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Abstract

Of Islands, Ensembles, and Eigenstates

by

Elizabeth Rose Wildenhain

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

This work furthers the program of understanding the black hole information paradox, the
firewall paradox, and the relevance of concepts from quantum information to quantum grav-
ity. A gravitational calculation was recently shown to yield the Page curve for the entropy
of Hawking radiation. In this work, we generalize the Ryu-Takayanagi (Quantum Extremal
Surface) prescription for von Neumann entropies to various settings relevant for this calcu-
lation. We examine a puzzle in the calculation, which we call the state paradox: that the
calculation makes use of Hawking’s result that the radiation entropy becomes large at late
times. The paradox is resolved if the gravitational path integral computes averaged quanti-
ties in a suitable ensemble of unitary theories. We apply the insights from these calculations
to cosmology by searching for entanglement islands in cosmologies with spatial curvature
containing thermal radiation purified by a reference spacetime. We show arbitrarily small
positive curvature guarantees that the entire universe is an island. Proper subsets of the
time-symmetric slice of a closed or open universe can be islands, but only if the cosmological
constant is negative and sufficiently large in magnitude. We extend this analysis to cosmolo-
gies containing a general fluid, finding that flat universes with time-symmetric slices always
have islands on that slice. We find islands in the Simple Harmonic Universe model, which
has no classical singularity at the background level. We then argue that the Page curve cal-
culations do not resolve the firewall paradox. We exhibit a sharpened version of the paradox
which consists of the Hayden-Preskill thought experiment in which the message thrown into
the black hole is itself a smaller black hole. We argue that accounting for decoherence resolves
the paradox. Finally, we conclude with an argument that quantum complexity theory can
quantify the difficulty of distinguishing eigenstates obeying the Eigenstate Thermalization
Hypothesis (ETH).
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Chapter 1

Introduction

Defining a consistent theory of quantum gravity is a long-standing quest in theoretical
physics. Quantum mechanics, quantum field theory, and general relativity have proven
amazingly powerful in their respective regimes. Putting these theories together, however,
has not proven easy. Systems in which both gravitational and quantum mechanical effects
are relevant are rife with problems.

A prime example of such a system is the black hole. Thought experiments with black
holes have provided a fruitful source of puzzles about what happens when quantum mechanics
and gravity come together. One such long-standing puzzle is the black hole information
paradox [156]. Hawking famously calculated that black holes should evaporate through the
emission of Hawking radiation, emitted in the form of entangled pairs: one falls into the black
hole, the other escapes the horizon [100, 98]. A puzzle arises when one assumes that the rules
of quantum mechanics apply to the entire process of black hole formation and evaporation.
It is consistent with the setup of the thought experiment that the black hole formed from
the collapse of matter in a pure state. The result of Hawking’s calculation, however, does
not depend on whether the matter that formed the black hole was in a pure state or a mixed
state—the Hawking out-state is always thermal and therefore a mixed state. By the principle
of unitarity, however, quantum information should be preserved in a scattering process that
returns all energy to a distant observer. A pure in-state should evolve to a pure out-state.
Because Hawking’s calculation of black hole radiation implies that the energy is returned
but not the information, it conflicts with the unitarity of quantum mechanics.

A useful quantity for investigating the flow of information in black hole evaporation is
the von Neumann entropy,

SV N = −trρ log ρ , (1.1)
where ρ is the density matrix of the state. The von Neumann entropy is zero iff ρ is a
pure state and positive otherwise. More specifically, the quantity useful for this problem is
the entanglement entropy, which is the von Neumann entropy of a subsystem of a bipartite
system. For a bipartite system with density matrix ρAB, the entanglement entropy for
subsystem A is defined as

SA ≡ −trρA log ρA , (1.2)
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where ρA is the reduced density matrix of subsystem A, defined via

⟨a′|ρA|a⟩ ≡
∑
b

⟨a′b|ρAB|ab⟩ . (1.3)

For a pure total state on AB, SA = SB, and, intuitively, the entanglement entropy quantifies
the amount of entanglement between the subsystems.

Hawking’s calculation and unitary evaporation predict different curves for the entangle-
ment entropy of the emitted Hawking radiation (or the black hole) during the evaporation
process. According to Hawking, the black hole continues to emit thermal radiation for its
whole lifetime, so the radiation entropy grows monotonically before reaching a plateau once
(if) the black hole evaporates completely. In contrast, assuming the black hole was formed
from matter in a pure state, unitarity requires that the radiation entropy falls back down to
zero once the black hole has completely evaporated. More precisely, the entropy S(t) must
be the smaller of the coarse-grained radiation entropy and the Bekenstein-Hawking entropy
of the remaining black hole at the time t. The time at which the entropy of the radiation
begins to decrease is called the “Page time,” and the curve expected from unitarity is called
the “Page Curve” after the author who originally proposed it [149].

Although the prevailing view is that black hole evaporation should ultimately have a
unitary description, the principle evidence in favor of unitary evaporation was for a long
time indirect. The AdS/CFT correspondence, which is a conjectured mathematical dual-
ity between quantum gravity in asymptotically anti-de Sitter space (AdSd+1) and a non-
gravitational conformal field theory (CFTd) [134], suggests that there should be a dual CFT
description of any gravitational process in AdS. Such a CFT description would naturally
follow the rules of quantum mechanics, meaning a unitary description of black hole evapora-
tion in AdS should exist. It was not until recently that a purely bulk calculation was found
to support unitary black hole evaporation [151, 16]. This challenges Hawking’s conclusion
directly, rather than through an asserted duality.

The new analysis does not identify an error in Refs. [100, 98]; in fact, it uses Hawking’s
calculation. But it asks a different question, which leads to a different conclusion. Hawking
asked about the quantum state of the black hole radiation and found it to be a thermal
state, ρHaw(t). Its von Neumann entropy,

S = − tr ρHaw log ρHaw , (1.4)

rises monotonically as more radiation is produced. When the black hole is fully evaporated,
S will be of order A0/4G, where A0 is the initial black hole area.

By contrast, Refs. [151, 16] ask only about the entropy of the radiation, not its state.
The entropy S is computed not via Eq. (1.4), but as the analytic continuation of the n-th
Renyi entropy to n = 1. In the presence of gravity, this method is compactly encoded [129]
in the Ryu-Takayanagi (RT) prescription, also called more recently the Quantum Extremal
Surface (QES) prescription [169, 168, 108, 78, 74].

The QES prescription was originally derived as an AdS/CFT technique for computing
entropies of boundary CFT regions in terms of quantities in the bulk AdS spacetime [75, 78,
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Figure 1.1: Penrose diagrams for an evaporating black hole. The light green region is the
entanglement wedge of the radiation that has arrived at infinity before (left) and after (right)
the Page time.

108, 169, 168]. It has since been derived as an application of the gravitation path integral
in a saddlepoint approximation. We will define the prescription precisely in Chapter 2, but
roughly it states that entropy of a region R in a boundary CFT is given by the generalized
entropy of a bulk region called its entanglement wedge. The generalized entropy for a partial
Cauchy surface X ⊂ ΣM is defined as

Sgen(X) =
Area[∂X]

4GNℏ
+ S(X) , (1.5)

where S(X) is the von Neumann entropy of the density operator of the quantum field theory
state reduced to X. The entanglement wedge is defined by various homology and minimality
conditions, which we will detail in Chapter 2.

Refs. [151, 16] applied this prescription to an evaporating black hole coupled to an aux-
iliary system with absorbing boundary conditions to collect the radiation. Schematically,
they find that

S(radiation) = Sgen[EW(radiation)] , (1.6)

where EW refers to the entanglement wedge. In this calculation, the spacetime and its matter
fields are computed using Hawking’s approach, semiclassical gravity. But by using Eq. (1.6)
instead of Eq. (1.4), one finds that S(radiation) follows the Page curve, as demanded by
unitary evolution. It rises until the Page time, tPage, when the black hole and radiation
entropies are equal. Then S(radiation) falls, ultimately vanishing when the evaporation is
complete.
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Before the Page time, Refs. [151, 16] find that EW(radiation) is the radiation itself
(Figure 1.1, left Penrose diagram). The QES (RT) prescription adds nothing new; the
entropy rises because it does so in Hawking’s calculation. After the Page time (right Penrose
diagram), a minimality condition in the definition of the entanglement wedge implies1 that
EW(radiation) contains both the radiation and a disconnected region, which is essentially
the black hole interior:

EW(radiation) = radiation + black hole interior (t > tPage) . (1.7)

Such a disconnected region has been dubbed an entanglement island.
In Hawking’s analysis, the interior together with the Hawking radiation are in a pure

state. Hence here the von Neumann entropy S(EW) vanishes, and only the area of the
boundary of the island contributes. This boundary is approximately the black hole horizon,
so

Sgen[EW(radiation)] =
A(horizon)

4G
(t > tPage) . (1.8)

The horizon area decreases as the black hole evaporates, yielding the falling part of the Page
curve.

This calculation of the Page curve by Refs. [151, 16] represents major progress in our
understanding of quantum gravity. It is a semiclassical calculation from which a non-trivial
feature of quantum gravity can be derived. The calculation is not, however, without compli-
cations and puzzles of its own. The first is its use of the QES (RT) prescription in a variety
of unusual settings. Refs. [151, 16] applied the QES prescription to compute the entropy
of a bulk region in a nongravitating auxiliary spacetime, rather than a region in a CFT.
They furthermore relied upon the assumption of entanglement wedge complementarity, that
the entanglement wedge of a region R’s complement is the complement of R’s entanglement
wedge, to derive the Page curve for the radiation. Later works [18, 167, 55, 12, 182, 21, 56]
considered another unusual setting in which the matter in the spacetime with the black hole
and the auxiliary system is also presumed holographic, meaning that it has its own bulk dual
one dimension higher. This setting, which involves two different “layers” of holography, we
refer to as double holography. Because these settings are unusual, Chapter 2 of this work is
devoted to examining how the QES (RT) prescription should apply in these cases.

Another puzzle is that the Page curve calculations of Refs. [151, 16] make use of Hawking’s
conclusion that the entropy of the radiation rises monotonically for all time, only to conclude
that that the entropy of the radiation instead follows the Page curve. We refer to this seeming
contradiction as the state paradox. In Chapter 3, we we shall exhibit the state paradox in a
variety of settings. The appearance of this paradox makes it difficult to say what physical
conclusions can be drawn from the intermediate steps of the Page curve calculations. We
thus seek a resolution, and we argue that the paradox is in all these cases resolved by what we

1When the minimality condition results in an island, it has been called the “island rule” [18]. However,
this is not a new rule nor a modification of RT. The existence of islands after the Page time already follows
from the RT prescription in the final form given to it by Engelhardt and Wall [74].
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call gravity-ensemble duality. This proposal is, roughly, that there exists a duality between
the gravitational path integral and an ensemble of theories on the boundary.

Having argued for a resolution of this tension, it is appropriate to examine further the
results of the Page curve calculations, that we may learn as much as possible from them.
Perhaps the key insight of Refs. [151, 16] is the observation that a region disconnected from
the reference region contributes to the entanglement wedge of the radiation after the Page
time, producing the falling part of the Page curve. As mentioned above, such a disconnected
region is called an entanglement island, and the particular relevant application of the QES
prescription is known as the island rule.

A later work [95] began to investigate whether this key insight could reveal anything about
quantum gravity in a setting in which it is poorly understood: cosmology. As a first step,
Ref. [95] investigated when a region in a cosmological spacetime can be an island for some
reference region in a non-gravitating auxiliary spacetime. Ref. [95] derived three necessary
conditions for a region to be an island and applied them to flat Friedman-Robertson-Walker
(FRW) universes entangled with an auxiliary system in a thermofield-double-like state. There
are, however, many cosmological models more general than flat FRW. In Chapter 4 we
therefore extend this analysis to FRW universes with nonzero spatial curvature. Then in
Chapter 5 we dispense with the assumption that the contents of the universe is radiation
and consider FRW universes containing a general fluid with a general equation of state w.

Although we are hopeful that applying the lessons of the Page curve calculation to cos-
mology will bear more fruit, there are some questions the calculations have not yet answered.
As we shall argue in Chapter 6, one such puzzle is the firewall paradox. This paradox states
that even if black hole evaporation is unitary, effective field theory or General Relativity
must break down substantially at or outside the horizon at late times [14]. At the beginning
of Chapter 6, we argue that the Page curve calculations, even with gravity/ensemble duality,
do not resolve the firewall paradox. We then describe a thought experiment that presents a
sharp version of the firewall paradox for an asymptotic observer which involves a version of
the Hayden-Preskill recovery protocol [103] in which the message is itself a smaller black hole.
We propose that correctly accounting for decoherence, which is the observation that quan-
tum systems interacting with an environment leaks information into that environment [195,
196, 87, 113], resolves the paradox.

Decoherence and the quantum circuits of the Hayden-Preskill protocol are only a few of
many ways in which concepts from quantum information have proven relevant for black hole
physics. Tensor networks [187, 96, 104, 157], quantum error correction [10, 92, 102, 8, 69,
77, 71, 94, 7], complexity [183, 186, 178, 165, 51, 40, 185], and other entropy measures [6,
7, 192] have all made appearances throughout the literature. In the spirit of this program,
we present a quantum information perspective on another feature of black holes: their con-
nection to the Eigenstate Thermalization Hypothesis (ETH) [177, 68, 64, 67]. ETH is a
conjecture about when an ensemble of energy eigenstates behaves like the microcanonical
ensemble. This conjecture relates to black holes through the expectation that holographic
CFTs satisfy ETH [27]. In Chapter 7, we shall argue for a connection between ETH and the
quantum search algorithm known as Grover search [88]. Intuitively, we demonstrate that
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this connection allows one to quantify the difficulty of distinguishing eigenstates obeying
ETH.
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Chapter 2

Various Generalizations of the RT
Prescription

The derivation of the Page curve for an evaporating black hole performed in Refs. [151, 16]
and a related calculation of the Page curve directly for the radiation [18] involve applying the
Ryu-Takayanagi (Quantum Extremal Surface) prescription to a number of unusual settings.
As described in the previous chapter, the QES prescription was originally derived as an
AdS/CFT technique for computing entropies of boundary CFT regions in terms of quantities
in the bulk AdS spacetime [75, 78, 108, 169, 168]. We will present the full standard Ryu-
Takayanagi (RT) prescription below.

Refs. [151, 16] did not explicitly clarify how the Ryu-Takayanagi (RT) prescription gen-
eralizes to the unusual settings they consider. They furthermore assumed the prescription
satisfies (reasonable) properties, such as entanglement wedge complementarity. As these set-
tings are atypical, it would be preferable to derive these generalizations more carefully and
show what properties we can from physical considerations. This is the goal of the current
chapter.

The first unusual case we consider is that of an AdS spacetime coupled to an auxiliary,
nongravitating spacetime. In the calculations of Refs. [151, 16], such a coupling is required to
ensure that the black hole evaporates, as otherwise the Hawking radiation will reflect off the
AdS boundary and fall back into the black hole (unless it is very small). The second unusual
setting is what we call a “doubly-holographic” model: the matter in the AdS spacetime is
assumed to be holographic and thus has its own higher-dimensional bulk dual. The final
setting is the one relevant to the calculation of Ref. [18] and combines the previous two
cases: double holography with an auxiliary system. In each case, we shall generalize the RT
prescription and make note of its salient features.

Notation and Conventions We use the following notation in this chapter. A subscript
on a geometric object generally indicates not its dimension, but the dimension of the (phys-
ical) spacetime in which the object is naturally defined. For example, Md will denote a
d-dimensional spacetime, Rd a d − 1 dimensional spatial region in Md, and γd a d − 2 di-
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mensional extremal surface in Md. It is often useful to rescale conformally a manifold Md so
that a boundary can be added to it; the result is called an unphysical manifold or Penrose
diagram, M̃d ⊃ ∂M̃d. Note that the boundary of the physical manifold, ∂Md ⊂ ∂M̃d, need
not be empty; it consists of braneworlds or end-of-the-world (EOW) branes.

In this chapter, ⟨x⟩ always denotes the ensemble average of x in the sense of Eq. (3.4).
Angular brackets never denote a quantum expectation value.

The term Boundary Conformal Field Theory (BCFT) refers to the fact that such a theory
lives on a manifold with Boundary, not to the fact that it lives on the conformal boundary
of some AdS spacetime. We will capitalize “Boundary” whenever it is used in the sense of a
BCFT. For example, “boundary entropy” might refer to the von Neumann entropy of a CFT
region on the conformal boundary Md−1 = ∂M̃d, whereas “Boundary entropy” is a specific
BCFT parameter defined by Cardy [53].

Throughout this chapter we assume d > 2 for convenience. The case d = 2 would
frequently require a special treatment; see for example Eq. (2.15). This would clutter the
presentation. However, the qualitative aspects of our analysis apply in d = 2, and hence
to the many recent works that studied entanglement islands in JT gravity and other two-
dimensional models, such as Refs. [16, 18]. Related to this choice, in examples involving
braneworlds we only consider induced gravity on the brane (i.e., the localized graviton due
to embedding of the brane in AdS [158]). We never add an additional gravitational action
on the brane, because in d > 2 this is not necessary.

General Setup

We shall now describe the general setup relevant for all three settings. Consider a d − 1
dimensional1 holographic conformal field theory CFTd−1 with central charge cd−1, living on
a manifoldMd−1; see Figure 2.1. Its bulk dual will be an asymptotically AdSd spacetimeMd,2
such that the unphysical spacetime (or Penrose diagram) conformally related to Md [190] is

M̃d =Md ∪Md−1 ; (2.1)

thus Md−1 is the conformal boundary of Md. The AdSd curvature length Ld is related to the
central charge by

Ld−2
d

Gd

∼ cd−1 , (2.2)

where Gd = ℓd−2
d is Newton’s constant in the d-dimensional bulk.

We shall denote a standard holographic duality of this type as follows:

Md−1 −→Md , (2.3)
1For consistency with the later sections on double holography, we deviate here from the usual convention

of using d for the boundary spacetime dimension.
2In general this spacetime can contain additional factors, e.g. AdSd × Sd′

, so it need not actually be
d-dimensional. In order to keep the discussion simple, we will assume that it is; generalizations are straight-
forward.
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Md

Boundary

Md-1time

Md

Md-1time

Figure 2.1: Examples of holographic duality. Left: The solid bulk Md is dual to a holo-
graphic CFTd−1 on Md−1 (blue boundary). Right: In this example, Md−1 is a manifold
with boundary, so the boundary theory is a BCFTd−1 and Md contains an end of the world
brane EOWd. (Despite the appearance of a BCFT this is a “singly holographic” example.
In Sections 2.2 and 3.3 we will consider a doubly holographic setting where the EOWd is a
braneworld that localizes gravity and contains a holographic CFTd.)

where the arrow reminds us that in general, this duality is not truly an equivalence. Rather,
the lower dimensional field theory without gravity can be viewed as the nonperturbative
completion of the bulk theory.

Note that Md−1 may itself have a boundary, as in Figure 2.1. The spacetime Md may
also be a manifold with boundary [190], commonly referred to as an “end of the world brane”
or EOW:

EOWd ≡ ∂Md . (2.4)

In particular, if Md−1 is a manifold with boundary, then the CFTd−1 is a “Boundary confor-
mal field theory” (BCFT),3 and the bulk Md will contain an EOWd ̸= ∅ anchored on the
Boundary ∂Md−1 [188, 79]. An EOW can also exist in settings where the Lorentzian CFTd−1

has no Boundary [125, 61]. They must be included in the gravitational path integral.
3See the notation section at the end of the introduction.
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EW(Rd-1)
Rd-1

γd

slice of  Md

slice of  Md-1

slice of  EOWd

γd

Md

Boundary

Rd-1

Md-1

slice of  Boundary

Ed

Ed

time

Figure 2.2: RT prescription, applied in the setting shown on the right of Figure 2.1. The
entropy of the boundary region Rd−1 is given by the generalized entropy of its entanglement
wedge EW(Rd−1). γd is the quantum extremal surface.

Standard Ryu-Takayanagi Prescription

We now formulate the standard holographic prescription for computing the von Neumann
entropy of a boundary region from bulk quantities. This was first proposed by Ryu and
Takayanagi [169, 168] for stationary states. It was generalized to the time-dependent case
by Hubeny, Rangamani, and Takayanagi [108], and to the BCFT case by Takayanagi and
collaborators [188, 79]. A quantum-corrected prescription was first proposed by Faulkner,
Lewkowycz and Maldacena [78]. It was extended to all orders by Engelhardt and Wall [75],
whose elegant formulation highlights the central role of generalized entropy. This final for-
mulation is essential for the existence of islands,4 and it is the only one we will review here.
We will refer to it as the RT prescription for short, with apologies to all others involved in
its development. We aim to make it clear throughout this work that islands are part and
parcel of this prescription. They do not constitute a new ingredient, but a long-overlooked
consequence. The recent recognition of their existence [151, 16] has been profoundly impact-
ful.

Let Rd−1 ⊂ Md−1 be an achronal region (see Figure 2.2).5 We can think of Rd−1 as a
4Because the empty surface always has less classical area than the boundary of an island, area minimiza-

tion cannot lead to an island. It is vital that the generalized entropy is minimized.
5An achronal region is a submanifold of codimension 1 (in the spacetime) which contains no two points
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subregion at some instant of time, to which the CFTd−1 state may be restricted. The von
Neumann entropy S(Rd−1) of the restricted CFTd−1 state is given by the generalized entropy
of its entanglement wedge,

S(Rd−1) = Sgen[EW(Rd−1)] . (2.5)

The generalized entropy Sgen(Xd) [31] of an arbitrary achronal region Xd ⊂ Md is the sum
of its gravitational entropy and the von Neumann entropy S of the quantum fields in the
region Xd:

Sgen(Xd) =
A(∂Xd)

4Gd

+ S(Xd) . (2.6)

Here A(∂Xd) is the area of the boundary of Xd in Md, and Gd is Newton’s constant in Md.
The entanglement wedge EW(Rd−1) is an achronal region Xd

6 in Md, that satisfies the
following conditions:

1. Homology : ∂Xd = γd ∪ Rd−1 ∪ Ed, where γd ⊂ Md − EOWd, and Ed ⊂ EOWd.7 See
Figure 2.2.

2. Stationarity : Sgen(Xd) is stationary under variations of γd.

3. Minimality : Xd is has the smallest Sgen among all regions with the above properties.

A surface γd satisfying the homology constraint (1) and the stationarity condition (2)
is called quantum extremal8 with respect to Rd−1. If the minimality condition (3) is also
satisfied, then γd is called the RT surface of Rd−1. Note that γd may be the empty set. Also,
γd may contain disconnected components that end neither on Rd−1 nor on E.

2.1 Ryu-Takayanagi Prescription with Auxiliary
Systems

The first unusual setting we shall consider is the one relevant in Refs. [151, 16]: that of an
AdS spacetime coupled to an auxiliary system. The previous efforts to extend the prescrip-
tion required additional assumptions, such as entanglement wedge complementarity (defined
below) [16]. We present a novel argument that this extension is fully determined by physical
considerations. EW complementarity is a consequence rather than an assumption of our
argument.

connected by a timelike curve.
6One can also define EW(R) to be the (d-dimensional) domain of dependence of this region. Since all

Cauchy slices of the domain of dependence have the same generalized entropy, we will use these definitions
interchangeably.

7Strictly, this is a statement about the image of Xd in the unphysical spacetime M̃d.
8This is conventional. “Quantum stationary” would be more appropriate terminology, as the generalized

entropy can be both increased and decreased at second order by suitable deformations.
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Consider a bipartite system consisting of a holographic CFTd−1 in a region Rd−1 ⊂Md−1

and an auxiliary system AUX, in some joint state. Suppose that there exists an RT-like
prescription for computing the von Neumann entropy of this state. We shall take “RT-like”
to mean that the prescription is of the form

S(Rd−1 ∪ AUX) = Sgen[EW(Rd−1 ∪ AUX)] . (2.7)

We now determine the detailed formulation of the prescription from general considerations.
For any bipartite system consisting of a gravitating region Xd and an auxiliary system

AUX, we define the generalized entropy as

Sgen(Xd ∪ AUX) =
A(∂Xd)

4Gd

+ S(Xd ∪ AUX) . (2.8)

Given these definitions, the nontrivial content of the prescription we seek lies in how we
define the entanglement wedge EW(Rd−1 ∪ AUX).

Entanglement wedge nesting, the property that the entanglement wedge cannot shrink if
the boundary algebra is enlarged [191], implies that

EW(Rd−1 ∪ AUX) ⊃ EW(Rd−1) . (2.9)

We next recall that the relative entropy between two boundary states, S(ρ|σ), is the same
as the relative entropy between the dual bulk states in the entanglement wedge [111]. This
implies that bulk operators in the entanglement wedge (but not outside) can be implemented
on the boundary [10, 111, 70]. In particular, small deformations of the boundary state
do not change the entanglement wedge. Taking Rd−1 ∪ AUX as the boundary, consider a
small deformation of the state in AUX. This can change the boundary relative entropy (in
Rd−1 ∪ AUX), but it cannot change the bulk relative entropy in EW(Rd−1 ∪ AUX), unless
we require that

EW(Rd−1 ∪ AUX) ⊃ AUX. (2.10)

Therefore, AUX plays an interesting dual role: it appears both on the bulk and on the
boundary side.

This does not yet fully determine the prescription. For example, Eqs. (2.9) and (2.10)
would be consistent with the mistaken proposal that EW(Rd−1∪AUX) is given by EW(Rd−1)∪
AUX. To see that this fails, we note that quantum information can be freely exchanged be-
tween AUX and Rd−1 by appropriate couplings. But consider the setting of Section 3.1.
Recall that at the Page time, EW (Rd−1) has a phase transition: it now includes not only
the portion connected to Rd−1, but also an island inside the black hole. Just after the Page
time, let us couple the region Rd−1 to an AUX system that is initially in some pure reference
state, and transfer some of the quantum information of the Hawking radiation into AUX.
Then the phase transition is reversed; EW (Rd−1) loses the island. However, bulk operators
in the island could be implemented on Rd−1 ∪AUX before the transfer, so this must still be
true afterwards. Therefore, EW(Rd−1 ∪ AUX) cannot have changed.
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This shows (at physics-level rigor) that an appropriate definition of the entanglement
wedge must treat the bulk and AUX jointly, not separately, when minimizing the generalized
entropy. Hence we define

EW(Rd−1 ∪ AUX) ≡ Xd ∪ AUX , (2.11)

where the spacetime region Xd ⊂Md is chosen such that

1. ∂Xd = γd ∪Rd−1 ∪ Ed, where γd ⊂Md − EOWd and Ed ⊂ EOWd.

2. Sgen(Xd ∪ AUX) is stationary under variations of γd.

3. Xd ∪ AUX has the smallest Sgen among all regions Xd with the above properties.

We have included the possibility that Md has an EOW brane for generality, although none
appears in the setup studied above. Note that the last term in Eq. (2.8) would vanish in a
case where Xd and AUX separately have large von Neumann entropy but purify each other.
Note also that AUX in the above formulas could represent one of several auxiliary systems,
or equivalently, an arbitrary subalgebra of an auxiliary system.

The generalized RT prescription formulated above upholds entanglement wedge comple-
mentarity. Consider a pure quantum state for the complete system Md−1∪ AUX. On the
boundary, purity implies Sd−1(Rd−1∪AUX) = Sd−1(R̄d−1), where R̄d−1 is complement of Rd−1

in Md−1. Purity also implies γd(Md−1 ∪ AUX) = ∅. Hence EW(Md−1∪AUX) =Md∪AUX.
The global bulk von Neumann entropy must also vanish: S(M ∪AUX) = 0. This in turn im-
plies that any two subsystems of M∪AUX must have equal von Neumann entropy. Therefore
γd(R̄d−1) = γd(Rd−1 ∪ AUX), and hence

EW(R̄d−1) = EW(Rd−1 ∪ AUX) . (2.12)

In the special case where AUX is a nongravitating system described by quantum field
theory and Rd−1 = ∅, Eq. (2.7) reduces to the “island formula” of Ref. [18], where it was
derived using doubly holographic systems. The formula was already used implicitly by
Penington [151]. We have argued here that it emerges as a direct consequence of the standard
RT prescription, when auxiliary systems are involved.

2.2 Double Holography without a Bath
Beginning with Ref. [18], a number of interesting papers have explored the RT prescription
for evaporating black holes in a “doubly holographic” setting [167, 55, 12, 182, 21, 56]. In
these works, the Hawking radiation is mainly carried by excitations of a holographic CFTd

that escape to a (holographic) auxiliary system. This setting is somewhat complicated by
the simultaneous appearance of an extra layer of holography and of the auxiliary system. In
this chapter, we will therefore separate these two ingredients: we will first introduce double
holography without an auxiliary system in this section. We will derive an appropriate “RT-
squared” prescription for computing the von Neumann entropy of the top level CFTd−1 from
its d+ 1 dimensional doubly holographic bulk dual.
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General Setup

We consider a holographic CFTd−1 on a spacetime Md−1, dual to an asymptotically AdSd

spacetime Md:
Md−1 −→Md . (2.13)

We now suppose that the matter sector of the d-dimensional bulk Md contains a holographic
CFTd coupled to gravity. This implies that Md is a Randall-Sundrum braneworld [158, 116].
The holographic duality can then be iterated:

Md −→Md+1 . (2.14)

The CFTd onMd can be traded for a bulk dualMd+1 (see Figure 2.3), with Newton’s constant
Gd+1 determined by

Gd+1

Ld+1

=
Gd

d− 2
. (2.15)

Near vacuum regions of the braneworld Md, Md+1 will be locally AdSd+1, with curvature
length

Ld−1
d+1

Gd+1

∼ cd . (2.16)

Md+1 will be a manifold with boundary, and we define

EOWd+1 = ∂Md+1 . (2.17)

By definition, the braneworld Md is a subset of EOWd+1. The complement EOWd+1−Md is
the boundary of the entanglement wedge of the entire AdSd brane. Therefore it is located at
the minimal-area stationary surface anchored on the AdSd brane’s boundary. It implements
boundary conditions on the AdSd+1 bulk that are dual the reflecting boundary conditions at
the boundary of the AdSd brane.

The central charge cd can be thought of as a number of species. In the presence of
gravity, large cd increases the effective Planck length—the cutoff length scale at which the
semiclassical analysis breaks down onMd—from G

1/(d−2)
d to (Gdcd)

1/(d−2) ∼ Ld+1. We assume
that G1/(d−1)

d+1 ≪ Ld+1 ≪ Ld, or equivalently,

1 ≪ cd ≪
Ld−2
d

Gd

. (2.18)

This ensures that d-dimensional semiclassical gravity is a valid description both in the AdSd+1

bulk (the curvature radius is much greater than the Planck scale) and on the AdSd brane
(the curvature radius is much greater than the cutoff scale Ld+1).

Usually in holography, there are two descriptions of the same system. The CFTd−1

furnishes an exact description. The bulk gives an equivalent description, perturbatively in
Gd, in the regime where semiclassical gravity (or perturbative string theory) can be applied.
In the setting we consider now, there are three levels:
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Md+1

Md-1

𝜌𝜌 = 𝜌𝜌∗

𝜌𝜌 = ∞

Md+1

𝜌𝜌 = 𝜌𝜌∗

𝜃𝜃 =
𝜋𝜋
2

Md-1

Figure 2.3: Double holography without a bath. Md (purple surface) is the bulk dual of
a holographic CFTd−1 (left) or BCFTd−1 (right) on Md−1 (dark green rim). So far this is
identical to (a time slice of) the setups shown in Figure 2.1. But we now assume that Md

contains a holographic CFTd. This gives rise to a doubly-holographic bulk dual Md+1 (the
solid interior). From the d+ 1 bulk perspective, Md is a Karch-Randall braneworld.

1. Top Level: The CFTd−1 on Md−1 is the only exact description.

2. Holographic Bulk Dual: The asymptotically AdSd bulk Md with a CFTd coupled to
gravity is an approximate d-dimensional description. Note that this description is
alternate to the CFTd−1, so there is no CFTd−1 at this level.

3. Doubly Holographic Bulk Dual: The third description, also approximate, is Md+1.
There is no CFTd on the braneworld, at this level; however any other matter fields and
dynamical gravity will still be present on Md.

We will refer to the relation between the top and bottom level as double holography and
denote it with a double arrow:

Md−1 =⇒Md+1 . (2.19)

Two examples are shown in Figure 2.3.
The first example is a holographic CFTd−1 on Md−1 = Sd−2 ×R. In the vacuum state,

this is dual to global AdSd. We now take the AdSd to contain a holographic CFTd with the
above parameters. Then the CFTd−1 has a doubly holographic dual which is locally AdSd+1:

ds2d+1 = L2
d+1

[
dρ2 + cosh2 ρ (− cosh2 rdt2 + dr2 + sinh2 r dΩ2

d−2)
]
, (2.20)

0 ≤ ρ ≤ arccosh
Ld

Ld+1

.
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Here dΩ2
d−2 = dθ2+sin2 θ dΩ2

d−3 is the metric on the unit d− 2 sphere. In these coordinates,
the AdSd brane Md sits at ρ∗ with cosh ρ∗ = Ld/Ld+1; a second EOW brane resides at ρ = 0.
See Figure 2.3.

The second example of Figure 2.3 is half of the previous example. We start with a
BCFTd−1 on Md−1 = Bd−2 × R, where Bd−2 is a d − 2 dimensional hemisphere. For the
simplest BCFT with reflecting boundary conditions at the equator, the vacuum state is
doubly holographically dual to Md+1, the restriction of Eq. (2.20) to the hemisphere θ ≤ π/2.
There is now an additional EOWd+1 at θ = π/2. The single holographic dual Md is half of
an AdSd braneworld (still at cosh ρ = Ld/Ld+1), with an EOWd at θ = π/2.

One-Step Ryu-Takayanagi Prescription for Double Holography

The von Neumann entropy Sd−1 of the CFTd−1 restricted to an achronal region Rd−1 ⊂Md−1

is given by Eq. (2.5), which we repeat here for convenience:

S(Rd−1) = Sgen[EW(Rd−1)] , (2.21)

where EW(Rd−1) ⊂Md is the entanglement wedge. In the doubly holographic setting of this
section, Md is a braneworld.

A Ryu-Takayanagi prescription also applies to braneworlds [73, 142, 123]. Let Rd ⊂ Md

be an achronal region on the braneworld. Then

Sgen(Rd) = Sgen[EW(Rd)] . (2.22)

More generally, Rd may span both a braneworld region and a region (with no gravity) on
∂M̃d+1, the conformal boundary of Md+1; or it may consist of disconnected components
in both types of regions. For Rd ⊂ ∂M̃d+1, the generalized entropy on the left hand side
is defined as the ordinary von Neumann entropy, with an unregulated UV divergence at
∂Rd. Thus Eq. (2.22) reduces to the usual RT prescription when Rd is entirely on the true
boundary.

The entanglement wedge EW(Rd) is defined like that of the standard RT prescription,
with d→ d+ 1: it is an achronal region Xd+1 ⊂Md+1, such that

1. In the unphysical spacetime, ∂Xd+1 = γd+1∪Rd∪Ed+1. Here γd+1 ⊂Md+1−EOWd+1,
and Ed+1 ⊂ EOWd+1 − Rd. Note that any portion of Rd that lies on a braneworld is
a subset of EOWd+1.

2. Sgen(Xd+1) is stationary under variations of γd+1.

3. Xd+1 is has the smallest Sgen among all regions with the above properties.

Comparing to Eq. (2.21), an important modification in Eq. (2.22) is that the prescription
now computes the generalized entropy of the region Rd, rather than purely a CFTd von
Neumann entropy.
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The above rules can be combined iteratively, by choosing Rd = EW(Rd−1). This allows us
to compute any CFTd−1 (1st level) entropy using the d+1 bulk (the 3rd level). Substituting
Eq. (2.22) into Eq. (2.21) we find

S(Rd−1) = Sgen[EW(EW(Rd−1))] . (2.23)

This is a two-step prescription: one first finds the stationary surface γd on the AdSd brane,
and then one finds the stationary surface γd+1 anchored on γd. However, we will now show
that this is equivalent to simply minimizing the generalized entropy over surfaces that are
allowed to be anchored anywhere on the AdSd brane (and anywhere on the EOW brane),
subject to the homology rules described above.

To see this, suppose that the latter procedure yielded a surface γd+1 whose boundary σ
on the AdSd brane was not the minimal QES, γd. Then there are two possibilities: (i) σ does
not have stationary generalized entropy with respect to small deformations on the brane or
(ii) σ is stationary but has larger generalized entropy than γd. Case (i) together with the RT
rule for braneworlds implies that the generalized entropy of γd+1 (in the d + 1 bulk) is not
stationary under small deformations of γd+1 that reduce to small deformations of σ. Case
(ii) implies that the d + 1 bulk stationary surface anchored on γd has smaller generalized
entropy than γd+1. Either of these implications contradicts the definition of γd+1.

Thus we can formulate a one-step Ryu-Takayanagi prescription for the von Neu-
mann entropy of a region Rd−1 of a doubly-holographic CFTd−1:

S(Rd−1) = Sgen[EW2(Rd−1)] , (2.24)

where EW2(Rd−1) denotes the doubly-holographic entanglement wedge of Rd−1. This is de-
fined as an achronal region Xd+1 ⊂Md+1 such that

1. In the unphysical spacetime, ∂Xd+1 = Rd−1∪γd+1∪Ed+1. Here γd+1 ⊂Md+1−EOWd+1

and Ed+1 ⊂ EOWd+1.

2. Sgen(Xd+1) is stationary under variations of γd+1.

3. Xd+1 has the smallest Sgen among all regions with the above properties.

A very simple example is shown in Figure 2.4. Consider the CFTd−1 in the vacuum state,
and let R be half of the d − 1 sphere in standard global coordinates. Then the QES γd is
a d − 1 dimensional hyperbolic plane cutting a Cauchy surface of the AdSd brane in half:
cosh ρ = Ld/Ld+1 ; θ = π/2. (In this example the quantum corrections play no role, so this
is also a classical stationary surface.) The QES γd+1 is similarly part of a hyperbolic plane
cutting the Cauchy surface of the AdSd+1 bulk in half: θ = π/2. Of course, it only includes
the portion between the AdSd brane and the EOW brane: 1 < cosh ρ < Ld/Ld+1. Figure 2.4
also shows other examples.
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Rd-1

Md-1

EW2(Rd-1)

Md-1

EW2(Rd-1)

Rd-1

EW2 (Rd-1)

Rd-1

Figure 2.4: Examples of the doubly holographic entanglement wedge EW2(Rd−1) for a
(B)CFTd−1 region Rd−1. As before, the light purple surface Md is the bulk dual of a holo-
graphic CFTd−1 (left) or BCFTd−1 (middle, right) on Md−1 (dark green rim). In each case,
the doubly holographic entanglement wedge is bounded in part by the surface γd+1, shown
in dark purple.

Quantum vs. Classical RT in Double Holography

In the case where the generalized entropies of γd and γd+1 are both dominated by the area
terms, consistency of Eqs. (2.22) and (2.23) requires

A(γd)

4Gd

=
A(γd+1)

4Gd+1

; (2.25)

By Eq. (2.15), this implies a very simple relation between the areas of the QESs:

A(γd+1) = A(γd)
2Ld+1

d− 2
. (2.26)

It is easy to check that this relation is obeyed in the above examples. More generally,
consistency requires that γd+1 must have a phase transition if and only if γd does, as the
region R is varied. For example, if R consists of two antipodal round disks of equal size in
the CFTd−1, then γd undergoes a well-known phase transition as the disk radius is varied.
γd+1 must also have a phase transition at the same critical radius. At first this behavior may
seem surprising, because one expects the QESs in the d + 1 bulk to have a richer structure
than those on the AdSd brane. However, in this context we are only considering d+1 QESs
anchored on very special surfaces on the AdSd brane—those that are themselves QESs—so
there is no contradiction.

A more interesting case arises when the CFTd is far from its vacuum state, so that the
von Neumann entropy of braneworld regions is large. In this case Sgen on Md may have large
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Md ⊃ CFTd

horizon

ℳd = AUX ⊃ CFTdMd-1 ⊃ CFTd-1

ℛd

Md+1

Figure 2.5: A doubly holographic CFTd−1 on Md−1 is coupled to holographic bath: a CFTd

on Md. The first holographic dual is Md ∪Md, where Md contains the same CFTd coupled
to gravity. The second holographic dual is Md+1 (solid interior). We consider a state which,
in the first dual, corresponds to an evaporating black hole in Md with radiation escaping
to Md. The von Neumann entropy of the subregion Rd ⊂ Md can be computed using the
single or double RT prescription.

quantum contributions (i.e., contributions from the von Neumann entropy term), while Sgen

of the corresponding entanglement wedge in Md+1 is dominated by the classical term (the
area term). In such a case, one can replace Sgen by A(γd+1)/4Gd+1 in Eqs. (2.22)–(2.24), but
not by A(γd)/4Gd in Eq. (2.21).

2.3 Double Holography with a Holographic Bath
This section can be thought of as an extension of the previous settings, in two different ways.
Continuing from the previous section, we keep the doubly holographic setup but we add a
bath. That is, we couple the CFTd−1 (or equivalently, the AdSd brane) to an auxiliary system
AUX. We take AUX to be the same holographic CFTd that lives on the AdSd brane, but
not coupled to gravity. Thus AUX can be thought of as a CFTd living on a true asymptotic
boundary of an asymptotically AdSd+1 bulk dual.

From the perspective of Section 2.1, we keep the bath but make the setting doubly
holographic. That is, we now specialize to the case where both the dominant matter content
in the gravitating AdSd spacetime, and also the external bath AUX is a holographic CFTd,
with an asymptotically AdSd+1 bulk dual.
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General Setup

As before, we consider a holographic CFTd−1 with central charge cd−1 on a manifold Md−1,
dual to a bulk Md. We now choose this CFTd−1 such that the matter content of Md includes a
particular CFTd coupled to gravity. As in Section 2.1, we couple the CFTd−1 to an auxiliary
system AUX (see Figure 2.5). We now insist that AUX is specifically a CFTd on a manifold
Md such that Md−1 = ∂Md, and we take this to be the same CFTd that also appears in the
bulk dual Md.

The coupled boundary system (CFTd−1 on Md−1 and CFTd on Md) defines a BCFTd

on Md. Importantly, there is no dynamical gravity on Md. Applying the general discussion
of Section 3.2 to the CFTd−1 and AUX (i.e., to the BCFTd), we find that this system is
holographically dual to a d-dimensional bulk system:

Md−1 ∪Md −→ Md ∪Md . (2.27)

Here Md has dynamical gravity. AUX = Md plays a dual role as bulk and boundary system.
Next, we add the ingredient of double holography, as in Section 2.2. Suppose that the

CFTd on Md ∪ Md is holographic, with parameters as described in Section 2.2. Let Md+1

be its d+ 1 dimensional bulk dual:

Md ∪Md −→ Md+1 . (2.28)

As usual, let M̃d+1 be the associated unphysical spacetime (Penrose diagram), and let
EOWd+1 = ∂Md+1. Then Md = ∂M̃d+1 and Md ⊂ EOWd+1. The above two dualities
combine to establish the doubly holographic duality

Md−1 ∪Md =⇒ Md+1 . (2.29)

For example, with Md−1 = Sd−2 ×R at the equator of the hemishere Md = Bd−1 ×R,
one obtains the Karch-Randall (KR) model [116]. This was first discussed in detail as a
doubly-holographic model in Ref. [45]. The first bulk dual is Md∪Md, where Md is an AdSd

braneworld known as a KR brane. It forms the boundary of the doubly holographic dual
Md+1, a global AdSd+1 spacetime that terminates on the KR brane. In the vacuum state,
the metric of Md+1 is given by Eq. (2.20), with the range of ρ extended to

−∞ < ρ ≤ arccosh
Ld

Ld+1

; (2.30)

The braneworld Md is located at the upper end of this range, and the asymptotic boundary
Md is at the lower end. Md−1 is at ρ = 0, r → ∞.

Alternatively, let Md−1 = Rd−2 ×R be the boundary of the half-space Md = Bd−1 ×R.
This gives the Poincare patch of an AdSd braneworld as the first bulk dual, Md; it gives the
Poincare patch of AdSd+1 as the second bulk dual Md+1.

Both of these models were studied further by Takayanagi and collaborators [188, 79],
who gave a one-step RT prescription for the duality in Eq. (2.29). We will now derive this
prescription from a different perspective, by combining the results of the previous sections.
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One-Step Ryu-Takayanagi prescription for Double Holography

The one-step RT prescription for the doubly holographic duality (2.29) can be derived it-
eratively by combining the RT prescriptions for the single holographic dualities (2.27) and
(2.28). For the first step this was given in Eqs. (2.7)-(2.11). Setting AUX → Rd, Eq. (2.7)
becomes:

S(Rd−1 ∪Rd) = Sgen[EW(Rd−1 ∪Rd)] , (2.31)

where Rd−1 ⊂Md−1 and Rd ⊂ Md−Md−1 are arbitrary subregions of the boundary system.
The other equations and the definition of EW are as in Section 3.2. The fact that the
auxiliary system is a field theory plays no role in this step.

The second step computes the generalized entropy on the RHS of Eq. (2.31) holographi-
cally. Setting Rd → EW(Rd−1 ∪Rd) in Eq. (2.22), we obtain

Sgen(EW(Rd−1 ∪Rd)) = Sgen[EW(EW(Rd−1 ∪Rd))] . (2.32)

Thus we obtain
S(Rd−1 ∪Rd) = Sgen[EW(EW(Rd−1 ∪Rd))] . (2.33)

By arguments exactly analogous to those following Eq. (2.23), this iterative result can
be condensed into a one-step RT prescription:

S(Rd−1 ∪Rd) = Sgen[EW2(Rd−1 ∪Rd)] . (2.34)

The doubly-holographic entanglement wedge EW2(Rd−1∪Rd) is defined as an achronal region
Xd+1 ⊂Md+1 such that

1. In the unphysical spacetime, ∂Xd+1 = Rd−1 ∪Rd ∪ γd+1 ∪Ed+1, where γd+1 ⊂Md+1 −
EOWd+1 and Ed+1 ⊂ EOWd+1.

2. Sgen(Xd+1) is stationary under variations of γd+1.

3. Xd+1 is has the smallest Sgen among all regions with the above properties.

We note that this agrees with the RT prescription for a BCFTd given by Takayanagi [188,
79], which has been extensively used in recent analyses of entanglement islands, such as
Refs. [18, 167, 55, 12, 182, 21].

2.4 Chapter Summary and Conclusion
In this chapter we have presented generalizations of the RT prescription in various scenarios
relevant to the derivations of the Page Curve for evaporating black holes and their Hawking
radiation. The first was the case of an AdS spacetime coupled to an auxiliary system, which
is the setting relevant to Refs. [151, 16]. We argued that the correct prescription is fully
determined by physical considerations.
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The remaining settings involved a “doubly-holographic” model relevant to the works [18,
167, 55, 12, 182, 21], in which matter in an AdS spacetime is assumed holographic. This
introduces an additional layer of holography: the higher-dimensional bulk dual of the holo-
graphic matter. The fundamental object in this case is the auxiliary system containing the
radiation: a “Boundary” conformal field theory or BCFT (in the sense of Refs. [53, 1]), with
an apparently different RT prescription [188, 79]. To explicate the RT prescription that
applies here, we deconstructed the prescription for BCFTs as a repeated application of the
original RT prescription.

For the sake of clarity, we first developed an RT prescription for a doubly holographic
setting without auxiliary system, in Section 2.2. In this case, the fundamental object is a
regular CFTd−1 dual to an AdSd bulk. The bulk matter sector is assumed to consist of a
holographic CFTd coupled to gravity. Then there exists a second holographic dual with d+1
dimensions. The original RT prescription computes the von Neumann entropy of a CFTd−1

region as the generalized entropy of its entanglement wedge in the AdSd bulk. An adaptation
of the RT prescription to braneworlds [73, 142] can be used to compute generalized entropy
in the AdSd bulk using the d + 1 dimensional bulk. We showed that these steps can be
combined into a one-step “squared RT” prescription for computing CFTd−1 entropy from a
“squared entanglement wedge,” EW2, in the d+ 1 dimensional bulk.

In Section 2.3, we combined the settings of the previous two sections by considering a
doubly holographic CFTd−1, coupled to a (singly) holographic CFTd that plays the role of
the auxiliary system of Section 2.1. In the second holographic dual, the CFTd is part of
the conformal boundary of the d+ 1 dimensional bulk. Like in Section 2.2, we showed that
the RT prescriptions for each holographic layer can be combined into a (one-step) squared
RT prescription that uses the d + 1 bulk to compute the von Neumann entropy of any
union of subregions of the above top-level CFTd−1 and CFTd. Our squared RT prescription
agrees with the known RT prescription for BCFTs [188, 79]. It follows that [188, 79] can be
deconstructed as two applications of the RT prescription.

Having clarified the RT prescription in these settings, we are prepared to discuss a puzzle
that arises in these calculations of the Page curve. It is to this puzzle that we turn in the
next chapter.
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Chapter 3

The State Paradox and
Gravity/Ensemble Duality

The derivations of the Page curve for evaporating black holes and their Hawking radiation
using the RT prescription (Refs. [151, 16]) amount to a remarkable step forward in un-
derstanding the black hole information paradox and quantum gravity more broadly. They
suggest that semiclassical gravity is more powerful than it originally seemed. The calcula-
tions are not, however, free of puzzles of their own.

Recall that the Page curve calculation reviewed in Chapter 1 makes use of the Ryu-
Takayanagi (RT) prescription to compute the entropy of the Hawking radiation for an evap-
orating black hole coupled to an auxiliary system with absorbing boundary conditions. The
prescription, as applied in this case, takes the general form

S(radiation) = Sgen[EW(radiation)] . (3.1)

Before the Page time, the entanglement wedge of the radiation is the radiation itself (refer
back to Figure 1.1, left Penrose diagram), and the RT prescription implies that the entropy
rises because it does so in Hawking’s calculation of thermal Hawking radiation. After the
Page time (refer back to Figure 1.1, right Penrose diagram), the entanglement wedge contains
a disconnected “island,” which is roughly the black hole interior:

EW(radiation) = radiation + black hole interior (t > tPage) . (3.2)

By Hawking’s calculation, the modes in the interior and the radiation purify each other, so
their von Neumann entropy S(EW) together is zero. Therefore, only the area term of the
RT prescription contributes to the entropy. The boundary of the island is approximately the
black hole horizon, so

Sgen[EW(radiation)] =
A(horizon)

4G
(t > tPage) . (3.3)

As the black hole evaporates, the horizon shrinks, which yields the falling part of the Page
curve.
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Through Eq. (3.3), the radiation appears on both sides of Eq. (3.1). Hawking’s equation
for the quantum state of the black hole radiation, Eq. (1.4), is invoked in evaluating its
entropy on the RHS of Eq. (3.1). Thus on the RHS, S(radiation) (without the island)
follows Hawking’s monotonically increasing curve. This is a crucial ingredient, because it
triggers the inclusion of the black hole interior in EW(radiation) after the Page time. On
the LHS, S(radiation) then follows the Page curve.

It seems, then, that the calculations of Refs. [151, 16] curiously make use of Hawking’s
result that S(radiation) increases monotonically for all times, in order to reach the final
conclusion that it does not. This is a contradiction. The S-matrix is an observable, so the
state of the Hawking radiation cannot be ambiguous. Therefore, its von Neumann entropy
cannot have two different values.1 We call this contradiction the state paradox.

One possible resolution of the paradox is that the RT prescription is an uncontrolled
approximation. Our confidence in the RT prescription derives from its success in the context
of AdS/CFT, where the CFT entropy can often be independently computed and shown to
agree. However, under certain assumptions, the RT prescription follows directly from a bulk
path integral computation [129], evaluated in the saddle point approximation. It is obtained
as the analytic continuation to n = 1 of the n-th Renyi entropies of the radiation, which can
be computed from a path integral using the replica trick. After the Page time, one finds that
the dominant saddle point has wormholes connecting the replicas [152, 15]; see Ref. [17] for
a pedagogical review.

Thus the RT prescription has nothing to do with AdS/CFT; the nonperturbative com-
pleteness of the CFT is not used. RT can be applied even in asymptotically flat space, for
example to compute the entropy of radiation that has arrived at the conformal boundary [97,
80]. RT is an advanced analogue of the Euclidean computation of the thermodynamic en-
tropy of a black hole by Gibbons and Hawking [83]. It cleverly extracts information about
the full quantum gravity theory from a path integral approximation.

This is not a controlled approximation. It need not agree with the full quantum gravity
theory, and when it does, it need not be self-consistent. This could explain the state paradox:
perhaps Eq. (1.6) just happens to compute the correct statistical entropy from the incorrect
state. (See Ref. [5] for a discussion of related ideas.) And one day, perhaps, an even more
sophisticated application of the Euclidean gravity path integral will be shown to yield the
correct state of the Hawking radiation.

1One might be tempted to declare that S computed from Eq. (1.4) is only a coarse-grained entropy
(even though no coarse-graining is manifest in Hawking’s calculation). But the second term on the right
side of Eq. (1.5) is a fine-grained von Neumann entropy, and it is this fine-grained entropy that determines
EW(radiation) in Eq. (1.6). The island that leads to the Page curve can only be included if the fine-grained
entropy of the radiation continues to grow after the Page time. This is achieved by taking Hawking’s
calculation seriously at this step in the calculation, as a fine-grained entropy. Moreover, if the Page curve
was assumed from the beginning, then the smooth horizon shown in the top diagrams in Figure 1.1 would
be inconsistent [14] and so cannot enter the analysis at all. Finally, rejecting Eq. (1.4) as a fine-grained
entropy would amount to putting in the Page curve by hand. With the Page curve for the radiation as
input, Eq. (1.6) would reproduce the Page curve trivially as an identity, not by inclusion of an island.
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Figure 3.1: Top: State paradox. The rising blue curve corresponds to Hawking’s calculation,
while the falling blue curve is the Page curve. The RT prescription yields the Page curve for
the entropy of the radiation, but only if the same entropy is assumed to follow Hawking’s
rising curve when determining the entanglement wedge. Bottom: Resolution of the state
paradox by gravity/ensemble duality. The blue curve is that of Hawking’s calculation, and
the yellow curve is the Page curve. The ensemble-averaged state is mixed, and its entropy
follows Hawking’s curve. The ensemble-averaged entropy follows the Page curve.

A different, intriguing possibility is that there exists a novel kind of duality: between an
appropriately defined version of the gravitational path integral, and an ensemble of quantum
mechanical theories without gravity. This can resolve the state paradox [47]. According to
this proposal, S(radiation) takes two different values on the two sides of Eq. (1.6) because it
is not the same quantity on the two sides. On the left side, it is the ensemble average of the
entropy, so we should replace S(radiation) → ⟨S(ρ)⟩. See Figure 3.1 (bottom subfigure, lower
graph). On the right side, the entanglement wedge is determined from the entropy of the
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ensemble-averaged state of the radiation, S(⟨ρ⟩). See Figure 3.1 (bottom subfigure, upper
graph). Because the von Neumann entropy is not a linear function of the state, generically
⟨S(ρ)⟩ ≠ S(⟨ρ⟩). We call this proposal gravity/ensemble duality.

We now describe this idea in more detail. Let ν label unitary theories, each capable of
computing a pure Hawking radiation out-state from any pure in-state. Let

⟨x⟩ ≡
∫
dν c(ν)x(ν) (3.4)

denote an appropriately weighted average of the quantity x computed in the different theo-
ries. Let ρin be the initial state before the black hole forms, and ρ(ν)out be the final state of the
radiation when the black hole has fully evaporated. Since each theory is unitary, we have

S(ρ
(ν)
out) = 0 for all ν , (3.5)

and hence
⟨S(ρout)⟩ = 0 . (3.6)

But in general, the final states ρ(ν)out will be different in different theories. We now assume
that their ensemble average is the thermal state predicted by Hawking:

⟨ρout⟩ = ρHaw . (3.7)

With these assumptions, Hawking’s calculation computes the averaged out-state ⟨ρout⟩; and
in the same spacetime, the RT prescription correctly computes the averaged entropy:

⟨S[ρout]⟩ = Sgen[EW(⟨ρout⟩)] . (3.8)

Moreover, this holds at all times. Let ρ(t) = tr>t ρmathrmout be the state of the radiation
subsystem that has escaped to a distant region by the time t. The ensemble version of the
RT prescription, Eq. (3.1) states that

⟨S[ρ(t)]⟩ = Sgen[EW(⟨ρ(t)⟩)] . (3.9)

No contradiction arises. The ensemble average of the entropy will follow the Page curve,
while the entropy of the ensemble average follows Hawking’s curve.

The state paradox and its resolution by gravity/ensemble duality was first described in
a slightly different setting [47], which we will review in Section 3.1. Another compelling
argument for gravity/ensemble duality comes from the fact that the partition function on
multiple copies of a boundary need not factorize when it is computed from a bulk gravity
dual, because connected geometries can contribute [152, 15]. It would be interesting to
understand the detailed relation between these arguments.

The duality between JT gravity [189, 110] and a random matrix ensemble furnishes an
important concrete example of gravity/ensemble duality [171, 172, 179, 170, 194]. Recently,
an average over certain two-dimensional CFTs was shown to exhibit properties of an exotic
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three-dimensional gravity theory [2, 135]. Conversely, starting with three-dimensional Ein-
stein gravity, properties of a putative ensemble dual have been explored [62]; see also [153,
140].

An ensemble of theories satisfying Eqs. (3.5) and (3.7) may not exist in all cases where the
RT prescription can be applied. If it does not, then the state paradox remains unresolved.
For example, type IIB supergravity on AdS5 × S5 is dual to a specific CFT [134], and no
other boundary theories are presently known that have the same bulk as a coarse-grained
description. If none exist, the gravitational path integral may still be expected to compute
quantities that would be self-averaging if an ensemble did exist [172]. It would determine
the entropy S(ρout) but not the state ρout.

Notation and Conventions We use the same notations and conventions as the previous
chapter.

3.1 Gravity/Ensemble Duality without a Bath
In this section, we exhibit a version of the state paradox in which only the standard RT
prescription is needed [47]. There is no auxiliary system or bath, and there is only one layer
of holography.

Simple Boundary Unitarity from a Semiclassical Bulk

It was recently shown that the RT prescription applied to semiclassical bulk evolution yields
an entropy consistent with boundary unitarity [151, 16], for Hawking radiation extracted into
an auxiliary system. This argument requires an extension of the RT prescription that includes
auxiliary systems. We showed in Section 2.1 that this extension is uniquely determined by
physical considerations.

However, the main result of Refs. [151, 16] can be obtained without involving an aux-
iliary system, using only the standard RT prescription, Eq. (2.5). Here we summarize this
argument; further details are discussed in Ref. [47].

Consider a CFTd−1 on Md−1 = Sd−2 ×R. In the vacuum, the gravity dual Md would be
global AdSd. However, we shall take Md to be a black hole formed from collapse of matter
in a pure quantum state. The black hole is surrounded by a distant detector sphere (“Dyson
sphere”), initially in some pure reference state. By the extrapolate dictionary, the initial
boundary state must be pure. As the black hole evaporates, the Dyson sphere absorbs all of
the Hawking radiation (see Figure 3.2).

Let Σd−1(t) be a family of Cauchy surfaces (time slices) of the boundary Md−1. Each
such slice will be a sphere Sd−2. Three slices are shown in Figure 3.2. We will apply the
RT prescription to every slice, but first it will be useful to make some further definitions.
Let Σd(t) be a Cauchy surface of Md(t) bounded by Σd−1(t). (In M̃d, Σd−1 = ∂Σd.) For
boundary slices that lie in the future of the endpoint of the evaporation process, we define



CHAPTER 3. THE STATE PARADOX AND GRAVITY/ENSEMBLE DUALITY 28

Dyson Sphere

entangled Hawking 
partners

Dyson Sphere

horizon

entangled Hawking 
partners

horizon
boundary

Dyson Sphere

t > tPage

t < tPage

t > tend

r = 0 boundary

S(Dyson)

tend

S(boundary)

t
Sgen[EW(boundary)]

Figure 3.2: Hawking radiation is absorbed by a distant Dyson sphere near the boundary.
In Hawking’s semiclassical analysis, the Dyson sphere entropy will grow monotonically. The
quantum state on the global bulk slices shown is pure. Each global slice is the entanglement
wedge of its respective boundary slices. Thus the RT prescription implies that the entropy
of the global boundary vanishes, as required by CFT unitarity. However, at late times the
extrapolate dictionary demands that S(boundary) = S(Dyson). This contradiction is the
state paradox.
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Σd(t) to include a disconnected component, a Cauchy slice of the black hole interior (see
Figure 3.2, yellow slice at top). This can be chosen far enough from the singularity so that
semiclassical gravity is applicable everywhere but in the neighborhood of the endpoint [132].

The key observation is that the entanglement wedge is the entire bulk:

Σd(t) = EW[Σd−1(t)] , (3.10)

for all t. To see this, note that the homology condition is satisfied, with γd = ∅. The
stationarity condition is satisfied because no variations of γd exist. The minimality condition
is satisfied because

Sgen[Σd(t)] = 0 (3.11)

for all t, and the generalized entropy cannot be negative.
Strictly, one could question all three of these statements due to the breakdown of the

semiclassical description at the evaporation endpoint. We assume that this small region
does not contribute significant effects that invalidate our treatment of the post-evaporation
entanglement wedge. In any case, the essence of our discussion requires us only to go past
the Page time, but not close to or beyond the endpoint of evaporation.

It is important to understand why Eq. (3.11) holds. The area term in the standard RT
prescription, Eq. (2.6), vanishes since γd = ∅. The von Neumann entropy of the matter
fields vanishes because the initial bulk state is pure, and the semiclassical bulk evolution of
the global bulk state is unitary. (Information is lost to an observer outside the black hole in
this description [100], but globally the state remains pure. The interior Hawking partners
and the exterior Hawking radiation together form a pure state, the vacuum at the horizon.)

By Eq. (2.5), it follows that
S[Σd−1(t)] = 0 (3.12)

for all t. The RT prescription “predicts” that the entropy of the boundary theory vanishes
at all times. Of course, this is exactly what is expected from the unitarity of the boundary
CFTd−1. But it is remarkable that this result is reproduced by performing a semiclassical
analysis in the bulk—the same calculation that led Hawking to conclude that information is
lost to bulk observers outside the black hole. This fact was perhaps not widely appreciated
prior to the recent work [151, 16] that derives the entire Page curve, even though it has the
same import and is simpler to obtain.

Island and Page Curve

The previous subsection explained how the RT prescription yields the vanishing global
boundary entropy consistent with unitarity, despite using Hawking’s semiclassical evolution
in the bulk. In this subsection, we introduce a refined scenario, such that the RT prescription
yields the Page curve for two complementary subsystems, the Hawking radiation and the
remaining black hole. In order to implement this without introducing an external bath or
auxiliary system, any absorbed Hawking radiation is immediately transferred to a localized



CHAPTER 3. THE STATE PARADOX AND GRAVITY/ENSEMBLE DUALITY 30

reservoir RES taking up a small solid angle on the Dyson sphere, without loss of quantum
coherence (see Figure 3.3) [47].

Gravitational backreaction in the asymptotic region can be kept arbitrarily small, so the
shape of any stationary surface anchored to a small boundary region Rd−1 will be similar
to that in the vacuum. We take Rd−1(t) ⊂ Σd−1(t) to be at the same angular position as
the reservoir, and just large enough so that EW[Rd−1(t)] will barely contain the reservoir
(see Figure 3.3). Before the Page time, the entanglement wedge has only one connected
component, and we find

S[Rd−1(t)] = Sgen[EW(Rd−1(t))] =
A[γconnd ]

4G
+ SRES(t) . (3.13)

The superscript refers to the fact that γd = γconnd is connected to Rd−1 before the Page time.
By moving around ballast on the Dyson sphere, one can arrange for the asymptotic geometry
in an open neighborhood of γconnd , and hence for A[γconnd ] to remain fixed [47]. The entropy
of the reservoir SRES(t), however, increases as more radiation arrives. This yields the rising
part of the Page curve shown in Figure 3.3.

The entropy of the Dyson sphere, and of SRES in particular, increases monotonically even
after the Page time. Its state is always purified by the “Hawking partners” in the black hole
interior. Inclusion of the black hole interior in the entanglement wedge will entirely wipe out
the contribution SRES to Sgen(Rd−1) at a cost of increasing the area term by the area of the
black hole. This preserves the homology condition, since it merely adds an extra component
to γd. By its very definition, this choice becomes favorable at the Page time, when the black
hole and radiation entropy are equal.

After the Page time, the minimality condition thus requires that EW(Rd−1) contains a
second, disconnected component I (see Figure 3.3). This is called an island, in the terminol-
ogy of Ref. [18]. The island is the black hole interior, bounded by a disconnected component
γislandd (t) that nearly coincides with the horizon.2 The interior of γislandd purifies the Hawking
radiation, so the entropy of the reservoir no longer contributes, and Sgen[EW(Rd−1)] is given
just by the area of the RT surface γd = γconnd ∪ γislandd :

Sgen[EW(Rd−1)] =
A[γconnd ]

4G
+

A[γislandd (t)]

4G
. (3.14)

The first term remains constant. But γislandd (t) shrinks with the black hole horizon as the
black hole evaporates, yielding the decreasing part of the Page curve.

Thus, in the refined scenario, the RT prescription (i.e., a bulk path integral that computes
the entropy) yields the Page curve for the boundary region Rd−1. It rises during the first half
of the evaporation process, then decreases. Again, this is consistent with our expectations
from boundary unitarity. Entanglement wedge complementarity is manifest in the present
setting, so a Page curve is also obtained for the complementary boundary region R̄d−1.

2The precise location of γisland
d is determined by the stationarity condition. It sits about a Planck length

inside the horizon. Temporally, γisland
d (t) is located at t− tscr, where tscr ∼ β ln

(
A[γisland

d ]/4G
)

and β is the
inverse temperature of the black hole [151, 16].
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Figure 3.3: Compared to Figure 3.2, the Hawking radiation is collected in a localized reservoir
on the Dyson sphere. The RT prescription is applied to a nearby boundary region Rd−1. The
entanglement wedge EW(Rd−1) is shown in light green. After the Page time, it contains a
disconnected island I, the black hole interior, because this choice minimizes the generalized
entropy. This yields the Page curve for S(Rd−1). However, the extrapolate dictionary would
yield Hawking’s curve; this is the state paradox.
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State Paradox and Ensemble Interpretation

The large entropy of the Dyson sphere at late times leads to the state paradox. After the
evaporation is complete, all of the (conserved) mass is in the Dyson sphere. The standard
AdS/CFT dictionary can be used to construct the boundary state from the mixed state of
the Dyson sphere [90]. It dictates that the boundary state must have the same entropy as the
Dyson sphere. Energetic arguments preclude purification of this state by some nonlocal CFT
excitations [47]. The entropy of the CFTd−1 should therefore grow monotonically throughout
the evaporation process. But this contradicts both the RT result and the expected unitarity
of the boundary theory.

We stress again that one cannot dismiss the large Dyson sphere entropy as an artifact
of the semiclassical approximation, without discarding the entire RT calculation. If the
reservoir RES did not have large entropy after the Page time, the black hole interior could
not purify it. Then there would be no reason to include the island.

In the setting of this section, the paradox does not arise for the state of the bulk radiation,
but for the boundary state, since we are using the RT prescription to compute the entropy
of the latter. A resolution of the state paradox can then be obtained by assuming that
the boundary CFT is an ensemble of unitary theories, and that the boundary quantities
computed using the bulk are ensemble averages (see Figure 3.4). This proposal is consistent
both with the smallness of S[Rd−1(t)] and the fact that the reservoir contains a mixed state,
for t > tPage. Since each member of the ensemble is unitary, S(Rd−1) must follow the Page
curve in each theory. Hence the ensemble average of S(Rd−1) also follows the Page curve.

But the state of Rd−1 need not be self-averaging. Each member of the ensemble predicts
a pure out-state, but this need not be the same pure out-state in each theory. Hence the
ensemble average of the out-state is a mixed state whose entropy can continue to grow after
the Page time. Under the ensemble interpretation, the ensemble-averaged boundary state
can be obtained by applying the standard AdS/CFT dictionary to the semiclassical bulk
state.

The most explicit calculations of entanglement islands so far [16] were done for the case
where the bulk is JT gravity, which is indeed dual to a matrix ensemble. However, we stress
that the above argument is unrelated to this observation. The state paradox should be
viewed as independent evidence that the gravity path integral, if it is well defined, must be
dual to an ensemble, even in settings where no suitable ensemble dual is currently known.

3.2 Gravity/Ensemble Duality with a Bath
In this section, we turn to the settings studied by Penington [151] and by Almheiri et al. [16].
We will exhibit the state paradox and discuss its resolution by gravity/ensemble duality.

In contrast to Section 3.1, the Dyson sphere in AdSd is eliminated and replaced by an
auxiliary (external) system AUX: a “bath” that couples to the boundary CFTd−1 and absorbs
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Figure 3.4: Here we assume the gravity/ensemble interpretation, in the examples studied
in Section 3.1 (left) and Section 3.1 (right). This resolves the state paradox. The RT
prescription (yellow) computes the ensemble averaged entropy ⟨S⟩ of the full boundary (left)
or of Rd−1 (right). The extrapolate dictionary (blue) yields the average state of the ensemble,
⟨ρ⟩, in these regions.

the Hawking radiation (see Figure 3.5). Thus we study the holographic duality

Md−1 ∪ AUX −→Md ∪ AUX . (3.15)

In Ref. [16], AUX is a 1+1 dimensional CFT, and the black hole has two asymptotic regions.
For definiteness, we will follow Penington [151], who considered the more physical setting
of a black hole formed from collapse. The auxiliary system AUX will remain unspecified in
this section.

We use the extension of the RT prescription to include AUX, derived in Section 2.1. In
Section 3.2 we apply the RT prescription to black hole evaporation into AUX. This is just
for completeness: we summarize Refs. [151, 16] and restate the analysis in Section 3.1 in this
modified setting. The paradox identified in Ref. [47] and reviewed in Section 3.1 also has an
analogue in this setting. In Section 3.2 we discuss this and its resolution if the bulk is dual
to an ensemble of boundary theories.

Island and Page Curve

We now consider the specific setting of a black hole evaporating into AUX [151] and examine
the implications of the RT prescription, Eq. (2.7). These follow immediately from the results
of Section 3.1, upon substituting Rd−1 → AUX and R̄d−1 → Md−1. The entropy of each
system follows a Page curve, as we will now verify.
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Figure 3.5: Hawking radiation escapes into an auxiliary system without gravity. The RT
prescription can be applied to the boundary Md−1, yielding the dark green entanglement
wedge. A version of the RT prescription for AUX can be developed by requiring consistency
with the analysis in Section 3.1. One finds that EW(AUX) (light green) includes AUX itself,
and after the Page time, it also the bulk region I complementary to EW (Md−1). The state
paradox arises in AUX: the entropy must follow Hawking’s rising curve for the island I to
be part of EW(AUX), but with I included, RT yields the Page curve for AUX.
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Recall that Σd−1(t) defines a foliation of the boundary Md−1, and Σd(t) are bulk Cauchy
slices whose boundary is Σd−1(t). Before the Page time, one finds that the entanglement
wedge of the CFTd−1 includes the entire bulk:

EW[Σd−1(t)] = Σd(t) . (3.16)

Since γd = ∅ and hence A(γd) = 0,

S[Σd−1(t)] = Sgen[Σd(t))] = S[Σd(t)] . (3.17)

This grows with time, because Σd(t) contains the black hole interior, which in turn contains
more and more unpartnered interior Hawking modes as the Hawking radiation escapes into
AUX.

After the Page time, the entanglement wedge of the full boundary slices Σd−1(t) ends at
a quantum extremal surface γd(t) near the horizon [151]:

EW[Σd−1(t)] = Σd(t) ∩ Ext[γd(t)] . (3.18)

Here we have chosen Σd(t) to contain γd(t), and Ext denotes the spacelike exterior of γd.
Since the interior Hawking modes are no longer part of EW[Σd−1(t)], the von Neumann
entropy of the entanglement wedge vanishes and so

S[Σd−1(t)] = Sgen[EW(Σd−1(t))] =
A[γd(t)]

4Gd

, (3.19)

which decreases to zero as the black hole evaporates.
By entanglement wedge complementarity, Eq. (2.12), EW[AUX(t)] is the complement

of EW[Σd−1(t)]. Thus, the entropy of AUX will follow the same Page curve. Before the
Page time, EW(AUX) only contains AUX, i.e., the early Hawking radiation that has been
extracted from the AdSd spacetime. Its entropy grows as more radiation is produced:

Sgen[EW(AUX(t))] = S(AUX) (t < tPage) . (3.20)

After the Page time, EW(AUX) in addition contains an island I:

EW(AUX(t)) = AUX(t) ∪ I(t) , I = Int(γd) , (3.21)

where Int denotes the spatial interior of γd on Σd. I is the black hole interior, which contains
Hawking partners that purify the radiation in AUX. Hence, the generalized entropy is then
given by the (decreasing) boundary area of this island:

Sgen[EW(AUX(t))] =
A[γd(t)]

4Gd

(t > tPage) . (3.22)

After the black hole has completely evaporated and all of the Hawking radiation is in AUX,
EW(AUX) continues to contain the black hole interior I, now a separate “island universe”
without boundary (see Figure 3.5).
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State Paradox and Ensemble Interpretation

In the present setting, the state paradox arises in AUX. On the one hand, the Hawking
radiation in AUX is manifestly in a mixed state, whose entropy continues to increase even
after the Page time. (In the notation of Ref. [11], this is the “non-bold state.”) If its entropy
did not increase, then there would be no justification for including the black hole interior
island in EW(AUX) after the Page time. On the other hand, the generalized entropy of
EW(AUX) after the Page time is given by the area of the black hole, which decreases and
eventually vanishes. According to the RT prescription, Sgen[EW(AUX)] computes the von
Neumann entropy of AUX. Hence AUX must be in a different state from what we originally
assumed: one whose entropy follows the Page curve. (In the notation of Ref. [11], this is the
“bold state.”) This is a contradiction [47].

It is interesting to compare this instantiation of the state paradox to the version that
arose in Section 3.1. In Section 3.1, the extrapolate dictionary is used at the last step, to
translate the mixed Dyson sphere state to a mixed boundary state, in conflict with the pure
state obtained from RT. In the present setting, the extrapolate dictionary is used earlier,
when the bulk Hawking radiation is allowed to escape into AUX by coupling the boundary
to AUX. Strictly it is not possible to couple radiation inside a spacetime to an auxiliary
system, since the resulting nonconservation of the stress tensor would violate the Bianchi
identity. Thus the coupling is defined through the boundary, and the extrapolate dictionary
is used in interpreting this as a transparent boundary condition for the Hawking radiation.
As a result of this coupling, the two conflicting quantum states are both in AUX in the end.

As in the previous section, the paradox is resolved if we assume that the bulk calculation
computes both the average state (via Hawking’s calculation), and the average entropy (via
the RT prescription), in an ensemble of unitary boundary theories. The average entropy
of Md−1 (and also of AUX) follows the Page curve, because it does so in each (unitary)
theory. Different members of the ensemble evolve the same initial state to different final
states, so the ensemble average of the state is mixed, and its entropy grows monotonically
even after the Page time. Both sides of the gravity/ensemble duality exhibit a mixed state:
in the bulk because we performed Hawking’s calculation, and on the boundary because we
averaged over the final state produced by different theories. (In the notation of Ref. [11],
the ensemble-averaged bold state equals the non-bold state.)

3.3 Double Holography with a Holographic Bath
Next we turn to the “doubly holographic” setting introduced in Ref. [18] and expanded upon
in [167, 55, 12, 182, 21, 56]. This setting contains a black hole whose radiation escapes to
a reference system, and all matter is assumed to be holographic. This implies that there is
a higher-dimensional bulk dual description, as discussed in the previous chapter. We will
apply the generalizations of the RT prescription derived in Section 2.3 to exhibit how the
state paradox arises in this setting.
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Figure 3.6: Entanglement wedges of the bath region Rd before (left) and after (right) the
Page time, when EW(Rd) has a disconnected island I. Each top figure is simply the bottom
figure rotated around the axis. The “squared” entanglement wedge EW2 is always connected.
It can be found iteratively as EW(EW(Rd)), or in one step from Eq. (2.34) [188, 79]. As in
Section 3.3, γd is a quantum extremal surface, but γd+1 is an ordinary extremal surface.

Island and Page Curve

In the language of Section 3.2, the first holographic dual, Md ∪ Md, Md contains a black
hole whose radiation propagates to Md. First, let us consider the top level, the BCFTd on
Md−1 ∪Md. There are now two ways to compute the von Neumann entropy of a subregion
Rd ⊂ Md that contains the radiation.

One option is to ignore the second holographic dual and use RT only for the first holo-
graphic duality, Eq. (2.27). Setting Rd−1 → ∅ in Eq. (2.31), we find

S(Rd) = Sgen[EW(Rd)] . (3.23)

Before the Page time, EW(Rd) = Rd (see Figure 3.6). Since Rd is a true boundary region,
Sgen(Rd) = S(Rd). Thus, the above equation is a trivial identity before the Page time. After
the Page time,

EW(Rd) = Rd ∪ I (t > tPage) , (3.24)
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where the island I ⊂ Md is the black hole interior (see Figure 3.6). The Hawking radiation
in Rd is purified by the Hawking partners in I, so

Sgen[EW(Rd)] =
A(γd)

4Gd

(t > tPage) , (3.25)

where γd = ∂I nearly coincides with the horizon. Note that the radiation appears on both
sides of the duality, and that we have made no reference to the second holographic bulk dual
Md+1.

Another option is to use the doubly holographic duality derived in Chapter 2, Eq. (2.29).
By the one-step RT prescription for double holography, Eq. (2.34),

S(Rd) = Sgen[EW2(Rd)] . (3.26)

With the one-step prescription following Eq. (2.34) one finds EW2(Rd) as shown in Figure
3.6. Unlike EW(Rd) in Eq. (3.24), EW2(Rd) is always a connected region. After the Page
time, γd+1 ends on the quantum extremal surface γd, and the island I forms part of the
boundary of EW2(Rd). But neither the radiation in Rd nor the Hawking partners in the
black hole interior on Md contribute to Sgen[EW2(Rd)], since they are not part of Md+1.
Both before and after the Page time, the generalized entropy of the squared entanglement
wedge is given just by the classical area of γd+1, in line with the discussion at the end of
Section 2.2:

Sgen[EW2(Rd(t))] =
A[γd+1(t)]

4Gd+1

. (3.27)

State Paradox and Ensemble Interpretation

Agreement between Eqs. (3.23) and (3.26) is a nontrivial consequence of the “second step”
of the RT prescription for double holography, Eq. (2.32). That equation, in turn, was
obtained by applying the RT prescription for braneworlds, (2.22), which is relevant for
the duality (2.28), to the region EW(Rd). But Eq. (2.22) allows us to choose any other
subregion of the first bulk dual Md∪Md and compute its generalized entropy. Thus we may
ask questions that have no obvious analogue in the dualities of Eqs. (2.27) and (2.29).

For example, after the Page time, EW(Rd) = Rd∪I. But we could instead use Eq. (2.22)
to compute the generalized entropy of just Rd. Because the RT prescription for braneworlds,
Eq. (2.22), prohibits the RT surface γ′d+1 from ending on Md (see Figure 3.7), its area
continues to grow after the Page time, and we find the entropy computed by Hawking.
Thus, Eq. (2.22) will not give the same answer for S(Rd) as Eqs. (3.23) and (3.26)! This
contradiction is the bulk dual of the state paradox.

In Section 3.2 (with AUX → Rd), the state paradox appeared as a contradiction between
S(Rd) computed from the semiclassical Hawking analysis on Md∪Md, and S(Rd) computed
from Eq. (3.23). Either quantity can now also be computed using the second holographic
dual Md+1. As noted in the previous paragraph, the results (given by Eq. (2.22) and (3.26)
respectively) disagree.
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Figure 3.7: Bulk dual of the state paradox. Left: We regard Rd as a BCFTd subregion
(top level). The homology rule following Eq. (2.34) applies: γd+1 is allowed to end on the
braneworld which here appears as an EOW brane. At late times, A(γd+1) → 0, resulting in
the Page curve for S(Rd). Right: We consider Rd as a subregion of the CFTd on Md ∪Md.
The homology rule following Eq. (2.22) applies. The braneworld Md is now part of the
boundary; since we are computing the entropy only for the region Rd, γ′d+1 is not allowed to
end on Md. A(γ′d+1) grows monotonically, resulting in Hawking’s curve.

Gravity/ensemble duality can again resolve this paradox. Suppose that the CFTd−1 on
Md−1 is really an ensemble of unitary theories as discussed in the introduction. From the
top-level viewpoint, the CFTd−1 emits radiation into the CFTd on Md. In each theory, this
process is unitary and the radiation entropy in Rd ⊂ Md follows the Page curve. Hence the
average entropy ⟨S(ρRd

)⟩ follows the Page curve. But the ensemble-averaged state of the
radiation, S(⟨ρRd

⟩), follows Hawking’s monotonically rising curve.
The first holographic dual of this process is the escape of Hawking radiation from Md into

Md. Assuming gravity/ensemble duality, the semiclassical analysis of black hole evaporation
computes ⟨ρRd

⟩ directly, and it determines ⟨S(ρRd
)⟩ via the first RT prescription, Eq. (3.23).

The second layer of holography, Eq. (2.28), gives us an alternative way of computing ⟨S(ρRd
)⟩

and S(⟨ρRd
⟩) using the braneworld version of the RT prescription, Eq. (2.22). To compute

⟨S(ρRd
)⟩, choose Rd → EW(Rd) = Rd∪ I in Eq. (2.22). To compute S(⟨ρRd

⟩), set Rd → Rd

in Eq. (2.22).
It is interesting to note that it does not matter whether Eq. (2.28) is a gravity/ensemble

duality. Suppose that it is. Then there exists an ensemble of CFTd theories on Md∪Md. On
what is now the boundary side, we would have to perform a gravity path integral involving
each of these different theories, then average. But regardless of the details of each CFTd, the
state in Rd will be thermal and purified by the excitation in I. Therefore, unlike the state
of the Hawking radiation in Rd in the BCFTd (the top level), the state of the semiclassically
evolved CFTd theories is self-averaging in the region Rd ∪ I, and also in the region Rd.
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Of course, in a different state (for example, a setup analogous to Section 3.1 in the d + 1
dimensional bulk), a state paradox can arise in Md ∪Md, and we would need to appeal to
state gravity/ensemble duality for a resolution.

So far, we have discussed the first and second holographic duality separately. We can
also consider the one-step doubly holographic RT prescription of Eq. (2.34). This evaluates
the entropy of the BCFTd region Rd directly in the Md+1 bulk as the area of γd+1; see
Eq. (3.27). By “jumping” over the middle level, we have missed the paradox. Namely, the
paradox involved the apparent discrepancy of the states in the region Rd, depending on
whether it is viewed as a state of the BCFTd or a state of the CFTd on Md∪Md. The CFTd

is not present in the second holographic dual. It has now been replaced by the classical bulk
state in Md+1; thus we are no longer comparing two states of the same region.

Therefore, an ensemble interpretation is not required to make sense of the doubly holo-
graphic duality (2.29), so long as we never consider the intermediate level. Unfortunately,
without the intermediate level Md ∪Md, we also lose contact with the process of black hole
evaporation, which is manifest only at this level.

3.4 Chapter Summary and Conclusion
In this chapter, we have discussed the seemingly contradictory use of Hawking’s result for
the radiation entropy in the calculations of Refs. [151, 16]. We called this puzzle the state
paradox, and we considered several distinct settings in which it appears. In each case, we dis-
cussed its possible resolution by gravity/ensemble duality, the proposal that the gravitational
path integral is dual to an appropriately defined ensemble of theories on the boundary.

In Section 3.1, we used the RT prescription in an AdSd bulk spacetime to derive the Page
curve in the dual CFTd−1 [47]. The setting is distinct from that of of Refs. [151, 16] in that
there is no external bath or auxiliary system. The radiation remains in an AdS bulk and
appears only on the right side of Eq. (1.6). The left hand side corresponds to the entropy
of the CFT dual, for which a Page curve is obtained. The state paradox then arises in the
CFT. The CFT entropy can also be computed as the von Neumann entropy of a CFT state
constructed by applying the standard AdS/CFT extrapolate dictionary to the bulk. With
this method, we found that the CFT entropy should grow monotonically. These results are
consistent only if the CFT is actually an ensemble of CFTs.

In Section 3.2, we turned to the setting of Refs. [151, 16]. The gravitating spacetime is
coupled to an auxiliary system without gravity, into which the Hawking radiation escapes.
The entropy of the auxiliary system is computed using the extension of the RT prescription
derived in Chapter 2. The radiation appears on both sides of Eq. (1.6), leading to the state
paradox unless gravity/ensemble duality is invoked.

Several works [18, 167, 55, 12, 182, 21] have computed the Page curve using the entan-
glement wedge in a “doubly holographic” dual. The state paradox is somewhat obscured in
this approach. To exhibit it, we used the deconstructed RT prescription for BCFTs as a
repeated application of the original RT prescription, as discussed in Chapter 2. This allowed
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us to shed light on a number of puzzling features in Refs. [18, 167, 55, 12, 182, 21]. We found
that the state paradox arises at the first step, for the Hawking radiation that has escaped to
the “auxiliary” CFTd. At this level the paradox can be resolved by replacing (at least) the
CFTd−1 with an ensemble of such theories.

We found that the second level of holography furnished a bulk dual of the original state
paradox. The RT prescription for braneworlds computes the entropy of subregions of the
first holographic dual, in terms of bulk quantities in the second dual. Choosing the subregion
to be just the radiation region, this reproduces Hawking’s rising curve; choosing it to include
the island as well, one again obtains the Page curve.

Finally, we observed that when the entropy of a top level CFTd region is computed
directly using the squared RT prescription [188, 79], no paradox is manifest, because the
d+ 1 bulk dual does not contain the radiation.

Having examined and proposed a resolution to the state paradox, we are now prepared
to take another step in investigating what we can learn from the Page curve calculations:
namely, how they apply to cosmology.
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Chapter 4

Islands in Closed and Open Universes

The derivation of the Page curve via the Ryu-Takayanagi (Quantum Extremal Surface)
prescription that we have discussed in the previous chapters comes on the heels of signifi-
cant indirect evidence for the unitarity of black hole evaporation, most prominently via the
AdS/CFT duality [134]. In these calculations, the QES formula manages to capture a highly
nontrivial aspect of quantum gravity from a semiclassical analysis.

It is vital, therefore, to study the implications of these calculations in cosmological space-
times, where we have no other handle on quantum gravity. A first objective in this direction
is to understand whether islands can appear in cosmology. For an evaporating black hole,
islands appear naturally when the QES formula is applied to the Hawking radiation. In
cosmology, however, it is not clear a priori what process or setup should be considered:
what would give rise to the large amounts of entanglement necessary for the formation of an
island? What is the relevant reference system (the analogue of the Hawking radiation)?

One approach to this problem is not to require a natural dynamical origin for the en-
tanglement. Instead, one can consider a simple cosmological solution and make assumptions
about the entanglement structure that favor the existence of islands. If islands are absent
even under favorable assumptions, this already constitutes an interesting finding.

In this spirit, Hartman et al. [95] searched for islands in a radiation-dominated, spatially
flat Friedman-Robertson-Walker (FRW) spacetime M , entangled with a second nongravi-
tating reference spacetime MR, in a thermofield-double-like state. Instead of first specifying
a reference system analogous to the Hawking radiation, Ref. [95] specified spherically sym-
metric candidate regions I on a Cauchy slice ΣM of M and asked whether there exists a
reference region R on a Cauchy slice ΣR of MR such that I is an island of R. (See [136, 59,
23] for other work on cosmological islands and thermofield-doubled universes.)

Hartman et al. found that no islands exist unless the cosmological constant is negative,
Λ < 0. A flat FRW universe with Λ < 0 expands and then collapses, on a characteristic time
scale of order tΛ ∼ |Λ|−1/2. Islands are located in a narrow time band, of order the thermal
timescale β ≪ tΛ, before and after the turnaround time; and they must be very large, with
proper radius ≫ tΛ.

Ref. [95] considered only spatially flat FRW universes. In this chapter, we will relax this
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Table 4.1: Summary of Results

Case Island Location(s)

closed, Λ > 0 I =M

closed, Λ = 0 I =M

closed, Λ < 0 I = M ; and if tΛ/tC ≲ (lP/tC)
1/2 ≪ 1, then also

I ⊊ ΣM , with comoving radius χ ∈ (χ∗, π − χ∗),
near turnaround

open, Λ ≥ 0 None

open, Λ < 0 I ⊊ ΣM , with χ > χ∗, near turnaround, if tΛ/tC ≲
(lP/tC)

1/2 ≪ 1

assumption and search for islands in spatially closed and open FRW cosmologies. We will
show that a small amount of spatial curvature can have a significant effect. Arbitrarily small
positive curvature guarantees that the entire spacetime is an island. It also allows for a new
class of islands consisting of more than half (but not all) of the universe. A small—but not
arbitrarily small—amount of negative curvature eliminates cosmological islands entirely at
fixed Λ < 0. Our results are summarized in Table 4.1.

4.1 Preliminaries

Quantum Extremal Surface Prescription

For ease of reference, we remind the reader of the Quantum Extremal Surface (or Ryu-
Takayanagi) prescription for computing von Neumann entropies. The all-orders [75] quantum-
corrected [78], covariant [108] Ryu-Takayanagi [169, 168] prescription computes the entropy
of a nongravitating system R in terms of a dual spacetime with gravity, M , whose state and
geometry are computed semiclassically:

S(R) = Sgen[EW(R)] . (4.1)

The bold-face notation [11] distinguishes the (presumably correct) entropy computed by the
QES formula from the von Neumann entropy S(R) computed directly from the semiclassical
state. Here EW(R) is the entanglement wedge and Sgen is its generalized entropy. We will
now briefly summarize their definitions.

For a partial Cauchy surface X ⊂ ΣM ,

Sgen(X) =
Area[∂X]

4GNℏ
+ S(X) , (4.2)
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where S(X) is the von Neumann entropy of the density operator of the quantum field theory
state reduced to X. Both terms are cutoff-dependent, but their sum is well-defined (see the
appendix in Ref. [48] for a detailed discussion).

EW(R) is a spacetime region whose generalized entropy is “extremal” (really, stationary)
with respect to small shape deformations of its boundary surface in M , subject to certain
homology and global minimality conditions. (Settings with highly incompressible quantum
states require a more precise definition [6]. In doubly holographic settings, the appropriate
homology rule must be chosen with care, as discussed in Chapter 2. Neither subtlety will
arise here. The entanglement wedge is in general state-dependent; it is related through a
choice of code subspace to the reconstructible wedge [102, 7], which is not. We implicitly
assume a small code subspace in this work, so that we can neglect this distinction.)

Now let us specialize to the case where R ⊂ ΣR is a partial Cauchy surface in a nongrav-
itating spacetime MR distinct from M . Then the definition of EW(R) reduces to the “island
rule” [18]:

1. EW(R) = I ∪R, where I ⊂ ΣM and I is compact;1

2. Sgen(I ∪R) is stationary under any local variations of the boundary surface ∂I;

3. Among all such regions globally, I yields the smallest Sgen(I ∪R).

Note that I = ∅ is allowed.
For example, suppose that MR is coupled to M , and that R contains the Hawking radi-

ation emitted by an evaporating black hole prior to the time t [151, 16]. (R could also be a
weakly gravitating distant region containing the radiation [47].) In the semiclassical approxi-
mation, the radiation is thermal [100]. Its entropy S(R(t)) increases monotonically, implying
information loss [99]. However, after the Page time, the entanglement wedge EW(R) includes
an island I ̸= ∅ that purifies the radiation [151, 16]. The island is the black hole interior
slightly before the most recent radiation in R was emitted. Thus, Sgen[EW(R)] is dominated
by the area term A[∂I]/4GN , which decreases as the black hole shrinks.

Four Necessary Conditions for Islands

A nonempty island I must satisfy four conditions that do not depend on R. We will begin
by deriving the first three, following Ref. [95]. Since I ̸= ∅, we have

S(R) > Sgen(I ∪R) =
A(∂I)

4GN

+ S(I ∪R) ≥ A(∂I)

4GN

+ S(R)− S(I) (4.3)

by subadditivity of the von Neumann entropy; hence

S(I) >
A(∂I)

4GN

. (Condition 1) (4.4)

1More precisely, the homology rule requires that in the conformally compactified spacetime, the boundary
of the image of I does not intersect with the conformal boundary of M .
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By assumption, I∪R is quantum extremal, i.e., Sgen(I∪R) is stationary under shape de-
formations of ∂I. The area contribution to this variation does not change when we consider
Sgen(I) instead; and by strong subadditivity, the shape derivative of the von Neumann en-
tropy in the past or future directions outward from I can only increase whenR is dropped [48].
Hence it must be non-negative:

I is quantum normal. (Condition 2) (4.5)

We will take the global quantum state on ΣM ∪ ΣR to be pure. (This can always be
arranged by adding a purifying auxiliary system to MR.) Hence G ∪ Q is also quantum
extremal, where G ≡ ΣM\I and Q ≡ ΣR\R. The above argument implies that

G is quantum normal. (Condition 3) (4.6)

M always satisfies extremality. However, it satisfies the homology condition only if its
Cauchy surfaces are closed. For a proper subset I ⊊ ΣM to be an island, in this case, it must
be a better candidate than the whole of M :

Sgen(M ∪R) > Sgen(I ∪R) . (4.7)

Since M is spatially closed, Sgen(M ∪R) = S(M ∪R), and Eq. (4.7) implies

S(I ∪R) + A(∂I)

4GN

< S(M ∪R) ≤ S(G) + S(I ∪R) (4.8)

by subadditivity of the von Neumann entropy. Hence we find a fourth condition:

For spatially closed M and I ⊊ ΣM : S(G) >
A(∂I)

4GN

. (Condition 4) (4.9)

Thermofield-doubled FRW Universes

In the next two sections, we shall search for islands in cosmological spacetimes. We will
consider a spatially homogeneous and isotropic universe M in 4 dimensions with positive or
negative spatial curvature, thermal radiation, and arbitrary cosmological constant Λ. The
metric is

ds2 = −dt2 + a(t)2
(
dχ2 + f 2(χ)dΩ2

)
, (4.10)

where a(t) is the scale factor. The function f(χ) depends on the curvature: f(χ) = sinh(χ), χ,
or sin(χ) for open, flat, and closed universes respectively. Another convenient coordinate
system uses conformal time η, defined via

dη =
dt

a(t)
. (4.11)
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In these coordinates, the FRW metric takes the form

ds2 = a2(η)
(
−dη2 + dχ2 + f 2(χ)dΩ2

)
. (4.12)

The scale factor a(t) obeys the Friedmann equation:(
ȧ

a

)2

=
8πGNρr

3
+

Λ

3
− k

a2
, (4.13)

where ρr is the energy density of radiation and Λ is the cosmological constant.
We will mainly be interested in universes with an initial curvature singularity (a big

bang). Solutions with a big crunch but no big bang are trivially related by time-reversal.
Radiation redshifts as ρr ∝ a−4, so its energy density will dominate near the big bang, i.e.,
at sufficiently early times.

The cosmological constant will come to dominate the evolution within a time of order

tΛ ≡
√

3/|Λ| (4.14)

after the big bang, if the universe reaches this age.
At the time

tC ≡
(
8πGNρra

4

3

)1/2

, (4.15)

after the big bang, the curvature term in the Friedmann equation begins to dominate over
the radiation term. If the universe reaches this age, and if tC < tΛ, a curvature-dominated
era begins at tC and ends at tΛ. For recollapsing solutions, the same sequence happens in
reverse after the turnaround time.

Solutions without a singularity arise only if the cosmological constant and curvature
are both positive and the radiation density at the turnaround time is sufficiently small.
Then the above definitions can be still be made, but they do not have the stated physical
interpretation. Moreover, tC and tΛ do not fix a solution uniquely. Hence we will use a
different parametrization of solutions in Section 4.2.

It will be convenient to express the Friedmann equation in terms of tC and tΛ:(
ȧ

a

)2

=
t2C
a4

± 1

t2Λ
− k

a2
. (4.16)

The ± corresponds to the sign of Λ.
Throughout this chapter we shall assume that the effective number of light fields is of

order unity. (It is easy to generalize to a larger number of fields, and strictly it is necessary
to do so in order to justify neglecting the contribution of gravitons to the entropy. But
increasing the number of radiation species does not lead to new regimes in our analysis,
while it does complicate the formulas.) Then the physical entropy density of the thermal
radiation is

s ∼ ρ3/4r , (4.17)
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and the comoving entropy density is

sc ≡ sa3 ∼
(
tC
lP

)3/2

, (4.18)

where lP ≡ G
1/2
N is the Planck length.

Following Ref. [95], we purify the thermal radiation by invoking a second, nongravitat-
ing spacetime MR and constructing a thermofield double. MR is defined up to conformal
transformations; here we choose

ds2R/ℓ
2 = −dη2R + dχ2

R + f 2(χR)dΩ
2
R , (4.19)

where ℓ is an arbitrary fixed length scale. The thermofield double is first constructed using
two copies of MR:

|TFD⟩ ∝
∑
n

e−βEn |n⟩∗1 |n⟩2 ; (4.20)

then a conformal transformation by a2 is applied to transform one copy to M . Here β =
ℓ/(aT ), where T is the radiation temperature in the physical spacetime M at scale factor
a. Our convention for the respective time orientations is opposite to that of Ref. [96]; see
Refs. [95] for further details.

We note an important property of the thermofield double which will be useful below. For
regions I ⊂ ΣM and R ⊂ ΣR with equal coordinate position, the renormalized2 entropy of
I ∪ R is small and increases when I and R are separated in time at fixed comoving size. It
also increases if the size of either I or R is increased or decreased at fixed time:

S(I ∪R) ≈ sc|∆Vc| , (4.21)

where ∆Vc = V R
c − V I

c , and Vc denotes comoving volume (i.e., V R
c = V (R)/ℓ3 and V I

c =
V (I)/a3). The sharp transition in Eq. (4.21) when I and R coincide is smoothed on the
thermal scale β [95].

General Analysis and Restriction to Time-Symmetric Slices

For each class of universes, we will search for spherical3 islands by checking the four necessary
conditions laid out in Section 4.1. This check is performed using solutions for the full
spacetime, and the results are displayed in plots showing where each condition is satisfied.

2The entropy of bounded regions in QFT has universal short-distance divergences that can be stripped
off so long as the characteristic wavelength of excitations is greater than the Planck scale. In this chapter,
we only consider regions that are under semiclassical control, (a/ℓ)β ≫ lP .

3If I is a spherical island of the region R, then one expects that deformations of R will still have an
island that is a small deformation of I. Area is “expensive” so generally I will deviate less from spherical
symmetry than R. Our analysis does not rule out the existence of different classes of islands that are not
approximately spherical.
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The solutions for the full spacetime are relatively complicated. In order to develop some
intuition, we precede each full analysis by searching for islands only on time-symmetric slices.
Ultimately, this where we expect to find islands, because quantum extremality is difficult to
satisfy when the universe is expanding or contracting.

Quantum extremality requires that the classical expansion is compensated by the time-
derivative of the renormalized entropy at fixed χ. This is possible if the classical expansion
is itself very small, of order G, i.e., in a small time interval around the turn-around time. In
the spatially flat case, the size of this interval is of order β [95]. The same conclusion applies
to open and closed universes: as we shall see below, curvature is dynamically negligible at
the turnaround time in all cases where we find islands at that time.

On time-symmetric slices, the necessary conditions of Section 4.1 take a special form.
The scale factor at the turnaround time, a0, is found by setting ȧ = 0 in Eq. (4.16). Then
the conditions become

scVc(χ) ≥
a20Ac(χ)

4l2P
(Condition 1) (4.22)

∂

∂χ
Sgen[I(χ)] ≥ 0 (Condition 2) (4.23)

− ∂

∂χ
Sgen[G(χ)] ≥ 0 (Condition 3) (4.24)

sc
(
V tot
c − Vc(χ)

)
≥ a20Ac(χ)

4l2P
(Condition 4) (4.25)

for a spherical island candidate of radius χ. Here V tot
c is the comoving volume of the entire

closed universe at the turnaround time, and

Sgen = scVc(χ) +
A(χ)

4GN

. (4.26)

In the next two sections, we will analyze the closed and open cases, respectively. We will
examine whether the necessary conditions can be satisfied, and if so, we will check whether
they are sufficient.

4.2 Closed Universes
In this section, we consider solutions with positive spatial curvature (closed FRW). In such
a geometry, the coming volume and area functions on the unit three-sphere are

Vc = π(2χ− sin 2χ) , (4.27)
Ac = 4π sin2 χ . (4.28)
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Condition 4

Figure 4.1: Regions satisfying the four island conditions are shown for a closed universe with
Λ = 0. The radiation temperature is β−1 at the turnaround time t = η = 0. Chosen for
display is tC = 170tP . Top and bottom cutoffs are chosen so as to eliminate artifacts of the
Planck regime near the big bang and big crunch. The lack of four-way overlap shows that
no region satisfies all four conditions, so there cannot be any islands.

Positive Curvature, Zero Cosmological Constant

The first closed universe we consider is the simplest: one with Λ = 0. We begin our search
for islands by restricting our attention to the time-symmetric slice. We consider spherically
symmetric regions, I(χ), which extend from the origin to the sphere at χ at the turnaround
time. For Λ = 0 and k = 1, the scale factor at the turnaround time satisfies

0 =
t2C
a40

− 1

a20
(4.29)

by Eq. (4.16). Hence
a0 = tC . (4.30)

Since the universe is closed, we can consider either the entire universe M , or a proper
subset I(χ), χ < π, of its time-symmetric slice, as an island candidate. We begin by ruling
out the latter, by showing that conditions 1 and 4 are mutually incompatible.

Condition 1 is that the radiation entropy in I exceed the Bekenstein-Hawking entropy of
the boundary. Using the time-symmetric version of condition 1, Eq. (4.22), and Eq. (4.18),
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this becomes (
tC
lP

)3/2

Vc ≳
t2CAc(χ)

l2P
, (4.31)

which is equivalent to
Vc(χ)

Ac(χ)
≳

(
tC
lP

)1/2

. (4.32)

The ratio of comoving volume to area is of order χ for small χ and grows monotonically,
diverging as χ→ π. We are only interested in the semiclassical regime,

tC
lP

≫ 1 . (4.33)

Thus condition 1 requires π − χ≪ 1; that is, the island must be nearly the whole universe.
In this regime,

Vc
Ac

≈ 2π2

4π(π − χ)2
=

π

2(π − χ)2
. (4.34)

and condition 1 becomes

π − χ ≲

(
lP
tC

)1/4

, (4.35)

Condition 4 requires that the radiation entropy in G, the complement of I in M , should
also exceed the Bekenstein-Hawking entropy of its boundary. Hence G must also consist of
nearly the entire time-symmetric slice. But this contradicts the definition of G: G and I
cannot be mutual complements and both consist of nearly all of ΣM . Since the necessary
conditions 1 and 4 cannot be simultaneously satisfied, no proper subset of the time-symmetric
slice can be an island.

To check that the restriction to the time-symmetric slice did not miss viable island can-
didates, we examine the full solution. The scale factor is:

a(η) = tC cos(η) , (4.36)

with the turnaround time set at η = 0. Figure 4.1 shows the regions in which the four
conditions are satisfied. As expected, there is no region of four-way overlap. Therefore, no
proper subset of a closed universe with Λ = 0 can be an island.

Next, we turn to M itself as an island candidate. M trivially satisfies all necessary
conditions, since it has no boundary. But for M to be an island, it must beat the empty set;
we require S(R ∪M) < S(R). Since S(R ∪M) ≈ sc[Vc(ΣR)− Vc(R)], M is an island of R if
and only if R is more than half of ΣR.

Positive Curvature, Negative Cosmological Constant

Now we consider closed universes with Λ < 0. As before, we begin with a restriction to
time-symmetric slices. If tΛ ≫ tC , then Λ is insignificant at the turnaround time. Then Λ
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never plays a dynamical role, and we expect the results to be the same as the Λ = 0 case.
Thus, we will consider the regime

tΛ ≲ tC . (4.37)

By Eq. (4.16), the scale factor satisfies

0 =
t2C
a40

− 1

t2Λ
− 1

a20
(4.38)

at the turnaround time, so with Eq. (4.37) we find

a0 ∼
√
tΛtC . (4.39)

Consider first a proper subset of the universe as the island candidate: I(χ) with χ < π.
Condition 1 was given in Eq. (4.22). Substituting the above expression for a0 we find

Vc(χ)

Ac(χ)
> α ∼

(
tΛ
tC

)(
tC
lP

)1/2

, (4.40)

where we have defined the combination of parameters α for later convenience.
Condition 4 yields the same inequality with χ → π − χ. Since Vc/Ac is monotonic in χ,

conditions 1 and 4 can be satisfied simultaneously only if

α <
Vc(π/2)

Ac(π/2)
=
π

4
. (4.41)

Hence we require
tΛ
tC

≲

(
lP
tC

)1/2

≪ 1 , (4.42)

where the second inequality is the condition for a classical solution. Note that this conclusion
disallows tΛ ∼ tC and hence is stronger than Eq. (4.37).

In the regime characterized by Eq. (4.42), solving Eq. (4.40) as an equality yields a
critical value χ1 < π such that the inequality (4.40) will be satisfied for all χ > χ1. Hence,
conditions 1 and 4 will be simultaneously satisfied for

χ1 < χ < π − χ1 . (4.43)

In the limit as α ≪ 1, one finds χ1 ∼ α.
We turn to conditions 2 and 3. Condition 2 is the requirement that the island be quantum

normal. Using the time-symmetric version of condition 2, Eq. (4.23), and Eqs. (4.18), (4.27),
(4.28), and (4.39) we find

cot(χ) ≳ −α−1 . (4.44)

Note that the cotangent monotonically decreases in the range χ ∈ (0, π) and becomes neg-
ative for χ > π/2. In the regime where conditions 1 and 4 can be satisfied, the magnitude
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Figure 4.2: Island conditions in a closed universe with Λ < 0, tC ≫ tΛ. Chosen for display
is tC = 25000tP , tΛ = 400tP . All conditions overlap in a region centered on the equator with
temporal width of order β around the turnaround time. We verify explicitly that any region
at t = 0 whose only boundary lies in this overlap is an island.

of the right hand side is at least of order unity by Eq. (4.41). Hence, the above condition
corresponds to

0 < χ < π − χ2 , (4.45)

where
χ2 <

π

2
and

π

2
− χ2 ∼ O(1) . (4.46)

Condition 3 mandates that G (the complement of I) be quantum normal; by symmetry,
this results in the condition

χ2 < χ < π . (4.47)

Hence, assuming that conditions 1 and 4 are satisfied, then conditions 2 and 3 will be
simultaneously satisfied for

χ2 < χ < π − χ2 . (4.48)

In the regime where α ≪ 1, Eq. (4.44) implies χ2 ∼ α.
To summarize, for a subset of the time-symmetric slice to be an island, we require that

χ∗ < χ < π − χ∗ , (4.49)

where
χ∗ ≡ max{χ1, χ2} . (4.50)
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Importantly, for the conditions 1 and 4 to be simultaneously satisfied, i.e., for the range
(4.43) to be nonempty, we found that Eq. (4.42) must be satisfied: α < π/4. This means
that curvature must be dynamically negligible at the turnaround time.

Near the critical value α = π/4, χ1 will be close to π/2 whereas π/2 − χ2 ∼ O(1), so
χ∗ = χ1; that is, conditions 1 and 4 are the more stringent. For α ≪ 1, χ1 and χ2 are both of
order α. A careful analysis keeping O(1) factors shows that χ∗ = χ1 for all α, meaning that
conditions 1 and 4 are always more stringent than 2 and 3 at the turnaround time. Thus,
to be an island, a subset of the time-symmetric slice must obey

χ1 < χ < π − χ1 . (4.51)

Next we examine the full spacetime. The scale factor is

a(t) = tΛ

√√√√1

2

(√
1 +

4t2C
t2Λ

cos

(
2t

tΛ

)
− 1

)
, (4.52)

with the turnaround time set to t = 0. Figure 4.2 shows a check of the four conditions with
tC ≫ tΛ. As expected from the time-symmetric analysis, the four conditions overlap only
in a region centered on the equator with temporal width of order β around the turnaround
time. (It is worth noting that far from the turnaround time, Conditions 1 and 4 are not
always more stringent that conditions 2 and 3.) A check of the full solution with tC ∼ tΛ
confirms that there are no islands in that regime.

While we have only verified four necessary conditions, it is easy to check that at the
turnaround time, I(χ) in the range χ1 < χ < π − χ1 is indeed an island of a region R of
equal size and location on ΣR.

Since we found that curvature must be dynamically negligible at the turnaround time for
an island I(χ) to exist, we should be able to make contact with Ref. [95], which found that
on the time-symmetric slice of a flat FRW universe with Λ < 0, any I(r) with proper area
radius r ≳ t

3/2
Λ /l

1/2
P is an island. Indeed, in a closed universe, the proper area radius of the

minimum island at the turnaround time is

r = a0 sinχ∗ ∼ a0χ∗ ∼ (tCtΛ)
1/2 tΛ

tC

(
tC
lP

)1/2

=
t
3/2
Λ

l
1/2
P

. (4.53)

As expected the curvature timescale drops out, and we recover the flat FRW result.
However, there is an important difference: in a flat universe there is no maximum island

size. In a closed universe, there is; and it is not the trivial upper bound χ = π, because
condition 4 becomes violated already for smaller values of χ. For χR > χ1, at t = 0, the
favored island becomes the entire universe M . This is sensible: although curvature has no
dynamical effect on the evolution of the universe at the turnaround time, it does affect the
kinematics (the topology of space), and the island rule is sensitive to both.

As before, M itself trivially satisfies conditions 1–3, meaning it is a viable island candi-
date. Let us check when M is in fact an island for some region R ⊂ ΣR. As in the Λ = 0
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case, R must be more than half of ΣR for R ∪M to have less entropy than R, i.e., for M to
be preferred over the empty set. Now, however, M must also compete with its own subsets.
M wins if and only if condition 4 is violated, i.e. if

χR > π − χ1 . (4.54)

Since χ1 < π/2, this is the only relevant condition.

Positive Curvature, Positive Cosmological Constant

Let us examine the case where both the cosmological constant and the curvature are positive.
As before, we start by finding the scale factor at the turnaround time. In this case, it will
be more convenient to work with the Friedmann equation in terms of ρr, Eq. (4.13). Setting
k = +1 and ȧ = 0 implies that the scale factor at the turnaround time is

a0 =

(
8πGNρr

3
+

Λ

3

)−1/2

. (4.55)

First let us consider islands that are a proper subset of the closed universe, i.e. I(χ) with
χ < π. Using the fact that s ∼ ρ

3/4
r and so sc ∼ ρ

3/4
r a3, condition 1 becomes

Vc(χ)

Ac(χ)
≥ 1

4ρ
3/4
r a0l2P

, (4.56)

and condition 4 yields the same inequality with (χ → π − χ). As before, the fact that
Vc/Ac is monotonic in χ implies that an island candidate can satisfy conditions 1 and 4
simultaneously only if

1

4ρ
3/4
r a0l2P

<
Vc(π/2)

Ac(π/2)
=
π

4
. (4.57)

First consider the case where the radiation density dominates at turnaround, GNρr ≫ Λ.
In this regime,

a0 ∼
1√
GNρr

=
1

ρ
1/2
r lP

, (4.58)

and Eq. (4.57) becomes
1

ρ
1/4
r

≲ lP . (4.59)

But the semiclassical regime requires a0 ≫ lP and hence

1

ρ
1/4
r

≫ lP . (4.60)

Since these equations are mutually incompatible, conditions 1 and 4 cannot be simultaneously
satisfied.
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Next, consider the opposite regime where vacuum energy dominates at turnaround, Λ ≫
GNρr. Then

a0 ∼
1√
Λ

∼ tΛ , (4.61)

and Eq. (4.57) becomes √
Λ

ρrGN

(
1

√
GNρ

1/4
r

)
≲ 1 . (4.62)

The first factor is large by assumption, and the second is large since ρr cannot approach the
Planck density. Hence, this inequality cannot be satisfied for Λ ≫ GNρr in the semiclassical
regime. It is easy to verify that the problem persists in the intermediate regime Λ ∼ GNρr.
Thus we have shown (within the parameters of our model) that no proper subset of a time-
symmetric slice of a closed universe with positive cosmological constant can be an island.

Next we examine the full spacetime. The scale factor can take one of three forms:

a(t) = tΛ

√
1

2

(
1− cosh

(
2t

tΛ

)
+

2tC
tΛ

sinh

(
2t

tΛ

))
(expansion) (4.63)

a(t) = tΛ

√√√√1

2

(
1− cosh

(
2t

tΛ

)√
1− 4t2C

t2Λ

)
(recollapse) (4.64)

a(t) = tΛ

√
1

2

(
1 +

1− ξt2Λ
1 + ξt2Λ

cosh

(
2t

tΛ

))
(bounce) (4.65)

where ξ ≡ 8πGNρr(0)/3. Eq. (4.63) describes a universe with a big bang at t = 0 which
expands eternally if tC/tΛ > 1/2 or recollapses if tC/tΛ < 1/2. Eq. (4.64) is the same
solution as Eq. (4.63) but defined only for tC/tΛ < 1/2 with the turnaround time set to
t = 0. Eq. (4.65) describes a universe that bounces (the scale factor reaches a minimum) at
t = 0.

The expanding solution has no turnaround time, and a check of the four conditions
(Figure 4.3) confirms that there is no region of four-way overlap in its regime (tC ≳ tΛ).
The recollapsing solution appears qualitatively like the Λ = 0 case and similarly disallows
islands. The bounce solution also has no region of four-way overlap (Figure 4.4).

As in the Λ ≤ 0 cases, the entire closed universe M satisfies all necessary conditions. M
will be an island when R is more than half of ΣR.

4.3 Open Universes
Next we search for islands in universes with negative spatial curvature (open FRW). As
before, we start with time-symmetric slices. By Eq. (4.16), none exist for Λ ≥ 0, so we shall
take Λ < 0.
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Figure 4.3: Island conditions in a closed universe with Λ > 0, tC ≫ tΛ. Chosen for display is
tC = 1000tP , tΛ = 20tP . Such a universe expands eternally and thus has no time-symmetric
slice. There is no region in which all four conditions are satisfied, meaning there cannot be
islands.

β
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Figure 4.4: Regions satisfying the four island conditions for a closed universe with Λ > 0
that bounces at t = 0. The radiation temperature is β−1 at the turnaround time t = 0.
Chosen for display is ξ = 0.084t−2

P , tΛ = 10tP . There is no region of four-way overlap, so
there cannot be islands.
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The comoving volume and area of a spherical region of coordinate radius χ are

Vc(χ) = π(sinh(2χ)− 2χ) , (4.66)
Ac(χ) = 4π sinh2(χ) . (4.67)

Hence
Vc
Ac

≤ 1

2
. (4.68)

We begin by ruling out islands in the regime tΛ/tC ≳ 1. The scale factor at the turnaround
time will be

a ∼ tΛ . (4.69)

Using Eqs. (4.18) and (4.22), condition 1 becomes

Vc(χ)

Ac(χ)
≳

(
tΛ
tC

)2(
tC
lP

)1/2

. (4.70)

The semiclassical regime requires that tC/lP ≫ 1, and we are currently working in the regime
tΛ/tC ≳ 1, so the r.h.s. is large. This conflicts with Eq. (4.68), so condition 1 cannot be
satisfied.

Now consider the complementary regime, tΛ/tC ≪ 1. The scale factor at the turnaround
time is

a0 ∼
√
tΛtC , (4.71)

and condition 1 becomes
Vc(χ)

Ac(χ)
≥ γ ∼

(
tΛ
tC

)(
tC
lP

)1/2

. (4.72)

By Eq. (4.68), this condition can be satisfied only if γ < 1/2. This implies(
tΛ
tC

)
≲

(
lP
tC

)1/2

≪ 1 , (4.73)

where the second inequality is required for a semiclassical solution. Solving (4.72) as an
equality yields a critical value χ3 such that condition 1 is satisfied for all χ > χ3. Therefore,
condition 1 can be satisfied for a spherical island candidate with large enough χ at the
turnaround time if tΛ is early enough.

Since it is possible to satisfy condition 1, we move on to conditions 2 and 3, equations
(4.23) and (4.24). (Condition 4 only applies to subsets of closed universes.) Applying the
quantum-normalcy conditions to I and its complement G yields, respectively,

cothχ ≳ −γ−1 , (Condition 2) (4.74)
cothχ ≲ γ−1 . (Condition 3) (4.75)
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Figure 4.5: Island conditions in an open universe with Λ < 0, tC ≫ tΛ. Chosen for display
is tC = 77500tP , tΛ = 200tP . All conditions overlap only in a region with temporal width of
order β around the turnaround time for large enough χ. We verify explicitly that any region
at t = 0 whose only boundary lies in this overlap is an island.

Condition 2 is satisfied for any χ. Condition 3 can only be satisfied if γ < 1, but we already
obtained the stronger restriction γ < 1/2 from condition 1.

Solving (4.75) as an equality yields a critical radius χ4, such that all χ > χ4 satisfy
condition 3. Thus, to be an island, the region must satisfy

χ∗ < χ < π − χ∗ , (4.76)

where
χ∗ ≡ max{χ3, χ4} . (4.77)

As in Section 4.2, a careful analysis keeping O(1) factors indicates that χ3 > χ4 for all
γ < 1/2 at turnaround. Thus, condition 1 is always more stringent that condition 3 at the
turnaround time.

Having completed our analysis of the time-symmetric slice, we check the full spacetime.
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The forms of the scale factor are

(Λ = 0) a(η) = tC sinh η (4.78)

(Λ > 0) a(t) = tΛ

√
sinh

(
t

tΛ

)(
2tC
tΛ

cosh

(
t

tΛ

)
+ sinh

(
t

tΛ

))
(4.79)

(Λ < 0) a(t) = tΛ

√√√√1

2

(√
1 +

4t2C
t2Λ

cos

(
2t

tΛ

)
+ 1

)
. (4.80)

Eqs. (4.78) and (4.79) describe universes that expand eternally and thus have no time sym-
metric slice. As expected, these two cases disallow islands. Universes described by Eq. (4.80)
do recollapse, and in the regime tC ≫ tΛ all three conditions overlap only for large enough
χ in a region with width of order β around the turnaround time (Figure 4.5). Checking the
regime tΛ ≳ tC confirms that no islands are possible in that case.

To summarize, in an open universe with Λ < 0, spherical regions with χ > χ3 satisfy all
necessary island conditions if γ < 1/2, where γ is given in Eq. (4.72). This corresponds to
a universe in which curvature never dominates since tΛ/tC ≪ 1; in fact, curvature cannot
dominate even on the scale of the minimum island size. It is easy to verify that these
candidates are in fact islands at t = 0, if R is chosen to be the matching region on ΣR.

4.4 Chapter Summary and Conclusion
In this chapter, we searched for islands in cosmologies with nonzero spatial curvature. In
Section 4.1 we stated again the QES prescription and its special case, the island formula.
We discussed three necessary conditions that an island I must satisfy [95] regardless of the
reference system R: S(I) > A(∂I)/4GN ; I is quantum normal; and G is quantum normal,
where G is the complement of I on a Cauchy slice ΣM of M . We derived a fourth necessary
condition that applies only if M is closed and G is nonempty: S(G) > A(∂I)/4GN . Next, we
introduced the specific setting we aimed to study: a spatially closed or open FRW universes
with a cosmological constant and radiation. The radiation is entangled with and purified
by radiation in an analogous reference spacetime, in a TFD-like state. Finally, we discussed
the mode in which our results will be presented: for each class of universe, a physically
intuitive analysis of island candidates on the time-reflection symmetric Cauchy slice of M
(if present) is followed by a graphical presentation of the validity of the four conditions in
the full spacetime solution.

In Section 4.2, we searched for islands in closed FRW solutions (positive spatial curva-
ture). We first considered the simplest case where the cosmological constant Λ vanishes.
We found that the conditions 1 and 4 discussed in Section 4.1 are mutually exclusive at
the turnaround time, so no proper subset of a time-symmetric slice of M is a viable island
candidate. This conclusion persisted when we analyzed the full spacetime. However, we
found that M itself is an island, if R contains more than half of ΣR.
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Figure 4.6: Penrose diagram of a closed recollapsing universe. The entire universe can always
be an island. For a proper subset I to be an island, it must lie near the turnaround slice, with
boundary within a certain angular range. This range is nonvanishing only if the cosmological
constant is negative and sufficiently large.

Next, we considered closed universes with negative cosmological constant. The entire
universe M was again found to be an island for sufficiently large R. For a proper subset
of a time-symmetric slice of M , we found that the four conditions can be simultaneously
satisfied only if the spatial curvature is sufficiently weak (and dynamically irrelevant) at the
turnaround time. A check of the full solution indicated that islands only appear near the
turnaround time. In this case we found explicit examples of islands that are a proper subset
of the time-symmetric slice of M , with R being the analogous region on ΣR; see Figure 4.6.
We also found examples of regions that satisfy all three necessary conditions of Ref. [95] but
which are not islands for any choice of R, because they fail to satisfy the condition 4.

We then examined closed universes with positive cosmological constant. M itself is again
an island if R contains more than half of ΣR. We found that no proper subset of the
time-symmetric Cauchy slice of M can be an island, as conditions 1 and 4 are mutually
incompatible. A check of the full solution confirmed that no proper subset of any other
Cauchy slice can be an island.

In Section 4.3, we turned to solutions with negative spatial curvature (open FRW). If
Λ ≥ 0, there are no islands. If Λ < 0, we found islands exist if the spatial curvature radius is
at least comparable to the minimum island size in the spatially flat case; see Figure 4.7. This
is easy to understand geometrically: for I to be an island, one must have S(I) > A(∂I)/4GN .
The entropy is extensive. In flat space, volume grows faster than area, so this condition
becomes satisfied at large radius. But in a hyperbolic geometry, volume and area approach
a fixed ratio for radii greater than the curvature radius. Therefore, the condition does not
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Figure 4.7: Penrose diagram of an open universe. A sufficiently large region I at the
turnaround time is an island, if the cosmological constant is negative and large enough
for curvature not to dominate below the critical radius χ3.

become automatically satisfied for sufficiently large radius.
This concludes the search for islands in FRW universes containing radiation and with

non-zero spatial curvature. In the next chapter, we will extend this analysis to universes
with a general fluid in place of radiation.
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Chapter 5

Islands in Cosmologies with General
Fluids

In the previous chapter, we sought to investigate whether the newly-recognized feature of
the QES prescription, namely, the involvement of islands, could teach us anything about
cosmology, where we have a poor understanding of quantum gravity. Toward this end, we
extended the analysis of Ref. [95], which explored when it was possible for a region in a flat
FRW cosmology to be an island for a region in a nongravitating auxiliary system. Ref. [95]
derived three necessary conditions for a region to be an island and found that all conditions
could be satisfied in flat universes with a negative cosmological constant. The focus of the
previous chapter was to expand this analysis to FRW cosmologies with nonzero curvature.
We derived an additional necessary condition for subsets of closed universes to be islands.
We found that the entire Cauchy slice of a closed universe was always found to satisfy
all necessary conditions. Subsets of closed and open universes with negative cosmological
constants were also found to satisfy the conditions in certain parameter regimes. These
viable island candidates were found on or near time-symmetric slices (where the scale factor
a satisfies ȧ = 0).

This analysis can be generalized further still, however. Ref. [95] and the previous chapter
assumed the matter entropy in the cosmology is generated by radiation. There are, however,
interesting cosmological models that involve more general fluids [124], including simple cos-
mologies without singularities [86]. In this chapter, we therefore extend the search for islands
in cosmology by relaxing the assumption that the contents of the cosmology is radiation.
We search for islands in FRW cosmologies with a general fluid with a constant equation of
state fulfilling the Null Energy Condition w ≥ −1.

5.1 Preliminaries
In this section, we restate the necessary conditions for islands. We also review FRW cosmolo-
gies and the relevant thermodynamics for a general perfect fluid, repeating and expanding
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upon some of the material in Chapter 4.

Necessary Conditions for Islands

Refs. [95] combined with the previous chapter derived a set of four conditions necessary for
the existence of a nonempty island in a spacetime M entangled with a reference system MR.
We will refer to a region that satisfies these four conditions as a “viable island candidate,”
while a region for which we consider the four conditions but have not yet checked them is an
“island candidate.” Assuming the global quantum state on Cauchy slices ΣM ∪ ΣR is pure,
the four conditions are:

1. S(I) > A(∂I)
4GN

.

2. I is quantum normal.

3. G is quantum normal.

4. For spatially closed M and I ̸=⊂ ΣM , S(G) > A(∂I)
4GN

.

Here G is the complement of I, namely G ≡ ΣM\I, and Q is the complement of R:
Q ≡ ΣR\R. Condition 1 comes from the requirement that an island must be “worth” its cost
in area, given that the QES prescriptions requires minimization of the generalized entropy.
Conditions 2 and 3 are consequences of the fact that I ∪R and G∪Q are quantum extremal.
Island candidates that are subsets of a spatially closed universe must satisfy condition 4 in
order to win out over the entire Cauchy slice, which is always a viable island candidate. See
Ref. [95] and the previous chapter for a full derivation.

Ref. [95] used these conditions to search for islands in flat FRW spacetimes containing
radiation entangled with a purifying reference system. The previous chapter generalized this
analysis to FRW spacetimes with non-zero curvature. In this chapter, we dispense with the
assumption that the contents of the universe are radiation, instead considering an arbitrary
perfect fluid.

FRW and General Perfect Fluids

The cosmological models we will consider are FRW universes filled with general perfect
fluid(s) with an equation of state w ≥ −1. Recall the metric for an FRW universe is

ds2 = −dt2 + a(t)2
[
dχ2 + f 2(χ)dΩ2

]
= a2(η)

[
−dη2 + dχ2 + f 2(χ)dΩ2

]
, (5.1)

where t denotes cosmic time and η conformal time, which are related by dt = a(η)dη. We
shall use both of them throughout the chapter depending on convenience. The factor f(χ)
is sinh(χ), χ, sin(χ) for open, flat, and closed universe respectively. Notice that in contrast
to some conventions, χ and η are dimensionless while the scale factor a has dimensions of
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length or time. For a general constant equation of state, wi, the scale factor, and the energy
density of fluid i behave as

ρi = ρ0i

(
a

a0

)−3(1+wi)

, (5.2)

where the subscript “0” denotes some time of normalization. Throughout its evolution, the
universe is dominated by a single fluid except for transient periods. In this parametrization,
the Big Bang singularity is at a = 0.1 We are interested in islands away from the singularity
where semiclassical analysis can be trusted. The governing equations of motion are given
by the first Friedmann equation and the continuity equations that hold separately for each
fluid:

H2 =
∑
i

8πGN

3
ρi −

k

a2
± 1

t2Λ
, (5.3)

dρi
dt

= −3H(ρi + pi) , (5.4)

where tΛ =
√

3/|Λ| and k = ±1, 0 is the usual spatial curvature. The entropy density of a
fluid i is given by

si =
ρi + pi − µini

Ti
, (5.5)

where ρi is the energy density, pi the pressure, ni the number density, µi the chemical
potential, and Ti the temperature. Neglecting the chemical potential µi, we have

si =
(1 + wi)ρ0i

Ti

(
a

a0

)−3(1+wi)

, (5.6)

where we have used the equation of state of the i-th fluid pi = wiρi. In local thermal,
equilibrium the total comoving entropy is conserved:

sc = s a3 = const. (5.7)

If the fluids are decoupled such a conservation occurs for every fluid separately assuming
it is in thermal equilibrium with itself. The proof of this (taken from [124]) is as follows.
Applying the laws of thermodynamics to a comoving volume element yields

TdS = d(ρV ) + pdV = d[(ρ+ p)V ]− V dp , (5.8)

where V is the physical volume (a3V(χ)), ρ is the equilibrium energy density, p is the
equilibrium pressure, and S is the entropy per comoving volume. The energy density and
pressure are related via

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (5.9)

1An exception is if the NEC is violated with temporary w < −1, which occur for example in some
quintessence models or bouncing models, e.g. [32, 34, 19, 20].



CHAPTER 5. ISLANDS IN COSMOLOGIES WITH GENERAL FLUIDS 65

which implies,
dp =

ρ+ p

T
dT . (5.10)

Substituting into Eq. 5.8, implies that

dS =
1

T
d[(ρ+ p)V ]− (ρ+ p)V

dT

T 2
= d

[
(ρ+ p)V

T
+ const

]
(5.11)

and thus that
S =

a3(ρ+ p)

T
(5.12)

up to a constant. The first law of thermodynamics can be expressed as

d[(ρ+ p)V ] = V dp , (5.13)

which when substituted into Eq. 5.10 yields

d

[
(ρ+ p)V

T

]
= 0 . (5.14)

Therefore, the comoving entropy is conserved in local thermal equilibrium.
In this chapter we will consider a single fluid, deferring more realistic analysis to future

work. Because the total sc is constant, and assuming a single fluid in thermal equilibrium, the
temperature of the fluid will redshift as T ∼ a−3w, which imposes the relation sth ∼ ρ1/(1+w).
Using (5.10), (5.12), and p = wρ, one gets

ρ = ρ0

(
T

T0

)(1+w)/w

, (5.15)

sth = (1 + w)
ρ0
T0

(
T

T0

)1/w

. (5.16)

Hence, at the time of normalization t0,

sc = (1 + w)
ρ0
T0
a30 . (5.17)

The constancy of the comoving entropy is essential for the conclusions we shall derive
here. We are always considering the semi-classical regime so ρ0 ≪ (8πGN)

−2 and T0 ≪
(8πGN)

−1/2.
The QES prescription requires the calculation of the entanglement entropy of region R.

Only few such controlled examples are known without heavy use of symmetries, which the
FRW universe does not possess. We shall therefore use the thermal entropy density of the
fluid as a proxy for the entanglement entropy as was also done in [95, 76] and the previous
chapter. At least in high temperatures the entanglement entropy should converge to the
thermal entropy [52]. Therefore, our analysis is certainly valid for high enough temperatures,
and it remains to be seen how far can one extrapolate it to lower temperatures.
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Energy Conditions General Relativity does not specify which energy momentum tensor
should appear in the RHS of Einstein’s equations. Therefore, energy conditions are com-
monly used to avoid certain solutions that may be mathematically correct but not sensible
physically. In generality they are specified by the energy momentum tensor and its con-
traction with certain four-vectors. Since we only deal with perfect fluids, we will use the
more simplified version pertaining to a perfect fluid with energy density ρ, pressure p and
an equation of state w that relates the two p = wρ. The Null Energy Condition (NEC) is
ρ+ p = (1+w)ρ ≥ 0, so if ρ > 0 it means w ≥ −1. The Dominant Energy Condition (DEC)
is ρ ≥ |p|, i.e. 1 ≥ |w|.

5.2 General Island Conditions in FRW Spacetimes
Given our choice to work with FRW spacetimes, we can rearrange the necessary conditions
for islands in a simpler way. Recall that we choose to consider spherically symmetrical
island candidates centered at χ = 0. We denote such an island candidate as I(χ) and its
complement on its Cauchy slice as G. The generalized entropy of I(χ) and G are as follows:

Sgen(I) = S(η, χ) +
A(η, χ)

4GN

, (5.18)

Sgen(G) = const.− S(η, χ) +
A(η, χ)

4GN

. (5.19)

The constant in Sgen(G) is the matter entropy of the entire slice containing I and G, but
this constant will drop out of the conditions. From these, the four conditions can be written
as

Condition 1: S(η, χ) >
A(η, χ)

4GN

, (5.20)

Condition 2: S ′(η, χ) +
A′(η, χ)

4GN

≥ ∓

(
Ṡ(η, χ) +

Ȧ(η, χ)

4GN

)
, (5.21)

Condition 3: S ′(η, χ)− A′(η, χ)

4GN

≥ ∓

(
−Ṡ(η, χ) + Ȧ(η, χ)

4GN

)
, (5.22)

Condition 4: Stot(η)− S(η, χ) ≥ A(η, χ)

4GN

, (5.23)

where dot denotes differentiation with respect to conformal time η, prime denotes differen-
tiation with respect to the radial coordinate χ, and condition 4 applies only to subsets of
closed universes.

We can use properties of FRW spacetimes and the laws of thermodynamics to manipulate
the conditions into a more transparent form. In FRW we have a factorization of the different
terms into space and time dependence, A(η, χ) = a2(η)A(χ), S(η, χ) = sth(η)V (η, χ) ≡
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scV(χ). Here A and V refer to comoving quantities, while A and V signify physical area and
volume. As we have reviewed in Section 5.1, the entropy per comoving volume is conserved.
Hence, sc is constant in time and so S(η, χ) ≡ S(χ). Therefore, the time derivative vanishes
Ṡ = 0. Finally, it is convenient to rewrite the fourth condition in terms of Stot by adding to
it the first condition. Thus the conditions simplify as follows. The first becomes

Condition 1: sc >
a2(η)

4GN

A(χ)

V(χ)
. (5.24)

Consider conditions (2) and (3). Since Ṡ = 0, we can rewrite them as

S ′(η, χ) ≥ (∓Ȧ± A′)

4GN

, (5.25)

where contrary to common notation, here we mean all possible combinations of signs. This
can be rearranged into

S ′(η, χ) ≥ (|Ȧ|+ |A′|)
4GN

, (5.26)

and hence conditions 2 and 3 are simply2

Conditions 2 and 3: sc ≥
a2(η)

4GN

(
2|H|+ |A′|

A

)
=
a2(t)

4GN

(
2a(t)|H|+ |A′|

A

)
. (5.27)

Adding conditions 1 and 4 (for proper subsets of closed universes) yields

Stot(η) = 2π2sc ≥ 2
a2(η)A(χ)

4GN

, (5.28)

and thus condition 1 + 4 is

Condition 1 + 4: sc ≥
a2(η)

4GN

A(χ)

π2
. (5.29)

Before going into specific examples we can see what conditions are more likely to be sat-
isfied and where we may find potential obstacles. We have managed to phrase all conditions
in terms of a inequalities on the comoving entropy density, sc > a2/4GNf where f is the
fudge factor that is different between the different conditions. From this general expression,
we can understand why time-symmetric slices are good candidates for islands. This is be-
cause the existence of such a slice means that a is bounded, and given a concentration of
enough entropy, the conditions will be fulfilled. Moreover, given that the difference between
the conditions is the fudge factor f , we expect that in various cases a single condition to
encompass all others.3

2H ≡ ȧ
a where dot is a differentiation w.r.t conformal time η and H ≡ ∂ta

a where t is the so called cosmic
time.

3One would usually call this condition a sufficient condition, as its fulfillment implies that all others are
fulfilled as well. However, this is not a sufficient condition for the existence of islands, that requires further
checks (see below). It is only a sufficient condition for a viable island candidate. To avoid confusion, we use
the name encompassing condition, meaning that it captures all other necessary conditions.
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5.3 Islands on Time-Symmetric Slices
In this section, we begin to investigate where the necessary conditions can be satisfied in a
more general cosmology. First, we do not restrict ourselves to models with perfect fluids,
allowing more general contents in an FRW universe. Because this complicates the question,
we start by restricting to time-symmetric slices, i.e. slices in which the scale factor has a
minimum or maximum. The QES prescription relies on extremization of surfaces. Time-
symmetric slices are an extremum in the time coordinate. Therefore, these slices are natural
places to look for islands. Indeed, with the exception of an entire closed universe, the viable
island candidates found in Refs. [95, 76] and in the previous chapter were on or near time-
symmetric slices.

Consider a time-symmetric slice and its vicinity, where H = 0 or extremely small. Hence,

Condition 1: sc ≥
a2ts
4GN

A(χ)

V(χ)
, (5.30)

Conditions 2 and 3: sc ≥
a2ts
4GN

|A′|
A

, (5.31)

where ats denotes the scale factor at the time-symmetric slice. For flat universes, χ can be
arbitrarily large, and A/V and A′/A can thus be arbitrarily small by taking large enough
χ. Therefore, for flat universes, an arbitrary small amount of entropy sc will still fulfill all
conditions for large enough χ. Hence, time-symmetric slices in flat universes always contain
viable island candidates. This is regardless of any other detail such as number of fluids,
energy component etc. It is based solely on the constancy of sc, and the existence of a
time-symmetric slice. A specific example of such a universe was found in [95], where a flat
universe with radiation and a negative cosmological constant was considered.

For open universes A/V and A′/A are bounded from below and asymptote to 2 for large
χ, resulting in the encompassing condition:

sc ≥
a2ts
2GN

. (5.32)

For closed universes, the whole manifold is always an island, as was shown in the previous
chapter. Contrary to the flat and open case, the quantities A/V and A′/A are not monotonic
in χ, so there is no general χ beyond which all conditions reduce to a single encompassing
one. Beyond that we can consider a specific region of certain χ where the conditions are
more simple to satisfy. Such a region is χ ≃ π/2 on a time-symmetric slice, since (5.27) is
trivially fulfilled. The rest of the conditions reduce to the encompassing condition

sc ≥
a2ts
πGN

. (5.33)

From this we can see a reason why closed universes are in some sense more island-friendly.
In an ever expanding universe, a grows without bound and therefore will always violate this
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condition after a long enough time. Ever expanding closed universes will require w < −1/3
and/or a positive cosmological constant, which are not trivial. In contrast, the violation of
the inequality may not happen in a universe with a bounded ats, meaning it is “easier” to
fulfill this condition.

The above analysis depends on the existence of a time-symmetric slice. The matter and
energy content of the universe affects whether such a slice can exist. Exotic matter or energy
components can be introduced to produce such a slice, e.g. [19]. It is, however, standard to
treat the matter contents of an FRW universe as a collection of perfect fluids, and possibly
a cosmological constant and spatial curvature. Let us call such a universe, one that contains
any number of perfect fluids, “conventional.” We assume that all energy components are
perfect fluids and further that all energy densities of all fluids are positive definite. We still
restrict our search to time-symmetric slices, the existence of which are determined by the
first Friedmann equation:

0 =
8πGN

3

∑
i

ρ0,i

(
ats
a0

)−3(1+wi)

± 1

t2Λ
− k

a2ts
, (5.34)

where ρ0,i ≥ 0 is the energy density of various fluids at the turnaround time and ± is the
sign of the cosmological constant. Hence, for flat and open conventional universes, a solution
to the above equation exists only if there is a negative cosmological constant. For a closed
universe a time-symmetric slice can exist with any Λ depending on the value of ats. We
tabulate the islands in general and specifically in the case of conventional time-symmetric
slices in Table 5.3. The islands found in [95, 76] and the previous chapter correspond to the
conventional time-symmetric slices.

Table 5.1: Summary of viable island candidates on time-symmetric slices. The second column
corresponds to island candidates in the vicinity of time-symmetric slices without limiting
ourselves to perfect fluids with positive definite energy densities, while the third column
corresponds to the inclusion of this limitation. The flat and open universe cases here include
all possible spatial time-symmetric islands χ≫ 1, while the closed universe is limited to the
χ ≃ π/2 case.

Case General Time sym. Conventional Time sym.
k = 0 Always If Λ < 0 exists
k = −1 If sc >

a2ts
2GN

If sc >
a2ts
2GN

and Λ < 0 exists
k = 1 If sc >

a2ts
πGN

, χ ≃ π/2 Any Λ, if sc >
a2ts
πGN

, χ ≃ π/2
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5.4 Beyond Time-Symmetric Slices: Flat Universes
Let us now deviate from time-symmetric slices and their vicinity. We wish to investigate
where the necessary conditions for islands are satisfied in flat universes with a general perfect
fluid. Consider a flat FRW universe filled with a perfect fluid with an equation of state w. We
consider spherical islands candidates that exist far away from singularities, so as to stay in the
semiclassical regime. Hence, we are interested in cases where η ≫ 1 and ρ≪ (8πGN)

−2. The
comoving volume and area are the standard Euclidean expressions for a sphere, V(χ) = 4π

3
χ3

and A(χ) = 4πχ2. The scale factor and Ricci scalar may be written as, respectively,

a = a0(t/t0)
2/(3+3w) = a0(η/η0)

2/(1+3w) , (5.35)

R =
6

a2

(
Ḣ +H2

)
= 6

(
dH

dt
+ 2H2

)
∼ t−2 ∼ η−6(1+w)/(1+3w) . (5.36)

Hence, at t = 0 we will hit the Big Bang singularity. However, this is not enough. To
trust our semi-classical analysis we need to be far away from Planck energy densities, which
amounts to

ρ0 ≪ (8πGN)
−2 ⇔ t0 ≫

√
8πGN . (5.37)

Here t0 is an arbitrary time of normalization and we specify our results with respect to it.
Finally, in a flat universe with a single fluid ρ0 and t0 are related via the Friedmann equation
at t0 (

2

3(1 + w)t0

)2

=
8πGN

3
ρ0 . (5.38)

Island candidates at t = t0

Let us first consider the possibility of island candidates at t = t0, where t0 is an arbitrary
normalization time. This possibility answers the following question: Assuming we are allowed
to tune the temperature T0 and the energy density ρ0 at a given time t0 in the FRW universe,
and that the universe maintains thermal equilibrium, can an island exist? Substituting (5.35)
into conditions (5.24), (5.27) and t = t0 yields

Condition 1: sc >
3a20

4GNχ
, (5.39)

Conditions 2 and 3: sc ≥
a30

4GN

[
4

3(1 + w)|t0|
+

2

a0χ

]
. (5.40)

Using (5.38) and the expression for the comoving entropy density (5.17) yields the following
inequalities:
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Condition 1:
(1 + w)GNρ0a0

T0
>

3

4χ
, (5.41)

Conditions 2 and 3:
(1 + w)GNρ0a0

T0
>

1

2χ
+ a0

√
2πGNρ0

3
. (5.42)

We have the following dimensionful parameters GN , ρ0, T0 and χ0,phys. ≡ a0χ, the spatial size
of the island candidate, and some O(1) numbers which are not important at the moment.
There are two possible regimes for island candidates: χ−1

0,phys. ≫
√
GNρ0 and

√
GNρ0 ≫

χ−1
0,phys.. If χ−1

0,phys. ≫
√
GNρ0, then the first condition simplifies to

GNρ0 > O(1)
T0

χ0,phys.

, (5.43)

and the second term in the “2 and 3” condition is negligible, meaning it is encompassed by the
first. Thus satisfaction of (5.43) will ensure a viable island candidate. The other regime is if√
GNρ0 ≫ χ−1

0,phys., which implies that (5.43) is trivial and the “2 and 3” condition simplifies
to

GNρ0
T0

> O(1)
√
GNρ0 ⇒ GNρ0 > O(1)T 2

0 . (5.44)

Then (5.44) will ensure a viable island candidate.
Given freedom to tune ρ0 and T0 as independent energy scales, we see that viable island

candidates will appear for practically any fluid and will be of any size as long as T0 and ρ0
obey

GNρ0 > O(1)max

{
T 2
0 ,

T0
χ0,phys.

}
. (5.45)

The statement also has a nice interpretation in terms of the Hubble parameter since H ∼√
GNρ:

H0 > O(1)max

{
T0,

√
T0

χ0,phys.

}
, (5.46)

where H0 is the Hubble parameter at the time of normalization t0, and not today, as is
usually denoted.

As an example of the relationship between T0 and χ for a chosen ρ0, we show in Figure
5.1 a plot of T0 vs χ for w = 2/3, ρ0 = 2× 10−4. At any χ, there is a range of small enough
T0’s such that the conditions are simultaneously satisfied.

Radiation is a special case where ρ0 = cthT
4
0 , where cth is roughly the number of degrees

of freedom. Suppose we take χphys arbitrarily large to make (5.43) trivial. Substituting
ρ0 = cthT

4
0 into (5.44) shows that the inequality is not fulfilled unless T0 is Planckian or
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Condition 1

Conditions 2 and 3

Figure 5.1: A plot of T0 vs χ for w = 2/3, ρ0 = 2× 10−4 in natural units with the normal-
ization a0 set to 10. The conditions at a given χ are only satisfied for a small enough T0,
but for any χ there is always such a T0 for which the conditions are all satisfied.

cth ≫ 1. In other words, for radiation ρ0 and T0 are not tuned appropriately to allow for
viable island candidates.4

Islands away from t = t0

We showed in the previous section that if ρ0 and T0 are separate free parameters, we can
always tune them to create a viable island candidate on the normalization slice t0. In the real
world, however, we do not have this freedom. It is possible that ρ0 and T0 in our universe
do not fulfill the conditions at the present time. Thus in this section we investigate whether
a universe without islands at t0 can evolve into or have evolved from one with islands.

The simpler case is to treat the normalization as the initial time, and then look for is-
lands after this initial time t ≫ t0 because semiclassical regime is guaranteed: t ≫ t0 ≫√
8πGN , ρ < ρ0 ≪ (8πGN)

−2. Assume at the normalization time t0, the universe with
4Another example is degenerate fermions, which have µ ≫ T , ρ0 = cth

8π2µ
4, n0 = cth

6π2µ
3, p0 = cth

24π2µ
4

[124]. We therefore have to reintroduce µ into the expression of sc. Calculating sc from (5.5) shows that sc
vanishes, which means the conditions are not satisfied.
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temperature T0 and energy density ρ0 did not have a viable island candidate. By consid-
ering conditions (5.24), (5.27) and (5.17) with their time dependence, we get the following
conditions:

Condition 1: GNρ0 >
3

4(1 + w)

T0
χphys.

(
a

a0

)3

, (5.47)

Conditions 2 and 3: GNρ0 >
T0

2(1 + w)

(
a

a0

)3 [
|H|+ 1

χphys.

]
, (5.48)

where χphys. ≡ aχ is the physical radius of the island candidate. These expressions are
valid for both contracting and expanding universes. Since 0 ≤ χ < ∞, for any given time
t, for any small amount of energy density of GNρ0 (or equivalently comoving entropy sc)
there always exists χphys. such that (5.47) is fulfilled, and the χ dependent term in (5.48) is
negligible.5 Therefore the H-dependent part in (5.48) is our encompassing condition. Using
the Friedmann equation (5.3) and (5.2), we can rewrite (5.48) as

Conditions 2 and 3: GNρ0 >
2π

3(1 + w)2
T 2
0

(
a

a0

)3(1−w)

. (5.49)

To ensure islands with a≫ a0, we therefore need6

w ≥ 1 . (5.50)

Thus for positive energy density ρ > 0, the necessary conditions for islands imply a
violation (or saturation) of the Dominant Energy Condition (DEC), which stipulates |w| ≤ 1.
In certain cases such as radiation, one can further derive the exact relation between sc, ρ0, T0
and the number of degrees of freedom, cth e.g. [95], but that is unnecessary. The point is
that for a finite sc there will always be a viable island candidate for t ≫ t0 and a large
enough χ if w > 1. Substituting the exact value of sc from (5.17) and (5.35), one gets the
exact time when the island may form:

t > t0

(
1

2πT0t0

)(1+w)/(1−w)

. (5.51)

For the special case of w = 1, the issue of a viable island candidate becomes a quantitative
question regarding the exact values of sc, ρ0, etc. Considering again a large enough χ such
that (5.47) is fulfilled and substituting (5.17) into (5.49) for w = 1, we get a condition on
the temperature T0:

T0 <

√
24GNρ0

π
, (5.52)

5Here we do not consider the case where the χ term is the dominant one because an island candidate in
such a case will mean that it already existed at t = t0, contrary to our initial assumption in this section. It
reduces back to the question of an island at t = t0, which we have already analyzed.

6Since in many bouncing models such as the ekpyrotic scenario we have w ≫ 1, we get that islands in
such models are ubiquitous at early stages of the contraction.
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for a viable island candidate.
Let us now consider the more delicate case, where our normalization time is t0, and we

would like to investigate the possibility of islands to its past while staying in the semiclassical
regime, i.e. t0 ≫ t ≫

√
8πGN . Condition (5.24) can still be fulfilled for any time by taking

large enough χ. We then need to consider (5.27). Our assumption is that at t0 there is no
island, and we wish to check whether at t ≪ t0 there may be one. We get the converse
condition, that the DEC has to be fulfilled:

a30
3(1 + w)GN

|t0|(1−w)/(1+w)

t
2/(1+w)
0

≥ sc ≥
a30

3(1 + w)GN

|t|(1−w)/(1+w)

t
2/(1+w)
0

, (5.53)

⇒ |w| < 1,
1

2πt0

(
t0
t

)(1−w)/(1+w)

≥ T0 ≥
1

2πt0
. (5.54)

The upper bound on sc comes from requiring that there is no island at t = t0, and the lower
bound from requiring that there is an island at t≪ t0.

On top of that we have to show that we are still in the semiclassical regime. If there
is an additional energy scale, say ρ0 ̸= T 4

0 , then it is simple to fulfill the inequalities by
choosing the appropriate energy scale. An immediate example is (non-relativistic) dust with
an equation of state w = 0 and particle mass m. Equation (5.54) gives

1

2πt
≥ T0 ≥

1

2πt0
. (5.55)

Having discussed the conditions at t0 and before and after t0, we now plot two examples
of the regions satisfied by the conditions: one with w = 3.2, ρ0 = 10−6, T0 = 10−4 (Figure
5.2) and the other with w = 1, ρ0 = 10−6, T0 = 10−4 (Figure 5.3) in natural units GN = 1.
In these plots we substituted the exact expressions for (5.24), (5.27). They show that for
the parameters chosen, a given time slice always has some minimum χ for which all the
necessary conditions are fulfilled.

The conditions here are only necessary conditions for islands; satisfying all conditions does
not guarantee that a particular region is an island. To check that a viable island candidate is
in fact an island, we must look at the reference region of interest and confirm that application
of the QES prescription forces the island candidate into that region’s entanglement wedge.
This is straightforward in the model discussed in Section 5.1, where M and MR are entangled
in a thermofield-double-like state. In this model, a viable island candidate I(χ) for the flat
space scenarios we have so far discussed will be an island if we select the matching region R in
the nongravitational spacetime MR. This is because (i) the candidate satisfies the homology
constraint of the QES prescription, (ii) satisfying the original conditions 2 and 3 implies the
candidate is quantum extremal, and (iii) including the island in the entanglement wedge of
R is generalized-entropy-minimizing. Regarding (iii), because of the entanglement structure
in the thermofield-double-like model, decreasing the size of the island would increase the
matter entropy in the entanglement wedge by an amount that goes with the volume (from
the entangled pairs in R that are no longer purified by the island) while decreasing the area



CHAPTER 5. ISLANDS IN COSMOLOGIES WITH GENERAL FLUIDS 75

Condition 1

Conditions 2 and 3

Figure 5.2: Regions satisfying the island conditions are shown for a flat universe with w =
3.2, ρ0 = 10−6, T0 = 10−4.

contribution by an amount that, naturally, goes with the area. Increasing the size of the
island would increase both the matter and area contributions. Thus the island candidate
must be included in the entanglement wedge of R, and therefore I(χ) is an island. This
argument holds for all the flat space scenarios we have discussed thus far.

5.5 Beyond Time-Symmetric Slices: Closed and Open
Universes

In this section we rearrange the conditions in the new forms we derived in Section 5.2 for
universes with nonzero curvature and a single general fluid. A drawback regarding geometries
with spatial curvature is that generically we do not have an explicit time dependence and
we can only give results in terms of the scale factor a.

First consider closed universes (k = +1) with a general perfect fluid. The comoving
volume of a sphere in a closed geometry is V(χ) = π(2χ− sin 2χ), so the matter entropy of
an island candidate of comoving radius χ is

S = scπ(2χ− sin 2χ) . (5.56)
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Condition 1

Conditions 2 and 3

Figure 5.3: Regions satisfying the island conditions are shown for a flat universe with w =
1, ρ0 = 10−6, T0 = 10−4.

The corresponding comoving area and its spatial derivative are A = 4π sin2 χ and A′ =
4π sin 2χ respectively. We substitute the closed geometry into the simplified conditions
(5.24), (5.27), (5.29) to obtain

Condition 1: sc ≥
a2

GN

sin2 χ

2χ− sin 2χ
, (5.57)

Conditions 2 and 3: sc ≥
a2(η)

2GN

(|H|+ | cotχ|) , (5.58)

Condition 1 + 4: sc ≥
a2

GN

sin2 χ

π
, (5.59)

where Conditions 2 and 3 together come from Eq. (5.27). These are the general conditions
for island candidates in closed universes. There are two potential obstacles for islands. First,
if | cotχ| diverges. Second, if the scale factor grows without bound. We can overcome the
first difficulty by looking for islands around χ ≃ π/2. In such a case, the conditions simplify
to the encompassing condition

sc ≥
a2

πGN

, (5.60)
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provided H < 2/π, which is generally the case in an expanding universe.
Considering a closed universe with a perfect fluid and a cosmological constant, there are

three possible regimes: perfect fluid domination, curvature domination, and cosmological
constant domination. For the latter two, we do not expect to find anything different than
the analysis carried out in the previous chapter, except that the parameters of the fluid
are different from radiation. In the case of fluid domination, GNρ0/a

3(1+w) ≫ {t2Λ, a−2},
the analysis resembles that of the previous section. In an expanding universe where a is
monotonically growing, the only way to satisfy (5.60) is if it is satisfied at the time of
normalization where a = a0, when we evolve backwards and a < a0, or for some finite time
in the future where a > a0. Once again we get a condition relating the energy density ρ0
and the temperature T0. Considering island candidates at the time of normalization where
a = a0, (5.60) reduces to

GNρ0 >
T0

(1 + w)πa0
, (5.61)

while for backward time evolution we have

a2

πGN

≤ sc ≤
a20
πGN

(5.62)

⇒ T0
(1 + w)πa0

(
a

a0

)2

≤ GNρ0 ≤
T0

(1 + w)πa0
. (5.63)

Notice that we did not need to use the value of Λ. Hence, islands which are subset of the
closed universe manifold can exist with any type of cosmological constant, provided that the
universe is dominated by the perfect fluid for long enough time.

For χ ̸= π/2, there is no simplified treatment when we move away from time-symmetric
slices. The inequalities in general then become:

sc ≥
a2

GN

×max

{
sin2 χ

2χ− sin 2χ
,
|H|+ | cotχ|

2
,
sin2 χ

π

}
. (5.64)

There is a particular closed universe model that warrants attention as a specific example.
Notice that until now all known examples of islands contained spacetime singularities. It
is interesting to consider islands in space time without singularities at least classically. We
therefore apply our findings to the “Simple Harmonic Universe” scenario, [86]. This scenario
consists of a perfect fluid −1 < w ≤ −1/3, positive spatial curvature k = +1 and a negative
Λ. It does not have a singularity at the background level and is classically stable for certain
range of parameters.7 Specifically for w = −2/3 there is an analytic solution for the scale
factor. The scale factor is periodic, taking the form

a(t) =
ρ0
2|Λ|

+ a0 cos(ωt+ ψ) , (5.65)

7To be precise, it is classically stable for amax/amin ∼ O(1), and for amax/amin ≫ 1 it is stable for many
cycles until the approximation scheme in [86] breaks down.
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where ω ≡
√

8πGN |Λ|
3

and a0 ≡ 1
2|Λ|

√
−3|Λ|
2πGN

+ ρ20.
From the thermodynamic relation, Eq. (5.6), with w = −2/3, the comoving entropy

density obeys
sc ∼ ρ30 . (5.66)

The simple harmonic universe has two classes of time-symmetric slices: when a(t) reaches
a minimum or a maximum. The scale factor at these times can be found by setting ȧ to 0
in the Friedmann equation, which yields:

ats =
ρ0
2|Λ|

(
1±

√
1− 3|Λ|

2πGNρ20

)
, (5.67)

where the + or − corresponds to amax or amin respectively. The semi-classical regime requires
a(t) ≫ lP , which in this case corresponds to amin ≫ lP . For amin ≫ 1 (in natural units) we
need to pick a Λ and ρ0 such that at all times the energy density is smaller than Planckian.
This can be achieved for instance with ρ0 = 0.01M3

P and |Λ| = 10−4M4
P , that results in

amin ≃ 13/MP and a ρ0 that is always much smaller than Planckian. The complete spacetime
for this parameter regime is plotted in Figure 5.4. Here χ = 0 corresponds to a time at which
a(t) is at a maximum. There are regions of 4-way overlap around the times at which a(t)
reaches a minimum. Furthermore, entire Cauchy slices of this universe are always viable
island candidates, which follows directly from the results of the previous chapter.

As before, we can check in the thermofield-double model whether these viable island
candidates are in fact islands for some reference region R. The argument is the same, but
now subsets of this universe compete the with the entire Cauchy slice, which is always a
viable island candidate. A viable island candidate that is a subset of the Cauchy slice ΣM

will be an island for a region R of equal size and location on ΣR. The entire Cauchy slice will
be an island if R is more than half of ΣR and condition 4 is violated. Hence, in our model,
the time-symmetric slices at amin in the Simple Harmonic Universe scenario are actually
islands.

Next consider open universes (k = −1). For such universes, the geometric factors are V =
π(sinh 2χ− 2χ), A = 4π sinh2 χ, and A′ = 4π sinh 2χ. One can substitute these expressions
and look for potential islands. The best chance is in the large χ limit, as the geometric
factors asymptote to a constant value A′/A → 2 and A/V → 2. In the semiclassical regime
|H| ≪ 1 in natural units. Hence, all conditions collapse to a single encompassing condition

sc ≥
a2

2GN

. (5.68)

Here one can again consider regimes of fluid domination, curvature domination, or Λ
domination. Similar to the closed case scenario, if the perfect fluid is dominant for long
enough GNρ0/a

3(1+w) ≫ {t2Λ, a−2}, the analysis will resemble the closed universe results with
2 instead of π. Considering island candidates at the time of normalization where a = a0,
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Condition 1

Condition 2

Condition 3

Condition 4

Figure 5.4: Regions satisfying the four island conditions are shown for the simple harmonic
universe, with ρ0 = 0.01, |Λ| = 0.0001, T0 = 1.6× 10−5. We choose to phrase the conditions
here according to their original form in (5.20), (5.21), (5.22), (5.23) due to their nice sym-
metrical properties.

(5.68) reduces to

GNρ0 >
T0

(1 + w)2a0
, (5.69)

while for backward time evolution we have

T0
(1 + w)2a0

(
a

a0

)2

≤ GNρ0 ≤
T0

(1 + w)2a0
. (5.70)

Without limiting ourselves to χ ≫ 1 and H ≪ 1, the conditions become the following
inequality:

sc ≥
a2

2GN

×max

{
2 sinh2 χ

sinh 2χ− 2χ
, |H|+ | cothχ|

}
. (5.71)

Its fulfillment depends on the exact physical parameters such as the number of degrees of
freedom, cth, the energy scale ρ0, the entropy density sc, etc.
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5.6 Chapter Summary and Conclusion
The main objective of this chapter was to generalize the analysis of [95, 76] and the previous
chapter to cosmologies containing general fluids. In Section 5.1, we reviewed the Quantum
Extremal Surface prescription and the necessary conditions for islands derived in [95, 76]
and the previous chapter. We also described a specific model of which made use, that of
a gravitating universe and a nongravitating universe entangled in a thermofield-double-like
state.

As a prelude to applying the conditions to classes of spacetimes, Section 5.1 reviewed the
relevant cosmological thermodynamics, including the argument from [124] that the comoving
entropy density is a constant in time under the assumption of local thermal equilibrium.

In Section 5.2, we wrote out the necessary conditions for islands in full generality, with
a general fluid. The crucial property of constant comoving entropy density allowed us to
phrase the necessary conditions for islands for any FRW universe as inequalities regarding
the comoving entropy density. This constant comoving entropy density sc has to be larger
than a time-dependent term sc ≥ a2/4GNf(η, χ), where a is the scale factor, GN Netwon’s
constant, χ is a generalized radial coordinate, η is a conformal time coordinate, and f(η, χ) is
a fudge factor that is different between the different conditions and depends on geometrical
quantities such as the Hubble parameter, the comoving volume, and the comoving area.
We found that in many cases, for a given choice of χ, fulfilling one inequality implies the
fulfillment of all others, making it what we call an “encompassing” condition for a region to
be a viable island candidate.

Since time-symmetric slices have frequently been found to contain viable island candi-
dates, we started with considering such slices in 5.3. We arrived at the conclusion that
a time-symmetric slice in a flat universe always contains an island. In open universes a
time-symmetric slice contains an island if sc > a2ts/2GN , where ats is the scale factor at the
turnaround time. In closed universes, one cannot combine the conditions into a single en-
compassing inequality. However, for χ ≃ π/2 on a time-symmetric slice in a closed universe,
one does get a single condition of sc > a2ts/πGN .

Time-symmetric slice could be the result of rather unconventional energy components,
e.g. [19]. To make contact with models usually considered in cosmology, we distinguished
a subset of universes with “conventional” components in Section 5.3. These are universes
that can only include any number perfect fluids, with positive definite energy density, a
cosmological constant, and spatial curvature. We elaborated on the existence of islands in
this conventional subset.

Section 5.4 applied the conditions to flat universes with a general perfect fluid away
from time-symmetric slices. We addressed two separate questions. 1) Assuming that we are
allowed to consider any (sub-Planckian) energy density ρ0 and temperature T0 of a perfect
fluid w, at some normalization time t0 is there an island? and 2) Assuming that we start
with some given ρ0, T0, and w at t0, will islands form when we evolve forwards or backwards
in time?

In answer to the first question, we found that all conditions can be simultaneously satisfied
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if the island is large enough, and a certain inequality is fulfilled between the energy density
ρ0 and the temperature T0 at some time of normalization t0, GNρ0 > O(1)max

{
T 2
0 ,

T0

χ0,phys.

}
.

However, it does seem that for the simple case of radiation the inequalities are not fulfilled.
This contrasts the results of [95, 76] and the previous chapter, in which all viable island
candidates appeared on or near time-symmetric slices.

The answer to the second question is related to the Dominant Energy Condition (DEC)
|w| ≤ 1. We found that islands will always exist when we evolve forward in time if the DEC
is violated w ≥ 1 for a large enough spatial region χ≫ 1. The converse is true for backward
time evolution. For

√
8πGN ≪ t ≪ t0 islands form away from the Planck regime, if the

DEC, |w| ≤ 1, χ ≫ 1, and a certain inequality regarding the temperature T0 are fulfilled,
1

2πt0

(
t0
t

)(1−w)/(1+w) ≥ T0 ≥ 1
2πt0

. We demonstrated an island explicitly with non-relativistic
dust w = 0. Again, radiation is a very special case that does not produce an island when
taking into account all the parameters.

The reason that radiation is special is due to the conformal nature of radiation. For
radiation, there is only a single energy scale which is the temperature T0, and the conditions
are not satisfied. For all other fluids, there are other energy scales such as ρ0 or the mass
of the dust particle m. As a result, there is a hierarchy between these energy scales and
the conditions for islands can be fulfilled. In a certain sense, this argument explains the
results of [95, 76] and the previous chapter, as spatial curvature or a cosmological constant
introduced another energy scale that enabled the existence of a time-symmetric slice where
conditions for islands are favorable.

In Sections 5.5, we specialized the conditions to closed and open universes with a general
fluid. In the regime of fluid domination for any w, if the scale factor is monotonically growing,
islands can occur only at the time of normalization t0, before that time, and up to some finite
time later. In this section, we also considered a specific example of interest, which is a closed
universe without singularities: the “Simple Harmonic Universe.” This model which contains
a fluid with w = −2/3, has a negative cosmological constant (Λ < 0) and positive spatial
curvature (k = +1). Its scale factor is periodic, and we found that all island conditions
can be simultaneously satisfied near slices on which the scale factor reaches a minimum.
Furthermore, entire Cauchy slices of this universe are islands, which follows directly from
the results of the previous chapter. This is the first example of a possible island in space-time
without singularities.

In brief, islands in cosmology require either a time-symmetric slice or a condition on the
temperature and energy density of the fluid, and they are not necessarily accompanied by a
singularity at least at the background level.

This concludes our discussion of how to apply the insights of the Page curve calculations
of Refs. [151, 16] to cosmology. There are many unanswered questions, and we hope that
our analysis will lead to further work. For now, however, we move on to a problem which
we shall argue that the Page curve calculations have yet to resolve: the firewall paradox.
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Chapter 6

Black Hole Cannibalism

The discovery of entanglement islands [151, 16], as discussed in the preceding chapters,
provides evidence for unitary black hole evaporation, independently of AdS/CFT. It marks
a new era in which the Page curve can be derived from gravitational physics directly. It does
not, however, resolve the critical question of how the information escapes.

If we insist that information is preserved when a black hole evaporates, then effective field
theory or General Relativity must break down substantially, at or outside of the horizon,
at late times but while the horizon is still weakly curved [14]. This formulation of the
information paradox is called the firewall paradox.

Stated succinctly, the firewall paradox [14, 138] is a tension between four widely accepted
postulates about black hole evaporation:

1. Unitary. There is a unitary governing the dynamics of black hole formation and evap-
oration.

2. Semi-classical field theory. Physics outside the stretched horizon of a large black hole
is well approximated by semi-classical field equations of a low energy EFT with local
Lorentz invariance.

3. Black Hole Entropy/Discrete Energy Levels. To distant observers, a black hole behaves
like a quantum system with discrete energy levels, where the dimension of the subspace
of states is the exponential of the Bekenstein-Hawking entropy.

4. No Drama. An observer who falls freely across the horizon experiences nothing unusual.

Postulates (1) and (3) imply maximal entanglement between the late and early Hawking
radiation, but postulates (2) and (4) imply that a portion of the late Hawking radiation is
highly entangled with modes in the black hole interior. The full set of postulates, there-
fore, implies a violation of monogamy of entanglement for this portion of the late Hawking
modes [14].
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The firewall argument suggests that Hawking’s “mistake” was the perfectly reasonable
assumption that the horizon of a large old black hole is smooth. The AdS/CFT correspon-
dence can be used to strengthen this argument [138], but it has shed no light on the bulk
dynamics that would produce a firewall.

The bulk path integral derivation of the Page curve has been interpreted as a resolution
of the firewall paradox [151, 18, 15, 17]. This seems plausible, since the bulk geometry
involved in the calculation of the Page curve (Figure 1.1) has a manifestly smooth horizon.
However, this picture just trades the firewall paradox for the state paradox [47] discussed
in Chapter 3, the puzzling appearance of Hawking’s result that the entropy of the radiation
grows monotonically.

Then the question becomes how the state paradox is resolved. We see two possibilities.
Suppose that the state paradox is resolved by gravity/ensemble duality, the proposal dis-
cussed in Chapter 3 that the gravitational path integral is dual to an ensemble of theories
on the boundary. The firewall argument [14] does not apply to the ensemble-averaged state,
since its evolution is not unitary. Therefore it is consistent for the horizon to be smooth.
However, it is counterintuitive for Nature to be described fundamentally by an ensemble of
unitary theories; it seems we could just measure the couplings and then work with the one
correct theory. Moreover, we do expect the unique theory describing black hole formation
and evaporation—the one that applies to an experiment conducted in a lab—to preserve
information. The ensemble will be useful only for computing self-averaging quantities of the
correct unitary theory, since these are the same in each theory; these evidently include the
entropy, but not the final state. Hence the true S-matrix must be computed from a single
unitary theory, not from an ensemble. In this theory, the firewall argument still applies.

If instead there is no gravity/ensemble duality (for example, in settings where no suitable
ensemble exists, or where the gravity path integral cannot be rigorously defined), then the
bulk path integral (or the saddlepoint approximation to it) would have to be viewed as an
uncontrolled approximation. The path integral succeeds at computing certain quantities of
a single unitary boundary theory (like the entropy) but not others (like the details of the
late time state). Then there is no reason to trust the smooth geometry that appears in the
input to the RT calculation, any more than we should trust the large entropy of the Hawking
radiation that is manifest at this step. If we believe the output of the RT calculation—the
Page curve—, then the firewall paradox precludes a smooth horizon.

It seems then, that the islands calculations of the Page curve have been a fruitful line of
inquiry, but there are some questions they have thus far failed to answer. It is therefore still
of interest to seek an independent resolutions of the firewall paradox.

Literature on the firewall paradox is vast and proposed resolutions numerous; see Refs. [13,
91] for a critical review. These proposals remain incomplete, and they appear to necessitate
an element of nonlinearity that conflicts with the principles of quantum mechanics no less
than information loss would [41, 42, 43]. Proposed resolutions include (i) modifying quantum
mechanics [150, 131], (ii) allowing a breakdown of no drama [14], (iii) violating unitarity [91],
(iv) identifying earlier Hawking radiation with the black hole interior [133], (v) modifying
the interior geometry [139, 146, 105], (vi) invoking quantum complexity theory [93, 30, 29],



CHAPTER 6. BLACK HOLE CANNIBALISM 84

(vii) allowing for remnants [57], and (viii) violating locality [84, 147].
Many of these suggestions—in particular, options (ii), (iv), (v), (vi), and (vii)—appeal

to the role of the horizon in effectively hiding a portion of the spacetime. In this chapter
we present a version of the paradox that results in a manifest violation of monogamy of
entanglement amongst modes at asymptotic infinity, in which none of the modes are hidden
behind a horizon. This implies that hiding modes behind a horizon or appealing to strong
gravitational effects are not sufficient resolutions. We argue that accounting for decoherence
alleviates the tension.

6.1 The Thought Experiment
In broad strokes, our thought experiment consists of throwing a small black hole into a larger
one and using the Hayden-Preskill protocol to recover the state of the smaller black hole.
We argue that, given the above postulates and a qubit model of black holes, this yields a
violation of monogamy of entanglement in states held only by the asymptotic observer.

Consider a black hole of mass M1 formed from the collapse of matter in a pure state. As
per Hawking’s calculation [100, 101], the black hole will radiate maximally entangled pairs,
one of which escapes the horizon and the other of which falls into the black hole interior.
We model this black hole as a collection of N1 qubits at its formation and its evaporation
as the release of individual qubits into the environment [103]. The interior qubits undergo
scrambling dynamics. We can factorize the total Hilbert space as:

H1 = HBH1(t)⊗Hrad1(t), (6.1)

where HBH1(t) corresponds to the Hilbert space of the remaining black hole and Hrad1(t)
denotes that of the Hawking radiation after evolution for some time t.1 The Hilbert space
factors are time-dependent because qubits are transferred from the black hole to the radiation
as the black hole evaporates. According to unitarity, the total state |ψ1(t)⟩ is pure at all
times. Let us denote the state of the black hole and its Hawking radiation emitted up to
time t as ρBH1(t) and ρrad1(t) respectively, each defined via a partial trace over the neglected
system. Assume that the asymptotic observer has been collecting the radiation from this
black hole since its formation.

Now suppose there is another, smaller black hole in this spacetime with mass M2 << M1,
again modeled as a collection of N2 qubits at its formation, evaporating via release of qubits.
Assume that the asymptotic observer collects the radiation from this black hole until, at
some time tc after its Page time, it falls into BH1.2 The observer can identify which modes

1Although this evolution is truly time evolution, the choice of time coordinate is arbitrary [29]. In
addition, one can use finite dimensional quantum information theory to describe black hole dynamics [25].

2One may be concerned that some radiation from BH1 may fall into BH2, preventing it from being
collected. We can avoid this by placing the black holes in separate regions connected by an initially non-
traversable wormhole. We can choose the momenta of the black holes and when the wormhole is made
traversable such that the black holes collide at the appropriate time. To avoid complications with emission
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correspond to which black hole by measuring the temperature.3 After BH2 has fallen into
BH1, the asymptotic observer continues collecting radiation emitted by BH1. See Figure 6.2
for a summary of this sequence of events.

Hayden and Preskill demonstrated that it is information-theoretically possible for an
observer outside a black hole to reconstruct the state of a quantum system (the “message”)
thrown into the black hole [103]. The observer first collects the Hawking radiation until they
possess a system maximally entangled with the black hole, which occurs at the Page time.
The message is then thrown into the black hole, which evolves via a deterministic unitary
transformation that thoroughly and quickly mixes the message into the black hole’s state.
As the black hole continues to evaporate, the observer collects the radiation. The outside
observer needs to collect only a few more qubits than the length of the original message to
reconstruct it.

We choose that the state of the radiation released by BH1 is maximally entangled with
BH1 at tc. Our asymptotic observer therefore has the ingredients to perform the Hayden-
Preskill protocol to recover the state of BH2 when it fell into BH1, ρBH2(tc). Recall that
the asymptotic observer also collected the radiation from BH2, which we can partition into
“early” and “late” radiation corresponding to emission before and after the Page time of BH2

respectively. Therefore, the asymptotic observer possesses the following states:

1. ρearlyRad2(tc), containing N2/2 + δ qubits and defined from ρrad2(tc) by tracing out the
qubits associated with the late radiation.

2. ρlateRad2(tc), defined from ρrad2(tc) by tracing out the qubits associated with the early
radiation.

3. ρBH2(tc), reconstructed via the Hayden-Preskill protocol.

See Figure 6.2 for a circuit-style diagram of this scenario.
As we shall see, these systems exhibit a violation of monogamy of entanglement. Page’s

theorem [148] states that if we bipartition a statistically typical4 quantum system into A
and B with Hilbert space dimensions m and n respectively, and if 1 ≪ m ≤ n, then

Sm,n ≈ lnm− m

2n
. (6.2)

This implies that if the joint system AB is pure and if m and n are very large, then the
smaller subsystem is close to maximally mixed. In our setup, the qubits of (2) and (3) are

of radiation during transit through the wormhole, we can tune the wormhole to be very short, so that
the transit time is much smaller than the expected time elapsed between emission of Hawking quanta.
Alternatively, we could construct large Dyson spheres surrounding the black holes, which collect the HR
from each of them until their point of collision.

3Or, the modes can be easily distinguished because the BH’s have not yet been sent through the
traversable wormholes and are therefore separate. Or if using Dyson spheres, the observer can see which
Dyson sphere collected which mode.

4With respect to the Haar measure. For a more complete discussion, see [103, 26, 175].
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decoded state
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Figure 6.1: The three main steps of the thought experiment. a. The two black holes are
initially in separate regions (see footnote 2), emitting Hawking radiation. The asymptotic
observer collects the radiation emitted from both black holes. b. The BH2 has fallen into
BH1. BH1 continues to emit radiation, which is collected by the asymptotic observer. The
observer runs this radiation (and the radiation previously collected from BH1) through a
decoder. c. Finally, all the radiation in the possession of the asymptotic observer (including
the reconstructed state of BH2) is encoded into a spin chain.
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Unitary evolution

BH1
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of BH1
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Figure 6.2: A diagram of the Hayden-Preskill protocol in which the “message” is another
black hole. Black hole 1 (BH1), the larger black hole, has been evaporating for a long time and
has become maximally entangled with its previously emitted radiation. The “message” is the
state of black hole 2 (BH2), the smaller black hole, which is also maximally entangled with
its previously emitted radiation. The message (BH2) falls into BH1 and the joint system
evolves unitarily. More radiation is emitted from BH1 and collected by the asymptotic
observer. The asymptotic observer runs this radiation and the radiation previously emitted
from BH1 through a decoder to recover the state of BH2. The asymptotic observer also
collects the radiation emitted from BH2 before it fell into BH1.
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A and the qubits of (1) are B of a pure joint system AB. We can apply Page’s theorem by
choosing appropriate system sizes. Therefore, the qubits making up subsystems (2) and (3)
are maximally entangled with (1). A maximally mixed state has a diagonal density matrix,
so ρ2,3 is roughly diagonal. Tracing out the qubits of (3) thus yields a smaller-dimensional
nearly diagonal density matrix for the qubits of (2). Therefore, (2) is nearly maximally
entangled with (1).

Just before BH1 swallows BH2, Hawking’s calculation implies a high degree of entangle-
ment across the horizon of BH2. Therefore, the qubits identified with the BH2’s interior
and those identified with its radiation are highly entangled. Crossing the event horizon of
BH1 should not change the entanglement structure of BH2’s interior. Because the recovery
procedure involves only LOCC operations (local operations and classical communication),
the entanglement structure of (3) is the same as that of the original state. Therefore, subsys-
tem (3) is highly entangled with (2). Because (2) is maximally entangled with (1), this is a
violation of monogamy of entanglement. Therefore, the 3 subsystems held by the asymptotic
observer exhibit a violation of monogamy of entanglement.

This thought experiment thus presents a sharp version of the firewall paradox for the
asymptotic observer, who is free to manipulate these states, e.g. by encoding them in a spin
chain, and has no time constraint on doing so. Therefore, no resolution to this paradox can
rely on strong gravitational effects or on hiding something behind the black hole horizon.

6.2 A Proposed Resolution via Decoherence
In the spirit of [29, 28], we argue that accounting for decoherence resolves this paradox. De-
coherence is the observation that quantum systems interacting with an environment become
entangled with or, equivalently, leak information into said environment [195, 196, 87, 113].
Decoherence causes the system’s density matrix to become nearly diagonal in a special basis,
which is determined by details of the interaction. Frequently paired with decoherence is the
Everettian view of quantum mechanics, which holds that measurement restricts the observer
to a particular “branch” of the wavefunction corresponding to a measurement outcome.5
The Everettian picture may seem to privilege an arbitrary basis for the decomposition of the
global wavefunction into branches, but decoherence provides a particular basis in which the
density matrix becomes essentially diagonal, corresponding to a superposition of classical
macroscopic states.

For evaporating black holes, wavefunction branching occurs when something interacts
with its released Hawking quanta, which have, for example, a range of possible outgoing

5The distinction between this view and wavefunction collapse is philosophical—the Everettian view as-
serts that the global wavefunction continues to exist post-measurement, while collapse-based interpretations
deny this. Thus in the Everettian view, all measurement possibilities are realized within the global wave-
function as separate branches, hence the alternative name “Many Worlds interpretation.” There is actually
a family of related views, many of which are called the Everettian interpretation or the Many Worlds inter-
pretation. Sometimes these terms refer to distinct views in this family, and other times they are conflated.
The subtleties involved are not critical for our discussion.
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momenta. A “definite geometry” requires a choice of momentum for each emitted Hawking
mode and, by extension, a definite position and momentum for the black hole. The total
state at non-asymptotic values of t describes an ensemble of these possible geometries [29].
A classical (definite) geometry exists only on a branch of the wavefunction. As the Hawking
modes experience interactions, the state of the black hole decoheres into some preferred
basis.

Fully defining the process by which BH2 falls into BH1 requires a definite point and
time at which BH2 crosses the event horizon of BH1, thus requiring a definite geometry, or
perhaps a projection to a subset of geometries. Therefore, an instance of this process must
occur on a branch (or subset of branches) rather than on the global wavefunction. The
asymptotic observer in our setup, however, sees the global wavefunction, which is a superpo-
sition of geometries. Therefore, the global observer cannot possess a definite reconstructed
state ρBH2(tc), meaning the global observer does not possess definite states in violation of
monogamy of entanglement. Thus, accounting for decoherence resolves the paradox we have
outlined in this work.

6.3 Chapter Summary and Conclusion
In this chapter, we have argued that the Page curve calculations of Refs. [151, 16] do not
resolve the firewall paradox. We have outlined a thought experiment that puts a new per-
spective on the firewall paradox: an application of the Hayden-Preskill recovery protocol
when the message is itself a smaller black hole. We showed that this thought yields a viola-
tion in monogamy of entanglement in the state held by the asymptotic observer. We have
argued that properly accounting for decoherence resolves the paradox, because the global
observer cannot hold a definite reconstruction of all the subsystems that together violate
monogamy of entanglement.

This thought experiment involved the application of ideas from quantum information
to shed light on understanding black holes. In the next chapter, we shall examine another
concept from quantum information, Grover’s search algorithm, and show how it connects to
a conjecture relevant for black holes: the Eigenstate Thermalization Hypothesis.
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Chapter 7

The Eigenstate Thermalization
Hypothesis and Grover Search

Hayden and Preskill’s protocol for recovering messages from a black hole via a quantum
circuit and our discussion of decoherence in the previous chapter are not the only examples
of the relevance of quantum information to black holes. Tensor networks [187, 96, 104, 157],
quantum error correction [10, 92, 102, 8, 69, 77, 71, 94, 7], complexity [183, 186, 178, 165,
51, 40, 185], and other entropy measures [6, 7, 192] are just a few other examples of concepts
from quantum information that have proven surprisingly pertinent for understanding gravity.

Another feature of black holes that we have yet to touch upon in this work is their
connection to the Eigenstate Thermalizataion Hypthesis (ETH) [177, 68, 64, 67]. ETH is the
conjecture that under certain conditions, nearby energy eigenstates behave like states drawn
from the microcanonical ensemble with respect to certain “simple” observables. Because
random microcanonical fluctuations are suppressed by system size, we can interpret ETH
as a conjecture about state indistinguishability: each state in an ETH ensemble is hard to
distinguish from the ensemble average using simple observables.

ETH is connected to black holes through holography: holographic CFTs are expected to
be chaotic and thus satisfy ETH [27]. For example, Ref. [128] shows that the entropy of a
black hole dual to a holographic CFT agrees with the entropy of the universal ETH density
matrix in the low temperature/high energy limit. See Refs. [106, 50, 65] for further evidence
along these lines and Ref. [27] for further discussion of the connection between black holes
and ETH.

ETH is generally treated as a semi-empirical condition for state indistinguishability via
measurement. As a rule of thumb, an ensemble with a density matrix that satisfies the
ETH conditions (for some specification of simple observables) will behave like the micro-
canonical ensemble upon restriction to measurable observables, and its ensemble members
will be indistinguishable via measurement. From the viewpoint of quantum information,
however, these energy eigenstates are trivially distinguishable due to their orthogonality by
the Holevo argument [107]. This might therefore seem to be a point of tension between the
two approaches.



CHAPTER 7. THE EIGENSTATE THERMALIZATION HYPOTHESIS AND GROVER
SEARCH 91

In this chapter, we show how this tension may be resolved by making two main points
that draw upon the tools of quantum information. The first is that there is no conflict
between the in-principle perfect distinguishability of energy eigenstates and the in-practice
indistinguishability of eigenstates suggested by the ETH. As we will show, this difference
can be simply understood using the information-theoretic language of quantum channels.
Roughly, a macroscopic observer can be viewed as accessing the system only via a quantum
channel which traces out fine-grained data about the system. We will demonstrate that for
ETH ensembles this dramatically reduces the observed trace distance between states, realiz-
ing the operational constraints on the low-energy observer in terms of quantum information.
Further, we partially invert this logic and deduce that exponential contraction of the trace
distance between states implies ETH-like matrix elements. In our setup, a system where the
ETH holds is thus roughly equivalent to a system where low-energy observers have difficulty
telling things apart.

Our second main point is that ETH can be promoted from a semi-empirical belief to
a formal complexity-theoretic statement about the difficulty of operationally distinguishing
states after data restriction. We will show that the sharp lower bound on the complexity of
Grover search given by BBBV [35] necessitates that distinguishing states in an ETH ensemble
post-channel application takes exponentially many queries. Effective indistinguishability can
therefore be understood precisely in the language of quantum complexity theory.

An outline of our argument is as follows:

1. Restriction to an algebra of simple operators (representing coarse-grained or IR ob-
servables) is uniquely equivalent to a partial trace channel [Eq. (7.5)].

2. For an ETH ensemble, the partial trace channel exponentially suppresses the trace
distance between ensemble members [Eq. (7.20)]. Conversely, exponential suppression
implies ETH-like matrix elements [Eq. (7.24)].

3. Grover search distinguishes states by increasing their trace distance, thereby prying
them apart. The procedure takes exponentially many queries to pry apart exponen-
tially close states [Eq. (7.34)] and is provably optimal for this task. The ETH is there-
fore itself lower-bounded (in our simple setup) to be exponentially hard by the lower
complexity bound of distinguishing near-identical states implied by Grover search.

In Section 7.1, we review the relevant aspects of ETH and its connection to distinguisha-
bility. In Section 7.2, we describe our proposed coarse-graining quantum channel, discuss
its connection to thermodynamics, and show that the channel exponentially suppresses the
trace distance for an ensemble obeying the ETH. We also show the converse, namely that
exponential suppression of trace distance implies ETH-like matrix elements. In Section 7.3,
we review Grover search and its complexity bound, map it to the problem of state distin-
guishability, and show that Grover search requires exponentially many queries to distinguish
exponentially suppressed states. This implies that restricting to coarse-grained observables
in an ETH ensemble yields exponentially hard distinguishability, as well as the converse
result that exponential hardness implies a simple form of the ETH.
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7.1 A Review of the Eigenstate Thermalization
Hypothesis

Statement of the Eigenstate Thermalization Hypothesis

The Eigenstate Thermalization Hypothesis (ETH) was originally introduced as a conjecture
about the conditions required for a quantum system to thermalize (i.e. exhibit expectation
values that agree with the microcanonical ensemble) [177]. The ETH states that the expec-
tation values of observables for a quantum system with eigenstates |Ei⟩ will evolve to those
predicted by the microcanonical ensemble if the following two conditions on the observables
are met: (i) the diagonal matrix elements ⟨Ei|Ô|Ei⟩ vary slowly with the state; and (ii) the
off-diagonal matrix elements ⟨Ei|Ô|Ej⟩, i ̸= j, are exponentially small in N , the number of
degrees of freedom in the system [164].

In other words, the ETH is an ansatz for matrix elements of observables in the basis of
the Hamiltonian’s eigenstates. More formally, said ansatz is [164, 68, 64]:

Oij = O(Ē)δij + e−S(Ē)/2fO(Ē, ω)Rij , (7.1)

where Ē ≡ (Ei + Ej)/2, ω ≡ Ei − Ej, S(E) is the thermodynamic entropy, and O(Ē)

signifies the expectation value for the operator Ô in the microcanonical ensemble at energy
Ē. Further, the ETH requires that O(Ē) and fO(Ē, ω) are smooth functions of Ē and ω, and
that Rij behaves as a random variable with zero mean and unit variance (i.e. |Rij|2 = 1).

For an ensemble to satisfy the ETH, at least the vast majority of eigenstates must obey
the above conditions. The “weak ETH” allows an exponentially small fraction of the eigen-
states to violate the ETH, having significantly different expectation values from that of the
microcanonical ensemble. On the other hand, the “strong ETH” states that Oii is very close
to that of the microcanonical ensemble for all the eigenstates. Because some models which
do not thermalize (more precisely, some integrable models) satisfy the weak ETH, it is gen-
erally accepted that the strong ETH is required to characterize thermalization [68]. For our
purposes, however, it will not matter whether we use the strong or weak version of ETH.

ETH and Distinguishability

The ETH condition on diagonal matrix elements is of the form [164, 68, 64]:

Oii = O(Ē) +Rii, (7.2)

where Rii is small (i.e., suppressed by the system size). Because this fluctuation of the
expectation value from that of the microcanonical ensemble is very small for each eigenstate
|Ei⟩, each eigenstate is essentially indistinguishable from the ensemble average (and, by
extension, from the other eigenstates).

Although ETH is not expected to hold for all operators, the general belief is that ETH
applies to operators confined to a local region, which contain only a few degrees of freedom,
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and to low-point functions constructed from these operators, for most non-integrable sys-
tems [68]. This claim is supported by semi-empirical evidence, such as numerical simulations
of lattice systems [64, 163, 173, 174, 118, 161, 162, 180, 36, 121, 181, 120, 37, 39, 166, 176,
143, 119, 82, 141], but the connection to low-energy restrictions on measurement and distin-
guishability has remained imprecise. In this work, we will provide a simple operator-algebraic
interpretation of these low-energy operators, which formalizes and clarifies the expected loss
of distinguishability.

7.2 Coarse-Graining the ETH
In this section, we introduce the coarse-graining quantum channel for a low-energy “alge-
braic” observer, and prove this channel is the unique coarse-graining compatible with our
assumptions. We also motivate our choice from the perspective of entropy maximization in
thermodynamics. Finally, we discuss the effect of applying our partial trace channel to an
ETH ensemble, showing that trace distance is exponentially suppressed, and derive a partial
converse statement: that exponential contraction leads to an ETH-like expansion for matrix
elements.1

Coarse-Graining with Quantum Channels

A macroscopic observer interacting with a finite-dimensional quantum system H typically
has access to some limited palette of coarse-grained observables, such as pressure and tem-
perature in thermodynamics. We will assume the simple observables form an (operator or
von Neumann) algebra, A ⊆ L(H), containing the identity and closed under products and
sums. Thus, we have an “algebraic” low-energy observer.

The Wedderburn decomposition [193] shows that such an algebra decomposes the full
(assumed finite-dimensional) Hilbert space into irreducible representations of A as follows:

H ≃

[⊕
α

H1,α ⊗H2,α

]
⊕H0 (7.3)

M =

[⊕
α

M1,α ⊗ I2,α

]
⊕ 0 , (7.4)

for every M ∈ A. Here, I2,α is the identity on H2,α, and M1,α ∈ L(H1,α). The zero terms
are present to handle the case in which none of the operators in A are supported (i.e., act
nontrivially) on some portion of the Hilbert space. We also write Hα ≡ H1,α ⊗ H2,α, with
dimensions d1,α, d2,α, and decompose arbitrary states as ρ ≡

⊕
α pαρα⊕ p0ρ0. The bracketed

term in the Wedderburn decomposition was named a generalized bipartition by [115]. The
1Our argument is similar in spirit to [72], and for a single superselection sector, follows as a special case,

where the subsystem A is the low-energy factor.
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individual summands (labelled by α) are analogous to superselection sectors [115] of com-
muting observables, whose associated projectors Πα, along with the zero projection, form a
partition of unity, I = Π0 +

∑
α Πα.

Here we will interpret each factor H1,α as a macroscopic “IR” Hilbert space, and each
H2,α as a space of fine-grained, macroscopically unobservable “UV” data. Given this split, a
natural quantum channel onto the IR is simply given by tracing out the UV Hilbert space
H2,α in each summand:

CIR : ρ 7→ ρ ≡
⊕
α

pα tr2[ρα]⊕ p0ρ0 . (7.5)

It is easily confirmed that CIR is indeed a quantum channel: CIR is clearly linear and com-
pletely positive (it maps to a positive linear combination of densities), and we can check it
is trace-preserving:

tr[ρ] = p0 +
∑
α

pα = 1 ,

since the coefficients pα, p0 are normalized. Thus, CIR is a linear CPTP map and hence a
quantum channel. We will focus for simplicity on states with nontrivial support in a single
sector α, but our results easily generalize. We will also largely ignore H0, since no operator
in A has access to it. We picture the action of the partial trace on such a single sector in
Figure 7.1.

We note that our partial trace is equivalent2 to the restriction to the subalgebra A [22].
Among quantum channels, the partial trace is therefore singled out as the minimal way
of discarding information about non-simple operators. Coarse-graining could perform addi-
tional unitaries on the UV factors, but these are not constrained by the low-energy algebra
and hence non-minimal. We will give a thermodynamic justification for minimality in the
next section. One could consider something more complicated than a quantum channel,
but the quantum Church-Turing thesis [66] conjectures that Nature is only as powerful as
a quantum computer. A quantum channel is the only way such a computer has to discard
everything but a subalgebra.

Entropy Maximization and Tomographic Completeness

We can equivalently view CIR as acting on the full Hilbert space. Denote ρ1,α ≡ tr2,α[Παρ]
and ρ2,α ≡ tr1,α[Παρ]. Then CIR simply replaces each ρ2,α with the maximally mixed state
I2,α/d2,α. This relates our quantum channel interpretation of the ETH to the emergence
of statistical mechanics from pure states, since the channel CIR is closely related to Jaynes’
maximum entropy principle [112], which Katz formulated more intuitively in terms “the
truth, and nothing but the truth,” as we review here [117]. Suppose a quantum-mechanical
system can be prepared in state ρ, and the observer measures some set Ô ∈ A. Making
measurements many times, they obtain a set of expectations (“the truth”):

ρ 7→ {RO(ρ) ≡ tr[Ôρ]}Ô∈A . (7.6)
2Up to subtleties due to identical particles that are irrelevant here [22].
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Figure 7.1: The coarse-graining in action, with shade representing the IR and hue the UV.
Trace distance (Section 7.2) between two states is also shown. Left: Orthogonal states in
the full tensor product. Right: After hue is traced out, states are less distinguishable.

Jaynes’ principle states that the observer has most reason to believe the system is in the
maximum entropy state (“nothing but the truth”):

ρMES = argmaxRO(ρ̂)=RO(ρ)S(ρ̂) , (7.7)

where S(ρ) is the von Neumann entropy :

S(ρ) ≡ − tr[ρ log ρ] . (7.8)

This can be maximized using Lagrange multipliers λO and an auxiliary Gibbs ensemble [117],
yielding

ρMES ≡ exp

Ω−
∑
Ô∈A

λOÔ

 ,

for a normalization constant Ω obeying

Ω = − log tr exp

−
∑
Ô∈A

λOÔ

 ,
∂Ω

∂λO
= RO .

A derivation can be found in [117].
In general, the map ρ 7→ ρMES is not linear. But consider the set of observables A

consisting of all those of the form

(Ô ⊗ I2,α)⊕ I0
⊕
β ̸=α

Iβ (7.9)
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for some α and arbitrary Ô ∈ LH1,α. We will abbreviate these operators as Ô ⊗ I2,α. This
is tomographically complete for H1,α in the sense that we uniquely recover ρ1,α from the
expectation values of the operators in Aα. In particular, we can use any orthonormal basis
under the Hilbert-Schmidt inner product ⟨M1,M2⟩ ≡ tr[M1M

†
2 ] to directly reconstruct the

density matrix. To cap off Katz’s phrase, tomographically complete sets capture “the whole
truth”. In this case, the Lagrange multiplier sum satisfies

∑
A

λO(Ô ⊗ I2,α) =

(∑
A

λOÔ

)
⊗ I2,α ,

and the normalization factor
Ωα = Ω1,α − log d2,α .

Hence, the maximum entropy state is

ΠαρMES = exp

[
Ωα −

(∑
A

λOÔ

)
⊗ I2,α

]

= exp

(
Ω1,α −

∑
A

λOÔ

)
⊗ I2,α
d2,α

= ρ1,α ⊗ I2,α
d2,α

, (7.10)

using tomographic completeness on the first factor.
The first term captures “the truth, the whole truth” (tomography on H1,α) while the

second factor captures “nothing but the truth” (entropy maximization on H2,α). This result
can be extended to the full sum over α, since tomographic completeness with respect to an
orthonormal basis allows us to reconstruct both the densities ρα on each α but also their
coefficients pα, and entropy maximization proceeds on the second factor as before. Thus, our
partial trace is entropy-maximizing in the sense of Jaynes, and can therefore be interpreted
as a simple thermodynamic coarse-graining.

Contracting on Ensembles

Next we wish to demonstrate the effect of the coarse-graining channel on the distinguisha-
bility of states in an ETH ensemble. A natural measure of the distinguishability of quantum
states is the trace distance, defined for densities ρ, σ by

D(ρ, σ) ≡ 1

2
tr |ρ− σ| , (7.11)

where |M | ≡
√
M †M . In general, quantum channels E contract with respect to trace dis-

tance [144]:
D(E(ρ), E(σ)) ≤ D(ρ, σ) . (7.12)
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Suppose we select ρ, σ from some ensemble of states E(α) in sector α, and apply CIR. Physi-
cally, we will interpret E(α) as the set of energy eigenstates spanning Hα.

If the E(α) are exact eigenstates of the full Hamiltonian H, then H must take diagonal
form

H = H0 +
∑
α

Hα , (7.13)

where each Hα acts on Hα. This means that projectors Πα commute with time evolution,
and matrix elements vanish for eigenstates in different sectors.

We consider ensembles obeying the ETH, meaning that “simple” operators Ô ⊗ I2,α, for
|Ei⟩, |Ej⟩ ∈ E(α), have matrix elements of the form

⟨Ei|Ô ⊗ I2,α|Ej⟩ = O(Ē)δij + f
(α)
O e−S/2Rij . (7.14)

Again, we will focus on a single sector α, with S = log d = log d1,αd2,α. We will take the
size of the low-energy Hilbert space d1,α to be small and fixed, and d2,α to be large, so that
asymptotic growth with respect to system size implies fixed d1,α and increasing d2,α, so that
d2,α = Ω(eS) and d1,α = Ω(1).

As a warm-up, suppose the energy eigenstates E(α) are Haar-random, i.e. obtained from
a reference state |ψ(α)⟩ by applying k independent unitaries Ui ∈ U(Hα) chosen with Haar
measure. Page’s theorem [148] states that Haar-random states ρ1,α(U) ≡ CIR(U |ψ(α)⟩) are
close to maximally mixed:∫

dU D

(
ρ1,α(U),

I1,α
d1,α

)
≤ 1

2

√
d21,α − 1

d1,αd2,α + 1

≤ 1

2

√
d1,α
d2,α

. (7.15)

From the triangle inequality for D, we find a bound on the Haar-averaged trace distance for
ρ, σ ∈ E(α), after applying CIR:

D (CIR(ρ), CIR(σ)) ≤
1

2

√
d1,α
d2,α

. (7.16)

From our assumptions d2,α = Ω(eS) and d1,α = Ω(1) in system size, we see that typical
random states have their trace distance suppressed on the order of e−S/2.

Subject to our assumptions about the dimension of the IR and UV factors, we will find
a similar suppression from the perspective of the low-energy algebra in a moment. However,
we note that for a generic set of IR observables, these assumptions are tantamount to taking
an exponentially thin energy shell.3

3We thank Anatoly Dymarsky for discussion of this point.
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This is not, in general, a realistic assumption for thermal systems, and more work is
required to understand if (and whether) the algebraic decomposition can be used to make
the sorts of constraints we are considering here. However, subject to these assumptions, the
smoothness of the microcanonical average O(E) implies that differences in the leading-order
variation of the diagonal terms in (7.14),

O(Ei)−O(Ej) ≈ O′(E)ω ,

is also exponentially suppressed. Thus, fluctuations of the microcanonical average contribute
at subleading order in (7.14), and we can restrict to matrix elements of the form

⟨Ei|Ô ⊗ I2,α|Ej⟩ = O(α)
δij + f

(α)
O e−S/2Rij . (7.17)

This is analogous to the exponentially thin ETH ensemble considered in [72]. We call such
superselection sectors flat. We will comment briefly on the more general case below.

By restricting to observables of the form Ô ⊗ I2,α and considering expectations, we im-
plicitly apply our channel. Defining ρ ≡ CIR(ρ), and ρi ≡ |Ei⟩⟨Ei|, note that

⟨Ei|O ⊗ I2,α|Ei⟩ = tr[ρi(Ô ⊗ I2,α)] = tr[ρiÔ] ,

since expectations on a tensor factor are given by expectations with respect to the reduced
density. This is easily verified using the Schmidt decomposition. Thus, we have

tr[(ρi − ρj)Ô] = ⟨Ei|Ô ⊗ I2,α|Ei⟩ − ⟨Ej|Ô ⊗ I2,α|Ej⟩

= f
(α)
O e−S/2(Rii −Rjj) . (7.18)

To relate this to trace distance, we need to recall its variational form [144],

D(ρ, σ) =
1

2
max

−I≤Ô≤I
tr[(ρ− σ)Ô] , (7.19)

where A ≤ B means B − A is positive semidefinite, or equivalently, the eigenvalues of Ô
lie between −1 and 1. If we unit normalize the operators Ô ∈ A, and assume the variance
f
(α)
O = Ω(1) in the system size, then the trace distance is controlled by the maximum of

random diagonal matrix elements in (7.18). (Note that the maximum is attained by an
observable of the form Ô ⊗ I2,α since the operators are of this form by (7.4).)

Although Rij has mean zero and unit variance by assumption, we are making d = eS

independent draws, and the maximum will depend on S. We can define the expected maxi-
mum value xd as the point where the tail of the cumulative distribution function (cdf) equals
1/d:

1− F (xd) =
1

2

[
1− 1√

2
erf(xd)

]
=

1

d
,
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where F (x) is the cdf of Rii, presumed Gaussian. Taking d and hence xd large, the standard
large argument asymptotics for erf(x) give

xd ∼
√
log d =

√
S .

There are subleading corrections we can ignore. In the large sample limit, the Fisher-Tippett
theorem [159] shows this estimate is asymptotically sharp, and independent of the nature of
the identically distributed zero mean, unit variance draws.4 Combining with (7.18), we find

D(ρi, ρj) = Ω(
√
Se−S/2) . (7.20)

One can set a pair of constants k and k′ in the exponent such that e−kS ≤
√
Se−S/2 ≤ e−k′S as

S becomes asymptotically large. Thus, passing the flat ETH ensemble through our quantum
channel results in exponential contraction.

For the more general, i.e non-flat, condition (7.14), a similar calculation gives the trace
distance for ρi, ρj in terms of the size of the energy window ∆E and the system size:

D(ρi, ρj) = Ω(ω) + Ω(e−S/2) ,

Thus, in general, the suppression of trace distance will depend width of the energy windows
corresponding to a superselection sector. For an O(1) energy window, we generically expect
polynomial suppression of trace distance

D(ρi, ρmicro) = O

(
1

p(S)

)
,

for some polynomial in S [72].

A Partial Converse

We can ask whether the converse holds, i.e. that exponential suppression of trace distance
implies an ETH-like form for the matrix elements.

It is clear from (7.19) and (7.20) that diagonal matrix elements for energy eigenstates can
only differ by terms suppressed by e−S/2. This means we have the flat diagonal expectations,
as per (7.17). To fix the leading order behaviour, we simply note that these diagonal elements
are close to each other, and hence the ensemble average O(α). More carefully, we can define
a microcanonical density

ρmicro = e−S
∑
i

|Ei⟩⟨Ei| = e−S
∑
i

ρi .

4This is analogous to the central limit theorem, so it is sometimes called the max central limit theorem.
There are various technical niceness conditions on the distributions, but we will not belabor them here.
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Then, by linearity of the channel, ρmicro = e−S
∑

j ρj and hence

D(ρi, ρmicro) =
1

2
sup
Ô

tr[(ρi − ρmicro)Ô]

=
1

2
sup
Ô

∑
j

e−S tr[(ρi − ρj)Ô] = Ω(e−S/2) .

Thus, for any eigenstate i, ⟨Ô⟩i ≈ O up to corrections of order e−S/2.
We still need to constrain off-diagonal elements. Let us first consider the implications of

the ETH assumption. Define the “rotated” states |Ei±j⟩ ≡ (|Ei⟩ ± |Ej⟩)/
√
2, with densities

ρ±ij ≡ |Ei±j⟩⟨Ei±j| . (7.21)

Then the difference of these densities gives the off-diagonal elements:

ρ+ij − ρ−ij = |i⟩⟨j|+ |j⟩⟨i| . (7.22)

The ETH assumption implies

tr[(ρ+ij − ρ−ij)(Ô ⊗ I2,α)] = tr[(ρ+ij − ρ−ij)Ô] = f
(α)
O e−S/2(Rij +Rji) ,

which by similar arguments is Ω(e−S/2). Going in the reverse direction, we learn that if the
trace distance between ρ±ij is exponentially contracted, then

⟨i|Ô|j⟩+ ⟨i|Ô†|j⟩ = O(e−S/2) . (7.23)

For Hermitian Ô, this is precisely the scaling we expect for off-diagonal ETH elements.
Thus, combining the trace distance constraints on the reduced densities for |Ei⟩, |Ej⟩ ∈

E(α), we have the ETH-like matrix elements for Hermitian operators5

⟨i|Ô|j⟩ = O(α)
δij + e−S/2Aij , (7.24)

for Aij = O(1) in system size. For a general, i.e. non-flat superselection sector, leading-order
variations in the micronical average O(E) prevent this clear-cut identification of terms in an
e−S expansion.

7.3 Distinguishing Exponentially Close States
The results of the previous section show that application of our coarse-graining channel
to an ETH ensemble yields exponentially-suppressed trace distance among the members

5This resembles the Knill-Laflamme-like [122] condition for approximate quantum error correcting codes
(AQECC) given in [49]. However, in our case, the natural code subspace Hα also controls the ETH suppres-
sion (rather than the full Hilbert space), so we do not obtain a good AQECC.
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of the resulting ensemble. We were further able to establish a partial converse result: a
coarse-graining map that yields exponential suppression implies ETH-like matrix elements
for simple operators.

In this section, we move from information-theoretic to complexity-theoretic considera-
tions. We connect the query complexity lower bound of Grover search to the hardness of
distinguishing ETH ensemble states after coarse-graining. The Grover search algorithm [88]
is a quantum search algorithm for a marked item in an unstructured data set. As will be
discussed in the review below, it is quadratically faster than the fastest known classical
algorithm (which runs in O(N) time), running in O(

√
N) time.

While this modest but important speedup would usually not be considered significant in
quantum algorithms, its importance lies in the fact that it is provably tight: both the query
complexity—the number of queries an algorithm must make before reaching an answer—
and the gate complexity—the number of required gates—of Grover search are the most
efficient theoretically possible for the unstructured search problem, even up to the leading
pre-factor [35]. As such, if something requires violating the query complexity or gate com-
plexity lower bound for Grover search, it is often tantamount to a significant modification
of quantum mechanics, as discussed for example in [24].

In particular, we note that because distinguishability of the pure states is easier than
mixed state distinguishability for mixed states, we restrict our attention in searching for a
lower bound on ETH distinguishability by focusing on hypothetical pure states that are out-
puts of the coarse graining quantum channel. This is not to ascribe any physical significance
to the Grover search algorithm used or the existence of the reflection operator therein, but
rather to use this method to provide a conservative but still substantial lower bound to the
complexity of ETH distinguishability.

Review of Grover’s Search Algorithm

We begin with a review of Grover search in the context of the simple search problem it
was originally designed to solve [88, 144]. Suppose one aims to find a particular element in
an unsorted set of size N . Given that the set has no structure, the most efficient classical
method is to cycle through all the elements in the set one-by-one. Therefore, the classical
solution to this search problem runs in O(N) time.

Grover search is a quantum algorithm that solves the same search problem with only
O(

√
N) operations. An outline of the algorithm is as follows [144]:

a. Start with the state |0⟩⊗n.

b. Apply the Hadamard transform, which produces the superposition
state |ψ⟩ = 1

N1/2

∑N−1
x=0 |x⟩.

c. Repeatedly apply Grover iteration.

Grover iteration consists of the following steps:
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1. Apply the “oracle” operator O, which marks the desired item by shifting its phase.
The oracle takes the state |x⟩ to (−1)f(x) |x⟩, where f(x) = 1 if x is a solution to the
problem and f(x) = 0 otherwise.

2. Apply the Hadamard transform.

3. Perform a phase shift of −1 on all states except |0⟩. One can achieve this by acting on
the state with the operator 2 |0⟩ ⟨0| − I.

4. Apply the Hadamard transform again.

In summary, Grover iteration is an application of the operator

G = (2 |ψ⟩ ⟨ψ| − I)O . (7.25)

If one visualizes quantum states as vectors on the Bloch sphere, Grover iteration has
an intuitive geometric visualization (see Figure 7.2) [144]. We can re-express the starting
quantum state |ψ⟩ in terms of (i) a state |β⟩ that is the normalized sum of solutions to the
search problem and (ii) a state |α⟩ that is the normalized sum of states that are not solutions
to the search problem. Defining an angle θ in terms of the total number of states (N), and
the number of solutions to the search problem (M) via cos(θ/2) =

√
(N −M)/N , the initial

state is:

|ψ⟩ = cos
3θ

2
|α⟩+ sin

3θ

2
|β⟩ . (7.26)

Each application of the Grover iteration operator (G) effects a rotation in the space spanned
by |α⟩ and |β⟩ by the angle θ. After k Grover iterations, the rotated state is

|ψ′⟩ = cos

(
2k + 1

2
θ

)
|α⟩+ sin

(
2k + 1

2
θ

)
|β⟩ . (7.27)

Thus, repeated Grover iterations rotate the state closer and closer to |β⟩, the sum of solutions
to the search problem.

Once the component parallel to |β⟩ is greater than the component parallel to |α⟩, a
measurement is more likely to produce a solution to the search problem than not. Expressing
the nearest integer to some real number x as the function CI(x), the number of Grover
iterations required to achieve this is

R = CI

(
arccos

√
M/N

θ

)
≤
⌈π
4

√
N/M

⌉
. (7.28)

Grover search therefore requires O(
√
N/M) iterations (or O(

√
N) iterations if there is only

one solution to the search problem), making it more efficient than the classical algorithm [88,
144].
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Figure 7.2: Geometric visualization of Grover iteration. States are represented as vectors on
the Bloch sphere. Each application of Grover iteration rotates the initial state |ψ⟩ toward
the normalized sum of solutions to the search problem, |β⟩.

What makes Grover search of particular interest is that the complexity bound of O(
√
N)

is provably optimal; no other search algorithm can complete the task in fewer operations,
nor with fewer queries [35, 144]. A sketch of the proof is as follows. Suppose we have some
quantum algorithm that applies the oracle for a given search solution x and some set of
unitary operations Ui such that, after k applications of the oracle, it produces the state

|ψx
k⟩ ≡ UkOxUk−1Ox...U1Ox |ψ⟩ . (7.29)

One can prove that Grover search is optimal by examining the magnitude of the effect of
the oracle, or, more precisely, the deviation from the state that would have evolved in the
absence of the oracle. Defining the state evolved without the oracle as

|ψk⟩ ≡ UkUk−1...U1 |ψ⟩ , (7.30)

the deviation after k steps is defined as

Dk ≡
∑
x

∣∣∣∣ψx
k − ψk

∣∣∣∣2 . (7.31)

If this deviation is small, then the component parallel to |β⟩ is not yet larger than the
component parallel to |α⟩. Therefore, a small deviation implies that a solution to the search
problem is not yet identifiable. The proof of optimality requires showing that (i) the deviation
after k steps (Dk) obeys Dk ≤ 4k2 and (ii) the probability of identifying the search solution
is greater than 1/2 only if Dk is Ω(N). Taken together, (i) and (ii) imply that the requisite
number of oracle calls obeys k ≥

√
cN/4. Therefore, solving the search problem requires

calling the oracle Ω(
√
N) times. As this is the complexity lower bound of Grover search,

Grover search is an optimal solution to the search problem [35, 144].
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Figure 7.3: Geometric visualization of distinguishing states |s⟩ and |r⟩ via Grover search.
States are represented as vectors on the Bloch sphere. Grover iteration rotates |s⟩ away from
|r⟩.

Grover Search for Distinguishing States with Exponentially
Suppressed Trace Distance

Although the above review of the Grover algorithm is framed in terms of a search problem,
the method translates to the problem of distinguishing two quantum states. In the latter
case, the two states to be distinguished, |r⟩ and |s⟩, play the roles of |α⟩ and |ψ⟩ respectively.
The function of Grover iteration is to rotate state |s⟩ away from |r⟩ until a measurement
produces a state that is not |r⟩ with probability greater than 1/2. See Figure 7.3 for a
visualization on the Bloch sphere.

The number of Grover iterations required to pry apart the states depends on how similar
the states were originally. As mentioned previously, a measure of the similarity between (or
distinguishability of) two quantum states is the trace distance, defined for two states with
density matrices ρ and σ as

D(ρ, σ) ≡ 1

2
tr |ρ− σ| , (7.32)

where |M | ≡
√
M †M [144]. If the two states are single qubits, one can express the trace

distance in terms of their Bloch vectors −→r and −→s as:

D(ρ, σ) =
|−→r −−→s |

2
. (7.33)

Thus the trace distance for qubits is the Euclidean distance between their Bloch vectors up
to a multiplicative factor. In other words, smaller trace distance between two states means
they are closer together on the Bloch sphere.

Our aim is to find a lower bound on the hardness of distinguishing states after application
of the channel defined in Section 7.2. To do so, we must compute roughly how many Grover
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iterations are required to distinguish |s⟩ from |r⟩ given that their trace distance is exponen-
tially suppressed. To relate the initial trace distance between the vectors to the number of
Grover iterations required to pry them apart, we note that the initial trace distance D is
related to the initial angle θrs between the Bloch vectors −→r and −→s via

D2 =
1

4
|−→r −−→s |2 = 1

2
(1− cos θrs) , (7.34)

assuming −→r and −→s are normalized. We are interested in the case where the states |r⟩ and
|s⟩ are very similar, so we can expand cos θrs to see that

1− θrs
2

≈ 1− 2D2

=⇒ θrs = 2D .

As defined in the previous section, the rotation angle of Grover iteration is related to the ini-
tial angle between −→r and −→s by θ = 2θrs. Successfully distinguishing the states occurs when
the angle between −→r and the post-rotation vector −→s ′ obeys θrs′ = θ

2
≥ π

4
. Assuming that

the initial angular separation θrs is small, this will require rotating through approximately
π
4

radians. Therefore, we must apply approximately π
16D

Grover iterations to distinguish the
states. Assuming D is exponentially small, this corresponds to exponentially many Grover
iterations.6 Therefore, because Grover search is optimal, distinguishing two states with
exponentially suppressed trace distance requires exponentially many queries.

Let us now consider the states that are separated from their ensemble average by an ex-
ponentially suppressed trace distance, after the partial trace channel has been implemented.
Although the above discussion focused on single-qubit states, it is a straightforward exten-
sion of this result that mixed states on more than one qubit (as opposed to the single qubit
described by the Bloch sphere) will similarly require an exponential number of queries to
distinguish between them, as the amplitude amplification aspect of Grover search functions
in an identical manner. The BBBV result [35] still applies to the mixed-state amplifica-
tion problem [38], as the difficulty of distinguishing the mixed states which are the generic
output of the coarse-graining channel is lower-bounded by the difficulty of distinguishing
pure states in the IR Hilbert space by the data processing inequality. Recall that the ETH
states that upon restricting to low point functions (e.g. applying the partial trace quan-
tum channel) it becomes “hard” to distinguish a state in an ETH-obeying ensemble from
the ensemble average. Relating this difficulty to the query complexity of Grover search is a
straightforward way of quantifying this “hardness” in more precise language. As such, this
is a complexity-theoretic way of seeing why states in ETH ensembles are difficult to distin-

6If this suppression is only inverse polynomial, this requires correspondingly polynomially many Grover
iterations. For states in quantum field theories of very large numbers of qubits, this is still in practice a very
long run time.
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Coarse-
graining 
channel

Grover 
search

Figure 7.4: Classifying the hardness of ETH with quantum channels. A partial trace channel
coarse-grains UV data and suppresses trace distance for some ensembles. Grover search pries
apart states in the ensemble and makes them distinguishable.

guish from each other, especially once the additional overhead from implementing the data
processing inequality is considered.7

Elegantly, there is also room for non-ETH states in this picture; they are simply the
states that, upon the partial trace operation, are not exponentially close in trace distance
from some canonical state that one is attempting to distinguish it from.

Conversely, it is immediate from the tightness of the BBBV lower bound that if density
matrices take exponentially many queries to distinguish using Grover search, they must
be exponentially close in trace distance. In particular, if this holds both for the reduced
densities of eigenstate ρi = CIR(|Ei⟩⟨Ei|), |Ei⟩ ∈ E(α), and “rotated” reduced densities ρ±ij =
CIR(|Ei±j⟩⟨Ei±j|), then the results of Section 7.2 immediately give the ETH-like expansion
of matrix elements (7.24).

7.4 Chapter Summary and Conclusion
In this chapter, we showed that the orthogonality (and hence perfect distiguishability à la
Holevo [107]) of eigenstates is compatible with near indistinguishability when passed through
a quantum channel. In our model, the quantum channel is a generalized partial trace, and the
algebra of observables on the remaining Hilbert space factors the set of simple operators for
the purposes of ETH. This channel has a simple thermodynamic interpretation in the spirit
of entropy maximization and Jaynes’ principle. Furthermore, for an ensemble of eigenstates
obeying the ETH, exponential suppression of energy differences in a coarse-grained window
results in exponential suppression of trace distance.

7It is worth noting here that we do not consider the complexity of implementing the quantum channel,
this result should technically only be considered an argument that the difficulty of distinguishing such states
is at least exponentially hard.
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Although closeness in trace distance already suggests hardness of distinction from a
quantum information-theoretic viewpoint, we further lower bounded this hardness via a
combination of the data-processing ienquality and a complexity-theoretic perspective using
Grover search. The BBBV lower bound on search algorithms [35] shows the optimality of
Grover search, and hence the task of telling apart our exponentially close ETH states will
require at least an exponential number of queries. See Figure 7.4 for a visual summary.

Finally, we were able to reverse partially the logic of these steps. If states require an
exponential number of queries to distinguish, it follows they are exponentially close in trace
distance. If our coarse-graining channel exponentially suppresses the trace distance be-
tween reduced eigenstates, then they exhibit ETH-like matrix elements for simple operators.
Loosely speaking, hardness of distinction is equivalent to the ETH.

This chapter concludes the main body of this work. In the final chapter, we shall discuss
some implications of our results and propose future lines of inquiry.
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Chapter 8

Discussion and Future Directions

In this work, we have taken steps to further the quest for quantum gravity. In light of the
derivation of the Page curve for an evaporating black hole using the RT (QES) prescrip-
tion [151, 16], we carefully generalized the RT prescription to the relevant unusual settings
in Chapter 2. The first was the case where the reference region is part of a non-gravitating
auxiliary system. Unlike in [151, 16], our derivation here did not rely on the assumption
of entanglement wedge complementarity. Rather, entanglement wedge complementarity was
a consequence of our results. The second case was that of double holography, where the
matter in a gravitating spacetime is assumed to be holographic and thus has its own bulk
dual one dimension higher. Here we clarified the three levels of holography and defined
an “RT-squared” prescription that allowed one to compute von Neumann entropies in the
lowest-dimension level in terms of quantities in the highest-dimensional level. Finally, we
generalized the prescription to the case of double holography with a holographic bath, which
is relevant for doubly-holographic derivations of the Page curve [18, 167, 55, 12, 182, 21, 56].

In Chapter 3, we used these generalizations of the RT prescription to investigate an
apparent puzzle in the Page Curve calculations of [151, 16]: that the calculation makes use
of Hawking’s result that the entropy of the radiation grows monotonically, only to reach the
final conclusion that it does not. We called this puzzle the state paradox and exhibited it
in three settings. The first was an evaporating black hole surrounded by a distant detector
sphere, originally introduced in [47]. The second was the setting of [151, 16]: a spacetime
containing a black hole, coupled to an auxiliary system that absorbs the Hawking radiation.
Finally, we exhibited the paradox in the doubly holographic setting introduced in [18].

In each case, we argued that the paradox is resolved under the conjecture that the
gravitational path integral is dual to an ensemble of theories on the boundary. We called
this proposal gravity/ensemble duality.

The mere existence of an ensemble on the boundary was sufficient to resolve the state
paradox in each setting we considered. In this work, we thus did not specify more precisely
what this ensemble might be. To provide further support that gravity/ensemble duality is
the right solution to the state paradox, it would be desirable to define the relevant ensemble
more concretely. Other works have explored the role of ensembles in holography, such in the
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connection between the SYK model and JT gravity [172] and in the relationship between
baby universes and wormholes [137]. A first step could be to investigate whether these
ensembles are sufficient to play the role of that required to resolve the state paradox.

Furthermore, as discussed in Chapter 3, it seems that we have examples of holography
that do not involve gravity/ensemble duality. A noteworthy example is type IIB supergravity
on AdS5×S5, which is dual to a specific CFT [134]. Perhaps this can be explained in that the
gravitational path integral computes quantities that would be self-averaging if an ensemble
did exist [172], such as the entropy S(ρout) but not the state ρout. It would be desirable,
however, if something more compelling could be said about the relationship between this
classic example of holography and gravity/ensemble duality. We leave this open question to
future work.

Having discussed the state paradox, this work then turned to examining what could be
learned from the Page curve calculations in the context of cosmology. In the spirit of [95],
we searched for islands in FRW cosmologies with non-zero spatial curvature in Chapter 4.
To the three necessary conditions for islands derived in [95], we added a fourth that applied
only to subsets of closed universes. We then checked when regions in these cosmologies sat-
isfied necessary conditions to be islands. We found that arbitrarily small positive curvature
guarantees that the entire universe was an island. We showed that proper subsets of the
time-symmetric slice of closed or open universes can be islands, but only if the cosmological
constant is negative and sufficiently small.

In Chapter 5, we further extended this analysis to FRW cosmologies with a general
perfect fluid, dispensing with the assumption that the universe contents were radiation. We
rearranged the necessary conditions for islands derived in Refs. [95, 76] and the previous
chapter as conditions on the comoving entropy density sc, which is constant in time under
the assumption of local thermal equilibrium. In flat universes, we found that time-symmetric
slices always have viable island candidates for large enough χ, and these candidates will be
islands in the thermofield-doubled model if the reference region is chosen to be the matching
region R in MR. For an arbitrary time slice t0 in a flat universe, we found viable island
candidates given that T0 and ρ0 are tuned appropriately. Treating the normalization time
t0 as an initial time and evolving forwards, we found that even under the assumption that
there was no viable island candidate at t0, a flat universe with a perfect fluid develops a
viable island candidate provided that w ≥ 1 violating the DEC. Furthermore, w > 1 implies
that the t0 slice will eventually evolve into a slice with a viable island candidate. Evolving
backwards in time we found the opposite condition of |w| < 1 for a viable island candidate
and again a condition on the temperature T0 and the energy density ρ0. Finally, we repeated
the analysis on closed and open universes with a general perfect fluid. In the presence of
spatial curvature, in an expanding universe with monotonically growing a, we found that
viable island candidates can only exist at the time of normalization or in the past t ≤ t0
or up to some finite time after t0, regardless of the equation of state w. We applied the
conditions to a specific example of a closed universe with a periodic scale factor and no
classical singularity, the “Simple Harmonic Universe,” and found viable island candidates
on slices near where the scale factor reaches a minimum. Hence, this is an example where
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islands exist in a spacetime without a singularity.
Our primary motivation in Chapters 4 and 5 was to examine whether islands can exist in

a larger class of cosmological models, regardless of whether they describe our own universe.
But it is interesting to ask whether we could live on an island. Let us briefly discuss the
extent to which our analysis constrains this question.

We considered only universes with radiation or a general fluid and a cosmological constant
Λ of arbitrary sign. The visible universe has Λ > 0 [154, 160], so only the Λ > 0 case is
directly relevant to the question of whether we live on an island. However, in a theory with
multiple vacua, the universe may decay to regions with Λ = 0 or Λ < 0 in the future. Thus,
results for Λ ≤ 0 could still be relevant for future regions in our own universe.

The visible universe is consistent with exact spatial flatness [3]. However, observational
constraints only put a lower bound on the curvature radius; they do not rule out spatial
curvature on a scale somewhat larger than the visible universe. This is significant, since we
showed that an arbitrarily small (hence locally unobservable) amount of positive curvature
allows for islands in a universe with Λ > 0.

Indeed, exact spatial flatness requires infinite fine-tuning. Moreover, approximate spatial
flatness is a dynamical repeller during matter and radiation domination. Hence, even the ap-
proximate spatial flatness of the visible universe dictated by observational constraints would
require tremendous fine-tuning of initial conditions, unless it is the result of a dynamical
process such as slow-roll inflation. (We are not aware of any other viable candidate process.)
This is a period of accelerated expansion driven, for example, by a scalar field with a slowly
varying positive potential [130]. Inflation will not make space exactly flat.

The visible universe is anisotropic and inhomogeneous at scales below 100 Mpc, whereas
the FRW approximation we use assumes exact spatial homogeneity and isotropy. However,
this should not affect any conclusions about cosmological islands. A necessary condition for
I to be an island is that its matter entropy must exceed the Bekenstein-Hawking entropy of
its boundary ∂I. This can only happen for regions much larger than the horizon scale, for
which the FRW description is a good approximation. (Of course, black hole islands could
exist if a small black hole forms and evaporates.)

A failure of homogeneity and isotropy at scales much larger than the visible universe
is expected in plausible cosmological models [44]. This may lead to additional classes of
islands. For example, if our universe descended from a metastable vacuum with larger Λ, its
homogeneity and isotropy on slices of constant density is a consequence of the symmetries
of the dominant instanton mediating false vacuum decay [60]. But on scales that include
the parent vacuum and other baby universes, the spacetime admits no preferred slicing on
which it would appear homogeneous; it is not an FRW solution. In a complex multiverse,
such as the spacetime that would arise in the landscape of string theory, even the number
of noncompact dimensions could change over large scales. It is interesting to ask whether
there are new classes of islands in such models, especially islands associated to “hat” regions
with Λ = 0 [46, 184, 4, 145]. This is an interesting possibility [126], whose general study we
leave to future work.

In this work’s analysis and in those of Refs. [95, 76], it is also not clear what the reference



CHAPTER 8. DISCUSSION AND FUTURE DIRECTIONS 111

spacetime corresponds to in the cosmological setting. It would be preferable to assign a
meaningful physical significance to the reference spacetime. For example, one could consider
a model involving entanglement between two gravitating universes. Certain attempts have
been carried out in that direction [23]. One of the major motivations for such a development
is that it may provide insight on how to apply these results to multiverse models. The
multiverse consists of multiple universes originating from a parent universe in a never-ending
process [33, 109, 89, 85]. Thus, entanglement between two universes seems a reasonable
expectation for the multiverse.

Ref. [81] discussed entanglement wedge reconstruction in the context of islands, arguing
that an island must have a coupling with its reference region for it to behave as expected for
an entanglement wedge; simple entanglement between the island and the reference system
is not enough. This is puzzling, because the thermofield-doubled model used here and in
Refs. [95, 76] involve only entanglement, not a coupling. Understanding how to make these
results consistent could lead to insight regarding the role of islands in entanglement wedge
reconstruction. A first step, for example, could be to perform an analysis similar to ours
here and in Refs. [95, 76] using a model with a coupling instead of the thermofield-doubled
model.

Having investigated implications of the Page curve calculations of Refs. [151, 16] in the
context of cosmology, in Chapter 6 we turned to a related puzzle: the firewall paradox. We
argued that even given gravity/ensemble duality, the firewall paradox remains unresolved by
the Page curve calculations. We presented a version of the paradox with a manifest violation
of monogamy of entanglement amongst modes at asymptotic infinity, in which none of the
modes are hidden behind a horizon. Our thought experiment consisted of an application
of the Hayden-Preskill recovery protocol [103] in which the message was a smaller black
hole. We argued that accounting for decoherence in the process implies that the asymp-
totic observer cannot reconstruct the subsystems in violation of monogamy of entanglement,
resolving the tension.

Although we argued that the Page curve derivations of Refs. [151, 16] alone do not resolve
the firewall paradox, it could be that they are connected to our resolution via decoherence.
The lesson from decoherence for the firewall paradox is that if the bulk observer has ac-
cess only to the system, their experiencing information loss does not conflict with unitary
evolution of the system + environment. The recent works applying the RT formula to a
black hole + auxiliary system have the same form: the “environment” is the auxiliary system
and the black hole is the “system.” Escape of Hawking radiation in [151] with absorbing
boundary conditions corresponds to leakage of information into the environment, and the
bulk observer has access only to the system. Again, it seems the lesson is that confusing a
part (the BH) with the whole (BH + auxiliary system) leads to a contradiction. We leave
further investigation of this similarity to future work.

Finally, in Chapter 7 we argued for a connection between the Eigenstate Thermalization
Hypothesis (ETH) and Grover’s search algorithm. We used quantum channel with the form of
a generalized partial trace to argue that the orthogonality of eigenstates is compatible with
near indistinguishability. We additionally showed that exponential suppression of energy
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differences in a coarse-grained window yields exponential suppression of trace distance.
We further lower-bounded the hardness of distinguishability using the data-processing

inequality and Grover search. This translates the BBBV lower bound on search algorithms
[35] into a statement about the distinguishability of states in an ETH ensemble. More pre-
cisely, the task of telling apart our exponentially close states requires at least an exponential
number of queries. Finally, we partially reversed these steps by showing that states requiring
an exponential number of queries to distinguish are exponentially close in trace distance.

There is a resemblance between our coarse-graining analysis and the idea of renormal-
ization group (RG) flow. In field-theoretic settings one often expresses ignorance of the
behavior of the UV and any unknown massive fields that may live there by “integrating out”
or, more formally, with arguments using RG flow. We briefly comment on the differences
between this textbook approach and the coarse-graining methods we employ here. (To avoid
complication, we have in mind a field theory that has been regularized, e.g. on a lattice,
so that all Hilbert spaces under discussion are finite-dimensional.) When a Hilbert space
describes a field theory, we can describe the field theory by a collection of ‘modes’ or “degrees
of freedom” {ϕi}, where the index is both a choice among the allowed positions or momenta
in the (regularized) field theory and an identification of a particular field in the theory. To
compute the time evolution of an initial state at time t, we use a path-integral formulation
to write the overlap of the time-evolved state with states of definite field value:

⟨ϕ̃i⟩Ψ(t) ≡
∫ ϕi(τ=t)=ϕ̃i

[Dϕi(τ)] exp iS [ϕi(τ)] . (8.1)

Without changing this expression, we are free to partition the collection of modes {ϕi}
into two non-overlapping sets, ϕ1 and ϕ2, which define a possible factorization of the (regu-
larized) Hilbert space. We think of the first set as the system, or the modes we are interested
in, and the second set as the environment, or UV modes, we do not have control over. Then
we may similarly choose to do the path integral above in two steps, first integrating over one
collection of degrees of freedom and then the other. This is still a computation of overlaps
between states in the full Hilbert space. However, in some circumstances we may view it
as a computation of overlaps in the Hilbert space of just the fields ϕ1. To do so, we fix an
initial state which has no initial entanglement between the two sectors, |Ψ⟩ = |Ψ1⟩1 |Ψ2⟩2,
where we may define the states in the 1 and 2 sectors by e.g. their overlaps with the field
value states |ϕ1⟩, |ϕ2⟩. Then, for each choice of initial condition |Ψ2⟩ and time-evolved state
ϕ̃2, we have defined a possible time evolution of the initial state |Ψ1⟩. Typically, we have in
mind the cases where the UV modes start and remain in their vacuum state (for example,
if we are considering low-energy processes that should not excite heavy degrees of freedom),
or perhaps have taken on some fixed external field value.

This formalism gives time-evolution rules on the Hilbert space describing the fields ϕ1,
but in general we do not expect to relate these rules to the evolution generated by a Hamilto-
nian. For special, physically-relevant partitions of the degrees of freedom, and Hamiltonians
on the full Hilbert space with only perturbatively weak interactions between the two sets,
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integration over the UV degrees of freedom does indeed give something close to unitary time
evolution within the Hilbert space of ϕ1 alone. It is this situation that renormalization group
flow describes—for example, when the division between modes is based on a momentum cut-
off Λ, and the modes with momentum greater than Λ are initialized to their vacuum state.
Then, provided the time evolution has not excited the heavy modes, they only appear vir-
tually in Feynman diagrams and may be accounted for by adding additional UV-suppressed
interactions. A natural generalization, seen for example in thermal field theory, is to work
with density matrices rather than states and drop the requirement that evolution neglecting
the UV degrees of freedom is unitary.

In summary, RG flow, or more generally doing a portion of the path integral with specified
boundary conditions, provides a (family of) maps from states in the Hilbert space of a field
theory to a smaller Hilbert space describing only a subset of the original degrees of freedom.
There is a sense, then, in which it might be described as coarse-graining, but it differs from
the coarse-graining discussed in Chapter 7 in several respects. First, unlike the channel CIR
defined in Eq. (7.5) above, the map described here is explicitly time-dependent. (Relatedly,
the Hamiltonian on the original Hilbert space appears explicitly.) Second, the channel relies
not only on the state of the full system at the final time (via the choice of ϕ̃2), but also on
an initial state at some earlier time. Changing either of these choices will change the map to
the coarse-grained Hilbert space, although for non-pathological actions we expect that small
changes in the boundary conditions will give small changes in the nature of the map. To
reiterate: the map CIR depends only on a choice of subalgebra A, which defines a choice of
simple observables, i.e., what we mean by the IR degrees of freedom. But the Hamiltonian
does not appear at all, except implicitly to the extent that we expect simple observables to
remain simple when evolved for short times. The cost paid in the discussion here, where
time evolution plays a vital role, is the loss of a unique map given a definition of the IR. It
would be very interesting to attempt to incorporate time evolution more directly into the
coarse-graining prescription we have discussed in this work.

The partial-trace quantum channel discussed in Chapter 7 formalizes the intuition that
the ETH keeps information about simple operators but discards information which is not
accessible to a low-energy observer. This is well-motivated in the existing literature, e.g. in
the study of k-designs as approximations to Haar-typical states, an approximation which is
valid if one is only interested in data derived from lower moments of the distribution. This is
something that is routinely done in for example the study of the information-theoretic aspects
of a black hole, particularly in [103]. Another example, also in the context of black hole
physics, comes from the consideration of black hole microstates. The ensemble that defines
a black hole mixed state is known to obey the ETH, something which has been shown to have
information-theoretic consequences [25, 27, 49] in terms of distinguishability and quantum
error correction properties. In particular, in connection with the error correcting properties
discussed in [27, 49], we expect that the error correcting code maps the physical Hilbert
space pre-quantum channel to the logical Hilbert space post quantum channel, and thus has
strong encoding properties. However, because of the difficulty of distinguishing these states,
this may also demonstrate that decoding of these states is challenging.
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Relatedly, the notion of trace distance for ETH ensembles has been studied in the context
of chaotic CFTs [127, 128]. It would be interesting to consider whether our distinguishability
arguments could be adapted to this context. In the context of holography, our algebraic setup
resembles that used to discuss the notion of bulk states as an error-correcting code [10, 92].
We hope to pursue this connection in further work.

The results of this work show that, as we might expect, the choice of kept observables
in a coarse-graining quantum channel defines which ensembles of density matrices obey the
ETH conditions with respect to these observables. One must consider both the ensemble
and the channel to determine whether the ensemble achieves the requisite compression of
the trace distance. In particular, it would be interesting in future work to consider choices
of ensembles and observables that have more complicated relations to the Hamiltonian than
microcanonical distributions in an energy band.

Relatedly, a drawback of our simple model is that eigenstates in different sectors have
strictly vanishing overlaps for simple operators. The smoothness of the ETH envelope func-
tions f (α)

O then forces eigenstates at the edge of a sector Hα to have overlap suppressed by
e−S, so that they are zero at order e−S/2. This means that we cannot interpret the α as
microcanonical bands, since this suppression does not agree with the results of a random
microcanonical draw. The simplest modification would be weak coupling between sectors, a
possibility we intend to consider in future work.

Our converse result shows that exponential difficulty of distinction implies that simple
operators have O(1) diagonal and O(e−S/2) off-diagonal matrix elements, as per the ETH.
However, this argument does not establish the mean or variance for these off-diagonal ele-
ments, i.e. the statistics of the Aij when viewed as random draws from the energy ensemble.
By considering trace distance suppression between more elaborate ensembles, it might be
possible to determine these statistics from search constraints. This suggests the tantalizing
possibility that ETH distinguishability is a complete problem for some quantum complexity
class, perhaps QMA, when combined with the existing hardness results, provided that the
scaling is not dominated by going from pure states to mixed states.

Finally, the analysis presented here is reminiscent of the discussion of Petz recovery [63,
54, 155, 114, 9, 58, 152, 15], where one considers the possibility of reconstructing a density
matrix ρABC with access only to ρAB. While Petz recovery is concerned with the ability
to reconstruct the full ρABC , the distinguishability question asked here performs a simpler
task, that of distinguishing within some discrete given set ρABCi

. It would be interesting to
consider if there is an intermediate situation where full Petz recovery is not possible, but
this distinguishability task is.

In this work, we have sought to further the quest for quantum gravity in a few small, but
hopefully substantial, ways. It is our ambition that these steps will propel the search, and
that a full theory of quantum gravity is on the horizon.
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