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EPIGRAPH

A wicked person is born of jealousy. Out of selfishness and anger he complains about supposed

“unfairness.”

A good person always has compassion in his heart. Free of discontentment and hatred, he sees

hardship as joy.

An enlightened person has not any attachment. He quietly observes the people of the world lost

in illusion.

Li Hongzhi, Zhuan Falun Volume II
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ABSTRACT OF THE THESIS

Unsupervised pretraining for semi-supervised OCR

by

Kishore Pacharamakalahalli Venkatswammy Reddy

Master of Science in Computer Science

University of California San Diego, 2020

Professor Taylor Berg-Kirkpatrick, Co-Chair
Professor Nuno Vasconcelos, Co-Chair

Recent works like BERT, GPT, ELMO, ULMFiT have successfully demonstrated the

effectiveness of pretraining for a variety of downstream NLP tasks. We propose to use a

similar approach for a different learning scenario - semi-supervised OCR/text recognition. We

hypothesize that for the supervised character image classifier of an OCR system, it is more

effective to classify pre-learned OCR representations of character images rather than learn to

do OCR from scratch in the traditional sense. For this purpose, components of the classifier are

pretrained in an unsupervised fashion to consume a sequence of character images obtained by

segmenting an image of a line of text, and reconstruct the same at the output. The pretraining is

x



optimized for the masked language modeling objective, without access to the OCR labels for

the character images. In our results, we show that a classifier trained on top of the pretrained

representations achieves almost 100% higher accuracy than a classifier trained from scratch, when

supervised with just 5 line images. Our pretraining procedure can leverage the large amount

of unsupervised data to learn useful OCR representations and enhances the performance of

supervised OCR systems, especially when supervised data is scarce like in historical documents.
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Chapter 1

Introduction

Figure 1.1. Context tells

The earliest ideas for Optical character recognition (OCR) date back to the early 1870s.

OCR has come a long way since then to the modern day where we have free, open source OCR

systems like Tesseract [25], OCRopus [4], Kraken [22] and Calamari [29]. Recently, multi-engine

OCR systems like Okralact [1] are working towards the standardization and interoperability of

the above popular OCR engines. These and most state-of-the-art OCR systems are based on

deep neural networks. These supervised systems require labeled data ranging from character

image annotation for a representative set of character images to annotations for whole line

images. On the other hand, OCR systems like Ocular [2, 3] and anyOCR1 [5] are unsupervised.

Supervised OCR systems tend to be data hungry and labeling data for them can be time consuming

and expensive. In contrast, while unsupervised systems with the promise of only using the

abundant unlabeled data seem attractive, they are designed with specific applications in mind

and hence do not work out of the box for unintended applications. For instance, the generative

1requires minimal language expert supervision
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probabilistic model of Ocular is formulated to mimic the primary sources of variation and noise

in the underlying printing processes for historical documents [2]. Techniques to improve the

performance of supervised OCR systems in a general sense, without relying on labeled data

is a practical solution that is useful and even more so especially when labeled data is scarce.

Drawing inspiration from the success of unsupervised pretraining for diverse downstream NLP

tasks in works like BERT [8], GPT [20], ELMO [18], ULMFit [13], we design an unsupervised

pretraining procedure to improve the performance of supervised OCR systems. Specifically,

we leverage unsupervised data to improve the performance of the character image classifier (in

segmentation-based OCR) or line image transcriber (in segmentation-free OCR) component of

a supervised OCR system. This work offers an effective solution for the former and builds the

foundations for the latter.

The central objective of our work is to improve the performance of a character image

classifier, the component of an OCR system that comes into play after the segmentation of

character images from a line image. For this, it will be useful if we have an encoder that has

learned to understand character images and subsequently generate good OCR representations in

a language contextual setting.To achieve that, we pretrain our encoder (Line-image Encoder in

Figure 3.2) in an unsupervised fashion on a Masked Language Model (MLM) objective, which

consumes and produces sequences of character images. The hope is that, by matching at the pixel

level and using an LSTM backbone to model language, we induce linguistic hidden representa-

tions which are necessary to predict missing characters to be reconstructed in running text. The

training objective for this model pressures it to do unsupervised OCR inside the model. Once we

have successfully trained the Line-image Encoder, then the Classifier head just has to extract

the learned OCR representations from the Line-image Encoder rather than learn to do OCR.

Our experiments demonstrate that the Classifier head paired with our pretrained Line-image

Encoder learns to classify character images with very little supervised data. This proves that the

Line-image Encoder learned useful OCR representation in the unsupervised pretraining.

2



This whole chapter is co-authored with Berg-Kirkpatrick, Taylor and is currently being

prepared for submission for publication of the material. PV Reddy, Kishore; Berg-Kirkpatrick,

Taylor. The thesis author was the primary investigator and author of this material.
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Chapter 2

Related work

Unsupervised pretraining has been widely shown to be effective for a variety of Computer

Vision tasks like image classification [6], image retrieval [19], segmentation, object tracking etc.

In the field of NLP models like BERT [8], ULMFit [13] are pretrained on unlabeled text and

achieve state-of-the-art results on downstream tasks like text classification, sentiment analysis,

Question answering etc. All these works indicate the effectiveness of finetuning on useful

representations learned in an unsupervised/self-supervised manner.

Unfortunately, in the domain of OCR, there is very little work that uses unsupervised learning

to improve OCR systems. An approach for this is to train an unsupervised feature extractor

and use it with a recurrent network like LSTM. Adopting this approach, in [24] a Restricted

Boltzmann Machine is used as the unsupervised feature extractor. As another approach, in [15]

they pretrain their OCR system in an unsupervised manner on line images by jointly optimizing

for reconstruction and Connectionist Temporal Classification (CTC) [9] objectives.

There are a few works like Ocular [2, 3] and anyOCR [5] that do OCR in an unsupervised manner

for historical texts. In [10], OCR is done in an unsupervised manner using line images and a

sample of lexically valid strings similar to the target corpora.

Some works like [21] perform finetuning on a model pretrained on similar labeled data

to get better overall OCR performance.
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prepared for submission for publication of the material. PV Reddy, Kishore; Berg-Kirkpatrick,
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Chapter 3

Method and datasets

3.1 Method

For a character image classifier, it is easy to learn to classify embeddings of characters

rather than character images directly. To aid our Classifier model in this, we pretrain its Line-

image Encoder component in an unsupervised fashion with the expectation that it learns useful

OCR representations from sequences of character images, without ever looking at the character

classes. If the Linguistic-Context model (i.e Line-image Encoder coupled with a Character-

image Decoder) did learn that, then the classifier with pretrained Line-image Encoder should be

able to easily classify character images with very little supervision. Our results show exactly

that. As enumerated in the results, with as little as training on 5 sequences of character images,

the pretrained Classifier model can achieve accuracy close to 70%.

In the following subsections we cover notation, the components of the semi-supervised

Classifier model, its training objective and implicit masking, and the architecture of the unsuper-

vised Linguistic-Context model.

6



3.1.1 Notation

Following is the notation that will be followed throughout.

L - the image of a whole line of text, obtained by segmenting image of a page of text.

C - sequence of segmented character images, obtained by segmenting L.

Ci - ith character image in the C.

This notation is depicted in Figure 3.1.

Figure 3.1. Notation used to refer to a Line image (below) and its corresponding segmented
sequence of character images (above)

3.1.2 The semi-supervised Classifier Model

The Classifier model takes a sequence of character images, C as input and identifies the

character classes they belong to. Its architecture is depicted in Figure 3.2.

The model has two components - the Line-image Encoder and Classification Head.

1. Line-image Encoder - it consists of Character-image Encoder and LSTM Block.

The Character-image Encoder encodes each individual character image, Ci into a fixed-size

vector that is fed sequentially to the LSTM Block. The Character-image Encoder serves similar

function as an embedding layer in a Language Model - to convert tokens to respective continuous

vector representations. The LSTM Block processes the sequence, C in both forward and backward

direction and produces the OCR representations to be consumed by Classification Head.

7



2. Classification Head - It is a linear layer that classifies each individual OCR represen-

tations from the Line-image Encoder to the respective character classes.

Figure 3.2. The Classifier model architecture

3.1.3 The unsupervised Linguistic-Context Model

The Linguistic-Context model takes a sequence of character images, C as input and

reconstructs the same sequence of character images at the output. The model consists of two

components - the Line-image Encoder and Character-image Decoder. Its architecture is depicted

in Figure 3.3.

1. Line-image Encoder - It is the same as explained in section 3.1.2

2. Character-image Decoder - It is used to reconstruct each character image, Ci of the

sequence, C independently, being fed the representations output by the Line-image Encoder. We

experiment with a Transposed CNN and PixelCNN [26] as the decoder.

8



The Transposed CNN upsamples a vector representation to a character image, Ci.

The PixelCNN reconstructs each Ci pixel-by-pixel auto-regressively. It is conditioned on the

output of the Line-image Encoder, which is a vector or a whole image (in case of our Hybrid

architecture, which is generated by passing the outputs of Line-image Encoder through a Trans-

posed CNN first).

Figure 3.3. The Linguistic-Context model architecture

3.1.4 Training objective and Implicit Masking

We use Masked Language Model (MLM) training objective, same as that of BERT.

Besides using a sequence of character images, C instead of words, our training procedure differs

from BERT’s training in two other ways. First, we do not explicitly mask any character image,

Ci of C. Rather we have an implicit masking mechanism, that masks every Ci in C in parallel.

Second, as a consequence of implicit masking, we calculate the loss on every image in the

sequence at the output. The training objective is pixel-wise Cross Entropy.

9



Figure 3.4. Implicit masking highlighted for the character image a in the input sequence

Figure 3.4 demonstrates our implicit masking procedure. We use a bidirectional LSTM

in our LSTM Block. For each Ci in the sequence C, the forward LSTM encodes all the images

before it (C<i) and the backward LSTM encodes all the images after it (C>i). These forward and

backward hidden states are concatenated and fed to the decoder which reconstructs Ci. In the

figure, the implicit masking for C5 is highlighted (i.e. char image a). Note that the model does

not get to see image C5, but only its complete left and right context, while learning to produce its

representation. This same implicit masking is done for all the Ci simultaneously. This parallel

implicit masking can be efficiently achieved by processing C in an regular fashion by the forward

and backward LSTMs, and shifting the forward and backward hidden states (with padding at the

ends) before the concatenation step.

10



3.2 Dataset

We train and evaluate the Linguistic-Context model two datasets: EEBO-79 dataset and

a synthetic dataset.

3.2.1 EEBO-79 dataset

EEBO-79 dataset is a subset of the books in Early English Books Online (EEBO)

database, an online database of around 146,000 printed English works in between 1473 and

1700.

Figure 3.5. Sample line images from the EEBO-79 dataset and their corresponding segmenta-
tions obtained from Ocular

We use line images from 79 books from EEBO for our work, referred to as EEBO-79

here. Ocular [2, 3], an unsupervised historical OCR system, is used to segment page scans from

the books into line images and subsequently each line image to character images. Line images

having less than 3 characters are ignored from all the books. Our dataset consists of 224,038

line images in total. Henceforth, we refer to this subset of 79 books as EEBO-79 dataset.

Sample line images along with their corresponding segmentations are shown in Figure 3.5. As

shown in the figure, the data from this dataset are very noisy, in terms of the overall image quality

as well as the character image segmentation.

11



3.2.2 Synthetic Dataset

This dataset is synthesized from a subset of text in the Penn Tree Bank [16]. We randomly

selected 211,056 sentences from PTB. We ignore sentences which are shorter than 3 characters,

and long sentences are truncated to 172 characters. The sentences have an average length of 55.2

characters. The selected sentences are converted to images by rendering the text of a sentence

into a blank image 1. During the rendering process, a small amount of Gaussian noise is added

to the final line image. As it is synthetically generated, it is easy to automatically obtain the

character segmentation from the line images. We split the dataset to train, dev and test sets in

60-20-20 proportion.

The primary purpose of this synthetic dataset is to perform control experiments to determine if

the failure of an experiment was because of the poor quality of the EEBO-79 data or due to some

other reason.

3.2.3 Data Preprocessing

Every character image, Ci is binarized and padded to a fixed size of 32x32 pixels.

The sequences in a batch are padded to match the length of the longest sequence and the padded

entries are ignored during the learning and evaluation.

This whole chapter is co-authored with Berg-Kirkpatrick, Taylor and is currently being

prepared for submission for publication of the material. PV Reddy, Kishore; Berg-Kirkpatrick,

Taylor. The thesis author was the primary investigator and author of this material.

1Performed using PIL library [7]
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Chapter 4

Experiments and results

4.1 Pretraining and downstream classification

4.1.1 Unsupervised Pretraining

For all the unsupervised pretraining experiments, we use the same Line-image Encoder

with different types of Character-image Decoder.

Line-image Encoder - consists of a Character-image Encoder and an LSTM Block. The

Character-image Encoder is a 4-layered CNN. Each layer has 3 x 3 convolutional filters followed

by Batch Normalization [14] and a ReLU [11] non-linearity. The LSTM Block consists of 3

bidirectional LSTM layers. Note that the outputs of the forward and backward LSTMs are

concatenated only at the final layer to ensure correct implicit masking. It produces a sequence of

256 length vectors, with the vector at time-step t corresponding to the implicitly masked t-th

character image in the input sequence.

The Character-image Decoder is either a Transposed Convolution Network or a Pixel

CNN [27]. The Character-image Decoder takes each 256-dimensional vector from the Line-

image Encoder and reconstructs the corresponding (implicitly masked) 32 x 32 character image

in the input sequence. The two variants of the model are discussed below.

1. TransposeConv Model - It consists of Line-image Encoder with Transposed Convolution

decoder. The decoder consists of 3 layers of Transpose CNN. Each layer is followed by

13



Batch Normalization and a ReLU non-linearity. The architecture is the same as in Figure

3.3, where the decoder is Transposed Convolution decoder.

2. Hybrid Model - This model consists of a Line-image Encoder, above mentioned Transposed

Convolution decoder followed by a Pixel CNN decoder i.e the TransposeConv model with

a Pixel CNN as the decoder on the top. The Pixel CNN in this case is conditioned on the

spatial output of the Transposed Convolution Block and reconstructs the 32 x 32 pixel

output character image. We can think of the Pixel CNN in this case as refining the 32 x 32

dimensional output of the Transposed Convolution Block, in an auto-regressive fashion.

The architecture is shown in Figure 4.1

Figure 4.1. The Hybrid model architecture

Both the above experiments have two settings. In setting A, the model is trained from

scratch, with random weight initializations while in setting B we pretrain the Character-image

Encoder and the Character-image Decoder as an autoencoder [23] on individual character

14



images extracted from the line images.

We trained an oracle character-image classifier supervised on character-class labels generated

by Ocular for EEBO-79 dataset. To evaluate the quality of the reconstructions, we report the

accuracy of this oracle classifier on each character image of the reconstructed sequence of

images.

The results for EEBO-79 and Synthetic datasets are shown in Table 4.1 and Table 4.2

respectively. For both the datasets, the Hybrid model learns better than the TransposeConv

model. On EEBO-79 dataset, the hybrid model finetuned on autoencoder weights gives the

best performance. Surprisingly for the Synthetic dataset, the finetuning of the Hybrid model

initialized with autoencoder weights decreases the performance sharply.

Table 4.1. Results for pretraining experiments on EEBO-79 dataset

Accuracy
Experiment From Scratch Pretrain as AE
TransposeConv Model 19.0 21.0
Hybrid Model 34.4 35.7

Table 4.2. Results for pretraining experiments on Synthetic dataset

Accuracy
Experiment From Scratch Pretrain as AE
TransposeConv Model 51.0 73.0
Hybrid Model 83.0 73.0

4.1.2 Semi-supervised Downstream Classification

To test of effectiveness of the OCR representations learned by the Line-image Encoder,

we train a character-class classifier on these representations. We experiment with different

amounts of supervised data to demonstrate the effectiveness of our unsupervised pretraining over

training the classifier from scratch.

15



Dataset

We use line images from the EEBO-79 dataset and the OCR labels generated by Ocular to

create the dataset. For this, we randomly pick 1500 line images, balanced across the 79 different

books in the dataset. We split these sequences into train, dev and test data, ensuring that the

books in each split do not overlap. The train set has 250 lines images and the dev and test have

1000 line images each.

We formulate the following experiments:

1. Line-image Encoder with Classification Head - This architecture is illustrated in Figure

3.2. We run this experiment in three settings - A,B and C. In setting A (LEC-Scratch)

, we train the whole model from scratch. In setting B (LEC-PretrainLE(Hybrid)), we

initialize the whole Line-image Encoder with the weights from pretrained Hybrid model

and train just the Classification Head. Setting C (LEC-PretrainLE(Hybrid)-Concat) is

the same as that of B, and we additionally concatenate the learned embeddings of the

Character-image Encoder along with the Line-image Encoder before feeding it to the

Classification Head. The LSTM Block in these experiments is a 3-layer bidirectional

LSTM[12], with 256-dimensional state and hidden vectors. Here, we do not do implicit

masking for the Line-image Encoder.

2. Character-image Encoder with Classification Head - This architecture is the same as

in Figure 3.2, minus the LSTM Block. The outputs of the Character-image Encoder are

directly classified by the head, without access to information about contextual character

images provided by the LSTM Block. The experiment is run in three settings - A,B and

C. In setting A (CEC-scratch), we train the whole model from scratch. In setting B

(CEC-PretrainCE(AE)), we initialize the Character-image Encoder with the weights from

a pretrained character image autoencoder model and train just the Classification Head. In

setting C (CEC-PretrainCE(Hybrid)), we initialize the Character-image Encoder with the

weights from a pretrained Hybrid model and train just Classification Head.
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For the above, we train with 6 different train set sizes - 5, 10, 25, 50, 100 and 250

sequences, and test each of them with all the 1000 test sequences. The classifier is trained on the

Cross Entropy objective. The test set accuracies are show in Table 4.3 and plotted in Figure 4.2.

Figure 4.2. Results for downstream classification for varying amount of train data

The results clearly show the benefits of pretraining. When trained with just 5 sequences,

the models trained from scratch achieve an accuracy of 36.0%, while one of our pretrained

variants achieves almost double accuracy of 68.9%. The pretrained variants (MLM as well as

autoencoder) prove to be superior to the equivalent models trained from scratch as we increase

the size of the training dataset, till 100 samples. While pretraining as an autoencoder (purple

plot in figure) is better than training from scratch, it still lags behind the models pretrained with

our method. Pretrained model utilizing the learned embeddings of both the Character-image

Encoder along with the Line-image Encoder (LEC-PretrainLE(Hybrid)-Concat, pink plot in
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figure) gives the best results on the classification task for the majority of train sizes. As expected,

the model trained from scratch catches up to the pretrained models as the size of the train dataset

increases. The fact that our best pretrained models (in pink and green) start off with almost

70% accuracy after fine tuning on just 5 sequences implies that our pretraining procedure was

successful in learning OCR representations without any supervision. Additionally, the accuracy

does not drastically improve as we exponentially increase the number of train samples. This

further supports our claim.

Figure 4.3. t-SNE plot of embeddings learned by the Character-image Encoder of Linguistic-
Context model on EEBO-79 dataset, where the clusters are encoded by different colors with the
character annotation at the corresponding cluster center

Figure 4.3 shows the t-SNE [28] plot of the character embeddings (of Character-image

Encoder) learned by the Hybrid model. The model learns to segregate different characters

in the vocabulary, at the same time grouping semantic or visual symbols closer. Punctuation

marks, space (labeled as [s] in the figure) and non-alphanumeric symbols are separated from

the alphanumeric symbols. Similar looking pairs like c and e, v and y, l and I etc. are in close
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vicinity. Clusters of all the digits appear close, though they vary visually. The clusters for some

symbols are almost completely overlapping (ex: S, B, K and R clusters) and others which should

be close together are not (ex: ( and )). This behavior is partly due to the noisy nature of data and

the error-prone segmentation of line image to character images.

Table 4.3. Test results for downstream classification experiments using a subset of EEBO-79
data

Experiments 5 seqs 10 seqs 25 seqs 50 seqs 100 seqs 250 seqs
LEC-scratch 28.9 34.0 47.7 63.5 70.5 77.1
ImplicitMasked 25.2 27.5 36.1 43.1 47.6 51.3
CEC-PretrainCE(Hybrid) 68.9 71.5 74.1 75.6 76.5 77.6
CEC-scratch 36.0 38.3 44.6 50.5 51.9 55.5
CEC-PretrainCE(AE) 46.6 53.8 60.2 65.6 65.9 67.7
LEC-PretrainLE(Hybrid) 36.0 35.3 52.6 67.4 71.8 76.0
LEC-PretrainLE(Hybrid)-Concat 68.2 70.6 75.3 76.9 77.9 79.6

4.2 Ablation

4.2.1 Effectiveness of Implicit Masking

To evaluate the effectiveness of the implicit masking in the downstream classification

task, we ran the LEC-PretrainLE(Hybrid) experiment with implicit masking for the LSTM Block.

This ensured that for predicting the character-class for Ci, the model has to just use the con-

textual information (i.e. C<i and C>i) without looking at Ci. The performance of this model

(ImplicitMasked, shown in dashed-orange in Figure 4.2), quantifies the effectiveness of implicitly

masking objective. This shows that contextual information can be confidently useful to predict

masked/painted-out char images. The model manages to achieve 51.3% accuracy when trained

on 250 line images.
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4.2.2 Experiments with PixelCNN Decoder

We tested the effect of different forms of conditioning for the PixelCNN decoder of

the Linguistic-Context model. We tried out three settings: conditioning on a vector (similar to

TransposeConv Decoder), conditioning on a vector along with the information about the location

of the top-left pixel in the char-image, and conditioning on a 2D matrix.

1. Condition on vector - When the decoder was conditioned on a vector, the model performance

was hardly better than the TransposeConv model, while the auto-regressive generation was

time consuming. The problem was that though the PixelCNN did predict the masked character

correctly, it was not aware where to position the reconstructed character image in the 32 x 32

pixel grid. This resulted in the reconstructed char images to be truncated due to bad positioning.

2. Condition on vector along with a the top-left pixel information - The location was that of

the top-left pixel encoded as a pair of 32 dimensional 1-hot vectors specifying the x and y

coordinates. The resultant model outperformed the TransposeConv model.We also experimented

with the location vector as a learned vector, but it was not better than hardcoding.

3. Condition on a 2D matrix - The 2D matrix is produced by a Transpose Convolution block,

as in the Hybrid model. This spatial conditioning provided rich information about position and

results in the best performing model.

Table 4.4 shows the results of the three settings.

Table 4.4. Results of different conditionings for the PixelCNN decoder

PixelCNN conditioning Reconstruction accuracy
Vector 21.0
Vector + location 34.0
2D matrix 35.7

This whole chapter is co-authored with Berg-Kirkpatrick, Taylor and is currently being

prepared for submission for publication of the material. PV Reddy, Kishore; Berg-Kirkpatrick,

Taylor. The thesis author was the primary investigator and author of this material.

20



Chapter 5

Conclusion

In this work we start with the hypothesize that for a supervised character image classifier

in an OCR system, it is more effective to classify pre-learned OCR representations of character

images rather than learning to do OCR from scratch. Our results show that is indeed the case. The

downstream classifier is able to classify the learned OCR representations with higher accuracy

than the traditional approach in settings where the train data is limited. We observe that naive

pretraining, like an autoencoder, is better than no pretraining and our MLM-based pretraining is

even better than the naive pretraining.

One drawback of our current approach is that it require the line image to be segmented

into a sequence of character images (i.e. C from L). While it is a relatively easier task than

OCR, it can be prone to errors in cases when the text is scanned from old books and other noisy

sources. Our future work will address this problem by extending this approach to work with

whole line images, where the segmentations are of some fixed-width, not necessarily at the

character boundaries.

Given that there is very little prior work that tries to leverage unsupervised pretraining for

improving OCR, our good results in the regime of limited train data makes us believe that this is

a useful step towards building efficient OCR systems that can thrive with minimal supervision.
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