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ABSTRACT OF THE DISSERTATION 

 

Understanding the Health Impacts of Per- and Polyfluoroalkyl Substances (PFAS)  

and Air Pollution on Susceptible Populations in the US 

by 

Yachen Zhu 

Doctor of Philosophy in Public Health 

University of California, Irvine, 2022 

Professor Scott M. Bartell, Co-Chair 

Associate Professor Luohua Jiang, Co-Chair 

 

PFAS and air pollution are two groups of modifiable risk factors in the environment. 

According to the National Health and Nutrition Examination Survey, PFAS are ubiquitous in 

the serum of the general US population. Contaminated seafood and drinking water, packaged 

fast food, stain-resistant or water-repellant consumer products, dust, and air are the major 

exposure routes to humans. In addition, ambient air pollution remains the greatest 

environmental risk factor and is associated with 100,000-200,000 deaths annually in the US, 

although the air quality in the US has dramatically improved over the past few decades 

compared to its historical levels and other countries in the world. Infants, pregnant women, 

and elderly people are three typical populations that are especially susceptible to these 

environmental pollutants.  

In Chapter 2, we examined the associations between serum PFAS concentrations and 

type of residential flooring among the general US population aged 12 years and older using 



 

 xviii 

the 2005-2006 NHANES survey data. We concluded that low pile carpeting was associated 

with increased serum concentrations of PFHxS and MeFOSAA in the general US population.  

In Chapters 3 and 4, we conducted two nationwide studies investigating the impacts 

of PFAS detected in drinking water on birthweight and HDP status, respectively. We used 

county-level aggregated PFAS data from EPA UCMR3 and county-level multiple-stratified 

birth/pregnancy data from CDC WONDER. We concluded that the PFAS mixture found in 

drinking water may contribute to low birthweight and hypertensive disorder of pregnancy 

in the US.  

In Chapters 5 and 6, we further conducted two subgroup analyses using data from the 

C8 and IHS projects, respectively, focusing on two population subgroups with significantly 

higher environmental exposure to PFOA and O3 in the US due to local industries. Our studies 

suggest PFOA is moderately associated with preeclampsia in the C8 project and O3 is 

associated with a higher risk of dementia in American Indians. 

Future efforts to reduce exposure to PFAS and air pollution might help lower risks of 

low birthweight, hypertensive disorders of pregnancy/preeclampsia, and dementia in the US. 
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CHAPTER I: Introduction 

 

 Due to fast urbanization and industrialization, human activities have adversely 

impacted the environment by polluting the air we breathe, the water and food we consume, 

the products we use, and the soil where plants grow (Manisalidis et al., 2020). Populations 

that are vulnerable to environmental pollutants include children, pregnant women, elderly 

people, and people with underlying conditions such as diabetes, heart diseases, and lung 

diseases (Hackley et al., 2007; Manisalidis et al., 2020). In this dissertation, I discussed 

exposure to two groups of modifiable environmental risk factors: PFAS and air pollution, and 

associated effects on populations that are susceptible and sensitive to these environmental 

pollutants. I covered three groups of susceptible populations in this dissertation: infants, 

pregnant women, and elderly people.  

  

1.1 Per- and Polyfluoroalkyl Substances (PFAS) and Associated Health Effects 

PFAS are a large group of human-made chemicals that consist of a fully fluorinated 

(perfluoro-) carbon chain (alkane). They were produced via the electrochemical fluorination 

(ECF) method by the 3M Company since 1949 and the telomerization method developed by 

the DuPont Company since the 1970s. Due to the strong single bond between carbon (C) and 

fluorine (F), which requires very high energy to dissociate, PFAS have unique 

physiochemical characteristics such as stability in extreme temperatures and water 

resistance (Faithfull and Weers, 1998). Strong carbon-fluorine bonds also make PFAS 

resistant to hydrolysis, microbial degradation, and metabolism by vertebrates (ATSDR, 

2018). Therefore, they have been used in a variety of applications since the 1950s, including 
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stain repellents, lubricants, paints, textiles, carpeting, food packaging, nonstick cookware, 

and firefighting foams (Kissa, 2001). Long-chain PFAS can persist indefinitely in the 

environment, and bioaccumulate in humans and other organisms, they are also called 

“forever chemicals” (Giesy and Kannan, 2001; Buck et al., 2011; ATSDR, 2018).  

Contaminated seafood and drinking water, packaged fast food, consumer products 

(non-stick cookware, stain-resistant carpeting, and water-repellant clothing), dust, and air 

are the major exposure routes to humans (Egeghy, 2011; Jian et al., 2017; ATSDR, 2020; Zhu 

et al., 2021). Special excretion pathways for females include menstrual blood loss (Wu et al., 

2015), maternal transfer to offspring through pregnancy (Beesoon et al., 2011), and 

breastfeeding (Fromme et al., 2010). 

According to the National Health and Nutrition Examination Survey (NHANES), PFAS 

are ubiquitous in the serum of the general US population (Calafat et al., 2007; Kato et al., 

2011). In 2015-2016, the geometric means of perfluorooctanoic acid (PFOA), 

perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane 

sulfonic acid (PFHxS) in the serum samples of the general US population were 1.56 ng/ml, 

4.72 ng/ml, 0.58 ng/ml, and 1.18 ng/ml, respectively (CDC, 2019). The average half-lives for 

serum or plasma elimination of PFAS in humans were reported as 2-4 years for PFOA (Bartell 

et al., 2010; Olsen et al., 2007; Worley et al., 2017), 3-27 years for PFOS, 5-35 years for PFHxS 

(Olsen et al., 2007; Worley et al., 2017; Li et al., 2018; Zhang et al., 2013), and 2-4 years for 

PFNA (Zhang et al., 2013) in previous studies.  

Despite the known use of PFAS in stain-resistant carpet treatments, the effects of 

various types of carpeting on serum PFAS concentrations have been less studied. In Chapter 

2 of this dissertation, I investigated the associations between serum PFAS concentrations 
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and the type of residential flooring among the general US population aged 12 years and older 

using the 2005-2006 NHANES. We found low pile carpet is associated with increased serum 

PFHxS and MeFOSAA concentrations, while no clear association has been observed between 

the other types of carpeting and serum PFAS concentrations. demonstrating that various 

types of carpeting may present different PFAS exposure for humans, and stain-resistance 

carpet treatment could explain accountable human PFAS exposure.  

Among nearly 5,000 types of PFAS, PFOA and PFOS are the two most extensively 

produced and studied chemicals, both of which have attracted extensive attention from the 

global scientific and regulatory community (US EPA, 2009). In laboratory-based animal 

studies, PFOA and PFOS have shown the potential for developmental toxicity and 

reproductive effects (Negri et al., 2017), but the health effects have been inconclusive in 

humans (Li et al., 2017; Shi et al., 2017; Cao et al., 2018; Steenland et al., 2018; Steenland et 

al., 2020). In Chapters 3-5, I investigated the potential effects of various PFAS on infant and 

maternal health.  

 

1.1.1 PFAS and Birthweight 

Birthweight is an important marker of infant health. It is estimated that more than 

80% of neonatal deaths occur in infants of small size and/or low birthweight, i.e., weight at 

birth of less than 2,500 g or 5.5 lbs (Lawn et al., 2014; UNICEF-WHO, 2019). Globally, low 

birthweight accounts for 15-20% of all births, representing over 20 million births per year; 

and more than half of the low birthweight cases are from Asia (WHO, 2014; Blencowe et al., 

2019; UNICEF-WHO, 2019). As one of the leading risk factors for global health, low 

birthweight accounted for 10.6% (95% uncertainty interval: 9.9%, 11.4%) and 6.3% (5.5%, 
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7.3%) of attributable Disability-adjusted Life Years (DALYs) in 1990 and 2019, respectively 

(GBD, 2019). In children less than 10 years old, low birthweight is the top risk factor, 

accounting for 28.9% (95% CI: 27.3%, 30.4%) of the total DALYs in 2019 (GBD, 2019). 

Despite a substantial decrease of 41.4% in the number of DALYs during the last three 

decades, low birthweight continues to be a significant public health issue worldwide and has 

been linked to a wide range of short- and long-term consequences affecting human capital 

(Lawn et al., 2014).  

Low birthweight is not only the most important determinant of prenatal mortality 

and morbidity, but is also associated with physical growth, poor cognitive development, 

stunting and lower IQ in childhood, and obesity, diabetes, and cardiovascular disease later 

in life (Peng, 2005; Risnes et al., 2011; Lawn et al., 2014; Larroque et al., 2001). Although the 

negative effects of low birthweight on children’s cognitive development may be prevented 

through a series of experimental interventions during the neonatal period (Achenbach et al., 

1993), a large number of funds and human capital could be saved had those infants been 

born with normal birthweights. According to the Lancet Series on Neonatal Survival, there 

will be 15.1 million preterm birth and 30 million small for gestational age (including 10.4 

million low birthweight) infants, and subsequently 3.7 million stunted children, if no actions 

are taken to improve birth outcomes by 2035 (Lawn et al., 2014). 

Some epidemiological studies suggest that exposure to PFAS could cause low 

birthweight in humans (Apelberg et al., 2007; Fei et al., 2007; Johnson et al., 2014; Kishi et 

al., 2015; Vélez et al., 2015; Li et al., 2017, Cao et al., 2018), while others found little 

association (Kim et al., 2011; Savitz et al., 2012; Shi et al., 2017). The results differed by the 

study population, PFAS chemicals, and infant sex. Also, the time of blood sampling is likely 
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to be a key determinant in the association (Steenland et al., 2018; Dzierlenga et al., 2020). 

Due to pregnancy-associated physiological changes, including increased glomerular 

filtration rate (GFR) and parallel expansion of blood volume (Gibson, 1973; Cheung and 

Lafayette, 2013), the observed inverse association between PFAS concentrations and 

birthweight could be due to reverse causality or uncontrolled confounding factors such as 

GFR if the serum PFAS concentrations were measured late in pregnancy or after pregnancy 

(Verner et al., 2015; Steenland et al., 2018). Steenland et al. (2018) summarized three 

possible directed acyclic graphs (DAGs) to explain the underlying mechanisms. First, it has 

been found that the glomerular filter rate (GFR) increases by 40-50% during 30-35 weeks of 

gestation, which increases the urinary excretion of PFAS, leading to decreased serum 

concentrations (Verner et al., 2015). Women whose GFR fails to rise sufficiently tend to have 

babies with lower birthweight (Gibson, 1973; Cheung and Lafayette, 2013). Therefore, the 

observed inverse association between prenatal PFAS exposure and low birthweight could be 

confounded by the GFR. Verner et al. (2015) supported this explanation and concluded that 

GFR accounts for a substantial proportion of the observed association between prenatal 

PFAS and birthweight. Second, the growth of fetal could lead to the expansion of blood 

volume in mothers, leading to a decrease in the serum PFAS concentrations. Thus, the 

observed association between PFAS concentrations and low birthweight could be due to 

reverse causality. Third, some unknown factors such as a healthy placenta could be 

associated with both maternal blood expansion/increased GFR during pregnancy and fetal 

growth, thus confounding the association between PFAS concentrations and birthweight 

(Steenland et al., 2018).  
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A meta-analysis of 24 studies found an inverse association between PFOA and 

birthweight when the blood was sampled late in the pregnancy or at birth; however, little 

association was found when blood was sampled at the beginning of pregnancy when the 

result is less susceptible to physiological confounding or reverse causation (Steenland et al., 

2018). Another recent meta-analysis based on 29 studies on PFOS and birthweight further 

supported the finding that blood sample timing played an important role in determining the 

observed association (Dzierlenga et al., 2020). Additionally, maternal transfer to offspring 

can also lead to a reduction of PFAS serum concentration in mothers (Beesoon et al., 2011). 

This highlights the need to sample blood before or in early pregnancy to avoid physiological 

confounding and/or reverse causality.  

Compared to PFOA and PFOS, only a few studies have investigated the association 

between birthweight and other PFAS chemicals such as PFNA and PFHxS, which are also 

found to be ubiquitous at detectable levels in the general US population (CDC, 2019), and 

their associations with birthweight warrant further research.  

In Chapter 3 of this dissertation, I investigated the association between birthweight 

and PFAS detections in public water supplies in the US using aggregated county-level 

exposure data obtained from the EPA UCMR3 database. PFAS water concentrations used in 

this study are free of reverse causality and/or physiological confounding compared to PFAS 

serum measurements. Also, using county-level multiple-stratified average birthweights in 

weighted regression models produces effect estimates equivalent to those that would be 

obtained from using individual-level data on birthweight and confounders. In addition, we 

explore the association between PFAS and birthweight more comprehensively by including 

some understudied PFAS chemicals (i.e., PFHxS and PFHpA) and accounting for co-exposure 
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to other contaminants and the number of drinking water violations. Overall, our work is the 

first nationwide statistical analysis in the US on PFAS in public water supplies and 

birthweight.  

 

1.1.2 PFAS and Hypertensive Disorders of Pregnancy/Preeclampsia 

Hypertensive disorders of pregnancy (HDP) complicate approximately 5-10% of 

pregnancies in the US. HDP includes both pregnancy-induced hypertension (PIH; or 

gestational hypertension) and preeclampsia (PE) (C8 Science Panel, 2011; Borghese et al., 

2020; Steenland et al., 2020; ATSDR, 2021), the latter of which is defined as new-onset 

hypertension combined with proteinuria (≥300 mg of protein excretion in a 24-hour urine 

collection) after 20 weeks of gestation (Milne et al., 2005).  

PFAS can inhibit placental trophoblast migration and invasion (Szilagyi et al., 2020), 

leading to impaired remodeling of the spiral artery, and subsequent placental oxidative 

stress, which plays a central role in the etiology of PE/HDP (Brosens et al., 1972; Steegers et 

al., 2010; Aouache et al., 2018). However, the epidemiological findings on PFAS and PE/HDP 

have been mixed and inconclusive. A series of health studies conducted in West Virginia and 

Ohio in the US (“C8 Health Study”) and elsewhere in the world have investigated the 

association between PFAS and PE/HDP. The C8 Health Study only found weak positive 

associations between PFOA and PE (Stein et al., 2009; Savitz et al., 2012; Avanasi et al., 2016), 

and significant positive associations between PFOA and PFOS and PIH (Darrow et al. 2013). 

The studies conducted elsewhere have found significant positive associations between 

PE/PIH/HDP and other PFAS chemicals, including PFOS, PFHxS, PFBS, and PFNA (Huang et 
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al., 2019; Wikström et al., 2019; Rylander et al., 2020; Birukov et al., 2021). Additionally, a 

study in Norway found an inverse association between PE and PFUnDA (Starling et al., 2014). 

The C8 Health Study in the US had some important limitations. First, all three studies 

used self-reported PE without any validation from medical records, which may be subject to 

recall bias (Stein et al., 2009; Savitz et al., 2012; Avanasi et al., 2016). Second, Stein et al. 

(2009) is restricted to pregnancies occurring within five years before the exposure 

measurement, that is, their exposure assessment occurred after the outcome, which is a 

violation of temporality in epidemiology and may be subject to reverse causation. Because 

fetal transfer in pregnancy and breastfeeding after pregnancy are both important excretion 

pathways for PFOA in females, the measured serum PFOA concentrations in a few years after 

pregnancy may not reflect the body burden of the women before pregnancy. Additionally, 

Savitz et al. (2012) and Avanasi et al. (2016) assessed serum PFOA levels based on historical 

exposure reconstruction rather than actual measurements and therefore may be subject to 

substantial exposure measurement error. In Chapter 5 of this dissertation, we used an 

approximate Bayesian computation (ABC) method to calibrate the estimated serum PFOA 

concentrations for the participants in the C8 Studies. The ABC method combines the single 

biomarker measurement with the environmentally modeled exposure, which can reduce 

exposure measurement error (Zhu et al., 2022).  

It is also important to note that the US studies only investigated one or two PFAS 

chemicals: PFOA and PFOS. With PFOA and PFOS being gradually phased out in the US in the 

last two decades, there are alternative chemicals such as PFNA and PFHxS that warrant 

investigation.  
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In Chapter 4 of this dissertation, we examined associations between the 

detections/concentrations of four PFAS chemicals in public water supplies and HDP in the 

US during 2013-2015. PFAS water concentrations used in this study are free of reverse 

causality and/or physiological confounding compared to PFAS serum measurements. In 

addition, we were able to explore the association between PFAS and HDP more 

comprehensively by including some understudied PFAS chemicals (i.e., PFHxS and PFHpA), 

and by taking co-exposures into account. We found a small but statistically significant 

positive association between HDP and population-weighted average concentrations of all 

four PFAS (PFOA, PFOS, PFHpA, and PFHxS) and the sum of PFAS concentrations in public 

water supplies. Overall, our work is the first nationwide statistical analysis in the US on PFAS 

in public water supplies and HDP. 
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1.2 Air Pollution and Associated Health Effects on Susceptible Populations 

Besides PFAS, air pollution is another group of modifiable environmental risk factors 

that pose a major threat to human health across the globe. It is referred to as “the new 

tobacco” and “a silent public health emergency” (WHO, 2018a). It is estimated that 90% of 

the world’s population breathes unhealthy air containing high levels of pollutants that 

exceed WHO guideline limits (WHO, 2020). The combined effects of ambient (outdoor) and 

household (indoor) air pollution cause seven million premature deaths every year (WHO, 

2020). Indoor air pollution affects impoverished communities in the low- and middle-

income countries the most due to the use of highly polluting cooking fuels including wood, 

crop wastes, charcoal, coal, dung, and kerosene, which affect health in many ways (WHO, 

2018b). In developed countries such as the US, ambient air pollution remains the greatest 

environmental risk factor and is still associated with 100,000-200,000 deaths annually, 

although the air quality in the US has dramatically improved over the past few decades 

compared to its historical levels and other countries in the world (Burnett et al., 2018; 

Tessum et al., 2019).  

Similar to PFAS, ambient air pollution impact children, pregnant women, elderly 

people, and people with underlying diseases the most. In previous literature, maternal 

exposure to ambient pollution has been identified as an important risk factor for low 

birthweight, preterm birth, and HDP (Wang et al., 1997; Bell et al., 2007; Stieb et al., 2012; 

Petersen et al., 2013; Slama et al., 2008). In particular, a meta-analysis of 14 studies found 

increased particulate air pollution levels of PM10 and PM2.5 (particulate matter ≤10 and 2.5 

𝜇m) across the entire pregnancy were associated with an increased risk of low birthweight 

at term (Dadvand et al., 2013). Another meta-analysis reported increased risks of HDP 
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associated with increases in PM2.5, PM10, nitrogen dioxide (NO2), nitrogen oxides (NOx), and 

ozone (O3) (Pedersen et al., 2014). The consistently observed effects of different air 

pollutants on HDP can be explained by the fact that pregnant women are generally 

vulnerable to developing hypertensive disorders due to increased stress on the 

cardiovascular system (Yoder et al., 2009) and endothelium (Steegers et al., 2010). 

In addition to the impacts of air pollution on infant and maternal health, there is a 

growing body of epidemiological studies reporting the neurological effects of air pollution as 

well. Long-term/chronic exposure to PM2.5, O3, NOx, or NO2, the major toxic substances in the 

air, can trigger local inflammation and oxidative stress in the brain (Block and Calderon-

Garciduenas, 2009; Béjot et al., 2018; Manisalidis et al., 2020), which may play a role in 

neurodegeneration processes and lead to dementia (Peters et al., 2019; Power et al., 2016).  

Calderón-Garcidueñas et al. (2002) established the first linkage between air pollution 

and neurodegenerative disease in 32 healthy dogs in a highly polluted urban region in 

Southwest Metropolitan Mexico City. Subsequent epidemiological studies in humans further 

investigated the association in different populations. However, the results are inconsistent, 

ranging from significant to weak, null, or negative effects, possibly due to the variations in 

study designs, populations, air pollutants, sources of exposure, exposure levels, windows of 

exposure assessment, follow-up periods, outcome assessment, disease subtypes, statistical 

methods, adjusted confounding factors, etc.  

Although most of the studies found positive associations between incident 

dementia/dementia hospitalization/cognitive decline and exposure to PM2.5 (Cacciottolo et 

al., 2017; Chen et al., 2017; Carey et al., 2018; Grande et al., 2020; Jung et al., 2015; Shaffer et 

al., 2021; Shi et al., 2021; Tonne et al., 2014; Weuve et al., 2012), NOx/NO2 (Carey et al., 2018; 

https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=B%C3%A9jot%2C+Yannick
https://pubmed.ncbi.nlm.nih.gov/?term=Calder%C3%B3n-Garcidue%C3%B1as+L&cauthor_id=12051555
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Chang et al., 2014; Chen et al., 2017; Grande et al., 2020; Oudin et al., 2016; Shi et al., 2021), 

or O3 (Cerza et al., 2019; Cleary et al., 2018; Jung et al., 2015; Wu et al., 2015), some found 

null or negative associations between the outcome and PM2.5 (Cleary et al., 2018; Loop et al., 

2013), NOx/NO2 (Oudin et al., 2017), or O3 (Chen et al., 2017). Oudin et al. (2018) found the 

association differed by the source of PM2.5, i.e., PM2.5 from traffic exhaust was associated with 

incident dementia, while PM2.5 from residential wood burning was not. In contrast, Tonne et 

al. (2014) found that PM2.5 from traffic was not associated with cognitive change. Also, some 

studies reported different results for different air pollutants (Carey et al., 2018; Chen et al., 

2017; Cleary et al., 2018; Cerza et al., 2019; Jung et al., 2015; Shi et al., 2021). For example, 

Cerza et al. (2019) found positive associations between O3 and dementia hospitalization, yet 

a negative association between NO2 and dementia hospitalization in Rome. However, Carey 

et al. (2018) reported positive associations between PM2.5, NO2 and dementia, yet a negative 

association between O3 and dementia in London. In addition to the above studies, Wang et 

al. (2022) recently reported reduced dementia risk associated with air quality improvement 

with regards to PM2.5 and NO2 in older women in the US.  

In the US, people of color experience greater exposure to air pollution than White 

(Tessum et al., 2021). The disparity was found in people at all income levels across states, 

urban, and rural areas (Tessum et al., 2021). As a distinct population with “historical trauma” 

caused by forced colonization (Grayshield et al., 2015), Native Americans who live in tribes 

face disproportionate health impacts from air pollution due to the oil and gas industry that 

emits volatile organic compounds (VOCs) and NOx, which react in sunlight to form ground-

level O3 pollution that is harmful to human health (CATF, 2018; US EPA, 2021). Also, it is 

noted that Native American communities have less insurance coverage, and worse access 
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and utilization of health services than Whites (Zuckerman et al., 2004), and thus have long 

been disproportionately affected by the high burden of dementia and closely related 

cardiovascular diseases (CVD) (Browne et al., 2016; Galloway, 2005). However, no study has 

investigated the effects of air pollution on the risk of developing dementia in American 

Indians specifically. Chapter 6 of this dissertation aims to address the important knowledge 

gap. 
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CHAPTER 2 

Household low pile carpet usage was associated with increased serum 

PFAS concentrations in 2005-2006 
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2.1 Abstract 

Background: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the serum of the 

general US population. Food, drinking water, consumer products, dust, and air have been 

assessed as PFAS exposure sources for humans. The effects of various types of carpeting on 

serum PFAS concentrations have been less studied, despite the known use of PFAS in stain-

resistant carpet treatments.  

Objective: This study aimed to examine the associations between serum PFAS 

concentrations and type of residential flooring among the general US population aged 12 

years and older using the 2005-2006 National Health and Nutrition Examination Survey 

(NHANES).  

Methods: We used multiple linear regressions adjusted for complex survey design and 

relevant covariates to analyze the relations between serum PFAS concentrations and type of 

floor covering (smooth surface, low pile carpet, medium to high pile carpet, and combination 

of carpet and smooth surface), as well as other potential exposure factors. We used multiple 

imputation to address missing values.  

Results: We found significantly higher serum concentrations of perfluorohexane sulfonic 

acid (PFHxS) and 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MeFOSAA) in US 

residents residing in homes with low pile carpeting compared with those residing in homes 

with smooth surface. We concluded that among US residents aged 12 years and older 

residing in homes with low pile carpeting in the home in 2005-2006, on average 24% and 

19% of the PFHxS and MeFOSAA body burdens, respectively, could be attributed to carpeting. 

We found associations between other types of floor covering (medium to high pile carpet, 

combination of carpet and smooth surface) and some PFAS concentrations compared with 
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the smooth surface, but these results were less consistent and generally not statistically 

significant. Additionally, a group Wald Chi-squared test showed a significant result for PFOS, 

indicating different contributions of various types of flooring to PFOS serum concentration. 

Significance: Our results are representative of the general US population at the time of the 

survey, and potentially informative regarding ongoing PFAS exposure from a variety of 

sources including carpeting.  

 

Keywords: PFAS exposure, carpeting, serum, sampling survey 
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2.2 Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a group of human-made chemicals 

that widely exist in the environment, biota, and humans. Due to the strong single bond 

between carbon (C) and fluorine (F), which requires very high energy to dissociate, PFAS 

have unique physiochemical characteristics such as stability in extreme temperatures and 

water resistance (Faithfull and Weers, 1998). Strong carbon-fluorine bonds also make PFAS 

resistant to hydrolysis, microbial degradation, and metabolism by vertebrates (ATSDR, 

2018). Therefore, they have been used in a variety of applications, including textiles, 

carpeting, food packaging, nonstick cookware, and firefighting foams (Kissa, 2001). They 

persist indefinitely in the environment and bioaccumulate in humans and organisms (Buck 

et al., 2011). For example, the average half-lives for serum or plasma elimination of PFAS in 

humans were reported as about 2-4 years for perfluorooctanoic acid (PFOA) (Bartell et al., 

2010; Olsen et al., 2007; Worley et al., 2017), 3-27 years for perfluorooctane sulfonic acid 

(PFOS), 5-35 years for PFHxS (Olsen et al., 2007; Worley et al., 2017; Li et al., 2018; Zhang et 

al., 2013), and 2-4 years for perfluorononanoic acid (PFNA) (Zhang et al., 2013) in previous 

studies. Some studies have found associations between PFAS and a series of adverse health 

effects such as reduced fecundity (Vélez et al., 2015), low birthweight (Johnson et al., 2014), 

and cancers (Vieira et al., 2013).  

Perfluoroalkyl carboxylic acids (PFCA, e.g., PFOA and PFNA) and perfluoroalkane 

sulfonic acid (PFSA, e.g., PFOS and PFHxS) both belong to perfluorinated acids (PFA) in the 

PFAS family (Buck et al., 2011; D’eon and Mabury, 2011). Long-chain PFAS (PFCA with ≥8 

carbons and PFSA with ≥6 carbons) have been shown to be more bioaccumulative than their 

short-chain analogues (Martin et al., 2003; Olsen et al., 2009), and therefore have attracted 
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more attentions from the global scientific and regulatory community (Buck et al., 2011; US 

EPA, 2009). There are two main methods to produce PFAS: electrochemical fluorination 

(ECF) and telomerization. The ECF method was used by the 3M Company from 1949 to 2001 

to manufacture perfluorooctanesulfonyl fluoride (POSF)-based materials (including PFOS, 

MeFOSAA, EtFOSAA, and high-molecular-weight fluorinated polymers), PFCA (such as PFOA 

and PFNA) and their ammonium salts (Beesoon et al., 2011; Buck et al., 2011; D’eon and 

Mabury, 2011). The ECF technique resulted in a mixture of  linear (70-80%) and branched 

(20-30%) isomers, while the telomerization method initially developed by the DuPont 

Company in the 1970s produced almost completely linear isomers. Starting from  2002, the 

3M Company, the major global manufacturer of PFOA, PFOS and related 

perfluorooctanesulfonyl fluoride compounds, ceased its production of these substances 

using the ECF technique due to health concerns, and has since introduced short-chain 

perfluoroalkane sulfonates and products such as perfluorobutane sulfonic acid (PFBS) 

(Zushi et al., 2012). In 2006, EPA initiated a global stewardship program to achieve a 95% 

reduction in PFOA and its precursors by 2010, and work towards the elimination of these 

chemicals by 2015. During this time the manufacture of PFOA, PFOS and their precursors 

was largely relocated to Asia, especially China (UNEP, 2015; Yue, 2008), where other 

manufacturers continued to use the ECF process to develop these substances (Buck et al., 

2011). Unlike PFOS, which was almost solely produced using the ECF technique, PFOA could 

be manufactured through not only the ECF method, but also telomerization, which was still 

in use after 2002 to produce fluorotelomer-based chemicals including polyfluoroalkyl 

phosphate esters (PAPs) and PFOA linear isomers. Additionally, some fluorotelomer-based 

materials such as PAP diesters (diPAPs) can be enzymatically hydrolyzed to produce 8:2 
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fluorotelomer alcohol (8:2 FTOH), an intermediate metabolite that is subsequently 

transformed into perfluoroalkyl carboxylic acids (PFCA) such as PFNA, PFOA, and PFHpA 

(Buck et al., 2011; D’eon and Mabury, 2007; D’eon and Mabury, 2011). NHANES data have 

accordingly shown a significant downward trend in serum concentrations of PFOS and 

PFHxS in the general US population since 1999 (Calafat et al., 2007; Kato et al., 2011). 

However, PFOA did not decline as much as expected after the phase-out by 3M (Olsen et al., 

2008; Beesoon et al., 2011) and remained essentially unchanged, and may have increased 

during 2003-2008 in the US (Kato et al., 2011) before declining slowly since 2008 (CDC, 

2019). The percentage of linear isomer for PFOA was also found to be increasing during 

1997-2012 in Sweden, indicating the ongoing production of fluorotelomer-based chemicals 

(Gebbink et al., 2015). 

According to the Carpet and Rug Institute, most commercial and residential carpets 

and rugs in the US have been treated with perfluorooctane sulfonyl fluoride (POSF)-based 

materials in the manufacturing process to achieve stain resistance (DTSC, 2018). For 

example, sulfonamido-ethanol (MeFOSE) is a raw material used in textile and carpet 

products, and can be metabolized into MeFOSAA (aka M570), a precursor of PFOS; PFOS was 

a key ingredient in Scotchgard and had been extensively produced for use in carpet 

treatment until the phase-out. Perfluorohexane sulfonyl fluoride (PHxSF)-based derivatives 

such as PFHxS had also been produced by the 3M Company until the phase-out parallel to 

the phase-out of POSF-based products, and was used in specific postmarket carpet treatment 

products (Wang et al., 2014; Olsen et al., 2003). In 2009, PFOS and its precursors were added 

to Annex B of Stockholm Convention on Persistent Organic Pollutants (POPs). While this is 

an important step to restrict the production and use of PFOS and its precursors, a list of 
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specific exemptions associated with this treaty still allows the mass production and almost 

all the historic uses of PFOS and its precursors, including the use in carpets, leather and 

apparel, textiles and upholstery, paper and packaging, coating and coating additives, and so 

forth (UNEP, 2010). 

Dust ingestion has been associated with stain-resistant treatment of carpets or rugs, 

which is an important pathway for PFAS exposure (D’Hollander et al., 2010; Beesoon et al., 

2012; Harris et al., 2017; Hu et al., 2018; Hurley et al., 2018; Karásková et al., 2016). Previous 

studies have indicated the ubiquitous presence of diPAPs, 8:2 FTOH, PFCA, and some POSF-

based materials in indoor dust or air, which could come from consumer products such as 

carpets, upholstery, and textiles (De Silva et al., 2012; Fraser et al., 2012; Kato et al., 2009; 

Strynar et al., 2008; Winkens et al., 2018; Kubwabo et al., 2005). In a Canadian study 

conducted by Shoeib et al. (2005), MeFOSE and N-ethylperfluorooctane sulfonamidoethanol 

(EtFOSE) were detected at the median concentrations of 110 ng/g and 120 ng/g in indoor 

air, respectively, 10-20 times higher than their outdoor concentrations. EtFOSE is a POSF-

based raw material used in paper and packaging products, and it can be metabolized into 

EtFOSAA (Buck et al., 2011). Both EtFOSAA and MeFOSAA are precursors of perfluorooctane 

sulfonamidoacetic acid (FOSAA, aka M556), perfluorooctane sulfonamide (FOSA), and PFOS. 

A US study by Strynar and Lindstorm (2008) found ubiquitous existence of PFOS and PFOA 

in house dust, with median concentrations of 201 and 142 ng/g, respectively. 8:2 FTOH, an 

important precursor for PFOA, was also detected with a maximum concentration of 1660 

ng/g in the house dust. These results from previous studies highlight the potential of house 

dust and air as important pathways for human PFAS exposure. 
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Despite efforts to remove PFOA, PFOS, and PFOS precursors (MeFOSAA and EtFOSAA) 

produced using the ECF method, telomerization continued to be used to manufacture PFOA 

and related chemicals after the 2002 phase-out. A recent review paper revealed the large 

uncertainty about the amount of PFAS manufactured and imported due to the fact that a 

large part of the amounts has been claimed as confidential business information (CBI) and 

only substances manufactured or imported at above 11.34 tonnage per year at a single site 

have been reported (Glüge et al., 2020); also, PFAS that can break down into PFOA and PFOS 

are still in use in the US (BloombergLaw, 2020). Additionally, commercial and residential 

carpets treated with POSF-based materials such as MeFOSAA, PFOS, and PFHxS may not be 

replaced as frequently as other products. Thus, the PFAS-treated carpets before the phase-

out may continue to be used in households and commercial settings. Besides, some short-

chain PFAS have been introduced as alternative chemicals to long-chain PFAS (Birnbaum et 

al., 2015; Gomis et al., 2018). For example, PFBS has been extensively produced and used as 

a replacement of PFOS in the ScotchGard formulas, and perfluorobutanoic acid (PFBA) has 

also been introduced as an alternative to PFOA in recent years, which may also have adverse 

health effects despite their relatively shorter half-lives (Buck et al., 2011; Olsen et al., 2009; 

Eschauzier et al., 2010; Liu et al., 2020).  

Some studies have reported positive associations between PFAS concentrations in 

serum or indoor dust and carpet (Beesoon et al., 2012; Harris et al., 2017; Hu et al., 2018; 

Hurley et al., 2018; Karásková et al., 2016). However, none of these studies distinguished 

between different types of carpets. Because different types of carpets were designed for 

different social settings and frequency of foot traffic, they may present distinct patterns of 

PFAS exposure contribution. For example, low pile carpets are designed for and more 
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common in places with larger traffic than medium to high pile carpets, and may have 

different PFAS treatment. We here extend the previous work by investigating and 

quantifying the contribution of PFAS exposure from various types of floor coverings using 

the NHANES public-use database. In this study, we also accounted for other previously 

reported exposure pathways to PFAS, including dietary intake of fish and shellfish 

(Christensen et al., 2017), fast food consumption (Susmann et al., 2019), water 

contamination by firefighting foams near military sites (Hu et al., 2016), and tap water 

sources (Shin et al., 2011a; Shin et al., 2011b). We also accounted for kidney function (Jain et 

al., 2019) and special PFAS excretion pathways for females, including menstrual blood loss 

(Wu et al., 2015), maternal transfer to offspring through pregnancy (Beesoon et al., 2011) 

and breastfeeding (Fromme et al., 2010). To our knowledge, this is the first analysis that 

distinguishes low pile carpet from medium/high pile carpet, and focuses specifically on the 

association between carpet type and PFAS, which can inform PFAS exposure assessment 

from carpet more comprehensively.  
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2.3 Methods 

We obtained data from the 2005-2006 NHANES data files. NHANES uses a complex, 

multistage, stratified, clustered, probability sampling design to select participants 

representative of the civilian, non-institutionalized US population (NCHS, 2012). It is a cross-

sectional survey designed to monitor the health and nutritional status of adults and children 

in the US. NHANES survey includes interviews, physical examinations for every participant 

and laboratory tests for a subsample (NCHS, 2013). Sampling weights were created in the 

sample and subsamples in each 2-year cycle to account for oversampling, non-response, and 

poststratification in the complex survey design (NCHS, 2012). Our analyses were restricted 

to the 2005-2006 cycle based on the availability of the key variable of interest: type of floor 

covering. This variable was not included in subsequent cycles of NHANES.  

Serum PFAS Measurements. In the 2005-2006 NHANES data, 12 PFAS were measured 

in a one-third subsample of eligible participants aged 12 years and older using tandem mass 

spectrometry, including PFOA, PFOS, PFHxS, 2-(N-ethyl-perfluorooctane sulfonamido) acetic 

acid (EtFOSAA), MeFOSAA, perfluorodecanoic acid (PFDA), PFBS, perfluoroheptanoic acid 

(PFHpA), PFNA, perfluorooctane sulfonamide (PFOSA), perfluoroundecanoic acid (PFUnDA), 

and perfluorododecanoic acid (PFDoA). Procedures for collecting, storing, and handling 

specimens, and quality control have been described elsewhere (CDC, 2013). PFAS serum 

concentrations below the limit of detection (LOD) were substituted with a value of LOD 

divided by √2 (CDC, 2013). We restricted our analyses to the six PFAS (i.e., PFOA, PFOS, 

PFHxS, MeFOSAA, PFDA, and PFNA) with detection rates of >70% in the sample to avoid bias 

from the substitutions. The LOD was 0.1 ng/ml for PFOA, PFHxS, and PFNA; and 0.2 ng/ml 

for PFOS, PFDA, and MeFOSAA (CDC, 2012).  
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Explanatory Variables. We obtained NHANES variables relevant to known or 

suspected PFAS exposure pathways, including the type of floor covering (collected using 

household interview questionnaires) from the dust allergen subsample in the laboratory 

data; tap water source, self-reported fish and shellfish consumption in the past 30 days from 

the dietary interview component; the frequency of eating out per week from the dietary 

behavior questionnaire; serum creatinine (an indicator of kidney function) from the 

standard biochemistry profile; whether or not had at least one menstrual period in the past 

12 months, number of pregnancies, and number of children breastfed for at least one month 

from the reproductive health questionnaire data. We also obtained age, sex, race/ethnicity, 

education, family poverty income ratio (PIR), veteran/military status, country of birth, and 

body mass index (BMI) from the demographic component of the survey. These have been 

established as predictors for serum PFAS concentrations in previous studies (Calafat et al., 

2007; Kato et al., 2011; Christensen et al., 2017; Susmann et al., 2019; Hu et al., 2016; Zhang 

et al., 2010; Jain, 2014). We recategorized race/ethnicity as Hispanic (including Mexican 

American and other Hispanic), non-Hispanic white, non-Hispanic black, and the others. We 

categorized education as less than college, some college, and above college.  

The type of floor covering was categorized as smooth surface, low pile carpet, 

medium to high pile carpet, and combination of carpet and smooth surface. We recategorized 

the frequency of eating out per week as “Yes” and “No” based on the provided combination 

of numbers (1-21 times/week) and categories (never, more than 21 times per week, less 

than weekly) in the original variable, because this variable is not fully numeric. We checked 

the linearity of the relations between serum PFAS concentrations and age, family PIR, BMI, 

serum creatinine, number of pregnancies, and number of children breastfed for at least one 
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month by examining both the scatter plots and plots of residuals against each of the predictor 

variables, and included these predictors as continuous variables in the regression models. 

We treated all “Refused” and “Don’t know” answers in the data as missing values. We checked 

data on sex, menstrual period, pregnancy, and breastfeeding against each other. For males, 

missing values in reproductive health information were substituted with “No” (menstrual 

period) or 0 (number of pregnancies and number of children breastfed). For females aged 

55 and older, missing values in “at least menstrual period in the last 12 months” were 

substituted with “No”. For females who were never pregnant, missing values in the number 

of pregnancies and the number of children breastfed for at least one month were substituted 

with 0. For females who never breastfed, the number of children breastfed for at least one 

month were also substituted with 0. After these substitutions, most variables have missing 

rates less than 10% except for type of floor covering (26.9%) and veteran/military status 

(19.4%). We compared the missing percentage of these variables with respect to other 

variables, and found the type of floor covering is missing at random (MAR) with respect to 

race/ethnicity and education; and veteran/military status is MAR with respect to country of 

birth, race/ethnicity, and education. 

Statistical Analysis. We fit multiple linear regression models adjusted for covariates 

using log-transformed serum PFAS concentrations while accounting for complex survey 

design (R package survey). We adjusted for the sampling weights of the serum PFAS 

subsample, the smallest analysis subpopulation in this study, for parameter estimates in 

regression models to reflect the probability of selection, nonresponse, and post-stratification 

(NHANES, 2020a). We also accounted for the pseudo-stratum and pseudo-PSU variables in 

order to produce asymptotically unbiased variance estimation in our regression models 
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(NHANES, 2020b). Because of the dispersed distribution of missing values in different 

variables, listwise deletion of missing data that is performed as default in most statistical 

software packages including R would substantially reduce the sample size by 55%. Although 

listwise deletion is acceptable when some observations are “missing completely at random” 

(MCAR) without respect to any of the other variables, multiple imputation performs better 

when missingness is covariate-dependent (Little and Rubin, 2020). We used multivariate 

imputation by chained equations (MICE) to create k=100 imputed datasets (R package mice). 

We applied Rubin’s rules (Rubin, 1987) to pool the results from k=100 analyses accounting 

for complex survey design based on the imputed datasets, averaging the estimates, and 

computing the total variance over the repeated analyses. We also compared the results from 

regression analyses with those of complete case analysis (analysis of data after listwise 

deletion). We exponentiated the regression coefficients, subtracted by one, and multiplied 

by 100% to estimate the percent difference in PFAS concentrations associated with each 

predictor. For variables with more than two categories/levels, Wald Chi-squared tests of 

equivalence on multiple parameters can be used to test their effects. For example, to test the 

hypothesis that multiple types of flooring have no effect on serum PFAS concentrations, we 

conducted a simultaneous Wald Chi-squared test of equivalence for all parameters related 

to type of flooring. Because the education levels of adolescents are mostly determined by 

their age rather than family socioeconomic status, in sensitivity analyses, we ran the analysis 

for adults (aged > 19) and adolescents (aged 12-19) separately. 

Because PFAS do not tend to accumulate in the fat tissues (lipophobic property) 

(Benford et al., 2008), we did not include BMI (an indicator of body fatness) in the primary 

multiple regression models. PFAS has been suggested as a potential “cause” of body weight 
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change (Liu et al., 2018), not the other way around, in which case, BMI would not confound 

the associations between type of flooring and serum PFAS; thus adjustment for BMI would 

not be necessary and could even induce selection bias under certain conditions (Rothman, 

2012). In sensitivity analyses, we also fit multiple regression models with additional 

adjustment for BMI, following the practice in some previous studies (Harris et al., 2017; 

Christensen et al., 2017; Susmann et al., 2019). We used R 4.0.0 for statistical analyses.  

 

Figure 2.1. Pairwise Spearman Correlation Matrix among Different PFAS in Serum 
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2.4 Results 

Characteristics of study participants by type of residential floor covering are shown 

in Table 2.1. Accounting for the complex survey design, we estimated the geometric means 

of PFAS serum concentrations by type of floor covering in the general US population during 

2005-2006 shown in Table 2.2. In general, we found higher geometric means of PFAS in 

people residing in homes with low pile carpets compared to those residing in homes with 

smooth surfaces and medium to high pile carpets. The pairwise Spearman correlation matrix 

among different serum PFAS concentrations is shown in Figure 2.1. The correlations among 

perfluoroalkyl carboxylic acids, including PFNA, PFDA, and PFOA are moderate to high, 

which is likely due to the fact that they have a common precursor 8:2 FTOH (Buck et al., 

2011). The high correlation between PFOA and PFOS has been reported elsewhere 

previously (Haug et al., 2009), indicating the likelihood of common exposure sources for 

these two legacy PFAS, such as food, dust, and air. However, the correlations among PFOS 

and its precursors MeFOSAA, PFHxS were not as high as expected, indicating the likelihood 

of other commercial sources of PFOS (e.g., di-SAmPAP) (Yeung et al., 2013). 

After imputation, the study participants (n = 2,323) represent 244 million general US 

population, half of whom resided in homes with low pile carpets. Adjusting for potential 

confounders, we found low pile carpets were associated with 32% (95% CI: 3%-70%) 

increase in serum PFHxS concentration and 25% (95% CI: 7%-45%) increase in serum 

MeFOSAA concentration compared to smooth surfaces (Table 2.3). Given the geometric 

means of 1.29 ng/ml and 0.31 ng/ml for PFHxS and MeFOSAA, respectively, for people 

residing in homes with smooth surfaces (Table 2.2), on average low pile carpets were 

associated with 0.41 ng/ml increase in PFHxS and 0.08 ng/ml increase in MeFOSAA, 
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accounting for 24% and 19% of the geometric means of serum PFHxS and MeFOSAA 

concentrations, respectively, in people residing in homes with low pile carpets in the US. 

The Wald Chi-squared test of equivalence for multiple parameters showed significant 

differences in serum PFOS and MeFOSAA concentrations among people who used different 

types of floor covering (p-value = 0.02 and 0.04, respectively; Table 2.3). Overall, multiple 

imputation and complete case analysis created similar results in regression analyses with 

the exception of PFHxS, for which the association with low pile carpets was not significant 

using complete case analysis (20%, 95% CI: [-14%, 67%], see Table S2.1 in the 

Supplementary material) but significant using multiple imputation (32%, 95% CI: [3%, 70%], 

Table 2.3). Complete case analysis only included 1,044 observations in the adjusted model, 

losing 55% of the information, which may bias the results (Little and Rubin, 2020). Separate 

analysis for adults (n=1,593) produced similar results to the analysis using all participants 

(n=2,323) (Table S2.2), while the results for adolescents (n=730) were different, i.e., the 

effects of low pile carpet on PFHxS (29%, 95% CI: [-14%, 92%], Table S2.3) and MeFOSAA 

(13%, 95% CI: [-9%, 41%], Table S2.3) were not significant, which is likely due to the smaller 

sample size of adolescents and the less statistical power. Additional adjustment for BMI in 

the sensitivity analyses also produced similar results to the primary analysis (see Table S2.4 

in the Supplementary material). 

Other important predictors for PFAS in this study include race/ethnicity, country of 

birth, family PIR, shellfish consumption, tap water sources, menstruation period, similar to 

previous findings reported elsewhere (Calafat et al., 2007; Christensen et al. 2017; Haug et 

al., 2010; Hurley et al., 2016; Kato et al. 2011; Suominen et al., 2011; Yamaguchi et al., 2013).  
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Table 2.1. Characteristics of Study Participants  

Characteristics  n (%) or mean  SD 

Type of floor covering 

Smooth 

surface (n = 

183) 

Low pile 

carpet 

(n = 1276) 

Medium/high 

pile carpet (n 

= 172) 

Combination 

of carpet and 

smooth 

surface 

(n = 67) 

Age 38.2  22.2 32.5  20.0 37.3  22.0 41.1  23.8 45.0  22.7 

Gender      

     Female 1,180 (50.8%) 81 (44.3%)  647 (50.7%) 77 (44.8%) 38 (56.7%) 

     Male 1,143 (49.2%) 102 (55.7%) 629 (49.3%) 95 (55.2%) 29 (43.3%) 

Race/ethnicity      

     Hispanic 623 (26.8%) 78 (42.6%) 332 (26.0%) 49 (28.5%) 11 (16.4%) 

     Non-Hispanic black 613 (26.4%) 49 (26.8%) 388 (30.4%) 24 (14.0%) 18 (26.9%) 

     Non-Hispanic white 996 (42.9%) 48 (26.2%) 503 (39.4%) 88 (51.2%) 34 (50.7%) 

     Others 91 (3.9%) 8 (4.4%) 53 (4.2%) 11 (6.4%) 4 (6.0%) 

Education      

     < College 1,503 (64.7%) 127 (69.4%) 846 (66.3%) 120 (69.8%) 38 (56.7%) 

     Some college 513 (22.1%) 41 (22.4%) 279 (21.9%) 34 (19.8%) 16 (23.9%) 

     > College 305 (13.1%) 15 (8.2%) 150 (11.8%) 18 (10.5%) 13 (19.4%) 

Country of birth      

     US 1,875 (80.7%) 141 (77.0%) 1028 (80.6%) 136 (79.1%) 60 (89.6%) 

     Foreign 447 (19.2%) 42 (23.0%) 248 (19.4%) 36 (20.9%) 7 (10.4%) 

Veteran/military status      

     No 1,625 (70.0%) 130 (71.0%) 876 (68.7%) 115 (66.9%) 46 (68.7%) 

     Yes 247 (10.6%) 8 (4.4%) 135 (10.6%) 28 (16.3%) 15 (22.4%) 

Family PIR 2.5  1.6 2.0  1.5 2.4  1.5 2.4  1.4 2.5  1.8 

BMI 27.3  7.0 27.3  7.4 27.1  6.9 27.7  6.9 28.1  8.6 

Tap water source      

     Don’t drink tap water 419 (18.0%) 40 (21.9%) 224 (17.6%) 35 (20.3%) 17 (25.4%)  

     Community supply 1,335 (57.5%) 103 (56.3%) 739 (57.9%) 91 (52.9%) 38 (56.7%) 

     Other 338 (0.1%) 22 (12.0%) 190 (14.9%) 30 (17.4%) 9 (13.4%) 
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Eat out per week      

     No 225 (9.7%) 18 (9.8%) 133 (10.4%) 17 (9.9%) 7 (10.4%) 

     Yes 2,064 (88.9%) 161 (88.0%) 1126 (88.2%) 154 (89.5%) 60 (89.6%) 

Eating shellfish in the past 1 month      

     No 1,109 (47.7%) 90 (49.2%) 615 (48.2%) 80 (46.5%) 35 (52.2%) 

     Yes 1,114 (48.0%) 80 (43.7%) 618 (48.4%) 84 (48.9%) 29 (43.3%) 

Eating fish in the past 1 month      

     No 793 (34.1%) 68 (37.2%) 445 (34.9%) 48 (27.9%) 17 (25.4%) 

     Yes 1,431 (61.6%) 103 (56.3%) 788 (61.8%) 116 (67.4%) 47 (70.1%) 

Serum Creatinine (mg/dL) 0.9  0.3 0.8  0.3 0.8  0.3 0.9  0.3 0.9  0.7 

Had at least one period in the past 1 year      

     No 1,506 (64.8%) 120 (65.6%) 820 (64.3%) 118 (68.6%) 44 (65.7%) 

     Yes 706 (30.4%) 51 (27.9%) 396 (31.0%) 49 (28.5%) 23 (34.3%) 

Number of pregnancies 1.0  1.9 0.8  1.7 1.0  1.9 1.0  1.9 0.9  2.0 

Number of children breastfed at least 1 

month 
0.4  1.1 0.3  1.0 

0.3  1.0 0.4  1.1 0.3  0.9 
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Table 2.2. Geometric Means of Serum PFAS Concentrations by Type of Floor Covering  

Type of Floor 

Covering 

Geometric Mean, 95% CI (ng/ml) 

PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Smooth surface 3.45, (2.95, 4.04) 13.67, (10.93, 17.08) 1.29, (0.94, 1.78) 0.31, (0.25, 0.39) 0.30, (0.25, 0.36) 0.94, (0.81, 1.08) 

Low pile carpet 3.85, (3.41, 4.35) 17.34, (16.20, 18.55) 1.74, (1.46, 2.08) 0.41, (0.38, 0.45) 0.35, (0.29, 0.41) 1.05, (0.88, 1.25) 

Medium to high pile 

carpet 
3.71, (3.00, 4.58) 15.31, (13.22, 17.73) 1.63, (1.20, 2.22) 0.41, (0.31, 0.56) 0.29, (0.25, 0.34) 0.94, (0.83, 1.05) 

Combination of 

carpet and smooth 

surface 

3.75, (3.16, 4.45) 16.66, (13.53, 20.53) 1.56, (1.24, 1.97) 0.44, (0.35, 0.56) 0.33, (0.27, 0.42) 1.08, (0.86, 1.35) 
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Table 2.3. Adjusted Associations* from Multiple Regression Models with Multiple Imputation (k=100) (n=2,323) 

% difference in PFAS 

concentrations**, 95% CI 
PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Type of floor covering       

     Smooth surface ref ref ref ref ref ref 

     Low pile carpet 7, (-8, 23) 14, (-2, 33) 32, (3, 70) 25, (7, 45) 12, (-6, 34) 9, (-7, 29) 

     Medium to high pile carpet  -2, (-19, 17) -2, (-19, 19) 22, (-15, 75) 23, (-5, 59) -6, (-22, 12) -6, (-21, 13) 

     Combination of carpet and smooth 

surface 

-2, (-21, 22) 2, (-20, 31) 13, (-18, 55) 20, (-8, 57) 3, (-19, 31) 4, (-17, 30) 

     p-value of Wald Chi-squared test 0.5 0.02 0.1 0.04 0.1 0.3 

* We adjusted for age, gender (female/male), race/ethnicity (Hispanic/non-Hispanic black/non-Hispanic white/others), education (less than 

college/some college/college graduate or above), country of birth (foreign/US), veteran/military status (yes/no), family PIR, tap water source 

(don’t drink tap water/community supply/others), eating out per week (yes/no), eating shellfish during past 30 days (yes/no), eating fish during 

past 30 days (yes/no), serum creatine, had at least one period in the past 12 months (yes/no), number of pregnancies, and number of children 

breastfed at least 1 month in the regression models.  

** We exponentiated the regression coefficients, subtracted by one, and multiplied by 100% to estimate the percent difference in PFAS 

concentrations associated with each predictor. 
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2.5 Discussion 

In this study, we examined the associations between type of floor covering and serum 

PFAS concentrations. Descriptive statistics in Table 2.2 also showed higher geometric means 

of serum PFAS concentrations in people residing in homes with low pile carpets than people 

residing in homes with smooth surfaces and medium to high pile carpets. After adjusting for 

potential confounding variables in the multiple regression model, we found significantly 

higher serum PFHxS and MeFOSAA concentrations in people residing in homes with low pile 

carpets compared with those residing in homes with smooth surfaces, especially adults; 

while the effects of medium to high pile carpets and combination of carpet and smooth 

surface on serum PFAS concentrations were less clear, suggesting that low pile carpet is a 

more important source of exposure compared with other types of flooring. Because PFHxS 

and MeFOSAA are both key ingredients in carpet treatment products that are intended for 

stain resistance, our results could be explained by the fact that low pile carpets frequently 

used in highly-trafficked spaces were more likely to have more extensive PFAS treatment. In 

addition, we concluded that among US residents using low pile carpeting in the home in 

2005-2006, on average 24% and 19% of the PFHxS and MeFOSAA body burdens, 

respectively, could be attributed solely to the carpeting.   

A previous study by Harris et al. (2017) found higher serum PFOS, PFHxS, and 

MeFOSAA concentrations in US children aged 6-10 years who slept in a bedroom with 

carpeting or a rug, indicating hand-to-mouth transfer from treated carpets or inhalation of 

volatile precursors as important exposure pathways for children. Our study does not include 

children less than 12 years old, who are more likely than adolescents and adults to crawl on 

the ground and have their hands contact the carpets. Our results derived from the NHANES 
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data are more representative of the general US population aged 12 and older, and can 

potentially inform the PFAS exposure from various types of flooring, especially low pile 

carpeting. Previous studies have indicated carpets as both a source and sink of PFAS 

chemicals. Given that the dust ingestion of children is about two times that of adults (Shoeib 

et al., 2005; Strynar et al., 2008), the PFAS exposure coming from house carpets for children 

less than 12 years old is likely to be higher. 

Similar to the previous studies (Beesoon et al., 2012; Hurley et al., 2018; Goosey and 

Harrad, 2011), we found that other long-chain PFAS such as PFHxS and MeFOSAA were 

elevated in individuals residing in homes with carpets. We also found somewhat different 

PFOS concentrations among people using various types of flooring, which may suggest 

distinct PFAS treatment or formulations for different types of carpets, and the potential for 

other PFAS to degrade or be metabolized to PFOS (ATSDR, 2018). However, the conclusion 

is tempered by the limitation of using p-value<0.05 to represent statistically significance in 

the Wald Chi-squared tests, especially with multiple testing (Wasserstein and Lazar, 2016). 

Our estimates with 95% confidence intervals in Table 2.3 more directly address effect sizes 

and their associated uncertainties. 

This study has several noteworthy features. Among them is the use of multiple 

imputation to address missing values in the dataset, which appropriately accounted for the 

uncertainty of imputation. Additionally, we used statistical methods accounting for the 

complex survey design to obtain unbiased estimates of regression parameters and accurate 

variance estimation. Hu et al. (2018) have used the same data as us to assess the associations 

between PFAS and carpet. Based on the 2005-2006 NHANES data, they concluded that fully 

or partially carpet covered floors were associated with serum concentrations of PFOS, PFHxS, 
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and MeFOSAA (p-value<0.05). However, they did not distinguish between the contributions 

of various types of carpeting. Although they may have applied sampling weights to obtain 

the regression parameter estimates that are representative of the general US population, 

their analysis did not appear to incorporate other attributes of the complex survey design 

(cluster and stratification) to obtain the correct variance estimation, given this limitation of 

the gam package in R that they used. Failure to account for the homogeneity of individuals 

within a cluster would lead to inaccurate lower variance estimates that bias the results of 

statistical hypothesis testing (NHANES, 2020b). Although Hu et al. (2018) applied statistical 

methods to deal with left-censored data on serum PFAS concentrations, it is not clear how 

they addressed missing values in the explanatory variables.  

Our study has several limitations. First, our analyses were restricted to the 2005-

2006 cycle based on the unique availability of the key variable interest, type of floor covering 

in the NHANES datasets. Future research collecting and/or using more recent data from 

other sources would be a valuable addition to the present study. Second, although similar 

compositional patterns have been found in carpets and dust previously (Wu et al., 2020), 

there is a lack of linkage between PFAS in air and/or dust samples and PFAS in the house 

carpets in our study due to the limitation of the NHANES datasets. Also, lack of information 

on other furniture and upholstery, which may also be treated with PFAS, may also impact 

our inference due to the potential uncontrolled confounding. Third, although we tried to 

obtain a crude estimate of PFAS exposure through selection of several key dietary recall 

variables, there are no direct measurements of PFAS in the NHANES participants’ individual 

diets and drinking water. Although dietary seafood intake has been found to be a strong 

predictor of serum PFAS concentrations (Christensen et al., 2007), our use of seafood 
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consumption in the past 30 days is limited in its ability to predict long-term seafood 

consumption. Previous studies have implicated consumption of PFAS-contaminated tap 

water as a significant predictor for serum PFAS concentrations (Shin et al., 2011a; Shin et al., 

2011b) and published exposure-pharmacokinetic models predict that tap water 

contributions can be dominant at fairly low PFAS water concentrations (Bartell, 2017; Lu 

and Bartell, 2019). We did not adjust for the amount of tap water consumed due to the spatial 

heterogeneity of PFAS contamination in US public water supplies, the removal of 

geographical identifiers from public use NHANES data sets, and the limitations of using 

short-term recall data to represent long-term water consumption. Future research linking 

individual-level data from NHANES to the nationwide PFAS detection data in public water 

supplies (UCMR 3) would help assess the contributions of drinking water to serum PFAS.   

 

2.6 Conclusions 

This study found that low pile carpeting was associated with increased serum 

concentrations of PFHxS and MeFOSAA in the general US population, while no clear 

association has been observed between the other types of carpeting and serum PFAS 

concentrations. Further studies would be needed to fully understand PFAS formulations in 

different types of carpeting. 
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2.7 Supplemental Material 

Table S2.1. Adjusted Associations* from Multiple Regression Models with Complete Case Analysis (N=1,044)  

% difference in PFAS 

concentrations**, 95% CI 
PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Type of floor covering       

     Smooth surface ref ref ref ref ref ref 

     Low pile carpet 9, (-10, 31) 17, (-6, 47) 20, (-14, 67) 27, (3, 56) 8, (-17, 40) 7, (-17, 37) 

     Medium to high pile carpet 2, (-20, 30) -2, (-23, 26) 17, (-18, 66) 16, (-11, 52) -8, (-26, 15) -7, (-26, 17) 

     Mixed surface 1, (-22, 31) 8, (-23, 51) 11, (-25, 63) 33, (-6, 88) 5, (-21, 39) 3, (-20, 33) 

     p-value of Wald Chi-squared 

test 

0.6 0.03 0.7 0.07 0.6 0.3 

* We adjusted for age, gender (female/male), race/ethnicity (Hispanic/non-Hispanic black/non-Hispanic white/others), education (less than 

college/some college/college graduate or above), country of birth (foreign/US), veteran/military status (yes/no), family PIR, tap water source 

(don’t drink tap water/community supply/others), eating out per week (yes/no), eating shellfish during past 30 days (yes/no), eating fish during 

past 30 days (yes/no), serum creatine, had at least one period in the past 12 months (yes/no), number of pregnancies, and number of children 

breastfed at least 1 month in the regression models.  

** We exponentiated the regression coefficients, subtracted by one, and multiplied by 100% to estimate the percent difference in PFAS 

concentrations associated with each predictor. 
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Table S2.2. Adjusted Associations* from Multiple Regression Models with Multiple Imputation (k=100) for Adults 

(n=1,593) 

% difference in PFAS 

concentrations**, 95% CI 
PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Type of floor covering       

     Smooth surface ref ref ref ref ref ref 

     Low pile carpet 7, (-9, 27) 15, (-4, 37) 33, (2, 73) 27, (6, 52) 13, (-8, 38) 8, (-11, 32) 

     Medium to high pile carpet  -3, (-23, 21) -2, (-20, 20) 22, (-15, 73) 23, (-6, 61) -8, (-25, 14) -8, (-26, 14) 

     Mixed surface 1, (-23, 30) 5, (-21, 39) 15, (-17, 60) 22, (-9, 65) 5, (-20, 39) 6, (-18, 38) 

     p-value of Wald Chi-squared test 0.5 0.03 0.2 0.06 0.1 0.3 

* We adjusted for age, gender (female/male), race/ethnicity (Hispanic/non-Hispanic black/non-Hispanic white/others), education (less than 

college/some college/college graduate or above), country of birth (foreign/US), veteran/military status (yes/no), family PIR, tap water source 

(don’t drink tap water/community supply/others), eating out per week (yes/no), eating shellfish during past 30 days (yes/no), eating fish during 

past 30 days (yes/no), serum creatine, had at least one period in the past 12 months (yes/no), number of pregnancies, and number of children 

breastfed at least 1 month in the regression models.  

** We exponentiated the regression coefficients, subtracted by one, and multiplied by 100% to estimate the percent difference in PFAS 

concentrations associated with each predictor. 
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Table S2.3. Adjusted Associations* from Multiple Regression Models with Multiple Imputation (k=100) for Adolescents (n=730) 

% difference in PFAS 

concentrations**, 95% CI 
PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Type of floor covering       

     Smooth surface ref ref ref ref ref ref 

     Low pile carpet 5, (-11, 24) 11, (-7, 33) 29, (-14, 92) 13, (-9, 41) 11, (-12, 42) 15, (-9, 45) 

     Medium to high pile carpet  6, (-16, 35) 5, (-26, 49) 32, (-33, 158) 33, (-7, 91) 3, (-25, 42) 13, (-19, 59) 

     Mixed surface -27, (-59, 30) -10, (-43, 44) 8, (-56, 167) 19, (-28, 97) -16, (-54, 51) -32, (-75, 83) 

     p-value of Wald Chi-squared test 0.5 0.6 0.6 0.4 0.6 0.4 

* We adjusted for age, gender (female/male), race/ethnicity (Hispanic/non-Hispanic black/non-Hispanic white/others), education (less than 

college/some college/college graduate or above), country of birth (foreign/US), veteran/military status (yes/no), family PIR, tap water source 

(don’t drink tap water/community supply/others), eating out per week (yes/no), eating shellfish during past 30 days (yes/no), eating fish during 

past 30 days (yes/no), serum creatine, had at least one period in the past 12 months (yes/no), number of pregnancies, and number of children 

breastfed at least 1 month in the regression models.  

** We exponentiated the regression coefficients, subtracted by one, and multiplied by 100% to estimate the percent difference in PFAS 

concentrations associated with each predictor. 
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Table S2.4. Adjusted Associations* from Multiple Regression Models with Multiple Imputation and Additional Adjustment for 

BMI (k=100) (N=2,323) 

% difference in PFAS 

concentrations**, 95% CI 
PFOA PFOS PFHxS MeFOSAA PFDA PFNA 

Type of floor covering       

     Smooth surface ref ref ref ref ref ref 

     Low pile carpet 6, (-8, 23) 14, (-2, 32) 31, (2, 68) 23, (7, 43) 12, (-7, 34) 9, (-8, 29) 

     Medium to high pile carpet  -2, (-18, 17) -2, (-19, 19) 22, (-15, 74) 22, (-5, 58) -7, (-22, 12) -6, (-21, 12) 

     Mixed surface -3, (-22, 21) 2, (-20, 30) 12, (-19, 53) 18, (-9, 54) 2, (-19, 30) 4, (-17, 30) 

     p-value of Wald Chi-squared test 0.6 0.02 0.1 0.04 0.2 0.3 

* We adjusted for age, gender (female/male), race/ethnicity (Hispanic/non-Hispanic black/non-Hispanic white/others), education (less than 

college/some college/college graduate or above), country of birth (foreign/US), veteran/military status (yes/no), family PIR, tap water source 

(don’t drink tap water/community supply/others), eating out per week (yes/no), eating shellfish during past 30 days (yes/no), eating fish during 

past 30 days (yes/no), serum creatine, had at least one period in the past 12 months (yes/no), number of pregnancies, and number of children 

breastfed at least 1 month in the regression models.  

** We exponentiated the regression coefficients, subtracted by one, and multiplied by 100% to estimate the percent difference in PFAS 

concentrations associated with each predictor. 
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3.1 Abstract 

Background: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the serum of the 

general US population, and were detected in public water systems serving approximately 

16.5 million US residents during 2013-2015. Low birthweight was associated with PFAS 

exposures in previous studies. 

Methods: Birthweights for singleton births during 2013-2015 were obtained from CDC 

WONDER, multiply stratified by county, maternal age, race, education, smoking status, and 

parity. PFAS water concentrations were obtained from EPA UCMR3 database and aggregated 

by county. Multiple regression weighted by inverse variance was used to produce effect 

estimates equivalent to those that would be obtained from individual-level data on 

birthweight and confounders.  

Results: Adjusting for stratification demographic confounders (maternal age, race, 

education, smoking status, and parity), we found an average change in birthweight of 0.9 g 

(95% CI: -0.02, 1.7), -1.3 g (-1.5, -1.0), -3.8 g (-4.5, -3.1), -3.8 g (-4.1, -3.5) per ng/L increase 

in the population-weighted average PFOA, PFOS, PFHpA, and PFHxS in public water supplies 

by county, respectively. We found an average change in birthweight of -1.0 g (95% CI: -1.1, -

0.9) per ng/L increase in the sum of PFOA, PFOS, PFHpA, and PFHxS concentrations in public 

water supplies.  

Conclusions: The direction and magnitude of association between PFAS and birthweight 

varied by PFAS chemical in this study. Conclusions are tempered by inherent limitations of 

the two public-use datasets, and by the sensitivity of our results to alternative methods such 

as mutual adjustment for co-exposures. 
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3.2 Introduction 

PFAS are synthetic chemicals consisting of a fully fluorinated carbon chain. Due to 

their chemical and thermal stability, PFAS have been widely used in consumer products and 

industrial process since the 1940s, such as stain repellents, lubricants, paints, textiles, 

firefighting foams, non-stick cookware, and food packaging (Kissa, 2001). Long-chain PFAS 

can persist indefinitely in the environment, and bioaccumulate in humans and other 

organisms (Giesy and Kannan, 2001; Buck et al., 2011; ATSDR, 2018). Food sources, drinking 

water, dust, and air are the main exposure routes to humans (Egeghy and Lorber, 2011; Jian 

et al., 2017). 

According to the National Health and Nutrition Examination Survey (NHANES) in 

2015-2016, the geometric means of perfluorooctanoic acid (PFOA), perfluorooctane 

sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) 

in the serum samples of the general US population were 1.56 ng/ml, 4.72 ng/ml, 0.58 ng/ml, 

and 1.18 ng/ml, respectively (CDC, 2019). The half-lives for serum or plasma elimination of 

PFAS in humans range from 2 to more than 10 years in previous studies (Olsen et al., 2007; 

Bartell et al., 2010; Zhang et al., 2013; Li et al., 2018). For pregnant women, the PFAS 

concentrations in maternal serum, umbilical cord serum, and breast milk are strongly 

associated with each other (Kim et al., 2011). 

Some studies suggest that exposure to PFAS could cause adverse reproductive health 

effects in humans (Apelberg et al., 2007; Fei et al., 2007; Li et al., 2017; Cao et al., 2018; Kishi 

et al., 2015), while others found little association (Kim et al., 2011; Savitz et al., 2012; Shi et 

al., 2017). Due to physiological changes during pregnancy, including increased glomerular 

filtration rate (GFR) and parallel expansion of blood volume (Gibson, 1973; Cheung and 
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Lafayette, 2013), the observed inverse association between PFAS concentrations and 

birthweight could be due to reverse causality or uncontrolled confounding factors such as 

GFR (Verner et al., 2015; Steenland et al., 2018). A recent meta-analysis found an inverse 

association between PFOA and birthweight when the blood was sampled late in the 

pregnancy; however, little association was found when blood was sampled at times less 

susceptible to physiological confounding or reverse causation (i.e., shortly before conception 

or early in pregnancy) (Steenland et al., 2018).  

Under the third Unregulated Contaminant Monitoring Rule (UCMR3), the US 

Environmental Protection Agency (US EPA) tested thirty contaminants, including six PFAS, 

in public water systems (PWSs) during 2013-2015 (US EPA, 2012). Based on samples 

collected from multiple points in a PWS, UCMR3 provides scientifically valid data on the 

occurrence of unregulated contaminants. It is the most comprehensive dataset of PFAS 

occurrence in public drinking water in the US (Hu et al., 2016; Hurley et al., 2016).  

Few epidemiological studies on PFAS and birthweight have accounted for or use 

study designs that are resistant to reverse causality/physiological confounding, or have 

considered co-exposure to PFAS other than PFOA and PFOS, or co-exposure with other 

pollutants. Based on UCMR3 and the birthweight data from CDC WONDER, we conducted a 

county-level study of PFAS and birthweight in the US while adjusting for maternal age, race, 

education, smoking status, and parity, a similar set of adjustment variables to previous 

studies (Savitz et al., 2012; Thompson et al., 2010; Kato et al., 2011). In addition, we were 

able to investigate co-exposures to other UCMR3 contaminants and overall water quality 

when examining the association between a specific PFAS and birthweight. Although use of 

county-level exposure measures likely introduces some degree of measurement error, this 
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study is free of reverse causality/physiological confounding due to our use of an external 

exposure metric, PFAS concentrations in public water, rather than an exposure metric 

potentially influenced by physiological processes, i.e., serum concentrations during 

pregnancy (Weisskopf and Webster, 2017). In addition, we show that our use of county-level 

multiple-stratified average birthweights in weighted regression models produces effect 

estimates equivalent to those that would be obtained from using individual-level data on 

birthweight and the stratification variables. 
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3.3 Methods 

3.3.1 Data Collection 

Multiple-stratified Birthweight Data. We obtained the average birthweight from 

singleton births from 2013-2015, multiple-stratified by county, maternal age, bridged race 

(race), education, tobacco use (smoking status), and live birth order (parity) from CDC 

WONDER (CDC, 2020). CDC suppresses data for groups with less than 10 births. Within each 

state, counties with less than the population of 100,000 persons were de-identified and 

combined under the label of “Unidentified Counties” in the dataset, thus we excluded them 

from our analysis as they could not be linked with the UCMR3 data. Equivalent subdivisions 

included “Parish” in Louisiana, “Borough” in Alaska, and “Independent City” in Virginia, 

Maryland, and Missouri. Overall, there were 580 US counties with populations greater than 

100,000. In the states and years that applied the 1989 US Standard Certificate of Live Birth 

(Alabama, Arizona, Arkansas, Hawaii, Maine, Michigan, and West Virginia in 2013; Rhode 

Island during 2013-2014; Connecticut and New Jersey during 2013-2015), education and 

smoking status of the mothers were recoded by CDC as “Excluded” and “Not Reported”, 

respectively, as they were not comparable to the data that used the 2003 revision of the birth 

certificate. We excluded the groups with “Unknown or Not Stated”, “Excluded”, or “Not 

Reported” information in education, smoking status, and parity, which accounted for 9.6% 

of the singleton births in the 580 large US counties (Figure S3.1, Supplemental Digital 

Content I). After the exclusion, the birthweight data covered 552 counties in the US. Overall, 

these counties could represent the US counties with populations greater than 100,000 that 

applied the 2003 revision of the birth certificate. For crude (unadjusted) epidemiological 

analysis, we obtained the average birthweight from singleton births from 2013-2015 
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stratified by county only, excluding the “Unknown or Not Stated”, “Excluded”, and “Not 

Reported” categories in education, smoking status, and parity.  

PFAS and Other Water Quality Indicators. Under UCMR3, thirty contaminants, 

including six PFAS (PFOA, PFOS, PFBS, PFNA, PFHpA, and PFHxS) were monitored using 

analytical methods developed by the US EPA (US EPA, 2020). PFAS were monitored using 

EPA Method 537 at 4,908 US PWSs during 2013-2015, including almost all PWSs 

serving >10,000 people and a representative sample of around 800 PWSs serving 10,000 

people. The number of UCMR3 water samples collected at each PWS during 2013-2015 

ranged from 1 to 484. In total, 1,928 counties were monitored in UCMR3 over the 3 years, 

covering the 50 US states, District of Columbia (DC), and some of the other US territories. 

Multiple PWSs could serve the same county, and different counties could also share a 

common PWS. In our analyses, the number of water samples taken within a county was the 

sum of water samples from all the PWSs that serve this county; if a PWS served two counties, 

then the water samples were counted in the number of water samples for both counties. The 

distribution of the number of water samples taken per county is shown in Table S3.1 in 

Supplemental Digital Content I. The minimum reporting level (MRL) was 10 ng/L for PFHpA, 

20 ng/L for PFOA and PFNA, 30 ng/L for PFHxS, 40 ng/L for PFOS, and 90 ng/L for PFBS. 

Overall, around 16.5 million people in the US were served by PWSs containing at least one of 

the six PFAS at concentrations exceeding the MRLs. Proxy indicators for PFAS exposure in 

this study include the percentage of water measurements with PFAS detection by county and 

the population-weighted average PFAS water concentrations by county. We merged the 

UCMR3 PFAS data with the CDC birthweight data by county, and excluded Hampton City in 

Virginia as it was not monitored under UCMR3. The final datasets include 551 counties in 
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the US (see Figure S3.1 and Table S3.2 in Supplemental Digital Content I), covering 47 US 

states and District of Columbia. 

Because only a limited number of contaminants were monitored under UCMR3, and 

might not be indicative of general water quality, we also obtained the count of violations by 

PWS for the 551 counties during 2013-2015 from the US EPA (SDWIS Federal Reports 

Advanced Search) and used the average count of violations per PWS by county under the US 

EPA rules (US EPA, 2020) as an indicator of the overall water quality. Because only four 

counties had detections for PFBS and only ten counties had detections for PFNA, we excluded 

both PFBS and PFNA from the analysis. PFOA, PFOS, PFHpA, and PFHxS are all moderately 

or highly correlated with each other (correlation coefficients range from 0.49 to 0.74), which 

is expected as they often have shared sources. Other water quality indicators including the 

number of violations and other UCMR3 contaminants except for 1,4-dioxane are weakly 

associated with PFAS (r<0.3), and thus were not adjusted for in our analyses (see Figure 

S3.2). Among the 551 counties in the data, 87 counties had detection for at least one of PFOA, 

PFOS, PFHpA, and PFHxS. In comparison, among the 1,928 counties monitored under UCMR3 

during 2013-2015, 162 counties had detection for at least one of the four PFAS. 

For analyses using continuous PFAS concentrations, we only used data for the 87 

counties with at least one detection of PFOA, PFOS, PFHpA, or PFHxS. For each UCMR3 water 

measurement in these 87 counties, we substituted values that were below the MRL with 
𝑀𝑅𝐿

√2
. 

After the substitution, for each PFAS chemical we first averaged the concentrations by PWS, 

and then averaged across PWSs by county, weighting by the average population served by 

each PWS during 2013-2015. The distribution of the number of water samples taken from 

the 87 counties is shown in Table S3.3 in Supplemental Digital Content I. 
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Descriptive statistics for the percentage of water measurements with detection for 

PFOA, PFOS, PFHpA, and PFHxS are shown in Table 3.1, and the population-weighted 

average water concentrations of PFAS in the counties with detection of at least one of the 

four PFAS are shown in Table 3.2. The average percentages in Table 3.1 are all less than 1% 

due to the fact that over 80% of the counties did not have detection for PFAS. Because our 

study only includes a small part of the counties monitored by UCMR3, we also show the 

descriptive statistics of water measurements for all 1,928 counties in UCMR3 and the 162 

counties with detection of at least one of the four PFAS in UCMR3 in Table S3.1.1 and Table 

S3.1.2 in Supplemental Digital Content I. The average values of the two proxy indicators for 

PFAS exposure in all UCMR3 counties are similar to those of the counties covered by our 

study. 
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Table 3.1. Percentage of Water Measurements with Detection (%) of PFAS in 551 Counties 

in the US, 2013-2015 

Contaminant Mean SD Min Max 

PFOA 0.68% 3.35% 0.00% 42.98% 

PFOS 0.59% 2.87% 0.00% 37.19% 

PFHpA 0.65% 4.26% 0.00% 58.33% 

PFHxS 0.40% 2.60% 0.00% 47.11% 

 

 

Table 3.2. Population-weighted Average of UCMR3 Water Concentrations (ng/L) of PFAS in 

87 Counties in the US with Detection of at least one of PFOA, PFOS, PFHpA, or PFHxS, 2013-

2015. Values that were below the MRL were Substituted with 
𝑀𝑅𝐿

√2
. 

Contaminant Mean SD Min Max 

PFOA 14.84 1.33 14.14 20.53 

PFOS 30.58 4.17 28.28 54.31 

PFHpA 7.74 1.88 7.07 20.18 

PFHxS 22.60 2.92 21.21 35.08 
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3.3.2 Weighted Linear Regression Models  

We obtained multiple-stratified county-level birthweight statistics (mean and 

standard deviation) from the CDC. We calculated the aggregated county-level birthweight 

statistics (Table 3.3) for the 551 counties, for which the distributions of age, race, education, 

smoking status, and parity are similar to that of the entire US population (Table S3.4, 

Supplemental Digital Content I). In the Supplemental Digital Content II, we show that using 

county-level multiple-stratified average birthweights in weighted regression models 

produces equivalent effect estimates to those that would be obtained from individual-level 

data on birthweight and confounders. In particular, using the number of births in each 

stratum for the weights produces the same effect estimate that would be obtained from 

unweighted multiple linear regression with the individual-level data, and using the inverse 

variance (Neter et al., 1996) of the average birthweight for the weights produces the same 

effect estimate that would be obtained from individual-level weighted regression allowing 

for heteroscedasticity.  

This is a very useful result for avoiding aggregation bias (also known as ecological 

fallacy) for analysis of public-use birthweight data and other data sets that multiply stratify 

on key confounding variables. However, results will only be identical for covariates that are 

available with multiple stratification at the county-level; adjustment for covariates that are 

not multiply stratified (e.g. US Census poverty rates) could result in different parameter 

estimates than those that would be obtained using individual-level data (e.g. personal 

socioeconomic status). Because of this mathematical result and the strong negative 

correlation between poverty and education level based on 2013, 2014, and 2015 American 

Community Survey (ACS) 1-year estimates (r=-0.82), we did not include the county-level 
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percentage of poverty in the primary analyses. Additional adjustment for the county-level 

poverty percentage was only conducted as sensitivity analyses. In addition, analyses using 

individual-level exposure measurements (e.g., tap water PFAS concentrations measured at 

each participant’s home) may produce different results than analyses using group-level 

exposure assignments.   

However, the estimated variances for the regression coefficients produced by 

statistical software packages are not identical for individual-level and group-level analyses. 

Fortunately, we were able to derive formulas for obtaining the correct variance estimates for 

the regression coefficients from individual-level analysis based on the multiple stratified 

data and group-level regression output. For our analyses relating PFAS to birthweight, the 

corrected variance formulas produce smaller estimated variances and confidence intervals 

than we had originally reported. Here we present variance correction formulas.  

We derived the correct estimated variance and standard error (SE) for the individual-

level inverse-variance weighted regression parameters based on the group-level inverse-

variance weighted regression as follows. The detailed derivation and explanations have been 

added to the Supplemental Digital Content II of the publication. 

𝑣𝑎�̂�(�̂�𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) =
(𝑛 +𝑊𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝)(𝑚 − 𝑝 − 1)

(𝑛 − 𝑝 − 1)𝑊𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝
⋅ 𝑣𝑎�̂�(�̂�𝑔𝑟𝑜𝑢𝑝), 

𝑠�̂�(�̂�𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) = √
(𝑛 + 𝑊𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝)(𝑚 − 𝑝 − 1)

(𝑛 − 𝑝 − 1)𝑊𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝
⋅ 𝑠�̂�(�̂�𝑔𝑟𝑜𝑢𝑝). 

In the above formulas, n is the total number of births (observations in individual-level 

analysis), m is the number of groups (observations in group-level analysis), and p is the 

number of regression parameters not including the intercept. 𝑊𝑆𝑆𝐸𝑔𝑟𝑜𝑢𝑝  is the weighted 
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sum of squared errors of the group-level analysis. The standard error 𝑠�̂�(�̂�𝑔𝑟𝑜𝑢𝑝) can be 

obtained easily from the output of group-level weighted regression.  

In secondary analyses, we employed lasso regression to account for exposure 

mixtures, penalizing the coefficients for each PFAS chemical and 1,4-dioxane.    

We used statistical software R, version 3.6.0 for statistical analyses.  
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Table 3.3. Predictors of Birthweight* among Singleton Pregnancies in 551 Counties in the US, 2013-2015 

Categories No. of Births (%) 
Average Birthweight 

(gram) (SD) 

Total 8,128,278 (100%) 3,311 (537) 

Maternal Age (years)     

  <15 2,443 (0.03%) 3,072 (538) 

  15-19 473,761 (5.8%) 3,176 (536) 

  20-24 1,715,641 (21.1%) 3,244 (532) 

  25-29 2,346,570 (28.9%) 3,322 (531) 

  30-34 2,318,108 (28.5%) 3,358 (535) 

  35-39 1,076,339 (13.2%) 3,350 (557) 

  40-44 192,050 (2.4%) 3,312 (579) 

  45-49 3,343 (0.04%) 3,273 (606) 

  50 23 (0.0%) 3,346 (607) 

Race     

  American Indian or Alaska Native 30,786 (0.4%) 3,339 (552) 

  Asian or Pacific Islander 612,625 (7.5%) 3,215 (500) 

  Black or African American 1,351,695 (16.6%) 3,140 (593) 

  White 6,133,172 (75.5%) 3,358 (528) 



 

 57 

Education     

  8th grade or less                     267,655 (3.3%) 3,316 (537) 

  9th through 12th grade with no diploma 878,382 (10.8%) 3,217 (548) 

  High school graduate or GED completed 1,908,856 (23.5%) 3,260 (552) 

  Some college credit, but not a degree 1,665,300 (20.5%) 3,302 (551) 

  Associate degree 571,644 (7.0%) 3,347 (538) 

  Bachelor’s degree 1,635,478 (20.1%) 3,380 (515) 

  Master’s degree 739,914 (9.1%) 3,381 (509) 

  Doctorate or professional degree 198,879 (2.5%) 3,356 (495) 

   Unknown or not stated 94,496 (1.2%) 3,297 (572) 

   Excluded 167,674 (2.1%) 3,304 (544) 

Smoking Status     

  No 7,437,775 (91.5%) 3,320 (536) 

  Yes 366,430 (4.5%) 3,123 (559) 

               Not reported 262,122 (3.2%) 3,306 (545) 

   Unknown or not stated 61,951 (0.8%) 3,313 (538) 

Parity     

  1st 3,276,032 (40.3%) 3,258 (547) 

  2nd 2,573,346 (31.7%) 3,355 (517) 
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  3rd and over 2,254,966 (27.7%) 3,337 (546) 

  Unknown or not stated 23,934 (0.3%) 3,274 (555) 

* This table summarizes birthweights singly stratified by one predictor at a time, but regression models used multiply stratified birthweight 

statistics.                                   
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3.4 Results 

In Figure 3.1 and Figure 3.2, we display the relation between average birthweight and 

the two proxies for PFAS exposure while using inverse-variance weights in the regression 

models. 

 

Figure 3.1. The change of average birthweight (g) for 10% increase in the detection of PFAS: MLE, 95% 

CI. Using regressions weighted by inverse variance of average birthweight. Crude model: association 

between PFAS and birthweight only. Adjusted model: adjusted for maternal age (<15, 15-19, 20-24, 25-

29, 30-34, 35-39, 40-44, 45-49, 50), race (American Indian or Alaska Native, Asian or Pacific Islander, 

Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; 

High school graduate or GED completed; Some college credit, but not a degree; Associate degree; 

Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking status (Yes, No), and 

parity (1st, 2nd, 3rd and over). Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-

dioxane, and all covariates in the adjusted model. 
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Figure 3.2. The change of average birthweight (g) for 1ng/L increase in the population-weighted average 

PFAS water concentration: MLE, 95% CI (1 g per ng/L = 1 g per ppt = 1,000 g per ng/ml). Using 
𝑀𝑅𝐿

√2
 

substitution for the non-detections and regressions weighted by inverse variance of average birthweight. 

Crude model: association between PFAS and birthweight only. Adjusted model: adjusted for maternal age 

(<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50), race (American Indian or Alaska Native, Asian 

or Pacific Islander, Black or African American, White), education (8th grade or less; 9th through 12th 

grade with no diploma; High school graduate or GED completed; Some college credit, but not a degree; 

Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking status 

(Yes, No), and parity (1st, 2nd, 3rd and over). Adjusted co-exposure model: adjusted for the co-exposures 

(the other three PFAS and 1,4-dioxane; or 1,4-dioxane only for the model includes the sum of PFAS), and 

all covariates in the adjusted model.  
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Using inverse-variance weights and covariate-adjusted models, we found for the 551 

counties significant negative associations between birthweight and PFAS detection; while 

adjusting for co-exposures to other PFAS and 1,4-dioxane reversed the effect estimate for 

PFOA (Figure 3.1). In addition, we compared two different weights in regression: group size 

(number of births), and inverse variance of average birthweight. The results of analyses 

using these two sets of weights in different models are similar, but adjustment for 

confounders produces somewhat different results from the crude analyses (Table S3.5 - 

Table S3.8, Supplemental Digital Content I).  

For the 87 counties with detection of at least one of the four PFAS, we examined the 

association between the population-weighted average PFAS water concentrations and 

birthweight, using inverse-variances as regression weights (Table S3.9 - Table S3.12, 

Supplemental Digital Content I). We also summed the population-weighted average water 

concentrations of the four PFAS to determine the overall association of PFAS with 

birthweight (Table S3.13, Supplemental Digital Content I). Using inverse-variance weights 

and 
𝑀𝑅𝐿

√2
 substitution in the covariate-adjusted models, we found no association between 

birthweight and PFOA concentration (0.9, [-0.02, 1.7] g per ng/L, Table S3.9), and significant 

negative associations between birthweight and PFOS (-1.3, [-1.5, -1.0] g per ng/L, Table 

S3.10), PFHpA (-3.8, [-4.5, -3.1] g per ng/L, Table S3.11), and PFHxS (-3.8, [-4.1, -3.5] g per 

ng/L, Table S3.12) concentrations. Additionally adjusting for co-exposures to other PFAS and 

1,4-dioxane greatly impacted the effect estimate for PFOA. Overall, the sum of four PFAS was 

negatively associated with birthweight (-1.0, [-1.1, -0.9] g per ng/L, Table S3.13). We also 

conducted sensitivity analyses with zero substitution and MRL substitution to compare to 

the results from 
𝑀𝑅𝐿

√2
 substitution. For PFOA, PFHpA, PFHxS, and the sum of four PFAS, the 
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results were consistent regardless of the substitution methods (Table S3.9, Table S3.11, 

Table S3.12, and Table S3.13). For PFOS, the three substitution methods produced noticeably 

different results when adjusting for other PFAS (Table S3.10).  

 

3.5 Discussion 

We used the public-use dataset of UCMR3 and Natality data from CDC WONDER to 

conduct a county-level study of birthweight and PFAS concentrations in drinking water in 

the US, with multiple stratification by key confounding variables to yield equivalent 

estimation of the individual-level associations. There are several advantages of using the two 

datasets in the study. First, epidemiological associations using PFAS water concentrations 

are free of reverse causality and/or physiological confounding, which may have biased the 

epidemiological associations reported by other studies using PFAS serum measurements, 

especially when collected late in pregnancy. Second, we explore the association between 

PFAS and birthweight more comprehensively by including some understudied PFAS 

chemicals, i.e., PFHxS and PFHpA. Third, the availability of multiple-stratified birthweight 

data from CDC allows us to control for maternal age, education, race, smoking status, and 

parity, producing equivalent results to those that would be obtained from individual-level 

data on birthweight and these confounding variables. In this study, weighting by group size 

(equivalent to ordinary multiple regression using individual-level data) or inverse variance 

(equivalent to weighted multiple regression for heteroscedasticity using individual-level 

data) produced similar results.  

Continued exposure to relatively low PFAS concentrations in drinking water can 

substantially increase serum concentrations, with reported steady-state serum:drinking 
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water ratios of about 114:1 for PFOA, 125:1 for PFOS, and 194:1 for PFHxS (Bartell, 2003; 

Hoffman et al., 2011; Bartell, 2020; Lu and Bartell, 2020). After long-term consumption of 

contaminated drinking water, the population-weighted average water concentrations of 

14.84 ng/L, 30.58 ng/L, and 22.60 ng/L (1 ng/L = 10-3 ng/ml) for the 87 counties in the US 

during 2013-2015 (Table 3.2) are expected to increase serum concentrations by about 1.7 

ng/ml, 3.8 ng/ml, and 4.4 ng/ml for PFOA, PFOS, and PFHxS, respectively. The estimates are 

similar to the medians (interquartile range) of 1.6 (1.1-2.5) ng/ml and 4.8 (2.8-8.1) ng/ml 

for PFOA and PFOS, respectively, and higher than the median (interquartile range) of 1.2 

(0.7-2.1) ng/ml for PFHxS for the general US population, suggesting that these exposures 

may have had measurable impacts on serum PFAS concentrations in these communities. The 

estimated effect sizes for PFAS serum concentrations would be 1/114, 1/125, and 1/194 of 

that of the water concentrations for PFOA, PFOS, and PFHxS, respectively. So, after adjusting 

for potential demographic confounders and correcting the standard errors, our estimated 

effects are equivalent to an average change in birthweight of 7.6 g (95% CI: -0.2, 15.3) per 

ng/ml increase in serum PFOA; -10.1 g (95% CI: -12.0, -8.2) per ng/ml increase in serum 

PFOS; and -19.5 g (95% CI: -21.1, -17.9) per ng/ml increase in serum PFHxS. In comparison, 

a recent meta-analysis by Steenland et al. (2018) (Steenland et al., 2018) reported a change 

in birthweight of -10.5 g (-16.7, -4.4) per ng/ml increase of PFOA in maternal or cord blood; 

and -3.3 g (-9.6, 3.0) per ng/ml when restricting to studies where blood was sampled early 

in pregnancy or shortly before conception, similar to the null association we found between 

PFOA and birthweight while adjusting for demographic confounders. Nevertheless, this is 

just a preliminary comparison without accounting for any uncertainty for the water to serum 

conversion factor, which is beyond the scope of this paper and should be addressed in future 
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research. In addition, with the above estimates after water to serum conversions, we can 

expect a change in birthweight of 10.6 g (95% CI: -0.3, 21.4) for an interquartile range (IQR) 

change of serum PFOA (1.4 ng/ml); -53.5 g (95% CI: -63.6, -43.5), for an IQR change of serum 

PFOS (5.3 ng/ml), and -27.3 g (95% CI: -29.5, -25.1) for an IQR change of serum PFHxS (1.4 

ng/ml) in the general US population. 

Our study also has a number of limitations. First, we attempted to identify the causal 

effects of PFAS on birthweight, but our interpretations are limited by the observational 

nature of the data and limited availability of multiple-stratified variables that had been 

collected on birth certificates at the individual level, which makes it difficult to rule out 

measurement error and uncontrolled confounding. Although effect estimates for the 

percentage of water measurements with detection for each PFAS became slightly larger in 

the negative direction after adjustment for known multiple-stratified confounders, 

suggesting that further adjustment using more accurate confounder measures would only 

increase the absolute effect sizes, we cannot guarantee the absence of an unidentified 

confounder strong enough to reverse the association. In sensitivity analyses, additional 

adjustment for the county-level percentage of poverty did not substantially change the 

results in Figure 3.1 and Figure 3.2 (see Figure S3.3, Figure S3.4, Table S3.14, and Table S3.15 

in Supplemental Digital Content I), with the exception of population-weighted average PFOA 

water concentration, for which the effect was changed from null (0.9 g per ng/L, 95% CI: [-

0.02, 1.7]; Table S3.9) to negative (-2.4 g per ng/L, 95% CI: [-3.3, -1.5]; Table S3.15) in the 

model adjusted for demographic confounders. Nevertheless, the percentage of poverty was 

barely correlated with the two proxy indicators for PFAS exposure on the county-level (Table 

S3.16 and Table S3.17, Supplemental Digital Content I); therefore, it was unlikely to confound 
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the associations observed in Figure 3.1 and Figure 3.2. The change in effect estimate for PFOA 

from Figure 3.2 to Figure S3.4 by additionally adjusting for the county-level percentage of 

poverty highlights the difficulty in interpreting multi-level studies, and potential cross level 

bias in ecological inference when including a county-level variable (i.e., the percentage of 

poverty) that is highly correlated with an individual-level variable (i.e., education level) 

(Blakely and Woodward, 2000). The increases in precision from crude models to adjusted 

models in Figure 3.1 and Figure 3.2 can be explained by the well-established result of 

decreased residual standard error for multiple regression after adjusting for strong 

predictors of the outcome (Fisher, 1934). This setting is quite different from logistic 

regression, for which adjustment for covariates can result in a loss or at best no gain of 

precision (Robinson and Jewell, 1991). Adjustment for co-exposure to other PFAS and 1,4-

dioxane changed the effect estimates differently for the percentage of water measurements 

with detection for each PFAS (Figure 3.1), reversing the effect from negative to positive for 

PFOA, increasing the effect size in the negative direction for PFOS, and attenuating the 

negative associations towards the null for the other two PFAS. This highlights some of the 

difficulties in fitting and interpreting statistical models with correlated exposure mixtures, 

even using a large dataset. In particular, bias amplification could occur due to residual 

confounding while including co-exposures with a common source (Weisskopf et al., 2018), 

which could explain why the adjustment for the other PFAS had such a strong effect on the 

regression parameter for PFOA. However, the direction and magnitude of bias amplification 

are not readily predictable in this setting. Overall, we believe that the results from adjusted 

models that do not include co-exposures are more reliable because they are less susceptible 

to bias amplification (Weisskopf et al., 2018). In secondary analysis, we used lasso regression 
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(with 10-fold cross-validation to obtain the optimal shrinkage parameter) to penalize the 

coefficients for four PFAS and 1,4-dioxane in inverse-variance weighted models. In this 

analysis, the coefficients for PFOA, PFHpA, and PFHxS are attenuated towards the null; while 

the coefficient for PFOS does not change significantly and the coefficient for 1,4-dioxane is 

zeroed out. In the models using population-weighted average water concentrations of the 

chemicals (PFOA, PFOS, PFHpA, PFHxS, and 1,4-dioxane) as proxy exposure for the 87 

counties with at least one detection for PFOA, PFOS, PFHpA, or PFHxS, adjustment for co-

exposure increases the effect size in the positive direction for PFOA, attenuates the negative 

association towards the null for PFOS, increases the effect size in the negative directions for 

PFHpA and PFHxS (Figure 3.2). In the lasso regression using inverse-variance weights and 

𝑀𝑅𝐿

√2
 substitution, the coefficient for population-weighted average water concentration of 

PFOS is zeroed out, and the coefficients for population-weighted average water 

concentrations of the other PFAS are attenuated towards the null. 

Second, the public-use birthweight data from CDC WONDER has several notable 

drawbacks, as shown by the flow chart of data processing in Figure S3.1. (A) CDC suppresses 

data for the groups with less than 10 births; when we multiply stratified the data by county, 

maternal age, race, education, smoking status, and parity, we lost 5.3% of births compared 

to the data that was only stratified by county. (B) Counties with less than 100,000 population 

are de-identified in the dataset, which cannot be linked to the UCMR3 dataset, thus 

restricting the scope of the study to less than 580 counties. (C) There is likely some 

underreporting of maternal smoking status, which is difficult to obtain reliable data from 

birth certificate (Northam and Knapp, 2006). (D) We excluded the missing values from the 

data, which accounted for 9.6% of the singleton births in the 580 counties. The “Excluded” 
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category in education and “Not Reported” category in smoking status were missing at 

random, dependent only on the version of birth certificate used in the state in a specific year, 

rather than the value of the variables (education and smoking status) that are missing; and 

conditional on the version of birth certificate, the probability of missingness does not depend 

on the value of the variables. However, the “Unknown or Not Stated” in parity, education, and 

smoking status could depend on the actual values of these variables thus could be missing 

not at random. We lost all the births from 28 counties and 5.6% of the remaining 552 

counties due to the exclusion. In all, the suppression, de-identification, and missingness 

reduced the number of births in our analysis by 32.9%; therefore, our results based on the 

551 counties may not be generalizable to the whole US. For the 551 counties, the missingness 

rate is 5.3%. With CDC permission and security clearances it is possible to obtain access to 

unsuppressed and fully identified birthweight data at secure federal facilities; we are 

currently taking steps to apply for access.   

Third, our estimates for PFAS exposure solely relied on the UCMR3 data, which has 

several limitations: (1) We were unable to account for other sources of exposure to PFAS and 

other chemicals, such as food, dust, air pollution, non-UCMR3 chemicals in water, and/or 

unmeasured PFAS chemicals may be associated with both UCMR3 PFAS exposure and 

birthweight, in which case they may contribute uncontrolled confounding to our results. (2) 

The detection thresholds (MRLs) for the six PFAS measured in UCMR3 were as much as 16 

times higher than the detection limits for the current standard testing method (Method 537), 

so only the highest levels of PFAS contamination were reflected in the data; thus, it is likely 

that the percentages of water measurements with PFAS detection for each county 

underestimate the true extent of exposure. (3) Because UCMR3 only provides the PFAS 
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concentrations in drinking water during 2013-2015 and the PFAS concentrations assigned 

for each county in our study may not reflect historical water exposure or total body burden 

for each individual, likely adding some degree of nondifferential exposure measurement 

error. (4) The number of samples taken from each PWS varied substantially across different 

counties but was often small, limiting the precision of the average concentrations at the PWS 

level. (5) One PWS could serve several counties, but we only know the total population 

served by each PWS rather than the population served by each PWS within each county, thus 

the population-weighted average water concentrations of PFAS by county could also be 

inaccurate. (6) UCMR3 was designed to monitor water quality by PWS, not to measure 

county-level exposure or exposure to specific subgroups defined by race, education or other 

characteristics that might be associated with residential location and water supply within a 

county; however, we assumed that everyone within a county had the same average PFAS 

exposure level and assign the population-weighted average water concentrations of PFAS to 

all the groups within the same county. (7) We also did not account for the fact that some 

people in these counties may be using private wells or smaller water systems not included 

in UCMR3, and thus may have had different exposures than their neighbors. We understand 

that USGS is developing information on PFAS in private wells in the US; incorporating that 

information into birthweight analyses would be a valuable future direction. 
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3.6 Supplemental Digital Content I 

 
 

Figure S3.1. Study Profile 
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Figure S3.2. Spearman correlation heatmap between PFAS and other water quality indicators under the 

US EPA rules in 551 counties in the US, 2013-2015. Noroviruses GIA: Noroviruses genogroup I with RT-

qPCR primer set A; Noroviruses GII: Noroviruses genogroup II. E. coli, equilin, estrone, Noroviruses GIB 

(genogroup I with RT-qPCR primer set B), sec-butylbenzene, and tellurium had no detections under 

UCMR3 and were excluded from the correlation heatmap. 
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Figure S3.3. The change of average birthweight (g) for 10% increase in the detection of PFAS: MLE, 95% 

CI. Using regressions weighted by inverse variance of average birthweight. Crude model: association 

between PFAS and birthweight only. Adjusted model: adjusted for maternal age (<15, 15-19, 20-24, 25-

29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific Islander, 

Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; 

High school graduate or GED completed; Some college credit, but not a degree; Associate degree; 

Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking status (Yes, No), parity 

(1st, 2nd, 3rd and over), and county-level percentage of poverty. Adjusted co-exposure model: adjusted 

for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model. Adjusted and adjusted co-

exposure models in Figure S3.3 additionally adjusted for the county-level percentage of poverty compared 

with those in Figure 3.1 in the main text. Detailed effect estimates for the models in Figure S3.3 can be 

found in Table S3.14. 
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Figure S3.4. The change of average birthweight (g) for 1ng/L increase in the population-weighted 

average PFAS water concentration: MLE, 95% CI. Using 
𝑀𝑅𝐿

√2
 substitution for the non-detections and 

regressions weighted by inverse variance of average birthweight. Crude model: association between PFAS 

and birthweight only. Adjusted model: adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 

40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific Islander, Black or African 

American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school 

graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; 

Master’s degree; Doctorate or professional degree), smoking status (Yes, No), parity (1st, 2nd, 3rd and 

over), and county-level percentage of poverty. Adjusted co-exposure model: adjusted for the co-exposures 

(the other three PFAS and 1,4-dioxane; or 1,4-dioxane only for the model includes the sum of PFAS), and 

all covariates in the adjusted model. Adjusted and adjusted co-exposure models in Figure S3.4 additionally 

adjusted for the county-level percentage of poverty compared with those in Figure 3.2 in the main text. 

Detailed effect estimates for the models in Figure S3.4 can be found in Table S3.15.  
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Table S3.1. Number of Water Samples in 1,928 Counties Covered by UCMR3 in the US, 2013-

2015 

Min 1st 

Quantile 

Median Mean 3rd 

Quantile 

Max SD 

1.00 4.00 10.00 24.55 22.00 1018.00 56.29 

 

 

Table S3.1.1. Percentage of Water Measurements with Detection (%) of PFAS in 1,928 

Counties Covered by UCMR3 in the US, 2013-2015 

Contaminant Mean SD Min Max 

PFOA 0.68% 4.27% 0.00% 100.00% 

PFOS 0.36% 3.24% 0.00% 100.00% 

PFHpA 0.35% 2.98% 0.00% 58.33% 

PFHxS 0.19% 1.97% 0.00% 50.00% 

 

 

Table S3.1.2. Population-weighted Average of UCMR3 Water Concentrations (ng/L) of PFAS 

in 162 Counties Covered by UCMR3 in the US with Detection of at least one of PFOA, PFOS, 

PFHpA, or PFHxS, 2013-2015. Values that were below the MRL were Substituted with 
𝑀𝑅𝐿

√2
. 

Contaminant Mean SD Min Max 

PFOA 15.64 4.25 14.14 63.60 

PFOS 30.63 6.01 28.28 80.64 

PFHpA 7.76 2.30 7.07 24.38 

PFHxS 22.76 7.06 21.21 104.11 
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Table S3.2. Number of Water Samples in the 551 Counties that can be Merged with CDC 

Birthweight Data in the US, 2013-2015 

Min 1st 

Quantile 

Median Mean 3rd 

Quantile 

Max SD 

2.00 15.50 29.00 56.19 58.00 1018.00 94.32 

 

 

Table S3.3. Number of Water Samples in 87 Counties in the US with Detection of at least 

one of PFOA, PFOS, PFHpA or PFHxS, 2013-2015 

Min 1st 

Quantile 

Median Mean 3rd 

Quantile 

Max SD 

4.00 28.00 50.00 127.00 136.50 1018.00 187.73 
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Table S3.4. Predictors of Birthweight among Singleton Pregnancies in the US, 2013-2015. 

Categories No. of Births (%) Average 

Birthweight 

(gram) (SD) 

Total 11,484,590 (100%) 3,306 (561) 

Maternal Age (years)     

  <15 8,276 (0.07%) 3,076 (591) 

  15-19 739,856 (6.4%) 3,182 (550) 

  20-24 2,568,226 (22.4%) 3,246 (549) 

  25-29 3,311,229 (28.8%) 3,321 (551) 

  30-34 3,079,890 (26.8%) 3,354 (559) 

  35-39 1,444,763 (12.6%) 3,341 (585) 

  40-44 311,894 (2.7%) 3,292 (615) 

  45-49 19,046 (0.17%) 3,238 (648) 

  50 1,410 (0.01%) 3,188 (661) 

Race     

  American Indian or Alaska Native 131,714 (1.1%) 3,342 (582) 

  Asian or Pacific Islander 803,171 (7.0%) 3,215 (516) 

  Black or African American 1,839,887 (16.0%) 3,131 (610) 

  White 8,709,818 (75.8%) 3,350 (546) 

Education     

  8th grade or less                     399,353 (3.5%) 3,306 (557) 

  9th through 12th grade with no diploma 1,242,484 (10.8%) 3,205 (571) 

  High school graduate or GED 

completed 

2,703,542 (23.5%) 3,256 (571) 

  Some college credit, but not a degree 2,295,104 (20.0%) 3,301 (569) 
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  Associate degree 862,375 (7.5%) 3,346 (558) 

  Bachelor’s degree 2,034,035 (17.7%) 3,384 (533) 

  Master’s degree 898,457 (7.8%) 3,384 (530) 

  Doctorate or professional degree 256,032 (2.2%) 3,357 (518) 

   Unknown or not stated 146,362 (1.3%) 3,256 (631) 

   Excluded 646,846 (5.6%) 3,305 (558) 

Smoking Status     

  No 9,672,851 (84.2%) 3,323 (556) 

  Yes 870,235 (7.6%) 3,121 (578) 

            Not reported 774,075 (6.7%) 3,307 (560) 

   Unknown or not stated 167,429 (1.5%) 3,266 (604) 

Parity     

  1st 4,519,520 (39.4%) 3,253 (566) 

  2nd 3,638,902 (31.7%) 3,348 (540) 

  3rd and over 3,269,850 (28.5%) 3,331 (571) 

  Unknown or not stated 56,318 (0.5%) 3,245 (628) 
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Table S3.5. Crude and Adjusted Associations between Percentage of Water Measurements with PFOA Detection and Average 

Birthweight among Singleton Live Births in 551 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 10% Increase in the Detection of PFOA: MLE, 

95% CI 

Weighted by group size 
Weighed by inverse variance of average 

birthweight 

Crude Model -5.1, [-6.3, -3.9] -6.9, [-8.1, -5.7] 

Adjusted Model* -11.9, [-13.1, -10.7] -12.2, [-13.4, -11.1] 

Adjusted Co-exposure Model** 20.0, [17.4, 22.6] 19.9, [17.4, 22.4] 

* Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

** Adjusted for PFOS, PFHpA, PFHxS, 1,4-dioxane, and all covariates in the adjusted model. 
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Table S3.6. Crude and Adjusted Associations between Percentage of Water Measurements with PFOS Detection and Average 

Birthweight among Singleton Live Births in 551 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 10% Increase in the Detection of PFOS: MLE, 

95% CI 

Weighted by group size Weighted by inverse variance of 

average birthweight 

Crude Model -22.1, [-23.3, -20.8] -23.0, [-24.2, -21.8] 

Adjusted Model* -27.8, [-29.1, -26.6] -28.9, [-30.0, -27.7] 

Adjusted Co-exposure Model** -29.8, [-31.9, -27.7] -32.9, [-34.9, -30.9] 

* Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

** Adjusted for PFOA, PFHpA, PFHxS, 1,4-dioxane, and all covariates in the adjusted model.  
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Table S3.7. Crude and Adjusted Associations between Percentage of Water Measurements with PFHpA Detection and Average 

Birthweight among Singleton Live Births in 551 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 10% Increase in the Detection of PFHpA: MLE, 

95% CI 

Weighted by group size Weighted by inverse variance of 

average birthweight 

Crude Model -14.3, [-15.5, -13.1] -15.7, [-16.9, -14.5] 

Adjusted Model* -18.3, [-19.5, -17.0] -17.8, [-18.9, -16.6] 

Adjusted Co-exposure Model** -9.6, [-12.1, -7.0] -8.0, [-10.3, -5.7] 

* Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

** Adjusted for PFOA, PFOS, PFHxS, 1,4-dioxane, and all covariates in the adjusted model.  
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Table S3.8. Crude and Adjusted Associations between Percentage of Water Measurements with PFHxS Detection and Average 

Birthweight among Singleton Live Births in 551 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 10% Increase in the Detection of PFHxS: MLE, 

95% CI 

Weighted by group size Weighted by inverse variance of 

average birthweight 

Crude Model -12.2, [-13.5, -10.9] -13.4, [-14.7, -12.2] 

Adjusted Model* -19.7, [-21.0, -18.3] -19.9, [-21.1, -18.6] 

Adjusted Co-exposure Model** -6.0, [-8.8, -3.3] -5.0, [-7.6, -2.4] 

* Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

** Adjusted for PFOA, PFOS, PFHpA, 1,4-dioxane, and all covariates in the adjusted model. 
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Table S3.9. Crude and Adjusted Associations between Population-weighted Average PFOA Water Concentration and Average 

Birthweight among Singleton Live Births in 87 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted 

Average PFOA Water Concentration: MLE, 95% CI* 
𝑀𝑅𝐿

√2
 substitution Zero substitution MRL substitution 

Crude Model -1.3, [-2.2, -0.4] -1.1, [-1.7, -0.5] -1.1, [-2.2, 0.1] 

Adjusted Model** 0.9, [-0.02, 1.7] 1.0, [0.4, 1.5] 0.4, [-0.7, 1.5] 

Adjusted Co-exposure Model*** 10.7, [9.5, 11.9] 6.7, [5.9, 7.4] 9.5, [7.9, 11.1] 

* Weighted by inverse variance of average birthweight. 

**Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

***Adjusted for PFOS, PFHpA, PFHxS, 1,4-dioxane, and all covariates in the adjusted model. 
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Table S3.10. Crude and Adjusted Associations between Population-weighted Average PFOS Water Concentration and Average 

Birthweight among Singleton Live Births in 87 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted 

Average PFOS Water Concentration: MLE, 95% CI* 
𝑀𝑅𝐿

√2
 substitution Zero substitution MRL substitution 

Crude Model -3.2, [-3.4, -2.9] -3.4, [-3.6, -3.2] -2.4, [-2.7, -2.2] 

Adjusted Model** -1.3, [-1.5, -1.0] -1.9, [-2.1, -1.7] -0.6, [-0.8, -0.3] 

Adjusted Co-exposure Model*** 0.3, [-0.1, 0.7] -1.0, [-1.3, -0.7] 1.7, [1.3, 2.1] 

* Weighted by inverse variance of average birthweight. 

** Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

*** Adjusted for PFOA, PFHpA, PFHxS, 1,4-dioxane, and all covariates in the adjusted model.  
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Table S3.11. Crude and Adjusted Associations between Population-weighted Average PFHpA Water Concentration and Average 

Birthweight among Singleton Live Births in 87 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted 

Average PFHpA Water Concentration: MLE, 95% CI* 
𝑀𝑅𝐿

√2
 substitution Zero substitution MRL substitution 

Crude Model -7.8, [-8.6, -7.1] -6.2, [-6.7, -5.7] -8.3, [-9.3, -7.4] 

Adjusted Model** -3.8, [-4.5, -3.1] -3.3, [-3.8, -2.8] -3.6, [-4.5, -2.7] 

Adjusted Co-exposure Model*** -4.8, [-5.8, -3.8] -3.4, [-4.1, -2.6] -3.9, [-5.1, -2.8] 

* Weighted by inverse variance of average birthweight.      

** Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

*** Adjusted for PFOA, PFOS, PFHxS, 1,4-dioxane, and all covariates in the adjusted model.
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Table S3.12. Crude and Adjusted Associations between Population-weighted Average PFHxS Water Concentration and Average 

Birthweight among Singleton Live Births in 87 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted 

Average PFHxS Water Concentration: MLE, 95% CI* 
𝑀𝑅𝐿

√2
 substitution Zero substitution MRL substitution 

Crude Model -4.2, [-4.5, -3.9] -3.1, [-3.4, -2.9] -4.7, [-5.1, -4.4] 

Adjusted Model** -3.8, [-4.1, -3.5] -2.7, [-2.9, -2.4] -4.4, [-4.7, -4.0] 

Adjusted Co-exposure Model*** -5.4, [-5.8, -4.9] -2.6, [-2.9, -2.3] -6.9, [-7.4, -6.5] 

* Weighted by inverse variance of average birthweight. 

** Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

*** Adjusted for PFOA, PFOS, PFHpA, 1,4-dioxane, and all covariates in the adjusted model.  
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Table S3.13. Crude and Adjusted Associations between the Sum of Population-weighted Average Water Concentrations of Four 

PFAS and Average Birthweight among Singleton Live Births in 87 Counties, 2013-2015 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted 

Average PFHxS Water Concentration: MLE, 95% CI* 
𝑀𝑅𝐿

√2
 substitution Zero substitution MRL substitution 

Crude Model -1.7, [-1.8, -1.6] -1.6, [-1.7, -1.5] -1.6, [-1.7, -1.5] 

Adjusted Model** -1.0, [-1.1, -0.9] -1.0, [-1.1, -0.9] -0.9, [-1.0, -0.8] 

Adjusted Co-exposure Model*** -1.0, [-1.1, -0.9] -1.0, [-1.1, -0.9] -0.9, [-1.0, -0.8] 

* Weighted by inverse variance of average birthweight.  

** Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), and parity (1st, 2nd, 3rd and over). 

*** Adjusted for 1,4-dioxane and all covariates in the adjusted model. 
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Table S3.14. Crude and Adjusted Associations between Percentage of Water Measurements with PFAS Detection and Average 

Birthweight among Singleton Live Births in 551 Counties, 2013-20151 

Model 
The Change of Average Birthweight (g) for 10% Increase in the Detection of PFAS: MLE, 95% CI2 

PFOA PFOS PFHpA PFHxS 

Crude Model -6.9, [-8.1, -5.7] -23, [-24.2, -21.8] -15.7, [-16.9, -14.5] -13.4, [-14.7, -12.2] 

Adjusted Model3 -16.7, [-17.9, -15.6] -28.4, [-29.6, -27.2] -20, [-21.2, -18.9] -23.9, [-25.1, -22.7] 

Adjusted Co-exposure 

Model4 
12.9, [10.4, 15.4] -25.3, [-27.3, -23.4] -5.2, [-7.5, -2.8] -11.1, [-13.6, -8.5] 

1 Adjusted and adjusted co-exposure models in Table 3.14 additionally adjusted for county-level percentage of poverty compared with those in 

the previous tables.  
2 Weighted by inverse variance of average birthweight. 
3 Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), parity (1st, 2nd, 3rd and over), and county-level percentage of poverty. 
4 Adjusted for the other PFAS, 1,4-dioxane, and all covariates in the adjusted model. 
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Table S3.15. Crude and Adjusted Associations between Population-weighted Average PFAS Water Concentration and Average 

Birthweight among Singleton Live Births in 87 Counties, 2013-2015 (Using 
𝑀𝑅𝐿

√2
 substitution)1 

Model 

The Change of Average Birthweight (g) for 1ng/L Increase in the Population-weighted Average PFAS 

Water Concentration: MLE, 95% CI2 

PFOA PFOS PFHpA PFHxS Sum of four PFAS 

Crude Model -1.3, [-2.2, -0.4] -3.2, [-3.4, -2.9] -7.8, [-8.6, -7.1] -4.2, [-4.5, -3.9] -1.7, [-1.8, -1.6] 

Adjusted Model3 -2.4, [-3.3, -1.5] -1.7, [-2.0, -1.5] -2.9, [-3.7, -2.2] -4.3, [-4.6, -4.0] -1.2, [-1.4, -1.1] 

Adjusted Co-

exposure Model4 
6.0, [4.8, 7.3] 0.2, [-0.2, 0.5] -1.9, [-2.8, -1.1] -5.3, [-5.7, -4.9] -1.2, [-1.4, -1.1] 

1 Adjusted and adjusted co-exposure models in Table 3.15 additionally adjusted for county-level percentage of poverty compared with those in 

the previous tables.  
2 Weighted by inverse variance of average birthweight. 
3 Adjusted for maternal age (<15, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ≥50), race (American Indian or Alaska Native, Asian or Pacific 

Islander, Black or African American, White), education (8th grade or less; 9th through 12th grade with no diploma; High school graduate or GED 

completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or professional degree), smoking 

status (Yes, No), parity (1st, 2nd, 3rd and over), and county-level percentage of poverty. 
4 Adjusted for the other PFAS, 1,4-dioxane, and all covariates in the adjusted model. 
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Table S3.16. Spearman Correlation between Percentage of Poverty and Percentage of Water Measurements with PFAS 

Detection for 551 Counties, 2013-2015 

 Spearman correlation p-value 

PFOA -0.07 0.09 

PFOS 0.02 0.61 

PFHpA -0.08 0.08 

PFHxS -0.04 0.30 

 

 

Table S3.17. Spearman Correlation between Percentage of Poverty and Population-weighted Average PFAS Water 

Concentrations for the 87 Counties with Detection of at least one of PFOA, PFOS, PFHpA, or PFHxS, 2013-2015 

 Spearman correlation p-value 

PFOA -0.18  0.10 

PFOS 0.04 0.70 

PFHpA -0.13 0.22 

PFHxS -0.07 0.50 
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Table S3.18. Descriptive Statistics of Serum PFAS Concentrations (ng/ml) for the General US Population (Aged 12 Years and Older) from the 

National Health and Nutrition Examination Survey (NHANES). 

 2015-2016 cycle of NHANES 

Geometric Mean (95% CI) Median (95% CI) 25th Percentile (95% CI)* 75th Percentile (95% CI) 

PFOA 1.56 (1.47, 1.66) 1.57 (1.47, 1.77) 1.07 (0.97, 1.17) 2.47 (2.27, 2.57) 

PFOS 4.72 (4.4, 5.07) 4.8 (4.4, 5.3) 2.8 (2.6, 3.0) 8.1 (7.3, 9.4) 

PFHxS 1.18 (1.08, 1.30) 1.2 (1.1, 1.3) 0.7 (0.6, 0.8) 2.1 (1.8, 2.3) 

PFHpA - - - - 

PFNA 0.58 (0.54, 0.62) 0.6 (0.5, 0.6) 0.4 (0.3, 0.4) 0.9 (0.8, 1.0) 

PFBS - - - - 

 2013-2014 cycle of NHANES 

 Geometric Mean (95% CI) Median (95% CI) 25th Percentile (95% CI)* 75th Percentile (95% CI) 

PFOA 1.94 (1.76, 2.14) 2.07 (1.87, 2.20) 1.37 (1.17, 1.47) 3.07 (2.67, 3.37) 

PFOS 4.99 (4.50, 5.52) 5.2 (4.8, 5.7) 3.1 (2.7, 3.4) 8.7 (8.0, 9.4) 

PFHxS 1.35 (1.2, 1.52) 1.4 (1.2, 1.6) 0.8 (0.7, 0.9) 2.4 (2.2, 2.8) 

PFHpA < LOD < LOD < LOD < LOD 

PFNA 0.68 (0.61, 0.74) 0.7 (0.6, 0.7) 0.4 (0.4, 0.5) 1.0 (0.9, 1.2) 

PFBS < LOD < LOD < LOD < LOD 

Notes: 

Limit of detection (LOD) for serum PFAS in survey cycle 2013-2014 and 2015-2016 are 0.10 ng/ml (= 100 ng/L = 100 ppt).  

< LOD means less than the limit of detection. 

- Not measured. 

* The 25th percentile (95% CI) was not reported by CDC Fourth Report on Human Exposure to Environmental Chemicals (January 2019). We 

calculated the statistics accounting for complex survey design using NHANES data and the ‘survey’ package in R. The other percentiles and 

geometric means are identical to the statistics reported by CDC. 
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3.7 Supplemental Digital Content II 

https://cdn-links.lww.com/permalink/ee/a/ee_2021_01_27_yzhu_ee-d-20-00015_sdc2.pdf 
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4.1 Abstract 

Background: PFAS widely exist in the environment and human bodies. Contaminated 

drinking water is one of the major exposure pathways for humans. Previous studies found 

weak or moderate associations between PFAS and hypertensive disorders of pregnancy 

(HDP). 

Methods: We obtained the number of births and counts of HDP cases for singleton births 

multiply stratified by county, maternal age, race, education, smoking status, and parity from 

CDC WONDER, and PFAS water concentrations from EPA UCMR3 data in the US during 2013-

2015. We used binomial regression on the multiply stratified HDP data to produce equal 

effect estimates and standard errors to those that would be derived from using individual-

level data on binary HDP status and demographic covariates in logistic regression.  

Results: After adjusting for demographic covariates, we found small but statistically 

significant positive associations between HDP and population-weighted average water 

concentrations (ng/L) of all four PFAS: Odds ratio (OR) = 1.009, 95% CI: [1.001, 1.016] per 

IQR increase in perfluorooctanoic acid (PFOA); 1.030, 95% CI: [1.021, 1.040] per IQR 

increase in perfluorooctane sulfonate (PFOS); 1.008, 95% CI: [1.005, 1.011] per IQR increase 

in perfluoroheptanoic acid (PFHpA); 1.007, 95% CI: [1.004, 1.010] per IQR increase in 

perfluorohexane sulfonic acid (PFHxS), and 1.032, 95% CI: [1.022, 1.042] per IQR increase 

in the sum of four PFAS. Further adjustment for co-exposures reversed the effect of PFOA 

from positive to inverse, and attenuated the effects of PFOS and PFHxS towards the null. After 

drinking water to serum concentration conversions, our effect estimates for PFOA, PFOS, and 

PFHxS are similar to previous studies.  
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Conclusions: We found a weak positive association between the PFAS mixture and HDP, 

although the generalizability is subject to inherent limitations of the public-available 

datasets.  

 

Key Words: PFAS, public water supplies, HDP, PE, PIH  
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4.2 Introduction 

PFAS are a large group of synthetic chemicals that exist widely in the environment. 

Contaminated drinking water, seafood, packaged fast food, daily consumer products (non-

stick cookware, stain-resistant carpeting, and water repellent clothing), dust, and air are the 

major exposure pathways for humans (Jian et al. 2017; Sunderland et al. 2019; Zhu et al. 

2021). Among nearly 5,000 types of PFAS, PFOA and PFOS are the two most extensively 

produced and studied chemicals, both of which have attracted extensive attention from the 

scientific and regulatory community (US EPA 2009). In laboratory-based animal studies, 

PFOA and PFOS have shown the potential for developmental toxicity and reproductive 

effects (Negri et al. 2017), but there are fewer studies of these health effects in humans.  

Hypertensive disorders of pregnancy (HDP) complicate approximately 5-10% of 

pregnancies in the US. HDP includes both pregnancy-induced hypertension (PIH; or 

gestational hypertension) and preeclampsia (PE) (C8 Science Panel 2011; Borghese et al. 

2020; Steenland et al. 2020; ATSDR 2021; Erinc et al. 2021), the latter of which is defined as 

new-onset hypertension combined with proteinuria (≥300 mg of protein excretion in a 24-

hour urine collection) after 20 weeks of gestation (Milne et al. 2005). Modest state-level 

variation has been observed for HDP in the US (Butwick et al. 2020). 

Most epidemiological studies on PFAS and HDP separated PE and PIH, and many 

focused on the effects of PFOA and PFOS only, while fewer studies investigated the potential 

effects of PFHxS and PFHpA. Among the previous studies, Savitz et al. (2012a) found a 

significant positive association with an adjusted odds ratio (AOR) of 1.16 (95% CI: [1.03, 

1.30]) per interquartile range (IQR) increase in natural log PFOA between PE and PFOA 

based on historical exposure reconstruction with Bayesian time-dependent calibration; 
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Wikström et al. (2019) found a significant positive association between PE and PFOS with an 

AOR of 1.53 (95% CI: [1.07, 2.20]) per log2 unit increase in PFOS; Huang et al. (2019) found 

significant positive associations between perfluorobutane sulfonic acid (PFBS) and PE 

(AOR=1.81, 95% CI: [1.03, 3.17] per ln unit) and overall HDP (AOR=1.64, 95% CI: [1.09, 2.47] 

per ln unit). Rylander et al. (2020) found a significantly higher risk of PE comparing the 3rd 

quartile to the 1st quartile of serum PFHxS (AOR = 1.67, 95% CI: [1.02, 2.74]), Borghese et al. 

(2020) found a significant positive association between PE and PFHxS (AOR = 1.32, 95% CI: 

[1.03, 1.70] per log2 unit increase in plasma PFHxS concentration), and Darrow et al. (2013) 

found significant positive associations between PFOA, PFOS and PIH (AOR=1.27, 95% CI: 

[1.05, 1.55] per natural log unit increase in PFOA; AOR=1.47, 95% CI: [1.06, 2.04] per log unit 

increase in PFOS). The other studies only found weakly or moderately insignificant positive 

or inverse associations between PFAS and PE, PIH, or HDP (Stein et al. 2009; Savitz et al. 

2012b; Starling et al. 2014; Huo et al. 2020; Birukov et al. 2021). 

The inconsistent findings in previous studies may be due to the variation in study 

design, study population, case definition, exposure assessment, the timing of blood sampling, 

exposure level, restriction to nulliparous or not, covariates and co-exposure adjusted in the 

statistical models, statistical methods, etc. For example, some studies collected blood 

samples before or early in pregnancy (Darrow et al. 2013; Wikström et al. 2019; Huo et al. 

2020; Rylander et al. 2020; Borghese et al. 2020; Birukov et al. 2021), while others collected 

blood samples in mid-pregnancy (Starling et al. 2014), at delivery or after pregnancy (Stein 

et al. 2009; Huang et al. 2019). Different from the studies that used measured serum PFAS 

concentrations, Savitz et al. (2012a; 2012b) analyzed the associations with PE and PIH based 

on environmentally modeled water and serum PFOA concentrations. HDP can adversely 
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affect kidney function during pregnancy, leading to decreased glomerular filtration rate (GFR)  

(August, 2013; Berry and Atta, 2016; Conti-Ramsden et al., 2019; Covella et al., 2019; Ishaku 

et al., 2021) and increased serum PFAS concentrations (Shankar et al. 2011; Watkins et al. 

2013). Thus, the observed association between PFAS and HDP could be due to reverse 

causality in the studies with measured biomarkers, particularly those that sampled blood in 

mid-pregnancy or later.  

During 2013-2015, the US Environmental Protection Agency (EPA) completed 

nationwide monitoring of six PFAS [PFOA, PFOS, PFHpA, PFHxS, perfluorononanoic acid 

(PFNA), and PFBS] at 4,908 public water systems (PWSs) under the third Unregulated 

Contaminant Monitoring Rule (UCMR3). The UCMR3 dataset is the most comprehensive data 

on PFAS in US public water supplies, covering all PWSs serving more than 10,000 people and 

a representative sample of 800 PWSs serving less than 10,000 people (US EPA, 2012). 

Overall, approximately 241 million people were served by the PWSs monitored under 

UCMR3 (Andrews and Naidenko, 2020). During 2013-2015, PFAS was detected in 1.6% of 

water samples and 4% of PWSs (Guelfo and Adamson 2018), which served 16.5 million US 

residents (Hu et al., 2016). With 90% of the US population being served by public water 

systems (US EPA, 2020), UCMR3 provides an important publicly available data source for 

researchers to investigate the health effects of PFAS. Based on UCMR3, Hurley et al. (2016) 

found significantly higher PFOA and PFOS concentrations in California women who resided 

in areas with detectable levels of PFOA and PFOS in public drinking water compared with 

those without detectable levels. Zhu and Bartell (2020) found a significant inverse 

association between the sum of PFAS and birthweight in the counties exposed to PFAS in 

drinking water in UCMR3. 
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Multiple US studies have investigated the associations between PFAS and HDP in 

communities with PFAS water contamination in West Virginia and Ohio, which are often 

referred to as “C8 Project” or “C8 Studies” (Stein et al. 2009; Nolan et al. 2010; Savitz et al. 

2012a; Savitz et al. 2012b; Darrow et al. 2013). These are some of the largest available 

studies on this topic, but they also had some important limitations. First, some studies used 

self-reported PE without validation by medical records, which may be subject to recall bias 

(Stein et al. 2009; Savitz et al. 2012a). Second, Stein et al. (2009) is restricted to pregnancies 

occurring in five years before the mother’s serum PFOA measurement, that is, their exposure 

assessment occurred after the outcome, which is a violation of temporality in epidemiology 

(Hill, 1965) and may introduce reverse causation. Because fetal transfer in pregnancy and 

breastfeeding after pregnancy are both important excretion pathways for PFOA in females 

(Beesoon et al. 2011; Fromme et al. 2010), the measured serum PFOA concentrations in a 

few years after pregnancy may not reflect the body burden of the women before pregnancy. 

Additionally, Savitz et al. (2012a; 2012b) assessed serum PFOA levels based on historical 

exposure reconstruction rather than actual measurements, and therefore may be subject to 

substantial exposure measurement error, though this approach largely avoided 

physiological confounding and reverse causation (Weisskopf and Webster 2017). Darrow et 

al. (2013) used a prospective study design with most pregnancies conceived after serum 

PFOA measurements, and was therefore not subject to the same concerns about temporality 

and historical exposure reconstruction as the other studies; these authors reported 

significant positive associations between PIH and PFOA and PFOS (AOR=1.27, 95% CI: [1.05, 

1.55] per natural log unit increase in PFOA; AOR=1.47, 95% CI: [1.06, 2.04] per natural log 

unit increase in PFOS); and sub-analyses restricted to the births conceived after serum 
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measurements were consistent with the main results, yet with a stronger positive 

association between PIH and PFOS. 

Although recent studies in other countries incorporated some understudied PFAS 

chemicals, such as PFNA, PFHpA, perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 

(PFUnDA), perfluorododecanoic acid (PFDoA), perfluoroundecanoic acid (PFUA), PFHxS, 

and PFBS (Starling et al. 2014; Huang et al. 2019; Wikström et al. 2019; Huo et al. 2020; 

Rylander et al. 2020; Borghese et al. 2020; Birukov et al. 2021), the US C8 studies only 

investigated one or two PFAS chemicals: PFOA and/or PFOS (Stein et al. 2009; Savitz et al. 

2012a; Savitz et al. 2012b; Darrow et al. 2013), and Nolan et al. (2010) used water service 

category (exclusively served by Little Hocking Water Association; partially served by Little 

Hocking Water Association; and not served by Little Hocking Water Association) as a crude 

exposure metric for PFOA. With PFOA and PFOS being gradually phased out in the US in the 

last two decades, and some similarities in reported health outcomes across the class of PFAS 

chemicals (ATSDR, 2021), other high use PFAS such as PFNA and PFHxS warrant 

investigation. Particularly, PFHxS was found to be ubiquitous in the serum of the US 

population during 2015-2016 (CDC, 2019). Using the UCMR3 data in this study, we were able 

to analyze the associations between PFAS and HDP more comprehensively by covering a 

larger population in the US and incorporating some understudied PFAS chemicals (i.e., 

PFHpA and PFHxS) compared to previous studies in the US. As an external exposure metric, 

PFAS water concentration is resistant to reverse causality or physiological confounding due 

to GFR, compared to PFAS serum concentration (Weisskopf and Webster 2017). In addition, 

the CDC WONDER data we used in this study provide HDP status as recorded on birth 
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certificates during the same years (2013-2015) covered by the UCMR3, facilitating the 

investigation of cross-sectional associations between PFAS in drinking water and HDP.  

 

4.3 Methods 

4.3.1 Study Population 

 We obtained the number of cases of HDP and the number of births (including those 

who had HDP and those who did not) for singleton births throughout the US during 2013-

2015, multiply stratified by county, maternal age, bridged race, education, smoking status, 

and parity from CDC WONDER. In the CDC WONDER data, HDP is recorded as “pregnancy-

associated hypertension” which includes diagnosis of either pregnancy-induced 

hypertension (PIH) or preeclampsia (PE). Following the practice in previous studies, we use 

the term “hypertensive disorders of pregnancy (HDP)” to represent pregnancy-associated 

hypertension (C8 Science Panel, 2011; Borghese et al., 2020; Steenland et al., 2020; ATSDR, 

2021; Erinc et al., 2021). We merged the HDP cases and the number of births by combination 

of the stratification variables, excluding births with “unknown or not stated” HDP status from 

this study. We merged the CDC WONDER data on HDP and risk factors with UCMR3 data on 

PFAS in drinking water by county, which produced complete data for 551 large counties with 

more than 100,000 people. Table 4.1 presents the complete data (8,116,974 singleton births) 

we obtained for these 551 counties, accounting for 70.7% of all 11,484,590 singleton births 

in the US during 2013-2015. A flow chart (Figure S4.1) in the Supplemental Digital Content 

shows the details of exclusions.  
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4.3.2 UCMR3 Water Quality Data 

We excluded PFNA and PFBS from this study because only 10 and 4 counties had 

detections for these two chemicals, respectively. The other four PFAS chemicals measured 

in UCMR3 (PFOA, PFOS, PFHpA, and PFHxS) were moderately to highly correlated with each 

other (Zhu and Bartell, 2020). We examined the other water quality indicators reported by 

the US EPA and found that 1,4-dioxane was the only other UCMR3 chemical moderately 

associated with the four PFAS (r>0.3) (Zhu and Bartell, 2020). A detailed description of the 

CDC WONDER and UCMR3 data, their limitations, and the merging process can be found in a 

previous paper (Zhu and Bartell, 2020). Among the 551 counties in the merged data, 87 

counties had detection for at least one of PFOA, PFOS, PFHpA, and PFHxS. The number of 

singleton births (2,085,035 births) in these 87 counties accounted for 18.2% of the total 

number of singleton births in the US during 2013-2015.  

Most counties have more than one public water supply (PWS), so we used two proxy 

indicators for PFAS exposure in the study: first, for the 551 counties in the complete merged 

data, we used the percentage of water measurements with PFAS detection by county 

(number of water samples with PFAS detections divided by the total number of water 

samples collected within the county) as the exposure indicator; second, for the 87 counties 

with PFAS detection in drinking water, we used the population-weighted average PFAS 

water concentrations by county (PWS-level average PFAS water concentrations weighted by 

population served by PWSs within a county) as the exposure indicator. We substituted 

values that were below the minimal reporting level (MRL) with MRL/√2 in these 87 counties. 

Detailed descriptions of these two exposure indicators and summary statistics can be found 

in a previous paper (Zhu and Bartell, 2020). 
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4.3.3 Statistical Analyses 

We assumed the outcome variable, the number of HDP cases within each stratum, 

follows a binomial distribution with the number of Bernoulli trials equal to the number of 

births within each stratum (n) and probability of HDP equal to p. We ran generalized linear 

models to examine the association between HDP and PFAS in drinking water using the glm 

function in R (version 4.1.0), where we specified the family as “binomial”, the number of 

trials as the number of births (n), “success” as having HDP (Y), and “failure” as not having 

HDP (n-Y). Although the outcome variable HDP is reported at the group-level, because the 

binomial distribution is an aggregation of independent Bernoulli trials, using multiple-

stratified data in binomial regression has the same likelihood function and produces the 

same results (effect estimates and standard errors) as we would get using individual-level 

data for the binary outcome variable in logistic regression, in which each individual birth is 

assumed to be a single Bernoulli trial with “success” representing having HDP and “failure” 

representing not having HDP. In both types of analyses, the logit of the probability of HDP (p) 

is modeled as a linear function of the explanatory variables. A simple example with simulated 

data in the Supplemental Digital Content shows the code to fit the equivalent glm models in 

R based on individual-level and multiple-stratified data, which can be extended to include 

interactions terms. However, in this study, we are limited to county-level exposure metrics, 

which may produce different results from using individual-level exposure information (e.g., 

PFAS measurements at each person’s home and workplace). 

We excluded the births with “Unknown or not stated” or “Excluded” education level, 

smoking status, and parity in the 551 counties (shown in Table 4.1) from statistical analyses. 

We ran three sets of binomial regression models, using the two types of exposure indicators 
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of PFAS separately. In the crude model, we examined the association between PFAS and HDP 

only. In the adjusted model, we examined the association while adjusting for maternal age, 

race, education, smoking status, and parity. In the adjusted co-exposure model, we adjusted 

for co-exposures including the other three PFAS and 1,4-dioxane in addition to the 

demographic covariates. We checked the linearity assumptions of binomial/logistic 

regressions by visually inspecting the scatter plots between continuous PFAS predictors and 

logit of HDP variable, which showed that PFAS variables are all quite linearly associated with 

the HDP outcome in logit scale (see Figure S4.2 and Figure S4.3 in Supplemental Digital 

Content). We evaluated the multi-collinearity by examining the generalized variance-

inflation factors (GVIF) and GVIF^(1/(2*Df)), where Df is the degrees of freedom associated 

with the term (Fox and Monette, 1992). We found GVIF^(1/(2*Df)) < 3 for all terms in the 

adjusted co-exposure models using the two types of exposure indicators of PFAS, 

demonstrating no multi-collinearity in the adjusted co-exposure models (see Table S4.1 and 

Table S4.2 in the Supplemental Digital Content). We exponentiated the effect estimates from 

the binomial model output to obtain odds ratios measuring the associations between PFAS 

and HDP. The results derived from using the two exposure indicators are shown in Table 4.2 

and Table 4.3, respectively. 

Using the steady-state serum to drinking water conversion factors of 118:1 for PFOA, 

129:1 for PFOS, and 202:1 for PFHxS derived from literature-based one-compartment 

pharmacokinetic models (Lu and Bartell, 2020), we converted the concentrations of PFOA, 

PFOS, and PFHxS in drinking water into the expected serum concentrations after long-term 

consumption of tap water. We explained the estimation of steady-state serum to drinking 

water ratios in the Supplemental Digital Content. The drinking water to serum conversions 
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of PFAS concentrations and odds ratios of HDP per 𝜇g/L increase in estimated steady-state 

serum PFAS concentrations in the 87 counties are reported in Table 4.4.  

 

4.4 Results 

Table 4.1. Predictors of HDP among Singleton Pregnancies in 551 Counties in the US, 2013-

2015 

Categories No. of Births (%) No. of HDP Cases 

Total 8,116,974 (100%) 225,450 (100%) 

Maternal Age (years) 

  <15 2,436 (0.03%) 0 (0%) 

  15-19 472,950 (5.8%) 15,193 (6.7%) 

  20-24 1,712,821 (21.1%) 52,243 (23.2%) 

  25-29 2,343,447 (28.9%) 67,436 (29.9%) 

  30-34 2,315,191 (28.5%) 63,173 (28.0%) 

  35-39 1,074,932 (13.2%) 24,717 (11.0%) 

  40-44 191,832 (2.4%) 2,688 (1.2%) 

  ≥45 3,365 (0.04%) 0 (0%) 

Race 

  American Indian or Alaska Native 30,764 (0.4%) 234 (0.1%) 

  Asian or Pacific Islander 612,144 (7.5%) 5,730 (2.5%) 

  Black or African American 1,348,057 (16.6%) 43,166 (19.1%) 

  White 6,126,009 (75.5%) 176,320 (78.2%) 

Education 

  8th grade or less                     267,206 (3.3%) 3,553 (1.6%) 
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  9th through 12th grade with no diploma 876,616 (10.8%) 19,322 (8.6%) 

  High school graduate or GED completed 1,905,846 (23.5%) 56,436 (25.0%) 

  Some college credit, but not a degree 1,663,504 (20.5%) 56,973 (25.3%) 

  Associate degree 571,084 (7.0%) 12,377 (5.5%) 

  Bachelor’s degree 1,634,224 (20.1%) 50,619 (22.5%) 

  Master’s degree 739,215 (9.1%) 16,366 (7.3%) 

  Doctorate or professional degree 198,732 (2.5%) 2,005 (0.9%) 

   Unknown or not stated 93,293 (1.2%) 1,346 (0.6%) 

   Excluded 167,254 (2.1%) 6,453 (2.9%) 

Smoking Status 

  No 7,428,369 (91.5%) 216,518 (96.0%) 

  Yes 365,603 (4.5%) 980 (0.4%) 

             Not reported 261,560 (3.2%) 7,651 (3.4%) 

             Unknown or not stated 61,442 (0.8%) 301 (0.1%) 

Parity 

  1st 3,272,130 (40.4%) 140,393 (62.3%) 

  2nd 2,570,880 (31.8%) 45,247 (20.1%) 

  3rd and over 2,251,921 (27.8%) 39,513 (17.5%) 

              Unknown or not stated 22,043 (0.3%) 297 (0.1%) 
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Table 4.2. Odds ratio of HDP per 10% increase in water measurements with PFAS detection in 551 counties in the US during 2013-2015 (No. of 

births = 7,692,730; No. of HDP cases = 215,957). 

 PFOA PFOS PFHpA PFHxS 

Crude model1 
1.004, 95% CI: [0.991, 

1.018] 

1.071, 95% CI: [1.057, 

1.085] 

1.036, 95% CI: [1.022, 

1.050] 

1.033, 95% CI: [1.019, 

1.047] 

Adjusted model2 
1.002, 95% CI: [0.988, 

1.015] 

1.042, 95% CI: [1.029, 

1.056] 

1.011, 95% CI: [0.997, 

1.025] 

1.030, 95% CI: [1.016, 

1.044] 

Adjusted co-exposure 

model3 

0.910, 95% CI: [0.882, 

0.938] 

1.015, 95% CI: [0.993, 

1.038] 

0.973, 95% CI: [ 0.945, 

1.001] 

1.116, 95% CI: [1.083, 

1.151] 

1 Crude model: association between PFAS and HDP only.  

2 Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska 

Native, Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th grade with no diploma; 

High school graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or 

professional degree), smoking status (yes, no), and parity (first, second, third and over).  
3 Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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Figure 4.1. Odds ratio (95% CI) of HDP per 10% increase in water measurements with PFAS detection in 

551 counties in the US during 2013-2015. Crude model: association between PFAS and HDP only. Adjusted 

model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race 

(American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, White), education 

(eighth grade or less; ninth through 12th grade with no diploma; High school graduate or GED completed; 

Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or 

professional degree), smoking status (yes, no), and parity (first, second, third and over). Adjusted co-

exposure model: adjusted for the other 3 PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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Table 4.3. Odds ratios with 95% confidence intervals (95% CI) of HDP per IQR (ng/L) increase in population-weighted average PFAS water 

concentration in 87 counties with detection of at least one of the four PFAS1 (No. of births = 2,085,035; No. of HDP cases = 57,272). 

 PFOA PFOS PFHpA PFHxS Sum of four PFAS 

IQR [14.14, 14.90] [28.28, 31.74] [7.07, 7.42] [21.21, 22.04] [70.98, 78.26]  

IQR difference 0.76 3.46 0.35 0.83 7.28 

Crude model2 
1.009, 95% CI: [1.001, 

1.016] 

1.033, 95% CI: 

[1.024, 1.042] 

1.014, 95% CI: 

[1.011, 1.017] 

1.007, 95% CI: 

[1.005, 1.010] 

1.037, 95% CI: 

[1.027, 1.047] 

Adjusted model3 
1.009, 95% CI: [1.001, 

1.016] 

1.030, 95% CI: 

[1.021, 1.040] 

1.008, 95% CI: 

[1.005, 1.011] 

1.007, 95% CI: 

[1.004, 1.010] 

1.032, 95% CI: 

[1.022, 1.042] 

Adjusted co-

exposure model4 

0.976, 95% CI: [0.965, 

0.986] 

1.018, 95% CI: 

[1.003, 1.034] 

1.014, 95% CI: 

[1.010, 1.018] 

1.003, 95% CI: 

[0.999, 1.007] 

1.031, 95% CI: 

[1.021, 1.041] 

1 Values that were below the minimal reporting levels (MRLs) were substituted with MRL/√2. 
2 Crude model: association between PFAS and HDP only.  

3 Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska 

Native, Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th grade with no diploma; 

High school graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or 

professional degree), smoking status (yes, no), and parity (first, second, third and over).  
4 Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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Figure 4.2. Odds ratio (95% CI) of HDP per IQR (ng/L) increase in the population-weighted average PFAS 

water concentration (ng/L = ppt = 10-3𝜇g/L) in the 87 counties. Using MRL/√2 substitution for the non-

detections. Crude model: association between PFAS and birthweight only. Adjusted model: adjusted for 

maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or 

Alaska Native, Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; 

ninth through 12th grade with no diploma; high school graduate or GED completed; some college credit, 

but not a degree; associate degree; bachelor’s degree; master’s degree; doctorate or professional degree), 

smoking status (yes, no), and parity (first, second, third and over). Adjusted co-exposure model: adjusted 

for the co-expo- sures (the other 3 PFAS and 1,4-dioxane; or 1,4-dioxane only for the model includes the 

sum of PFAS), and all covariates in the adjusted model.  
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Table 4.4. Drinking water to serum conversions of PFAS concentrations and odds ratios with 95% CI of HDP per 𝜇g/L increase in estimated steady-

state serum PFAS concentrations after long-term consumption of tap water in 87 counties with detection of at least one of the four PFAS1 (No. of 

births = 2,085,035; No. of HDP cases = 57,272). 

 PFOA PFOS PFHpA PFHxS 

Mean of population-weighted 

average UCMR3 water 

concentration (ng/L) 

14.84 30.58 7.74 22.60 

Steady-state serum to drinking 

water ratio 
118:1 129:1 - 202:1 

Mean predicted serum 

concentration after drinking 

water to serum conversion 

(𝜇g/L) 

1.7  3.8 - 4.4 

Crude model2 1.10, 95% CI: [1.01, 1.20] 1.07, 95% CI: [1.05, 1.10] - 1.05, 95% CI: [1.03, 1.06] 

Adjusted model3 1.09, 95% CI: [1.01, 1.20] 1.07, 95% CI: [1.05, 1.09] - 1.04, 95% CI: [1.03, 1.06] 

Adjusted co-exposure model4 0.76, 95% CI: [0.67, 0.86] 1.04, 95% CI: [1.01, 1.08] - 1.02, 95% CI: [0.995, 1.04] 

1 Values that were below the minimal reporting levels (MRLs) were substituted with MRL/√2. 
2 Crude model: association between PFAS and HDP only.  
3 Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska Native, 

Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th grade with no diploma; High 

school graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or 

professional degree), smoking status (yes, no), and parity (first, second, third and over).  
4 Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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Based on the first proxy indicator, water measurements with PFAS detection in 551 

counties, we found a null association between HDP and PFOA, significant positive 

associations between HDP and PFOS, PFHpA, and PFHxS. Adjusting for demographic 

covariates partly explained the associations between HDP and PFOS, and PFHpA, thus 

attenuating the effect estimates towards the null. Additional adjustments for co-exposures 

further attenuated the positive association between PFOS and HDP towards the null, 

changed the effects for PFOA and PFHpA to the inverse, and increased the effect size in the 

positive direction for PFHxS (see Table 4.2 and Figure 4.1). 

 The IQRs for the second proxy indicator, population-weighted average PFAS water 

concentration in 87 counties, are shown in Table 4.3. Based on the second proxy indicator, 

we found small but statistically significant positive associations between each of the four 

PFAS and HDP in the crude and adjusted models. Adjusting for demographic covariates 

partly explained the associations between HDP and PFOS, and PFHpA, slightly attenuating 

the effect sizes towards the null. Additional adjustments for co-exposures changed the effect 

of PFOA from null to inverse. We also observed a significant positive association between the 

sum of four PFAS and HDP, which is robust to adjustments for demographic covariates and 

the co-exposure 1,4-dioxane (see Table 4.3 and Figure 4.2). 

 Using steady-state serum to drinking water ratios of 118:1 for PFOA, 129:1 for PFOS, 

and 202:1 for PFHxS derived from literature-based pharmacokinetic models (Lu and Bartell, 

2020), we converted the population-weighted average water concentrations (ng/L) into the 

expected serum concentrations (𝜇 g/L) after long-term consumption of tap water. The 

estimation of steady-state serum to drinking water ratios were explained in the 

Supplemental Digital Content. The average serum concentrations after the drinking water to 
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serum conversion are 1.7 𝜇g/L for PFOA, 3.8 𝜇g/L for PFOS, and 4.4 𝜇g/L for PFHxS. The 

effect estimates for PFOA, PFOS, and PFHxS after adjusting for demographic covariates are 

shown in Table 4.4, which are reversed from positive to inverse for PFOA, and attenuated 

towards the null for PFOS and PFHxS after further adjustments for co-exposures (see Table 

4.4). 

 

4.5 Discussion 

To our knowledge, our analyses of 8,116,974 US singleton births during 2013-2015 

uses the most comprehensive database for estimating of the associations between HDP and 

four common PFAS (i.e., PFOA, PFOS, PFHpA, and PFHxS) in public water supplies. We found 

a null association between HDP and the detection of PFOA, and small positive associations 

between HDP and detections of PFOS, PFHpA, and PFHxS after adjusting for demographic 

covariates. Further adjusting for co-exposures (the other three PFAS and 1,4-dioxane) 

changed the effect estimates differently for different PFAS chemicals.  

Among the 2,085,035 singleton births in the 87 counties with exposure to PFAS in 

drinking water, we observed significant positive associations between HDP and population-

weighted average water concentrations of all four PFAS and the sum of four PFAS, after 

adjusting for demographic covariates. Although further adjustment for co-exposures (PFOS, 

PFHpA, PFHxS, and 1,4-dioxane) reversed the effect of PFOA from positive to inverse, 

exposure amplification bias due to residual confounding could occur when investigating 

correlated exposure mixtures with common sources in the same model (Weisskopf et al., 

2018). 
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To facilitate the comparisons with other studies that used serum PFAS concentrations 

as the exposure metric, we also used steady-state serum to drinking water ratio to convert 

the population-weighted average PFAS water concentrations to the predicted serum 

concentrations after long-term consumption of tap water. After the conversion, our effect 

estimates for PFOA (AOR = 1.09, 95% CI: [1.01, 1.20] per 𝜇g/L), PFOS (1.07, 95% CI: [1.05, 

1.09] per 𝜇 g/L), and PFHxS (1.04, 95% CI: [1.03, 1.06] per 𝜇 g/L) after adjusting for 

demographic covariates are similar to the weakly/moderately positive effect estimates 

found in most previous studies (Stein et al. 2009; Savitz et al. 2012a, 2012b; Huang et al. 

2019; Huo et al. 2020; Rylander et al. 2020; Borghese et al. 2020; Birukov et al. 2021). 

Strengths of our study include a large sample size of 8,116,974 US singleton births 

that represents 71% of all singleton births in the US during 2013-2015, information on the 

counties and states of the deliveries, HDP status based on birth records, and availability of 

multiply stratified data on HDP and key demographic covariates, equivalent to individual-

level data on those variables. Particularly, the multiply stratified data structure allows the 

use of binomial regression to derive equivalent effect estimates and standard errors as using 

individual-level data on HDP and demographic covariates in logistic regression; and the large 

sample size provides sufficient statistical power and allows for precise quantifications of the 

effect estimates of PFAS exposure using two different exposure metrics. We also used two 

approaches to measure PFAS exposure, which produced similar results: null associations for 

PFOA in the crude and adjusted models, yet inverse associations for PFOA in the adjusted co-

exposure model; positive associations for PFOS in the crude and adjusted models, and null 

association for PFOS in the adjusted co-exposure model; and small positive associations for 
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PFHxS in the crude and adjusted models. The similarities in these two approaches further 

add credibility in our findings.  

Our study also has some limitations. First, data suppression, de-identification, and 

some missingness in CDC WONDER restricted our analyses to 551 and 87 large counties in 

the US with populations ≥100,000, respectively, for the two sets of analyses using different 

exposure metrics, which limits our ability to generalize the results to the entire US (Zhu and 

Bartell 2020). Also, birth certificates may capture HDP information imperfectly in the CDC 

database, although a previous validation study concluded that HDP is “reported with a 

reasonable level of accuracy” in birth and hospital discharge data (Robert et al., 2008). 

Second, the reported detections of PFAS in drinking water were dependent on the minimal 

reporting limits used in UCMR3, which likely underestimated the presence of PFAS in U.S 

water systems (Andrews and Naidenko 2020) and may have introduced some measurement 

error in our averaged water concentrations. Out of the 551 large counties covered in this 

study, only 87 counties had detections for at least one of the four PFAS, including 58 counties 

with detections for PFOA, 49 counties with detections for PFOS, 48 counties with detections 

for PFHpA, and 38 counties with detections for PFHxS. We also did not have individual-level 

information on type of water consumed to account for the use of bottled water, private well 

water, or public drinking water. Third, although we fit three sets of models (crude model, 

adjusted model, and adjusted co-exposure model) to better explore the associations between 

HDP and each PFAS chemical, we cannot rule out potential uncontrolled or incompletely 

controlled confounding, which may bias our results. Adjusting for education, in particular, 

shifted the parameter estimates more than other sociodemographic variables for our 

analyses using the first proxy indicator for PFAS exposure (see Table S4.3 in the 
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Supplemental Digital Content), suggesting possible residual confounding if education alone 

may not adequately capture the effects of socioeconomic status on HDP. Another limitation 

is our use of county-level PFAS water data, instead of individual-level measurements of PFAS 

in personal water or serum, which may have contributed to exposure measurement error. 

Additionally, Borghese et al. (2020) found that infant sex may be an effect modifier for PFAS 

and HDP. We tried but did not incorporate the stratified analysis by infant sex in this study 

due to additional data suppression after further stratification, which led to smaller strata and 

the inability to obtain standard error estimates.  

 

4.6 Conclusion 

We linked two publicly available databases (CDC WONDER and EPA UCMR3) to 

conduct a nationwide study on PFAS water concentrations and HDP. Our results show a weak 

positive association between the PFAS mixture and HDP, although the generalizability is 

subject to inherent limitations of the two datasets. Future studies using serum 

measurements of PFAS in early pregnancies would be a valuable addition to the body of 

research on this topic. 
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4.7 Acronyms 

HDP: hypertensive disorders of pregnancy 

PE: preeclampsia 

PIH: pregnancy-induced hypertension 

PFAS: per- and polyfluoroalkyl substances  

PFOA: perfluorooctanoic acid 

PFOS: perfluorooctane sulfonate  

PFHxS: perfluorohexane sulfonic acid  

PFHpA: perfluoroheptanoic acid  

PFBS: perfluorobutane sulfonic acid  

PFNA: perfluorononanoic acid  

PFDA: perfluorodecanoic acid  

PFUnDA: perfluoroundecanoic acid  

PFDoA: perfluorododecanoic acid  

PFUA: perfluoroundecanoic acid  
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4.8 Supplemental Digital Content 

 
 
Figure S4.1. Study Profile 
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Figure S4.2. Scatter Plot between the First Proxy Indicator for PFAS Exposure and the Logit of HDP.  

 

 
Figure S4.3. Scatter Plot between the Second Proxy Indicator for PFAS Exposure and the Logit of HDP. 
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Table S4.1. Generalized Variance-Inflation Factors (GVIF) for the Adjusted Co-exposure 

Models using the First Exposure Indicator - Percentage of water measurement with PFAS 

detection. 

 GVIF Df GVIF^(1/(2*Df)) 

PFOA 2.82 1 1.68 

PFOS 5.16 1 2.27 

PFHpA 4.50 1 2.12 

PFHxS 4.92 1 2.22 

1,4-dioxane 1.11 1 1.05 

Maternal age 1.69 7 1.04 

Maternal race 1.06 3 1.01 

Education 1.62 7 1.03 

Smoking status 1.00 1 1.00 

Parity 1.25 2 1.06 

 
 

Table S4.2. Generalized Variance-Inflation Factors (GVIF) for the Adjusted Co-exposure 

Models using the Second Exposure Indicator - Population-weighted average PFAS 

concentration. 

 GVIF Df GVIF^(1/(2*Df)) 

PFOA 2.08 1 1.44 

PFOS 2.81 1 1.68 

PFHpA 1.92 1 1.39 

PFHxS 1.89 1 1.37 

1,4-dioxane 1.31 1 1.15 

Maternal age 1.64 7 1.04 

Maternal race 1.07 3 1.01 

Education 1.57 7 1.03 

Smoking status 1.00 1 1.00 

Parity 1.26 2 1.06 
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We fitted four additional models adding the sociodemographic confounders one at a time in additional to those shown in Table 

4.2 in the manuscript to examine the effects of different sociodemographic variables. Model 1 adjusted for maternal age. Model 

2 additionally adjusted for race based on Model 1. Model 3 additionally adjusted for education based on Model 2. Model 4 

additionally adjusted for smoking status (yes, no) based on Model 3. 

 

Table S4.3. Odds ratio with 95% confidence intervals (95% CI) of HDP per 10% increase in water measurements with PFAS 

detection in 551 counties in the US during 2013-2015 (No. of births = 7,692,730; No. of HDP cases = 215,957). 

 PFOA  PFOS PFHpA PFHxS 

Crude model1 1.004, [0.991, 1.018] 1.071, [1.057, 1.085] 1.036, [1.022, 1.050] 1.033, [1.019, 1.047] 

Model 1 1.003, [0.990, 1.017] 1.074, [1.060, 1.088] 1.033, [1.019, 1.046] 1.029, [1.015, 1.044] 

Model 2 1.007, [0.993, 1.020] 1.070, [1.056, 1.084] 1.022, [1.009, 1.036] 1.030, [1.016, 1.045] 

Model 3 0.997, [0.983, 1.010] 1.065, [1.052, 1.079] 1.013, [1.00, 1.027] 1.020, [1.006, 1.034] 

Model 4 1.001, [0.987, 1.014] 1.056, [1.042, 1.070] 1.013, [0.999, 1.026] 1.022, [1.008, 1.036] 

Adjusted model2 1.002, [0.988, 1.015] 1.042, [1.029, 1.056] 1.011, [0.997, 1.025] 1.030, [1.016, 1.044] 

Adjusted co-exposure 

model3 

0.910, [0.882, 0.938] 1.015, [0.993, 1.038] 0.973, [0.945, 1.001] 1.116, [1.083, 1.151] 

1 Crude model: association between PFAS and HDP only.  
2 Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska Native, 

Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th grade with no diploma; High 

school graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree ; Doctorate or 

professional degree), smoking status (yes, no), and parity (first, second, third and over).  
3 Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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We also fitted four additional models adding the sociodemographic confounders one at a time in additional to those shown in 

Table 4.3 in the manuscript to examine the effects of different sociodemographic variables.  

 

Table S4.4. Odds ratios (95% CI) of HDP per IQR (ng/L) increase in population-weighted average PFAS water concentration in 

87 counties with detection of at least one of the four PFAS1 (No. of births = 2,085,035; No. of HDP cases = 57,272). 

 PFOA PFOS PFHpA PFHxS Sum of four 

PFAS 

IQR [14.14, 14.90] [28.28, 31.74] [7.07, 7.42] [21.21, 22.04] [70.98, 78.26]  

IQR difference 0.76 3.46 0.35 0.83 7.28 

Crude model2 1.009, 95% CI: 

[1.001, 1.016] 

1.033, 95% CI: 

[1.024, 1.042] 

1.014, 95% CI: 

[1.011, 1.017] 

1.007, 95% CI: 

[1.005, 1.010] 

1.037, 95% CI: 

[1.027, 1.047] 

Model 1 1.005, 95% CI: 

[0.997, 1.013] 

1.029, 95% CI: 

[1.020, 1.038] 

1.013, 95% CI: 

[1.011, 1.016] 

1.005, 95% CI: 

[1.002, 1.008] 

1.031, 95% CI: 

[1.022, 1.041] 

Model 2 0.996, 95% CI: 

[0.988, 1.004] 

1.016, 95% CI: 

[1.007, 1.026] 

1.009, 95% CI: 

[1.006, 1.012] 

1.002, 95% CI: 

[0.999, 1.005] 

1.016, 95% CI: 

[1.006, 1.026] 

Model 3 0.993, 95% CI: 

[0.985, 1.001] 

1.016, 95% CI: 

[1.007, 1.025] 

1.008, 95% CI: 

[1.005, 1.011] 

1.008, 95% CI: 

[1.005, 1.011] 

1.013, 95% CI: 

[1.003, 1.022] 

Model 4 1.003, 95% CI: 

[0.995, 1.011] 

1.029, 95% CI: 

[1.020, 1.038] 

1.009, 95% CI: 

[1.006, 1.012] 

1.003, 95% CI: 

[1.0004, 1.006] 

1.026, 95% CI: 

[1.016, 1.036] 

Adjusted model3 1.009, 95% CI: 

[1.001, 1.016] 

1.030, 95% CI: 

[1.021, 1.040] 

1.008, 95% CI: 

[1.005, 1.011] 

1.007, 95% CI: 

[1.004, 1.010] 

1.032, 95% CI: 

[1.022, 1.042] 

Adjusted co-

exposure model4 

0.976, 95% CI: 

[0.965, 0.986] 

1.018, 95% CI: 

[1.003, 1.034] 

1.014, 95% CI: 

[1.010, 1.018] 

1.003, 95% CI: 

[0.999, 1.007] 

1.031, 95% CI: 

[1.021, 1.041] 
1 Values that were below the minimal reporting levels (MRLs) were substituted with MRL/√2. 
2 Crude model: association between PFAS and HDP only.  
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3 Adjusted model: adjusted for maternal age (<15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, ≥50), race (American Indian or Alaska Native, 
Asian or Pacific Islander, Black or African American, White), education (eighth grade or less; ninth through 12th grade with no diploma; High 
school graduate or GED completed; Some college credit, but not a degree; Associate degree; Bachelor’s degree; Master’s degree; Doctorate or 
professional degree), smoking status (yes, no), and parity (first, second, third and over).  
4 Adjusted co-exposure model: adjusted for the other three PFAS, 1,4-dioxane, and all covariates in the adjusted model.  
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Methods to estimate steady-state serum to drinking water ratios 

The conversion factors were estimated from literature-based one-compartment 

pharmacokinetic models  

𝐶𝐹 =
𝐼

𝑘 ∙ 𝑉
=

𝐼

𝑙𝑛2
𝑡1/2

∙ 𝑉
 

where I is the water ingestion rate, 𝑡1/2 is the half-life of PFAS, and V is the volume of 

distribution.  

For example, assuming the water ingestion rate is I=16.6 ml/kg/day (Lu and Bartell, 2020), 

PFOS serum half-life is 3.4 years (Li et al., 2018), and volume of distribution is 𝑉𝑃𝐹𝑂𝑆=0.23 

L/kg (Thompson et al., 2010), then the steady-state ratio for serum:water concentration of 

PFOS is 

𝐶𝐹𝑃𝐹𝑂𝑆 =
16.6 𝑚𝑙  𝑘𝑔 𝑑𝑎𝑦⁄⁄ ∗ 0.001 𝐿/𝑚𝑙 ∗ 365.25 𝑑𝑎𝑦/𝑦𝑒𝑎𝑟

𝑙𝑛2
3.4 𝑦𝑒𝑎𝑟 ∗ 0.23𝐿/𝑘𝑔

= 129.31 

Assuming the PFOA serum half-life is 2.3 years (Bartell et al., 2010) and volume of 

distribution is 𝑉𝑃𝐹𝑂𝐴 = 0.17 L/kg (Thompson et al., 2010), then the steady-state ratio for 

serum:water concentration of PFOA is 

𝐶𝐹𝑃𝐹𝑂𝐴 =
16.6 𝑚𝑙  𝑘𝑔 𝑑𝑎𝑦⁄⁄ ∗ 0.001 𝐿/𝑚𝑙 ∗ 365.25 𝑑𝑎𝑦/𝑦𝑒𝑎𝑟

𝑙𝑛2
2.3 𝑦𝑒𝑎𝑟 ∗ 0.17𝐿/𝑘𝑔

= 118.35 

Assuming the PFHxS serum half-life is 5.3 years (Li et al., 2018) and volume of distribution 

is 𝑉𝑃𝐹𝐻𝑥𝑆 = 0.23  L/kg (Zhang et al., 2013), then the steady-state ratio for serum:water 

concentration of PFOA is 

𝐶𝐹𝑃𝐹𝐻𝑥𝑆 =
16.6 𝑚𝑙  𝑘𝑔 𝑑𝑎𝑦⁄⁄ ∗ 0.001 𝐿/𝑚𝑙 ∗ 365.25 𝑑𝑎𝑦/𝑦𝑒𝑎𝑟

𝑙𝑛2
5.3 𝑦𝑒𝑎𝑟

∗ 0.23𝐿/𝑘𝑔
= 201.57 



 

 

 

123 

Example R code for fitting binomial regression models with multiple-stratified data 

set.seed(1) 
n <- 100 
library(dplyr) 
library(extraDistr) 
 
Smoke <- rcat(n, prob = c(0.1, 0.90), labels = c("Yes", "No")) 
Age <- rcat(n, prob = c(0.5, 0.5), labels = c("<40", ">=40")) 
p <- 0.25 * (Smoke == "Yes" & Age == "<40") + 0.1 * (Smoke == "No" & Age == "<40") +  
  0.2 * (Smoke == "Yes" & Age == ">=40") + 0.25 * (Smoke == "No" & Age == ">=40") + 0.05 
y <- rbinom(n, 1, p) 
 
 
# logistic regression based on individual-level data 
data.0 <- data.frame(Smoke, Age, p, y) 
 
mod.0 <- glm(y ~ Smoke + Age, family = “binomial”, data = data.0) 
summary(mod.0) 
 
 
# binomial regression based on group-level multiple-stratified data 
data.1 <- data.0 %>% group_by(Smoke, Age) %>% summarize(n = n(), n.y = sum(y)) %>% 
mutate(p = 0.25 * (Smoke == "Yes" & Age == "<40") + 0.1 * (Smoke == "No" & Age == "<40") 
+ 0.2 * (Smoke == "Yes" & Age == ">=40") + 0.25 * (Smoke == "No" & Age == ">=40") + 0.05) 
 
mod.1 <- glm(cbind(n.y, n-n.y) ~ Smoke + Age, family = "binomial", data = data.1) 
summary(mod.1) 
 
# mod.0 and mod.1 produce the same results 
 

 

 

 

 

 

 

  



 

 

 

124 

CHAPTER 5 

Retrospective Exposure Reconstruction using Approximate Bayesian 

Computation: A Case Study on Perfluorooctanoic Acid and Preeclampsia 
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5.1 Abstract 

Background: In environmental epidemiology, measurements of toxicants in biological 

samples are often used as individual exposure assignments. It is common to obtain only one 

or a few exposure biomarkers per person and use those measurements to represent each 

person’s relevant toxicant exposure for a given health outcome, even though most exposure 

biomarkers can fluctuate over time. When the timing of the exposure reflected by the 

biomarker measurement is misaligned with disease development especially if it occurs after 

the disease outcome, results could be subject to reverse causality or exposure measurement 

error.     

Objective: This study aimed to use an approximate Bayesian computation (ABC) method to 

improve PFOA exposure estimates and characterize the effects of PFOA on preeclampsia in 

the C8 Studies. 

Methods: Serum PFOA concentrations were measured in blood samples collected during 

2005-2006 in West Virginia and Ohio (the C8 Studies), and residential and water use 

histories and pregnancy outcomes were obtained from self-reports. Our previous results 

may have been influenced by the choice of methods for characterizing PFOA exposures. Here 

we use an ABC method to combine measured PFOA serum concentrations and 

environmentally modeled PFOA concentrations to reconstruct historical PFOA 

exposures. We also expanded our previous work by assuming more realistic lognormal 

distributions for key input parameters in the exposure and pharmacokinetic models.  

Results: Compared to using fixed values of model parameters and Monte Carlo simulations, 

ABC produced similar Spearman correlations between estimated and measured serum PFOA 

concentrations, yet substantially reduced the mean squared error by over 50%. Based on 
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ABC, compared to previous studies, we found a similar adjusted odds ratio (AOR) for the 

association between PFOA and preeclampsia. 

Conclusions: Bayesian combination of modeled exposure and measured biomarker 

concentrations can reduce exposure measurement error compared to modeled exposure.   

 

Key Words: Preeclampsia, Historical Exposure Reconstruction, Approximate Bayesian 

Computation, One-compartment Pharmacokinetic Model 
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5.2 Introduction 

In environmental epidemiology, researchers typically use one of two approaches for 

exposure assessment: first, “contact-based” exposure models that combine individual time-

activity patterns and measurements of the pollutants in the air, soil, food, water, and 

consumer products (Fjeld et al., 2007); second, “validated” biomarker measurements that 

assess the exposure concentrations in blood, hair, or other tissues obtained from the 

participants (Paustenbach and Galbraith, 2006). Many researchers prefer using “validated” 

biomarkers rather than “contact-based” exposure models (Paustenbach and Galbraith, 2006; 

Schisterman and Albert, 2012; Rappaport et al., 2015) due to greater objectivity and less 

reliance on self-reports of diet, water consumption, and other complex time-activity patterns. 

However, biomarker measurements are often difficult and expensive to obtain, therefore, 

many epidemiologists have used only one exposure biomarker per pollutant and study 

participant (Borghese et al., 2020; Johnson et al., 2014, Hertz-Picciotto et al., 2010; McKean 

et al., 2015; Starling et al., 2014; Steenland et al., 2018; Huang et al., 2019; Huo et al., 2020; 

Rylander et al., 2020; Wikström et al., 2019), which may not align with the disease induction 

period. For example, the C8 Studies in the U.S. only collected one serum sample for most 

participants at enrollment during 2005-2006 (Savitz et al., 2012a, 2012b; Stein et al., 2009). 

However, the pregnancy outcomes occurred from 1990 to 2005 or 2006, and most of them 

were before the corresponding biomarker exposure measurement, which is a violation of 

temporality in epidemiology in establishing causality (Hill, 1965). Exposure assessment 

methods that combine contact-based models with biomarker measurements, in ways that 

respect the temporal and pharmacokinetic relationships among the different types of 

information, may be beneficial in these settings (Georgopoulos et al., 2009).        
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To avoid potential reverse causality due to the violation of temporality and to ensure 

that exposure estimates were temporally aligned with the health outcomes under 

investigation, Shin et al. (2011a) developed a suite of environmental fate and transport 

models to estimate the yearly air and groundwater concentrations of PFOA from 1951 to 

2008. The model outputs (air and groundwater PFOA concentrations) were then linked to 

each study participant based on their detailed self-reported residential and work histories 

to estimate the yearly inhalation and ingestion doses, i.e., the “contact-based” exposure 

model developed by Shin et al., 2011b. The individual yearly total doses (the sum of 

inhalation and ingestion doses) were input into a one-compartment pharmacokinetic model 

under the assumption of yearly piecewise constant intake rate to estimate each participant’s 

yearly serum PFOA concentrations, which were then used in a series of epidemiological 

studies to investigate the associations between PFOA and health outcomes (Savitz et al., 

2012a, 2012b; Barry et al., 2013; Vieira et al., 2013; Watkins et al., 2013; Winquist and 

Steenland, 2014; Darrow et al., 2016). The conceptual framework of Shin et al. (2011a, 2011b) 

is summarized in Figure 5.1. For example, based on the historical exposure construction 

(Shin et al., 2011a, 2011b), Savitz et al. (2012a) found a weak association between PFOA and 

self-reported preeclampsia [adjusted odds ratio (AOR) = 1.13, 95% CI: 1.00, 1.28, for an 

interquartile range (IQR) increase in natural log-transformed PFOA].       

The sophisticated “contact-based” exposure model developed by Shin et al. (2011b) 

is potentially prone to systematic biases since it depends on numerous variables in the fate 

and transport models (Shin et al., 2011a), subjective self-reported water ingestion rates, and 

complicated time-activity patterns, many of which have large uncertainties. Avanasi et al. 

(2016a, 2016b, 2016c) subsequently used Monte Carlo simulations to account for the 
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uncertainties in PFOA water concentrations, water ingestion rates, and geocoding in the 

“contact-based” exposure model and pharmacokinetic parameters. The authors found 

similar associations between PFOA and preeclampsia to Savitz et al. (2012a), suggesting that 

effect estimates of PFOA and preeclampsia in the C8 Studies were largely driven by the rank 

order of exposure estimates of study participants, rather than the exact exposure amount 

(Avanasi et al., 2016a, 2016b, 2016c). 

Although having accounted for uncertainties, studies by Avanasi et al. (2016a, 2016b, 

2016c) were still solely based on historical exposure construction (Shin et al., 2011a, 2011b), 

without any adjustment or calibration for measured serum PFOA concentrations in 2005 or 

2006. Biomarker measurements contain useful information regarding exposure, and when 

used in conjunction with modeled exposure, can improve the retrospective prediction of 

exposure (Georgopoulos et al., 2009). 

Considering the strengths and limitations of the previous studies (Shin et al., 2011b, 

2014; Avanasi et al., 2016a, 2016b, 2016c) and the complexity of the “contact-based” 

exposure model (Shin et al., 2011b), here we apply an approximate Bayesian computation 

(ABC) method to calibrate the yearly serum PFOA concentrations for the participants in the 

C8 Studies (i.e., approximate Bayesian calibration). The ABC method combines the single 

biomarker measurement and the environmentally modeled exposure, which is likely to 

reduce exposure measurement error.  Incorporating environmental modeled exposure 

should also diminish any impact of reverse causality, compared to only using a single 

biomarker measurement which may have been influenced by the outcome. 

ABC is a method that relaxes the need for a likelihood function in favor of summary 

statistics to facilitate inferences for complex Bayesian models; it has been extensively used 
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in biological and environmental sciences (Beaumont et al., 2002; Blum, 2010; Vrugt and 

Sadegh, 2013; Sadegh and Vrugt, 2014). In ABC, we simulate data based on candidate 

parameter values drawn from probability distributions, similar to Monte Carlo “uncertainty 

analysis” methods long practiced in exposure and risk assessment (Cox and Baybutt, 1981), 

and then compare the simulated data with observed data (measured values such as 

biomarker concentrations) using a defined “distance” function. We discard the candidate 

parameter values when the simulated data is not close enough to the observed data (Turner 

and Zandt, 2012). Specifically, we expand the previous approaches by incorporating 

uncertainties associated with key input parameters in both the previously developed 

exposure and pharmacokinetic models (Figure 5.1). We then investigate the association 

between PFOA and preeclampsia based on the reconstructed historical exposure estimate 

using the ABC method. 

 

5.2.1 Previous Bayesian analysis of these data  

 In earlier work with these data, Shin et al. (2014) calibrated the retrospective 

exposure estimates by incorporating the one-time serum PFOA concentration measured in 

2005 or 2006 for each participant in a simplified Bayesian framework. The authors derived 

a closed-form posterior distribution of the PFOA dose vector under the assumption of 

multivariate normal distribution for the prior dose vector during the 58 years (Shin et al., 

2014); the posterior mean of the yearly total dose is a weighted average of the prior yearly 

dose (estimated from the environmental fate and transport models and “contact-based” 

exposure model) and the steady-state dose implied by the measured serum PFOA 

concentration for each participant. When the posterior mean was used in place of the original 
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exposure estimate for each participant estimated by Shin et al. (2011b), the association 

between PFOA and self-reported preeclampsia was slightly higher and statistically 

significant (AOR = 1.16, 95% CI: 1.03, 1.30 per IQR increase in natural log PFOA) (Savitz et 

al., 2012a). 

Although the closed-form posterior in Shin et al. (2014) provides a straightforward 

way to update the PFOA dose vector to incorporate serum PFOA measurements within a 

complex “contact-based” exposure model (Shin et al., 2011b), the doses have an unrestricted 

range from negative infinity to positive infinity, requiring post-hoc adjustments to exclude 

negative doses, and the approach can suffer from computational difficulties due to high-

dimensional singular matrices. In addition, the posterior mean of the yearly total dose was 

previously input directly into the one-compartment pharmacokinetic model under the 

assumption of yearly piecewise constant intake rate to estimate the yearly serum PFOA 

concentration, without incorporating posterior uncertainties in the dose estimates, while 

holding the PFOA half-life and the volume of distribution constant in the pharmacokinetic 

model (Shin et al., 2014). Our new ABC approach addresses those limitations by using 

lognormal water concentration distributions that disallow negative doses, specifying 

probability distributions for pharmacokinetic parameters, and using the full range of 

posterior exposure assignments in the epidemiologic analysis, rather than just the posterior 

mean.   
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5.3 Methods 

5.3.1 Study population 

The C8 Studies are a set of large, inter-related population-based health studies in the 

mid-Ohio River Valley, where high levels of PFOA were measured in drinking water due to 

contamination from the DuPont Washington Works Plant in West Virginia (Frisbee et al., 

2009). The current analysis is restricted to 10,149 pregnancies that occurred from 1990 to 

the study enrollment in 2005 or 2006 in 6,134 women participants in the C8 Studies, 

excluding those who had occupational exposure to PFOA (Avanasi et al., 2016a). The average 

number of pregnancies is 1.65 (range: 1–6) among the recruited women in this study. A 

serum measurement of PFOA was taken for each participant at enrollment in 2005 or 2006. 

A detailed description of the study population and their demographic information can be 

found elsewhere (Savitz et al., 2012a). 

 

Figure 5.1. A Visualization of Shin et al. (2011a, 2011b)’s Conceptual Framework of Models. 
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5.3.2 Environmental fate and transport model 

We obtained the annual estimated PFOA water concentrations (𝜇g/L) in six water 

districts from the environmental fate and transport models developed by Shin et al. (2011a) 

(shown in Figure 5.2). To account for the hierarchical nature of the data, for each of the water 

districts, we assumed a uniform distributed hyperprior U (1, 10) for the ratio of standard 

deviation (𝜎𝑗) to the mean (𝜇𝑗) of the PFOA water concentration in year j (j=1, …, 58), due to 

vague prior information on the standard deviation of the estimated PFOA water 

concentrations.  

𝜏 =
𝜎𝑗
𝜇𝑗
~𝑈(1, 10),       (1) 

We assumed a multivariate lognormal distribution MVLN (𝜇𝑙𝑜𝑔 , 𝛴𝜎𝑙𝑜𝑔
2) for the vector of 

PFOA water concentrations in 58 years in each water district based on the predicted PFOA 

water concentrations shown in Figure 5.2. 𝜇𝑙𝑜𝑔 is a vector with the length of 58, and each 

element equal to 

𝜇𝑙𝑜𝑔,𝑗 = 𝑙𝑜𝑔 

(

 
𝜇𝑗
2

√𝜇𝑗
2 + 𝜎𝑗

2

)

  = 𝑙𝑜𝑔 (
𝜇𝑗

√1 + 𝜏2
),       (2) 

where 𝜇𝑗 is the PFOA water concentration in year j;  

𝜎𝑙𝑜𝑔 = √𝑙𝑜𝑔 (1 +
𝜎𝑗
2

𝜇𝑗
2) = √𝑙𝑜𝑔 (1 + 𝜏

2),       (3) 

where 𝜏 is sampled from the uniform distribution 𝑈(1, 10) in each Monte Carlo iteration. 𝛴 

is a 58×58 first-order autocorrelation matrix AR(1) with autocorrelation factor equal to 0.75 

(Shin et al., 2014), that is, the correlation between PFOA water concentration in year i and 
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year j is 0.75|𝑖−𝑗|. In sensitivity analyses, we also tried different values (0.5 and 0.9) for the 

autocorrelation factor. 

 

Figure 5.2. Annual average calibrated predicted PFOA concentrations (ppb) in log 10 scale in six water 

districts. 

 

5.3.3 “Contact-based” exposure model 

The “contact-based” exposure model provides exposure estimation based on water 

ingestion and air inhalation rates, and residential and work histories of the study 

participants (Shin et al., 2011b). The yearly total dose was computed as a sum of yearly 

ingestion dose and inhalation dose. Because water ingestion is the dominant exposure 

pathway for PFOA in the C8 Studies (Shin et al., 2011a, 2011b) during the time period of 

interest, we held the yearly inhalation dose constant for each participant and only accounted 

for uncertainty in the ingestion dose. The yearly ingestion dose is a product of PFOA water 
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concentration (𝜇g/L) and yearly water intake (L). We assumed for each of the participants 

who had work histories, their water ingestion was constructed by 70% of residential and 30% 

of workplace water ingestions, which resulted in the highest correlation between predicted 

and observed serum PFOA concentration in 2005 or 2006 (Shin et al., 2011b). For the 

participants who did not report a water ingestion rate, we sampled age-specific water 

ingestion rates from the lognormal distributions shown in Table 5.1 throughout their 

lifetime during 1951-2008. We obtained the means (𝜇) and 95th percentiles (𝑝0.95) of age-

specific shrinkage estimation of long-term water ingestion rates from Cuvelier and Bartell 

(2021). We used the formulas below to calculate the standard deviation (SD), log mean 

(𝜇𝑙𝑜𝑔), and log SD (𝜎𝑙𝑜𝑔) of the long-term water ingestion rate. 

𝑆𝐷 = (𝑝0.95 − 𝜇)/1.645       (4) 

𝜇𝑙𝑜𝑔 = 𝑙𝑜𝑔 (𝜇
2/√𝜇2 + 𝜎2)       (5) 

𝜎𝑙𝑜𝑔 = √𝑙𝑜𝑔 (1 +
𝜎2

𝜇2
)       (6) 

In each Monte Carlo iteration, we randomly sampled a percentile of the water ingestion rate 

for each participant from a uniform distribution 𝑈(0, 1)  and used the same percentile 

throughout the individual’s lifetime to compute the age-specific water ingestion rate from 

the quantile function of lognormal distribution (Avanasi et al., 2016b). In sensitivity analysis, 

we also used standard short-term water ingestion rates from the latest version of the U.S. 

Environmental Protection Agency (EPA) Exposure Factors Handbook (U.S. EPA, 2019) for 

the Monte Carlo simulation (Table S5.2). 
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Table 5.1. The parameters of the log-normal distribution for age-specific shrinkage 

estimation of long-term water ingestion rate (L/day) (Cuvelier and Bartell, 2021).  

Age group  Mean (𝜇) 

95th 

Percentile 

(𝑝0.95) 

SD 
Log mean 

(𝜇𝑙𝑜𝑔) 

Log SD 

(𝜎𝑙𝑜𝑔) 

0 to <2 0.438 0.913 0.289 -1.006 0.601 

2 to <16 0.576 1.092 0.314 -0.682 0.510 

16 to <21 0.995 1.809 0.495 -0.116 0.470 

21 to <50 1.552 2.862 0.796 -0.323 0.483 

50+ 1.490 2.615 0.684 -0.303 0.437 

 

5.3.4 One-compartment pharmacokinetic model 

Assuming that the PFOA concentration is zero at birth (i.e., �̂�0 = 0 ) and subsequent 

piecewise constant intake, that is, the intake rate 𝐼𝑗 is a constant within each year j (j = 1, 2, …, 

m), where m is the number of years of life for each woman from their birth year (1947-1990) 

to their pregnancy year or year of serum measurement t (1990-2005). The estimated 

cumulative serum PFOA concentration at time t is 

�̂�𝑡 =∑
𝐼𝑗
𝑘 ∙ 𝑉

(1 − 𝑒−𝑘) ∙ 𝑒−𝑘(𝑚−𝑗)
𝑚

𝑗=1

      

=∑(
1 − 𝑒−𝑘

𝑘 ∙ 𝑉
)𝑒−𝑘(𝑚−𝑗)𝐼𝑗

𝑚

𝑗=1

       (7) 

based on the constant-source first-order removal model during the period of each piece of 

dose and first-order removal model after each piece of dose (Bartell, 2003; Fjeld et al., 2007; 

Shin et al., 2014).  

Let  
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𝑤𝑗 = (
1 − 𝑒−𝑘

𝑘 ∙ 𝑉
)𝑒−𝑘(𝑚−𝑗)       (8) 

be the time-varying weight, k is the elimination rate of PFOA in serum and V is the volume of 

distribution (L). The elimination rate k is inversely proportional to the half-life of PFOA 

(𝑡1/2). 

𝑘 =
𝑙𝑛2

𝑡1/2
       (9) 

Then we can compute the estimated yearly PFOA serum concentration for each participant 

as a weighted sum of annual exposure contributions from previous years. 

�̂�𝑡 =∑𝑤𝑗𝐼𝑗

𝑚

𝑗=1

     (10) 

Based on the above estimated serum PFOA concentration, we used a normal likelihood for 

the measured serum PFOA concentration in year 2005 or 2006 with mean equal to the 

estimated serum PFOA concentration in year 2005 or 2006 and variance equal to 𝜎𝜀
2 (Shin 

et al., 2014).   

𝐶𝑡 ~ 𝑁(∑𝑤𝑗𝐼𝑗

𝑚

𝑗=1

, 𝜎𝜀
2)     (11) 

To account for inter-individual differences in pharmacokinetic parameters, we assumed the 

half-life of PFOA (𝑡1/2) follows the lognormal distribution as below. The parameters were 

calculated based on the arithmetic mean and confidence interval (2.3 years, 95% CI: [2.1, 

2.4]) reported by Bartell et al. (2011). 

𝑡1/2 ~ LN(0.83, 0.03)     (12) 
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We assumed the volume of distribution per body weight (V/kg) follows the lognormal 

distribution below. The parameters were calculated from the arithmetic mean (0.198 L/kg) 

and standard deviation (0.069 L/kg) reported by Butenhoff et al. (2004).  

V ~ LN(-1.68, 0.34)     (13) 

For participants who reported body weight at the time of the survey in 2005 or 2006, we 

assumed that their body weight stayed constant since the age of 18 (Shin et al., 2011b), and 

we multiplied the sampled volume of distribution per weight (L/kg) by the self-reported 

body weight (kg) to obtain the volume of distribution V (L) in those years. We obtained the 

recommended age-specific body weight for women from the 2011 version of U.S. EPA 

Exposure Factors Handbook Chapter 8 (U.S. EPA, 2011) to calculate the volume of 

distribution for the participants before the age of 18. For participants who did not report 

body weight at the time of the survey, we used recommended age-specific body weight for 

women from the U.S. EPA Exposure Factors Handbook (U.S. EPA, 2011) to calculate the 

volume of distribution throughout their lifetime during 1951-2008. 

 

5.3.5 Historical exposure estimation methods 

To facilitate comparisons between different exposure estimate methods, we 

conducted three sets of analyses using: (a) fixed values of model parameters, similar to Shin 

et al., (2011b) and the analysis of PFOA and preeclampsia in Savitz et al. (2012a), (b) Monte 

Carlo simulations of model parameters, similar to Avanasi et al., (2016b), and (c) 

approximate Bayesian calibration of the exposure estimates, a novel approach proposed in 

the current study. However, our analyses (a) and (b) are not direct replicates of Shin et al., 

(2011b), Savitz et al. (2011a), and Avanasi et al., (2016b) because the prior information on 
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some model parameters (i.e., age-specific water ingestion rate, PFOA half-life) have been 

updated over the last 10 years.   

 

(a) Exposure estimates using fixed values of model parameters 

First, we ran the analyses using the exposure estimates based on the fixed values of PFOA 

water concentration shown in Figure 5.2, PFOA half-life of 2.3 years, volume of distribution 

of 0.198 L/kg, and mean of age-specific shrinkage estimation of long-term water ingestion 

rate shown in Table 5.1. That is, we only applied the mean component of each distribution, 

without accounting for uncertainty characterized by the variance component. Our analysis 

is similar to but slightly different from Savitz et al. (2012a) in that we excluded the 

participants with occupational exposure to PFOA (Avanasi et al., 2016a), and we also applied 

more recent estimate of PFOA half-life of 2.3 years (Bartell et al., 2010) rather than 3.5 years 

(Olsen et al., 2007) used by Savitz et al. (2012a); additionally, we applied recently published 

age-specific shrinkage estimates of long-term water ingestion rates (Cuvelier and Bartell, 

2021) rather than the standard short-term water ingestion rates from the 2009 version of 

the U.S. EPA Exposure Factors Handbook used by Shin et al. (2011b) and Savitz et al. (2012a).  

 

(b) Exposure estimates based on Monte Carlo simulations of model parameters 

Second, we ran Monte Carlo simulations (with 1,000 iterations) of exposure estimates. 

That is, we computed 1,000 exposure estimates for each participant by taking 1,000 random 

samples from the assumed distributions of PFOA water concentrations, PFOA half-life, 

volume of distribution, and age-specific water ingestion rates. We kept all the 1,000 samples 

and did not adjust for the serum measurement of PFOA in 2005 or 2006. Our analysis is 
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similar to yet slightly different from Avanasi et al., (2016b) in that we applied more recent 

estimate of PFOA half-life of 2.3 years reported by Bartell et al. (2010) rather than 3.5 years 

reported by Olsen et al. (2007), and we applied age-specific shrinkage estimation of long-

term water ingestion rate (Cuvelier and Bartell, 2021) rather than the standard short-term 

water ingestion rate based on the 2011 version of the U.S. EPA Exposure Factors Handbook, 

we also used a larger number of iterations than Avanasi et al. (2016b).  

 

(c) Approximate Bayesian calibration of the exposure estimates 

Third, we calibrated the estimated serum PFOA concentrations in the years of 

pregnancies (10,149 pregnancies in total) based on the one-time serum measurement of 

PFOA obtained in 2005 or 2006 for each of the 6,134 women. We ran 1000 iterations of the 

Monte Carlo simulations and then accepted or rejected samples of estimated year-by-year 

PFOA serum concentrations for all participants based on the normal likelihood calculation 

below 

𝐿 ∝ exp (− ∑
1

2𝜎𝜀2
(𝐶𝑡 −∑𝑤𝑗𝐼𝑗

𝑚

𝑗=1

)

2𝑛=6,134

𝑖=1

)     (14) 

where n = 6,134 is the sample size (number of pregnant women) in this study. We tried 

different values for the standard deviation (𝜎𝜀 = 3𝐶𝑡 , 4𝐶𝑡 , 5𝐶𝑡 , 6𝐶𝑡 , 10𝐶𝑡 ,  and 100𝐶𝑡)  and 

rejected the samples when the likelihood function was less than 𝜀 = 10−300  in statistical 

software R (version 4.0.3), indicating a large difference between the estimated (∑ 𝑤𝑗𝐼𝑗
𝑚
𝑗=1 ) 

and measured serum concentrations (𝐶𝑡) in 2005 or 2006.  

For the above three different methods, we calculated the Pearson and Spearman 

correlation coefficients between estimated serum PFOA concentrations and measured 
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serum PFOA concentrations in 2005 or 2006. We also computed the mean squared error 

(MSE) and mean absolute error (MAE) to measure the differences between estimated serum 

PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006.  

 

5.3.6 Generalized estimating equation  

As in previous analyses of these data, we used generalized estimating equations (GEE) 

with a logit link function to analyze the association between reconstructed historical serum 

PFOA concentration and preeclampsia, while accounting for exposure year, maternal age, 

education, smoking status, and parity (Savitz et al., 2012a). We used an exchangeable 

correlation structure in GEE to account for the correlation among multiple pregnancies from 

the same women (Savitz et al., 2012a). We estimated AOR for preeclampsia for an IQR 

increase in natural log-transformed PFOA after adjustment for the covariates mentioned 

above (Savitz et al., 2012a). We applied two strategies to compute AOR. First, we ran the 

epidemiological analysis using the average PFOA concentrations across all accepted samples. 

Second, we ran the analyses based on all accepted samples and then took an average of the 

effect estimates and computed the variance using the law of total variance (Avanasi et al., 

2016b). We assumed approximate normality to compute 95% probability intervals (PI, i.e., 

the 2.5th and 97.5th percentiles) for the AOR, reflecting the contribution of both exposure 

uncertainty and traditional sampling error to the precision of the health effect estimate 

(Avanasi et al., 2016a). When the 95% PI for the AOR excluded 1, we considered the effect 

estimate to be statistically significant. We used statistical software R 4.1.0 for all data 

analysis. The R code can be found in the Supplemental material.  
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5.4 Results 

Based on the fixed values of model parameters, we found a Pearson correlation of 

0.62 and a Spearman correlation of 0.67 between the estimated and measured serum PFOA 

concentrations in 2005 or 2006 for the 6,134 women participants in this study (Table 5.2), 

similar to the previous finding for all 45,276 participants in the C8 studies (Spearman 

correlation = 0.67 in Shin et al., 2011b). Based on the fixed values of model parameters, we 

found an AOR of 1.15 (95% PI: 0.96, 1.37) for preeclampsia for an IQR increase in natural 

log-transformed PFOA. Monte Carlo simulations with 1,000 iterations produced similar 

results in epidemiological analyses, despite a 23.7% increase in MSE and a 14.2% increase 

in MAE, compared to those calculated based on the fixed values of model parameters (Table 

5.2).  

Approximate Bayesian calibration of exposure estimates produced similar Pearson 

and Spearman correlations, as well as similar epidemiological associations (Table 5.2), 

although MSE and MAE are 24.6%-72.1% lower than those based on exposure estimate using 

fixed values of model parameters and 33.9%-77.5% lower than those based on Monte Carlo 

simulations shown in Table 5.2, respectively; and the MSE and MAE further decreased as we 

increased the standard deviation of the measured serum PFOA concentration (𝜎𝜀) in the 

likelihood function from 3𝐶𝑡  to 10𝐶𝑡  (Table 5.2). Increasing the standard deviation of the 

measured serum PFOA concentration (𝜎𝜀) in the likelihood function to 100𝐶𝑡 produced an 

acceptance rate of 99% and much higher MSE and MAE.  

We also found a slightly larger effect estimate, as shown by AOR, based on the 

posterior mean of exposure estimate, using ABC compared with using fixed values of model 

parameters and Monte Carlo simulations (Table 5.2), which might be due to the 
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improvement in exposure estimate because random error in exposure measurement can 

attenuate the effect estimate towards the null (Hutcheon et al., 2010). Using different values 

of autocorrelation (0.5, 0.9) in ABC produced similar results in sensitivity analyses (Table 

S5.1). We also found similar results using standard water ingestion rates reported by the U.S. 

EPA (Table S5.3) to those using the shrinkage estimation of long-term water ingestion rates 

in ABC (Table 5.2).  
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Table 5.2. Exposure estimates using three different methods and epidemiological analysis results. 

Fixed values of model parameters1 
Pearson 
correlation5  

Spearman 
correlation5 

MSE6 MAE6 AOR and 95% CI 

0.62 0.67 22384.00 48.86 1.15 [0.96, 1.38] 

Monte Carlo Simulations2 

Pearson 
correlation5  

Spearman 
correlation5 

MSE6 MAE6 

AOR and 
95% PI 
based on the 
average of 
simulated 
PFOA serum 
concentratio
ns 

AOR and 
95% PI 
based on all 
simulated 
samples and 
rule of total 
variance 

0.65 0.67 27692.30 55.78 
1.15 [0.96, 
1.37] 

1.14 [0.88, 
1.46] 

Approximate 
Bayesian 
calibration of 
exposure 
estimates 
combining 
contact-
based 
exposure 
estimates 
with the 
biological 
measuremen
t3 

Assumption 
on 𝜎𝜀  

Acceptance 
rate4 

Pearson 
correlation5  

Spearman 
correlation5 

MSE6 MAE6 

AOR and 
95% PI 
based on the 
posterior 
mean of 
exposure 
estimate 

AOR and 
95% PI 
based on all 
the accepted 
samples and 
rule of total 
variance 

𝜎𝜀 = 3𝐶𝑡  12.5% 0.64 0.67 8911.11 30.58 
1.17 [0.88, 
1.56] 

1.14 [0.83, 
1.58] 

𝜎𝜀 = 4𝐶𝑡   24.0% 0.66 0.67 8192.02 29.13 
1.17 [0.90, 
1.53] 

1.14 [0.84, 
1.55] 

𝜎𝜀 = 5𝐶𝑡  36.0% 0.66 0.67 7178.79 27.48 
1.17 [0.91, 
1.49] 

1.14 [0.86, 
1.53] 

𝜎𝜀 = 6𝐶𝑡   42.9% 0.66 0.67 7057.48 27.22 
1.17 [0.92, 
1.49] 

1.14 [0.86, 
1.52] 

𝜎𝜀 = 10𝐶𝑡 68.4% 0.66 0.67 6234.05 27.22 
1.16 [0.94, 
1.44] 

1.14 [0.87, 
1.49] 

𝜎𝜀 = 100𝐶𝑡 99.0% 0.65 0.67 10640.83 36.86 
1.15 [0.95, 
1.39] 

1.13 [0.88, 
1.47] 

1 All the values were calculated based on fixed values of PFOA water concentrations in the six water districts shown in Figure 5.2, PFOA half-life 
of 2.3 years, volume of distribution of 0.198 L/kg, and mean of age-specific shrinkage estimation of long-term water ingestion rate shown in Table 
5.1.  
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2 Monte Carlo simulations of model parameters (PFOA water concentrations in the six water districts shown in Figure 5.2, PFOA half-life, volume 
of distribution, and age-specific shrinkage estimation of long-term water ingestion rate) with 1,000 iterations. 
3 Assuming autocorrelation factor of 0.75 and age-specific shrinkage long-term water ingestion rate reported by Cuvelier and Bartell (2021). 
4 Acceptance rate of ABC based on the likelihood function. We rejected the simulated samples when the likelihood is less than 𝜀 = 10−300  in 
statistical software R.  
5 Correlation coefficients between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006.  
6 Summary of errors between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006.  
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5.5 Discussion 

In this study, we used an ABC method to reconstruct/calibrate the historical PFOA 

exposure estimates. Based on the reconstructed exposure estimates, our effect estimate of 

PFOA on preeclampsia is similar to previous findings based on the same population (Savitz 

et al., 2012a; Avanasi et al., 2016a, 2016b, 2016c). Although the ABC method has the best 

performance in terms of exposure estimates with lower MSE and MAE, the general 

epidemiological results are insensitive to the methods of exposure reconstruction applied in 

this study, i.e., using fixed values of model parameters, Monte Carlo simulations of model 

parameters, or approximate Bayesian calibration of exposure estimates based on the 

biological measurement (Table 5.2).  

Strengths of this study include the Bayesian combination of modeled PFOA 

concentration with measured PFOA concentrations in serum samples using the ABC method 

to improve the exposure estimate compared with previous C8 studies (Savitz et al., 2012a; 

Avanasi et al., 2016a, 2016b, 2016c), and the use of more realistic lognormal prior 

distributions for the year-by-year PFOA water concentrations in the six water districts than 

the multivariate normal distribution assumption in Shin et al. (2014). We also accounted for 

inter-individual variability in model parameters including water ingestion rate, PFOA half-

life, and volume of distribution.  

Due to the complexity of the “contact-based” exposure model, we considered but did 

not implement the Bayesian method using standard packages such as STAN or JAGS, which 

use Markov Chain Monte Carlo methods that substantially add to the computational burden. 

Future work should be done to increase the speed of this program, with the possibility of 

turning it into a R package. Although some previous studies have applied a fully Bayesian 
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method that fits a joint model for the exposure and health outcome data (Gryparis et al., 

2009), doing so uses the disease outcome to update the exposure status, which is more likely 

to introduce reverse causality effects. Therefore, we modeled the exposure data 

independently of the outcome and did not include the exposure-disease model or the 

outcome data in our accept-reject sampling criterion.  

Despite reconstruction/calibration of modeled serum PFOA concentrations based on 

the biomarker measurements, our results are still heavily driven by the estimated PFOA 

serum concentration based on the environmental fate and transport models, exposure model, 

and pharmacokinetic models, rather than measured serum PFOA. This is because only a 

single serum sample for each participant was collected, and the half-life driven time-varying 

weights in the piecewise constant intake model are relatively small for PFOA, so the 

measured biomarkers only have a substantial influence on the exposure calibration for the 

years just before the 2005-2006 biomarker measurements, and less impact on exposure 

estimation for the 1990s. This is a limitation of the present analysis but also a strength of the 

Bayesian calibration method, as the time-varying weights are appropriately dependent on 

the timing and physiology of the measured biomarkers. For studies incorporating multiple 

biomarker measurements over time, or biomarkers with longer half-lives, the Bayesian 

calibration method would place greater weight on the biomarker measurements, improving 

the calibration.  

In addition, our sophisticated environmental, exposure, and pharmacokinetic models 

(i.e., fate and transport models, “contact-based” exposure model, one-compartment 

pharmacokinetic model under the assumption of yearly piecewise constant intake rate) 

included a large number of parameters, which are prone to systematic bias; and the 
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estimation of serum PFOA concentration (∑ 𝑤𝑗𝐼𝑗
𝑚
𝑗=1 )  might be mis-specified. This could 

explain why the MSE and MAE further decreased as we increased the standard deviation of 

the measured serum PFOA concentration (𝜎𝜀) in the likelihood function from 3𝐶𝑡 to 10𝐶𝑡 in 

Table 5.2. Although we applied an accept-reject sampling criterion in the ABC method, we 

only rejected the samples when the likelihood function (14) was less than 𝜀 = 10−300 in R, 

i.e., the group of samples with a large discrepancy between estimated (∑ 𝑤𝑗𝐼𝑗
𝑚
𝑗=1 )  and 

measured serum concentrations (𝐶𝑡) in 2005 or 2006. Therefore, our accept-reject sampling 

criterion may not be strict enough to only keep “close enough” observed data and simulated 

data as typical ABC procedures would do (Turner and Zandt, 2012), and only extremely 

unrealistic values of simulated data were excluded. Thus, the decreasing MSE and MAE in 

Table 5.2 might be explained by systematic bias or model misspecification, in which case, 

assuming a large standard error for the likelihood (14) may work better in quantifying 

uncertainties and simulating data that are more realistic and closer to the observed data. 

Increasing the standard deviation of the measured serum PFOA concentration (𝜎𝜀) in the 

likelihood function to 100𝐶𝑡 produced an acceptance rate of 99.0% and much higher MSE 

and MAE, indicating that the optimal standard deviation in this setting is somewhere 

between 10𝐶𝑡 and 100𝐶𝑡.  

Although we expect that using ABC (other Bayesian approaches) to combine 

environmental exposure models and biomarker measurements will improve epidemiologic 

studies by reducing exposure measurement error and limiting the potential for reverse 

causation, compared to using either exposure assessment approach in isolation, 

epidemiologic effect estimates based on the ABC method may still be susceptible to some 

degree of reverse causation in certain settings due to incorporating biomarker 
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measurements. For that reason, it may be valuable to compare the epidemiologic effect 

estimate using biomarkers alone to the effect estimate using environmental models alone, 

prior to employing the ABC method, as large differences in the two effect estimates may be 

indicative of reverse causation (Watkins et al., 2013; Weisskopf and Webster, 2017). 

 

5.6 Conclusion 

In this study, we used an ABC method to combine measured PFOA biomarker 

concentrations with environmentally modeled PFOA concentrations to improve PFOA 

exposure estimates and characterize the health effects of PFOA on preeclampsia in the C8 

Studies. We found smaller measurement errors and slightly larger effect sizes when using 

approximate Bayesian calibration, compared to when setting fixed values of key parameters 

in the exposure and pharmacokinetic models or using Monte Carlo simulations without 

adjustment to the biomarker measurements. Our results demonstrate the effectiveness of 

using the ABC method to reduce exposure measurement error in environmental exposure 

estimates. We believe these modifications may improve the effect estimate of PFOA on 

preeclampsia in the C8 studies. It is an important scientific question, as PFOA is a very active 

topic of policy discussion regarding regulation and medical monitoring, which depend 

heavily on the interpretation of epidemiologic evidence regarding its potential health effects.  
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5.7 Acronyms 

PFOA: perfluorooctanoic acid 

ABC: Approximate Bayesian Computation 

IQR: interquartile range 

AOR: adjusted odds ratio 

PI: probability interval 

MSE: mean squared error 

MAE: mean absolute error 

GEE: generalized estimating equations 
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5.8 Supplemental Material 

Table S5.1. Sensitivity analysis with different assumptions of autocorrelation factor and 𝜎𝜀 = 4𝐶𝑡 . 

Autocorrelation 

factor 

Acceptance 

rate1 

Pearson 

correlation2 

Spearman 

correlation2 

MSE3 MAE3 AOR4 based on 

the posterior 

mean of 

exposure 

estimate 

AOR4 based on 

all the accepted 

samples and 

rule of total 

variance 

0.5 18.8% 0.66 0.67 7385.55 27.70 1.17, 95% PI: 

[0.91, 1.49] 

1.14, 95% PI: 

[0.87, 1.51] 

0.75 24.0% 0.66 0.67 8192.02 29.13 1.17, 95% PI: 

[0.90, 1.53] 

1.14, 95%  

PI: [0.84, 1.55] 

0.9 33.3% 0.65 0.67 8375.14 29.55 1.16, 95% PI: 

[0.88, 1.54] 

1.13, 95% PI: 

[0.82, 1.56] 

1 Acceptance rate of ABC based on the likelihood function. We rejected the simulated samples when the likelihood is less than 𝜀 = 10−300 in 

statistical software R. 
2 Correlation coefficients between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006. 
3 Summary of errors between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006. 
4 Adjusted odds ratios for an interquartile range (IQR) increase in natural log-transformed estimated serum PFOA concentrations.  
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Table S5.2. The parameters of the log-normal distribution for all age groups for standard short-term water ingestion rate (L/day) 

based on the latest version of the U.S. EPA Exposure Factors Handbook Chapter 3 (U.S. EPA, 2019). 

Age group Mean 95th Percentile Standard 

Deviation (SD) 

Log mean Log SD 

1 to <2 0.245 0.658 0.251 -1.765 0.847 

2 to <3 0.332 0.901 0.346 -1.470 0.857 

3 to <6 0.338 0.836 0.303 -1.379 0.768 

6 to <11 0.455 1.258 0.488 -1.170 0.875 

11 to <16 0.562 1.761 0.729 -1.070 0.993 

16 to <21 0.722 2.214 0.907 -0.799 0.973 

21 to <50 1.277 3.353 1.262 -0.096 0.826 

50 to <60 1.419 3.388 1.197 0.081 0.733 

60 to <70 1.394 3.187 1.090 0.094 0.691 

70 to <80 1.214 2.641 0.868 -0.012 0.642 
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Table S5.3. Approximate Bayesian calibration of exposure estimates, and results of epidemiological analyses (assuming autocorrelation factor of 

0.75 and age-specific short-term water ingestion rate reported by U.S. EPA, 2019). 

Standard 

deviation 

Acceptance 

rate1 

Pearson 

correlation2 

Spearman 

correlation2 

MSE3 MAE3 AOR4 based on 

the posterior 

mean of 

exposure 

estimate 

AOR4 based on all 

the accepted 

samples and rule 

of total variance 

𝜎𝜀 = 3𝐶𝑡  14.1% 0.64 0.68 8975.16 30.81 1.14, 95% PI: 

[0.85, 1.53] 

1.12, 95% PI: [0.81, 

1.56] 

 𝜎𝜀 = 4𝐶𝑡 27.1% 0.65 0.68 8048.46 28.89 1.17, 95% PI: 

[0.89, 1.53] 

1.14, 95% PI: [0.84, 

1.56] 

𝜎𝜀 = 5𝐶𝑡  35.7% 0.65 0.67 7493.59 27.95 1.18, 95% PI: 

[0.91, 1.52] 

1.14, 95% PI: [0.84, 

1.55] 

𝜎𝜀 = 6𝐶𝑡  43.5% 0.65 0.68 7037.42 27.22 1.16, 95% PI: 

[0.91, 1.48] 

1.14, 95% PI: [0.85, 

1.52] 

1 Acceptance rate of ABC based on the likelihood function. We rejected the simulated samples when the likelihood is less than 𝜀 = 10−300 in 

statistical software R. 
2 Correlation coefficients between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006. 
3 Summary of errors between estimated serum PFOA concentrations and measured serum PFOA concentrations in 2005 or 2006. 
4 Adjusted odds ratios for an interquartile range (IQR) increase in natural log-transformed estimated serum PFOA concentrations. 
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CHAPTER 6 

Potential Effects of Long-term Exposure to Air Pollution on Dementia: A 

Longitudinal Analysis in American Indians Aged 55 Years and Older 

 

Contents 

6.1 Abstract 

6.2 Introduction 

6.3 Methods 

     6.3.1 Indian Health Service (IHS) Data Project 

     6.3.2 Air pollution Data 

     6.3.3 Study Population 

     6.3.4 Survival Analyses  

6.4 Results 

6.5 Discussion  



 

 

 

155 

6.1 Abstract 

Background: Air pollution has been identified as an important risk factor for dementia in 

previous studies. As a unique population with a history of colonization, American Indians 

have long been disproportionately affected by air pollution. However, few studies have 

investigated the effects of air pollution on the risk of developing dementia in American 

Indians. This study aims to address this important knowledge gap. 

Method: We downloaded county-level average air pollution data in 2003-2007 from the 

land-use regression models developed by the Center for Air, Climate, & Energy Solutions 

(CACES) and merged with data from the Indian Health Service (IHS) National Data 

Warehouse and related electronic health record databases between fiscal year (FY) 2007-

2013. We assigned air pollution exposure to IHS users based on their county of residence 

and calculated 5-year averages of PM2.5, O3, and NO2 in each county. A total of 32,564 

American Indians who were 55+ years old in FY2007, used IHS services at least once each 

year, and were dementia free between FY2007-2009 were included in the main analysis. We 

employed Cox proportional hazard models with age as the time scale to examine the 

association of air pollution with dementia incidence, adjusting for potential confounders.  

Results: The PM2.5 levels in the IHS counties were lower than those in all US counties during 

2003-2013, while the O3 levels in the IHS counties were higher than the US in most of the 

years, and the NO2 levels in the IHS counties were similar to that of the US, especially during 

those years before the baseline. We observed higher rate of incident dementia cases per 

1,000 participants in IHS counties with higher O3 levels. In multivariable Cox regression 

models, we found a significant positive association between dementia and county-level O3 

with a hazard ratio (HR) of 1.29 (95% CI: 1.05-1.59) per 1 ppb standardized O3, while the 
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associations between dementia and PM2.5, and NO2 were not statistically significant. We 

found similar results in sensitivity analyses using longer lags between air pollution and 

dementia.  

Conclusion: Our study suggests that exposure to O3 is associated with the higher risk of 

dementia in American Indians. Future efforts to reduce exposure to air pollution might help 

lower dementia risk in American Indian communities.  
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6.2 Introduction 

Air pollution, an important source of premature mortality and morbidity, is unevenly 

distributed across the US (Dockery et al., 1993). In the United States, people of color 

experience greater exposure to air pollution than White (Tessum et al., 2021). The disparity 

was found in people at all income levels across states, urban, and rural areas (Tessum et al., 

2021). As a distinct population with “historical trauma” caused by forced colonization 

(Grayshield et al., 2015), Native Americans who live in tribes face disproportionate health 

impacts from air pollution due to the oil and gas industry that emits volatile organic 

compounds (VOCs) and nitrogen oxides (NOx), which react in sunlight to form ground-level 

ozone (O3) pollution that is harmful to human health (CATF, 2018; US EPA, 2021).   

Long-term/chronic exposure to PM2.5, O3, NOx or nitrogen dioxide (NO2), the major 

toxic substances in the air, can trigger local inflammation and oxidative stress in the brain 

(Block and Calderon-Garciduenas, 2009; Béjot et al., 2018), which may play a role in 

neurodegeneration processes and lead to dementia (Peters et al., 2019; Power et al., 2016). 

Calderón-Garcidueñas et al. (2002) established the first linkage between air pollution and 

neurodegenerative disease in 32 healthy dogs in a highly polluted urban region in Southwest 

Metropolitan Mexico City. Subsequent epidemiological studies in humans further 

investigated the association in different populations. However, the results are inconsistent, 

ranging from significant to weak, null, or negative effects, possibly due to the variations in 

study designs, populations, air pollutants, sources of exposure, exposure levels, windows of 

exposure assessment, follow-up periods, outcome assessment, disease subtypes, statistical 

methods, uncontrolled confounding factors, etc.  

https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=B%C3%A9jot%2C+Yannick
https://pubmed.ncbi.nlm.nih.gov/?term=Calder%C3%B3n-Garcidue%C3%B1as+L&cauthor_id=12051555
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Although most of the studies found positive associations between incident 

dementia/dementia hospitalization/cognitive decline and exposure to PM2.5 (Cacciottolo et 

al., 2017; Chen et al., 2017; Carey et al., 2018; Grande et al., 2020; Jung et al., 2015; Shaffer et 

al., 2021; Shi et al., 2021; Tonne et al., 2014; Weuve et al., 2012), NOx/NO2 (Carey et al., 2018; 

Chang et al., 2014; Chen et al., 2017; Grande et al., 2020; Oudin et al., 2016; Shi et al., 2021), 

or O3 (Cerza et al., 2019; Cleary et al., 2018; Jung et al., 2015; Wu et al., 2015),  some did not 

find significant associations or even found negative associations between the outcome and 

PM2.5 (Cleary et al., 2018; Loop et al., 2013), NOx/NO2 (Oudin et al., 2017), or O3 (Chen et al., 

2017; Carey et al., 2018). For example, Oudin et al. (2018) found the association differed by 

the source of PM2.5, i.e., PM2.5 from traffic exhaust was associated with incident dementia, 

while PM2.5 from residential wood burning was not. In contrast, Tonne et al. (2014) found 

that PM2.5 from traffic was not associated with cognitive change. Also, some studies reported 

different results for different air pollutants (Carey et al., 2018; Chen et al., 2017; Cleary et al., 

2018; Cerza et al., 2019; Jung et al., 2015; Shi et al., 2021). For example, Cerza et al. (2019) 

found positive associations between O3 and dementia hospitalization, yet a negative 

association between NO2 and dementia hospitalization in Rome. However, Carey et al. (2018) 

reported positive associations between PM2.5, NO2 and dementia, yet a negative association 

between O3 and dementia in London. In addition to the above studies, Wang et al. (2022) 

recently reported reduced dementia risk associated with air quality improvement with 

regards to PM2.5 and NO2 in older women in the US.  

Although multiple previous studies examined the association between air pollution 

and dementia, no study that we are aware of has investigated the problem in Native 

Americans specifically. As a unique population in the US, Native American communities have 
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less insurance coverage, and worse access and utilization of health services than Whites 

(Zuckerman et al., 2004), and thus have long been disproportionately affected by the high 

burden of dementia and closely related cardiovascular diseases (CVD) (Browne et al., 2016; 

Galloway, 2005). With detailed individual-level information on dementia diagnosis and 

associated risk factors and county-level geographic information, the Indian Health Service 

National Data Warehouse and related electronic health records can be linked to public-use 

air pollution data, providing an invaluable opportunity for us to investigate the effects of air 

pollution on dementia risk in American Indians. To our knowledge, this is the first 

longitudinal study that specifically investigates the long-term effects of air pollution on 

dementia incidence in American Indians.  

 

 

 

  



 

 

 

160 

6.3 Methods 

6.3.1 Indian Health Service (IHS) Data Project 

The IHS provided healthcare services (hospitals, clinics, and health center/station) to 

approximately 2.56 million American Indians/Alaska Natives (AI/ANs) in 574 federally 

recognized Tribes in 37 states, accounting for more than one-third of AI/AN population in 

the US (US DHHS IHS, 2020). We obtained data from the IHS Improving Health Care Delivery 

Data Project (IHS Data Project) data infrastructure that includes health status, service use 

information for over 640,000 AI/ANs during fiscal years (FY) 2007-2013, representing about 

30% of AI/ANs who use IHS services (O’Connell et al., 2014).  

 

6.3.2 Air pollution Data 

We obtained yearly county-level air pollution data for three common air pollutants 

(PM2.5, O3, and NO2) for contiguous US counties from land-use regression models developed 

by the Center for Air, Climate, & Energy Solutions (CACES) (Kim et al., 2018). The models 

were built based on publicly available air pollution concentration measurements from US 

EPA regulatory monitors, information on land use (e.g., locations of major/minor roads, 

elevation, urban/rural area information), and satellite-derived estimates of air pollution to 

predict concentrations at locations without measurements (Kim et al., 2018). Model 

estimates are annual average values for PM2.5, NO2, and annual warm-season average during 

May through September of the daily maximum 8-hour moving average ground-level O3. 

Ground-level O3 is more easily formed during the warm season (Jacob, 1999) and this metric 

has long been used in environmental epidemiology to study the long-term health effects of 

ground-level O3 (Jerrett et al., 2009; Shi et al., 2021). The CACES group provided air pollution 
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prediction at multiple geographic units including county, census tract, and census block 

group. In this study, we linked the IHS users to the air pollution data based on their earliest 

county information on record during the 7 years of follow-up from FY2007 to FY2013 and 

conducted the analyses at the county level, because county is the smallest standard 

geographic unit recorded on file for the IHS users, and is recorded for 99.8% of the IHS users. 

We excluded Alaska Natives from this study because the CACES group did not include Alaska 

in their air pollution modeling. We averaged the estimated air pollution levels obtained from 

CACES over the 5-year period before baseline (i.e., from 2003 to 2007), the most used length 

of period for averaging (Grande et al., 2020; Shi et al., 2021), to represent the long-term 

exposure to air pollution and linked those exposures to the IHS users based on their county 

of residence.  

 

6.3.3 Study Population 

For the FY2007-2013 IHS cohort, we restricted our study population to those who 

were at least 55 years old at enrollment in FY2007, used IHS services at least once each year, 

and were dementia-free at baseline between FY2007-2009 in this study to better capture 

dementia incidence. We restricted our study participants to those who live in the contiguous 

US, where the air pollution data is readily available from CACES. We also excluded the 

counties with ≤ 5 participants in the data. Our final data included a total of 32,564 American 

Indians from 95 counties in the contiguous US. 
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6.3.4 Survival Analyses  

We used Cox proportional hazard regression models to examine the association of air 

pollution with dementia incidence. Because aging is considered as the greatest risk factor for 

the development of dementia, we used age rather than time-on-study as the time scale and 

accounted for left truncation with truncation time specified as age in FY2007, which allows 

for the non-parametric specification of the age effect and can automatically adjust for the 

confounding effect of age in the elderly population (Canchola et al., 2003; Lamarca et al., 

1998; Shaffer et al., 2021).  

We adjusted for gender, 14-category study region, and modifiable lifestyle-related 

cardiometabolic risk factors including depression, diabetes, hypertension, and CVD at 

baseline (Zaninotto et al., 2018; Goins et al., 2021). Neighborhood disadvantage is another 

important risk factor for personal health as suggested by previous studies (Kind et al., 2014; 

Kind et al., 2018). Therefore, in addition to the above individual-level confounders, we 

further adjusted for county-level socioeconomic status (SES), i.e., percentage of poverty in 

all races and percentage of education below high school completion in people aged 25 years 

and older in all races, from the American Community Survey (ACS) 2010-2014. 

We computed robust standard errors to account for the fact that between-county 

variations may be larger than within-county variations in air pollution levels and 

sociodemographic characteristics (Freeman, 2006). We standardized air pollution levels (i.e., 

subtract by mean and then divide by the standard deviation) before running statistical 

models to make the effect estimates comparable across different pollutants. We checked the 

proportional hazard (PH) assumption by evaluating the independence between Schoenfeld 

residuals and time (Grambsch and Therneau, 1994), and did not find significant relationship 
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between residuals and time, i.e., the PH assumption is supported. A two-sided p value <0.05 

was considered statistically significant. All statistical analyses were performed on R 3.6.2.  

 

6.4 Results 

 
Figure 6.1. Yearly average air pollution levels of PM2.5, O3, and NO2 in all 3,109 US counties vs. 95 IHS 
counties in this study.  
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Table 6.1. Descriptive Statistics of Individual-level Characteristics of the Study Participants 

(n=32,564) 

 All  

(n=32,564) 

With Dementia 

(n=1,121) 

Without Dementia 

(n=31,443) 

n % n % n % 

Age group (based on age in FY2007) 

    55-65 17,794 54.64% 163 14.54% 17,631 56.07% 

    65-75 10,208 31.35% 405 36.13% 9,803 31.18% 

    75+ 4,562 14.01% 553 49.33% 4,009 12.75% 

Gender 

    Male 13,287 40.80% 414 36.93% 12,873 40.94% 

    Female 19,277 59.20% 707 63.07% 18,570 59.06% 

Region 

    East 1,196 3.63% 74 6.55% 1,122 3.53% 

    Northern Plains 3,140 9.54% 130 11.51% 3,010 9.47% 

    Pacific Coast 1,256 3.82% 33 2.92% 1,223 3.85% 

    Southern Plains 12,093 36.74% 307 27.19% 11,786 37.08% 

    Southwest 9,305 28.27% 464 41.10% 8,841 27.81% 

    Other 5,925 18.00% 121 10.72% 5,804 18.26% 

Baseline depression 

    Yes 6,582 20.21% 280 24.98% 6,302 20.04% 

    No 25,982 79.79% 841 75.02% 25,141 79.96% 

Baseline diabetes 

    Yes 15,144 46.51% 546 48.71% 14,598 46.43% 

    No 17,420 53.49% 575 51.29% 16,845 53.57% 

Baseline hypertension 

    Yes 25,713 78.96% 949 84.66% 24,764 78.76% 

    No 6,851 21.04% 172 15.34% 6,679 21.24% 

Baseline CVD 

    Yes 12,942 39.74% 630 56.20% 12,312 39.16% 

    No 19,622 60.26% 491 43.80% 19,131 60.84% 

Medicaid 

    Yes 4,908 15.07% 295 26.32% 4,613 14.67% 

    No 27,656 84.93% 826 73.68% 26,830 85.33% 

Private insurance 

    Yes 8,458 25.97% 223 19.89% 8,235 26.19% 

    No 24,106 74.03% 898 80.11% 23,208 73.81% 
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Table 6.2. Descriptive Statistics of County-level Variables of the Study Participants.  

 Min 1st 

Quartile 

Median Mean 3rd 

Quartile 

Max SD 

PM2.5 (μg/m3)1 3.83 5.78 10.65 8.90 11.33 15.85 2.82 

O3 (ppb)1 31.44 51.89 52.84 52.35 53.72 57.72 3.59 

NO2 (ppb)1 1.71 5.25 6.17 7.18 8.36 21.28 3.22 

% Below poverty2 7.5 18.4 22.5 23.75 27.3 52.6 8.28 

% Education below high 

school completion3 

5.3 12.5 15.5 16.5 19.4 28.4 4.84 

1 Average air pollution level in 2003-2007. 
2 Percentage below poverty in all races, ACS 2010-2014. 
3 Percentage of education level below high school completion in people aged 25 years and older in all races, 

ACS 2010-2014. 
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Table 6.3. Adjusted Associations between Air Pollution Levels and Dementia Risk (HR per 

1-unit Increase in Standardized Air Pollution Levels, 95% CI).  

 PM2.5 NO2 O3 

Model 1 0.78, 0.71-0.85*** 0.99, 0.88-1.10 1.11, 0.97-1.26 

Model 2 0.69, 0.57-0.84*** 0.93, 0.84-1.03 1.41, 1.18-1.68*** 

Model 3 0.71, 0.58-0.86*** 0.94, 0.86-1.03 1.42, 1.19-1.68*** 

Model 4 0.74, 0.61-0.88** 0.94, 0.86-1.02 1.40, 1.19-1.65*** 

Model 5 0.76, 0.62-0.93** 0.94, 0.87-1.01 1.46, 1.24-1.72*** 

Model 6 0.88, 0.68-1.14 0.98, 0.90-1.06 1.37, 1.10-1.70** 

Notes: 

Model 1 adjusted for gender. 

Model 2 further adjusted for the 14-category study region. 

Model 3 further adjusted for baseline depression, diabetes, hypertension, and CVD. 

Model 4 further adjusted for insurance (Medicaid and private insurance).  

Model 5 further adjusted for county-level % poverty and % education below high school completion in all 

races.  

Model 6 further adjusted for the other two air pollutants.  

* p-value < 0.05 

** p-value < 0.01 

*** p-value < 0.001 
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Overall, our study included 32,564 American Indians who were at least 55 years old 

in FY2007, used IHS services at least once each year, and were dementia-free between the 

baseline years of FY2007-2009. Descriptive statistics of individual-level and county-level 

characteristics of the study participants were shown in Table 6.1 and Table 6.2, respectively. 

We simplified the study regions into six categories in Table 6.1 due to confidentiality 

concerns. The air pollution levels in IHS counties covered in this study are lower than the 

EPA safety standard of 12 𝜇g/m3 for PM2.5, 53 ppb for NO2, and 70 ppb for a daily maximum 

of 8-hour average O3 (US EPA, 2018; US EPA, 2020a; US EPA, 2020b). 

We examined the correlation between each pair of air pollutants before analysis in 

case of potential multicollinearity, PM2.5, NO2, and O3 were only weakly correlated with each 

other with Spearman correlation coefficients below 0.3 in the 95 IHS counties covered in this 

study (r=0.25 between PM2.5 and O3, r=0.19 between PM2.5 and NO2, and r=0.29 between O3 

and NO2 in the 95 IHS counties).   

Figure 6.1 shows the yearly average air pollution levels in all 3,109 counties in the 

contiguous US and in the 95 IHS counties where our study participants resided. The PM2.5 

levels in the 95 IHS counties were consistently lower than that in all 3,109 counties in the 

contiguous US during the period from 1999 to 2013, while O3 levels in the 95 counties were 

higher than that in all 3,109 counties in the US in most of the years, and the NO2 levels in the 

95 counties were similar to that of the US, especially during those years before the FY2007 

(Figure 6.1). We also observed a higher rate of incident dementia cases per 1,000 

participants in IHS counties with higher O3 levels.  

In Table 6.3, we presented the adjusted associations between dementia and air 

pollution from a series of Cox regression models. After adjusting for socio-demographic 
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confounders and co-exposures, we found a strong positive association between dementia 

and O3 with a hazard ratio (HR) of 1.29 (95% CI: 1.05-1.59) per 1 ppb standardized O3, while 

the associations between dementia and PM2.5, and NO2 were not statistically significant. We 

found similar results in sensitivity analyses using longer lags between air pollution (i.e., 

using 5-year average air pollution in 2000-2004) and dementia.  

 

6.5 Discussion 

In this study, we investigated the associations between three common air pollutants 

(PM2.5, O3, and NO2) and all-cause dementia in a large elderly American Indian population 

aged 55 years and older in the contiguous US using a longitudinal study design. The effects 

of air pollution on dementia have been previously explored in numerous studies in the US 

(Kioumourtzoglous et al., 2016; Shaffer et al., 2021; Shi et al., 2021; Wang et al., 2022) and 

other countries around the world (Grande et al., 2020; Carey et al., 2018; Cerza et al., 2019; 

Chen et al., 2017; Oudin et al., 2016; Jung et al., 2015; Wu et al., 2015), with most studies 

conducted in urban areas. However, no study has investigated the problem in American 

Indian tribes specifically, where the oil and gas industry emit VOCs and NOx, which combine 

to form ground-level O3 pollution (CATF, 2018; US EPA, 2021). To our knowledge, this is the 

first longitudinal study that uses the IHS data to investigate the long-term effects of air 

pollution on dementia incidence in American Indians.  

Overall, we observed consistent statistically significant strong positive associations 

between O3 and incident dementia in all models, negative associations between PM2.5 and 

incident dementia yet the associations became insignificant after further adjusting for 

county-level SES and co-exposures, and nearly null associations between NO2 and incident 
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dementia in all models. Our results are supported by the findings from Cleary et al. (2018), 

who observed an increased rate of cognitive decline associated with O3 yet not with PM2.5 in 

a heterogeneous and broadly distributed cohort of Alzheimer’s disease (AD) (the leading 

subtype of dementia) participants in the US, and Chen and Schwartz (2009) who observed 

consistent associations between O3 and reduced cognitive performance in US adults. Our 

results are also similar to that of Cerza et al. (2019) who found a significant positive 

association between O3 and dementia hospitalization, a null association between NOx and 

dementia hospitalization, yet mixed findings between PM2.5 and different dementia subtypes 

(i.e., a positive association with vascular dementia yet a negative association with AD) in 

Rome.  

Although multiple epidemiological studies have found associations between PM2.5 

and elevated dementia risk (Kioumourtzoglous et al., 2016; Carey et al., 2018; Chen et al., 

2017; Grande et al., 2020; Jung et al., 2015; Shaffer et al., 2021; Shi et al., 2021), our study is 

different from those studies in that the American Indian tribes are mostly rural areas where 

the PM2.5 levels are much lower than the overall US averages during 1999-2013 (Figure 6.1), 

which might explain the inverse associations between PM2.5 and dementia in the crude and 

some adjusted models in Table 6.3.  

Strengths of this study include using electronic health records with detailed 

individual-level information on dementia diagnosis, cardiovascular risk factors including 

depression, diabetes, hypertension, and CVD, and demographic information to investigate 

the association between air pollution and dementia risk, and our longitudinal study design 

with the requirement of a three-year “clean period” without dementia diagnosis for our 
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study participants, which may provide stronger evidence for causal link than cross-sectional 

studies.  

This study also has several limitations. First, our air pollution exposure was only 

assessed at the county level because county code is the smallest standard geographic 

information on record for the study participants, covering nearly all the study participants, 

although the county-level exposure estimate may not be an accurate proxy for long-term 

environmental exposure (Greenland, 2001). The exposure aggregation at the county level 

can reduce statistical power (i.e., increase standard errors of effect estimates) compared to 

fully individual-level studies. However, it is relatively free from classical error bias that tends 

to attenuate the effect estimate towards the null compared to other studies that assessed air 

pollution exposure based solely on individual-level residential addresses while ignoring 

exposure at the workplace, during the regular commute or other social/physical activities 

(Navidi et al., 1994; Paul et al., 2019). Collecting more detailed residential and work 

addresses for the IHS users and evaluating the air pollution exposure based on this 

individual-level information would be a valuable addition to the current study. Second, we 

were only able to adjust for major risk factors for dementia at the individual level including 

age, gender, depression, diabetes, hypertension, and CVD at baseline using the IHS database, 

and there was no information on record for apolipoprotein (APOE) genotype, smoking status, 

alcohol consumption, and physical activities for the study participants, which could also be 

confounders or effect modifiers (Livingston et al., 2020; Shaffer et al., 2021). However, Wang 

et al. (2022) reported that the associations between air pollution and dementia did not 

substantially differ by APOE genotype in US elderly women. Future studies could further 

investigate how APOE genotype might impact the association between air pollution and 
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dementia in American Indians. Third, identifying dementia patients via clinical diagnostic 

codes likely underestimates the prevalence and incidence of dementia (both diagnosed and 

undiagnosed) in the population under consideration. Furthermore, a 3-year of “washout” 

period may not be long enough to capture all the baseline prevalent dementia patients, which 

means some of the prevalent dementia patients might have been misclassified as incident 

cases. 

 

6.6 Disclaimer 

Based on the feedback and advise I receive, I will update the results. The updated 

results will be disseminated more broadly in  

1) an upcoming presentation at Alzheimer's Association International Conference,  

2) a manuscript that will be submitted for publication, and  

3) community summaries written at the 8th grade and 11 grade reading levels for 

dissemination within non-research communities where our data came from.  

These documents will be submitted for review by Indian Health Service and Tribes 

before being disseminated beyond our Program in Public Health. 
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CHAPTER 7: Conclusions 

In this dissertation, I discussed exposure to two groups of modifiable environmental 

risk factors: PFAS and air pollution, and associated effects on susceptible populations 

including infants, pregnant women, and elderly people in the US.  

 PFAS is a group of emerging pollutants in the environment that are less known than 

air pollution, despite the fact that they have been found ubiquitous in the general US 

population. In Chapter 2, we examined the associations between serum PFAS concentrations 

and the type of residential flooring among the general US population aged 12 years and older 

using the 2005-2006 NHANES survey data. We concluded that low pile carpeting was 

associated with increased serum concentrations of PFHxS and MeFOSAA in the general US 

population, while no clear association has been observed between the other types of 

carpeting and serum PFAS concentrations. Further studies would be needed to fully 

understand PFAS formulations in different types of carpeting. 

 In Chapters 3 and 4, we conducted two nationwide studies investigating the impacts 

of PFAS detected in drinking water on birthweight and HDP status, respectively. We used 

county-level aggregated PFAS data from EPA UCMR3 and county-level multiple-stratified 

birth/pregnancy data from CDC WONDER. We found an average change in birthweight of -

1.0 g (95% CI: -1.1, -0.9) per ng/L increase in the sum of PFOA, PFOS, PFHpA, and PFHxS 

concentrations in public water supplies, and we observed negative associations between all 

PFAS chemicals and birthweight adjusting for demographic confounders; we also found a 

weak positive association between the PFAS mixture and HDP, although the generalizability 

is subject to inherent limitations of the two public-available datasets.  
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As it is a generally held belief in public health that interventions or preventive 

strategies should be targeted at population subgroups where most cases could potentially 

be prevented, in Chapters 5 and 6 we further conducted two subgroup analyses using data 

from the C8 project and IHS project, respectively, focusing on two susceptible population 

subgroups with significantly higher levels of environmental exposure to PFOA and O3 in the 

US, respectively. Chapter 5 focuses on a group of pregnant women who resided in the mid-

Ohio River Valley during 1990-2006, where high levels of PFOA were measured in drinking 

water due to contamination from the DuPont Washington Works Plant in West Virginia; and 

Chapter 6 focuses on a group of elderly American Indians who resided in tribes during 2007-

2013, where the O3 level is above the national average due to the oil and gas industry there.  

 In Chapter 5, we used an ABC method to combine modeled PFOA exposure and 

measured biomarker concentrations to reduce exposure measurement error compared to 

previous studies (Savitz et al., 2012a; Avanasi et al., 2016a, 2016b, 2016c) that used the same 

data source in the C8 studies, and then investigate the association between PFOA and 

preeclampsia based on the new PFOA estimates. Compared to using fixed values of model 

parameters (Savitz et al., 2012a) and Monte Carlo simulations (Avanasi et al., 2016a, 2016b, 

2016c), ABC produced similar Spearman correlations between estimated and measured 

serum PFOA concentrations, yet substantially reduced the mean squared error by over 50%. 

Based on ABC, compared to previous studies (Savitz et al., 2012a; Avanasi et al., 2016a, 

2016b, 2016c), we found a similar adjusted odds ratio (AOR) for the association between 

PFOA and preeclampsia, suggesting a moderately effect of PFOA on preeclampsia in the C8 

studies.  
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 In addition to infants and pregnant women, elderly people are also susceptible to 

environmental pollutants. In Chapter 6, we investigated the impacts of air pollution on 

dementia in American Indians aged 55 years and older by linking the public-use county-level 

air pollution levels of three major air pollutants PM2.5, NO2, and O3 to the IHS electronic 

health records. Our study suggests that exposure to O3 is associated with a higher risk of 

dementia in American Indians. Future efforts to reduce exposure to air pollution might help 

lower dementia risk in American Indian communities. 

 PFAS and air pollution are similar in that they can both cause oxidative stress and 

inflammation in various parts of the human body, contributing to disease progressions. 

However, few studies have estimated the joint/combined health effects of PFAS and air 

pollution on susceptible populations, which could be a future research direction. Bayesian 

kernel machine regression (BKMR) models (Bobb et al., 2015) and weighted quantile sum 

(WQS) regression models (Tanner et al., 2019) may be appropriate in this case.  
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Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, 

Trier X, Wang Z, 2020. An overview of the uses of per- and polyfluoroalkyl substances 

(PFAS). Environ Sci Processes Impacts 22, 2345. 

Goins RT, Winchester B, Jiang L, Grau L, Reid M, Corrada MM, Manson SM, O’Connell J , 2021. 

Cardiometabolic conditions and all-cause dementia among American Indian and 

Alaska Native People. Journals of Gerontology: Medical Sciences 77(2):323-330.  

Gomis MI, Vestergren R, Borg D, Cousins IT, 2018. Comparing the toxic potency in vivo of 

long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int. 113, 1-9. 

Goosey E, Harrad S, 2011. Perfluoroalkyl compounds in dust from Asian, Australian, 

European, and North American homes and UK cars, classrooms, and offices. Environ 

Int. 37, 86-92. 

Grambsch P, Therneau T, 1994. Proportional hazards tests and diagnostics based on 

weighted residuals. Biometrika 81:515-26.  

Grande G, Ljungman PLS, Eneroth K, Bellander T, Rizzuto D, 2020. Association between 

cardiovascular disease and long-term exposure to air pollution with the risk of 

dementia. JAMA Neurology 77(7):801-809.  

Grayshield L, Rutherford JJ, Salazar SB, Mihecoby AL, Luna LL, 2015. Understanding and 

healing historical trauma: the perspectives of Native American Elders. Journal of 

Mental Health Counseling 37(4):295-307.  

Greenland S, 2001. Ecologic versus individual-level of bias in ecologic estimates of contextual 

health effects. International Epidemiological Association. 30:1343-1350. 



 

 

 

187 

Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA, 2009. Measurement error caused by 

spatial misalignment in environmental epidemiology. Biostatistics 10(2), 258-274. 

Guelfo JL, Adamson DT, 2018. Evaluation of a national data set for insights into sources, 

composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in 

U.S. drinking water. Environmental Pollution 236, 505-513. 

Hackley B, Feinstein A, Dixon J, 2007. Air pollution: impact on maternal and perinatal health. 

Journal of Midwifery & Women’s Health 52, 435-443.  

Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, et al., 2017. Predictors 

of per- and polyfluoroalkyl substance (PFAS) plasma concentrations in 6−10 year old 

American children. Environ Sci Technol 51(9), 5193-5204. 

Hertz-Picciotto I, Green PG, Delwiche L, Hansen R, Walker C, Pessah IN, 2010. Blood mercury 

concentrations in CHARGE Study children with and without autism. Environ Health 

Perspect 118(1), 161-166.  

Hill AB, 1965. The environment and disease: Association or causation? Proceedings of the 

Royal Society of Medicine 58, 295-300. 

Hoffman K, Webster TF, Bartell SM, Weisskopf MG, Fletcher T, Vieira VM, 2011. Private 

drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in 

communities surrounding a fluoropolymer production facility. Environ Health 

Perspect 119, 92-97. 

Huang R, Chen Q, Zhang L, Luo K, Chen L, Zhao S, et al., 2019. Prenatal exposure to 

perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders 

of pregnancy. Environmental Health 18, 5. 



 

 

 

188 

Huo X, Huang R, Gan Y, Luo K, Aimuzi R, Nian M, et al., 2020. Perfluoroalkyl substances in 

early pregnancy and risk of hypertensive disorders of pregnancy: A prospective 

cohort study. Environmental International 138, 105656.  

Hurley S, Houtz E, Goldberg D, et al., 2016. Preliminary associations between the detection 

of perfluoroalkyl acids (PFAAs) in drinking water and serum concentrations in a 

sample of California women. Environ Sci Technol Lett 3, 264-269. 

Hurley S, Goldberg D, Wang M, Park J, Petreas M, Bernstein L, et al., 2018. Time trends in per- 

and polyfluoroalkyl substances (PFASs) in California women: declining serum levels, 

2011-2015. Environ Sci Tech 52, 277-287. 

Hutcheon JA, Chiolero A, Hanley JA, 2010. Random measurement error and regression 

dilution bias. BMJ 340, c2289. 

Hu XC, Andrews DQ, Lindstrom's AB, Bruton TA, Schaider LA, Grandjean P, et al., 2016. 

Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water 

linked to industrial sites, military fire training areas, and wastewater treatment 

plants. Environ Sci Technol Lett 3, 344-350. 

Hu XC, Dassuncao C, Zhang X, Grandjean P, Weihe P, Webster GM, et al., 2018. Can profiles of 

poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on 

major exposure sources? Environmental Health 17, 11. 

Huang R, Chen Q, Zhang L, et al., 2019. Prenatal exposure to perfluoroalkyl and 

polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy. 

Environmental Health 18, 5. 



 

 

 

189 

Huo X, Huang R, Gan Y, et al., 2020. Perfluoroalkyl substances in early pregnancy and risk of 

hypertensive disorders of pregnancy: A prospective cohort study. Environmental 

International 138, 105656.  

Ishaku SM, Olanrewaju TO, Browne JL, et al., 2021. Prevalence and determinants of chronic 

kidney disease in women with hypertensive disorders in pregnancy in Nigeria: a 

cohort study. BMC Nephrology 22, 229. 

Jacob DJ, 1999. Introduction to atmospheric chemistry. Princeton University Press.  

Jain RB, 2014. Contribution of diet and other factors to the levels of selected polyfluorinated 

compounds: Data from NHANES 2003-2008. Int J Hyg Environ Health 217, 52-61.  

Jian JM, Guo Y, Zeng L, et al., 2017. Global distribution of perfluorochemicals (PFCs) in 

potential human exposure source - A review. Environ Int 108, 51-62. 

Jain RB, Ducatman A, 2019. Perfluoroalkyl substances follow inverted U-shaped 

distributions across various stages of glomerular function: Implications for future 

research. Environ Res 169, 476-482. 

Jerrett M, Burnett RT, Pope III CA, Ito K, Thurston G, Krewski D, et al., 2009. Long-term ozone 

exposure and mortality. The New England Journal of Medicine 360:1085-95.  

Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, et al., 2014. The navigation guide—

evidence-based medicine meets environmental health: systematic review of human 

evidence for PFOA effects on fetal growth. Environ Health Perspect 122(10), 1028-

1039. 

Jung C-R, Lin Y-T, Hwang B-F, 2015. Ozone, particulate matter, and newly diagnosed 

Alzheimer’s disease: a population-based cohort study in Taiwan. Journal of 

Alzheimer’s Disease 44: 573-584.  



 

 

 

190 

Karásková P, Venier M, Melymuk L, Bečanová J, Vojta Š, Prokeš R, Diamond ML, Klánová J, 
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