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Abstract

BACKGROUND/OBJECTIVES: There is currently no widely accepted approach to identify 

patients at increased risk for sporadic pancreatic cancer (PC). We aimed to compare the 

performance of two machine-learning models with a regression-based model in predicting 

pancreatic ductal adenocarcinoma (PDAC), the most common form of PC.

METHODS: This retrospective cohort study consisted of patients 50–84 years of age enrolled in 

either Kaiser Permanente Southern California (KPSC, model training, internal validation) or the 

Veterans Affairs (VA, external testing) between 2008–2017. The performance of random survival 

forests (RSF) and eXtreme gradient boosting (XGB) models were compared to that of COX 

proportional hazards regression (COX). Heterogeneity of the three models were assessed.
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RESULTS: The KPSC and the VA cohorts consisted of 1.8 and 2.7 million patients with 

1,792 and 4,582 incident PDAC cases within 18 months, respectively. Predictors selected into 

all three models included age, abdominal pain, weight change, and glycated hemoglobin (A1c). 

Additionally, RSF selected change in alanine transaminase (ALT), whereas the XGB and COX 

selected the rate of change in ALT. The COX model appeared to have lower AUC (KPSC: 0.737, 

95% CI 0.710–0.764; VA: 0.706, 0.699–0.714), compared to those of RSF (KPSC: 0.767, 0.744–

0.791; VA: 0.731, 0.724–0.739) and XGB (KPSC: 0.779, 0.755–0.802; VA: 0.742, 0.735–0.750). 

Among patients with top 5% predicted risk from all three models (N=29,663), 117 developed 

PDAC, of which RSF, XGB and COX captured 84 (9 unique), 87 (4 unique), 87 (19 unique) cases, 

respectively.

CONCLUSIONS: The three models complement each other, but each has unique contributions.

Keywords

risk prediction; pancreatic cancer; machine learning versus regression; random survival forest; 
eXtreme gradient boosting

BACKGROUND

Pancreatic cancer is a relatively uncommon but lethal cancer type, with an incidence rate 

of 13.3 per 100,000 people per year.1 Survival in pancreatic cancer remains poor, with 

only a 11.5% 5-year survival after diagnosis.1 Pancreatic ductal adenocarcinoma (PDAC) 

is the most prevalent and lethal neoplastic disease of the pancreas, accounting for over 

90% of all pancreatic cancer cases.2 Because of its low incidence rate, the United States 

Preventative Services Task Force (USPTF) does not recommend population-based screening 

for pancreatic cancer.3 Therefore, additional tools are needed to identify high-risk patients 

to facilitate early detection to impact the natural history of this disease. While progress 

has been made related to approaches for screening individuals based on genetic or family 

history,4 risk prediction models based on electronic health records have the potential to 

provide important adjunctive risk stratification tools applicable to a broader range of the 

general population.

Our research team developed a risk prediction model based on the EHR of patients 

50–84 years of age who had at least one clinic-based visit in the past 12 months.5 

The risk prediction model demonstrated good performance via internal validation and 

external testing. In the previous study, the approach we adopted was Random Survival 

Forest (RSF), one of the mature machine learning approaches for analyzing time-to-event 

outcomes.5 Compared to the Cox proportional hazards regression model (COX), the most 

popular regression-based model for predicting time-to-event outcomes, RSF has perceived 

advantages due to its ability to handle non-linear effects and interactions among predictors. 

Nevertheless, its superiority over the COX model in performance was shown when it was 

applied to predict cardiovascular diseases6 and suicidal behaviors,7 but not for the prediction 

of gastrointestinal bleeding,8 breast cancer,9 oral and pharyngeal cancer survival,10 head 

and neck cancer survival11 and overall survival.12 Furthermore, the implementation of 

RSF-based risk prediction models in clinical operation is more time-consuming, resource 

intensive and challenging in various ways compared to a COX model. Therefore, comparing 
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RSF and COX models in the contexts of risk prediction of pancreatic cancer, a very 

rare disease, could be insightful. In this analysis, we also choose another well-developed 

machine learning-based approach eXtreme gradient boosting (XGB) to compare with RSF 

and COX modes due to its good performance in previously published clinical models.8, 13 

The purpose of this study is not only to compare the performance of RSF, XGB and COX 

for pancreatic cancer prediction, but also to examine the extent of overlap with respect 

to individually predicted risks based on the three modeling approaches. The results will 

provide insights into the advantages and disadvantages of the three methods for the purpose 

of predicting rare time-to-event outcomes including pancreatic cancer.

METHODS

Study design and setting

This is a retrospective cohort study involving two large health care organizations. Kaiser 

Permanente Southern California (KPSC) is an integrated healthcare system that provides 

comprehensive healthcare services for 4.8 million enrollees across 15 medical centers and 

235 medical offices in Southern California. The Veterans Affairs (VA) is America’s largest 

integrated health care system, providing care to 9 million enrollees every year at its 1,298 

health care facilities including 171 medical centers and 1,113 medical offices nationwide. 

The study protocol was approved by the KPSC and VA Institutional Review Boards.

Sources of data

The data were extracted from KPSC Research Data Warehouse and Clarity, the repository 

of HealthConnect, the EHR system of KPSC, and VA’s Corporate Data Warehouse (CDW), 

a repository derived from the Veterans Health Administration (VHA)’s electronic medical 

records system called Computerized Patient record System (CPRS)/VistA system.14

Participants

The study participants were patients between 50–84 years of age with 1+ clinic-based visit 

(index visit) within a KPSC or VA facility in 2008–2017. In addition, KPSC patients were 

required to have continuous enrollment in the KPSC health plan in the past 12 months (gaps 

45 days or less were allowed) prior to the index visit, and the VA participants were required 

to have another clinic-based visit within the 12 months prior to the index date given the 

open-ended nature of the VA health coverage system. Patients who had history of pancreatic 

cancer prior to the index date were excluded. For patients with multiple qualifying index 

visits, we selected one randomly as the index visit (to serve as the date of risk assessment). 

The date corresponding to the index visit was referred to as the index date (t0).

Follow-up

Follow-up started on t0 and ended with the earliest of the following events: (1) disenrollment 

from the health plan (applicable to KPSC patients only), (2) end of the study (December 31, 

2018), (3) reached the maximum length of follow-up (18 months), (4) non-PDAC related 

death, or (5) PDAC diagnosis or death due to PDAC (outcome). A minimum of 30 days of 

follow-up was required.
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Outcome

The study outcome was PDAC diagnosis or death with pancreatic cancer in the 18 months 

after the index date. For the KPSC cohort, PDAC was identified from the Cancer Registry by 

using the Tenth Revision of International Classification of Diseases, Clinical Modification 

(ICD-10-CM) code C25.x and histology codes (eTable 1). Pancreatic cancer deaths were 

derived from the linkage with the California State Death Master files and identified using 

ICD-10-CM codes C25.x.15 For the VA cohort, cases of PDAC were similarly identified 

through an internal VA Central Cancer Registry, and PDAC deaths identified through the VA 

Mortality Data Repository, which integrates vital status data from the National Death Index 

(NDI), VA, and DoD administrative records.

Predictors

A list of 500+ candidate features (eTable 2) were extracted in the original study. The 

comprehensive list includes patient demographics, diagnosis, medical procedures, dispensed 

medications, lab results, potential symptoms of pancreatic cancer and medical utilizations. 

From the candidate feature pool, twenty-nine (eTable 3) were pre-selected by using Random 

Survival Forest (RSF). Missing values were imputed16 if the frequency of missing was 

<60%. We used predictive mean matching method17 with k=5. Laboratory measures with 

≥60% missingness or change/change rate measures with ≥80% missingness were not 

included in the model development process. Nine imputed datasets were generated at KPSC 

and 10 were created at VA (eFigure 1).

Statistical Analysis

Description of modeling approaches—RSF is an ensemble learning method for 

analyzing right censored time-to-event data.18, 19 RSF approach uses bootstrapping and 

random node splitting to grow a group of decision trees. The results are averaged across 

all the trees to determine the relative importance of each variable based on the average 

minimal depth (average distance from the root node to the node where the variable first 

splits). The lower the average minimal depth values, the more important the variable. RSF 

can be computed using the R-package randomForestSRC.20

COX is a semi-parametric model commonly used to model the time it takes for an 

outcome to occur.21, 22 It is often used to study the relationships between predictors and 

a time-to-event outcome,21 and is more and more frequently utilized to build risk prediction 

models23, 24 due to its easier model training and implementation process compared to 

machine-learning based models (e.g., RSF and XBG introduced below). As a regression-

based model, Cox proportional hazards regression relies on the assumptions of log-linearity 

and proportional hazards across different covariates.

XGB is a scalable and flexible tree boosting system in which users can define various 

objective functions.25 The parallel and distributed computing makes learning much faster 

compared to other tree-based models.25 For the current study, the R-package XGBoost 

was applied with “survival: COX” (Cox proportional hazards regression) selected as the 

objective function and “COX-nloglik” (negative partial log-likelihood for Cox proportional 

hazards regression) specified as the evaluation metric.26
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Training, validation, and testing datasets—For RSF and XGB models, the process to 

create the 45 training and internal validation datasets and the 10 externally testing datasets 

is displayed in eFigure 1. For Cox proportional hazards regression model, we randomly 

selected 80% of patients from the first imputation dataset to form the training dataset. The 

rest (20%) served as the corresponding internal validation dataset. The exact same patients 

(based on patient IDs) in the 2nd to 9th imputation datasets were identified for training 

and internal validation, respectively, forming a total of 9 training and 9 internal validation 

datasets. All 10 imputed datasets at VA were used for external testing.

Model training—For all three methods described above, age was forced into each model. 

Preselected features were added incrementally to identify the feature that yielded the 

maximum improvement of c-index. This process continued until the c-index increased is 

<0.005 when a new feature is added. For RSF and XGB, out of the 45 models derived 

from the 45 training/internal validation datasets (9 imputation datasets x 5-fold cross 

validation), the model that appeared most frequently was selected as the final model. To 

train the Cox proportional hazards regression model, we appended the 9 imputed datasets 

into one single stacked dataset.27 To account for the multiple observations for each subject, 

weights were applied according to Wood et al. (weight=1/M, where M, the number of 

imputed datasets=9).27 All the possible interaction terms and quadratic terms (for continuous 

variables only) of the 29 pre-selected features were included in the training process.

Model validation and testing

Discrimination:  The discriminative power for each final model was evaluated by c-index. 

When the analyses were limited to patients with complete follow up or developed PDAC 

within 18 months, area under the receiver operator curve (AUC), sensitivity, specificity, 

positive predictive value (PPV), and relative increase in risk in comparison to that of the 

entire cohort at various levels of risk thresholds were also calculated for each final model. 

The results were averaged across the internal validation and external testing datasets. Area 

under the ROC curves (AUROC) were also plotted for each model.

Calibration:  Calibration was assessed by calibration plots with five risk groups (<50th, 

50–74th, 75–89th, 90–94th, 95–100th percentiles). Greenwood‐Nam‐D’Agostino (GND) 

calibration test was also performed to assess goodness-of-fit.28

Heterogeneity in high-risk patient identification:  To understand how the three risk 

prediction models complement each other in patients who are likely to benefit from cancer 

screening, we plotted Venn diagrams of all patients and cancer patients in those with the 

highest risks (top 5 percentiles and top 1 percentile, respectively). To visualize and describe 

the comparative distributions of the risks predicted by the three models, overlapping 

histograms were plotted.

Predicted risks for high-risk patients:  To understand the absolute values of the risks 

predicted by each model for high-risk patients, the predicted risks were plotted using 

histogram.
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In the previous study, we showed that the performance of the RSF model could be improved 

when the model was recalibrated in the testing datasets for the VA population.5 In the 

current study, only the recalibrated results are presented.

Linear vs. quadratic regression models:  For the COX model, we developed a separate 

model without including the quadratic (high order) terms. The developed models were 

applied to the internal validation datasets.

Feature contribution:  To understand the relative importance of the PDAC predictors 

being selected into the final models, we used SurvSHAP(t)29 implemented in R-package 

‘survex’30 to explain the impact of individual features on model’s prediction.

RESULTS

The numbers of eligible patients at KPSC (training and internal validation) and VA (testing) 

were 1.8 million and 2.7 million, respectively (eFigure 2). Out of the 1.8 million records of 

KPSC, 1.441,546 and 360,386 patients were utilized for training and internal validation, 

respectively. The incidence rates of PDAC were 0.77 and 1.11/1,000 person-years of 

follow-up at KPSC and VA, respectively. Patient demographics and clinical characteristics 

including time since health plan enrollment for both KPSC and VA patients are presented in 

eTable 4a and eTable 4b.

Final model derived from each modeling method

Out of the 29 pre-selected potential predictors (eTable 3), the RSF method selected the 

model containing age, abdominal pain, weight change, alanine transaminase (ALT) change 

and HbA1c as the final model (Table 1). For the final model identified by XGB, all the 

predictors remained the same as that of RSF model except that ALT change in one year 

was replaced by ALT change rate in one year. The COX model selected the exact same 

predictors identified by XGB model; however, it included quadratic terms of the following 

continuous predictors: ALT rate change, HbA1c and weight change. The size of training, 

internal validation samples and external testing samples are represented in eTable 5. The 

hyperparameters used for feature selection for each of the three models can be found in 

eTable 6.

Performance

Discrimination: The c-indexes of the RSF model (mean 0.77, SD 0.02) and XGB model 

(mean 0.78, SD 0.01) based on the KPSC internal validation data were comparable (Table 

1). The c-index (mean 0.74, SD 0.01) for the COX model seemed to be slightly lower 

compared to those of RSF and XGB models. The mean c-indexes based on the 10 testing 

datasets at VA were 0.71 (SD 0.002), 0.74 (SD 0.008), and 0.70 (SD 0.005), respectively, 

for RSF, XGB and COX models (Table 1). For KPSC internal validation datasets, the COX 

model appeared to have lower AUC (0.737, 95% CI 0.710–0.764), compared to those of 

RSF (0.767, 95% CI 0.744–0.791) and XGB (0.779, 95% CI 0.755–0.802), although the 

95% confidence intervals overlap. For the VA external testing datasets, the AUC of the 

COX model was 0.706 (95% CI 0.699–0.714) compared to those of RSF (0.731, 95% CI 
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0.724–0.739) and XGB (0.742, 95% CI 0.735–0.750). The advantage of the discriminative 

power of the two machine learning models (RSF, XGB) over the COX model depends on 

risk threshold. The AUROC curves for the three models are plotted in Figure 1.

Calibration: Calibration test of the three models based on the KPSC validations datasets 

revealed that the XGB model was poorly calibrated (Table 1, mean p-value of calibration test 

<0.01), while the RSF model and the COX model had reasonable calibration (Table 1, mean 

p-value of calibration test =0.4 and 0.3, for RSF and COX respectively). For both KPSC 

internal validation dataset and the VA testing dataset, the XGB model tended to overestimate 

the risks of PDAC, especially in the highest risk group (Figure 2).

Sensitivity: For KPSC, the sensitivity of the COX model was compromised only when the 

risk threshold was at the top 20th or top 15th percentile compared to that of RSF or XGB 

model (Table 2a). However, For VA, the sensitivity of the COX model was lower compared 

to that of RSF or XGB model for all risk thresholds.

PPV and fold increase in risk: The PPV of the highest risk identified by each model 

(top 2.5 percentile) were similar (1.1% for RSF, 1.2% for XGB, and 1.2 for COX). PPVs 

were higher for the VA enrollees, despite lower AUC compared to those of KPSC, as 

baseline risk of PDAC were higher at the VA (Table 2b). The top 2.5 percentile of risk 

predicted by all three models identified patients whose predicted PDAC risk exceeded 1% 

over 18 months in both the internal validation and external testing datasets. Between RSF 

and XGB, the performance measures were either the same or slightly favored XGB (Table 

2).

Heterogeneity in high-risk patient identification: Figure 3 demonstrates the 

heterogeneity across the three models when they are used to identify high risk patients 

at KPSC. If we are able to screen the top 5% of patients (n=29,663) with the highest risk of 

developing PDAC identified any of the three models based on the KPSC validation dataset, 

only 8,049 patients will be consistently captured by all three models (Figure 3). Patients 

uniquely identified by RSF, XGB and COX were 4,466, 2,459 and 6,369, respectively. Out 

of the 117 PDAC cases developed in the 29,663 screened patients, 56 were identified by all 

three models (Figure 3). The COX model uniquely captured 19 PDAC. In other words, if 

both RSF and XGB are used to identify high-risk patients without the COX model, 19 true 

cases would have been missed. Similarly, RSF and XGB would uniquely add 9 and 4 cases, 

respectively.

Predicted risks for high-risk patients: eFigure 3 revealed that XGB tended to have 

higher predicted risks for the top three risk groups, compared to RSF and COX. The average 

observed risks based on XGB seemed to be slightly higher compared to those of RSF and 

COX for these three risk groups.

Linear vs. quadratic regression models: When the quadratic terms were dropped in 

the COX model, the c-index on based on the KPSC validation datasets dropped from 0.74 to 

0.72 (SD 0.002).
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Feature contribution: The feature importance is shown in eFigure 4. The features are 

ranked based on their relative influences on model’s prediction. For all three models, age 

was the most important feature. Abdominal pain was the least important feature in both RSF 

and XGB models; however, its contribution in the COX model was bigger compared to ALT 

change and weight change.

Discussion

In this study, we compared the performance of two machine learning models with Cox 

proportional hazards regression model for prediction of pancreatic cancer, an uncommon 

but frequently lethal cancer. The two machine learning models appeared to have better 

discrimination compared to the COX model when measured by c-index or AUC; however, 

the discriminative powers are comparable among all three models when focused on the very 

high risk (patients who may be targeted for screening). An interesting finding of the study 

is the complementary nature of the three prediction methods. Each of the three models can 

identify unique patients to screen and identify unique PDAC cases due to the differences in 

methodology. Using a combination of models can potentially increase the sensitivity of a 

screening strategy.

Many previous studies comparing machine-learning based models to parametric models in 

cancer incidence or outcomes have found similar performance between the models. For 

example, Omurlu et al. have compared RSF with Cox proportional hazards regression model 

with simulation and a real data application and suggested that all the methods were almost 

similar.9 Hazewinkel et al. compared RSF, survival neural networks (SNN) and COX based 

on the data collect from a group of cancer patients, and concluded that all three methods 

were similar in terms of performance measured by C-indices, Brier and KL scores.12 

Meanwhile, there are other studies favoring machine learning-based models.6, 7 For instance, 

Miao et al. found that RSF improved discrimination performance greatly than Cox with 

an out-of-bag C-statistics of 0.812 comparing to 0.736 for the Cox based model.6 A data 

simulation study conducted by Baralou et al. revealed that under the presence of interactions, 

RSF performed better than Cox-PH as the number of events increased.31 The current study 

found a difference of 0.03–0.04 in c-index or AUC between a machine learning-based model 

and the COX model, a very minor improvement. Although RSF algorithms are a promising 

alternative to conventional COX model, a significant limitation is the requirement of higher 

number of events for training.31

Machine learning models do have advantages over regression model because they can 

handle non-linear effects and interactions among predictors. However, regression models 

are much easier to implement in operations. In addition, the required efforts to update 

or recalibrate a model being transferred from the development site are much less for a 

regression model. This puts the regression-based model in favor even if their performance is 

slightly compromised compared to machine learning-based models.

High order and interaction terms are often considered when the interest of performing the 

regression model is to understand the effects of covariates on the outcome; however, they are 

often ignored when the model is developed for the purpose of risk prediction. In the current 
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study, the disadvantage in discrimination measured by c-index for the Cox proportional 

hazards regression model compared to machine learning based model is enlarged when the 

high order terms are ignored. This is because Cox proportional hazards regression models 

are log-linear models, and thus, lacks the flexibility of data fitting unless high order terms 

and/or interaction terms are added.

The XGB model over-estimated the risks of PDAC in the top three highest risk groups. 

However, this flaw does not impact its ability to identify high risk patients, because the 

observed risks in the highest three risk groups of patients were also a bit higher, compared to 

those of RSF and XGB. In other words, if XGB model is used to identify high risk patients 

in a relative way (e.g., top 20% of patients in terms of risk) rather than know the actual risk, 

it is still a good choice.

The present study has several other limitations. First, of the 1479 and 4,582 events 

identified in the KPSC and VA cohorts, respectively, 300 and 2,564 events were captured 

by data sources other than Cancer Registry. An evaluation based on the KPSC Cancer 

Registry of the same time window showed that about 90% of pancreatic cancer cases 

were PDAC. Second, to estimate sensitivity, specificity, PPV and fold of risk increase, we 

relied on a subset of patients (~70% and ~80% of the total patients in the KPSC and VA 

cohorts, respectively) with complete follow up unless they died of pancreatic cancer. This 

restriction over-estimated the risk of PDAC, because the patients who were excluded from 

this analysis were at-risk for some periods of time. Third, some important predictors had 

high percentages of unknown values (i.e., missing data). Although multiple imputation was 

performed, bias may occur if the missing at random (MAR) assumption is violated. Finally, 

our comparison was performed based on EHR-based data extracted from integrated large 

health care systems and the outcome of interest is extremely rare. Our conclusions may not 

be applicable to other scenarios (e.g., more frequent outcomes).

Conclusion

Three common approaches for predicting time-to-event outcomes were compared in a large, 

diverse integrated health system and subsequently validated in a separate health system. All 

three models were parsimonious and identified key factors in determining risk of pancreatic 

cancer. Findings from the present study provide insights into model selection for targeted 

screening of pancreatic cancer based on automated analysis of data in EHR. Future studies 

may achieve better performance by developing deep learning models and/or fuse individual 

parametric, semi-parametric, and non-parametric risk prediction models.32
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ALT Alanine transaminase

AUC area under the curve

AUROC area under the ROC curve

CI confidence interval

CDW Corporate Data Warehouse

COX Cox proportional hazards regression

CPRS Computerized Patient Record System

EHR electronic health record

GND Greenwood‐Nam‐D’Agostino

HbA1C glycated hemoglobin

KPSC Kaiser Permanente Southern California

MAR missing at random

PC pancreatic cancer

PDAC pancreatic ductal adenocarcinoma

PPV positive predictive value

RSF Random Survival Forest

SD standard deviation

SNN survival neural networks

USPTF United States Preventative Services Task Force

VA Veterans Affairs Greater Los Angeles Healthcare System

VHA Veterans Health Administration

XGB eXtreme gradient boosting
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Figure 1. Area under the ROC curve (AUROC) for final model by model type based on KPSC 
validation data.
x-axis: False positive rate or (1-specificity); y-axis: True positive rate or sensitivity; RSF: 

orange, XGB: blue, COX: black.

Chen et al. Page 13

Pancreatology. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Calibration plots by model type (RSF, XGB, COX) based on KPSC validation data 
(left) and VA testing data (right).
x-axis: predicted; y-axis: observed. The five clusters represent the five risk groups defined 

by the ranges of predicted risks: <50th, 50–74th, 75–89th, 90–94th, 95–100th percentiles. 

Within each cluster, there are multiple dots representing the pairs of predicted and observed 

risks, calculated based on the corresponding validation or testing datasets.
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Figure 3. Venn diagram demonstrating heterogeneity across model type (KPSC validation data 
only).
Top: patients with predicted risk within at the top 5 percentiles (N=29,663 identified by any 

of the three models) ; Bottom: patients with predicted risk at the top 1st percentile (N=6,351 

identified by any of the three models).
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