , for

i = 1, 2, . . . ,µ. The constructed code corresponding to the parity-check matrix H is referred to as CA. �

Theorem 4.3.3. The code CA is a (ρ, n0, k; d0, d)q ME-LRC with parameters ρ = `, n0 = n′, k = n′`−

∑
µ
i=1 viλi, d0 = d′1, and d = d′µ.

Proof. According to Construction A, the code parameters ρ, n0, k, and d0 can be easily determined. In the

following, we prove that d = d′µ.

Since δ1 = ∞ (H
′′
1 is the identity matrix) and d′µ ≤ δid′i−1 for all i = 2, 3, . . . ,µ, from Theo-

rem 4.3.1, d ≥ d′µ.

Now, we show that d ≤ d′µ. For i = 1, 2, . . . ,µ, let H
′
i = [h

′
1(i), . . . , h

′
n′(i)] over Fqvi , and let

[h
′′
11(i), . . . , h

′′
λi1(i)]

T over Fqvi be the first column of H
′′
i . Since the code with parity-check matrix Bµ

has minimum distance d′µ, there exist d′µ columns of Bµ, say in the set of positions J = {b1, b2, . . . , bd′µ},

which are linearly dependent; that is, ∑ j∈Jα jh
′
j(i) = 0, for someα j ∈ Fq, for all i = 1, 2, . . . ,µ. Thus, we

have ∑ j∈Jα jh
′′
p1(i)h

′
j(i) = h

′′
p1(i)

(
∑ j∈Jα jh

′
j(i)
)
= 0, for p = 1, 2, . . . ,λi and i = 1, 2, . . . ,µ. That is, the

columns in positions b1, b2, . . . , bd′µ of H are linearly dependent. �

4.3.3 Erasure Decoding and Correctable Erasure Patterns

We present a decoding algorithm for the ME-LRC CA from Construction A, tailored for erasure

correction. The decoding algorithm for error correction for generalized tensor product codes can be found

in [40].

Let the symbol ? represent an erasure and “e” denote a decoding failure. The erasure decoder

DA : (Fq ∪ {?})n′`→ CA ∪ {“e”} for an ME-LRC CA consists of two kinds of component decoders D′i
and D′′i for i = 1, 2, . . . ,µ described below.

a) First, the decoder for a coset of the code C ′i with parity-check matrix Bi, i = 1, 2, . . . ,µ, is
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denoted by

D′i :(Fq ∪ {?})n′ × (Fq ∪ {?})∑
i
j=1 v j → (Fq ∪ {?})n′

which uses the following decoding rule: for a length-n′ input vector y′, and a length-∑i
j=1 v j syndrome

vector s′ without erasures, if y′ agrees with exactly one codeword c′ ∈ C ′i + e on the entries with values in

Fq, where the vector e is a coset leader determined by both the code C ′i and the syndrome vector s′, i.e.,

s′ = eBT
i , then D′i(y′, s′) = c′; otherwise, D′i(y′, s′) = y′. Therefore, if the length-n′ input vector y′ is a

codeword in C ′i + e with d′i − 1 or less erasures and the syndrome vector s′ is not erased, then the decoder

D′i can return the correct codeword.

b) Second, the decoder for the code C ′′i with parity-check matrix H
′′
i , i = 1, 2, . . . ,µ, is denoted by

D′′i : (Fqvi ∪ {?})`→ (Fqvi ∪ {?})`

which uses the following decoding rule: for a length-` input vector y′′, if y′′ agrees with exactly one

codeword c′′ ∈ C ′′i on the entries with values in Fqvi , then D′′i (y′′) = c′′; otherwise, D′′i (y′′) = y′′.

Therefore, if the length-` input vector y′′ is a codeword in C ′′i with δi − 1 or less erasures, then the decoder

D′′i can successfully return the correct codeword.

The erasure decoder DA for the code CA is summarized in Algorithm 1 below. Let the input

word of length n′` for the decoder DA be y = (y1, y2, . . . , y`), where each component yi ∈ (Fq ∪ {?})n′ ,

i = 1, . . . , `. The vector y is an erased version of a codeword c = (c1, c2, . . . , c`) ∈ CA.

Algorithm 1: Decoding Procedure of Decoder DA

Input: received word y = (y1, y2, . . . , y`).

Output: codeword c ∈ CA or a decoding failure “e”.

1. Let s1
j = 0, for j = 1, 2, . . . , `.

2. ĉ = (ĉ1, . . . , ĉ`) =
(
D′1(y1, s1

1), . . . ,D′1(y`, s1
`)
)

.

3. Let F = { j ∈ [`] : ĉ j contains ?}.
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4. For i = 2, . . . ,µ

• If F 6= ∅, do the following steps; otherwise go to step 5.

• (si
1, . . . , si

`) = D
′′
i

(
ĉ1H

′T
i , . . . , ĉ`H

′T
i

)
.

• ĉ j = D′i
(

ĉ j, (s1
j , . . . , si

j)
)

for j ∈ F ; ĉ j remains the same for j ∈ [`]\F .

• Update F = { j ∈ [`] : ĉ j contains ?}.

end

5. If F = ∅, let c = ĉ and output c; otherwise return “e”.

In Algorithm 1, we use the following rules for operations which involve the symbol ?: 1) Addition

+: for any element γ ∈ Fq ∪ {?}, γ+? =?. 2) Multiplication ×: for any element γ ∈ Fq ∪ {?}\{0},

γ×? =?, and 0×? = 0. 3) If a length-n vector x, x ∈ (Fq ∪{?})n, contains an entry ?, then x is considered

as the symbol ? in the set Fqn ∪ {?}. Similarly, the symbol ? in the set Fqn ∪ {?} is treated as a length-n

vector whose entries are all ?.

To describe correctable erasure patterns, we use the following notation. Let we(v) denote the

number of erasures ? in the vector v. For a received word y = (y1, y2, . . . , y`), let Nτ = |{ym : we(ym)≥

d′τ , 1 ≤ m ≤ `}| for 1 ≤ τ ≤ µ.

Theorem 4.3.4. The decoder DA for a (ρ, n0, k; d0, d)q ME-LRC CA can correct any received word y that

satisfies the following condition:

Nτ ≤ δτ+1 − 1, ∀ 1 ≤ τ ≤ µ, (4.4)

where δµ+1 is defined to be 1.

Proof. The proof follows from the decoding procedure of decoder DA. The ME-LRC CA has d0 = d′1 and

d = d′µ. For a received word y = (y1, y2, . . . , y`), each vector yi, 1 ≤ i ≤ `, corresponds to a row in the

array.

For the first level, since δ1 =∞, the correct syndrome vector (s1
1, . . . , s1

`) is the all-zero vector,

i.e., (s1
1, . . . , s1

`) = 0. Thus, the rows with number of erasures less than d′1 are corrected.
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For the second level, the remaining uncorrected row ĉ j, j ∈ F , has at least d′1 erasures. The total

number of such uncorrected rows with indices in F is less than δ2, because we require N1 ≤ δ2 − 1 in

the condition. Thus, the correct syndrome vector (s2
1, . . . , s2

`) can be obtained. As a result, the rows with

number of erasures less than d′2 are corrected.

Similarly, by induction, if the decoder runs until the µth level, the remaining uncorrected row ĉ j,

j ∈ F , has at least d′µ−1 erasures. The total number of such uncorrected rows with indices in F is less

than δµ, because we require Nµ−1 ≤ δµ − 1 in the condition. Therefore, all the correct syndrome vectors

(si
1, . . . , si

`), i = 1, 2, . . . ,µ, are obtained. On the other hand, the remaining uncorrected row ĉ j, j ∈ F , has

at most d′µ − 1 erasures, since we also require Nµ ≤ 0 in the condition. Thus, all these uncorrected rows

can be corrected in this step with all these correct syndromes. �

The following corollary follows from Theorem 4.3.4.

Corollary 4.3.5. The decoder DA for a (ρ, n0, k; d0, d)q ME-LRC CA can correct any received word y

with less than d erasures.

Proof. The ME-LRC CA has d0 = d′1 and d = d′µ. We only need to show that the received word y

with any d′µ − 1 erasures satisfies the condition in Theorem 4.3.4. We prove it by contradiction. If the

condition is not satisfied, there is at least an integer i, 1 ≤ i ≤ µ, such that Ni ≥ δi+1. Therefore, we have

we(y) ≥ d′iδi+1 ≥ d′µ , where the last inequality is from the requirement of Construction A. Thus, we get a

contradiction to the assumption that the received word y has d′µ − 1 erasures. �

4.4 Optimal Construction and Explicit ME-LRCs over Small Fields

In this section, we study the optimality of Construction A, and also present several explicit

ME-LRCs that are optimal over different fields.

4.4.1 Optimal Construction

We show how to construct ME-LRCs which are optimal w.r.t. the bound (4.1) by adding more

constraints to Construction A. To this end, we specify the choice of the matrices in Construction A. This

specification, referred to as Design I, is as follows.
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1) H
′
1 is the parity-check matrix of an [n′, n′ − v1, d′1]q code which satisfies k(q)opt[n

′, d′1] = n′ − v1.

2) Bµ is the parity-check matrix of an [n′, n′ − ∑
µ
i=1 vi, d′µ]q code with d(q)opt[n

′, n′ − ∑
µ
i=1 vi] = d′µ.

3) The minimum distances satisfy d′µ ≤ 2d′1.

4) H
′′
i is an all-one vector of length ` over Fqvi , i.e., the parity-check matrix of a parity code with minimum

distance δi = 2, for all i = 2, . . . ,µ. �

Theorem 4.4.1. The code CA from Construction A with Design I is a (ρ = `, n0 = n′, k = n′`− v1`−

∑
µ
i=2 vi; d0 = d′1, d = d′µ)q ME-LRC, which is optimal with respect to the bound (4.1).

Proof. From Theorem 4.3.3, the code parameters ρ, n0, k, d0, and d can be determined. We have

k∗ = k(q)opt[n
′, d′1] = n′ − v1. Setting x = `− 1, we get

d ≤ min
0≤x≤d k

k∗ e−1

{
d(q)opt[ρn0 − xn0, k− xk∗]

}
≤d(q)opt[`n′ − (`− 1)n′, k− (`− 1)k∗]

=d(q)opt[n
′, n′ −

µ

∑
i=1

vi] = d′µ .

This proves that CA achieves the bound (4.1). �

4.4.2 Explicit ME-LRCs

Our construction is very flexible and can generate many ME-LRCs over different fields. In the

following, we present several examples.

1) ME-LRCs with local extended BCH codes over F2

From the structure of BCH codes [64], there exists a chain of nested binary extended BCH codes:

C3 = [2m, 2m − 1− 3m, 8]2 ⊂ C2 = [2m, 2m − 1− 2m, 6]2 ⊂ C1 = [2m, 2m − 1−m, 4]2.

Let the matrices B1, B2, and B3 be the parity-check matrices of C1, C2, and C3, respectively.

Example 4.4.1. For µ = 3, in Construction A, we use the above matrices B1, B2, and B3. We also choose

H
′′
2 and H

′′
3 to be the all-one vector of length ` over F2m .

From Theorem 4.3.3, the corresponding (ρ, n0, k; d0, d)2 ME-LRC CA has parameters ρ = `,

n0 = 2m, k = 2m`− (m + 1)`− 2m, d0 = 4, and d = 8. This code satisfies the requirements of Design I.
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Thus, from Theorem 4.4.1, it is optimal w.r.t. the bound (4.1). �

2) ME-LRCs with local algebraic geometry codes over F4

We use a class of algebraic geometry codes called Hermitian codes [91] to construct ME-LRCs.

From the construction of Hermitian codes [91], there exists a chain of nested 4-ary Hermitian

codes: CH(1) = [8, 1, 8]4 ⊂ CH(2) = [8, 2, 6]4 ⊂ CH(3) = [8, 3, 5]4 ⊂ CH(4) = [8, 4, 4]4 ⊂ CH(5) =

[8, 5, 3]4 ⊂ CH(6) = [8, 6, 2]4 ⊂ CH(7) = [8, 7, 2]4.

Now, let the matrices B1, B2, B3, and B4 be the parity-check matrices of CH(4), CH(3), CH(2),

and CH(1), respectively. Let H
′′
i , i = 2, 3, 4, be the all-one vector of length ` over F4.

Example 4.4.2. For µ = 2, in Construction A, we use the above matrices B1, B2, and H
′′
2 . From The-

orem 4.3.3, the corresponding (ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ = `, n0 = 8, k = 4`− 1,

d0 = 4, and d = 5.

For µ = 3, in Construction A, we use the above matrices B1, B2, B3, H
′′
2 , and H

′′
3 . From

Theorem 4.3.3, the corresponding (ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ= `, n0 = 8, k = 4`− 2,

d0 = 4, and d = 6.

For µ = 4, in Construction A, we use the above matrices Bi, i = 1, . . . , 4, and H
′′
j , j = 2, 3, 4. From

Theorem 4.3.3, the corresponding (ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ= `, n0 = 8, k = 4`− 3,

d0 = 4, and d = 8.

All of the above three families of ME-LRCs over F4 are optimal w.r.t. the bound (4.1). �

3) ME-LRCs with local singly-extended Reed-Solomon codes over Fq

Let n′ ≤ q andα be a primitive element of Fq. We choose H
′
1 to be the parity-check matrix of an

[n′, n′ − d′1 + 1, d′1]q singly-extended RS code, namely

H
′
1 =



1 1 · · · 1 1

1 α · · · αn′−2 0
...

...
. . .

...
...

1 αd′1−2 · · · α(n′−2)(d′1−2) 0


.
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For i = 2, 3, . . . ,µ, we choose H′i to be

H
′
i =


1 αd′i−1−1 · · · α(n′−2)(d′i−1−1) 0
...

...
. . .

...
...

1 αd′i−2 · · · α(n′−2)(d′i−2) 0

 ,

where d′1 < d′2 < · · · < d′µ. We also require that

δi = d
d′µ

d′i−1
e = d d′µ

d′i−1 + 1
e = · · · = d d′µ

d′i − 1
e, ∀i = 2, . . . ,µ

and δ2 > δ3 > · · · > δµ.

For i = 2, 3, . . . ,µ, let H
′′
i be the parity-check matrix of an [`, `− δi + 1,δi = d d′µ

d′i−1
e]qvi MDS

code, which exists whenever ` ≤ qvi , where vi = d′i − d′i−1. Note that for an MDS code with minimum

distance 2, the code length can be arbitrarily long.

Example 4.4.3. We use the above chosen matrices H′i and H′′i for Construction A. The corresponding

(ρ, n0, k; d0, d)q ME-LRC CA has parameters ρ= `, n0 = n′, k = (n′− d′1 + 1)`−∑
µ
i=2(d

d′µ
d′i−1
e− 1)(d′i−

d′i−1), d0 = d′1, and d = d′µ; the field size q satisfies q≥max{q′, n′}, where q′ = maxi=2,...,µ{
⌈
`

1
d′i−d′i−1

⌉
}.

When µ = 2 and d′1 < d′2 ≤ 2d′1, the corresponding (ρ, n0, k; d0, d)q ME-LRC CA has parameters

ρ = `, n0 = n′, k = (n′ − d′1 + 1)`− (d′2 − d′1), d0 = d′1, and d = d′2; the field size q needs to satisfy

q ≥ n′. Since the code CA satisfies the requirements of Design I, from Theorem 4.4.1, it is optimal w.r.t.

the bound (4.1). �

The following theorem shows that theµ-level ME-LRC CA constructed in Example 4.4.3 is optimal

in the sense of possessing the largest possible dimension among all codes with the same erasure-correcting

capability.

Theorem 4.4.2. Let C be a code of length `n′ and dimension k over Fq. Each codeword in C consists of `

sub-blocks, each of length n′. Assume that C corrects all erasure patterns satisfying the condition in (4.4),

where δτ = d d′µ
d′τ−1
e for 2 ≤ τ ≤ µ. Then, we must have dimension k ≤ (n′ − d′1 + 1)`− ∑

µ
i=2(d

d′µ
d′i−1
e −

1)(d′i − d′i−1).
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Proof. The proof is based on contradiction.

Let each codeword in C correspond to an `× n′ array. We index the coordinates of the array row

by row from number 1 to `n′. Let I1 be the set of coordinates defined by I1 = {(i− 1)n′ + j : δ2 − 1 <

i ≤ `, 1 ≤ j ≤ d′1 − 1}. For 2 ≤ τ ≤ µ, let Iτ be the set of coordinates given by Iτ = {(i− 1)n′ + j :

δτ+1 − 1 < i ≤ δτ − 1, 1 ≤ j ≤ d′τ − 1}, where δµ+1 is defined to be 1. Let I be the set of all the

coordinates of the array.

By calculation, we have |I\(I1 ∪ I2 ∪ · · · ∪ Iµ)| = (n′ − d′1 + 1)`− ∑
µ
i=2(d

d′µ
d′i−1
e − 1)(d′i −

d′i−1). Now, assume that k > (n′ − d′1 + 1)`− ∑
µ
i=2(d

d′µ
d′i−1
e − 1)(d′i − d′i−1). Then, there exist at least

two distinct codewords c′ and c′′ in C that agree on the coordinates in the set I\(I1 ∪ I2 ∪ · · · ∪ Iµ). We

erase the values on the coordinates in the set I1 ∪ I2 ∪ · · · ∪ Iµ of both c′ and c′′. This erasure pattern

satisfies the condition in (4.4). Since c′ and c′′ are distinct, this erasure pattern is uncorrectable. Thus, our

assumption that k > (n′ − d′1 + 1)`− ∑
µ
i=2(d

d′µ
d′i−1
e − 1)(d′i − d′i−1) is violated. �

Remark 4.4.1. The construction by Blaum and Hetzler [11] based on GII codes cannot generate ME-LRCs

constructed in Examples 4.4.1 and 4.4.2. For the ME-LRC in Example 4.4.3, since the local code is the

singly-extended RS code, the construction in [11] can also be used to produce an ME-LRC that has the

same code parameters ρ, n0, k, d0 and d as those of the ME-LRC CA from our construction. However, the

construction in [11] requires the field size q to satisfy q ≥max{`, n′}, which in general is larger than that

in our construction. �

4.5 Relation to Generalized Integrated Interleaving Codes

Integrated interleaving (II) codes were first introduced in [36] as a two-level error-correcting

scheme for data storage applications, and were then extended in [78] and more recently in [88] as

generalized integrated interleaving (GII) codes for multi-level data protection.

The main difference between GII codes and generalized tensor product codes is that a generalized

tensor product code over Fq is defined by operations over the base field Fq and also its extension field, as

shown in (4.3); in contrast, a GII code over Fq is defined over the same field Fq. As a result, generalized

tensor product codes are more flexible than GII codes, and generally GII codes cannot be used to construct
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ME-LRCs over very small fields, e.g., the binary field.

The goal of this section is to study the exact relation between generalized tensor product codes

and GII codes. We will show that GII codes are in fact a subclass of generalized tensor product codes. The

idea is to reformulate the parity-check matrix of a GII code into the form of a parity-check matrix of a

generalized tensor product code. Establishing this relation allows some code properties of GII codes to be

obtained directly from known results about generalized tensor product codes. We start by considering the

II codes, a two-level case of GII codes, to illustrate our idea.

4.5.1 Integrated Interleaving Codes

We follow the definition of II codes in [36]. Let Ci, i = 1, 2, be [n, ki, di]q linear codes over Fq

such that C2 ⊂ C1 and d2 > d1. An II code CI I is defined as follows:

CI I =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C1, 0 ≤ i < m, and

m−1

∑
i=0
αbici ∈ C2, b = 0, 1, . . . ,γ − 1

}
, (4.5)

whereα is a primitive element of Fq and γ < m ≤ q− 1.

According to the above definition, it is known that the parity-check matrix of CI I is

HI I =

 I
⊗

H1

Γ2
⊗

H2

 , (4.6)

where
⊗

denotes the Kronecker product. The matrices H1 and

 H1

H2

 over Fq are the parity-check

matrices of C1 and C2, respectively, the matrix I over Fq is an m×m identity matrix, and Γ2 over Fq is the

parity-check matrix of an [m, m−γ,γ + 1]q code in the following form

Γ2 =



1 1 · · · 1

1 α · · · αm−1

1 α2 · · · α2(m−1)

...
...

. . .
...

1 α(γ−1) · · · α(γ−1)(m−1)


. (4.7)
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Remark 4.5.1. The parity-check matrix HI I over Fq in (4.6) of CI I is obtained by operations over the

same field Fq. In contrast, the parity-check matrix H over Fq in (4.3) of a generalized tensor product code

is obtained by operations over both the base field Fq and its extension field. �

Remark 4.5.2. In general, the codes C1 and C2 in (4.5) are chosen to be RS codes [36]. If C1 and C2 are

chosen to be binary codes, then m can only be m = 1. �

To see the relation between II codes and generalized tensor product codes, we reformulate HI I in

(4.6) into the following form, by splitting the rows of H2,

HI I =



I
⊗

H1

Γ2
⊗

H2(1)

Γ2
⊗

H2(2)
...

...
...

Γ2
⊗

H2(k1 − k2)


, (4.8)

where the matrix H1 over Fq is the parity-check matrix of C1, and is treated as a vector over the extension

field Fqn−k1 here; correspondingly, the matrix I is treated as an m×m identity matrix over Fqn−k1 . For

1 ≤ i ≤ k1 − k2, H2(i) over Fq represents the ith row of H2, and Γ2 over Fq is the matrix in (4.7).

Now, referring to the matrix in (4.3), the matrix in (4.8) can be interpreted as a parity-check matrix

of a (1 + k1 − k2)-level generalized tensor product code over Fq. Thus, we conclude that an II code is a

generalized tensor product code. Using the properties of generalized tensor product codes, we can directly

obtain the following result, which was proved in [36] in an alternative way.

Lemma 4.5.1. The code CI I is a linear code over Fq of length N = nm, dimension K = (m−γ)k1 +γk2,

and minimum distance D ≥min{(γ + 1)d1, d2}.

Proof. For 1 ≤ i ≤ k1 − k2, let the following parity-check matrix
H1

H2(1)
...

H2(i)
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define an [n, k1 − i, d2,i]q code. It is clear that d1 ≤ d2,1 ≤ d2,2 ≤ · · · ≤ d2,k1−k2 = d2.

From the properties of generalized tensor product codes, the redundancy is N − K = nm− K =

(n − k1)m + γ(k1 − k2); that is, the dimension is K = k1(m − γ) + k2γ. Using Theorem 4.3.1, the

minimum distance is D ≥min
{

d1(γ + 1), d2,1(γ + 1), . . . , d2,k1−k2−1(γ + 1), d2,k1−k2

}
= min

{
(γ +

1)d1, d2

}
. �

4.5.2 Generalized Integrated Interleaving Codes

With the similar idea used in the previous subsection, we continue our proof for GII codes. We

use the definition of GII codes from [88] for consistency.

Let Ci, i = 0, 1, . . . ,γ, be [n, ki, di]q codes over Fq such that

Cis = · · · = Cis−1+1 ⊂ Cis−1 = · · · = Cis−2+1 ⊂ · · · ⊂ Ci1 = · · · = C1 ⊂ C0, (4.9)

where i0 = 0 and is = γ. The minimum distances satisfy d0 ≤ d1 ≤ · · · ≤ dγ. A GII code CGII is defined

as:

CGII =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C0, 0 ≤ i < m,and

m−1

∑
i=0
αbici ∈ Cγ−b, b = 0, 1, . . . ,γ − 1

}
,

(4.10)

whereα is a primitive element of Fq and γ < m ≤ q− 1.

Let us first define some matrices which will be used below. Let the matrix I over Fq be an m×m

identity matrix. Let H0 over Fq be the parity-check matrix of C0. For 1 ≤ j ≤ s, let the matrix

 H0

Hi j


over Fq represent the parity-check matrix of Ci j , where

Hi j =



Hi1\i0

Hi2\i1

...

Hi j\i j−1


.
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For any i≤ j, let matrix Γ(i, j;α) over Fq be the parity-check matrix of an [m, m− ( j− i + 1), j− i + 2]q

code in the following form

Γ(i, j;α) =



1 αi · · · αi(m−1)

1 αi+1 · · · α(i+1)(m−1)

...
...

. . .
...

1 α j · · · α j(m−1)


. (4.11)

Now, according to the definition in (4.10), using the matrices introduced above, the parity-check

matrix of CGII is

HGII =



I
⊗

H0

Γ(0, is − is−1 − 1;α)
⊗

His

Γ(is − is−1, is − is−2 − 1;α)
⊗

His−1

...
...

...

Γ(is − i2, is − i1 − 1;α)
⊗

Hi2

Γ(is − i1, is − i0 − 1;α)
⊗

Hi1


, (4.12)

which can be transformed into the form of

HGII =



I
⊗

H0

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1

...
...

...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2

Γ(0, is − is−1 − 1;α)
⊗

His\is−1


. (4.13)

To make a connection between GII codes and generalized tensor product codes, we further
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reformulate the matrix HGII in (4.13) as follows,

HGII =



I
⊗

H0

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0
(1)

...
...

...

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0
(ki0 − ki1)

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1
(1)

...
...

...

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1
(ki1 − ki2)

...
...

...
...

...
...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2
(1)

...
...

...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2
(kis−2 − kis−1)

Γ(0, is − is−1 − 1;α)
⊗

His\is−1
(1)

...
...

...

Γ(0, is − is−1 − 1;α)
⊗

His\is−1
(kis−1 − kis)



, (4.14)

where, in the first level, the matrix H0 over Fq is treated as a vector over the extension field Fqn−ko , and

correspondingly the matrix I is treated as an m × m identity matrix over Fqn−ko . For 1 ≤ x ≤ s and

1 ≤ y ≤ kix−1 − kix , Hix\ix−1
(y) over Fq represents the yth row of the matrix Hix\ix−1

.

Now, referring to the matrix in (4.3), the matrix in (4.14) can be seen as a parity-check matrix

of a (1 + k0 − kis)-level generalized tensor product code over Fq. As a result, we can directly obtain the

following lemma, which was also proved in [88] in a different way.

Lemma 4.5.2. The code CGII is a linear code over Fq of length N = nm, dimension K = ∑
γ
x=1 kx +

(m− γ)k0 = ∑
s
j=1(i j − i j−1)ki j + (m− γ)k0, and minimum distance D ≥min

{
(γ + 1)d0, (γ − i1 +

1)di1 , . . . , (γ − is−1 + 1)dis−1 , dis

}
.
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Proof. For 1 ≤ x ≤ s and 1 ≤ y ≤ kix−1 − kix , let the following parity-check matrix

H0

Hi1\i0
(1)

...

Hi1\i0
(ki0 − ki1)

...

Hix\ix−1
(1)

...

Hix\ix−1
(y)



define an [n, kix−1 − y, dix ,y]q code, so we have dix−1 ≤ dix ,1 ≤ dix ,2 ≤ · · · ≤ dix ,kix−1−kix
= dix . From the

properties of generalized tensor product codes, it is easy to obtain the dimension K = ∑
s
j=1(i j − i j−1)ki j +

(m−γ)k0. From Theorem 4.3.1, the minimum distance satisfies

D ≥min
{
(γ + 1)d0, (γ + 1)di1 ,1, . . . , (γ + 1)di1 ,ki0−ki1−1, (γ − i1 + 1)di1 ,

. . . , . . . , (γ − is−1 + 1)dis−1 , (γ − is−1 + 1)dis ,1, . . . , (γ − is−1 + 1)dis ,kis−1−kis−1, dis

}
= min

{
(γ + 1)d0, (γ − i1 + 1)di1 , . . . , (γ − is−1 + 1)dis−1 , dis

}
.

�

Remark 4.5.3. In some prior works, we find that generalized tensor product codes are called generalized

error-location (GEL) codes [12, 51]. Recently, in [88], the similarity between GII codes and GEL codes

was observed. However, the exact relation between them was not studied. In [88], the author also proposed

a new generalized integrated interleaving scheme over binary BCH codes, called GII-BCH codes. These

codes can also be seen as a special case of generalized tensor product codes. �

4.6 Conclusion

In this chapter, we presented a general construction for ME-LRCs over small fields. This con-

struction yields optimal ME-LRCs with respect to an upper bound on the minimum distance for a wide
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range of code parameters. Then, an erasure decoder was proposed and corresponding correctable erasure

patterns were identified. ME-LRCs based on Reed-Solomon codes were shown to be optimal among all

codes having the same erasure-correcting capability. Finally, generalized integrated interleaving codes

were proved to be a subclass of generalized tensor product codes, thus giving the exact relation between

these two code families.
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Chapter 5

Syndrome-Coupled Rate-Compatible

Error-Correcting Codes

5.1 Introduction

Rate-compatible error-correcting codes (ECCs) consist of a set of extended codes, where all

symbols of the higher rate code are part of the lower rate code. The idea of rate-compatible codes dates

back to Davida and Reddy [20]. The most commonly used way to construct such codes is by puncturing;

that is, to start with a good low-rate code and then successively discard some of the coded symbols

(parity-check symbols) to produce higher-rate codes. This approach has been used for convolutional

codes [33], turbo codes [48, 65], and low-density parity-check (LDPC) codes [24, 32]. The performance

of punctured codes depends on the selected puncturing pattern. However, in general, determining good

puncturing patterns is nontrivial, usually done with the aid of computer simulations.

The second approach is by extending; that is, to start with a good high-rate code and then

successively add more parity-check symbols to generate lower-rate codes. A two-level extending method

called Construction X was introduced in [49] to find new codes with good minimum distance, and later

was generalized to Construction XX [3]. Extension-based rate-compatible LDPC codes were designed

in [45,80]. More recently, the extending approach was used to construct capacity-achieving rate-compatible
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polar codes [37, 44].

The goal of this chapter is to provide a systematic approach for constructing rate-compatible codes

with theoretically guaranteed properties. We use the extending approach and propose a new algebraic

construction for rate-compatible codes; the properties of the constructed codes are then analyzed from

both combinatorial and probabilistic perspectives. We make contributions in the following aspects: 1)

lower bounds for rate-compatible codes, which have not been fully explored before, are derived; 2) a

simple and general construction of rate-compatible codes based on cosets and syndromes is proposed,

and some examples are given; 3) minimum distances of the constructed codes are determined, decoding

algorithms are presented, and correctable error-erasure patterns are studied; 4) a connection to recent

capacity-achieving rate-compatible polar codes is made; 5) performance of two-level rate-compatible codes

on multi-level cell (MLC) flash memories is evaluated.

The remainder of the chapter is organized as follows. In Section 5.2, we give the formal definition

of rate-compatible codes and introduce notation used in this chapter. In Section 5.3, we study lower

bounds for rate-compatible codes. In Section 5.4, we present a general construction for M-level rate-

compatible codes, whose minimum distances are studied. Correctable patterns of errors and erasures are

also investigated. In Section 5.5, we show our construction can generate capacity-achieving rate-compatible

codes by choosing the component codes properly. In Section 5.6, we evaluate the performance of two-level

BCH-based and LDPC-based rate-compatible codes on MLC flash memories. We conclude the chapter in

Section 5.7.

5.2 Definitions and Preliminaries

In this section, we give the basic definitions and preliminaries that will be used in this chapter.

We use the notation [n] to denote the set {1, . . . , n}. For a length-n vector v over Fq and a set

I ⊆ [n], the operation πI(v) denotes the restriction of the vector v to coordinates in the set I , and wq(v)

represents the Hamming weight of the vector v over Fq. The transpose of a matrix H is written as HT. A

linear code C over Fq of length n, dimension k, and minimum distance d will be denoted by C = [n, k, d]q

or by [n, k, d]q for simplicity; in some cases, we will use notation [n, k]q to indicate only length and

dimension. For any integers a > b, the summation in the form of ∑
b
i=a Xi is defined to be 0. A binomial

71



coefficient (a
b) is defined to be 0 if a < b. For a set C, |C| represents its cardinality. The q-ary entropy

function Hq: [0, 1]→ [0, 1], is defined by Hq(x) = −xlogqx− (1− x)logq(1− x) + xlogq(q− 1).

Now, we present the definition of rate-compatible codes.

Definition 5.2.1. For 1 ≤ i ≤ M, let Ci be an [ni, k, di]q linear code, where n1 < n2 < · · · < nM. The

encoder of Ci is denoted by ECi : Fk
q→ Ci. These M linear codes are said to be M-level rate-compatible, if

for each i, 1 ≤ i ≤ M− 1, the following condition is satisfied for every possible input u ∈ Fk
q,

ECi(u) = π[ni ]

(
ECi+1(u)

)
. (5.1)

We denote this M-level rate-compatible relation among these codes by C1 ≺ C2 ≺ · · · ≺ CM.

Remark 5.2.1. For 1 ≤ i ≤ M− 1, the rates satisfy Ri =
k
ni
> Ri+1 =

k
ni+1

, but the minimum distances

obey di ≤ di+1. For systematic codes, the condition in (5.1) indicates that the set of parity-check symbols

of a higher rate code is a subset of the parity-check symbols of a lower rate code. �

We will use the memoryless q-ary symmetric channel W with crossover probability p. For every

pair of a sent symbol x ∈ Fq and a received symbol y ∈ Fq, the conditional probability is:

Pr{y|x} =

 1− p if y = x

p/(q− 1) if y 6= x

The capacity of this channel is C(W) = 1− Hq(p) [64].

For a linear code C = [n, k, d]q over a q-ary symmetric channel, let P(n)
e (x) denote the conditional

block probability of error, assuming that x was sent, x ∈ C. Let P(n)
e (C) denote the average probability of

error of this code. Due to symmetry, assuming equiprobable codewords, it is clear that,

P(n)
e (C) = 1

|C| ∑x∈C
P(n)

e (x) = P(n)
e (x).

5.3 Lower Bounds for Rate-Compatible Codes

In this section, we derive lower bounds for rate-compatible codes.

72



5.3.1 A General Lower Bound for M-Level Rate-Compatible Codes

Based on the technique used in the derivation of the Gilbert-Varshamov (GV) bound, we derive a

GV-like lower bound for M-level rate-compatible codes.

Theorem 5.3.1. There exist M-level rate-compatible codes C1 ≺ C2 ≺ · · · ≺ CM, where Ci = [ni =

n1 + ∑
i
j=2 r j, k, ≥ di]q for 1 ≤ i ≤ M, if the following inequalities are satisfied for all 1 ≤ i ≤ M,

di = max
{

d :
d−2

∑
m=0

(
n1 + ∑

i
j=2 r j − 1
m

)
(q− 1)m <

qn1+∑
i
j=2 r j−k

M

}
. (5.2)

Proof. We first define an (nM − k)× nM matrix ΦM over Fq in the following block lower triangular form,

ΦM =



H1,1 0 . . . 0 0

H2,1 H2,2 . . . 0 0
...

...
. . .

...
...

HM−1,1 HM−1,2 . . . HM−1,M−1 0

HM,1 HM,2 . . . HM,M−1 HM,M


, (5.3)

where H1,1 is an (n1 − k)× n1 matrix. For 2 ≤ i ≤ M, the matrix Hi,1 has size ri × n1. For 2 ≤ i ≤ M

and 2 ≤ j ≤ i, the matrix Hi, j has size ri × r j.

For 1≤ i ≤ M, we assign the upper left (ni − k)× ni submatrix of ΦM, denoted by Φi, to be the

parity-check matrix of Ci. For example, the matrices H1,1 and ΦM are parity-check matrices of C1 and

CM, respectively.

Now, we show how to construct Hi, j, 1 ≤ i ≤ M and 1 ≤ j ≤ i, such that each code Ci has its

desired code parameters.

First, for 2 ≤ i ≤ M, we choose Hi,i to be an ri × ri identity matrix. For 3 ≤ i ≤ M and

2 ≤ j ≤ i− 1, we choose matrix Hi, j to be an arbitrary matrix in Fri×r j
q . Next, we construct columns of

Hi,1, 1≤ i≤M, iteratively, as the technique used in the proof of the GV bound. We use h`(i), 1≤ `≤ n1

and 1 ≤ i ≤ M, to denote the `th column of the matrix Φi which is the parity-check matrix of Ci. Assume

that we have already added the leftmost `− 1 columns of the matrix ΦM. In order to show that in FnM−k
q
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there is a vector that can be used as the `th column h`(M) of the matrix ΦM, we only need to show that

the total number of bad vectors is less than qnM−k. We count the number of bad vectors as follows.

For the code C1, it requires that every d1− 1 columns in Φ1 are linearly independent. A bad vector

for the `th column h`(1) in Φ1 is a vector that can be expressed as a linear combination of d1 − 2 columns

in the preceding `− 1 columns. There are at most a total of ∑
d1−2
m=0 (

`−1
m )(q− 1)m such bad vectors, so we

exclude at most N1(`) = ∑
d1−2
m=0 (

`−1
m )(q− 1)m × q∑

M
j=2 r j bad vectors for the column h`(M).

Similarly, for the code Ci, 2 ≤ i ≤ M, it requires that every di − 1 columns in Φi are lin-

early independent. A bad vector for the `th column h`(i) in Φi is a vector that can be expressed

as a linear combination of di − 2 columns in the preceding ` − 1 + ∑
i
j=2 r j selected columns, so

we have at most a total of ∑
di−2
m=0 (

`−1+∑
i
j=2 r j

m )(q − 1)m such bad vectors. Then, we exclude at most

Ni(`) = ∑
di−2
m=0 (

`−1+∑
i
j=2 r j

m )(q− 1)m × q∑
M
x=i+1 rx bad vectors for the column h`(M).

Since we assume that the inequalities (5.2) are satisfied, we have Ni(`) <
qnM−k

M for 1 ≤ i ≤ M

and 1 ≤ ` ≤ n1. Thus, we have ∑
M
i=1 Ni(`) < qnM−k, which indicates that a good column h`(M) can be

found. �

The following corollary follows from Theorem 5.3.1, which shows that there exist good rate-

compatible codes in the sense that each code can meet the corresponding asymptotic GV bound.

Corollary 5.3.2. There exist M-level rate-compatible codes C1 ≺ C2 ≺ · · · ≺ CM, where Ci = [ni, k =

Rini, ≥ δini]q for 1 ≤ i ≤ M and δM ≤ 1− (1/q), simultaneously meeting the asymptotic GV bound:

Ri ≥ 1− Hq(δi). (5.4)

Proof. Let Vq(n, t) = ∑
t
m=0 (

n
m)(q− 1)m. From Theorem 5.3.1, there exist M-level rate-compatible codes

Ci = [ni, k = Rini, ≥ δini]q for 1 ≤ i ≤ M such that

Vq(ni − 1,δini − 1) ≥ qni−k

M
. (5.5)

Since Vq(n, t) ≤ qnHq(t/n) for 0 ≤ t/n ≤ 1− (1/q) [64], we have

qni Hq(δi) ≥ Vq(ni,δini) ≥ Vq(ni − 1,δini − 1) ≥ qni−k

M
,
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which gives Ri ≥ 1− Hq(δi)−
logq M

ni
. As ni goes to infinity, we obtain the result. �

5.3.2 A Lower Bound for Two-Level Rate-Compatible Codes with Known Weight Enu-

merator

For two-level rate-compatible codes, if the weight enumerator of the higher rate code is known,

we have the following lower bound.

Theorem 5.3.3. Let C1 be an [n1, k, d1]q code with weight enumerator A(s) = ∑
n1
w=0 Awsw, where Aw is

the number of codewords of Hamming weight w. There exist two-level rate-compatible codes C1 ≺ C2 =

[n2 = n1 + r2, k, ≥ d2]q, if
d2−1

∑
w=1

Bw < qr2 ,

where Bw = 1
q−1 ∑

w
m=1 Am(

r2
w−m)(q− 1)w−m, for 1 ≤ w ≤ n2.

Proof. Let an (n1 − k)× n1 matrix H1 represent the parity-check matrix of C1. Assume that C2 has a

parity-check matrix H2 in the form

H2 =

 H1 0

H I

 , (5.6)

where H is an r2× n1 matrix and the matrix I represents an r2× r2 identity matrix. Construct an ensemble

of (n2 − k)× n2 matrices {H2} by using all r2 × n1 matrices H over Fq. We then assume a uniform

distribution over the ensemble {H2}.

We say a matrix H2 is bad, if there exists a vector x ∈ Fn2
q such that xHT

2 = 0 and 0 < wq(x)< d2.

Thus, we only need to prove the probability Pr{H2 is bad} < 1, i.e., not all H2 are bad. Define sets

B′ = {x ∈ Fn2
q : x[H1, 0]T = 0}, B′′ = {x ∈ B′ : wq(x) > 0, and the leading nonzero entry of x is 1},

and B = {x ∈ B′′ : wq
(
π[n1](x)

)
> 0}. We also define Bw = |{x ∈ B : wq(x) = w}|. It is clear that

Bw = 1
q−1 ∑

w
m=1 Am(

r2
w−m)(q− 1)w−m, for 1 ≤ w ≤ n2. Now, we have

Pr{H2 is bad} =Pr{For some x ∈ B′, 0 < wq(x) < d2, x[H, I]T = 0}

=Pr{For some x ∈ B′′, 0 < wq(x) < d2, x[H, I]T = 0}

=Pr{For some x ∈ B, 0 < wq(x) < d2, x[H, I]T = 0}.
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Then, we have

Pr{H2 is bad} =Pr{For some x ∈ B, 0 < wq(x) < d2, x[H, I]T = 0}
(a)
≤ ∑

x∈B and 0<wq(x)<d2

Pr{x[H, I]T = 0}

=
∑

d2−1
w=1 Bw

qr2
,

where step (a) follows from the union bound. �

5.4 A General Construction for M-Level Rate-Compatible Codes

In this section, we present a general construction for M-level rate-compatible codes C1 ≺ C2 ≺

· · · ≺ CM. We then derive their minimum distances. The decoding algorithm and correctable error-erasure

patterns are studied. We focus on the combinatorial property here and will leave the discussion on the

capacity-achieving property of our construction to the next section.

In our construction for M-level rate-compatible codes, we need a set of component codes which

are defined as follows.

1) Choose a set of nested codes CM
1 ⊂ CM−1

1 ⊂ · · · ⊂ C1
1 = C1 = [n1, k, d1]q, where C i

1 = [n1, n1−

∑
i
m=1 vm, di]q for 1 ≤ i ≤ M. We have k = n1 − v1 and d1 ≤ d2 ≤ · · · ≤ dM. Define C0

1 = ∅ and for

1≤ `≤ i, let matrix HC`1 |C`−1
1

represent a v`× n1 matrix over Fq such that C i
1 has the following parity-check

matrix:

HC i
1
=


HC1

1

HC2
1 |C1

1...

HC i
1|C i−1

1

 .

The encoder of code C1 is denoted by EC1 : Fk
q → C1. We also use E−1

C1
as the inverse of the encoding

mapping.

2) For ith level, 2 ≤ i ≤ M, consider a set of auxiliary nested codes AM
i ⊂ AM−1

i ⊂ · · · ⊂

Ai+1
i ⊂Ai

i, where A j
i = [ni, vi + ∑

i−1
m=2 λ

i
m −∑

j
`=i+1 λ

`
i ,δ j

i ]q for i ≤ j≤M. Let matrix HAi
i

represent an
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(ni − vi − ∑
i−1
m=2 λ

i
m)× ni matrix over Fq and matrix HA`

i |A`−1
i

, i + 1 ≤ ` ≤ j, represent a λ`i × ni matrix

over Fq, such that A j
i has the following parity-check matrix:

HA j
i
=


HAi

i

HAi+1
i |Ai

i...

HA j
i |A

j−1
i

 .

For each 2 ≤ i ≤ M, the encoder of code Ai
i is denoted by EAi

i
: Fvi+∑

i−1
m=2 λ

i
m

q →Ai
i. We also use E−1

Ai
i

as

the inverse of the encoding mapping.

Note that we also define CM+1
1 = ∅ and AM+1

i = ∅ for 2 ≤ i ≤ M.

5.4.1 Construction and Minimum Distance

Now, we give a general algebraic construction for rate-compatible codes C1 ≺ C2 ≺ · · · ≺ CM by

using the nested component codes introduced above.

Construction 1: Encoding Procedure

Input: A length-k vector u of information symbols over Fq.

Output: A codeword ci ∈ Ci over Fq, for i = 1, . . . , M.

1: c1 = EC1(u).

2: si = c1HT
C i

1|C i−1
1

for i = 2, 3, . . . , M.

3: for i = 2, . . . , M do

4: ai
i = EAi

i

(
(si,Λi

2, . . . ,Λi
i−1)

)
. // Comment: For i = 2, we define (si,Λi

2, . . . ,Λi
i−1) = s2. //

5: ci = (c1, a2
2, . . . , ai

i).

6: for j = i + 1, . . . , M do

7: Λ
j
i = ai

i H
T
A j

i |A
j−1
i

.

8: end for

9: end for
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Remark 5.4.1. To make Construction 1 clear, consider the case of M = 3 as an example. Then a codeword

c3 ∈ C3 has the form: c3 =
(

c1,EA2
2
(s2),EA3

3
(s3,Λ3

2)
)

. The main idea of Construction 1 is to extend the

base code C1 by progressively generating and encoding syndromes of component codes in a proper way.

Thus, we call it a syndrome-coupled construction. �

We have the following theorem on the code parameters of the constructed rate-compatible codes

C1 ≺ C2 ≺ · · · ≺ CM.

Theorem 5.4.1. From Construction 1, the code Ci, 1 ≤ i ≤ M, has length Ni = ∑
i
j=1 n j and dimension

Ki = k. Moreover, assume that A j
i , 2 ≤ i ≤ M and i ≤ j ≤ M, has minimum distance δ j

i ≥ d j − di−1.

Then Ci has minimum distance Di = di.

Proof. The code length and dimension are obvious. In the following, we prove the minimum distance.

Since the proofs for all Ci, 1 ≤ i ≤ M, are similar, we only give a proof for the code CM.

We first prove DM ≥ dM by showing that any nonzero codeword cM ∈ CM has weight at least dM.

To see this, for any nonzero codeword c1 ∈ C1, there exists an integer γ1, 1 ≤ γ1 ≤ M, such that c1 ∈ Cγ1
1

and c1 /∈ Cγ1+1
1 . Let cM ∈ CM be the codeword derived from c1. Then, we have wq(cM) ≥ wq(c1) ≥ dγ1 .

If γ1 = M, we are done; otherwise if 1 ≤ γ1 ≤ M− 1 we have sγ1+1 6= 0 and aγ1+1
γ1+1 6= 0.

Now, for aγ1+1
γ1+1, there exists an integer γ2, γ1 + 1 ≤ γ2 ≤ M, such that aγ1+1

γ1+1 ∈ Aγ2
γ1+1 and

aγ1+1
γ1+1 /∈ Aγ2+1

γ1+1. Then, we have wq(cM) ≥ wq(c1) + wq(aγ1+1
γ1+1) ≥ dγ1 + dγ2 − dγ1 = dγ2 . If γ2 = M,

done; otherwise for γ1 + 1 ≤ γ2 ≤ M− 1, we have Λ
γ2+1
γ1+1 6= 0 and aγ2+1

γ2+1 6= 0.

Using the same argument as above, it is clear that we can find a sequence of γ1 < γ2 < · · · <

γi, where i is a certain integer 1 ≤ i ≤ M and γi = M, such that wq(c1) ≥ dγ1 , wq(aγ1+1
γ1+1) ≥ dγ2 −

dγ1 , wq(aγ2+1
γ2+1) ≥ dγ3 − dγ2 , · · · , wq(aγi−1+1

γi−1+1) ≥ dγi − dγi−1 = dM − dγi−1 . Then, we have wq(cM) ≥

wq(c1) + ∑
i−1
j=1 wq(a

γ j+1
γ j+1) ≥ dM. Thus, we have DM ≥ dM.

There exists a codeword c1 ∈ CM
1 such that wq(c1) = dM, so we have wq(cM) = dM, implying

DM ≤ dM. �

Next, we provide an example of three-level rate-compatible codes to illustrate Construction 1.

Example 5.4.1. Consider a set of nested binary BCH codes C3
1 = [15, 5, 7]2 ⊂ C2

1 = [15, 7, 5]2 ⊂ C1
1 =
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[15, 11, 3]2. Choose a set of auxiliary codes A3
2 = [5, 1, 4]2 ⊂A2

2 = [5, 4, 2]2, and A3
3 = [6, 5, 2]2, where

the code A3
2 is obtained by shortening an [8, 4, 4]2 extended Hamming code by three information bits.

Then, from Construction 1 and Theorem 5.4.1, we obtain three-level rate-compatible codes

C1 = [15, 11, 3]2 ≺ C2 = [20, 11, 5]2 ≺ C3 = [26, 11, 7]2. Note that C1 and C2 are optimal, achieving the

maximum possible dimensions with the given code length and minimum distance. The dimension of C3 is

close to the upper bound 13 according to the online Table [68]. �

5.4.2 Decoding Algorithm and Correctable Error-Erasure Patterns

In the following, we study decoding algorithms and correctable patterns of errors and erasures for

rate-compatible codes obtained from Construction 1. For simple notation and concise analysis, we focus

on the code CM. Any results obtained for CM can be easily modified for other codes Ci, 1≤ i ≤M− 1, so

details are omitted.

Assume a codeword cM ∈ CM, cM = (c1, a2
2, . . . , aM

M), is transmitted. Let the corresponding

received word be y = (y1, y2, . . . , yM) with errors and erasures, i.e., y ∈ (Fq ∪ {?})NM , where the

symbol ? represents an erasure. For 1 ≤ i ≤ M, let ti and τi denote the number of errors and erasures in

the sub-block yi of the received word y.

The code CM can correct any combined error and erasure pattern that satisfies the following

condition:

2t1 + τ1 ≤ dM − 1,

2ti + τi ≤ δM
i − 1, ∀ 2 ≤ i ≤ M.

(5.7)

To see this, we present a decoding algorithm, referred to as Algorithm 1, for CM. It uses the following

component error-erasure decoders:

a) The error-erasure decoder DC i
1

for a coset of the code C i
1, for 1 ≤ i ≤ M, is defined by

DC i
1

: (Fq ∪ {?})n1 × (Fq ∪ {?})∑
i
j=1 v j → C i

1 + e ∪ {“e”}

The decoder DC i
1

either produces a codeword in the coset C i
1 + e or a decoding failure “e”. For our
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purpose, we require that DC i
1

have the following error-erasure correcting capability. For a sent codeword

c in the coset C i
1 + e, where the vector e is a coset leader, if the inputs of DC i

1
are a length-n1 received

word y having t errors and τ erasures, where 2t + τ ≤ di − 1, and a correct length-∑i
j=1 v j syndrome

vector s, s = eHT
C i

1
, then DC i

1
can correct all these errors and erasures. It is well known that such a decoder

exists [64].

b) The error-erasure decoder DA j
i

for a coset of the code A j
i , for 2 ≤ i ≤ M and i ≤ j ≤ M, is

defined by

DA j
i

: (Fq ∪ {?})ni × (Fq ∪ {?})ni−vi−∑
i−1
m=2 λ

i
m+∑

j
`=i+1 λ

`
i →A j

i + e ∪ {“e”}

The decoder DA j
i

either produces a codeword in the coset A j
i + e or a decoding failure “e”. Similar to

DC i
1
, we assume that DA j

i
has the following error-erasure correcting capability. For a sent codeword c in

the coset A j
i + e, where e is a coset leader, if the inputs of DA j

i
are a length-ni received word y having

t errors and τ erasures, where 2t + τ ≤ δ j
i − 1, and a correct length-(ni − vi − ∑

i−1
m=2 λ

i
m + ∑

j
`=i+1 λ

`
i )

syndrome vector s, s = eHT
A j

i
, then DA j

i
can correct all these errors and erasures.

Now, we present the decoding algorithm as follows.

Algorithm 1: Decoding Procedure for CM

Input: received word y = (y1, y2, . . . , yM).

Output: A length-k vector u of information symbols over Fq or a decoding failure “e”.

1: for i = M, M− 1, . . . , 2 do

2: Let the syndrome Λi
i = 0.

3: âi
i = DAM

i

(
yi, (Λ

i
i,Λ

i+1
i , . . . ,ΛM

i )

)
.

4: (si,Λi
2, . . . ,Λi

i−1) = E−1
Ai

i
(âi

i). // Comment: For i = 2, we define (si,Λi
2, . . . ,Λi

i−1) = s2. //

5: end for

6: Let the syndrome s1 = 0.

7: c1 = DCM
1

(
y1, (s1, s2, . . . , sM)

)
.
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8: Output u = E−1
C1

(c1) if all above steps are successful; otherwise, return “e”.

Theorem 5.4.2. The code CM can correct any combined error and erasure pattern that satisfies the condition

in (5.7), by using Algorithm 1.

Proof. The proof follows from Algorithm 1 that decodes the last sub-block yM to the first sub-block y1

progressively. First, since the code AM
M has minimum distance δM

M, it can correct yM under the condition

2tM + τM ≤ δM
M − 1. Thus, we obtain correct syndromes sM,ΛM

2 , . . . ,ΛM
M−1.

Next, with the correct syndrome ΛM
M−1, the coset decoder DAM

M−1
can correct yM−1 under the

condition 2tM−1 + τM−1 ≤ δM
M−1 − 1. Thus, we obtain correct syndromes sM−1,ΛM−1

2 , . . . ,ΛM−1
M−2.

Conduct above decoding procedure progressively. For any i, 2 ≤ i ≤ M− 2, using the correct

syndromes Λi+1
i , . . . ,ΛM

i for coset decoding, the sub-block yi can be corrected under the condition

2ti + τi ≤ δM
i − 1.

At the last step, we have obtained correct syndromes s2, . . . , sM. Therefore, the sub-block y1 is

corrected. �

Using nested maximum distance separable (MDS) codes as component codes, Construction 1 can

generate an optimal code CM with respect to the capability of correcting certain error-erasure patterns. For

simple notation, we present the case of M = 3 as an example.

Example 5.4.2. Consider a set of nested MDS codes C3
1 = [n1, n1 − d3 + 1, d3]q ⊂ C2

1 = [n1, n1 − d2 +

1, d2]q ⊂ C1
1 = [n1, n1 − d1 + 1, d1]q. Choose a set of auxiliary MDS codesA3

2 = [2(d2 − d1)− 1, 2d2 −

d3 − d1, d3 − d1]q ⊂ A2
2 = [2(d2 − d1) − 1, d2 − d1, d2 − d1]q, and A3

3 = [3(d3 − d2) − 1, 2(d3 −

d2), d3 − d2]q.

Then, from Construction 1 and Theorem 5.4.1, we obtain three-level rate-compatible codes

C1 = [n1, n1 − d1 + 1, d1]q ≺ C2 = [n1 + 2(d2 − d1)− 1, n1 − d1 + 1, d2]q ≺ C3 = [n1 + 2(d2 − d1) +

3(d3 − d2)− 2, n1 − d1 + 1, d3]q. �

From the condition in (5.7) and Theorem 5.4.2, the code C3 can correct any pattern of errors and

erasures satisfying

2ti + τi ≤ d3 − di−1 − 1, ∀ 1 ≤ i ≤ 3, (5.8)
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where d0 is defined to be 0.

In general, the dimension of C3 cannot achieve the upper bounds given by traditional bounds

(e.g., Singleton and Hamming bounds). However, C3 is optimal in the sense of having the largest possible

dimension among all codes with the three-level structure and the same error-erasure correcting capability;

that is, we have the following lemma.

Lemma 5.4.3. Let C3 be a code of length n1 + 2(d2 − d1) + 3(d3 − d2) − 2 and dimension k3 over

Fq. Each codeword c3 ∈ C3 has three sub-blocks (c1, a2
2, a3

3) : 1) c1 of length n1, 2) a2
2 of length

2(d2 − d1)− 1, and 3) a3
3 of length 3(d3 − d2)− 1. Assume that each sub-block of C3 can correct all

error and erasure patterns satisfying the condition in (5.8). Then, we must have k3 ≤ n1 − d1 + 1.

Proof. We prove Lemma 5.4.3 by contradiction.

Let I1 be the set of any d3 − 1 coordinates of c1, I2 be the set of any d3 − d1 − 1 coordinates of

a2
2, and I3 be the set of any d3 − d2 − 1 coordinates of a3

3. Let I be the set of all the coordinates of c3.

We have |I\(I1 ∪I2 ∪I3)|= n1− d1 + 1. Now, assume that k3 > n1− d1 + 1. Then, there exist

at least two distinct codewords c′3 and c′′3 in C3 that agree on the coordinates in the set I\(I1 ∪ I2 ∪ I3).

We erase the values on the coordinates in the set I1 ∪ I2 ∪ I3 of both c′3 and c′′3 . This erasure pattern

satisfies the condition in (5.8). Since c′3 and c′′3 are distinct, this erasure pattern is uncorrectable. Thus, our

assumption that k3 > n1 − d1 + 1 is violated. �

In Algorithm 1, the code CM is decoded by M steps, so we can bound the decoding error probability

P(NM)
e (CM) of CM by the decoding error probability of each step as

P(NM)
e (CM) ≤1−

(
1− P(n1)

e (CM
1 )
) M

∏
i=2

(
1− P(ni)

e (AM
i )
)

,

which provides a fast way to predict the performance of CM. In particular, if each component code is

(shortened) BCH code, then P(NM)
e (CM) can be easily estimated by some calculations. We use a simple

example to illustrate this estimation.

Example 5.4.3. Consider two nested binary BCH codes C2
1 = [8191, 7411]2 ⊂ C1

1 = [8191, 7671]2. The

codes C1
1 and C2

1 can correct 40 and 60 errors, respectively. Choose an auxiliary shortened BCH code
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A2
2 = [359, 260]2, which can correct 11 errors. Then, from Construction 1, we obtain two-level rate-

compatible codes C1 = [8191, 7671]2 ≺ C2 = [8550, 7671]2. Now, send C2 over a binary symmetric

channel (BSC) with crossover probability p. The error probability of C2 satisfies

P(N2)
e (C2) ≤1−

(
1− P(n1)

e (C2
1 )
)(

1− P(n2)
e (A2

2)
)

≤1−
( t1

∑
i=0

(
n1

i

)
pi(1− p)n1−i)( t2

∑
i=0

(
n2

i

)
pi(1− p)n2−i),

where N2 = 8550, n1 = 8191, n2 = 359, t1 = 60, and t2 = 11. For instance, for p = 0.0035, we

compute P(N2)
e (C2)≤ 1.049× 10−7; for p = 0.004, we have P(N2)

e (C2)≤ 6.374× 10−6. For p≥ 0.0035,

the performance of C2 (rate 0.8972) is comparable to, although still worse than, that of a shortened

[8553, 7671]2 BCH code C ′2 which has rate 0.8969 and can correct 63 errors. For instance, for p = 0.0035

and 0.004, C ′2 has error probabilities 4.035× 10−8 and 3.315× 10−6. �

5.5 Capacity-Achieving Rate-Compatible Codes

In this section, we show that if we choose component codes properly, Construction 1 can gen-

erate rate-compatible codes which achieve the capacities of a set of degraded q-ary symmetric channels

simultaneously.

More specifically, consider a set of M degraded q-ary symmetric channels W1 �W2 � · · · �WM

with crossover probabilities p1 < p2 < · · · < pM respectively, where p1 > 0 and pM < 1− (1/q). Let

C(Wi) denote the capacity of the channel Wi, i.e., C(Wi) = 1−Hq(pi). It is clear that C(W1)> C(W2)>

· · ·> C(WM). For any rates R1 > R2 > · · ·> RM such that Ri < C(Wi) for all 1≤ i≤M, we will show

that Construction 1 can generate rate-compatible codes C1 ≺ C2 ≺ · · · ≺ CM where Ci = [Ni, RiNi]q such

that the decoding error probability of each Ci over the channel Wi satisfies P(Ni)
e (Ci)→ 0, as Ni goes to

infinity.

To this end, we first present the following lemma on the existence of nested capacity-achieving

linear codes.

Lemma 5.5.1. Consider a set of M degraded q-ary symmetric channels W1 �W2 � · · · �WM with
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crossover probabilities p1 < p2 < · · · < pM, where p1 > 0 and pM < 1− (1/q). For any rates R1 >

R2 > · · · > RM such that Ri < C(Wi) = 1 − Hq(pi), there exists a sequence of nested linear codes

CM
1 = [n, kM = RMn]q ⊂ CM−1

1 = [n, kM−1 = RM−1n]q ⊂ · · · ⊂ C1
1 = [n, k1 = R1n]q such that the

decoding error probability of each C i
1 over the channel Wi, under nearest-codeword (maximum-likelihood)

decoding, satisfies P(n)
e (C i

1)→ 0, as n goes to infinity.

Proof. To prove the lemma, we will use two known results for the q-ary symmetric channel from Chapter 4

of [64]. We state them as follows.

Lemma 5.5.2. For the q-ary symmetric channel with crossover probability p, p ∈
(
0, 1− (1/q)

)
, let n

and nR be integers such that R < 1− Hq(p). Let P(n)
e (C) denote the average of P(n)

e (C) over all linear

[n, nR]q codes C with nearest-codeword decoding. Then,

P(n)
e (C) < 2q−nEq(p,R),

where Eq(p, R) is a function of p, R, and q, and Eq(p, R) > 0.

Lemma 5.5.3. For every ρ ∈ (0, 1], all but a fraction less than ρ of the linear [n, nR]q codes C satisfy

P(n)
e (C) < (1/ρ)2q−nEq(p,R).

Now, with the above two lemmas, we are ready to prove Lemma 5.5.1.

Consider an ensemble G1 of all k1 × n full rank matrices over Fq. The size of G1 is |G1| =

(qn − 1)(qn − q) · · · (qn − qk1−1). Now, for each matrix G1
i ∈ G1, 1 ≤ i ≤ |G1|, take the lowest k2 rows

to form a new matrix G2
i . All these new matrices form a new ensemble G2. It is clear that |G2| = |G1|

and in G2, each k2 × n full rank matrix over Fq appears (qn − qk2)(qn − qk2+1) · · · (qn − qk1−1) times.

Similarly, for each matrix G1
i ∈ G1, 1 ≤ i ≤ |G1|, take the lowest k j, 3 ≤ j ≤ M, rows to form a new

matrix G j
i . All these new matrices form a new ensemble G j. It is clear that |G j| = |G1| and in G j, each

k j × n full rank matrix over Fq appears (qn − qk j)(qn − qk j+1) · · · (qn − qk1−1) times.

Note that the number of generator matrices of a linear [n, k]q code is the same for all such codes.
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Therefore, from Lemma 5.5.3, in each ensemble G j for 1 ≤ j ≤ M, at least a fraction x of all matrices in

this ensemble will generate linear codes C such that the error probability P(n)
e (C) < ( 1

1−x )2q−nEq(p j ,R j).

Now, with the basic set operations, it is not hard to see that for any x satisfying M−1
M < x < 1, in

the ensemble G1, we can find a subset G1 ⊆ G1 such that: 1) G1 has at least a fraction Mx− (M− 1) of

all the matrices in G1, and 2) for each matrix G1 in G1, for each j, 1 ≤ j ≤ M, the lowest k j rows of G1

will generate a linear code C j
1 with the error probability P(n)

e (C j
1) < ( 1

1−x )2q−nEq(p j ,R j).

Thus, there exists a sequence of nested linear codes CM
1 = [n, kM = RMn]q ⊂ CM−1

1 = [n, kM−1 =

RM−1n]q ⊂ · · · ⊂ C1
1 = [n, k1 = R1n]q such that for all 1 ≤ i ≤ M, the error probability P(n)

e (C i
1)→ 0,

as n goes to infinity. �

Now, we are ready to construct capacity-achieving rate-compatible codes from Construction 1.

To do so, we choose a set of nested capacity-achieving codes to be the component codes, which exist

according to Lemma 5.5.1.

1) Choose a set of nested capacity-achieving codes CM
1 ⊂ CM−1

1 ⊂ · · · ⊂ C1
1 = C1 = [n1, k]q,

where C i
1 = [n1, n1 − ∑

i
m=1 vm]q for 1 ≤ i ≤ M. Let C i

1 have the required rate Ri < C(Wi), and for C i
1

over the channel Wi, its error probability satisfies P(n1)
e (C i

1)→ 0, as n1 goes to infinity.

2) For ith level, 2 ≤ i ≤ M, choose a set of auxiliary nested capacity-achieving codes AM
i ⊂

AM−1
i ⊂ · · · ⊂ Ai+1

i ⊂ Ai
i, where A j

i = [ni, vi + ∑
i−1
m=2 λ

i
m − ∑

j
`=i+1 λ

`
i ]q for i ≤ j ≤ M. Let A j

i have

the required rate R j < C(Wj), and for A j
i over the channel Wj, the decoding error probability satisfies

P(ni)
e (A j

i )→ 0, as ni goes to infinity.

Note that compared to Section 5.4, here we care about rate and capacity-achieving property, instead

of minimum distance, of each component code.

Theorem 5.5.4. With the above component codes, from Construction 1, we obtain a sequence of rate-

compatible codes C1 ≺ C2 ≺ · · · ≺ CM, where Ci, 1≤ i ≤M, has length Ni = ∑
i
j=1 n j, dimension Ki = k,

and rate Ri. Moreover, for each Ci over the channel Wi, it is capacity-achieving, i.e., the error probability

P(Ni)
e (Ci)→ 0, as Ni goes to infinity.

Proof. The code length and dimension of Ci are obvious. In the following, we first prove the rate of Ci;

that is, to show k
Ni

= k
∑

i
j=1 n j

= Ri. For i = 1, it is trivial, since the rate of C1
1 is R1. For i = 2, observe that
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the rate of C2
1 is R2 =

k−v2
n1

and the rate of A2
2 is R2 =

v2
n2

, so we have (n1 + n2)R2 = k. Similarly, for

3 ≤ i ≤ M, from the rates of codes C i
1, Ai

2, . . ., Ai
i, we have (n1 + n2 + · · ·+ ni)Ri = k. Thus, we prove

the rates.

Second, we prove the decoding error probability of CM, since the proof also works for any Ci,

1 ≤ i ≤ M− 1. For CM over the channel WM, we use Algorithm 1 for decoding, where each component

decoder is chosen to be a nearest-codeword (maximum-likelihood) decoder defined as follows:

a) The nearest-codeword decoder DC i
1

for a coset of the code C i
1, for 1 ≤ i ≤ M, is defined by

DC i
1

: Fn1
q × F∑

i
j=1 v j

q → C i
1 + e

according to the following decoding rules: for a length-n1 input vector y, and a length-∑i
j=1 v j syndrome

vector s, if c is a closest codeword to y in the coset C i
1 + e, where the vector e is a coset leader determined

by both the code C i
1 and the syndrome vector s, i.e., s = eHT

C i
1
, then DC i

1
(y, s) = c.

b) The nearest-codeword decoder DA j
i

for a coset of the code A j
i , for 2 ≤ i ≤ M and i ≤ j ≤ M,

is defined by

DA j
i

: Fni
q × Fni−vi−∑

i−1
m=2 λ

i
m+∑

j
`=i+1 λ

`
i

q →A j
i + e

according to the following decoding rules: for a length-ni input vector y, and a length-(ni − vi −

∑
i−1
m=2 λ

i
m + ∑

j
`=i+1 λ

`
i ) syndrome vector s, if c is a closest codeword to y in the coset A j

i + e, where the

vector e is a coset leader determined by both the code A j
i and the syndrome vector s, i.e., s = eHT

A j
i
, then

DA j
i
(y, s) = c.

In Algorithm 1, with the above component decoders, the decoding for CM consists of M steps, so

it will succeed if each step is successful. Thus, we can bound the decoding error probability P(NM)
e (CM)

by the decoding error probability of each step as

P(NM)
e (CM) ≤1−

(
1− P(n1)

e (CM
1 )
) M

∏
i=2

(
1− P(ni)

e (AM
i )
)

=1−
(

1− P(φ1 NM)
e (CM

1 )
) M

∏
i=2

(
1− P(φi NM)

e (AM
i )
) (5.9)
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where constants φ1 =
RM
R1

and φi =
(Ri−1−Ri)RM

RiRi−1
for 2 ≤ i ≤ M. From the chosen capacity-achieving

component codes, we already have P(φ1 NM)
e (CM

1 )→ 0 and P(φi NM)
e (AM

i )→ 0 as NM goes to infinity, so

in (5.9), P(NM)
e (CM)→ 0 as NM goes to infinity. Thus, we conclude that CM can achieve the capacity of

the channel WM. �

Remark 5.5.1. Polar codes are a family of linear codes that provably achieve the capacity of memoryless

symmetric channels using low-complexity encoding and decoding algorithms [4]. Moreover, polar codes

were proved to have the nested capacity-achieving property for a set of degraded channels [42]. Thus, they

can be used as the component codes in Construction 1 to construct capacity-achieving rate-compatible

codes. �

There exist recent independent works on capacity-achieving rateless and rate-compatible codes

based on polar codes [37, 44]. By investigating the construction in [37] carefully, we find our construction

with polar codes as component codes is equivalent to theirs by mapping the syndrome in our construction

to the frozen bits in their construction using a full rank matrix. In the following, we show the equivalence

for the case of two-level rate-compatible codes. Extension to the M-level case can be done in a similar

way, so it is omitted.

First, let us consider the construction in [37] for generating two-level rate-compatible codes

C1 ≺ C2. For simplicity, we refer to the construction in [37] as HHM construction. Consider two nested

binary polar codes C2
1 = [n1, n1 − v1 − v2]2 ⊂ C1

1 = [n1, k = n1 − v1]2. The set of frozen bit indices of

C i
1 is denoted by F i

1 for i = 1, 2. It is clear that |F 1
1 | = v1 and |F 2

1 | = v1 + v2. The nested property of

polar codes gives F 1
1 ⊂ F 2

1 [42]. The HHM construction has the following two steps.

For the first step, let a length-n1 vector ū have k information bits u on the coordinates in [n1]\F 1
1

and value 0 on the coordinates in F 1
1 . A codeword c1 ∈ C1 is obtained by c1 = ūGn1 . Here, the code length

n1 is n1 = 2m and the matrix Gn1 is Gn1 = Bn1 G
⊗

m
2 , where G2 =

 1 0

1 1

 and Bn1 is a bit-reversal

permutation matrix defined in [4]. It is known that Gn1 = G−1
n1

, i.e., Gn1 Gn1 = I [29].

For the second step, to obtain a codeword c2 ∈ C2, the HHM construction uses an auxiliary code

A2
2, which is a capacity-achieving (punctured) polar code, to encode the bits on the coordinates in F 2

1 \F 1
1
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of ū; these bits are denoted by πF 2
1 \F 1

1
(ū), which will be treated as the frozen bits during the last step of

decoding the code C2. Let a2
2 denote the codeword obtained by encoding πF 2

1 \F 1
1
(ū) using A2

2. Then, the

resulting codeword c2 ∈ C2 is c2 = (c1, a2
2).

Now, let us consider our syndrome-coupled construction, i.e., Construction 1. Let us first denote

the parity-check matrices of C1
1 and C2

1 by HC1
1

and HC2
1
=

 HC1
1

HC2
1 |C1

1

, respectively. Based on Lemma 1

in [29], we have HC2
1 |C1

1
= EH′C2

1 |C1
1
, where the matrix H′C2

1 |C1
1

is formed by the columns of Gn1 with indices

in F 2
1 \F 1

1 and E is a full rank matrix which represents a series of elementary row operations.

The first step of our construction is the same as that of the HHM construction introduced above. In

the second step, we use the same auxiliary codeA2
2 to encode the syndrome s2 which is s2 = c1HT

C2
1 |C1

1
. Let

a2
2 denote the codeword obtained by encoding s2 using A2

2. Then, the codeword c2 ∈ C2 is c2 = (c1, a2
2).

By comparing the HHM construction with our construction, the only difference is that in the

second step, we use A2
2 to encode the syndrome s2, instead of πF 2

1 \F 1
1
(ū). In the following, we will prove

the equivalence between πF 2
1 \F 1

1
(ū) and s2 by showing that πF 2

1 \F 1
1
(ū) can be one-to-one mapped to s2.

Specifically, we will show that s2 = πF 2
1 \F 1

1
(ū)ET. To see this, we have the following equations,

s2 = c1HT
C2

1 |C1
1

= ūGn1 HT
C2

1 |C1
1

= πF 2
1 \F 1

1
(ū)G′n1

H′TC2
1 |C1

1
ET

= πF 2
1 \F 1

1
(ū)ET ,

where G′n1
is the submatrix of Gn1 obtained by taking the rows of Gn1 with indices in F 2

1 \F 1
1 . The

product G′n1
H′TC2

1 |C1
1

is an identity matrix, because H′C2
1 |C1

1
is formed by the columns of Gn1 with indices in

the set F 2
1 \F 1

1 and also we have the property Gn1 Gn1 = I [29]. In particular, if we choose E = I, then

s2 = πF 2
1 \F 1

1
(ū). Thus, we prove the equivalence between the HHM construction and our construction.

Since the HHM construction [37] is based on the generator matrix, our construction can be seen as

another interpretation of the HHM construction from a parity-check matrix perspective.
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5.6 Performance of Two-Level Rate-Compatible Codes for MLC Flash

Memories

In this section, we briefly investigate an application of rate-compatible codes to flash memories.

Specifically, we construct two-level rate-compatible codes based on BCH and LDPC codes, respectively.

Then, we evaluate the performance of these codes for MLC flash memories.

5.6.1 Rate-Compatible Codes Based on BCH Codes

Let us construct two-level rate-compatible codes based on binary BCH codes. We choose two

nested binary BCH codes C2
1 = [8191, 7398]2 ⊂ C1

1 = [8191, 7697]2 as our component codes; the codes

C1
1 and C2

1 can correct 38 and 61 errors, respectively. We also choose an auxiliary shortened BCH code

A2
2 = [398, 299]2, which can correct 11 errors. Then, from Construction 1, we obtain two-level rate-

compatible codes C1 = [8191, 7697]2 ≺ C2 = [8589, 7697]2, whose code rates are 0.9397 and 0.8961,

respectively. We apply C1 and C2 to an MLC flash memory and evaluate their performance. In addition,

we evaluate a shortened BCH code C3 = [8593, 7697]2 with rate 0.8957, whose code length and rate are

similar to those of the code C2. The code C3 can correct 64 errors.

For the performance evaluation of BCH-based two-level rate-compatible codes for an MLC flash

memory, we assume that the all-zero codeword is stored and that the memory introduces errors in the

locations indicated by our empirical measurements. For the BCH decoder, we assume that if the BCH

code (or its coset) could correct t errors, then it would correct any error vector with at most t errors. If the

number of errors exceeds t, we assume that the BCH decoder would fail. The constructed rate-compatible

codes C1 ≺ C2 are evaluated over a total of 20 blocks, i.e., 40960 codewords.

The frame error rate (FER) performance of the constructed codes C1 and C2 for the lower page and

upper page of an MLC flash memory is shown in Figure 5.1(a) and Figure 5.1(b), respectively. Compared

to C1, the code C2 extends the lifetime around 3500 program/erase (P/E) cycles for the lower page and

around 2000 P/E cycles for the upper page.

In addition, we evaluate the shortened BCH code C3. The FER performance results for the lower

page and upper page are shown in Figure 5.1(a) and Figure 5.1(b), respectively. It can be seen that the FER

89



4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Program/Erase (P/E) Cycle Count

F
E

R

 

 

[8191, 7697], r=0.9397
[8589, 7697], r=0.8961
[8593, 7697], r=0.8957

(a)

4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Program/Erase (P/E) Cycle Count

F
E

R

 

 

[8191, 7697], r=0.9397
[8589, 7697], r=0.8961
[8593, 7697], r=0.8957

(b)

Figure 5.1: FER performance of two-level rate-compatible codes based on BCH codes for an MLC flash
memory: (a) lower page and (b) upper page.
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of C2 is comparable to that of C3, which indicates the effectiveness of our construction.

5.6.2 Rate-Compatible Codes Based on LDPC Codes

Let us also construct two-level rate-compatible codes based on binary LDPC codes. We use a

Reed-Solomon (RS) codes based construction for regular LDPC codes, since this construction provides a

nested and 4-cycle free structure [66]. We can obtain two nested binary LDPC codes C2
1 ⊂ C1

1 , where C1
1

is a (4, 64)-regular [8192, 7697]2 LDPC code with rate 0.9396 and C2
1 is a (7, 64)-regular [8192, 7400]2

LDPC code with rate 0.9033. We also choose an auxiliary (4,15)-regular [405, 300]2 LDPC code A2
2.

Then, in the second step of Construction 1, we obtain the syndrome s2 of length 297. We add three zeros

to the end of s2 to form a new vector which is encoded by A2
2 to generate the vector a2

2. Thus, from

Construction 1, we obtain two-level rate-compatible codes C1 = [8192, 7697]2 ≺ C2 = [8597, 7697]2,

whose code rates are 0.9396 and 0.8953, respectively.

For the performance evaluation of LDPC-based two-level rate-compatible codes for an MLC flash

memory, we assume that the all-zero codeword is stored and that the memory introduces errors in the

locations indicated by our empirical measurements. We treat the channel as a binary symmetric channel

with crossover error probability p equal to the average probability of error reflected in the measured

error data. The decoder is based upon belief-propagation (BP) decoding, implemented in software as the

floating-point sum-product algorithm (SPA). The maximum number of iterations is set to be 100 and early

termination is used. The constructed rate-compatible codes C1 ≺ C2 are evaluated over a total of 20 blocks,

i.e., 40960 codewords.

The FER performance of the constructed codes C1 and C2 for the lower page and upper page of an

MLC flash memory is shown in Figure 5.2(a) and Figure 5.2(b), respectively. Compared to C1, the code C2

extends the lifetime around 4000 P/E cycles for the lower page and around 3000 P/E cycles for the upper

page.

We combine the results from Figure 5.1(a) and Figure 5.2(a), as shown in Figure 5.3(a). We also

merge the curves from Figure 5.1(b) and Figure 5.2(b), as shown in Figure 5.3(b). From Figure 5.3(a)

and Figure 5.3(b), it is shown that at a higher rate, i.e., 0.94, the [8191, 7697]2 BCH code outperforms

the [8192, 7697]2 LDPC code. However, at a lower rate of 0.90, the [8597, 7697]2 LDPC-based code is
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Figure 5.2: FER performance of two-level rate-compatible codes based on LDPC codes for an MLC
flash memory: (a) lower page and (b) upper page.
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Figure 5.3: FER performance of two-level rate-compatible codes based on BCH and LDPC codes for an
MLC flash memory: (a) lower page and (b) upper page.
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better than the [8589, 7697]2 BCH-based code.

5.7 Conclusion

In this chapter, we proposed a new algebraic construction for generating rate-compatible codes

with increasing minimum distances. We also proved that our construction can generate capacity-achieving

rate-compatible codes by using proper component codes, validating the optimality of the construction.

With polar codes as component codes, the equivalence between our construction and the one in [37] was

identified.

Our construction is very general. Many linear codes (e.g., BCH, RS, and LDPC codes) can be

used as its component codes, and some of them were shown as examples. Our parity-check matrix based

approach enables us to conveniently obtain the combinatorial properties (e.g., minimum distance) of the

constructed rate-compatible codes, as well as their decoders.

Finally, we constructed two-level rate-compatible codes from BCH and LDPC codes, respectively,

and evaluated the performance of these codes on MLC flash memories.
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Chapter 6

A Class of Error-Correcting Codes with

Multi-Level Shared Redundancy

6.1 Introduction

As the volume of data continues to explode, error-correcting codes (ECCs) with multi-level

redundancy become increasingly important in data storage, since they can balance the reliability and

the total redundancy cost. The idea of using multi-level redundancy dates back to Patel [57]. In [57], a

two-level coding scheme was used for a data block, which consists of several sub-blocks and also extra

parity-check symbols shared by all these sub-blocks. The scheme in [57] was later extended in [1]. In [36],

integrated interleaving codes with two-level protection were proposed for data storage. A codeword (block)

of a two-level integrated interleaving code comprises several component codewords (sub-blocks) of a

Reed-Solomon (RS) code C, satisfying the constraints that some linear combinations of these component

codewords are codewords of a subcode of C. More recently, generalized integrated interleaving codes were

studied in [78, 88].

In this chapter, we present a new class of ECCs with multi-level shared redundancy. We call them

ladder codes, since the decoding procedure, which uses multi-level redundancy successively from the

lowest level to the highest level, mimics climbing up a ladder.
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Our construction is motivated by the construction of tensor product codes, first proposed by

Wolf in [86], and later generalized in [40]. A tensor product code is defined by a parity-check matrix

that is the tensor product of the parity-check matrices of component codes. Tensor product codes and

integrated interleaving codes are similar, and integrated interleaving codes can be treated as a subclass of

tensor product codes. A codeword of a tensor product code consists of multiple component codewords

(sub-blocks) of equal length. As shown by Example 1 in [87], the encoding steps of a tensor product

code involve using phantom syndrome symbols, which only appear in the encoding procedure but are not

stored in the encoded codeword. By imposing constraints on these phantom syndrome symbols (this step

is done over an extension field [40, 86]), some of the information symbols of some sub-blocks are turned

into parity-check symbols commonly shared by all the sub-blocks. However, in our ladder codes, these

shared parity-check symbols do not reside in sub-blocks; instead, they are protected by other levels of

coding. Thus, in some sense, ladder codes can be considered as an external version of tensor product codes.

As a result, to provide extra protection for sub-blocks, unlike tensor product codes, the encoder for each

sub-block in ladder codes can be kept intact and we only need to generate the extra shared redundancy part,

which seems an attractive feature for some data storage applications.

Aiming at the specific code structure consisting of multiple sub-blocks and their external shared

redundancy, ladder codes provide a systematic way to generate multi-level shared redundancy successively.

However, due to this particular structure embedded in the code, the performance of a three-level (or higher)

ladder code might be worse than that of a corresponding generalized tensor product code, if one directly

compares their rates and minimum distances.

One possible application of ladder codes could be for flash memories [8, 14]. It is well known

that in a flash memory block, there exist a few bad pages that have high bit error rates [15, 89, 90]. Using

ladder codes, the codewords from good and bad pages are able to share some common redundancy, which

can be stored in some spare pages in the flash. However, in this chapter, we only focus on the theoretical

aspects of ladder codes, leaving their applications as a future work. Our contributions are as follows:

1) We propose a new class of ECCs with multi-level shared redundancy. Specifically, we present a general

construction of an m-level ladder code, and determine the code length and dimension; in addition, we

derive a lower bound d∗L on the minimum distance. We also provide explicit examples of ladder codes,
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some of which turn out to be optimal with respect to the minimum distance. 2) We present a general result

on the correctable error-erasure patterns for ladder codes and give a corresponding decoding algorithm.

With respect to erasure correction, it is shown that ladder codes can correct at least d∗L − 1 erasures; as for

error correction, ladder codes can correct at least b d∗L−1
2 c errors. 3) We compare two-level ladder codes

with concatenated codes [64]. Our first code design results in a ladder code possessing the same code

parameters as those of a corresponding concatenated code. The second design shows that a ladder code

can even outperform a concatenated code in some cases.

The remainder of this chapter is organized as follows. In Section 6.2, we present a general

construction of ladder codes, and determine the corresponding code parameters. In Section 6.3, we study

the correctable error-erasure patterns of ladder codes and give a corresponding decoding algorithm. In

Section 6.4, we compare two-level ladder codes with concatenated codes. We conclude the chapter in

Section 6.5.

Throughout this chapter, we use the following notation. The transpose of a matrix H is written as

HT. The cardinality of a set A is denoted by |A|. For a vector v over Fq, we use wq(v) to represent its

Hamming weight. For two vectors v and u over Fq, we use dq(v, u) to denote their Hamming distance. A

linear code over Fq of length n, dimension k, and minimum distance d is denoted by [n, k, d]q, where q may

be omitted if the field is clear from the context. A linear code which consists of all length-n vectors over

Fq is denoted by [n, n, 1]q, and its dual code only has the all-zero codeword, so it is denoted by [n, 0,∞]q.

6.2 Ladder Codes: Construction and Minimum Distance

In this section, we present a general construction for ladder codes that have multi-level shared

redundancy. We then give the code parameters of a ladder code; in particular, we derive a lower bound on

its minimum distance.

6.2.1 Construction of Ladder Codes

An m-level ladder code CL over Fq is based on the following component codes.

1) A collection of m nested [n, ki, di]q codes Ci, 1 ≤ i ≤ m, over Fq, such that
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Cm ⊂ Cm−1 ⊂ · · · ⊂ C1.

The corresponding dimensions satisfy km < km−1 < · · · < k1 and the minimum distances satisfy dm ≥

dm−1 ≥ · · · ≥ d1. We denote the parity-check matrix of Ci by

HCi =


H1

H2
...

Hi

 ,

where Hi, 1≤ i≤m, is a matrix of size (ki−1 − ki)× n, by defining k0 = n. The encoder of C1 is denoted

by EC1 : Fk1
q → C1. We also use E−1

C1
as the inverse of the encoding mapping.

2) A collection of m− 1 [n′i , k′ = `,δi]qvi codes C ′i , 2 ≤ i ≤ m, over Fqvi , where vi = ki−1 − ki.

Without loss of generality, we assume that n′2 > n′3 > · · · > n′m and δ2 > δ3 > · · · > δm. The encoder

of C ′i is systematic and is denoted by EC ′i : F`
qvi → C ′i . We also use E−1

C ′i
as the inverse of the encoding

mapping.

3) A collection of m− 1 [n′′i , k′′i , d′′i ]q codes C ′′i , 2≤ i≤m, over Fq. The encoder of C ′′i is denoted

by EC ′′i : Fvi
q → C ′′i . We also use E−1

C ′′i
as the inverse of the encoding mapping.

With the component codes introduced above, the construction of an m-level ladder code CL is

outlined in the following procedure.

Construction 1: Encoding Procedure for Ladder Codes

Input: ` information vectors ui ∈ Fk1
q , 1 ≤ i ≤ `.

Output: a codeword cL = (c1, . . . , c`, r2, . . . , rm) of the ladder code CL over Fq, where

• ci ∈ C1, 1 ≤ i ≤ `, from step 1.

• ri = (gi
1, . . . , gi

n′i−`
), 2 ≤ i ≤ m, from step 5.

1: For 1 ≤ i ≤ `, encode ui according to the code C1 to obtain a codeword ci = (ci,1, ci,2, . . . , ci,n), i.e.,
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ci = EC1(ui), ∀1 ≤ i ≤ `.

2: For 2 ≤ i ≤ m and 1 ≤ j ≤ `, compute the ith level syndromes by

si
j = (si

j,1, si
j,2, . . . , si

j,vi
) = c jHT

i .

Since si
j is a vi-dimensional vector over Fq, we treat it as a symbol in Fqvi . See Figure 6.1.

3: For 2≤ i≤m and 1≤ j≤ n′i − `, calculate the ith level parity-check symbols pi
j in Fqvi , by encoding

syndromes (si
1, . . . , si

`) with the code C ′i , i.e.,

(si
1, . . . , si

`, pi
1, . . . , pi

n′i−`) = EC ′i (s
i
1, . . . , si

`).

See Figure 6.2.

4: Encode the parity-check symbols obtained in step 3. For 2 ≤ i ≤ m and 1 ≤ j ≤ n′i − `, apply the

code C ′′i to encode pi
j to obtain gi

j, i.e.,

gi
j = EC ′′i (pi

j),

where pi
j is treated as a vector of size vi over Fq. See Figure 6.2.

5: For 2 ≤ i ≤ m, represent the ith level shared redundancy ri in the form of ri = (gi
1, . . . , gi

n′i−`
).

Remark 6.2.1. For an m-level ladder code CL which is obtained in Construction 1, its codeword cL =

(c1, . . . , c`, r2, . . . , rm) consists of two ingredients: 1) the ` sub-blocks ci, 1 ≤ i ≤ `, each representing a

codeword in C1, and 2) a total of m− 1 parts of shared redundancy denoted by ri, 2 ≤ i ≤ m.

Referring to Figure 6.1 and Figure 6.2, a codeword cL is comprised of symbols in the regions

formed by the solid lines. �

Remark 6.2.2. As in the construction of tensor product codes [40, 86], Construction 1 for ladder codes is

based on operations over the base field Fq as well as its extension fields; see step 3 in Construction 1. One
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c1,1 c1,2 · · · c1,n s2
1,1 · · · s2

1,v2
· · · · · · sm

1,1 · · · sm
1,vm

c2,1 c2,2 · · · c2,n s2
2,1 · · · s2

2,v2
· · · · · · sm

2,1 · · · sm
2,vm... ... . . . ... ... . . . ... · · · · · · ... . . . ...

cℓ,1 cℓ,2 · · · cℓ,n s2
ℓ,1 · · · s2

ℓ,v2
· · · · · · sm

ℓ,1 · · · sm
ℓ,vm

Figure 6.1: Step 2 of the encoding procedure in Construction 1.

s2
1 s3

1 · · · sm
1... ... ... ...

s2
ℓ s3

ℓ · · · sm
ℓ

p2
1 p3

1 · · · pm
1 −→ g2

1 g3
1 · · · gm

1... ... ... ... ... ... ... ... ...
p2

n′m−ℓ p3
n′m−ℓ · · · pm

n′m−ℓ −→ g2
n′m−ℓ g3

n′m−ℓ · · · gm
n′m−ℓ... ... ... ... ... ... ...

p2
n′3−ℓ

p3
n′3−ℓ

−→ g2
n′3−ℓ

g3
n′3−ℓ... ... ...

p2
n′2−ℓ

−→ g2
n′2−ℓ

Figure 6.2: Steps 3 and 4 of the encoding procedure in Construction 1.

possible variation of Construction 1 is to modify step 3 by using different component codes so that it is

also carried out over the same base field Fq. �

6.2.2 Minimum Distance of Ladder Codes

The following theorem gives the code parameters of a ladder code CL generated by Construction 1.

Theorem 6.2.1. An m-level ladder code CL from Construction 1 is a linear code over Fq of length

nL = n`+ ∑
m
i=2 n′′i (n

′
i − `) and dimension kL = k1`. Its minimum distance dL is lower bounded by d∗L as
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dL ≥ d∗L = min
{
δ2d̃1,δ3d̃2, . . . ,δmd̃m−1, dm

}
,

where d̃i = min{di, d′′i+1} for 1 ≤ i ≤ m− 1.

Proof. From the code construction procedure, the code length and dimension can be easily determined. In

the following, we derive a lower bound on the minimum distance.

Let cL be a nonzero codeword of the ladder code CL. Then, cL contains nonzero vectors ci ∈ C1,

1 ≤ i ≤ `. Let the subscripts of all these nonzero vectors form a set Φ ⊆ {1, 2, . . . , `}.

Consider the first case that there exists a nonzero vector cλ /∈ C2, λ ∈ Φ. Then, the syndrome

s2
λ 6= 0, so there are at least δ2 nonzero symbols in (s2

1, . . . , s2
` , p2

1, . . . , p2
n′2−`

). For any 1 ≤ j ≤ `, s2
j 6= 0,

we have wq(c j) ≥ d1. For any 1 ≤ j ≤ n′2 − `, p2
j 6= 0, we have wq(g2

j ) ≥ d′′2 . Thus, in total, wq(cL) ≥

δ2 min{d1, d′′2}.

For the second case, if ci ∈ C2, for all i ∈ Φ, and there exists a nonzero vector cλ /∈ C3, λ ∈ Φ.

Then, the syndrome s3
λ 6= 0, so there are at least δ3 nonzero symbols in (s3

1, . . . , s3
` , p3

1, . . . , p3
n′3−`

). For any

1 ≤ j ≤ `, s3
j 6= 0, we have wq(c j) ≥ d2. For any 1 ≤ j ≤ n′3 − `, p3

j 6= 0, we have wq(g3
j ) ≥ d′′3 . Thus,

in total, wq(cL) ≥ δ3 min{d2, d′′3}.

Similarly, for 3≤ i ≤ m− 1, if c j ∈ Ci, for all j ∈Φ, and there exists a nonzero vector cλ /∈ Ci+1,

λ ∈Φ. It can be shown that wq(cL) ≥ δi+1 min{di, d′′i+1}.

For the last case, if ci ∈ Cm, for all i ∈Φ, then it is clear that wq(cL) ≥ dm. �

The following corollary follows from Theorem 6.2.1. We give a condition under which the exact

minimum distance can be determined.

Corollary 6.2.2. For an m-level ladder code CL generated by Construction 1,

1) if d′′i = di−1 for all 2 ≤ i ≤ m, then

dL ≥ d∗L = min
{
δ2d1,δ3d2, . . . ,δmdm−1, dm

}
;

2) if δi min{di−1, d′′i } ≥ dm for all 2 ≤ i ≤ m, then

dL = dm.
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Proof. The first claim is evident, by applying Theorem 6.2.1. Here, we prove the second claim. On the

one hand, since δi min{di−1, d′′i } ≥ dm for all 2 ≤ i ≤ m, we have dL ≥ d∗L = dm. On the other hand,

there exists a codeword cL ∈ CL with weight dm. To see this, let c1 ∈ C1 be a codeword with weight dm

and ci ∈ C1, 2 ≤ i ≤ `, be the all-zero codeword. It is not hard to verify that the corresponding codeword

cL ∈ CL has weight dm. Thus, we have dL ≤ dm. �

Now, we present an example of a two-level ladder code to illustrate the encoding procedure of

Construction 1.

Example 6.2.1. Let C1 be the [8, 7, 2]2 single parity code, with parity-check matrix H1 = [1 1 1 1 1 1 1 1].

Let C2 ⊂ C1 be the [8, 4, 4]2 extended Hamming code with parity-check matrix HC2 ,

HC2 =

 H1

H2

 =



1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0


.

Let C ′2 be the [`+ 1, `, 2]23 systematic single parity code. Let C ′′2 be the [4, 3, 2]2 systematic single parity

code. Thus, the two-level ladder code CL is an [nL = 8` + 4, kL = 7`, dL = 4]2 code. Note that, for

2 ≤ ` ≤ 7, from the online table [68], CL achieves the optimal minimum distance.

Suppose that ` = 2 and the two input information vectors are: u1 = (1 0 1 0 0 0 0) and u2 =

(1 1 1 1 0 0 0). From Construction 1, we have c1 = (1 0 1 0 0 0 0 0) and c2 = (1 1 1 1 0 0 0 0),

so s2
1 = (0 1 0) and s2

2 = (1 0 0). Then, we obtain r2 = g2
1 = (1 1 0 0). Thus, the output codeword

cL = (c1, c2, r2) = (1 0 1 0 0 0 0 0, 1 1 1 1 0 0 0 0, 1 1 0 0). �

6.3 Correctable Error-Erasure Pattern and Decoding Algorithm

In this section, we study the correctable error-erasure patterns for ladder codes. A decoding

algorithm that can correct those patterns is proposed. Explicit results on correctable erasure patterns and

correctable error patterns are presented.
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6.3.1 Correction Capability of a Linear Code and Its Cosets

To study the error-erasure correcting capability of ladder codes, we start by investigating the

correction capability of a linear code and its cosets.

Let us introduce the erasure symbol and related operations. Let ? represent an erasure. We extend

the addition operation over Fq to Fq ∪ {?} by defining x+? =? + x =? for x ∈ Fq ∪ {?}.

Consider a code C of length n over Fq. The set of its correctable error-erasure patterns is defined

as follows.

Definition 6.3.1. Let T (C) be a set of vectors e of length n over Fq ∪ {?}. We say that T (C) is a set

of correctable error-erasure patterns for the code C if for any given e ∈ T (C), it satisfies the following

condition: for every c ∈ C, the equation c + e = c′ + e′, where c′ ∈ C and e′ ∈ T (C), implies that c′ = c.

Based on T (C), we define the detectable but uncorrectable error-erasure patterns below.

Definition 6.3.2. A vector e of length n over Fq ∪ {?} is a detectable but uncorrectable error-erasure

pattern for the code C if it satisfies the following condition: for every c ∈ C, y = c + e cannot be expressed

as y = c′ + e′, where c′ ∈ C and e′ ∈ T (C). We denote the set of all such detectable but uncorrectable

error-erasure patterns by ∆(C).

Remark 6.3.1. It is clear that the two sets T (C) and ∆(C) are disjoint; that is, if an error-erasure pattern

e ∈ T (C), then we have e /∈ ∆(C). �

Based on T (C), we can also define a decoder DC for C:

DC : (Fq ∪ {?})n→ C ∪ {“e”},

where “e” is a decoding failure indicator. For a received word y = c+ e, where c ∈ C and e ∈ (Fq ∪ {?})n,

the decoder DC of C searches for a codeword ĉ ∈ C and an error-erasure pattern ê ∈ T (C) such that

y = ĉ + ê:

1) If such ĉ and ê exist, then they are unique and the decoder DC outputs ĉ.

2) If such ĉ and ê do not exist, then the decoder DC outputs a decoding failure indicator “e”.
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Remark 6.3.2. If e ∈ T (C), the decoder DC will output the correct codeword; if e ∈ ∆(C), the decoder

DC will detect the error and output a decoding failure “e”. �

We will use the cosets of a linear code. For an [n, k, d]q linear code C with a parity-check matrix

H, let C(s) be the set of all vectors in Fn
q that have syndrome s, namely,

C(s) = {x ∈ Fn
q : xHT = s}.

The code C(s) is a coset of C. For s = 0, we have C(s) = C. It is easy to verify the following two claims:

1) A set of correctable error-erasure patterns for C is also a set of correctable error-erasure patterns for its

coset C(s), i.e., T (C) = T
(
C(s)

)
.

2) A set of detectable but uncorrectable error-erasure patterns for C is also a set of detectable but uncor-

rectable error-erasure patterns for C(s), i.e., ∆(C) = ∆
(
C(s)

)
.

6.3.2 A General Result on Correctable Error-Erasure Patterns

Now we are ready to investigate the correctable error-erasure patterns of a ladder code CL which is

generated by Construction 1.

Suppose a codeword cL ∈ CL is transmitted, and the corresponding received word is y = cL + e,

e ∈ (Fq ∪ {?})nL . More specifically, we use the following notation:

1) the transmitted codeword is cL = (c1, . . . , c`, r2, . . . , rm), where ri = (gi
1, . . . , gi

n′i−`
) for 2 ≤ i ≤ m;

2) the error-erasure vector is e = (e1, . . . , e`, e′′2 , . . . , e′′m), where e′′i = (ei
1, . . . , ei

n′i−`
) for 2 ≤ i ≤ m;

3) the received word is y = (y1, . . . , y`, y′′2 , . . . , y′′m), where y′′i = (yi
1, . . . , yi

n′i−`
) for 2 ≤ i ≤ m.

Given the error-erasure vector e, we define the following new error-erasure vector denoted by

e′i = (e′i,1, e′i,2, . . . , e′i,n′i), 2 ≤ i ≤ m. For 1 ≤ j ≤ `,

e′i, j =


0 e j ∈ T (Ci−1)

? e j ∈ ∆(Ci−1)

w e j /∈ T (Ci−1) ∪ ∆(Ci−1);

(6.1)
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for 1 ≤ j ≤ n′i − `,

e′i, j+` =


0 ei

j ∈ T (C ′′i )

? ei
j ∈ ∆(C ′′i )

w ei
j /∈ T (C ′′i ) ∪ ∆(C ′′i ),

(6.2)

where w is an indeterminate symbol. The above assignment for e′i, j, 1 ≤ j ≤ `, can be interpreted as

follows: e′i, j = 0 if e j is correctable, e′i, j =? if e j is detectable but uncorrectable, and e′i, j = w if e j is

miscorrected. The same interpretation holds for e′i, j+`, 1 ≤ j ≤ n′i − `.

With the error-erasure vector e′i defined above in (6.1) and (6.2), we say that e′i is correctable if

e′i ∈ T (C ′i ) for all w ∈ Fqvi . In other words, the set of vectors obtained by replacing each w in e′i by all

possible elements in Fqvi are in T (C ′i ).

The following theorem describes the correctable error-erasure patterns for a ladder code CL.

Theorem 6.3.3. An m-level ladder code CL from Construction 1 corrects any error-erasure pattern e =

(e1, . . . , e`, e′′2 , . . . , e′′m), e ∈ (Fq ∪ {?})nL , that satisfies the following two conditions:

1) for 1 ≤ i ≤ `, the error-erasure pattern ei is correctable by Cm, i.e., ei ∈ T (Cm);

2) for 2 ≤ i ≤ m, the ith level error-erasure pattern e′i = (e′i,1, e′i,2, . . . , e′i,n′i), defined in (6.1) and (6.2), is

correctable by C ′i , i.e., e′i ∈ T (C ′i ) for all w ∈ Fqvi .

6.3.3 A Decoding Algorithm for Ladder Codes

To prove Theorem 6.3.3, we present a decoding algorithm, referred to as Algorithm 1, for a ladder

code CL. It employs the following decoders for different component codes used in Construction 1:

a) The decoder DCi for a coset of the code Ci with syndrome s, for 1 ≤ i ≤ m, is defined by

DCi : (Fq ∪ {?})n × (Fq ∪ {?})n−ki → Ci(s) ∪ {“e”}.

For a length-n input vector y and a length-(n− ki) syndrome s without erasures, the decoder DCi(y, s)

searches for a codeword ĉ ∈ Ci(s) and an error-erasure pattern ê ∈ T (Ci) (Here, we use T (Ci), since we

have T
(
Ci(s)

)
= T (Ci)) such that y = ĉ + ê. If such ĉ and ê exist, the decoder outputs ĉ; otherwise, the

decoder returns a decoding failure “e”.
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b) The decoder DC ′′i for the code C ′′i , for 2 ≤ i ≤ m, is defined by

DC ′′i : (Fq ∪ {?})n′′i → C ′′i ∪ {“e”}.

For a length-n′′i input vector y, the decoder DC ′′i (y) searches for a codeword ĉ ∈ C ′′i and an error-erasure

pattern ê ∈ T (C ′′i ) such that y = ĉ + ê. If such ĉ and ê exist, the decoder outputs ĉ; otherwise, the decoder

returns a decoding failure “e”.

c) The decoder DC ′i for the code C ′i , for 2 ≤ i ≤ m, is defined by

DC ′i : (Fqvi ∪ {?})n′i → C ′i ∪ {“e”}.

For a length-n′i input vector y, the decoder DC ′i (y) searches for a codeword ĉ ∈ C ′i and an error-erasure

pattern ê ∈ T (C ′i ) such that y = ĉ + ê. If such ĉ and ê exist, the decoder outputs ĉ; otherwise, the decoder

returns a decoding failure “e”.

Note that each decoder defined above is merely based on the correctable set of the corresponding

code.

The decoding algorithm for CL is outlined as follows.

Algorithm 1: Decoding Procedure for CL

Input: received word y = (y1, . . . , y`, y′′2 , . . . , y′′m).

Output: information vectors ui, 1 ≤ i ≤ `, or a decoding failure indicator “e”.

// Level 1:

1: Let the 1st level syndrome ŝ1
i = 0, 1 ≤ i ≤ `.

2: Let F = {i : DC1(yi, ŝ1
i ) == “e”, 1 ≤ i ≤ `}.

3: for 1 ≤ i ≤ ` and i /∈ F do

4: ĉi←DC1(yi, ŝ1
i ).

5: end for

// Level 2 − Level m:
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1: for µ = 2, 3, . . . , m do

2: Let Fµ = {i : DC ′′µ (yµi ) == “e”, 1 ≤ i ≤ n′µ − `}.

3: for 1 ≤ i ≤ n′µ − ` and i /∈ Fµ do

4: ĝµi ←DC ′′µ (yµi ), and p̂µi ← E−1
C ′′µ (ĝµi ).

5: end for

6: Let Xµ = (x1, x2, . . . , xn′µ ) be the word over Fqvµ ∪ {?} that is defined as follows:

for 1 ≤ i ≤ `,

xi =

 ĉi HT
µ if i /∈ F

? otherwise;

for 1 ≤ j ≤ n′µ − `,

x j+` =

 p̂µj if j /∈ Fµ
? otherwise.

7: if DC ′µ (Xµ) == “e” then

8: Go to step 17.

9: else

10: Get syndromes (ŝµ1 , . . . , ŝµ` ) by: (ŝµ1 , . . . , ŝµ` , p̂µ1 , . . . , p̂µn′µ−`)←DC ′µ (Xµ).

11: end if

12: Update the index list F : F = {i : DCµ
(

yi, (ŝ
1
i , ŝ2

i , . . . , ŝµi )
)
== “e”, 1 ≤ i ≤ `}.

13: for 1 ≤ i ≤ ` and i /∈ F do

14: Update ĉi: ĉi←DCµ
(

yi, (ŝ
1
i , ŝ2

i , . . . , ŝµi )
)
.

15: end for

16: end for

// Decoding Output:

17: if F == ∅ then

18: for 1 ≤ i ≤ ` do

19: ui← E−1
C1

(ĉi), and output ui.

20: end for

21: else
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22: Output a decoding failure “e”.

23: end if

Claim 6.3.4. For a ladder code CL, Algorithm 1 corrects any error-erasure pattern e= (e1, . . . , e`, e′′2 , . . . , e′′m)

that satisfies the two conditions in Theorem 6.3.3.

Proof. The proof follows from the decoding procedure of Algorithm 1. At level 1, we obtain the correct

syndromes ŝ1
i = 0, for 1 ≤ i ≤ `. Then, these syndromes are used in decoding for the received words yi,

1 ≤ i ≤ `.

In the loop µ = 2, since the error-erasure pattern e′2 satisfies condition 2) in Theorem 6.3.3, the

vector X2 obtained in step 6 can be decoded successfully. Thus, we obtain the correct syndromes ŝ2
i ,

1 ≤ i ≤ `. Then, the syndromes ŝ1
i and ŝ2

i , 1 ≤ i ≤ `, will be used to help decode the received words yi,

1 ≤ i ≤ `.

Similarly, for each loop 3 ≤ µ ≤ m, since the error-erasure pattern e′µ satisfies condition 2) in

Theorem 6.3.3, we can obtain the correct syndromes ŝµi , 1 ≤ i ≤ `.

Therefore, when the decoding runs until the last loop, i.e., µ = m, we have obtained all the correct

syndromes ŝ1
i , ŝ2

i , . . . , ŝm
i , 1 ≤ i ≤ `. Since the error-erasure patterns ei, 1 ≤ i ≤ `, satisfy condition 1) in

Theorem 6.3.3, using all these correct syndromes for coset decoding, the error-erasure patterns ei, 1≤ i≤ `,

can be corrected. Thus, in this last loop, the decoder is guaranteed to return the correct information vectors

ui, 1 ≤ i ≤ `. �

Remark 6.3.3. The decoding procedure of Algorithm 1 that utilizes the multi-level shared redundancy

successively from the lowest level to the highest level mimics climbing up a ladder, which suggests the

name of ladder codes. �

6.3.4 More Explicit Results on Correctable Patterns

In the previous Section 6.3.2, Theorem 6.3.3 gives a very general result on correctable error-erasure

patterns for ladder codes. Now, we present more explicit results on erasure patterns and error patterns

separately.
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The following notation will be used. For a length-n vector x ∈ (Fq ∪ {?})n, let Nσ (x) denote the

number of erasures ? in x, and let Nτ (x) denote the number of nonzero elements that belong to Fq/{0}

in x.

a) Correctable Erasure Patterns

Let us consider the case when only erasures occur.

We first choose the following correctable sets for the component codes in Construction 1.

1) For 1 ≤ i ≤ m, choose the correctable set for Ci as

T (Ci) =
{

x : x ∈ {0, ?}n and Nσ (x) ≤ di − 1
}

.

Based on T (Ci), we have

∆(Ci) = {x : x ∈ {0, ?}n and Nσ (x) ≥ di}.

2) For 2 ≤ i ≤ m, choose the correctable set for C ′′i as

T (C ′′i ) = {x : x ∈ {0, ?}n′′i and Nσ (x) ≤ d′′i − 1}.

Based on T (C ′′i ), we have

∆(C ′′i ) = {x : x ∈ {0, ?}n′′i and Nσ (x) ≥ d′′i }.

3) For 2 ≤ i ≤ m, choose the correctable set for C ′i as

T (C ′i ) = {x : x ∈ {0, ?}n′i and Nσ (x) ≤ δi − 1}.

By applying Theorem 6.3.3, we directly obtain the following explicit result on correctable erasure

patterns.

Lemma 6.3.5. An m-level ladder code CL obtained from Construction 1 corrects any erasure pattern

e = (e1, . . . , e`, e′′2 , . . . , e′′m), e ∈ {0, ?}nL , that satisfies the following two conditions:
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1) for 1 ≤ i ≤ `, Nσ (ei) ≤ dm − 1;

2) for 2 ≤ i ≤ m, a1
i + a2

i ≤ δi − 1, where

a1
i = |{ j : 1 ≤ j ≤ `,Nσ (e j) ≥ di−1}|,

a2
i = |{ j : 1 ≤ j ≤ n′i − `,Nσ (ei

j) ≥ d′′i }|.

Recall that d∗L is a lower bound on the minimum distance of CL. The following lemma shows that

CL corrects any d∗L − 1 erasures.

Lemma 6.3.6. An m-level ladder code CL from Construction 1 corrects any erasure pattern of less than d∗L

erasures.

Proof. We only need to show that any erasure pattern of d∗L − 1 erasures satisfies the two conditions in

Lemma 6.3.5, so it can be corrected. To see this, first let us assume that condition 1) in Lemma 6.3.5

is violated. Then, for some integer j, 1 ≤ j ≤ `, we have Nσ (e j) ≥ dm ≥ d∗L, which violates the

assumption that there are only d∗L − 1 erasures. Second, let us assume that condition 2) is violated; that

is, for some integer i, 2 ≤ i ≤ m, we have a1
i + a2

i ≥ δi. It means that ∑
`
j=1Nσ (e j) + ∑

n′i−`
j=1 Nσ (ei

j) ≥

δi min{di−1, d′′i } ≥ d∗L, which violates the assumption that there are only d∗L − 1 erasures. �

Let us give a simple example on correctable erasure patterns. It shows that ladder codes can correct

more than d∗L − 1 erasures in some cases.

Example 6.3.1. Consider the [nL = 8`+ 4, kL = 7`, dL = 4]2 ladder code CL constructed in Example 6.2.1.

According to Lemma 6.3.6, any erasure pattern of 3 erasures can be corrected. In addition, using

Lemma 6.3.5, it is easy to verify that some erasure patterns with more than 3 erasures can be corrected, but

some are not. For instance, assume that the codeword cL = (1 0 1 0 0 0 0 0, 1 1 1 1 0 0 0 0, 1 1 0 0) is

sent. The received word y = (1 ? 1 ? 0 0 0 0, 1 ? 1 ? 0 0 0 0, 1 1 0 0) with 4 erasures cannot be corrected.

In contrast, the received word y = (? 0 ? ? 0 0 0 0, 1 ? 1 1 0 0 0 0, ? 1 0 0) with 5 erasures can be decoded.

�

b) Correctable Error Patterns

Now, let us consider the case when the transmitted codeword cL ∈ CL only suffers from errors.

We choose the following correctable sets for the component codes in Construction 1.
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1) For 1 ≤ i ≤ m, choose the correctable set for Ci as

T (Ci) =
{

x : x ∈ Fn
q and Nτ (x) ≤ ρi

}
,

where ρi is an integer that satisfies 0 ≤ ρi ≤ b di−1
2 c. The value of ρi can be interpreted as the decoding

radius of the bounded-distance decoding. Based on T (Ci), we can express the detectable but uncorrectable

set as

∆(Ci) =

{
x : x ∈ Fn

q and x /∈
⋃

y∈T (Ci)

{Ci + y}
}

.

2) For 2 ≤ i ≤ m, choose the correctable set for C ′′i as

T (C ′′i ) = {x : x ∈ Fn′′i
q and Nτ (x) ≤ ρ′′i },

where ρ′′i is an integer satisfying 0 ≤ ρ′′i ≤ b
d′′i −1

2 c. Based on T (C ′′i ), we have

∆(C ′′i ) =
{

x : x ∈ Fn′′i
q and x /∈

⋃
y∈T (C ′′i )

{C ′′i + y}
}

.

3) For 2 ≤ i ≤ m, choose the correctable set for C ′i as

T (C ′i ) = {x : x ∈ (Fqvi ∪ {?})n′i and 2Nτ (x) +Nσ (x) ≤ δi − 1}.

Now, using Theorem 6.3.3, it is not hard to obtain the following lemma.

Lemma 6.3.7. An m-level ladder code CL obtained from Construction 1 corrects any error pattern

e = (e1, . . . , e`, e′′2 , . . . , e′′m), e ∈ FnL
q , that satisfies the following two conditions:

1) for 1 ≤ i ≤ `, Nτ (ei) ≤ ρm;

2) for 2 ≤ i ≤ m, 2
(
a1

i (ρi−1) + a2
i (ρ
′′
i )
)
+
(
b1

i (ρi−1) + b2
i (ρ
′′
i )
)
≤ δi − 1, where

a1
i (ρi−1) = |{ j : 1 ≤ j ≤ `, e j /∈ T (Ci−1) ∪ ∆(Ci−1)}|,

b1
i (ρi−1) = |{ j : 1 ≤ j ≤ `, e j ∈ ∆(Ci−1)}|,

a2
i (ρ
′′
i ) = |{ j : 1 ≤ j ≤ n′i − `, ei

j /∈ T (C ′′i ) ∪ ∆(C ′′i )}|,

b2
i (ρ
′′
i ) = |{ j : 1 ≤ j ≤ n′i − `, ei

j ∈ ∆(C ′′i )}|.
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From Lemma 6.3.7, it is clear that the error correcting capability of CL depends on the choices

of the integers ρi and ρ′′i . Note that in Lemma 6.3.7, we use the notation such as a1
i (ρi−1) to explicitly

indicate that a1
i (ρi−1) depends on ρi−1.

Based on Lemma 6.3.7, we have the following theorem.

Theorem 6.3.8. For any length-nL error pattern e whose Hamming weight is less than d∗L/2, there exist ρi,

1 ≤ i ≤ m, and ρ′′j , 2 ≤ j ≤ m, such that the two conditions in Lemma 6.3.7 are satisfied.

Proof. See Section 6.6 Appendix A. �

Remark 6.3.4. Theorem 6.3.8 indicates that any received word y with number of errors less than d∗L/2

can be corrected. �

6.4 Two-Level Ladder Codes versus Concatenated Codes

In this section, we study the similarity and difference between two-level ladder codes and concate-

nated codes [25, 64]. It will be shown that compared to a concatenated code, a two-level ladder code can

achieve a higher rate for a given minimum distance.

In the following, we denote a two-level (i.e., m = 2) ladder code by C2
L. We also assume that C ′′i ,

2 ≤ i ≤ m, has minimum distance d′′i = di−1.

The following corollary on the code parameters of C2
L is directly concluded from Corollary 6.2.2.

Corollary 6.4.1. A two-level ladder code C2
L is a linear code over Fq of length nL = n`+ n′′2 (n

′
2 − `),

dimension kL = k1`, and minimum distance dL ≥min{δ2d1, d2}.

A concatenated code Ccont over Fq is formed from an inner code Cin and an outer code Cout [25,64].

Here, let the inner code be an [n, k, d]q code and the outer code be an [N, K, D = N− K + 1]qk MDS code,

which exists whenever N ≤ qk. Thus, the corresponding Ccont is an [nN, kK,≥ dD]q code.

First, we show that a two-level ladder code C2
L can have the same code parameters as those of

a corresponding concatenated code Ccont. To this end, we choose the following component codes in

Construction 1 for constructing C2
L.
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Design I:

1) Let C1 be an [n, k1 = k, d1 = d]q code, and C2 be the [n, 0,∞]q code with only an all-zero codeword.

2) Let C ′2 be an [n′2 = N, ` = K,δ2 = D]qk MDS code, where N ≤ qk.

3) Let C ′′2 be an [n′′2 = n, k′′2 = k, d′′2 = d]q code.

Lemma 6.4.2. From Construction 1 with Design I, the corresponding two-level ladder code C2
L over Fq

has code length nL = nN, dimension kL = kK, and minimum distance dL ≥ dD.

Proof. From Design I and Corollary 6.4.1, the code length, dimension, and minimum distance are obtained.

�

Second, for some cases, a two-level ladder code C2
L can even outperform a concatenated code Ccont

in the sense of possessing a higher rate but the same minimum distance. To see this, in Construction 1, we

choose the following component codes to construct C2
L.

Design II:

1) Let C1 be an [n, k1 = k, d1 = d]q code, and C2 ⊂ C1 be an [n, k2, d2 = dD]q code (here, we assume that

C2 exists with positive dimension k2 > 0 and finite minimum distance d2 = dD <∞).

2) Let C ′2 be an [n′2 = N, ` = K,δ2 = D]qk−k2 MDS code, which exists whenever N ≤ qk−k2 .

3) Let C ′′2 be an [n′′2 ≤ n, k′′2 = k − k2, d′′2 = d]q code. Note that here we can choose n′′2 ≤ n, since an

[n, k, d]q inner code Cin of Ccont exists and k′′2 < k.

Lemma 6.4.3. From Construction 1 with Design II, the corresponding two-level ladder code C2
L over Fq

has code length nL = nK + (N − K)n′′2 , dimension kL = kK, and minimum distance dL = dD.

Proof. The code parameters are obtained directly from Design II, Corollary 6.2.2, and Corollary 6.4.1. �

From Lemma 6.4.3, the rate of C2
L is RL =

kK
nK+(N−K)n′′2

. Denote the rate of Ccont by Rcont =
kK
nN .

Since n′′2 ≤ n, we have RL ≥ Rcont, where the inequality is strict for many cases, one simple example of

which is as follows.

Example 6.4.1. Consider a concatenated code Ccont with an [n = 8, k = 7, d = 2]2 inner code Cin and

an [N = ` + 1, K = `, D = 2]27 outer code Cout. Thus, Ccont is an [8(` + 1), 7`, 4]2 code with rate

Rcont =
7`

8(`+1) . For comparison, we choose the corresponding ladder code C2
L from Design II as the code
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constructed in Example 6.2.1. It is an [nL = 8`+ 4, kL = 7`, dL = 4]2 code with rate RL =
7`

8`+4 . Thus,

in this case, C2
L has a higher rate than that of Ccont, while their minimum distances are the same. �

In addition, we briefly compare two-level ladder codes with two-level generalized tensor product

codes [40, 88] by using the following example.

Example 6.4.2. Let C1 be the [16, 15, 2]2 single parity code and C2 ⊂ C1 be the [16, 11, 4]2 extended

Hamming code. Choose C ′2 to be the [`+ 1, `, 2]24 single parity code and C ′′2 to be the [5, 4, 2]2 single parity

code. From Construction 1, the resulting two-level ladder code C2
L is an [nL = 16`+ 5, kL = 15`, dL = 4]2

code.

In the construction of generalized tensor product codes, we use the same component codes C1 and

C2. From [40, 88], we can construct a two-level generalized tensor product code CGTP with parameters

[16`+ 16, 15`+ 11, 4]2. By shortening CGTP by 11 information symbols, we obtain a [16`+ 5, 15`, 4]2

code, which has the same code parameters as the above ladder code C2
L. �

6.5 Conclusion

In this chapter, we proposed a new family of shared-redundancy codes, called ladder codes, and

studied their basic code properties. We derived the code length, dimension, and a lower bound d∗L on the

minimum distance. Then, we analyzed correctable error-erasure patterns and presented a corresponding

decoding algorithm. Finally, it was also shown that in some cases a two-level ladder code can have a higher

rate but the same minimum distance, compared to a corresponding concatenated code.

6.6 Appendix A

In this section, we give the proof of Theorem 6.3.8.

Proof. First, let us choose ρm = b dm−1
2 c, then condition 1) in Lemma 6.3.7 is satisfied, since Nτ (ei) ≤

Nτ (e) ≤ b d∗L−1
2 c ≤ b dm−1

2 c = ρm.

Now, we prove that condition 2) in Lemma 6.3.7 can be satisfied. For notation simplicity yet

without loss of generality, we give a proof for the µth level; that is, for i = µ, we will prove that there exist
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ρµ−1 and ρ′′µ such that 2
(
a1
µ(ρµ−1) + a2

µ(ρ
′′
µ)
)
+
(
b1
µ(ρµ−1) + b2

µ(ρ
′′
µ)
)
≤ δµ − 1. For other values of i,

the proof is similar, so it is omitted.

More specifically, let ρµ−1 = ρ′′µ = θ, we will show that there exists a threshold value θ ∈

{0, 1, . . . ,b d̃µ−1−1
2 c} where d̃µ−1 = min{dµ−1, d′′µ} such that

2
(

a1
µ(θ) + a2

µ(θ)
)
+
(

b1
µ(θ) + b2

µ(θ)
)
≤ δµ − 1.

The existence of such a threshold θ will be established by following the similar proof for the generalized

minimum distance (GMD) decoder [25, 64]; that is, to prove the average of 2 ∑
2
j=1 a j

µ(θ) + ∑
2
j=1 b j

µ(θ),

when θ ranges over {0, 1, . . . ,b d̃µ−1−1
2 c} with respect to a certain probability measure, is less than δµ.

In the proof, we will use the following notation. First, recall that y = cL + e, e ∈ FnL
q , where

y = (y1, . . . , y`, y′′2 , . . . , y′′m), cL = (c1, . . . , c`, r2, . . . , rm), and e = (e1, . . . , e`, e′′2 , . . . , e′′m).

• For j = 1, 2, . . . , `, let Cµ−1( j) denote a coset of the code Cµ−1 such that Cµ−1( j) = Cµ−1 + c j. Let

ĉ j be the nearest codeword to the received vector y j in the coset Cµ−1( j), i.e., dq(y j, ĉ j)≤ dq(y j, x)

for all x ∈ Cµ−1( j). Let η j = dq(y j, ĉ j), and

π j(θ) =


0 if ĉ j = c j and η j ≤ θ

2 if ĉ j 6= c j and η j ≤ θ

1 if η j > θ

.

• For j = `+ 1, `+ 2, . . . , n′µ , let ĝµj−` be the nearest codeword to the received vector yµj−` in the code

C ′′µ , i.e., dq(yµj−`, ĝµj−`) ≤ dq(yµj−`, x) for all x ∈ C ′′µ . Let η j = dq(yµj−`, ĝµj−`), and

π j(θ) =


0 if ĝµj−` = gµj−` and η j ≤ θ

2 if ĝµj−` 6= gµj−` and η j ≤ θ

1 if η j > θ

.

It is not hard to verify that

2
2

∑
j=1

a j
µ(θ) +

2

∑
j=1

b j
µ(θ) =

n′µ

∑
j=1
π j(θ).
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We treat θ as a random variable which takes values in the set {0, 1, . . . ,b d̃µ−1−1
2 c} and assign the

following probability over {0, 1, . . . ,b d̃µ−1−1
2 c}:

Pθ{θ = x} =


2

d̃µ−1
if x ∈ {0, 1, . . . ,b d̃µ−1

2 c − 1}
1

d̃µ−1
if d̃µ−1 is odd and x = b d̃µ−1−1

2 c
.

We use Eθ{·} for the expected value with respect to the probability Pθ.

To show there is a threshold value θ ∈ {0, . . . ,b d̃µ−1−1
2 c} such that 2 ∑

2
j=1 a j

µ(θ) + ∑
2
j=1 b j

µ(θ) <

δµ is equivalent to showing that Eθ{2 ∑
2
j=1 a j

µ(θ) + ∑
2
j=1 b j

µ(θ)} < δµ . Thus, we only need to prove

Eθ{
n′µ

∑
j=1
π j(θ)} < δµ . (6.3)

To this end, we need the following two lemmas.

Lemma 6.6.1. For every j ∈ {1, . . . , `},

Eθ{π j(θ)} ≤
2dq(y j, c j)

d̃µ−1
. (6.4)

Proof. For every j ∈ {1, . . . , `}, to prove inequality (6.4), we consider the following two cases:

Case I: ĉ j = c j.

Eθ{π j(θ)} = 0P(θ ≥ η j) + 1P(θ < η j)

= P(θ < η j)

≤ 2
d̃µ−1

η j =
2

d̃µ−1
dq(y j, ĉ j) =

2
d̃µ−1

dq(y j, c j).

Case II: ĉ j 6= c j.

Eθ{π j(θ)} = 2P(θ ≥ η j) + 1P(θ < η j).
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(i) If η j > b d̃µ−1−1
2 c, then since θ ∈ {0, . . . ,b d̃µ−1−1

2 c}, we have

Eθ{π j(θ)} = 2P(θ ≥ η j) + 1P(θ < η j)

= P(θ < η j)

≤ 2
d̃µ−1

η j =
2

d̃µ−1
dq(y j, ĉ j) ≤

2
d̃µ−1

dq(y j, c j),

where the last step follows from the assumption that ĉ j is the nearest codeword to the received word y j.

(ii) If η j ≤ b d̃µ−1−1
2 c, then since θ ∈ {0, . . . ,b d̃µ−1−1

2 c}, we have

Eθ{π j(θ)} = 2P(θ ≥ η j) + 1P(θ < η j)

= 2
(
1− P(θ < η j)

)
+ P(θ < η j)

= 2− P(θ < η j) = 2− 2
d̃µ−1

η j

= 2
d̃µ−1 − dq(y j, ĉ j)

d̃µ−1
≤ 2

dq(y j, c j)

d̃µ−1
,

where the last step follows from the triangle inequality: d̃µ−1 ≤ dµ−1 ≤ dq(ĉ j, c j) ≤ dq(y j, ĉ j) +

dq(y j, c j). �

Lemma 6.6.2. For every j ∈ {`+ 1, . . . , n′µ},

Eθ{π j(θ)} ≤
2dq(yµj−`, gµj−`)

d̃µ−1
. (6.5)

Proof. The proof is similar to that of Lemma 6.6.1, so it is omitted. �

Now, we prove inequality (6.3) from Lemma 6.6.1 and Lemma 6.6.2 as follows.

Eθ{
n′µ

∑
j=1
π j(θ)} =

n′µ

∑
j=1

Eθ{π j(θ)}

≤
2 ∑

`
j=1 dq(y j, c j) + 2 ∑

n′µ−`
j=1 dq(yµj , gµj )

d̃µ−1

≤ 2dq(y, cL)

d̃µ−1

(a)
<

d∗L
d̃µ−1

≤ δµ ,
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where step (a) follows from the assumption dq(y, cL) < d∗L/2.

�
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Chapter 7

Performance of Multilevel Flash Memories

with Different Binary Labelings

7.1 Introduction

The channel characterization of flash memories is important for understanding fundamental limits

on storage density, as well as for designing effective signal processing algorithms and error-correcting

codes (ECCs) [5, 21, 22]. Many experiments have shown that the distribution of the readback signal (i.e.,

the voltage level of a cell) in flash memories is asymmetric [16, 18, 52]. In [56], a mixed normal-Laplace

distribution model was proposed and shown to accurately capture this asymmetry.

Several papers have recently studied the capacity of multilevel flash memory using a variety of

channel models [46, 69, 79, 84, 85]. For example, in [85], the capacity of multi-level cell (MLC) flash

memory was analyzed by modeling MLC flash memory as a 4-ary input point-to-point channel with

additive white Gaussian noise. The performance improvement provided by soft information obtained with

multiple read thresholds was also evaluated. In a similar vein, the capacity of three-level cell (TLC) flash

memory was recently studied in [69] by considering TLC flash memory as an 8-ary input point-to-point

channel with asymmetric mixed normal-Laplace noise. In [79], empirical error measurements at the cell

and bit levels were used to estimate the capacity of an MLC flash memory as a function of program/erase
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(P/E) cycle count. Results obtained using 4-ary discrete memoryless channel (DMC) model were compared

to those based upon a union of two independent binary symmetric channel (BSC) models corresponding to

the lower page and upper page.

A common feature of these prior studies of flash memory capacity is the use of point-to-point

channel models. In this chapter, we take a different approach, and model the flash memory as a multi-user

system, where the pages correspond to independently encoded users of a shared multiple-access channel.

To the best of our knowledge, this is the first time that flash memories have been examined from this

perspective.

Our goal is to study the fundamental performance limits of page-oriented multilevel flash memories

using various decoding schemes. Specifically, we consider both low-complexity Treating Interference

as Noise (TIN) decoding and relatively high-complexity Successive Cancellation (SC) decoding for the

MLC case. We first examine a general discrete memoryless multiple-access channel model with two

binary inputs and a four-level output. We derive elementary conditions such that the sum rate of TIN

decoding equals that of SC decoding. Then, we determine achievable rate regions and sum rates of both

decoding schemes for several specific flash memory channel models, represented by channel transition

matrices from cell voltage levels to quantized readback outputs. The effect of different binary labelings

of the cell levels is also studied, and the optimal labelings for each decoding scheme and channel model

are identified. It is shown that TIN and SC decodings both outperform Default Setting (DS) decoding, a

model of current flash memory technology, which uses Gray labeling of cell levels, along with separate

quantization and decoding of each page. We also study the impact of further quantization of the memory

output (i.e., additional read thresholds), and the resulting effect on performance is evaluated by means of

computer simulation. Although the focus of this chapter is on information-theoretic analysis, some of the

results provide qualitative insight into effective coding solutions.

The remainder of the chapter is organized as follows. In Section 7.2, we introduce the discrete

memoryless multiple-access channel model for multilevel flash memories. We then review information-

theoretic characterizations of the uniform rate regions and sum rates for the three decoding schemes,

namely, TIN, SC, and DS. We also derive some elementary but useful characterizations of those channels

for which TIN and SC decoders yield the same rate regions, as well as an elementary general bound on the
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difference between the respective sum rates of TIN and SC decoders. In Section 7.3, we analyze properties

and relationships among the rate regions for various MLC flash memory channel models. We also study

the effect of using different binary labelings of cell voltage levels. In Section 7.4, we investigate the impact

of employing additional read thresholds to obtain refined soft information. We conclude the chapter in

Section 7.5.

Throughout this chapter, we follow the notation in [23]. Random variables are denoted with

upper case letters (e.g., X) and their realizations with lower case (e.g., x). Calligraphic letters (e.g., X )

are used for finite sets. R is the set of real numbers. The discrete interval [i : j] is defined as the set

{i, i + 1, . . . , j}. For a length-n vector v, v(i) represents the value of its ith coordinate, i = 1, 2, . . . , n.

We use the notation p(x) to abbreviate the probability P(X = x), and likewise for conditional and joint

probabilities of both scalar and vector random variables, e.g., p(y|x) = P(Y = y|X = x). For a probability

vector ( p1
ps

, p2
ps

, . . . , pn
ps
) where ps = ∑

n
i=1 pi and pi ≥ 0, i = 1, 2, . . . , n, the entropy function is defined by

H( p1
ps

, p2
ps

, . . . , pn
ps
) = −∑

n
i=1

pi
ps

log2
pi
ps

. We will also use the function f (x) = xlog2x. Therefore, we can

express the entropy function by H( p1
ps

, p2
ps

, . . . , pn
ps
) = − 1

ps
∑

n
i=1 f (pi) + log2 ps.

7.2 Multiple-Access Channel Model for Flash Memories

In this section, we introduce the multiple-access channel model for multilevel flash memories,

define the decoding schemes to be considered, and present some of their basic information-theoretic

properties.

7.2.1 System Model

We model a multilevel flash memory as a k-user multiple-access channel with k independent inputs

X1, . . . , Xk, and one output Y (k = 2 for MLC flash, and k = 3 for TLC flash).

Specifically, the readback signal Ỹ ∈ R in a flash memory is expressed as

Ỹ =σ(X1, . . . , Xk) + Z, (7.1)

where X1, . . . , Xk ∈ {0, 1} represent data from k independent pages, Z ∈ R stands for the asymmetric
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noise (see [56] for more details on the normal-Laplace distribution model), andσ maps an input (x1, . . . , xk)

to a voltage level v. More specifically, σ is a bijective mapping from the set T which consists of all

length-k binary strings to the set V which consists of 2k voltage level values. For k = 2 (MLC flash),

TMLC = {11, 10, 01, 00} and VMLC = {A0, A1, A2, A3}; see Figure 1.1. By a slight abuse of notation,

we write the mapping σ as a vector σ = (w0, w1, w2, w3) (where wi, i = 0, 1, 2, 3, represent the full set

of possible 2-tuples) to represent the mapping σ(wi) = Ai for i = 0, 1, 2, 3. For example, the vector

σ = (11, 10, 00, 01) corresponds to σ(11) = A0, σ(10) = A1, σ(00) = A2, and σ(01) = A3. Similarly,

for k = 3 (TLC flash), TTLC = {111, 110, 101, 100, 011, 010, 001, 000} and VTLC = {B0, B1, . . . , B7};

see Figure 1.2. We write σ = (w0, w1, . . . , w7) (where wi, i = 0, 1, . . . , 7, represent the full set of possible

3-tuples) to represent the mapping σ(wi) = Bi for i = 0, 1, . . . , 7. We will refer to a mapping σ as a

labeling.

During the readback process, a quantizer Q is used to quantize Ỹ to obtain an output Y, i.e.,

Y = Q(Ỹ), where the function Q(·) is a mapping from R to a finite alphabet set Y = {s0, s1, . . . , sq−1}

of cardinality q. Usually q = 2k, but this is not necessary. The cardinality q can correspond to a large

number by applying multiple reads. From an information-theoretic point of view, this means that more soft

information is obtained for decoding.

7.2.2 Decoding Schemes for MLC Flash Memories

In this subsection, we investigate three decoding schemes for MLC flash memories.

Given a labeling σ and a quantizer Q, the MLC flash memory channel can be modeled as a

2-user discrete memoryless multiple-access channelWMLC: (X ×X , p(y|x1, x2),Y), where X = {0, 1},

Y = {s0, s1, . . . , sq−1}, and p(y|x1, x2) is the transition probability for any x1, x2 ∈ X and y ∈ Y . For

simplicity, denote the conditional probabilities by pBD(x1 ,x2),y
def
= P(Y = y|X1 = x1, X2 = x2), where

BD(·) is a function that converts a binary string into its decimal value; e.g., p2,s0 = P(Y = s0|X1 =

1, X2 = 0).

Users j = 1, 2 independently encode their messages M j into the corresponding length-n codewords

xn
j and send (write) them over the shared channel (i.e., a set of cells) to the receiver (reader). Following

the notation in [23], we define a (2nR1 , 2nR2 , n) code by two encoders xn
1(m1) and xn

2(m2) for messages
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m1 and m2 from message sets [1 : 2nR1 ] and [1 : 2nR2 ] respectively, and a decoder that assigns an estimate

(m̂1, m̂2) based on the received sequence yn. We assume that the message pair (M1, M2) is uniform over

[1 : 2nR1 ]× [1 : 2nR2 ]. The average probability of error is defined as P(n)
e = P{(M1, M2) 6= (M̂1, M̂2)}.

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes such that

limn→∞ P(n)
e = 0. The capacity region is the closure of the set of achievable rate pairs (R1, R2).

The capacity region of this multiple-access channel is fully characterized [19, 23]. However, to

make the analysis simple and yet representative, we focus on the uniform rate region for different decoding

schemes. This represents the achievable region corresponding to the case that the input distributions are

uniform. For other input distributions, the analysis is similar.

For a channelWMLC, the Treating Interference as Noise (TIN) decoding scheme decodes X1

and X2 independently based on Y [19, 23]. Its uniform rate region RTIN for lower page X1 and upper

page X2 is the set of all pairs (R1, R2) such that R1 ≤ I(X1;Y) and R2 ≤ I(X2;Y). In RTIN , the sum

rate is rTIN
s = max{R1 + R2 : (R1, R2) ∈RTIN} = I(X1;Y) + I(X2;Y); here and in the following, for

the sake of brevity, we use the term “sum rate” to represent the maximum sum rate in the corresponding

rate region.

For a channelWMLC, the Successive Cancellation (SC) decoding scheme decodes X1 and X2 in

some order based on Y [19, 23]. Its uniform rate region RSC for lower page X1 and upper page X2 is the

set of all pairs (R1, R2) such that R1 ≤ I(X1;Y|X2), R2 ≤ I(X2;Y|X1), and R1 + R2 ≤ I(X1, X2;Y). In

RSC, the sum rate is rSC
s = max{R1 + R2 : (R1, R2) ∈RSC} = I(X1, X2;Y).

Remark 7.2.1. For TIN decoding, X1 and X2 are decoded independently and can be implemented in

parallel. However, for SC decoding, X1 and X2 are decoded in a certain order. In general, TIN decoding

is preferred for its low decoding complexity, but there may be a cost in performance relative to SC

decoding, as reflected in the uniform rate region containment RTIN ⊆RSC and the sum rate relationship

rTIN
s ≤ rSC

s . �

The following theorem identifies the channels for which the sum rates of TIN decoding and SC

decoding are the same.

Theorem 7.2.1. For a channel WMLC, the sum rates satisfy rTIN
s ≤ rSC

s with equality if and only if
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p3,s j p0,s j = p2,s j p1,s j for all j = 0, 1, . . . , q− 1. If rTIN
s = rSC

s , then RTIN = RSC and the rate region is a

rectangle.

Proof. We bound the value rSC
s − rTIN

s as follows

rSC
s − rTIN

s =I(X1, X2;Y)− I(X1;Y)− I(X2;Y)

=I(X2;Y|X1)− I(X2;Y)

=H(X2|X1)− H(X2|X1,Y)−
(

H(X2)− H(X2|Y)
)

(a)
= I(X1; X2|Y)

=
q−1

∑
j=0

(
3

∑
i=0

pi,s j

4
)I(X1; X2|Y = s j) ≥ 0,

where in step (a) we use H(X2|X1) = H(X2) which follows from the fact that X1 and X2 are independent.

Now, I(X1; X2|Y)≥ 0 with equality if and only if X1 and X2 are conditionally independent given

Y = s j, i.e., P(X1, X2|Y = s j) = P(X1|Y = s j)P(X2|Y = s j). Thus, we need to check four cases:

1) P(X1 = 1, X2 = 1|Y = s j) = P(X1 = 1|Y = s j)P(X2 = 1|Y = s j), i.e.,
p3,s j

∑
3
i=0 pi,s j

=
p3,s j+p2,s j

∑
3
i=0 pi,s j

p3,s j+p1,s j

∑
3
i=0 pi,s j

.

2) P(X1 = 1, X2 = 0|Y = s j) = P(X1 = 1|Y = s j)P(X2 = 0|Y = s j), i.e.,
p2,s j

∑
3
i=0 pi,s j

=
p3,s j+p2,s j

∑
3
i=0 pi,s j

p2,s j+p0,s j

∑
3
i=0 pi,s j

.

3) P(X1 = 0, X2 = 1|Y = s j) = P(X1 = 0|Y = s j)P(X2 = 1|Y = s j), i.e.,
p1,s j

∑
3
i=0 pi,s j

=
p1,s j+p0,s j

∑
3
i=0 pi,s j

p3,s j+p1,s j

∑
3
i=0 pi,s j

.

4) P(X1 = 0, X2 = 0|Y = s j) = P(X1 = 0|Y = s j)P(X2 = 0|Y = s j), i.e.,
p0,s j

∑
3
i=0 pi,s j

=
p1,s j+p0,s j

∑
3
i=0 pi,s j

p2,s j+p0,s j

∑
3
i=0 pi,s j

.

To satisfy conditions 1) – 4), we have p3,s j p0,s j = p2,s j p1,s j for all j = 0, 1, . . . , q− 1.

Finally, assuming rTIN
s = rSC

s , i.e., I(X1;Y) + I(X2;Y) = I(X1, X2;Y), since I(X1, X2;Y) =

I(X1;Y) + I(X2;Y|X1) = I(X2;Y) + I(X1;Y|X2), we have I(X1;Y) = I(X1;Y|X2) and I(X2;Y) =

I(X2;Y|X1), which means RTIN=RSC. �

An upper bound on the difference between rSC
s and rTIN

s is given by the following theorem.

Theorem 7.2.2. For a channel WMLC, the rate difference rSC
s − rTIN

s ≤ 1 with equality if and only if

p3,s j + p2,s j = p1,s j + p0,s j and p3,s j p1,s j = p2,s j p0,s j = 0 for all j = 0, 1, . . . , q− 1.
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Proof. We bound the value rSC
s − rTIN

s as

rSC
s − rTIN

s =I(X1, X2;Y)− I(X1;Y)− I(X2;Y)

=I(X1; X2|Y) = H(X1|Y)− H(X1|X2,Y)

(a)
≤H(X1)− H(X1|X2,Y)

(b)
≤H(X1) = 1,

where step (a) follows from H(X1|Y) ≤ H(X1), and step (b) is due to H(X1|X2,Y) ≥ 0. Thus, rSC
s −

rTIN
s = 1 if and only if 1) H(X1|Y) = H(X1) = 1, and 2) H(X1|X2,Y) = 0.

The condition H(X1|Y) = ∑
q−1
j=0 (∑

3
i=0

pi,s j
4 )H(X1|Y = s j) = 1 holds if and only if p3,s j + p2,s j =

p1,s j + p0,s j for all j = 0, 1, . . . , q− 1. It means that even if Y is given, X1 is still completely random to the

observer. Similarly, H(X1|X2,Y) = 0 requires that p3,s j p1,s j = p2,s j p0,s j = 0 for all j = 0, 1, . . . , q− 1. It

indicates that if X2 and Y are obtained, then X1 can be determined. �

From the proof of Theorem 7.2.2, it is easy to see that rSC
s − rTIN

s = 1 is satisfied if and only if

I(X1;Y) = I(X2;Y) = 0 and I(X1, X2;Y) = 1. Thus, in this case, if we use TIN decoding, no information

can be reliably stored in the memory (i.e., I(X1;Y) + I(X2;Y) = 0), whereas if we use SC decoding, one

bit of information can be reliably stored in each cell (i.e., I(X1, X2;Y) = 1).

The third decoding scheme we consider is modeled upon current MLC flash memory technology.

For this scheme, the Gray labelingσ = (11, 10, 00, 01) is used to map binary inputs (X1, X2) to cell levels

V. The lower page X1 and upper page X2 are decoded independently according to different quantization

rules and a total of three reads are employed. To decode X1, Ỹ is quantized by one read between voltage

levels A1 and A2 (see Figure 1.1), and the corresponding output is Y1. To decode X2, Ỹ is quantized

by two reads between voltage levels A0 and A1, and between A2 and A3, respectively (see Figure 1.1),

and the corresponding output is Y2. We call this Default Setting (DS) decoding, and it is used as our

baseline decoding scheme. Its uniform rate region RDS for the lower page X1 and the upper page X2

is the set of all pairs (R1, R2) such that R1 ≤ I(X1;Y1) and R2 ≤ I(X2;Y2). In RDS, the sum rate is

rDS
s = max{R1 + R2 : (R1, R2) ∈RDS} = I(X1;Y1) + I(X2;Y2).
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Table 7.1: Channel transition matrix pE
MLC(y|v) at early-stage of P/E cycling for MLC flash memories.

V Inputs: (X1, X2) Output: Y
Levels Gray NO EO s0 s1 s2 s3

A0 (11) (11) (11) a1 1− a1 0 0
A1 (10) (10) (00) 0 b1 1− b1 0
A2 (00) (01) (01) 0 0 c1 1− c1
A3 (01) (00) (10) 0 0 0 1

7.3 Performance of MLC Flash Memory with Different Decoding Schemes

and Labelings

In this section, we study the uniform rate region and sum rate of several MLC flash memory

channel models with different decoding schemes and labelings. The channel models, inspired by empirical

observation of flash memory behavior, are defined by channel transition matrices relating voltage levels

to quantized outputs. Specifically, we consider program/erase (P/E) cycling models (early-stage and

late-stage) and a data retention model. The P/E cycling model is used to characterize errors caused by

inter-cell interference and the wear induced by repeated program/erase operations. The data retention

model is used to characterize retention errors resulting from charge leakage over time from programmed

cells. Note that although we concentrate on these particular models here, similar analysis can be applied to

other relevant models.

Among the 4! = 24 possible binary labelings of the 4 nominal cell voltage levels, we initially

consider 3 representative examples.

Definition 7.3.1. For MLC flash memory, the mapping σG=(11, 10, 00, 01) is called Gray labeling,

σNO=(11, 10, 01, 00) is called Natural Order (NO) labeling, and σEO=(11, 00, 01, 10) is called Even Odd

(EO) labeling.

For each of these three labelings, the mapping between inputs (X1, X2) ∈ TMLC and voltage levels

V ∈ VMLC is shown in Table 7.1.

Remark 7.3.1. It is a standard practice in current MLC flash technology to program the lower page and

upper page sequentially in a 2-step procedure [56]. The cell voltage level is initially set to reflect the value
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of the lower bit, with a ‘1’ corresponding to the lowest level and a ‘0’ corresponding to an intermediate level.

When programming the upper bit, this voltage level is increased to reach the desired level corresponding

to the binary labeling. Recall that a programming operation cannot decrease the cell level. Clearly this

procedure is only compatible with labelings in which two lower voltage levels share the same lower bit

value, and likewise for the two upper voltage levels. The Gray labeling, which is used in practice, and the

NO labeling satisfy this property, but the EO labeling does not.

The 2-step programming process also influences the behavior of the flash memory channel. The

early-stage P/E cycling model and data retention model are largely independent of the programming

method, but the late-stage P/E cycling model includes the effect of an incorrectly programmed lower

bit on the programming of the upper bit. Hence, when analyzing the performance of any MLC flash

memory labeling, we will assume that the 2-bit labels of the labeling under consideration are mapped to

the corresponding labels in the Gray labeling, to which the 2-step programming process is then applied.

This approach can be extended to higher density flash memory, such as TLC, as well. �

We assume the quantizer Q uses three reads, placed between every pair of adjacent voltage levels,

as shown in Figure 1.1. Hence, the output alphabet YMLC = {s0, s1, s2, s3}. For DS decoding, we assume

that the output alphabet for the lower page X1 is Y1
MLC = {s0∪1, s2∪3} of cardinality two, and the output

alphabet for the upper page X2 is Y2
MLC = {s0, s1∪2, s3} of cardinality three; here, we use the notation

su∪v to represent an output obtained by merging two outputs su and sv in YMLC, i.e., P(Y = su∪v|X1 =

x1, X2 = x2) = ∑i∈{u,v} P(Y = si|X1 = x1, X2 = x2) for any x1, x2 ∈ {0, 1}. Strictly speaking, for the

upper page decoding, current MLC flash memories use an output alphabet Y2
MLC = {s1∪2, s0∪3}. The

resulting performance cannot exceed that obtained with the output alphabet {s0, s1∪2, s3} used in this

chapter. Thus, DS decoding also requires a total of three reads.

7.3.1 Performance of Gray, NO, and EO Labelings

We study the performance of MLC flash memories using the P/E cycling model, which has

different channel characteristics for early and late stages of the memory lifetime.

a) Early-Stage P/E Cycling Model

The early-stage P/E cycling channel transition matrix pE
MLC(y|v), for output y ∈ YMLC and
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voltage level v ∈ VMLC, reflects empirical results in [79] and is shown in Table 7.1, where a1, 1− a1, b1,

1− b1, c1, and 1− c1 represent nonzero probabilities.

As shown in Table 7.1, note that the transition probability from inputs (X1, X2) to output Y

depends upon the labeling which maps inputs to voltage levels, as well as the channel transition matrix

from voltage levels to output.

Lemma 7.3.2. For channel transition matrix pE
MLC(y|v), using Gray labeling, we have rTIN

s = rSC
s and

RTIN=RSC. Using either NO labeling or EO labeling, we have rTIN
s < rSC

s .

Proof. With Gray labeling, in Table 7.1, for the column Y = s0, we have p0,s0 = 0, p1,s0 = 0, p2,s0 = 0,

and p3,s0 = a1. Thus, p3,s0 p0,s0 = p2,s0 p1,s0 . We can also verify p3,si p0,si = p2,si p1,si for i = 1, 2, 3. Thus,

from Theorem 7.2.1, we conclude rTIN
s = rSC

s and RTIN = RSC. On the other hand, under NO labeling

p3,s2 p0,s2 6= p2,s2 p1,s2 , and under EO labeling p3,s3 p0,s3 6= p2,s3 p1,s3 . Thus, from Theorem 7.2.1, for these

two labelings, rTIN
s < rSC

s . �

Next, we calculate and compare the uniform rate regions and sum rates for the three decoding

schemes under the Gray, NO, and EO labelings. The results are shown in Table 7.2, where λ1, λ2, λ3, λ4,

and λ5 are given by

λ1 =
f (1− b1)− f (3− b1)

4
+

3
2

,

λ2 =1 +
1
4

(
f (1− a1) + f (1 + c1) + f (1− c1)

)
− 1

4

(
f (2− c1) + f (2− a1 + c1)

)
,

λ3 =1 +
1
4

(
f (1− b1) + f (c1)− f (1− b1 + c1)

)
,

λ4 =1 +
1
4

(
f (1− a1) + f (b1) + f (1− c1)

)
− 1

4

(
f (1− a1 + b1) + f (2− c1)

)
,

λ5 =1− 1
4

(
f (1− a1 + b1) + f (2− c1) + f (1− b1 + c1)

)
+

1
4

(
f (1− a1) + f (c1) + f (1− c1) + f (b1) + f (1− b1)

)
.

As an example, we show how to calculate λ1; the quantities λ2, λ3, λ4, and λ5 can be obtained in

a similar manner. We see that λ1 corresponds to I(X1;Y1) under DS decoding. Referring to Table 7.1, we

see that
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Table 7.2: Uniform rate regions and sum rates of DS, TIN, and SC decodings at early-stage of P/E
cycling for MLC flash memories.

Gray
DS RDS

G 0 ≤ R1 ≤ λ1, 0 ≤ R2 ≤ λ2 rDS
s(G)

= λ1 + λ2

TIN RTIN
G 0 ≤ R1 ≤ λ3, 0 ≤ R2 ≤ λ4 rTIN

s(G) = λ3 + λ4

SC RSC
G 0 ≤ R1 ≤ λ3, 0 ≤ R2 ≤ λ4 rSC

s(G)
= λ3 + λ4

NO
TIN RTIN

NO 0 ≤ R1 ≤ λ3, 0 ≤ R2 ≤ λ5 rTIN
s(NO) = λ3 + λ5

SC RSC
NO 0 ≤ R1 ≤ 1, 0 ≤ R2 ≤ λ4, R1 + R2 ≤ 1 + λ5 rSC

s(NO)
= 1 + λ5

EO
TIN RTIN

EO 0 ≤ R1 ≤ λ4, 0 ≤ R2 ≤ λ5 rTIN
s(EO) = λ4 + λ5

SC RSC
EO 0 ≤ R1 ≤ 1, 0 ≤ R2 ≤ λ3, R1 + R2 ≤ 1 + λ5 rSC

s(EO)
= 1 + λ5

P(Y1 = s0∪1|X1 = 1) =
P(Y1 = s0∪1, X1 = 1)

P(X1 = 1)

=
∑

1
i=0 P(Y1 = s0∪1, X1 = 1, X2 = i)

P(X1 = 1)

=
∑

1
i=0 P(Y1 = s0∪1|X1 = 1, X2 = i)P(X1 = 1, X2 = i)

P(X1 = 1)
=

1 + b1

2
.

Similarly, we calculate P(Y1 = s2∪3|X1 = 1) = 1−b1
2 , P(Y1 = s0∪1|X1 = 0) = 0, and P(Y1 = s2∪3|X1 =

0) = 1. Noting that P(Y1 = s0∪1) =
1+b1

4 and P(Y1 = s2∪3) =
3−b1

4 , we get

λ1 =I(X1;Y1)

=H(Y1)− H(Y1|X1)

=H(
1 + b1

4
,
3− b1

4
)− 1

2
H(

1 + b1

2
,
1− b1

2
)

=− 1
4

(
f (1 + b1) + f (3− b1)

)
+ 2− 1

2

(
− 1

2
(

f (1 + b1) + f (1− b1)
)
+ 1
)

=
f (1− b1)− f (3− b1)

4
+

3
2

.

From Table 7.2, we have the following rate region and sum rate comparisons for the Gray, NO,

and EO labelings. We denote the uniform rate region under DS decoding and Gray labeling by the term

RDS
G , where the superscript and subscript represent decoding scheme and labeling, respectively. The same

holds for other terms in Table 7.2.
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Theorem 7.3.3. With channel transition matrix pE
MLC(y|v), the rate regions satisfy RDS

G ⊂ RTIN
G ,

RTIN
NO ⊂RTIN

G , and RSC
G ⊂RSC

NO. For the sum rates, we have rTIN
s(G) > rDS

s(G)
, rTIN

s(G) > rTIN
s(NO), rTIN

s(G) > rTIN
s(EO),

and rSC
s(G)

= rSC
s(NO)

= rSC
s(EO)

.

Proof. Referring to Table 7.2, we only need to show that λ3 > λ1, λ4 > λ2, λ4 > λ5, λ3 > λ5, 1 > λ3, and

λ3 + λ4 = 1 + λ5. Here we only give proofs of λ3 > λ1 and λ4 > λ5. Other relationships can be proved

in a similar way.

We have λ3 − λ1 = 1
4

(
f (c1) + f (3 − b1) − f (1 − b1 + c1)

)
− 1

2 . Let h1(b1, c1) = f (c1) +

f (3− b1)− f (1− b1 + c1). For 0 < b1 < 1 and 0 < c1 < 1, we have

∂h1(b1, c1)

∂b1
= log2(1− b1 + c1)− log2(3− b1) < 0.

Thus, for 0 < b1 < 1 and 0 < c1 < 1, we have h1(b1, c1) > h1(b1 = 1, c1) = 2, so λ3 > λ1.

For 0 < b1 < 1 and 0 < c1 < 1, we have

f (1− b1) + f (c1)− f (1− b1 + c1) = (1− b1)log2
1− b1

1− b1 + c1
+ c1log2

c1

1− b1 + c1
< 0,

so λ4 − λ5 = − 1
4

(
f (1− b1) + f (c1)− f (1− b1 + c1)

)
> 0. �

Example 7.3.1. For the early-stage P/E cycling model in Table 7.1, let a1 = 0.98, b1 = 0.97, and c1 = 0.99.

The uniform rate regions under Gray and NO labelings are plotted in Figure 7.1(a). It can be seen that

RTIN
NO ⊂RTIN

G = RSC
G ⊂RSC

NO. The SC decoding with NO labeling gives the largest rate region. Note

that since the channel transition matrix varies from different flash chip vendors, the channel parameters are

chosen to help visualize the relationship among the rate regions. For other choices of channel parameters,

the relative positions of the rate regions and qualitative conclusions stay the same. �

b) Late-Stage P/E Cycling Model

The late-stage P/E cycling channel transition matrix pL
MLC(y|v), for output y ∈ YMLC and voltage

level v ∈ VMLC, reflects measurements in [79] and its structure is shown in Table 7.3 where â1, â2,

1− â1 − â2, b̂1, 1− b̂1, ĉ1, and 1− ĉ1 represent nonzero probabilities.
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Figure 7.1: (a) Uniform rate regions under Gray and NO labelings with a1 = 0.98, b1 = 0.97, and
c1 = 0.99 for the early-stage P/E cycling model. (b) Uniform rate regions under Gray and NO labelings
with â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85 for the late-stage P/E cycling model.

Lemma 7.3.4. For channel transition matrix pL
MLC(y|v), we have rTIN

s < rSC
s with Gray labeling, NO

labeling or EO labeling.
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Table 7.3: Channel transition matrix pL
MLC(y|v) at late-stage of P/E cycling for MLC flash memories.

V Inputs: (X1, X2) Output: Y
Levels Gray NO EO s0 s1 s2 s3

A0 (11) (11) (11) â1 â2 0 1− â1 − â2

A1 (10) (10) (00) 0 b̂1 1− b̂1 0
A2 (00) (01) (01) 0 0 ĉ1 1− ĉ1
A3 (01) (00) (10) 0 0 0 1

Table 7.4: Uniform rate regions and sum rates of DS, TIN, and SC decodings at late-stage of P/E cycling
for MLC flash memories.

Gray
DS RDS

G 0 ≤ R1 ≤ τ1, 0 ≤ R2 ≤ τ2 rDS
s(G)

= τ1 + τ2

TIN RTIN
G 0 ≤ R1 ≤ τ3, 0 ≤ R2 ≤ τ4 rTIN

s(G) = τ3 + τ4

SC RSC
G 0 ≤ R1 ≤ τ5, 0 ≤ R2 ≤ τ6, R1 + R2 ≤ τ4 + τ5 rSC

s(G)
= τ4 + τ5

NO
TIN RTIN

NO 0 ≤ R1 ≤ τ3, 0 ≤ R2 ≤ τ7 rTIN
s(NO) = τ3 + τ7

SC RSC
NO 0 ≤ R1 ≤ τ8, 0 ≤ R2 ≤ τ6, R1 + R2 ≤ τ7 + τ8 rSC

s(NO)
= τ7 + τ8

EO
TIN RTIN

EO 0 ≤ R1 ≤ τ4, 0 ≤ R2 ≤ τ7 rTIN
s(EO) = τ4 + τ7

SC RSC
EO 0 ≤ R1 ≤ τ8, 0 ≤ R2 ≤ τ5, R1 + R2 ≤ τ7 + τ8 rSC

s(EO)
= τ7 + τ8

Proof. For any of the three labelings, consider the column Y = s3 in Table 7.3. Since three of p0,s3 , p1,s3 ,

p2,s3 , and p3,s3 are positive, it is impossible to satisfy p3,s3 p0,s3 = p2,s3 p1,s3 = 0. Thus, from Theorem 7.2.1,

we conclude rTIN
s < rSC

s . �

Next, we calculate the uniform rate regions and the sum rates of the three decoding schemes under

different labelings. The results are shown in Table 7.4, where τi, i = 1, . . . , 8, are given by

τ1 =
f (2− â1 − â2 − b̂1)− f (4− â1 − â2 − b̂1)

4
+

3
2

,

τ2 =1 +
1
4

(
f (â2) + f (2− â1 − â2) + f (1 + ĉ1) + f (1− ĉ1)

)
− 1

4

(
f (3− â1 − â2 − ĉ1) + f (â2 + ĉ1 + 1)

)
,

τ3 =1 +
1
4

(
f (1− b̂1) + f (ĉ1) + f (1− â1 − â2) + f (2− ĉ1)

)
− 1

4

(
f (1− b̂1 + ĉ1) + f (3− â1 − â2 − ĉ1)

)
,

τ4 =1 +
1
4

(
f (â2) + f (2− â1 − â2) + f (b̂1) + f (1− ĉ1)

)
− 1

4

(
f (â2 + b̂1) + f (3− â1 − â2 − ĉ1)

)
,
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τ5 =1 +
1
4

(
f (1− â1 − â2) + f (1− b̂1) + f (ĉ1)

)
− 1

4

(
f (2− â1 − â2) + f (1− b̂1 + ĉ1)

)
,

τ6 =1 +
1
4

(
f (â2) + f (b̂1) + f (1− ĉ1)

)
− 1

4

(
f (â2 + b̂1) + f (2− ĉ1)

)
,

τ7 =1− 1
4

(
f (â2 + b̂1) + f (1− b̂1 + ĉ1) + f (3− â1 − â2 − ĉ1)

)
+

1
4

(
f (â2) + f (ĉ1) + f (2− â1 − â2 − ĉ1) + f (b̂1) + f (1− b̂1)

)
,

τ8 =1 +
1
4

(
f (1− ĉ1) + f (1− â1 − â2)− f (2− â1 − â2 − ĉ1)

)
.

From Table 7.4, we can infer the following rate region and sum rate relationships.

Theorem 7.3.5. With channel transition matrix pL
MLC(y|v), the rate regions satisfy RDS

G ⊂ RTIN
G ,

RTIN
NO ⊂RTIN

G , and RSC
G ⊂RSC

NO. For the sum rates, we have rTIN
s(G) > rDS

s(G)
, rTIN

s(G) > rTIN
s(NO), rTIN

s(G) > rTIN
s(EO),

and rSC
s(G)

= rSC
s(NO)

= rSC
s(EO)

.

Proof. Using Table 7.4, we only need to show that τ3 ≥ τ1, τ4 > τ2, τ4 > τ7, τ8 > τ5, τ3 > τ7, and

τ4 + τ5 = τ7 + τ8. Here, we give proofs of τ3 ≥ τ1 and τ4 > τ2. The other relationships can be proved in

a similar way. First, we compute

4(τ3 − τ1)

= f (1− b̂1) + f (ĉ1) + f (1− â1 − â2) + f (2− ĉ1) + f (4− â1 − â2 − b̂1)− f (1− b̂1 + ĉ1)

− f (3− â1 − â2 − ĉ1)− f (2− â1 − â2 − b̂1)− f (2)

=(1− b̂1 + ĉ1)log2(1 +
3− â1 − â2 − ĉ1

1− b̂1 + ĉ1
)− (1− b̂1)log2(1 +

1− â1 − â2

1− b̂1
)− ĉ1log2(1 +

2− ĉ1

ĉ1
)

+ (3− â1 − â2 − ĉ1)log2(1 +
1− b̂1 + ĉ1

3− â1 − â2 − ĉ1
)− (1− â1 − â2)log2(1 +

1− b̂1

1− â1 − â2
)

− (2− ĉ1)log2(1 +
ĉ1

2− ĉ1
).

Note that the function tlog2(1+ 1/t) is concave. Define t1 =
1−b̂1

1−â1−â2
, t2 =

ĉ1
2−ĉ1

, r1 =
1−â1−â2

3−â1−â2−ĉ1
,

and r2 =
2−ĉ1

3−â1−â2−ĉ1
. Then we have

(r1t1 + r2t2)log2
(
1 + 1/(r1t1 + r2t2)

)
≥ r1t1log2(1 + 1/t1) + r2t2log2(1 + 1/t2).
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That is,

(1− b̂1 + ĉ1)log2(1 +
3− â1 − â2 − ĉ1

1− b̂1 + ĉ1
) ≥ (1− b̂1)log2(1 +

1− â1 − â2

1− b̂1
) + ĉ1log2(1 +

2− ĉ1

ĉ1
).

Similarly, we have

(3− â1 − â2 − ĉ1)log2(1 +
1− b̂1 + ĉ1

3− â1 − â2 − ĉ1
)

≥(1− â1 − â2)log2(1 +
1− b̂1

1− â1 − â2
) + (2− ĉ1)log2(1 +

ĉ1

2− ĉ1
).

Therefore, τ3 − τ1 ≥ 0.

Next, we compute τ4 − τ2 = 1
4

(
f (b̂1) + f (â2 + ĉ1 + 1) − f (â2 + b̂1) − f (1 + ĉ1)

)
. Let

ĥ1(â2, b̂1, ĉ1) = f (b̂1) + f (â2 + ĉ1 + 1)− f (â2 + b̂1)− f (1 + ĉ1). For 0 < â2 < 1, 0 < b̂1 < 1, and

0 < ĉ1 < 1, we have ∂ĥ1(â2 ,b̂1 ,ĉ1)
∂â2

= log2(â2 + ĉ1 + 1) − log2(â2 + b̂1) > 0. Thus, for 0 < â2 < 1,

0 < b̂1 < 1, and 0 < ĉ1 < 1, ĥ1(â2, b̂1, ĉ1) > ĥ1(â2 = 0, b̂1, ĉ1) = 0, so τ4 > τ2. �

Example 7.3.2. For the late-stage P/E cycling model in Table 7.3, let â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and

ĉ1 = 0.85. The uniform rate regions under Gray and NO labelings are plotted in Figure 7.1(b). We see

that RTIN
NO ⊂RTIN

G ⊂RSC
G ⊂RSC

NO. Note that unlike the early-stage P/E cycling model in Example 7.3.1,

here the region RTIN
G is strictly included in RSC

G . �

Remark 7.3.2. For both P/E cycling models, Theorems 7.3.3 and 7.3.5 imply that, for TIN decoding,

among the 3 labelings, Gray labeling gives the largest sum rate, which is also larger than the sum rate of

DS decoding. Moreover, compared to NO labeling, Gray labeling generates a larger uniform rate region

for TIN decoding, but a smaller one for SC decoding.

For the early-stage P/E cycling model, we can also draw several conclusions from Lemma 7.3.2,

Theorem 7.3.3, and Table 7.2 that provide insight into efficient coding schemes.

First, the sum rate of TIN decoding under Gray labeling is the same as that of SC decoding under

any of Gray, NO, and EO labelings. This provides a symmetric capacity-achieving coding solution based

on good codes for the point-to-point channel. With Gray labeling, we only need to use two point-to-point
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symmetric capacity-achieving codes, e.g., polar codes [4], for the lower and upper pages, to achieve the

rates I(X1;Y) and I(X2;Y), respectively. The two pages can be decoded independently.

Second, for NO labeling or EO labeling, with SC decoding, the rate pair (R1 = 1, R2 = λ5) can

be achieved, which implies that no coding is required for the lower page X1. This also suggests us a very

simple coding solution. We only need to apply a symmetric capacity-achieving, point-to-point code to the

upper page X2 to achieve rate I(X2;Y), and no coding is needed for the lower page X1. To recover the

data, we first decode the upper page. Then, we can determine the lower page using the decoded data from

the upper page, the binary labeling, the channel transition matrix, and the output Y. For example, referring

to the NO labeling in Table 7.1, we see that if the correctly decoded bit of the upper page is X2 = 1 and

the output is Y = s2, then the lower page bit must be X1 = 0.

For the late-stage P/E cycling model, from Lemma 7.3.4, Theorem 7.3.5, and Table 7.4, we see

that the sum rate of TIN decoding under Gray labeling is strictly less than that of SC decoding. The gap ∆

between the two sum rates is

∆ = rSC
s(G) − rTIN

s(G) = τ5 − τ3

=
1
4

(
f (3− â1 − â2 − ĉ1)− f (2− â1 − â2)− f (2− ĉ1)

)
.

To bound the gap ∆, let â = â1 + â2 and ĥ(â, ĉ1) = f (3− â− ĉ1)− f (2− â)− f (2− ĉ1). For

0 < â < 1 and 0 < ĉ1 < 1, we have ∂ĥ(â,ĉ1)
∂â = log2(2− â)− log2(3− â− ĉ1)< 0, and ∂ĥ(â,ĉ1)

∂ĉ1
= log2(2−

ĉ1)− log2(3− â− ĉ1)< 0. Therefore, ĥ(â=1,ĉ1=1)
4 <∆< ĥ(â=0,ĉ1=0)

4 ; that is, 0 <∆< 3log23−4
4 = 0.1887.

If we impose constraints ηâ ≤ â1 + â2 < 1 and ηĉ1 ≤ ĉ1 < 1, we have 0 < ∆ ≤ 1
4

(
f (3− ηâ − ηĉ1)−

f (2− ηâ)− f (2− ηĉ1)
)

. For example, for ηâ = 0.95 and ηĉ1 = 0.85, we get 0 < ∆ ≤ 0.00246. In

general, the gap ∆ is very small. �

c) Data Retention Model

For the data retention model, the structure of the channel transition matrix pDR
MLC(y|v), for output

y ∈ YMLC and voltage level v ∈ VMLC, is shown in Table 7.5, where ã1, 1− ã1, b̃1, 1− b̃1, c̃1, and 1− c̃1

represent nonzero probabilities. In contrast to the early-stage P/E cycling model, where errors are caused

by upward drift of cell voltages, in the data retention model, errors arise from downward drift of the
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Table 7.5: Channel transition matrix pDR
MLC(y|v) of data retention for MLC flash memories.

V Inputs: (X1, X2) Output: Y
Levels Gray NO EO s0 s1 s2 s3

A0 (11) (11) (11) 1 0 0 0
A1 (10) (10) (00) 1− ã1 ã1 0 0
A2 (00) (01) (01) 0 1− b̃1 b̃1 0
A3 (01) (00) (10) 0 0 1− c̃1 c̃1

cell voltages.

Analysis and results for the data retention model are very similar to those of the early-stage P/E

cycling model. We state only one representative result here, without a detailed proof.

Lemma 7.3.6. For channel transition matrix pDR
MLC(y|v), using Gray labeling, we have rTIN

s = rSC
s and

RTIN = RSC. Using either NO labeling or EO labeling, we have rTIN
s < rSC

s .

7.3.2 Extension to All Labelings

In this subsection, we extend the analysis to the entire set of labelings. There exist a total of 4! = 24

labelings. In order to categorize and analyze these 24 labelings, we take advantage of the algebraic structure

of permutation groups, and consider a labelingσ as a permutation π in the symmetric group S4. This is the

group whose elements are all the permutation operations that can be performed on the 4 distinct elements

in TMLC, and whose group operation, denoted as ∗, is the composition of such permutation operations.

A labeling σ = (w0, w1, w2, w3) corresponds to the permutation π = (w0, w1, w2, w3) in S4, where the

permutation vector π = (w0, w1, w2, w3) is defined to represent π(11) = w0, π(10) = w1, π(01) = w2,

and π(00) = w3, e.g., π = (11, 10, 01, 00) is the identity permutation in S4. The group operation ∗ of two

permutations π1 and π2 is defined as their composition and results in another permutation π3 = π1 ∗ π2.

In other words, π1 ∗ π2 is the function that maps any element w ∈ TMLC to π1
(
π2(w)

)
. Note that the

rightmost permutation is applied first. For example, (10, 11, 00, 01) ∗ (11, 10, 00, 01) = (10, 11, 01, 00).

Lemma 7.3.7. In the symmetric group S4, G0 = {(11, 10, 01, 00), (10, 11, 00, 01), (01, 00, 11, 10),

(00, 01, 10, 11)} forms a normal subgroup (the Klein four-group).
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Proof. The element (11, 10, 01, 00) in G0 is the identity element in S4. We can verify that the 4 elements

in G0 have the following properties: 1) the composition of the identity element and any element is that

element itself; 2) the composition of any non-identity element with itself is the identity element; 3) the

composition of two distinct non-identity elements is the third non-identity element. Thus, G0 is the Klein

four-group. �

With the subgroup G0 in Lemma 7.3.7, we partition S4 into G0 and its 5 cosets, each of size 4:

S4 = G0 ∪ G1 ∪ G2 ∪ Ḡ0 ∪ Ḡ1 ∪ Ḡ2, where G1 = G0 ∗ (11, 10, 00, 01); G2 = G0 ∗ (11, 00, 01, 10);

Ḡ0 = G0 ∗ (11, 01, 10, 00); Ḡ1 = G0 ∗ (11, 01, 00, 10); Ḡ2 = G0 ∗ (11, 00, 10, 01).

In the following, we will treat each vector in every coset as a labeling. For example, G0 includes

σNO = (11, 10, 01, 00), G1 includes σG = (11, 10, 00, 01), and G2 includes σEO = (11, 00, 01, 10). The

following two lemmas give properties of the uniform rate regions for different labelings. We assume

an arbitrary channel transition matrix pMLC(y|v), for output y ∈ YMLC and voltage level v ∈ VMLC, is

given. The first lemma leverages the symmetries within the Klein four-group and its cosets to deduce the

relationship of the rate regions of different labelings.

Lemma 7.3.8. With an arbitrary channel transition matrix pMLC(y|v), for TIN decoding, the 4 labelings

in each of G0, G1, G2, Ḡ0, Ḡ1, and Ḡ2 give the same uniform rate region RTIN and sum rate rTIN
s . For SC

decoding, the 4 labelings in each of G0, G1, G2, Ḡ0, Ḡ1, and Ḡ2 give the same uniform rate region RSC,

and all 24 labelings in S4 give the same sum rate rSC
s .

Proof. This is based on the fact that the 4 labelings in each of G0, G1, G2, Ḡ0, Ḡ1, and Ḡ2 are interchange-

able by one of the following three operations: 1) in position X1, change 0 to 1 and 1 to 0; 2) in position

X2, change 0 to 1 and 1 to 0; 3) in both positions X1 and X2, change 0 to 1 and 1 to 0. For example,

in G0, (11, 10, 01, 00) is transformed to (01, 00, 11, 10) by changing 0 to 1 and 1 to 0 in position X1,

is transformed to (10, 11, 00, 01) by changing 0 to 1 and 1 to 0 in position X2, and is transformed to

(00, 01, 10, 11) by changing 0 to 1 and 1 to 0 in both positions X1 and X2. Since the distributions for X1

and X2 are uniform, the values of I(X1;Y), I(X2;Y), I(X1;Y|X2), and I(X2;Y|X1) under a labeling σ1

are the same as those under a labeling σ2 which is obtained by one of the above three operations on the

labeling σ1. Thus, for a fixed decoding scheme (TIN or SC), the uniform rate region and sum rate under
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the labelingσ1 are the same as those under the labelingσ2. Therefore, for a fixed decoding scheme (TIN or

SC), the 4 labelings in each coset give the same uniform rate region and sum rate. For the sum rate of SC

decoding, for all 24 labelings, I(X1, X2;Y) is the same due to the uniform distributions for X1 and X2. �

Lemma 7.3.9. With an arbitrary channel transition matrix pMLC(y|v), for TIN decoding, if the labelings

in Gi, i = 0, 1, 2, give a uniform rate region: R1 ≤ϕ1 and R2 ≤ϕ2, then the labelings in Ḡi give a uniform

rate region: R1 ≤ϕ2 and R2 ≤ϕ1. For SC decoding, if the labelings in Gi give a uniform rate region:

R1 ≤ ψ1, R2 ≤ ψ2, and R1 + R2 ≤ ψ3, then the labelings in Ḡi give a uniform rate region: R1 ≤ ψ2,

R2 ≤ψ1, and R1 + R2 ≤ψ3.

Proof. This is based on the fact that the 4 labelings in Gi, i=0, 1, 2, are transformed (one-to-one) to

the 4 labelings in Ḡi by swapping the values in positions X1 and X2. For example, (11, 10, 01, 00) in

G0 is transformed to (11, 01, 10, 00) in Ḡ0. With the uniform distributions for X1 and X2, X1 (or X2)

with labeling (11, 10, 01, 00) is equivalent to X2 (or X1) with labeling (11, 01, 10, 00). Thus, for a fixed

decoding scheme (TIN or SC), the uniform rate region under labeling (11, 10, 01, 00) will become the one

under labeling (11, 01, 10, 00) by swapping the constraints on R1 and R2. From Lemma 7.3.8, it follows

that the uniform rate region under labelings in G0 will become the one under labelings in Ḡ0 by swapping

the constraints on R1 and R2. The same conclusion holds for the labelings in Gi and Ḡi, i = 1, 2. �

Remark 7.3.3. Theorems 7.3.3 and 7.3.5, and Lemmas 7.3.8 and 7.3.9, imply that for both P/E cycling

models, with TIN decoding, the 8 labelings in G1 (including Gray labeling) and Ḡ1 produce the largest

sum rate among all 24 labelings. With SC decoding, all of the 24 labelings give the same sum rate. �

Finally, we examine the uniform rate region that can be achieved by using multiple labelings in

S4 within a codeword in a time-sharing fashion. Define RTIN
S4

= Conv
(⋃

σ∈S4
RTIN
σ

)
, the convex hull

of uniform rate regions of all 24 labelings for TIN decoding. Define RSC
S4

= Conv
(⋃

σ∈S4
RSC
σ

)
, the

convex hull of uniform rate regions of all 24 labelings for SC decoding. Through time-sharing of different

labelings, we obtain the following lemma.

Lemma 7.3.10. For TIN decoding, any point (R1, R2) ∈RTIN
S4

can be achieved. For SC decoding, any

point (R1, R2) ∈RSC
S4

can be achieved.
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Proof. We first show that any point (R1, R2) ∈ RTIN
S4

can be achieved. From Carathéodory’s The-

orem [19], any point (R1, R2) in RTIN
S4

can be represented as a convex combination of 3 points in⋃
σ∈S4

RTIN
σ . Without loss of generality, we assume (R1, R2) =α1(R1

1, R1
2) +α2(R2

1, R2
2) +α3(R3

1, R3
2),

where α1,α2,α3 ≥ 0 and ∑
3
i=1αi = 1. Points (R1

1, R1
2), (R2

1, R2
2), and (R3

1, R3
2) in

⋃
σ∈S4

RTIN
σ are

achievable under some labelings. Consider three sequences of codes, achieving (R1
1, R1

2), (R2
1, R2

2), and

(R3
1, R3

2), respectively. For each block length n, consider the (2α1nR1
1 , 2α1nR1

2 ,α1n), (2α2nR2
1 , 2α2nR2

2 ,α2n),

and (2α3nR3
1 , 2α3nR3

2 ,α3n) codes from the given three sequences of codes, respectively. By a standard

time-sharing argument [19], a fourth (2nR1 , 2nR2 , n) code can be constructed from the above three codes.

Thus, any point (R1, R2) ∈ RTIN
S4

can be achieved. In a similar manner, one can show that any point

(R1, R2) ∈RSC
S4

is achievable. �

Moreover, for the early-stage P/E cycling model in Table 7.1, the rate region RSC
S4

can be deter-

mined explicitly.

Theorem 7.3.11. For the early-stage P/E cycling model, RSC
S4

is the set of all pairs (R1, R2) such that

R1 ≤ 1, R2 ≤ 1, and R1 + R2 ≤ I(X1, X2;Y) = 1 + λ5.

Proof. Using Table 7.2, Lemma 7.3.8, and Lemma 7.3.9, we can calculate the convex hull of the uniform

rate regions of all 24 labelings. We can also see that the convex hull of the uniform rate regions of two

labelings (11, 10, 01, 00) and (11, 01, 10, 00) are enough to achieve RSC
S4

. �

Example 7.3.3. For the early-stage of P/E cycling, let a1 = 0.98, b1 = 0.97, and c1 = 0.99. The uniform

rate regions RTIN
S4

, RSC
S4

, and RDS
G are plotted in Figure 7.2. It can be seen that RDS

G ⊂RTIN
S4
⊂RSC

S4
, and

the line connecting the two corner points in RTIN
S4

is on the line connecting the two corner points in RSC
S4

.

Moreover, either R1 or R2 can achieve rate 1 with SC decoding. For the late-stage P/E cycling model,

let â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85. The uniform rate regions RTIN
S4

, RSC
S4

, and RDS
G are

plotted in Figure 7.3. For this case, there is a gap between the line connecting the two corner points in

RTIN
S4

and the one connecting the two corner points in RSC
S4

. This property implies that SC decoding will

give a larger sum rate than TIN decoding. �

Remark 7.3.4. Although we focus on the P/E cycling and data retention models, our analysis can be
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Figure 7.3: (a) Uniform rate regions RTIN
S4

, RSC
S4

, and RDS
G with â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and

ĉ1 = 0.85 for the late-stage P/E cycling model, where the two curves (blue and red) in the black rectangle
are enlarged and shown in (b).

extended to other channel models. As a simple example, we consider a channel model whose channel

transition matrix pC
MLC(y|v) reflects both upward and downward drift of voltage levels due to the combined

effects of P/E cycling and data retention. The structure of the transition matrix is shown in Table 7.6, where

ā1, 1− ā1, b̄1, b̄2, 1− b̄1 − b̄2, c̄1, c̄2, 1− c̄1 − c̄2, d̄1, and 1− d̄1 represent nonzero probabilities. From
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Table 7.6: Channel transition matrix pC
MLC(y|v) for combined effects of P/E cycling and data retention

for MLC flash memories.

V Inputs: (X1, X2) Output: Y
Levels Gray NO EO s0 s1 s2 s3

A0 (11) (11) (11) ā1 1− ā1 0 0
A1 (10) (10) (00) b̄2 b̄1 1− b̄1 − b̄2 0
A2 (00) (01) (01) 0 c̄2 c̄1 1− c̄1 − c̄2
A3 (01) (00) (10) 0 0 1− d̄1 d̄1

Theorem 7.2.1, we readily conclude that rTIN
s < rSC

s with any of the 24 possible labelings since, for any

labeling, three of the probabilities p0,s1 , p1,s1 , p2,s1 , and p3,s1 are positive. �

7.4 Performance Improvement with Increased Number of Reads

In the previous analysis, we used a quantizer with three read thresholds. We now investigate the

improvement in performance that can be obtained by applying additional reads to obtain more refined soft

information.

For a channelWMLC, assume there is an output set Y q
MLC = {s0, s1, . . . , sq−1} obtained by a set

of q− 1 reads. Denote the corresponding uniform rate regions for TIN and SC decodings by RTIN and

RSC, and the sum rates for TIN and SC decodings by rTIN
s and rSC

s .

Now, introduce one more read threshold to split one of the outputs s0, s1, . . . , sq−1. Without loss

of generality, we split s0 into s1
0 and s2

0 to obtain a new output set Ŷ q+1
MLC = {s1

0, s2
0, s1, s2, . . . , sq−1}. The

resulting uniform rate regions for TIN and SC decodings are denoted by R̂TIN and R̂SC, respectively, and

the corresponding sum rates by r̂TIN
s and r̂SC

s , respectively. The following lemma shows that for both TIN

and SC decodings, one-step progressive quantization produces rate regions that contain the original rate

regions. Thus the sum rates are not decreased, and in fact they become strictly larger except when the

transition probabilities satisfy very specific conditions after quantization.

Lemma 7.4.1. For uniform rate regions, under TIN and SC decodings, RTIN ⊆ R̂TIN and RSC ⊆ R̂SC.

For sum rates, under TIN and SC decodings, rTIN
s ≤ r̂TIN

s and rSC
s ≤ r̂SC

s .

Proof. We first prove that the sum rate r̂SC
s ≥ rSC

s , i.e., I(X1, X2; Ŷ)≥ I(X1, X2;Y), and give the condition

141



when the equality holds. The value I(X1, X2;Y) can be expressed as follows:

I(X1, X2;Y) =H(Y)− H(Y|X1, X2)

=H
(

∑
3
i=0 pi,s0

4
,
∑

3
i=0 pi,s1

4
, . . . ,

∑
3
i=0 pi,sq−1

4

)
− 1

4

3

∑
i=0

H(pi,s0 , pi,s1 , . . . , pi,sq−1).

Similarly, the value I(X1, X2; Ŷ) is

I(X1, X2; Ŷ)

=H(Ŷ)− H(Ŷ|X1, X2)

=H
(∑

3
i=0 pi,s1

0

4
,
∑

3
i=0 pi,s2

0

4
,
∑

3
i=0 pi,s1

4
, . . . ,

∑
3
i=0 pi,sq−1

4

)
− 1

4

3

∑
i=0

H(pi,s1
0
, pi,s2

0
, pi,s1 , . . . , pi,sq−1)

(a)
=H

(
∑

3
i=0 pi,s0

4
,
∑

3
i=0 pi,s1

4
, . . . ,

∑
3
i=0 pi,sq−1

4

)
+

∑
3
i=0 pi,s0

4
H(

∑
3
i=0 pi,s1

0

∑
3
i=0 pi,s0

,
∑

3
i=0 pi,s2

0

∑
3
i=0 pi,s0

)

− 1
4

3

∑
i=0

H(pi,s0 , pi,s1 , . . . , pi,sq−1)−
1
4

3

∑
i=0

pi,s0 H(
pi,s1

0

pi,s0

,
pi,s2

0

pi,s0

),

where step (a) is from the grouping property of entropy and pi,s0 = pi,s1
0
+ pi,s2

0
for i = 0, 1, 2, 3.

The difference between I(X1, X2; Ŷ) and I(X1, X2;Y) is

I(X1, X2; Ŷ)− I(X1, X2;Y)

=
∑

3
i=0 pi,s0

4
H(

∑
3
i=0 pi,s1

0

∑
3
i=0 pi,s0

,
∑

3
i=0 pi,s2

0

∑
3
i=0 pi,s0

)− 1
4

3

∑
i=0

pi,s0 H(
pi,s1

0

pi,s0

,
pi,s2

0

pi,s0

)

=
∑

3
i=0 pi,s0

4

(
− 1

∑
3
i=0 pi,s0

(
f (

3

∑
i=0

pi,s1
0
) + f (

3

∑
i=0

pi,s2
0
)
)
+ log2(

3

∑
i=0

pi,s0)
)

− 1
4

3

∑
i=0

pi,s0

(
− 1

pi,s0

(
f (pi,s1

0
) + f (pi,s2

0
)
)
+ log2(pi,s0)

)
=

1
4

(
f (

3

∑
i=0

pi,s0)− f (
3

∑
i=0

pi,s1
0
)− f (

3

∑
i=0

pi,s2
0
)
)
− 1

4

3

∑
i=0

(
f (pi,s0)− f (pi,s1

0
)− f (pi,s2

0
)
)

.

Note that the difference is only related to the probabilities pi,s0 , pi,s1
0
, and pi,s2

0
for i = 0, 1, 2, 3.

To prove that I(X1, X2; Ŷ) ≥ I(X1, X2;Y), we define a new function g(u1, u2) = f (u1 + u2)−

f (u1)− f (u2) and utilize its properties. We first prove g(u1 + v1, u2 + v2) ≥ g(u1, u2) + g(v1, v2) as
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follows:

g(u1 + v1, u2 + v2)−
(

g(u1, u2) + g(v1, v2)
)

=(u1 + u2)log2(1 +
v1 + v2

u1 + u2
) + (v1 + v2)log2(1 +

u1 + u2

v1 + v2
)

−
(

u1log2(1 +
v1

u1
) + v1log2(1 +

u1

v1
)
)
−
(

u2log2(1 +
v2

u2
) + v2log2(1 +

u2

v2
)
)

.

The function tlog2(1 + 1/t) is concave. Let t1 = u1
v1

, t2 = u2
v2

, r1 = v1
v1+v2

, and r2 = v2
v1+v2

.

We have (r1t1 + r2t2)log2

(
1 + 1/(r1t1 + r2t2)

)
≥ r1t1log2(1 + 1/t1) + r2t2log2(1 + 1/t2); that is,

(u1 + u2)log2(1 +
v1+v2
u1+u2

)≥ u1log2(1 +
v1
u1
) + u2log2(1 +

v2
u2
). Similarly, (v1 + v2)log2(1 +

u1+u2
v1+v2

)≥

v1log2(1 +
u1
v1
) + v2log2(1 +

u2
v2
). Therefore, g(u1 + v1, u2 + v2)≥ g(u1, u2) + g(v1, v2), where equal-

ity holds if and only if u1
u2

= v1
v2

.

Now, we apply g(u1 + v1, u2 + v2) ≥ g(u1, u2) + g(v1, v2) twice and have

f (
3

∑
i=0

pi,s0)− f (
3

∑
i=0

pi,s1
0
)− f (

3

∑
i=0

pi,s2
0
)

=g(p0,s1
0
+ p1,s1

0
+ p2,s1

0
+ p3,s1

0
, p0,s2

0
+ p1,s2

0
+ p2,s2

0
+ p3,s2

0
)

≥g(p0,s1
0
+ p1,s1

0
, p0,s2

0
+ p1,s2

0
) + g(p2,s1

0
+ p3,s1

0
, p2,s2

0
+ p3,s2

0
)

≥g(p0,s1
0
, p0,s2

0
) + g(p1,s1

0
, p1,s2

0
) + g(p2,s1

0
, p2,s2

0
) + g(p3,s1

0
, p3,s2

0
)

=
3

∑
i=0

(
f (pi,s0)− f (pi,s1

0
)− f (pi,s2

0
)
)

,

where equality holds if and only if
p0,s1

0
p0,s2

0

=
p1,s1

0
p1,s2

0

=
p2,s1

0
p2,s2

0

=
p3,s1

0
p3,s2

0

. Thus, we have proved I(X1, X2; Ŷ) ≥

I(X1, X2;Y).

With the same proof technique, we can prove inequalities I(X1; Ŷ) ≥ I(X1;Y), I(X2; Ŷ) ≥

I(X2;Y), I(X1; Ŷ|X2)≥ I(X1;Y|X2), and I(X2; Ŷ|X1)≥ I(X2;Y|X1). These inequalities lead to rTIN
s ≤

r̂TIN
s , RTIN ⊆ R̂TIN , and RSC ⊆ R̂SC. �

In the following example, we show by means of computer simulation that the performance of

MLC flash can be improved through the use of additional reads.

Example 7.4.1. Following [56], we assume that the readback cell voltage has the normal-Laplace distribu-
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Figure 7.4: Channel model for MLC flash memories with cell voltage modeled as the normal-Laplace
distribution.

tion NL(µ,ν,α,β). The corresponding cumulative distribution function (cdf) for all real y is

F(y) =Φ(
y−µ
ν

)−
(
φ(

y−µ
ν

) · βR(αν − (y−µ)/ν)−αR(βν + (y−µ)/ν)
α +β

)
,

where Φ andφ are the cdf and probability density function (pdf) of a standard normal random variable and

R is Mills’ ratio R(z) = 1−Φ(z)
φ(z) [62]. The readback cell voltage distributions for inputs A0, A1, A2, and

A3 are defined to be NL(0, 3, 1/6, 1), NL(30, 3, 1/6, 1), NL(60, 3, 1/6, 1), and NL(90, 3, 1/6, 1),

respectively, as shown in Figure 7.4. Here, the parameters of the normal-Laplace distributions are

chosen to qualitatively reflect the distributions reported in the literature and to illustrate the effect of

output quantization using multiple reads. The cell voltage is in arbitrary units (a.u.), chosen merely for

convenience.

In the standard 3-read setting, the read thresholds are placed at positions `a = 15, `b = 45, and

`c = 75. We use a vector to represent these positions, ~L3 = (15, 45, 75). On either side of each of the

positions `a, `b, and `c, we define additional t read positions, regularly spaced at intervals of d units. For

example, setting t = 1 and d = 3, we specify a total of 9 reads centered at `a, `b, and `c, with resulting
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Figure 7.5: Uniform rate regions under Gray labeling with different number of reads: (a) using TIN
decoding, and (b) using SC decoding.

read position vector~L9 = (12, 15, 18, 42, 45, 48, 72, 75, 78). Similarly, for a total of 15 reads, we set t = 2

and d = 3, and for a total of 21 reads, we set t = 3 and d = 3.
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Figure 7.6: Uniform rate regions under NO labeling with different number of reads: (a) using TIN
decoding, and (b) using SC decoding.

For the Gray labeling, the uniform rate regions under TIN and SC decodings are plotted in

Figure 7.5. As expected, the rate regions of TIN decoding and SC decoding are similar. Additional reads
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can significantly improve the rates of both lower and upper pages. For the NO labeling, the uniform rate

regions under TIN and SC decodings are plotted in Figure 7.6. With either TIN decoding or SC decoding,

additional reads effectively enhance the rate of the upper page. However, with SC decoding, the rate

improvement of the lower page is very limited. �

7.5 Conclusion

We analyzed the performance of MLC flash memories with different decoding schemes and cell

voltage labelings from a multi-user perspective. We showed that both TIN and SC decodings outperform

the current default decoding scheme in terms of both uniform rate region and sum rate. For the P/E cycling

model, with TIN decoding, we found that 8 labelings, including the standard Gray labeling, offer the

largest sum rate among all 24 possible labelings. The sum rate of TIN decoding under Gray labeling equals

that of SC decoding at the early-stage of P/E cycling, and is smaller than but close to that of SC decoding

at the late-stage of P/E cycling. It was also shown that additional read thresholds can effectively enhance

the rate region and sum rate.
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[7] A. Barg, I. Tamo, and S. Vlăduţ, “Locally recoverable codes on algebraic curves,” IEEE Trans. Inf.
Theory, vol. 63, no. 8, pp. 4928–4939, Aug. 2017.

[8] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proceedings of
the IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.

[9] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures,” IEEE Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[10] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their application to RAID type of
architectures,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4510–4519, July 2013.

[11] M. Blaum and S. R. Hetzler, “Integrated interleaved codes as locally recoverable codes: Properties and
performance,” International Journal of Information and Coding Theory, vol. 3, no. 4, pp. 324–344,
2016.

[12] M. Bossert, H. Grießer, J. Maucher, and V. V. Zyablov, “Some results on generalized concatenation of
block codes,” in Proc. Springer International Symposium on Applied Algebra, Algebraic Algorithms,
and Error-Correcting Codes, 1999, pp. 181–190.

148



[13] V. Cadambe and A. Mazumdar, “An upper bound on the size of locally recoverable codes,” in Proc.
IEEE Int. Symp. Netw. Coding (NetCod), June 2013, pp. 1–5.

[14] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives,” Proceedings of the IEEE, vol. 105, no. 9, pp.
1666–1704, Sept. 2017.

[15] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC NAND flash memory: Mea-
surement, characterization, and analysis,” in Proc. Design, Automation & Test in Europe Conference
& Exhibition (DATE), Mar. 2012, pp. 521–526.

[16] ——, “Threshold voltage distribution in MLC NAND flash memory: Characterization, analysis, and
modeling,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2013, pp. 1285–1290.

[17] G. Calis and O. O. Koyluoglu, “A general construction for PMDS codes,” IEEE Communications
Letters, vol. 21, no. 3, pp. 452–455, Mar. 2017.

[18] C. M. Compagnoni, M. Ghidotti, A. L. Lacaita, A. S. Spinelli, and A. Visconti, “Random telegraph
noise effect on the programmed threshold-voltage distribution of flash memories,” IEEE Electron
Device Letters, vol. 30, no. 9, pp. 984–986, Sept. 2009.

[19] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, New Jersey: John Wiley
& Sons, 2006.

[20] G. I. Davida and S. M. Reddy, “Forward-error correction with decision feedback,” Elsevier Informa-
tion and Control, vol. 21, no. 2, pp. 117–133, Sept. 1972.

[21] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and predistortion to tolerate cell-to-cell
interference in MLC NAND flash memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10,
pp. 2718–2728, Oct. 2010.

[22] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-correction codes in NAND flash
memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

[23] A. El Gamal and Y.-H. Kim, Network Information Theory. New York: Cambridge University Press,
2011.

[24] M. El-Khamy, J. Hou, and N. Bhushan, “Design of rate-compatible structured LDPC codes for hybrid
ARQ applications,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 965–973, Aug. 2009.

[25] G. D. Forney, Concatenated Codes. Cambridge, MA: MIT Press, 1966.

[26] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems of Information Transmis-
sion, vol. 21, no. 1, pp. 1–12, 1985.

[27] R. Gabrys, E. Yaakobi, M. Blaum, and P. H. Siegel, “Constructions of partial MDS codes over small
fields,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), June 2017, pp. 1–5.

[28] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. Cambridge, MA:
MIT Press, 1992.

149



[29] N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar codes,” in Proc. IEEE Inf. Theory
Workshop (ITW), Aug.–Sept. 2010, pp. 1–5.

[30] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,” IEEE
Trans. Inf. Theory, vol. 58, no. 11, pp. 6925–6934, Nov. 2012.

[31] S. Goparaju and R. Calderbank, “Binary cyclic codes that are locally repairable,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), June–July 2014, pp. 676–680.

[32] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of low-density parity-check
codes,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2824–2836, Nov. 2004.

[33] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their applications,”
IEEE Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988.

[34] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J., vol. 29, pp. 147–160,
1950.

[35] J. Han and L. A. Lastras-Montano, “Reliable memories with subline accesses,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), June 2007, pp. 2531–2535.

[36] M. Hassner, K. Abdel-Ghaffar, A. Patel, R. Koetter, and B. Trager, “Integrated interleaving – a novel
ECC architecture,” IEEE Trans. Magn., vol. 37, no. 2, pp. 773–775, Mar. 2001.
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