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ABSTRACT OF THE DISSERTATION

Efficient Representation Learning for Longitudinal Data in Healthcare Applications

by

Shayan Fazeli

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Majid Sarrafzadeh, Chair

Efficient utilization of longitudinal observations is a crucial component in proposing machine

learning solutions to problems in healthcare. The temporal nature of numerous problems

in this domain, such as understanding fluctuations in physiological signals through time

pertinent to health status, renders this avenue of research particularly important for the

intersection of Health Analytics and Artificial Intelligence (AI). In the healthcare domain,

compared to other fields such as Computer Vision or Natural Language Processing, the data

is often available in limited quantities. Additionally, reliable supervision signals for training

inference pipelines are scarce. Furthermore, some data modalities and domains are critical

to health applications which are, at the same time, considerably less investigated in machine

learning research. These challenges are essential bottlenecks to address in improving the

efficacy and usability of machine learning-based healthcare solutions.

In this dissertation, we investigate the role of longitudinal data in medical and health

applications in various related domains. Namely, we consider the domains of 1) Physical

Health: Representation learning for monitoring the physical health of an individual use-

ful for in-patient and out-patient setups, with examples being physiological signals, activity

ii



data, and posture tracking. 2) Electronic Health Records: The multi-modal and temporal re-

ports in different time resolutions on patients’ health trajectories 3) Mental Health: Efficient

multi-resolution monitoring of stress and anxiety as an example use-case with important ap-

plications, and 3) Public Health: Pandemic analytics and representation of population-level

spatio-temporal health data. We suggest novel techniques to address the primary challenges

in each task efficiently. In our solutions, we use approaches such as optimizing self-supervised

contrastive objectives, knowledge transfer, and adversarial training so as to minimize the re-

liance on accurate and large-scale supervision signals. We discuss the empirical validation

of our suggested solutions and shed light on some of the key future research directions.
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CHAPTER 1

Introduction

The computing and digital design world has come a long way since the early 20th century.

The earliest digital computers were introduced in the 1940s and were capable of running

thousands of operations. In contrast, these days, almost everyone around the globe owns a

smartphone and thus, on a day-to-day basis, uses a portable computer capable of running

trillions of operations. The role of digital computing in healthcare is no exception to this

rapid progress.

In the late 20th century, and the rapid progress in technology and digital devices, the

healthcare system and hospitals started a transition in patient record keeping, going from

paper-based written records to digitally kept information. The increased access to effortless

and efficient communication with the introduction of the Internet was another driving factor

in this matter. The quick and efficient data transmission opportunities further highlighted

the importance of moving towards more digital healthcare systems. This was a considerable

change in healthcare, and while it introduced novel challenges related to patient privacy, it far

surpassed the old approach in efficiency and reliability. Electronic Health Records (EHRs),

defined as ”the systematized collection of patient and population electronically-stored health

information in a digital format,” helped by providing a much easier way to keep track of the

comprehensive longitudinal health information for patients and the services they received

at the hospitals. Enhanced access to information and reduced medical errors due to more

efficient and less error-prone representation of data were but a few of what involving EHRs

and technological advancements in health offered.
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Parallel to the use of technology in in-patient settings, in the early 2000s, the use of

mobile phones and other personal digital devices started to become prevalent. With dig-

ital systems becoming more advanced and following the reduction of prices and increased

affordability of access to them, researchers started to pay more attention to the potential

that the interconnection of digital computing and health monitoring offered for out-patient

healthcare. Early forms of connection, such as Short Message Service (SMS), were a popular

choice in many of the proposed solutions relying on transmitting health-related notifications

to individuals.

Beyond these movements, public health experts have also relied on computer-assisted

modeling and spatiotemporal data acquisition in dealing with health crises and disease man-

agement. The unfortunate occurrence of the COVID-19 pandemic in 2020 is a clear example

in this domain, showcasing the importance of data-driven monitoring and surveillance in

understanding the spread of the virus.

In summary, one can categorize the impacts of technological advancements on health as

follows:

• Hardware: As the computational power and energy efficiency of digital systems are

improved, it becomes easier to integrate them into healthcare solutions. In the context

of mHealth, for example, nowadays, it is possible to produce small wearable components

to monitor patients or rely on commercially available smartphones, smartwatches, and

other devices such as smart rings. Additionally, the enhanced and customized hardware

allows for running more computationally intensive algorithms and artificial intelligence

pipelines that are an inseparable component of many modern solutions.

• Communication: Transmitting information plays a crucial role in digital health. In

the in-patient setup and electronic health records, it enables crucial functionalities such

as easy access to the detailed medical history of patients for medical experts from any-

where. In the out-patient setup, it helps cut the costs of physically attending a health
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center or a hospital via solutions such as telehealth and remote health monitoring.

• Software: At the heart of digital health, software on the back-end, front-end, and

service layers help drive the system forward. The improvements in the back-end sys-

tems, such as efficient databases, real-time record keeping, and file storage, allow the

solutions to leverage the Internet and rely more on cloud services in record-keeping.

The front-end systems play an essential role in engaging users and help create a user-

friendly experience that incentivizes further usage of the systems. The services and

functionalities that run in the background, either on the cloud services or on the de-

vice itself, rely on proper algorithm design and model selection to prepare the result

of analyses that the system needs.

• Intelligent Systems: Artificial Intelligence (AI) has seen exponential progress in the

past decade, and machine learning algorithms are becoming more common in healthcare

systems as time passes. Such advancements have been a game-changer in the eHealth

domain, and the research on improving the performance, explainability, and reliability

of AI-powered models is ongoing.

AI-powered models have been achieving impressive performance across a variety of tasks,

with state-of-the-art models in the fields of Computer Vision and Natural Language Pro-

cessing pushing the limits of machine performance further and further away every year.

Nonetheless, the intersection of AI with Health Analytics is a niche field constrained by

the challenges specific to health-related data and tasks. The advancements in technology

allows efficient capturing and storage of high-quality health data, both in in-patient and

out-patient settings and population level. Nonetheless, compared to images and text, the

modalities involved in health are considerably less investigated. Additionally, going beyond

the analyses of static information and understanding health data from the lense of temporal

changes is crucial to many health-related tasks, and active research tries to shed more light

on how this data can be of good use.
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This dissertation focuses on our work in the utilization and understanding of temporal

and longitudinal health data for modernized healthcare solutions. We demonstrate this as

a critical problem in digital health with applications across healthcare problems, namely,

out-patient remote health monitoring and health trajectories, in-patient record keeping and

inference-making based on Electronic Health Records (EHRs), and finally, in public-health

and population-level health analyses.

The rest of this manuscript is structured as follows: Chapter 2 categorizes the research

subfields pertinent to this dissertation and reviews the related work and proposed solutions

in each domain. Chapters 3 and 4 discuss our works in the domain of personal physical

health. Chapter 3 focuses on transferrable representation learning for physiological signals

and introduces an approach for learning universal electrocardiogram embeddings via transfer

learning. Chapter 4 discusses the applications of tracking bodily activity in ehealth, defining

problems and proposing automated solutions in three critical subproblems in this domain.

Moving on to in-patient records, Chapter 5 proposes a longitudinal prediction pipeline lever-

aging multi-modal electronic health records as its input. Chapter 6 discusses Pandemic

Analytics and presents an approach for inference-making in public health crises leveraging

spatiotemporal data. Chapter 7 focuses on remote monitoring of the indicators of mental

well-being and presents a solution for the recognition and tracking of stress as an example

of a short-term episodic mental health problem affecting the general public. It leverages

advanced techniques such as adversarial regularization and self-supervised pre-training to

optimize performance. Finally, Chapter 8 concludes this dissertation.
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CHAPTER 2

Related Work

This dissertation discusses our proposed solutions to efficiently model data from various

data modalities and targetting optimized performance on numerous domains of longitudinal

health tasks. In what follows, we provide the related literature prior to each of the presented

solutions in their corresponding categories.

2.1 Personal Health

2.1.1 Physical Health: Tracking and Recognition

2.1.1.1 Representation Learning for Electrocardiogram

Electrocardiogram (ECG or EKG) is one of the key vital signals in domain of health analytics,

comprising an important source of information across various applications. Reviewing ECG

readings by cardiologists and medical professionals is essential in patient diagnosis. To

address the problems raised with the manual analysis of ECG signals, many studies in the

literature explored using machine learning techniques to accurately detect the anomalies in

the signal [EKS17, DKS17]. Most of these approaches involve a preprocessing phase for

preparing the signal (e.g., passing it through band-pass filters). Afterward, the handcrafted

features, primarily statistical summarizations of signal windows, are extracted from these

signals and used in further analysis for the final classification task. As for the inference

engine, conventional machine learning approaches for ECG analysis include Support Vector

Machines, multi-layer perceptrons, decision trees, and so on [IGK06, SSC10, KKM17].
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These handcrafted features provide us with an acceptable representation of the signal.

Based on recent machine learning studies, automated feature extraction and representation

methods are proven to be more scalable and have the potential to make accurate predic-

tions. An end-to-end deep learning framework allows the machine to learn the features best

suited to the specific task it is dedicated to carrying out [AOH17b, KIG16, JD17]. This

approach provides us with a more accurate representation of the ECG signal, using which

the machine can compete with a human cardiologist in analyzing the signal [RHH17]. Deep

learning approaches, however, contain a tremendously large amount of variables that of-

ten require massive amounts of data to be trained. This renders it critical to make the

most of the available training data to enhance the semantic interpretability of the learned

representations.

2.1.2 Mental Health

Stress and anxiety-related disorders are common mental health challenges. Such disorders

can have significant negative impacts on people’s lives, including higher chances of depression

and suicide as well as associated comorbidities with physical health issues [Cli]. Unfortu-

nately, these issues remain inadequately treated in many cases due to challenges ranging from

lack of viable access to therapeutic services to associated stigmas with utilization [Men, APA].

However, even when an individual decides to seek psychotherapeutic help to alleviate these

problems, challenges persist in the diagnosis and effective treatment of their disorder. At

the inception of care, the steps to diagnose and monitor often include clinical evaluation

and comparing personalized symptoms to standardized criteria, for example, the Diagnostic

and Statistical Manual of Mental Disorders (DSM-5), which is commonly used for this mat-

ter. Researchers continue to study and improve the practicality and accuracy of guidelines

such as DSM-5[BSG12, ZMC17]. Still, there are challenges in converting aggregated and

generalized diagnostic criteria down to episodic-level incidents of stress and anxiety.

The most obvious approach to doing so leverages biometric data extracted from wearable
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sensors embedded in smart devices that measure a physiological stress response. However,

while such data is incredibly valuable, and notably, sensing devices have become increasingly

sophisticated at monitoring physiological stress; the resulting analyses are incomplete at best.

This owes to the fact that from the standpoint of straightforward correlative analytics, it

is known that there is not a direct monotonic correlation between the emotional perception

of stress an individual may feel and the manifestation of the underlying physiological stress

response. For instance, a meta-analysis in the social stress domains has recently shown that

merely 25% of studies in the field demonstrated a significant correlation between physiological

stress and perceived emotional stress [CE12]. Given that self-reports of perceived stress often

do not contain information on the physiological stress response, understanding the complex

relationship between the two becomes a crucial matter[CE12]. It is also plausible to assume

that such complexity also arises from various other confounding factors (e.g., demographics,

occupation, and other mental health disorders such as attention-deficit hyperactivity disorder

(ADHD) can influence how prone someone is to stress). This discrepancy has meaningful

impacts on the utility of passive stress detection based largely on physiological indicators.

While sensors may be returning accurate readings on physiological stress, if they do not

align with the user’s own perceptions of stress, notably if they fail to properly account

for moments when a user feels acute emotional distress, then it will demotivate further

engagement with a mental health platform. This hindrance comes in spite of considerable

progress that has been made in recent decades regarding the capabilities and efficacy of

personal digital devices, including smartwatches, smartphones, and wearable devices. This

fact has made such devices attract much research and commercial attention, employing

them for various monitoring objectives [A 18, Tex17]. These monitoring approaches focus

primarily on fitness and health-related aspects, resulting in extensive research and countless

commercialized applications. Examples include tracking athletes’ training, detecting falls

for older adults, tracking post-surgery therapeutic and rehabilitation exercises, and posture

correction [DMH17, VFB15, GFE19, WRK14].
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While the central focus of health monitoring applications has undoubtedly been on phys-

ical health, a wide range of research works has focused on understanding the relationship

between observations obtained leveraging digital devices and some aspects of individuals’

mental health status. Notably, a primary goal in designing smart and automated mental

health monitoring approaches involves proposing meaningful passive-sensing tools so that

informative observations regarding health status can be made by eliminating or diminishing

the need to interfere with users’ daily activities or request repeated active interactions. Con-

sidering the prevalence of smartphones, there have been efforts exploring whether pervasive

mental health monitoring could be feasible through a smartphone and the embedded sen-

sors, such as motion sensors, ambient light, microphone, camera, Global Positioning System

(GPS), proximity, and touch screen[CFL17][OPC14][BSW15][NGT20]. These efforts showed

the promise of this approach in successfully tying behavioral monitoring to mental health;

however, such approaches have not translated into fully mature frameworks for monitoring

of anxiety, and have focused almost exclusively on depression-related conditions, which while

often spoken in conjunction with anxiety, manifest in distinct ways[FIO19]. As a remote men-

tal health monitoring task, social anxiety was studied in the previous literature, and it was

shown that analyzing trajectories obtained via smartphone location services can paint a com-

prehensive picture concerning individuals’ proneness to it [BCF18, CFH17, HXL16, GHC19].

The advantages of leveraging a smartphone-based platform are that the continuous collec-

tion of quantitative data potentially provides a more reliable indicator of an individual’s

risk at any given time, as well as offering a mechanism for just-in-time intervention should

a mental health episode occur[BSW15]. Conversely, smartphone-derived data present sev-

eral challenges, some of which have already been noted, which can result in limited accu-

racy owing to differences in behavioral patterns across users, and the indirect manner of

detection[FIO19]. Another choice of hardware for gathering data pertinent to health data

is application-specific wearable sensors. For instance, wearable electrocardiogram (ECG)

sensors were used to recognize perceived anxiety via pattern recognition [KMW18].
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Smartwatches have a unique position amongst the wide range of various commonly used

digital devices. They are in close contact with the skin and, given their attachment user’s

wrist, which is a distal point of a major appendage, make it possible to obtain most measure-

ments (e.g., activity) at higher accuracy, as well as enabling additional measurements such as

heart-rate or pulse oximeter. In case of the need for brief questions, interactions, or Ecolog-

ical Momentary Assessments (EMAs), smartwatches can also be used to issue messages and

acquire responses and entries by the user [A 18, Tex17, J 17]. Additionally, smartwatches

are prevalent, and relying on them as the hardware for health applications provides a better

alternative in most cases to application-specific wearable devices in terms of cost, comfort,

and user-friendliness. Data-driven analyses leveraging smartwatches’ sensory readings have

been successful at the problem of patient classification for bipolar disorder, schizoaffective

disorder, and depression [HZY22].

In the health analytics domain, data and human annotations are often limited. Therefore,

dealing with overfitting and memorization is a crucial matter. Additionally, it is beneficial to

go beyond the limited number of human annotations available in training efficient inference

pipelines. Less reliance on annotations by focusing on unsupervised and self-supervised

approaches has received a lot of research attention in recent years [CKN20, CMM20, CH21,

GSA20]. The core idea in most works in this area is that comparing and contrasting the latent

representations of examples that are expected to share certain similarities (e.g., augmented

versions of the same image) can benefit the trained weights and help with regularizing the

learned decision boundaries [ZCD17].

2.2 Body Activity and Movement Analyses

2.2.1 Activity Recognition

A wealth of research has been dedicated to using accelerometer and gyroscope data for ac-

tivity recognition [CPR11, QMX10]. A large amount of this work has gone into finding the
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optimal classifier for activity detection. Classic models, such as random forest, have shown

some success, achieving between 90% and 94% accuracy in identifying activities such as

walking, sitting, and taking the stairs [CPR11]. Similarly, simple models based on Support

Vector Machines (SVM) have achieved reasonable performance on this task [QMX10]. Re-

cently, deep learning models, namely, convolutional neural networks (CNN) and recurrent

neural networks (RNN) have been applied to activity recognition [YWC08]. However, both

of these studies have used multiple inertial sensors that are placed in different parts of the

body, which is not feasible on a daily basis, especially when it comes to conducting activity

recognition for children. Moreover, none of the above-mentioned studies have focused on

activity recognition for children.

2.2.2 Rehabilitation Exercises

Part of this dissertation discusses our work on knee-angle recognition to track the perfor-

mance of post-surgery rehabilitation exercises. On this front, there have been numerous

works regarding monitoring knee movements and the effect of different physical activities on

its health. In [JG93], authors tried to determine the effect of different amounts of effusion

on knee intraarticular pressure (IAP) during knee movement. In [SMA87], authors used

Electromyographic analysis to compare the effects of knee exercises in healthy subjects and

subjects with knee pathologies. Gyroscope, flex sensors reading, and knee movement have

been the main sources of information for measuring knee joint angle in the previous research

[MIH13, LKB98, PKK01].

2.2.3 Posture Tracking

Remote monitoring of the human body, postures, and activities is a crucial area of mobile

health research. Many researchers and companies have worked on developing utilities and

analytical solutions to monitor, understand, track, and leverage information related to body
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posture. These solutions assist subjects in improving physical activities, ranging from general

posture to particular therapeutic exercises [Dev, GFE19].

Numerous research works have focused on monitoring sitting as an important daily activ-

ity. These works were mostly focused on analyzing the sitting posture to better fathom its

transitions and variations throughout the process of sitting [MHS16, EV16]. The system in

[ZHL19] is designed for sitting behavior tracking and analysis. This work has utilized many

stretchable sensors and pressure sensors to prepare a thorough sensor-driven system, with

their main contribution being their sitting behavior recognition using neural networks and

dynamic time warping. The system proposed in [WCY19] with the objective of helping mit-

igate the impacts of poor sitting posture, such as pain and discomfort in the back and neck.

Their system is based on multiple motion sensors, and it is close to our solution discussed in

this manuscript in terms of low cost and affordability. Their system differentiates between

sitting, lying, walking, and standing postures. Their framework’s main components are

cardboard, a test pole, and dynamic measure units (DMU), including accelerometer, gyro-

scope, and magnetometer. The framework proposed in [SGH19] follows a different objective

of monitoring floor sitting postures. This work proposes the use of a number of pressure

sensors in a system to achieve this objective. A personalized transportable folding device is

utilized in [WCC20] to assist with maintaining a better sitting posture while eating. Their

results led to the empirical validation of the hypothesis that improving the sitting posture

while eating can help mitigate the adverse effects of dysphagia. The use of sensor-augmented

and specialized chairs is also investigated in the literature [Ami12]. In [SGG19], the authors

have proposed a system based on a chair embedded with pressure sensors to differentiate

between the three main sitting postures of leaning forward, reclining backward, or neutral

sitting. In terms of the sitting postures that this system attempts to recognize, this work

bears considerable similarity to ours. Nevertheless, there is no need for any other circuitry

besides a single motion sensor in our approach. A similar grouping of sitting postures can

also be found in [LBA18]. Another work in which a chair is augmented with a large number
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of electrical sensors is [FDN19]. In a different approach, [SKN16] uses a pressure mat for

sitting posture recognition. A sensor-augmented cushion is also used in [IS18] and [Hwa19]

for sitting posture detection, which serves as an approach similar to the previously men-

tioned works. Feedback mechanism has also been used for posture correction. The system in

[BAS17] is composed of a Kinect device for extracting body landmarks and helping the user

by providing feedback, urging them to maintain proper posture. Several other Kinect-based

approaches focused on finding unhealthy sitting postures [MP18, XCY19, He18, YMC17].

In [TMB19], authors combine the information obtained from Kinect with smartwatches to

improve the resulting detections. As sitting posture recognition is especially important for

remote health monitoring of older cohorts, a similar work focused on Kinect-based posture

recognition for older adults is presented in [TLQ18].

2.3 Electronic Health Records

In the context of EHR representation learning, many works have attempted to perform

this task by employing auto-encoding (AE) schemes [RHW88, Bal12]. This includes a pre-

training sequence optimizing a data-reconstruction objective followed by supervised fine-

tuning on downstream tasks [HS06, HOT06, VLB08, MMC11, KW13].

The utilization of unsupervised and self-supervised learning has led to significant improve-

ments in the domain of natural language processing, specifically, the use of context windows

and skip-grams, as well as learning language models for language generation [MSC13, SVL14,

BCB14a]. Deep unsupervised representation learning has been successfully applied to var-

ious health settings such as EHRs (clinical concepts), medical text, and imaging data for

phenotyping or classification. The general approach is to extract features using an unsuper-

vised model and stack it with a classifier for downstream tasks. For instance, in [MLK16],

a stack of denoising autoencoder multi-layer perceptron was used to predict future disease

codes. They run their method on an extensive database of approximately 700,000 patients
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and show improved predictive performance.

Similarly, in [CBS16, SSG17], a multi-layer perceptron using the skip-gram model was

trained with an added regularization for the co-occurrence of codes within a visit to embed

the clinical concepts on MIMIC III [JPS16]. As EHR data might have limited occurrences

of specific codes and hence hinder the learning process of deep models, later work suggested

adding an attention mechanism on external ontology’s [CBS17]. More recent work on clinical

concept embedding focused on leveraging temporal context using attention [CGN18a]. From

the results, they suggested learning time-aware representations is critical to improving the

performance for a clinical decision task.

Similar to the language modeling task, and considering the electronic health records as

a language of its own ordered by the information reflecting on the temporal order of the

records, one could argue that the information (e.g., codes in a visit) should be helpful to in

predictive modeling of the surrounding context [CBS16]. There have been works focusing

on the use of convolution and leveraging external ontology for EHR representation learning

as well [NTW16, CBS17, ZKH18].

When representing medical codes, their hierarchical structure can be leveraged for effi-

cient learning. For example, there have been works on embedding codes at the treatment level

(medication and procedure codes to predict diagnosis codes, as well as going from diagnosis

codes to predict next visit’s codes) [CXS18]. Although such models exhibit reasonable per-

formance and outperform earlier solutions which are often validated on proprietary datasets,

they do not emphasize leveraging the temporal nature of these records. Training a CBOW

model with temporal attention on the code representations has also been investigated as a

helpful solution [CGN18b]. These methods primarily focus on one domain (e.g., medical

code embedding) and disregard other critical modalities (e.g., doctor notes).

The medical notes in the EHR corpora often comprise large amounts of valuable informa-

tion in the form of unstructured text data, which due to the challenges associated with their

representation, have been studied less extensively, with works focusing on clinical concept
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embedding instead. These notes provide vast amounts of information on a patient’s progress

trajectory and health status; nonetheless, given the use of medical terminology and the do-

main shift compared to the general English text, their representation could be challenging

[GOM18].

The use of unstructured EHR data in supervised and semi-supervised fashion for learning

patient representation has been the focus of some works [ROC18, DM18]. Traditionally, the

use of CNN and RNN (e.g., in LSTM setting) has been shown to be effective in embedding

text data in the EHRs [LZR18]. The introduction of Transformers has been a game changer

in the natural language processing domain [DCL18a]. There are variations of Transformer-

based language models focused on embedding medical text [HAR19].

Few works have considered multi-modal EHR representations, for instance, jointly repre-

senting text data and clinical codes [BCE18, MWD18]. In providing efficient representation

learning pipelines for the longitudinal records present in large-scale EHR corpora, it is essen-

tial to consider the temporal nature of the data as well as try to alleviate the need for expert

annotations by leveraging unsupervised and self-supervised training. Taking advantage of

multiple modalities is also beneficial, as focusing on a single modality can be limiting.

2.4 Public Health

The advances in computer systems have also had a transformative impact on the Public

Health domain. One of the prominent examples of this transformation is how health educa-

tion and promoting healthier lifestyles have changed through time with the introduction of

novel ways to communicate via the internet and social media. Advances in computing, com-

munication, and AI have also provided researchers with more fine-grained means to model

health trends and optimize the decision-making process for policy-makers. A clear example

is the case of the COVID-19 pandemic, in which the task of determining the symptoms, long-

term effects (long-covid), and modeling the spread given the limited information available
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at the time, were of considerable interest to the researchers.

As for modeling the spread of the pandemic, the classic approach has been to define

a system of ordinary differential equations (ODEs) such as SIR and its various modifica-

tions and parameterize it to predict the patterns [KM27, DH00]. For example, in the SIR

system, you have the number of susceptible, recovered, and infected individuals, as well as

effective transmission and recovery rates. With the advancements in deep learning, using

neural networks trained via gradient-based optimization in pandemic analytics has become

another interesting topic in public health. Given the multi-faceted nature of the problem of

modeling the spread of a pandemic, it is plausible to assume that many factors reflecting

on the context of the situation could potentially provide further information to improve the

statistical relevance of the observations to the objective targets.

Since the beginning of the COVID-19 pandemic, there have been efforts to utilize com-

puterized advancements in controlling and understanding this disease. An example is the

applications developed to monitor the patients’ locations and routes of movement. A notable

work in this area is MIT’s SafePaths application [saf], which contains interview and profiling

capability for places and paths. It is worth mentioning that these platforms have also caused

worries regarding maintaining patients’ privacy [RSB20]. To provide researchers and govern-

ment agencies with frequently updated monitoring information regarding the coronavirus,

the 1point3acres team provided an API allowing access to the daily updated numbers of

coronavirus cases [covb, YSH20]. Datasets such as [kagd] were also released to the public.

A large corpus of scientific articles on coronaviruses was also released, resulting from a col-

laboration between AllenAI Institute, Microsoft Research, Chan-Zuckerberg Initiative, NIH,

and the White House [kaga]. Projects such as a work at John Hopkins University focused

on providing US county-level summaries of COVID-19 pandemic information and important

attributes [KWS20, WGL20]. The information in social networks has also been used in pre-

dicting the number of COVID-19 cases in mainland China [SCL20]. The work in [PS20b]

focused on an AI-based approach for predicting mortality risk in COVID-19 patients. There
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have been numerous approaches to modeling the pandemic using AI that have the histori-

cal outbreak information at the core of their analyses, such as the modified versions of the

SEIR model and ARIMA-based analysis [WGL20, WWG20, cova, SP20, SXP20, Kuf20].

The works in [WWG20] and [PS20a] were the main attempts in county-level modeling of

the disease dynamics. In [WWG20], authors proposed a non-parametric model for epidemic

data that incorporates area-level characteristics in the SIR model. The work in [PS20a] used

a combination of iterated filtering and the Ensemble Adjustment Kalman filter for tuning

their model, and their approach was based on a county-level SEIR model.
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CHAPTER 3

Universal Representation Learning for

Electrocardiogram Readings1

3.1 Introduction

ECG is widely used by cardiologists and medical practitioners for monitoring the cardiac

health. The main problem with manual analysis of ECG signals, similar to many other

time-series data, lies in difficulty of detecting and categorizing different waveforms and mor-

phologies in the signal. For a human, this task is both extensively time-consuming and

prone to errors. Note that the proper diagnosis of cardiovascular diseases is of paramount

importance since these are the cause of death for about one-third of all deaths around the

globe [Org]. For instance, millions of people experience irregular heartbeats which can be

lethal in some cases. Therefore, accurate and low-cost diagnosis of arrhythmic heartbeats is

highly desirable [Soc18].

In this part, we discuss our framework for ECG analysis that is able to represent the

signal in a way that is transferable between different tasks. For this to happen, we describe

a deep neural network architecture which offers a considerable capacity for learning such

representations. This network has been trained on the task of arrhythmia detection for

learning which it is plausible to assume that the model needs to learn most of the shape-

related features of the ECG signal. Also, we have a large amount of labeled data for this task,

1This chapter is based on ”Kachuee M, Fazeli S, Sarrafzadeh M. Ecg heartbeat classifica-
tion: A deep transferable representation. In2018 IEEE international conference on healthcare
informatics (ICHI) 2018 Jun 4 (pp. 443-444). IEEE.” [KFS18]

17



which makes it easy to train a network with a large amount of parameters. Furthermore,

we show that the signal representation learned from this task is successfully transferable to

the task Myocardial infarction (MI) prediction using ECG signals. This method allows us to

use these deep representations to share knowledge between ECG recognition tasks for which

enough information may not be available for training a deep architecture.

3.2 Data

we use PhysioNet MIT-BIH Arrhythmia and PTB Diagnostic ECG Databases as data source

for labeled ECG records [GAG00, MM01, BKS95]. Furthermore, we demonstrate that the

knowledge learned from the former database can be successfully transferred for training

inference models for the latter. In all of our experiments, we have used ECG lead II re-

sampled to the sampling frequency of 125Hz as the input.

The MIT-BIH dataset consists of ECG recordings from 47 different subjects recorded at

the sampling rate of 360Hz. Each beat is annotated by at least two cardiologists. We use

annotations in this dataset to create five different beat categories in accordance with Asso-

ciation for the Advancement of Medical Instrumentation (AAMI) EC57 standard [Med98].

See Table 3.1 for a summary of mappings between beat annotations in each category.

The PTB Diagnostics dataset consists of ECG records from 290 subjects: 148 diagnosed

as MI , 52 healthy control, and the rest are diagnosed with 7 different disease. Each record

contains ECG signals from 12 leads sampled at the frequency of 1000Hz. In this study we

have only used ECG lead II, and worked with MI and healthy control categories in our

analyses.
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Table 3.1: Summary of mappings between beat annotations and AAMI EC57 [Med98] cate-

gories.

Category Annotations
N

• Normal

• Left/Right bundle branch block

• Atrial escape

• Nodal escape

S

• Atrial premature

• Aberrant atrial premature

• Nodal premature

• Supra-ventricular premature

V

• Premature ventricular contraction

• Ventricular escape

F

• Fusion of ventricular and normal

Q

• Paced

• Fusion of paced and normal

• Unclassifiable
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3.3 Methods

3.3.1 Preprocessing

As ECG beats are inputs of the proposed method we suggest a simple and yet effective

method for preprocessing ECG signals and extracting beats. The steps used for extracting

beats from an ECG signal are as follows (see Fig. 3.1):

1. Splitting the continuous ECG signal to 10s windows and select a 10s window from an

ECG signal.

2. Normalizing the amplitude values to the range of between zero and one.

3. Finding the set of all local maximums based on zero-crossings of the first derivative.

4. Finding the set of ECG R-peak candidates by applying a threshold of 0.9 on the

normalized value of the local maximums.

5. Finding the median of R-R time intervals as the nominal heartbeat period of that

window (T ).

6. For each R-peak, selecting a signal part with the length equal to 1.2T .

7. Padding each selected part with zeros to make its length equal to a predefined fixed

length.

It is worth mentioning that the suggested beat extraction method is simple and effective

in extracting R-R intervals from signals with different morphologies. For example, we have

not used any form of filtering or any processing that makes any assumption about the signal

morphology or spectrum. Additionally, all the extracted beats have identical lengths which

is essential for being used as inputs to the subsequent processing parts.
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Figure 3.1: An example of a 10s ECG window and an extracted beat from it.
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Figure 3.2: Architecture of the proposed network.

3.3.2 Training the Arrhythmia Classifier

In this paper we suggest training a convolutional neural network for classification of ECG

beat types on the MIT-BIH dataset. The trained network not only can be used for the

purpose of beat classification, but also in the next section we show that it can be used as an

informative representation of heartbeats.

Fig. 3.2 illustrates the network architecture proposed for the beat classification task.
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Extracted beats, as explained in Section 3.3.1, are used as inputs. Here, all convolution

layers are applying 1-D convolution through time and each have 32 kernels of size 5. We

also use max pooling of size 5 and stride 2 in all pooling layers. The predictor network

consists of five residual blocks followed by two fully-connected layers with 32 neurons each

and a softmax layer to predict output class probabilities. Each residual block contains two

convolutional layers, two ReLU nonlinearities [NH10], a residual skip connection [HZR16],

and a pooling layer. In total, the resulting network is a deep network consisting of 13 weight

layers.

3.3.3 Training the MI Predictor

After training the network suggested in Section 3.3.2, we use the output activations of the

very last convolution layer as a representation of input beats. Here, we use this representation

as input to a two layer fully-connected network with 32 neurons at each layer to predict MI.

It is noteworthy to mention that during the training for the MI prediction task, we freeze

the weights for all other layers aside from the last two. In other words, we only train the

last two network layers and use the learned representation of Section 3.3.2.

3.3.4 Implementation Details

In all experiments, TensorFlow computational library [AAB16] is used for model training

and evaluation. Cross entropy loss on the softmax outputs is used as the loss function.

For training the networks, we used Adam optimization method [KB14] with the learning

rate, beta-1, and beta-2 of 0.001, 0.9, and 0.999, respectively. Learning rate is decayed

exponentially with the decay factor of 0.75 every 10000 iterations. Training all the networks

took less than two hours on a GeForce GTX 1080Ti processor.
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Figure 3.3: Confusion matrix for heartbeat classification on the test set. Total number of

samples in each class is indicated inside parenthesis. Numbers inside blocks are number of

samples classified in each category normalized by the total number of samples and rounded

to two digits.
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Table 3.2: Comparison of heartbeat classification results.

Work Approach Average Accuracy (%)

This Paper Deep residual CNN 93.4

Acharya et al. [AOH17a] Augmentation + CNN 93.5

Martis et al. [MAL13] DWT + SVM 93.8

Li et al. [LZ16] DWT + random forest 94.6

3.4 Experiments

3.4.1 Arrhythmia Classification and learning the representation

We evaluated the arrhythmia classifier of Section 3.3.2 on 4079 heartbeats (about 819 from

each class) that are not used in the network training phase. Fig. 3.3 presents the confusion

matrix of applying the classifier on the test set. As it can be seen from this figure, the model

is able to make accurate predictions and distinguish different classes.

Table 3.2 presents the average accuracy of the proposed method and compares it with

other relevant methods in the literature. While suggesting a predictor for MIT-BIH is not

the sole purpose of this study, according to the results, the accuracies achieved in this paper

are competitive to the state of the art methods. The main reason behind this might be the

fact that we have used residual connections in our network architecture which allows us to

train deeper networks compared to using traditional convolutional architectures.

3.4.2 MI Classification using the learned representation

We have trained our MI predictor using the learned representations, and took 80% of the

PTB dataset as our training set. We have used the remaining 20% to test our model.
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Table 3.3: Comparison of MI classification results.

Work Accuracy (%) Precision (%) Recall (%)

This Paper1 95.9 95.2 95.1

Acharya et al. [AFO17]1 93.5 92.8 93.7

Safdarian et al. [SDA14]1 94.7 − −

Kojuri et al. [KBD15]2 95.6 97.9 93.3

Sun et al. [SLY12]3 − 82.4 92.6

Liu et al. [LLW15]3 94.4 − −

Sharma et al. [STD15]3 96 99 93

1: PTB dataset, ECG lead II

2: dataset collected by authors, 12-lead ECG

3: PTB dataset, 12-lead ECG

Table 3.3 presents a comparison between the average accuracy, precision, and recall of the

proposed method for MI classification and other work in the literature. The performance of

the proposed method is better than all other works except the method suggested by Sharma

et al. [STD15] that reports higher accuracy and precision values. However, it noteworthy to

mention that Sharma et al. use 12-lead ECG as opposed to us using only the lead II.

3.4.3 Visualization of the learned representation

In order to visualize the learned representation, we have used t-SNE visualization method

[MH08] to map high-dimensional vector created by the last convolutional layer to the 2D

space. In a nutshell, t-SNE creates a mapping such that the joint probability of data-points

appearing close to each other in the high-dimensional space is similar to the same probability
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distribution in the low-dimensional mapped points.

Fig. 3.4a illustrates the visualization of the learned representation on the MIT-BIH

dataset samples. As it can be seen from this figure, data-points from different classes are

easily separable using the learned representation. Fig. 3.4b shows the visualization of the

MI classification task on the PTB samples using the representation trained on MIT-BIH. It

can be inferred from this figure that the transferred representation for the beat classification

task is able to provide a reasonable separation for the MI classification task. It should be

noted that here we only use class labels to colorize the plots and other than this we do not

use sample labels in the visualizations.

3.5 Discussion

3.5.1 Conclusion

In this study we have presented a method for ECG heartbeat classification based on a trans-

ferable representation. Specifically, we have trained a deep convolutional neural network with

residual connections for the arrhythmia classification task and shown that the representation

learned for this task can be used as a base to train accurate classifiers for the classification of

MI. According to the results, the suggested method is able to make predictions on both tasks

with accuracies comparable to the state of the art methods in the literature. Furthermore,

we visualized the learned representation using t-SNE method and illustrated the effectiveness

of the proposed approach.
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(a)

(b)

Figure 3.4: t-SNE visualization of the learned representation: (a) samples from MIT-BIH

for ECG beat classification (b) samples from PTB dataset for MI classification. Labels for

each task are indicated with colors (best viewed in color).
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CHAPTER 4

Body Activity and Movement Analyses1

4.1 Introduction

In the HealthAI domain, a crucial form of longitudinal digital observation involves modeling

bodily movements through time. From the short-term tasks, such as posture or activity

recognition, to the longer-term tasks, such as the trajectories related to the dynamic range

of body anchors through time, determining the rehabilitation progress, having to deal with

the challenges of modeling longitudinal data is an inevitable component of these healthcare

solutions.

In this chapter, we discuss three problems in healthcare to which we have offered solutions,

namely:

1This chapter is based on the following papers [GFE19, FKS, HFV18]:

• Fazeli S, Kachuee M, Sarrafzadeh M, Aminian A. WatChair: AI-Powered Real-time
Monitoring of Sitting Posture and Corrective Suggestions using Wearable Motion Sensor
System.

• Hosseini A, Fazeli S, van Vliet E, Valencia L, Habre R, Sarrafzadeh M, Bui A. Children
activity recognition: Challenges and strategies. In2018 40th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018 Jul 18
(pp. 4331-4334). IEEE.

• Gwak M, Fazeli S, Ershadi G, Sarrafzadeh M, Ghodsi M, Aminian A, Schlechter JA.
Extra: exercise tracking and analysis platform for remote-monitoring of knee rehabili-
tation. In2019 IEEE 16th International Conference on Wearable and Implantable Body
Sensor Networks (BSN) 2019 May 19 (pp. 1-4). IEEE.
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• In one of our projects2, a cohort of pediatric patients who have asthma were selected

to be monitored, and the study reflected on the importance of proper activity recog-

nition for improving the patient outcomes. In terms of the applications, for example,

to provide proper interventions in terms of alarms and health notifications to these

individuals, we aimed to develop an activity recognition system specifically targeting

the cohort of pediatric asthma patients.

• The prevalence of a sedentary lifestyle has led to various health problems, especially

those related to individuals maintaining bad postures throughout the day. In this work,

we aimed to provide a sitting posture monitoring system so as to leverage a recognition

core and a cell app to monitor and track the posture through time using a wearable

component, as well as provide users with the breakdown of their activities and other

health data to raise their awareness.

• Knee replacement surgery is a common operation requiring a long time for the patient

to recover the range of motion in their knee joints. In this work, we leveraged the

readings from a wearable component we created using flex sensors to create statistically

significant observations of the patient’s knee movement. The goal is to provide an

inexpensive system to measure the angles with reasonable accuracy. Such a system can

be used to create longitudinal records for the medical experts to review and further

personalize the treatments for the individuals.

4.1.1 Activity Recognition for Children with Pediatric Asthma

With the recent prevalence of smartwatches and smartphone technologies, wireless health

systems and mobile health (mHealth) applications are increasingly adopting these technolo-

gies for healthcare applications. As the popularity of smartwatches for health monitoring

2BREATHE Project at UCLA, focusing on improved healthcare for children with pediatric asthma
[HBH17]
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grows, so do the challenges that come with finding meaning in the newly available physi-

ological data. One goal of many existing studies is to use data such as accelerometer and

gyroscope readings for activity recognition. While significant advances have been made in

this area [CPR11, QMX10], it remains an active area of research, partly because of the com-

plexity and diversity of human movement based on age, health condition, and behavioral

patterns. Following our study aimed at the prediction and prevention of asthma attacks in

children [HBH17] and clinical studies showing the impact of activity level on asthma exacer-

bation [KKE17], an activity recognition model for children seemed necessary. However, the

major focus of most activity recognition studies has been on adults [QMX10, YWC08], and

the classic machine learning models used for adult activity recognition often do not translate

well to children [SMI12]. This is partly because of significant differences in the way children

and adults perform basic activities such as running or climbing stairs.

In general, activity recognition imposes two main challenges specific to children:

1. Collecting large labeled datasets for children is difficult, partly due to the fact that

children tend to change activities more frequently and listen less well to the experi-

menter’s commands. In most activity recognition studies, class labels are obtained in

constrained laboratory settings. [BI04].

2. There tend to be significant variations between children when performing the same

activities, which translates to more variation in the signal data being processed for

activity recognition.

Smartwatches show two main advantages over smartphones when studying health mon-

itoring solutions for children. Firstly, unlike smartphones that are bulky to handle during

different activities, they allow for continuous data monitoring throughout the day and can

easily be worn even in high levels of activity. This is especially important for applications

such as asthma management. Secondly, they can collect additional data such as heart rate

and externally connected sensor data for health monitoring purposes which are particularly
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promising in applications that require multiple sensor data for remote health monitoring and

management.

Our study aims to tackle the smartwatch-based activity recognition problem specifically

for children. For this aim, we collected labeled activity data from 25 children aged 8-14 and

compared the performance of deep neural network models to the widely used classic activity

recognition models.

We show that mentioned challenges and limitations of smartwatches introduce major

errors to basic models and demonstrate that using a bidirectional recurrent neural network

(BRNN)[GS05] can improve the results compared to other baseline models while not adding

too much complexity as fully connected deep neural network models. We then show the

results of our proposed models when used to capture the intensity of activity level with

high accuracy, which is essential for remote monitoring of children and our efforts in asthma

attack prevention. To the best of our knowledge, this is the first study with a systematic

focus on smartwatch-based activity recognition for children. The results of this study can

pave the way for other children’s health monitoring platforms that are dependent on children

activity recognition.

4.1.2 Sitting Posture Tracking via Wearable Sensors

The sedentary lifestyle has led many people to spend a considerable portion of their lives

sitting. The act of sitting has the potential to cause severe short-term and long-term health

problems if not done correctly, such as the feeling of pain and discomfort in the neck and back

area [NKB18] [SSG18] [KKH18]. Numerous studies indicate a strong connection between

the sitting posture in performing different activities with outcomes such as health status and

eating, claiming that controlling and maintaining proper sitting posture can help [MYP20]

[TBK19]. As simple as it might seem, this activity has also been known for its impacts on

certain types of decision-making, such as online grocery shopping [KF19].
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Wearable Component

Figure 4.1: The system architecture of our posture monitoring platform

Due to the reasons mentioned above, active monitoring and interfering with sitting pos-

tures is an exciting area of research. This stems from the fact that a convenient and thorough

solution for this problem has the potential to change many lives and is, therefore, invaluable.

In our study, we introduce a platform for continuous monitoring of sitting posture that

aids subjects with corrective suggestions. This work attempts to bring a smooth remote

monitoring experience to the subjects while attempting to keep the cost and intrusion as-

sociated with the data acquisition system as low as possible. This is done by focusing on

providing more efficient solutions to the software-related aspects of the problem. Our sys-

tem will monitor the sitting posture, recognize different sitting posture patterns, and help

the subject with a thorough report of the statistics of their sitting posture throughout the

day. It also provides them with their history of sitting information, assisting them with easy

progress tracking.

4.1.3 Tracking Post-surgery Rehabilitation Knee Exercises

Knee reconstructive surgery is one of the most common orthopedic procedures in the United

States. Orthopedic surgeons decide on the necessity of knee reconstructive surgery due to

a variety of reasons on the knee, such as severe pain, stiffness, or swollen knees. After

surgery, therapeutic exercises are essential in keeping down swelling and enhancing muscle
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strength [web]. Therefore, patients must perform a set of exercises correctly and regularly

to experience an early and safe recovery.

Current orthopedic treatments and rehabilitation exercises mostly do not support quan-

titative ways to measure knee activity or to provide biofeedback. The intelligent ways to

track patients’ rehabilitation progress are under active research. The time and financial lim-

itations of visiting orthopedists or physical therapists may resist early recovery from knee

reconstructive surgery, which further motivates proposing solutions that can help in this

area.

We propose EXercise TRacking and Analysis Platform (EXTRA) for remote monitoring

of knee rehabilitation. Our system uses an embedded flex sensor in a commercial hinged

knee brace to measure the knee flexion-extension angle. The connected Android application

receives and transmits the sensor values to the cloud-based database. Real-Time monitor-

ing of the knee angle and an exercise progress chart support improving the quality of the

therapeutic exercises and knee rehabilitation.

4.2 Data

4.2.1 Activity Recognition for Children with Pediatric Asthma

To collect children’s activity data, an Android smartwatch app was designed to record ac-

celerometer and gyroscope signals in real time and transfer the anonymized data to a web

server for activity prediction. Figure 4.2 illustrates the overview of our activity recognition

system. In this study, 25 children (10 girls and 15 boys) aged 8 to 14 were recruited to

participate. Each child was asked to wear the smartwatch and perform six different activi-

ties as instructed. Activities included running, walking, standing, sitting, lying down, and

stair climbing, and each was recorded for a duration of 10 minutes, and sensor data was

collected with a frequency of 10 Hz. After instructing the children before each 10-minute

time span, they were left free to perform activities to obtain real-world data. Data collection

34



Figure 4.2: The overall system architecture for a wearable activity monitoring device.

was stopped during time spans when children stopped doing the required activity.

4.2.2 Sitting Posture Tracking via Wearable Sensors

Our cohort comprises six subjects in the age range of 24-27. The central and only sensory part

of this platform’s data acquisition component is composed of affordable, portable, and widely

available MetaTracker boards [mbi19]. These boards are widely used when motion sensors

are utilized for evaluating physical readiness, an example being training pilots [KVH19]. The

single wearable component of this platform is placed on the subject’s back and between the

arms, which can be easily done using a strap or cord. The main component for the effective

tracking of sitting habits is posture recognition. The main three postures that our platform

focuses on recognizing are depicted in Figure 4.3 [anR], and empirical results indicate that

the data acquired from this location is primarily sufficient for making such a determination.

In addition, the sensor alignment can be automatically determined, and the system is flexible

in terms of small displacements in using the wearable component.

The wearable component uses a Lithium battery, and in our framework, there is no need

for frequent battery replacement. This is due to the fact that our framework is focused on

seated posture and is compatible with low-frequency sensor readings. This property and

being equipped with 2.4 GHz Bluetooth Low Energy chips enables us to maintain a smooth
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Figure 4.3: Three main postures for sitting habit monitoring [fre]

connection route between the wearable component and the app.

The mobile application then handles the data-related routines, including cloud storage,

analytics, and transmission.

4.2.3 Tracking Post-surgery Rehabilitation Knee Exercises

We have utilized flex sensors to measure the knee joint angle and leverage their reading as

our main observed signal. According to the degree of bending, the resistivity of the flex

sensor changes and results in different values for the voltage on the two ends of the sensor.

The voltage is continuously read and quantized through the microcontroller.

We selected Adafruit Feather [Ada] for the microcontroller board, which is light, thin,

Arduino compatible, and widely available at a considerably low price. It has up to 6 analog

reading pins, which can support flex sensors for measurement. Feather features a JST jack

to which a 4.2/3.7V Lithium Polymer (Lipo/Lipoly) or Lithium Ion (LiIon) battery can be

connected and a USB port through which the board can be programmed and debugged.

The USB port also allows the board to run on a rechargeable battery. Feather automatically

switches to USB for power when the USB cable is connected and begins charging the attached

battery at 100mA. An LED on the board starts blinking while the power is on. We added

an on/off switch to minimize power consumption and make it more convenient for patients

to power on/off the board as well. Feather also includes Bluetooth Low Energy (BLE)

development that makes the board-to-phone transmission take place with a new low-power,

2.4GHz spectrum wireless protocol. The analog readings on the board are transferred to the

36



Figure 4.4: The system before placing on the knee brace (left) and the final version of the

system in the knee brace (right).

connected Android application via BLE in a real-time manner.

We placed the compact system on the standard commercial hinged knee brace commonly

used as an orthopedic treatment (Figure 4.4) so that the knee angle can be measured precisely

and patients can easily employ it. One end of the flex sensor was affixed on a metal hinge of

the knee brace, and we covered the circuit with fabric. It is noteworthy that any commercial

hinged knee brace should be able to contain the flex sensor. Our data acquisition component

is economically efficient because of the low-cost electronics and an easily purchasable knee

brace. Our goal in designing the system was minimizing expense and power consumption,

besides ease of use for patients.
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4.3 Methods

4.3.1 Activity Recognition for Children with Pediatric Asthma

4.3.1.1 Data Representation

Representing raw signals received from sensors in an informative way is necessary for achiev-

ing better data interpretations. Although deep machine learning models allow for automated

representation learning [ASN16], [YHZ17], they ask for a tremendously large amount of la-

beled data, which is not available for children activities. Time-series signals can be described

nicely by their time-domain and frequency-domain features. This enables us to efficiently

work with small datasets for training high-performance inference models without the need

for heavy automatic representation learning. Therefore, we first employed a time-based win-

dowing technique as it has shown superior performance compared to other methods [BGD14]

to segment the signal. Next, informative statistical features were extracted for each time

window to form its representation. We extracted widely used features for time-series anal-

ysis, studied in the literature [FDF10]. Table 4.1 lists the features extracted in this study

from each or a couple of axes of accelerometer and gyroscope signals.

Table 4.1: Features extracted for each window in pre-processing stage

Feature Type Axis

Every Single Axis

Mean, Median, Range, Min,

Max, std, 25 and 75 percental

RMS, zero-crossing, fft-entropy

Range, Integration

Every Two Axes Correlation, delta

All Axes Signal Vector Magnitude
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4.3.1.2 Deep Models

Deep neural network models have shown outstanding performance in information discovery

and have outperformed classic and shallow models in learning hidden relations in different

areas [Sch15]. We study and compare two deep models, one with a sequential processing

design (RNN) and one with a deep, fully connected structure.

Fully Connected Design: Once our signal is segmented into feature representations

(windows), each window coupled with a label can be viewed as a data sample to be fed

into the prediction models. To study the performance of deeper models over shallow ones,

we designed a multi-layer neural network model in which layers were decoupled from each

other by ReLU nonlinear activation functions. As mentioned earlier, activity recognition

datasets for children are usually small, and more complex deep models cannot be trained

on them. The best model found was a three-layer neural network with 100 neurons in each

hidden layer. The model was trained using the Adam optimization scheme to help with the

convergence.

Sequential Design: In another approach, instead of working with one single window

at a time, we can view extracted representations as a consecutive window sequence and

learn from activities happening close to a time window. A Bi-Directional Recurrent Neural

Network, specifically a Bi-directional LSTM network, was employed for this aim. Such a

model can receive a sequence of input activity windows of any length and, in each stage,

make the prediction based on the input in that stage and the memory state that is formed by

processing the previous windows. LSTM [CGC14] configuration was employed to tackle the

problem of vanishing gradient and enable the network to better recognize what information

is worth remembering and what is not. Moreover, Bi-directional architecture enabled the

model to process the sequence of inputs in both forward and backward directions to better

capture time dependencies for each activity. The structure of the designed BiLSTM network

is shown in Figure 4.5. In our setup, an LSTM layer in which each unit has 32 neurons is
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followed by two layers of the fully connected network with 50 and 25 neurons, and prediction

is done through a final Softmax layer.

Forward 
LSTM Cell  

1

Forward 
LSTM Cell  

2
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n

Backward 
LSTM Cell  

n

Backward 
LSTM Cell 

n-1

Backward 
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Prediction

Window 1 Window 2 Window n

Fully Connected Layer

Softmax Layer

Figure 4.5: Bi-Directional LSTM, along with fully connected and softmax layer to predict

the activity based on the sequence of time-window representations

4.3.2 Sitting Posture Tracking via Wearable Sensors

The overall architecture of WatChair is depicted in Figure 4.1. The system’s first part

is a simple wearable component, which includes the motion sensors we are interested in

monitoring. This component would be located on the subjects’ backs and between the arms

and used for sampling data points and transmission. The system obtains its electrical power

from a coin battery inside it, and given the frequency of reading, there is no need for frequent

battery replacement.

This wearable component interacts with an Android device using its mobile app. Upon

running the application, the connection is maintained if the device is in range, and the data

acquisition, recognition, and transmission process to our cloud backend begins.

The application provides a user-friendly interface between the board, the cloud backend,

and the subject. The user can observe long-term and short-term information about their
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Figure 4.6: The main interface of our application is shown in this figure.

pattern of sitting and score their seated behavior accordingly. This framework renders it

possible to fine-tune the models as more data is gathered in the cloud database. In this

work, we attempted to evaluate the performance of a general model with no need for per-

person calibration. Nevertheless, this framework can be used with ease to provide each user

with separate user-calibrated models as well.

4.3.3 Application

Another essential component of our system is the mobile application. Upon launching the

application, it writes the configuration necessary for the motion sensors, such as the sampling

frequency, and issues the start command for the wearable component. The information then

can be monitored continuously using the app’s interface, as depicted in Figure 4.6.

Afterward, the information is continuously retrieved, filtered, and pushed to our cloud

database. We use Google Cloud Firestore as a NoSQL database composed of documents
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and collections for the backend database. The application builds a communication channel

to the Firebase instance in order to efficiently perform the transactions. These transactions

include pushing the gathered data to the cloud database, an instance of Cloud Firestore,

and reading the historical information to update the app’s visualizations.

Please note that the related intervention information regarding how to correct the posture

is also presented in the application, providing the subject with a more in-depth understanding

of how to proceed regarding the given personalized posture correction information.

The quality of the application was surveyed through a usability questionnaire devel-

oped according to the Usefulness, Satisfaction, and Ease-of-Use questionnaires in [Lew95a,

Lun01a]. This questionnaire was given to the subjects in our study, with the idea of receiving

feedback on the application as the main component in this framework. Via that question-

naire, it was concluded that the users found getting familiar with the framework and using

it a smooth and straightforward process.

Recognition

The machine learning component of our platform is composed of an inference pipeline that

directly links sensor readings to different sitting postures and characteristics. The trained

model weights are used in the application to enable efficient use and effortless alterations in

the future. The relevant sensor readings that come from motion sensors (mainly, the three-

axis sensors of accelerometer and gyroscope) are buffered and transmitted to the application.

In our experiments, we considered the time window of 60 seconds; therefore, the seated

behavior of the subject for every minute is represented and used by the model for evaluation.

The findings are then stored with the timestamps to help with the progress review.

The recognition pipeline is designed using Support Vector Classification, which enables

differentiating between the labels using one-vs-all classifiers. The training objective uses

hinge loss and is as follows:
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min
θ,b

1

2
θT θ + C

N∑
i=1

max(0, yi(θ
Tϕ(xi) + b)) (4.1)

In the above formula, θ and b are the model parameters that are trained, and ϕ is the

linear kernel. The Support Vector classification with a linear kernel is chosen so the model

complexity could fit the problem well, and the trained model could be easily implemented

and used in the mobile application as well.

4.3.4 Tracking Post-surgery Rehabilitation Knee Exercises

4.3.4.1 Mobile Application

A connected Android application converts the sensor readings to the angle of flexion and

extension in degrees. The knee brace sends analog readings of the flex sensor to the connected

app. We observed that the sensor readings and the linear motion of the knee joint are linearly

correlated.

b = y1 + (x− x1)
y2 − y1
x2 − x1

(4.2)

A = sx+ b (4.3)

For the sensor reading calibration, we used a linear interpolation (4.2) where (x1, y1)

and (x2, y2) are two different angle observations. The app uses (4.3) to convert the received

sensor readings (s) to the knee joint angle (A).

We also estimated the effort put into the knee activity using the standard deviation

of the samples. The standard deviation is an accepted measure denoting the intensity of

signal fluctuations, which works as an average of power instead of amplitude. This measure

successfully distinguishes active knee movement from staying still. In each exercise session,

we would compute: Sx and Sx2 which are defined as follows:
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Figure 4.7: Android application of EXTRA: (left) a real-time monitor of the knee joint angle

and (right) an exercise progress chart

Sx =
n∑

i=1

x (4.4)

Sx2 =
n∑

i=1

x2 (4.5)

The values of x are normalized quantized values read from the flex sensor. With the

number of samples, the standard deviation is computed using the following formula:

σ =
√
E(x2)− E(x)2 (4.6)

The users do not require extra inputs than turning on the knee brace and the app. The

app automatically connects the knee brace and saves helpful information about knee activ-

ities. The app searches the microcontroller board by the unique board name and connects

via BLE when the power of the board on the knee brace is on. After each exercise session,

the app also transmits the received data to the cloud-based database.

The Android app provides a real-time monitor of knee flexion and a daily summary of
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the activities. Our user-friendly app increases the motivation for required exercises. The left

screenshot of Figure 4.7 shows the charts of the knee joint angle, and the right screenshot

shows the knee activity progress chart. The users can easily understand the connection

status with the knee brace. The users can also catch the flexion angles during the knee

exercise through the numerical value and the illustration. The exercise progress chart shows

the daily achievement of exercise duration and the maximum angle of flexion. When the

active knee movements are detected using the standard deviation, the exercise duration is

increased. The Beat Your Record line encourages the user to perform better than the previous

maximum angle of flexion through the exercise. For knee-injured patients, our approach of

knee activity monitoring and the progress chart is less intrusive and supports therapeutic

exercises effectively to speed up rehabilitation.

4.3.4.2 Data Storage

The Android app saves valuable information about knee activity to the Google Cloud Fire-

store, a cloud-based NoSQL document database. The Firestore allows the app to access the

database directly and to store the records as much as necessary in real-time. The Firestore

also provides an analytics library to perform machine learning and data science-related anal-

yses on the gathered data and real-time visualization to display the data. The app stores

the knee joint angles, the maximum angle during the knee movement, in the database. The

app also loads the recorded data from the database to create an exercise progress chart.

4.4 Experiments

4.4.1 Activity Recognition for Children with Pediatric Asthma

To validate the performance of our proposed deep models, we chose two widely used models

in the area, a random forest (RF) and a shallow one-layer neural network (FF1), as our base-
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Table 4.2: Mean Absolute Error value for experimental angles

Angle MAE

0 0.19

15 8.74

30 24.95

45 12.13

60 15.06

75 13.07

90 17.68

105 14.66

lines. Both models were tested over validation sets to find the best configuration: training a

random forest with 50 decision trees and a neural network with 100 ReLU nodes. Figure 4.8

shows the F1-score of all models for predicting each activity. It can be easily inferred that

the RNN model shows higher performance than the other deep model (FF3) and baseline

models. Although FF1 shows strong results in detecting walking activity, it cannot efficiently

detect sitting or standing activities. Random Forest also shows competitive results with deep

models in walking and running tasks; however, it performs poorly on other tasks compared

to deeper models. We can also see that the deep network (FF3) achieves competitive results

to RF. However, it cannot beat the RNN model in most cases. One crucial observation is

that the obtained results from children show generally lower accuracy than reported results

for adults [QMX10] due to high variance in their activity shape.

To study the source of accuracy loss in previous results, we analyze the confusion matrix

of activities in Figure 4.9. We can infer that the model has difficulty distinguishing between

sitting and standing. This confusion is due to the fact that movement of the wrist in these
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Figure 4.8: F1-score results of activity prediction comparing deep models to baseline models

two activities can be very similar to each other especially when the hand is left free to

the side. The same confusion arises for lying and standing activities. These challenges are

inevitable when smartwatches are used as the activity recognition tracker.

Figure 4.9: Confusion matrix for six detected activities

As discussed earlier, in many applications of activity recognition on children, such as

asthma exacerbation prevention, the intensity level of activity is of greater importance than

the activity itself. Figure 4.10 demonstrates the performance of our model when classifying

activities into three levels of low, medium, and high intensity. The RNN model allows us to

detect the intensity levels of activities in children with more than 80 percent of the average
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F1 score.

Figure 4.10: F1-score performance on activity intensity level prediction

Overall, the results of our experiments demonstrate the superiority of recurrent neural

networks in detecting children’s activity.

4.4.2 Sitting Posture Tracking via Wearable Sensors

Our analytical platform is implemented in Python3.6, and using Google Cloud SDK and

Sci-Kit learn machine learning library enables us to retrieve the information from our cloud

database and perform the corresponding analytical investigations. For evaluation purposes,

several experiments were done, and in each experiment, the data from one subject was used

as the test set while the model was trained on the rest.

The empirical results indicate that our model is able to recognize and distinguish be-

tween our three main pre-defined sitting postures accurately. The micro and macro average

F1-Score for our current model over the three sitting postures are 72.12% and 75.09%, re-

spectively.

The normalized confusion matrix for the predictions is shown in Table 4.4. These results

suggest that the system exhibits accurate performance, even though the flexibility of the

system in terms of the positioning of the wearable component can potentially add to the

error level. As another example, ”Slouching” data, which can be argued as the primary
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posture of interest, has been efficiently captured.

This work aimed to propose an accurate and efficient pipeline to perform monitoring

without needing per-person calibration. However, it is understandable that in specific use

cases (e.g., certain disabilities or the cohort of older adults), adding per-person calibration

might be necessary to improve the performance further. In such cases, labeled data can be

easily obtained and analyzed using our platform’s interface.

To use the model in the mobile application as well, this inference engine was implemented

in Java and is included in the application to perform continuous recognition and update the

cloud database accordingly.

4.4.3 Tracking Post-surgery Rehabilitation Knee Exercises

The accuracy of measuring the knee joint angle and the usability of our system was evaluated

by eight healthy adults (3 female, 5 male, age range: 23-27). We asked the participants to

wear the knee brace and to bend the knee with different angles while sitting down on a chair.

We considered a wide range of angles from 0.0 to 105.0 degrees (with increments of 15.0 de-

grees) and confirmed the validity of the knee angle with the use of a goniometer. We collected

60 samples for each participant corresponding to 30 seconds of angle recording. After as-

sessing different angles, the participant performed two exercises: quad lift while sitting and

standing knee lift. These exercises helped with experiencing the mobile app’s interface and

wearing the knee brace. After the exercises, the participant filled out a questionnaire regard-

ing the usability of our system. The questionnaire was developed based on the Usefulness,

Satisfaction, and Ease-of-Use (USE) questionnaires on [Lew95b] and [Lun01b].

Table 4.2 shows the mean absolute error (MAE) for each angle measurement. The av-

erage MAE was 13.31 degrees, but this value indicates sufficient accuracy for monitoring

therapeutic exercises. Our knee joint angle measurement system is quite sensitive to the

body postures and different shapes of the leg. We observed that bending the spine or mov-
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ing arms caused changes in the measurement of the knee joint angle. A participant with

lateral pelvic tilt had a higher MAE about the angle measurement than others. Further

calibration is required to support reliable knee flexion-extension angle measurement.

The results of the usability questionnaire are shown in table 4.3. The high average score

of the questionnaire indicates that our software components effectively deliver information

about knee activity. The mobile application does not require complicated instructions. Any

individual can install the system and interact with the app easily.

4.5 Discussion

4.5.1 Activity Recognition for Children with Pediatric Asthma

The solution we proposed focused on the problem of activity recognition for children, which is

of great importance in the domain of remote health monitoring for children. We showed that

variance in activity and limitations of smartwatches are significant challenges for this task.

We also demonstrated that RNN-based models can be a good choice for children activity

recognition because of their ability to capture more information while being simple enough to

be trained on small datasets. Future work in this area should focus on personalized learning

of activities for children. Learning a model for a group of children cannot translate well to

each individual. However, if models adapt to each child’s activities, results can be improved.

4.5.2 Sitting Posture Tracking via Wearable Sensors

We presented an AI-powered remote monitoring framework for short-term and long-term

tracking of sitting habits and proposing corrective suggestions. The effectiveness of this

system in performing this task is then empirically validated. Given the critical health impacts

of improper sitting habits, this low-cost and affordable system, combined with accurate

machine learning inference, can improve user behavior while seated and help prevent medical
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complications associated with improper sitting.

4.5.3 Tracking Post-surgery Rehabilitation Knee Exercises

We presented a remote-monitoring system that supports exercise tracking and analysis for

knee rehabilitation. Our platform provides a portable, wearable, low-cost, reliable system to

measure the knee angle. Recording the rehabilitation progress encourages users to exercise.

We validated our solution’s angle measurement and usability, which may benefit orthope-

dic professionals and patients going through knee reconstructive surgery by assisting with

effective rehabilitation.
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Table 4.3: Usability Questionnaire and the average score: Participants scored between 1

(strongly disagree) to 10 (strongly agree) to respond each question.

Question AVG

I am comfortable with using this system again. 9.89

The system provided me with helpful information regarding my knee movements. 9.78

The app was responsive and showed the values in a real-time manner. 8.56

I could effectively perform the requested exercises using the system. 9.67

The knee pad was very comfortable to wear and did not affect the quality of my motions. 8.89

It was simple to learn to use the application (UI). 10.0

Proper messages in the application were provided to inform me of any unexpected behavior. 9.0

I believe this system provides the user with incentives for improving the knee exercises and staying on track. 9.67

I believe that using this system will positively influence the quality of therapeutic knee exercises. 9.89

The visualizations and the information provided by the app were very clear. 9.89

The interface of this system was pleasant. 9.89

The system has all the capabilities I expected it to have. 9.67

Switching the system on and off was easy for me to do. 10.0

It requires the fewest steps possible to accomplish what I want to do with it. 9.89

I was able to use the system without written instruction. 9.33

I did not notice any inconsistencies as I use it. 9.0

Setting up the system for an exercise session, including wearing the knee pad and starting the app was very simple. 9.33

I easily remember the steps of using this system. 10.0

I would recommend this system to others. 10.0

Overall, I am satisfied with using the system. 9.67
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Table 4.4: Micro-averaged confusion matrix for evaluating our model using leave-one-subject-

out scheme - Each row corresponds to the predictions for a ground-truth label

Upright Leaning Back Slouching

Upright 0.65 0.22 0.14

Leaning Back 0.05 0.64 0.31

Slouching 0.02 0.0 0.98
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CHAPTER 5

Transferable Representation Learning for Electronic

Health Records1

5.1 Introduction

Electronic health records (EHR) are commonly adopted in hospitals to improve patient

care. In an intensive care unit (ICU), various data sources are collected on a daily basis

as preempted by medical staff as the patient undergoes care in the unit. The collected

data consists of data from different modalities: medical codes such as diagnosis, which are

standardized by well-organized ontology’s like the International Classification of Disease

(ICD)2 and medication codes standardized using National Drug Codes (NDC)3. Similarly,

at various stages of the patient’s care, physicians input text noting relevant events to the

patient’s prognosis. Additionally, lab tests and bedside monitoring devices are used to collect

signals, each of which is collected at varying frequencies for a quantitative measure of patient

care. There is a wealth of information contained within EHRs that has a significant potential

to be used to improve care. Examples of inference tasks using such data include estimating

the length of stay, mortality, and readmission of patients [TLA87, CCA08].

The traditional approach to healthcare analysis has mainly focused on classical methods

1This chapter is based on ”Darabi S, Kachuee M, Fazeli S, Sarrafzadeh M. Taper: Time-
aware patient ehr representation. IEEE journal of biomedical and health informatics. 2020
Apr 3;24(11):3268-75.” [DKF20]

2http://www.who.int/classification/icd/en

3http://www.fda.gov
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Figure 5.1: Patient timeline during an ICU visit where different data points are collected.

These include prescriptions, diagnosis codes, procedure codes, and medical notes.

for extracting hand-engineered features and designing rule-based systems. More recently,

deep learning has demonstrated state-of-the-art results on various tasks, in which learning

intermediate representation is at the heart of all these analyses [BCV13]. This representa-

tion can be obtained without domain-specific expertise by leveraging available EHR data.

Although such methods have demonstrated remarkable performance on image and audio

datasets, leveraging deep learning techniques on healthcare data presents new challenges as

the data entered are sparse and contain different modalities.

As is common in natural language processing tasks, the typical method for embedding

medical codes and text could be through the use of one-hot vectors. However, these are

naturally high-dimensional and sparse resulting in poor performance. To alleviate this,

the idea of learning distributed representations as applied to natural language processing

[MSC13] has also been applied to medical data [CGN18b]. Such methods share the intuition

that similar medical codes should share a similar context. Additionally, codes have varying

temporal contexts; as such, patients may have multiple visits with a similar set of codes. As

an example, flu is short-lived, whereas a diagnosis code for a more terminal disease such as

cancer has a more extended scope and hence will be present on all of the patient’s visits. Due

to the varying temporal context, it is also essential to take into account the temporal scope

of codes and text assigned [CGN18b]. This demands a model which takes the sequential
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dependencies of the patient’s visits into account.

To capture the sequential dependencies present in medical data, recurrent neural networks

(RNNs) and especially RNNs configured as Long Short-Term Memory (LSTM) have been

considered as powerful models. RNN auto-encoder models are commonly augmented with

attention mechanisms allowing the model to attend to specific time steps either through

soft/hard attention resulting in improvement and interpretability in the final representation

obtained [BCB14b, LPM15]. In NLP tasks, such attention mechanisms are not required to

be causal in time. They hence can attend to both past representations as well as future

representations to generate the current representation. However, in a healthcare setting,

it is desirable to have the representation be causal in time as clinical decisions are made

sequentially. Recently, transformer models [VSP17] were proposed for natural language

processing tasks and have shown impressive results. It uses self-attention, and as the model

creates intermediate representations of the input, it attends to its representation at previous

and future timesteps when considering the present representation.

The majority of patient representation work has solely focused on embedding medical

codes or text as a patient representation for downstream tasks but not both. To address

this, we study the use of transformer networks to embed structured medical code data as

well as a language model to embed the text portion of visits. In this chapter, we discuss our

proposed EHR representation learning solution to combine the medical representation from

text and medical codes into a unified embedding which can then be used for downstream

prediction tasks. Lastly, the presented study takes into account the temporal context of a

visit and embeds subsequent visits given the patient’s history.

5.2 Data

We evaluate our model on the publicly available MIMIC-III Clinical Database [JPS16]. It

consists of EHR records of 58,976 hospital admissions of 38,597 ICU patients from 2001 to
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2012. On average, each patient has 1.26 visits. The database contains tables associated with

different data, where we extracted demographics, medical codes, and medical notes.

5.2.1 Readmission task

The first task is to predict 30-day unplanned readmission to the ICU after being discharged.

In this task, we formulate it as a binary problem, that is, to predict whether a patient will

be readmitted within 30 days after being discharged. Text entered into the MIMIC database

contains different reports, such as nurse notes, lab results, discharge summaries, and so on.

We limit the text for each visit to contain the discharge summaries or text entered within

the last 48h before the patient is discharged in the absence of discharge summaries.

5.2.2 Mortality task

The second task is to predict the mortality of patients, whether they passed away after being

discharged or within the ICU. Similar to readmission, it is formulated as a binary task. In

this task, mortality-related codes are discarded from the dataset, and patients admitted for

organ donation are removed. Additionally, the input text for each visit is limited to the first

24h of the admission.

5.2.3 Length of stay task

The third task is to forecast patients’ length of stay (LOS). In this task, longer LOS indicates

more severe illness and complex conditions. We formulate this problem as a multi-class

classification problem by bucketing the length of stay into 9 classes: 1-7 correspond to

one to seven days, respectively, 8 corresponds to more than 1 week but less than 2, and

9 corresponds to more than 2 weeks. The model is tasked to predict P (Y = L|Zt) where

L ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} denoting the previously defined time intervals. In this classification

task, we limit the medical text to the first 24 hours of the current patient visit in which the
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Figure 5.2: Overview of the method used to obtain patient visit representation.

length of stay is predicted. Limiting the note context window is done as medical text could

include information on the date patient has been discharged.

5.2.4 Code prediction task

In this task, clinical codes are predicted for new admissions of patients given past clinical

codes and historical patient data. The predicted vector is high-dimensional equal to the size

of unique codes.

5.3 Methods

Our work focused on patient embedding leveraging unstructured text as well as medical

codes. This representation is then fed to the classifier for predictive analytics tasks such as

mortality, length of stay, and readmission (Figure 5.2). We split the training into two main

components, (1) Skip-gram model using transformer networks to learn medical code repre-

sentation, (2) a BERT model is trained on medical notes, and the resulting representations

at a time step are summarized using auto-encoder architectures [DCL18b, VLB08, KDM19].

The final representation of a patient results from a concatenation of these two. We discuss

the approach in more detail in the following subsections.

To present the problem setting, the sequence of EHR data under consideration consists of
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Figure 5.3: The code representation module is a transformer encoder, which takes as input

patient clinical codes. The embedding matrix is a ℜd×C matrix. Clinical codes are embedded

using the embedding matrix, which is then passed to the transformer encoder block.

a finite set of medical concepts C =M∪D∪P , whereM is the set of medication codes, D is

the set of diagnosis codes, and P is the set of procedure codes. The codes for a visit are simply

concatenated as multi-hot vectors to form the visit code vector. Accompanying the codes

are medical notes T . We denote a patient’s longitudinal data as DT = {(c0, t0), · · · (cT , tT )}

with T visits where ci and ti correspond to the codes and text assigned respectively within

the same visit window.

5.3.1 Medical Code Embedding

We use the skip-gram model to learn code embeddings as it is able to capture relationships

and co-occurrence between codes. We briefly review the skip-gram model presented by

Mikolov et al.[MSC13]. Given a sequence of codes {c1, c2, . . . , cT}, where each code vector is

a binary vector ct ∈ {0, 1}|C|, the model is tasked to predict the neighboring codes given a

code ct. The objective can be written as

1

T

T∑
t=1

∑
−w≤j≤w,j ̸=0

c⊤t+jlog(ĉt) + (1− c⊤t+j)log(1− ĉt) (5.1)

Here w is the context window defined as patient visits in our setting, and the softmax

function is used to model the distribution p(ct+j|ct). We use multiple transformer encoder
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layers with self-attention mechanism as the model for ĉt. This model takes as input a set

of medical code sequences S = {c0, · · · cT} by stacking code vectors into a matrix K ∈

{0, 1}T×|C|. The resulting set of codes is then converted into a set of embedding codes

ect ∈ ℜd using an embedding matrix W ∈ ℜ|C|×d. The embedding for the set of codes ct at

visit t is obtained as ect = W T ct.

As the model does not contain any recurrence or convolution, we need to inject infor-

mation about the relative positioning of each embedding to enable the model to make use

of the ordering. This is done by adding to each embedding position a sinusoidal with fre-

quency as a function of its timestamp t as suggested by the original transformer network.

This signal acts as positional-dependent information that the model could use to incorporate

time. The model is summarized in Fig. 5.3. We stack multiple transformer layers following

on top of the embedding matrix. By the transformer layer, we mean a block containing

the multi-head self-attention sub-layer followed by feed-forward and residual connections.

For more details on this, refer to [VSP17] and the tensor2tensor library. As multi-head

attention can attend to future time steps, to ensure that the model’s predictions are only

conditioned on past visits, that is, embedding at time step t can only attend to previous

time steps t−1, t−2 . . . , we mask the attention layers with a causal triangular mask. This is

the same ”masked attention” in the decoder component of the original transformer network.

This mask is applied to the set of embedding in the encoder block to ensure causality. The

self-attention is formulated as

E = {ec1 , ec2 , . . . ecT } (5.2)

Attention(Q,K,V ) = softmax(
QKT

√
d

)V (5.3)

The query Q, key K, and value V are set to the sequence of embeddings E, and d is the

embedding dimension. To obtain the final code representation for timestep t, the tth output

of the self-attention output is used. We call this code representation Ect .
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Figure 5.4: The text representation module takes as input patient text and pre-processes

them into tokens, which are embedded using BERT. Subsequently, it is fed to a text summa-

rizer autoencoder network. This work uses an LSTM-AE to learn the intermediate patient

representation.

5.3.2 Medical Text Embedding

Figure 5.4 shows an overview of the text module. The embedding for the medical text

sequence of a patient for time sequence {t1, t2, . . . , tT} is obtained by using a pre-trained

BERT model initialized from BioBERT [LYK19] followed by a bidirectional GRU as a text

summarizer. This is done as the pre-trained BERT model has a fixed maximum sequence

length of n, limiting the sequential scope of the text. Further, medical notes could get

very lengthy during a visit, and they contain different types of notes, such as nurse notes,

pharmacy notes, discharge notes, and so on. The aggregate length of these at a time step t

could surpass the fixed-length size of n. As the aim is to obtain a single visit representation,

the aggregate notes at until time step T are batched into a set of sentences (u1, u2, · · · , um),

where ui ∈ Zn and m is the maximum occurring length in the corpus after batching each

visits text into sentences of n words. The resulting set of sentences for a visit is embedded
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using the BERT model, resulting in a matrix U ∈ ℜm×dBERT .

h1:m = GRUenc(Um, h0) (5.4)

EUt = softmax(
h1:mhT

1:m√
dtext

)h1:m (5.5)

Û = GRUdec(Um, hm) (5.6)

L(U1:m,t, Û1:m,t) =
m∑
i

(ui − ûi)T (ui − ûi) (5.7)

Subsequently, the set of sentence representations is summarized into a single patient text

representation using a text-summarizer module. This module follows an auto-encoder ar-

chitecture with GRUs as the building block. The input is a set of sentence representations

∈ ℜdtext obtained by the BERT module applied on the aggregate text until time t followed by

a self-attention head on the hidden representations, where the decoder is tasked to output

sentence representations ∈ ℜdtext following the bottleneck. The objective of the summarize,

as in (5.7) is to reduce the MSE loss between the input sequence of the text embeddings

and the model’s predicted representation at the corresponding time steps. Finally, the pa-

tients visit text representation is obtained by summarizing the set of sentence representations

{U1, U2, · · · , Um}, where the output of the attention head applied on the encoder’s hidden

representations is used as the text representation.

5.3.3 Patient Representation

The final patient representation Zt at time t is obtained by concatenating the code and text

representations. Additionally, the demographics dt of the patient recorded in the visit at

time t is concatenated to the resulting vector. Patient demographics contain information

such as age, gender, and race, where categorical values are coded as one-hot vectors. The

final representation is denoted as Zt = [Ect ;EUt ; dt], where the size of this vector is the sum

of the components dembedding +denc+ddemographics. This representation is used for downstream

tasks.
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We provide specific values for each component’s dimensions in our implementation details

in the experiments section.

5.4 Experiments

5.4.1 Pre-processing

We extracted procedure and diagnosis codes for each patient visit. These codes are defined by

the International Classification of Disease (ICD9) and medications using the National Drug

Code (NDC) standard. The total number of ICD9 codes in MIMIC-III is 6984, the number of

drug codes is 3389, and the number of procedure codes is 1783. Codes whose frequency is less

than 5 are removed. We used the Clinical Classification Software for ICD9-CM4 to group the

ICD9 diagnosis codes into 231 categories. The Clinical Classification Software for Services

and Procedures5 was used to group the procedure codes into 704 categories. Additionally,

patients of age under 18 were removed from the cohort. As medical notes contain many

errors, we correct grammatical errors and remove non-alphanumerical characters. The text

pre-processing processing closely follows [HAR19]. After pre-processing, 31766 patients have

single visits, 6636 patients have multiple visits, the average recorded number of codes per

visit is 20.52, the average number of words in medical notes is 7898, and the average number

of visits per patient is 1.29. The statistics of the compiled cohort are depicted in Fig.5.5

5.4.2 Modeling and Training

The training follows the method discussed in Section 5.3. A medical concept model is

trained independently on clinical codes in an unsupervised manner, and similarly, the text

summarizer is trained on the text portion.

4https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

5https://www.hcup-us.ahrq.gov/toolssoftware /ccs svcsproc/ccssvcproc.jsp
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To train the transformer encoder, we explored different values for hyperparameters,

namely the number of layers, number of multi-head attention heads nhead, dimension for

each head dhead, and the final model representations dcode. We found 2 layers perform well.

We set the model’s representation dimension (dcode) to 128. Further, the self-attention mod-

ule contains 8 heads (nhead), each with dimension 64 (dhead), which is a common configuration

used in transformer networks. The network is trained using Adam [KB14] with a cosine an-

nealing schedule and with a period of 50 epochs. The initial learning rate is set to 0.00025.

The window size for the skip-gram objective is set to 2.

We initialize the BERT model with the pre-trained weights on medical nodes as presented

in [AMB19]. In this work, the BERT language model is initialized with BioBERT, a model

trained on a large corpus of public medical data such as PubMed, medical abstracts, and so

on. Then the model was fine-tuned on the MIMIC-III clinical notes.

To train the text summarizer, we use a 2-layer bidirectional GRU autoencoder with

the intermediate representation set to denc = 128. A teacher-forcing ratio of 0.5 is used

with a step learning rate schedule decay of 0.1 every 50 epochs with initial lr set to 10−3

[LGZ16]. We have also tried using a cosine annealing schedule, though this did not result in

improvements.

Lastly, the classifier for downstream tasks is a simple 2-layer fully connected network. The

first layer contains
dcode+dtext+ddemographics

2
neurons with ReLU activation followed by a layer

that maps to the number of classes in the downstream task. When training on downstream

tasks, only the classifier weights are trained for 30 epochs with a step learning rate schedule

decay of 0.1 every 10 epochs. This setting is used for all downstream tasks.

5.4.2.1 Implementation details

We implemented all the models with Pytorch 1.0 [PGC17]. For training the models, we use

the Adam optimizer [KB14]. In all experiments, the batch size is set to 32 on a machine
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equipped with 1 NVIDIA 1080TI CUDA 9.0, 32GB Memory & 8 CPU cores.

5.4.3 Evaluation Metrics

The compiled cohort consists of unique keys for each patient used to create the test/train

split. This is done using k-fold with k = 7 on the patient keys, in which the unsupervised

models are trained on the train portion and validated on the test (≈ 15% of total data). The

output for a particular time step is evaluated using the patient representation Zt at time t.

5.4.3.1 Area under the precision-recall (AU-PR)

this metric is the cumulative area under the curve by plotting precision and recall while

varying the outputs P (yt = 1|Zt) true/false threshold from 0 to 1.

5.4.3.2 Receiver operating characteristic curve (AU-ROC)

this metric is the area under the plot of the true positive rate against false positive rate while

varying outputs P (yt = 1|Zt) true/false threshold from 0 to 1.

5.4.4 Baselines

We compare our model with the following baselines

• Med2Vec [CBS16]:

A multi-layer perceptron is trained on medical codes using the skip-gram objective

function on a visit basis. An additional loss term is used for the co-occurrence of

codes within the same visit as a regularization. The resulting output is a set of code

representations in ℜd.

• ClinicalBERT [HAR19]:

A BERT model is pre-trained on public medical data, which is then fine-tuned on
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clinical text. Following this pre-training, a BERT classifier is initialized with pre-

trained weights and further fine-tuned on downstream tasks. The input to this network

is text.

• Time-aware Embedding (MCE) [CGN18b]:

A multi-layer perceptron is trained on medical codes with an additional attention layer

to take into account the temporal context of medical codes. The resulting model is

trained using either skip-gram/CBOW.

• Patient2Vec [ZKH18]:

In this work, a sequence of medical codes is embedded using the word2vec model. The

sequence of visits with irregular time intervals is then binned into a set of subsequences

with standard intervals. Subsequently, the embedded vectors are stacked into a matrix

where convolution stacked with GRU and attention models are applied to obtain the

final patient representation.

• Joint-Skipgram[BCE18]:

The embeddings are trained using both text and code as the vocabulary. In addition

to the traditional skip-gram loss, i.e., codes in the same visit predicting surrounding

codes or text predicting surrounding text, the skip-gram objective is modified such

that text in a visit predicts codes in the same visit and vice versa.

• Deepr[NTW16]:

A set of clinical codes are embedded using the skip-gram model. As visits contain

multiple codes, the vectors corresponding to each code are stacked into a matrix, then

the set of matrices for each visit is fed to a convolutional neural network and max-

pooling layers to extract the final patient representation.

• Sgcode + Sgtext:

Embeddings for both code and text are learned using the skip-gram objective inde-
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pendently. Subsequently, a patient representation is obtained for downstream tasks by

concatenating the code and text embeddings.

• Supervised:

The BERT model and summarizer take as input raw text and transformer model raw

codes, which are trained jointly on downstream tasks without pre-training.

We do not compare with more traditional text embeddings, such as the bag of words

(BOW), as other works have shown the benefits of using BERT as text representation in

NLP tasks.

We study the effect of different components presented by adding/removing text/code/de-

mographics representation to our final patient visit representation.

Table 5.1: Diagnosis & Procedure code recall comparison with other methods.

Method Diagnosis Recall@k Procedure Recall@k

k=10 k=20 k=30 k=40 k=10 k=20 k=30 k=40

Ours 47.92%±(0.6) 65.11%±(0.4) 75.25%±(0.3) 82.00%±(0.4) 50.99%±(1.2) 62.25%±(0.9) 67.97%±(1.1) 71.52%±(1.0)

Joint-Skipgram [BCE18] 41.16%±(0.6) 59.49%±(0.7) 71.26%±(0.7) 79.73%±(0.5) 50.88%±(0.9) 61.33%±(0.7) 67.32%±(0.9) 70.95%±(0.7)

Med2Vec [CBS16] 42.24%±(0.2) 60.18%±(0.3) 70.89%±(0.4) 78.42%±(0.4) 47.44%±(0.7) 58.10%±(0.6) 64.19%±(0.6) 68.36%±(0.7)

MCE [CGN18b] 45.70%±(0.4) 63.43%±(0.4) 74.44%±(0.4) 81.14%±(0.4) 51.87%±(0.8) 61.62%±(1.0) 68.42%±(0.8) 71.97%±(0.8)

Deepr/P2V [NTW16, ZKH18] 35.30%±(0.3) 52.40%±(0.4) 65.04%±(0.4) 74.14%±(0.3) 42.47%±(0.7) 55.59%±(1.1) 62.42%±(0.8) 66.49%±(0.9)

Skipgram 35.23%±(0.4) 52.30%±(0.4) 65.08%±(0.4) 74.13%±(0.2) 42.56%±(0.7) 55.81%±(1.0) 62.61%±(0.9) 66.70%±(0.9)

To show the expressiveness of our representation, we evaluate its performance compared

to baseline methods on downstream tasks and unsupervised learning tasks presented in the

experiment section. We present the results obtained by embedding both text and code as

patient representation on three downstream tasks: (1) 30-day readmission, (2) mortality,

and (3) length of stay (LOS). Note that in MIMIC-III database clinical codes are entered

into the database upon discharge of a patient, as consequently the presented results may
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Figure 5.5: Statistics of the compiled cohort for both length of stay and readmission down-

stream tasks.

not be immediately clinically actionable in this case. Although, this may not be the case in

other datasets where codes are updated throughout a visit. To this end the codes on the

same visit are not fed to the model, but rather the previous set of codes are used.

5.4.5 Code pre-training

The encoder network is trained on clinical concepts and as most patients have 3 hospital

visits after filtering to atleast 2 visits the window size for the loss term is set to 2. The

performance of our network is compared with baseline methods using recall@k. This metric

is evaluated by computing

recall@k =
# of relevant codes in top k

# number of relevant code

This metric mimics a practitioner’s method of arriving at a diagnosis or prescribing

medications where they generally have several sets of candidates as a presumed cause for the

underlying condition of the patient. We provide recall performance on different portions of
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Figure 5.6: Performance of different embedding schemes on next visit code prediction using

recall@k.

the code vector for both diagnosis and procedure codes in table 5.1, as well as the overall

recall performance evaluated on the complete set of codes in Fig. 5.6. All baselines are fine-

tuned on the same corpora by exploring different architectural hyper-parameters, except the

embedding size which is fixed to dcode = 128 for all models. Note that the skip-gram baseline

depicted in these figures is the same model used for the Sgcode+Sgtext baseline. Additionally,

the supervised baseline has the same capacity as ”ours” in the figures as a result this is not

included as well as it would result in the same performance. Lastly, ClinicalBERT is not

evaluated on this task as it does not use codes as inputs. From the results, the time-aware

code representations outperform other baselines.

5.4.6 Ablation Study

To evaluate the different components of the proposed method we conduct an ablation study

on the inclusion/exclusion of the components in the final representation for downstream

tasks. The complete representation using demographics, text representation and clinical

code representation is the concatenation of these on a visit Zt = [Ect ;EUt ; dt].
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5.4.6.1 Readmission

To better evaluate the effect of the different embedding components, we run an ablation

study. The results are reported in table 5.2.

Table 5.2: Downstream Tasks: Readmission

Method AUC-ROC PR-AUC

Text+Code+Demo 67.42% 68.03%

Text+Code 65.74% 65.43%

Text+Demo 61.44% 62.81%

Code+Demo 64.53% 67.68%

Text 56.44% 56.55%

Code 60.74% 57.89%

Demo 54.76% 59.01%

From the results, it can be seen both text and code are informative for classifying read-

mission. The complete combination of text, code, demographics outperforms others.

5.4.6.2 Mortality

Mortality task is concerned with predicting whether a patient will pass away within a pre-

defined window. We predict mortality on a visit basis i.e. does the patient pass away in the

current visit to the ICU. An ablation is done in table 5.3. Similar, to previous ablations, the

combination of text, code, and demographics outperforms other combinations.
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Table 5.3: Downstream Tasks: Mortality

Model AUC-ROC PR-AUC

Text+Code+Demo 63.42% 65.65%

Text+Code 59.75% 60.33%

Text+Demo 61.54% 64.07%

Code+Demo 60.41% 64.41%

Text 57.14% 57.72%

Code 56.91% 53.71%

Demo 60.10% 62.02%

5.4.6.3 Length of Stay

In general length of stay is a much more challenging task compared to readmission binary

task. In this task the network is trained on balanced class data split and tested on imbalanced

data, this is done as the majority of classes are discharged within 24h-48h. As shown in table

5.4, the combination of text, code and demo outperforms others in top-1 prediction accuracy.

We conclude in this set of experiments, solely using text and diagnosis codes is not predictive

enough to forecast the length of stay of patients.

5.4.6.4 Comparison with Other Work

We ran all baseline models on three downstream tasks using the same pre-processing steps.

The final results are reported in table 5.5. To compare our method, we use the combination

of text, code, and demographics. As demographics have proven to have predictive power for
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Table 5.4: Downstream Tasks: Length of Stay Top-1 prediction accuracy

Method Top-1

Text+Code+Demo 25.57%

Text+Code 23.38%

Text+Demo 21.10%

Code+Demo 22.22%

Text 18.82%

Code 20.54%

Demo 20.13%

the downstream tasks, other methods are augmented to use this as input/concatenated to the

output representation before prediction. From Table. 5.5 the presented method outperforms

others by a 1-2% margin, on all tasks demonstrating the usefulness of unsupervised pre-

training.

5.4.7 Calibration

The reliability of a model’s confidence is critical in health settings and calibration plots are

a common measure for the model’s reliability [AJH18, CAT16, JOK11]. Generally, as deep

networks become complex they may not be calibrated. To this end, we provide calibration

plots of our model for both readmission and mortality tasks in Fig. 5.7. To generate this

plot the fraction of positives are binned according to classifiers mean predicted value for the

positives. From this figure, the model is slightly over confident at lower prediction values
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Figure 5.7: Calibration plots for mortality (a) and readmission (b) binary tasks.

and under confident at higher values.

5.5 Conclusion

Effective representation learning for EHR data is an essential step to improving care. We

study embedding medical codes and notes into a unified vector representation for downstream

task prediction. The presented method effectively takes the temporal context of these two

data streams and provides a patient visit representation. The proposed method was evaluated

on three tasks, namely, readmission, mortality, and length of stay, outperforming other

methods. An ablation study was also done, showing the usefulness of both text and code

when modeling patient visits. Future work could focus on adding additional data streams to

the pipeline by taking into account real-time vitals and measurements taken from a patient

as they undergo care.
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CHAPTER 6

Public Health Crises and Pandemic Analytics1

6.1 Introduction

In the early days of 2020, the world faced another widespread pandemic, this time the

COVID-19 strand, otherwise known as the novel coronavirus. The family of Coronaviruses

to which this RNA virus belongs can cause respiratory tract infections of various severities.

These infections range from cases of the common cold to more lethal degrees. Many con-

firmed cases and deaths reported due to COVID-19 showed evidence of severe forms of the

aforementioned infections [KAC12, FZS19, LCC19].

The rapid spread of this virus led to many lives being lost and extremely overwhelmed

healthcare providers. It also led to worldwide difficulties and had considerable negative

economic impacts. In addition, the negative impacts that it likely had on mental health due

to prolonged shutdowns and quarantines is another important matter [DP].

1This chapter is based on the following papers [FMS21, FZO21, FAH21]:

• Fazeli S, Moatamed B, Sarrafzadeh M. Statistical analytics and regional representation
learning for covid-19 pandemic understanding. In2021 IEEE 9th International Confer-
ence on Healthcare Informatics (ICHI) 2021 Aug 9 (pp. 248-257). IEEE.

• Fazeli S, Zamanzadeh D, Ovalle A, Nguyen T, Gee G, Sarrafzadeh M. COVID-19 and
Big Data: Multi-faceted Analysis for Spatio-temporal Understanding of the Pandemic
with Social Media Conversations. arXiv preprint arXiv:2104.10807. 2021 Apr 22.

• Ford CL, Amani B, Harawa NT, Akee R, Gee GC, Sarrafzadeh M, Abotsi-Kowu C,
Fazeli S, Le C, Nwankwo E, Zamanzadeh D. Adequacy of existing surveillance systems
to monitor racism, social stigma and COVID inequities: a detailed assessment and rec-
ommendations. International journal of environmental research and public health. 2021
Dec 12;18(24):13099.
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In this work, we have gathered, processed, and combined a wide variety of well-known

publicly available datasets on the COVID-19 outbreak in the United States. The idea is

to provide a reliable source of statistically crucial information derived from a wide range of

sources on important features describing a region and its population from various perspec-

tives. These features primarily concern demographics, socio-economic, and public health

aspects of the US regions. They are chosen in this manner because it is plausible to as-

sume they can be potential indicators of commonalities between the affected areas. Even

though demonstrating causality is not the objective of the work presented in this chapter,

our analyses attempt to shed light on these possible commonalities that allow public health

researchers to obtain a better perspective on the nature of this pandemic and the potential

factors contributing to a slower outbreak. This is vitally important as the critical role of

proper policies enforced at the proper time is evident after the COVID outbreak more than

ever.

There has been widespread attention to designing and utilizing Artificial Intelligence-

based tools to understand this pandemic better. Accordingly, we present a neural archi-

tecture with recurrent neural networks in its core to allow the machine to learn to predict

pandemic events in the near future, given a short window of historical information on static

and dynamic regional features. The main assumption that this work attempts to empirically

validate is that the concise pandemic-related region-based representations can be learned

and leveraged to obtain accurate outbreak event prediction with only minimal use of the

historical information related to the outbreak. Aside from the theoretical importance, an

essential application of this framework is when the reported historical pandemic informa-

tion, e.g., the number of cases, is not reliable. An example of this is when a region discovers

a problem in its reporting scheme that makes the historical information on the pandemic

inaccurate due to overestimation or underestimation. Such unreliability will severely affect

the models which rely on long-term historical information on the pandemic outcomes at the

core of their analysis.
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In summary, the contributions of this work are as follows:

• Gathering and providing a thorough collection of datasets for the fine-grained repre-

sentation of US counties as sub-regions. This collection includes data from various

US bureaus, health organizations, the Center for Disease Control and Prevention, and

COVID-19 epidemic information.

• Evaluation of the informativeness of individual features in distinguishing between dif-

ferent regions

• Correlation analyses and investigating monotonic and non-monotonic relationships be-

tween several key features and the pandemic outcomes

• Proposing a neural architecture for accurate short-term predictive modeling of the

COVID-19 pandemic with minimal use of historical data by leveraging the automati-

cally learned region representations

We also designed an interactive platform with various monitoring and analytics function-

alities aligned with the main components of this work. It allowed both expert researchers

as well as users with little or no scientific background to study outbreak events and explore

regional characteristics2.

6.2 Data

This study focuses on analyzing the regions of the United States with statistical and AI-based

approaches to obtain results and representations associated with their pandemic-related be-

havior. A primary and essential step in doing so is to prepare a dataset covering a wide

range of information topics, from socio-economic to regional mobility reports. More details

2The codes, platform, data, and further analytics will be available at
https://github.com/shayanfazeli/olivia.
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regarding the primary data sources from which we have obtained information for this work’s

dataset are elaborated upon hereunder.

6.2.1 COVID-19 Daily Information per County

Our first step towards the mentioned objective is to gather the daily COVID-19 outbreak

data. This data should include the number of cases that are confirmed to be caused by

the novel coronavirus and its associated death toll. We are using the publicly accessible

dataset API in [covb, YSH20] to fetch the relevant data records. The table of data obtained

using this API contains the numerical information along with dates corresponding to each

record, and each document includes the number of confirmed cases and the number of deaths

that occurred due to COVID-19 on that date. It also includes the number of recoveries

from COVID-19 in the same format. This dataset’s significance is that it provides us with

a detailed and high-resolution temporal trajectory of the COVID-19 outbreak in different

urban regions across the United States. Using the dates, one can constitute a set of time-

series for every county and monitor the outbreak along with the other metadata to make

relevant inferences.

6.2.2 US Census Demographic Data

The US Census Demographic Data gathered by the US Census Bureau [kagf] plays a critical

role in our analysis by providing us with necessary information on each region’s population.

Additionally, this information includes specific features such as the types of work people in

that region mainly take part in, their income levels, and other invaluable demographical and

social information.
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6.2.3 US County-level Mortality

The fluctuations in the mortality rate of a region is also a potential critical feature in pan-

demic analytics. The US county-level mortality dataset was incorporated into our collection

to add the high-resolution mortality rate time-series throughout the years [kagj, kagg]. The

age-standardized mortality rates provide us with information on variables, the values of

which can be considered as the effects of specific causes. It is crucial since some of these

causes might have contributed to the faster spread of COVID-19 in different regions [DBS16].

6.2.4 US County-Level Diversity Index

Another dataset that offers a race-based breakdown of the county populations is available

at [kagb] with the diversity index values corresponding to the notion of ecological entropy.

For a particular region, if K races comprise its population, the value of diversity index can

be computed using the following formula:

di = 1−
K∑
i=1

(
ni

N
)2

In the above formula, N is the total population and ni is the number of people from race i.

This formula represents the probability p, which means that if we randomly pick two persons

from this cohort, they are of different races with probability p. In addition to that, we have

the percentages of different races in the regional population as well.

6.2.5 US Droughts by County

Another source of valuable information regarding the land area and water resources per

county is the data gathered by the US drought monitor [kagh, kage]. This data is incorporated

into our collection as well.
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6.2.6 Election

Based on the 2016 US Presidential Election, a breakdown of county populations’ tendencies to

vote for the main political parties is available [ele]. These records are added to our collection

as the democratic-republican breakdown of regional voters can reflect socio-economic and

demographical features that form the underlying reasons for the regional voting tendencies.

6.2.7 ICU Beds

Since COVID-19 imposes significant problems in terms of the extensive use of ICU beds and

medical resources such as mechanical ventilators, having access to the number of ICU beds in

each county is helpful. This information offers a glance at the medical care capacity of each

region and its potential to provide care for the patients in ICUs [kagc]. It could be argued

that having knowledge of the ICU-related capacity of regional healthcare providers can, to

some extent, represent the amount of their COVID-19 related resources, such as ventilators

and other needed resources.

6.2.8 US Household Income Statistics

The aggregate dataset on central statistical values on the US household income per county

(including average, median, and standard deviation) is used to provide information on the

financial well-being of the affected regions’ occupants [kagi].

6.2.9 COVID-19 Hospitalizations and Influenza Activity Level

Aside from the socio-economical and demographical features of a region, the number of

active and potential COVID-19 cases is a critical factor. This information can be leveraged

to provide a possible threat level for the region. These records are made available by CDC

for specific areas and are incorporated into our collection as well [CDCb, CDCa].
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6.2.10 Google Mobility Reports

The COVID-19 virus is highly contagious. Therefore, the self-quarantine and social dis-

tancing measures are principal effective methodologies in bolstering the prevention efforts.

Our collection includes Google’s mobility reports obtained from [KWS20]. These records

elaborate on the mobility levels across US regions, which are broken down into the following

categories of mobility:

1. Retail and Recreation

2. Grocery and Pharmacy

3. Parks

4. Transit Stations

5. Workplaces

6. Residential

In addition, we have computed a compliance measure that has to do with the overall

compliance with the shelter at home criteria:

compliance = −1−
(1/6)

∑6
i=1mi − 100

100.0

In the above formula, mi is the mobility report for the ith mobility category. This value

is computed through time to provide an overall measure of mobility through time. The

compliance measures of +1 and −1 mean +100% and −100% changes from the baseline

mobility behavior, respectively.
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6.2.11 Food Businesses

Restaurants and food businesses are affected severely by the economic impacts of this out-

break. At the same time, they have not ceased to provide services that are essential and

required by many. To reach a proper perspective of the food business in each region, we have

prepared another dataset based on records in [Ass] to provide statistics on regional restau-

rant revenue and employment. Analysis of restaurants’ status is important in the sense that

they are mostly public places that host large gatherings, and in the time of a pandemic, their

role is critical.

6.2.12 Physical Activity and Life Expectancy

Various features have been selected from the dataset in [hea] to reflect on the obesity and

physical activity representation for different US regions. These features include the last

prevalence survey and the changes in patterns. Also, Life Expectancy related features are

valuable information for representing each region. They are included as well in our analyses.

6.2.13 Diabetes

Different features to represent a region according to the diabetes-related characteristics were

selected from the data in [hea]. These include age-standardized features and clusters that

have to do with diabetes-related diagnoses.

6.2.14 Drinking Habits

Information on regional drinking habits from 2005-2012 has also been used in this work [hea].

This information includes the proportions of different categories of drinkers clustered by sex

and age. The categories are as follows:

• “Any”: a minimum of one drink of any alcoholic beverage per 30 days
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• “Heavy”: a minimum average of one drink per day for women and two drinks for men

per 30 days

• ”Binge”: a minimum of four drinks for women and five drinks for men on a single

occasion at least once per 30 days

6.3 Methods

In what follows, the analytical techniques that we have designed and used in this work

are explained. To draw meaning from the data that we have at hand, we have designed

and utilized a variety of techniques. These methodologies range from traditional statistical

methodologies to the design and testing of deep learning inference pipelines for event pre-

diction. We select a set of representative features to use in our analytics from the gathered

collection of datasets. More details on the nature of these features are shown in Table 6.1.3

6.3.0.1 Feature Informativeness for Sub-region Representation

An important question that is raised in analyzing a dataset with well-defined categories of

features is how important these features are in describing the entities associated with them.

From the particular perspective of enabling the differentiation between two regions, it can be

said that a measure of importance is the contribution of each one of these selected features

to the overall variation in datapoints. The boundary case is that if a feature always has the

same value, it is not informative as there is no entropy value associated with its distribution.

To begin with, we associate a mathematical vector with each data point, which contains

the values of all its dynamic and static features associated with a specific date and location.

Since we are mainly targeting US counties in this study, each record would be associated with

3Please note that the focus of this work, in terms of regions, is on US counties. Nevertheless, if some
features are only available in the state-level resolution, they will also be used in representing the region as
they are associated with county characteristics as well.
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Table 6.1: Overview of the Features Characterizing Regions

Category Description

Food Businesses (static)

Food and Beverage Locations

Restaurant Employments

Sale and Economy

Gender (static) Percentage of Male and Female

Race (static) Ratio of different races

Election (static) Ratio of Democratic, Republican, and other

voters

Income (static)
Wage Statistics

Poverty Information

Commute (static) Statistics of Methods of Commute to Work

and Their Ratio

Hospitals and Mortality (static) Information on ICU Capacity and Statistics

on Region’s Mortality

Obesity and Physical Activity (static) Information on the Statistics of Obesity and

Physical Activity and the Changes in Pat-

terns

Life Expectancy (static) Regional Life Expectancy Values in Years

Drinking (static) Alcohol Consumption Patterns and Changes

Diabetes (static) Patterns of Different Types of Diabetes Di-

agnoses and Changes in Them

Land and Water (static) Information on Land and Water Resources of

Regions

Employment (static) Ratio of Different Job Types and Other

Statistics

CDC Hospitalizations and Surveys (dynamic) Number of Hospitalizations due to COVID-

19 and Influenza Activity Surveys

Google Mobility Reports (dynamic) Breakdown of Regional Mobility in Different

Categories Based on Which Our Compliance

Score Is Computed
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a US county at a specific date. We then use Linear Principal Component Analysis (PCA)

[WEG87] to reduce the dimensionality of these data points and to evaluate the importance of

the selected features in terms of their contribution to the overall variation. Results show that

in order to retain over 98% of the original variance, a minimum of 55 principal components

should be considered. Each one of these components is found as a linear combination of the

original set of features, and that along with the percentage of variance along the axis of that

component can be used as a measure of performance. To be more specific, considering n

features and m data points that result in p PCA components to retain 98% of the variation,

we will have:

c⃗i = ⟨v1, v2, · · · , vn⟩ ∈ Rn

And ui is the total variance along the axis of ith PCA component. This can be thought

of as a measure of importance for the PCA components, and the absolute value of vis

magnitudes can be considered as the importance of original feature i’s contribution to its

making. Therefore, we will have the following measure of informativeness defined for our

features:

I⃗ ∈ Rn

I⃗ =

p∑
j=1

uj · c⃗j

The features can be sorted according to these values, and the categories can also be considered

in their relevant importance. Note that this is just one definition of informativeness; for

example, certain features might not vary a lot, but when they do, they are potentially

associated with severe changes in the COVID-19 events. Therefore, the importance score

that has been captured here merely has to do with how better we are able to distinguish

between locations based on a feature.
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6.3.0.2 Statistical Analytics

In order to better understand the co-occurrences of the features in our input dataset and

their corresponding COVID-19 related events, we have performed an in-depth correlation

analysis on them. We have considered four principal measures of correlation, namely: Pear-

son, Kendall, Histogram Intersection, and Spearman, as described in Table 6.2. We have

used the Pearson correlation coefficient along with the p-values to shed light on the pres-

ence or absence of a significant relationship between the values of each specific feature and

each category of pandemic outcome. We have also computed nonparametric Spearman rank

correlation coefficients between any two of our random variables. This value would be com-

puted as the Pearson measure of the raw values converted to their ranks. The formulation

is shown in Table 6.2 in which di is the difference in paired ranks. We also employed mutual

information as an additional measure and confirmed the presence of relationships between

the key region representation features pointed out by the correlation analyses and the pan-

demic outcomes. This coefficient measures the strength of the association between the values

of these random variables in terms of their ranks. Since many of the relationships in our

dataset can be intuitively thought of as monotonic, these values are particularly important.

To better understand the concordance and discordance, Kendall correlation is computed as

well. The main correlation analysis formulations used to evaluate the monotonic and general

relationship between region representation variables and pandemic outcomes are shown in

Table 6.2. In these formulations, m1 and m2 are the numbers of concordant and discordant

pairs of values, respectively. Additionally, Normalized Histogram Intersection is another

methodology directly targeting the distributions of these variables. The degree of their over-

lap represents how closely x’s distribution follows the distribution of y. It has also been

utilized in finding the results of this section.
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Table 6.2: Correlation Analysis Formulas

Correlation Formula

Pearson rx,y =

∑m
i=1(xi − µx) · (yi − µy)

√
(
∑m

i=1(xi − µx)2) · (
∑m

i=1(yi − µy)2)

Spearman sx,y = 1−
6
∑
d2i

m(m2 − 1)

Kendall kx,y =
m1 −m2(

m
2

)
6.3.1 Neural Event Prediction

In continuation of our statistical analyses on COVID-19 event distributions, we have de-

signed a neural inference pipeline to help with the effective utilization of both learned deep

representations and the embedded sequential information in the dataset.

In this work, we introduce a neural architecture, which is trained and used for COVID-

19 event prediction across the US regions. The Double Window Long Short Term Memory

COVID-19 Predictor (DWLSTM-CP) is comprised of multiple components for domain map-

ping and deep processing. First, using its dynamic projection which is a fully connected

layer, the dynamic feature vectors which reflect on temporal dynamics will be mapped to a

new space and represented with a further concise mathematical vector.

⟨x̃dynamic
1 , x̃dynamic

2 , · · · , x̃dynamic
T ⟩ = F dynamic

projection(⟨xdynamic
1 , xdynamic

2 , · · · , xdynamic
T ⟩) (6.1)

This step is essential due to the fact that an optimal deep inference pipeline is the one

that retains only the information required by each level and minimizes redundancies [TZ15].

The projections are designed to help the network achieve this objective. These are then fed

to the LSTM core for processing.
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Figure 6.1: The full inference pipeline of our Double Window LSTM-based COVID-19 event

prediction is shown in this block diagram.

Adynamic = LSTM(X̃)

Each one of these outputs is concatenated with the projected version of static features,

F static
projection(xstatic), and fed to the output regression unit. The outputs are compared with the

ground truth time-series, and a weighted Mean Squared Error loss along with Norm-based

regularization is used to guide the training process while encouraging more focus on the

points with large values. The overall pipeline is shown in Figure 6.1.

It is worth mentioning that this approach leverages and utilizes all of the features dis-

cussed in the previous sections in representation of regions, as well as a minimal historical

window of pandemic outcomes. It learns representations that take various factors, from dif-

ferent categories of mobility and activities to socio-economic information, to make accurate

short-term predictions while reducing the need for lengthy historical data on the pandemic
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outcomes. There are many occasions in which accurate and reliable historical data on the

pandemic is not available due to a variety of reasons (e.g., a problem in reporting scheme),

which motivates approaches with less dependency on it.

6.4 Experiments

The results on our regional dataset in terms of feature importance from the principal compo-

nent analysis indicate the following features contribute to the overall concise representation

of a region significantly:

• Restaurant businesses, namely the contribution to the state economy and the count

of food and beverage locations. Even though we only have access to state-level data,

its importance can be intuitively argued as it reflects on the counties that the state

includes. It is also worth noting that restaurants and food services play an important

role in the pandemic dynamics, as the restaurant employees are considered essential

workers.

• The influenza activity level is another critical feature in the analysis. Given the sim-

ilarity of symptoms between Influenza and COVID-19 infection, monitoring Influenza

activity is very helpful for COVID-19 pandemic understanding.

• Diversity index, which signifies the probability of two randomly selected persons be-

longing to different races from a population, also plays a crucial role in representing

the regions.

• The changes in the mortality rate that is not associated with COVID-19 are beneficial

as well. This is also intuitively arguable as it can be thought of as a measure of

mortality related sensitivity for the regions.

Figure 6.2 shows how the projected points scatter after the PCA as well. The results

indicate that 55 PCA components are required to retain over 98% of the variance of the
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Figure 6.2: The plot in this figure is a PCA BiPlot which shows the variations of the first

two PCA components and axes of some of the selected features.

dataset, and Figure 6.3 shows the progress of covering the variance by adding each one

of them sorted by their importance. Table 6.3 provides the values of the aforementioned

importance metric computed for sample features in different importance levels.

6.4.1 Statistical Analytics

The results of correlation analyses help empirically and quantitatively validate many of the

relationships mentioned in the known hypotheses regarding the COVID-19 outbreak. The

Pearson correlation of −0.287 with the p-value of 0.046 indicates a significant relationship

between the percentage of food businesses in the state economy, and the average cumulative

death count in its counties. Another example is the value of the Spearman correlation co-

efficients between the different types of commute to work associated with each county and

the values of the pandemic-related events. From Table 6.4, it is apparent that there is a

positive relationship between the proportion of public transit as a method of commute to

work and the spread of COVID-19 in the region. It indicates that the more the percentage
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Figure 6.3: The cumulative amount of variance covered by using up to a certain number of
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meaning that the first component contributes more to variance coverage than the ones se-

lected after it.

Table 6.3: Sample Features of High and Low Informativeness Score

Level Feature Score

High

Diversity Index 0.148

Contribution of Restaurants’ Table Service

to State Economy

0.130

African American Ratio 0.109

Low

Percentage of Men 0.020

Pacific Islanders Ratio 0.013

Percentage of Family Jobs 0.006
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Table 6.4: The Spearman correlation coefficients between the share of different methods of

commute in county transportation and the cumulative pandemic outcomes

Cumulative Deaths Cumulative Cases Cumulative

Recoveries

Drive 0.22 0.20 −0.03

Carpool −0.04 0.04 0.04

Transit 0.20 0.12 −0.06

Walk −0.29 −0.35 0.05

of public transit is for the method of commute to work in a US county, the more the number

of potential cases is expected to be as the Spearman correlation coefficient is an indicator of

a monotonic relationship between the variables. Another example is the Pearson correlation

between the ratio of different races in regions and the pandemic outcomes. It is known that

COVID-19 is affecting the African American community disproportionately [Sco]. Accord-

ingly, Table 6.5 shows a higher correlation between the ratio of African Americans and the

severity of COVID-19 outcomes. It also indicates that the more diverse regions were im-

pacted the most, which is in accordance with the findings of the feature importance section

listing diversity-related features as critical parameters.

6.4.2 Neural Event Prediction

The collected set of datasets in this work provide a sufficient number of records for enabling

the efficient use of Artificial Intelligence for Spatio-temporal representation learning. We

show this by training instances of our proposed DoubleWindowLSTM architecture on the

two main short-term tasks regarding epidemic modeling; namely, new daily death and case

count. In our dataset, we considered the US COVID-19 information from March 1st, 2020 to

July 22nd, 2020, in which the July data is used for our evaluations, and the rest are leveraged

for training and cross-validation. The objective using which the proposed architecture was
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Table 6.5: Pearson correlation between the race percentages per county and COVID-19

variables

Cumulative

Deaths

Cumulative

Cases

Cumulative

Recoveries

White −0.30 −0.48 −0.15

African-American 0.34 0.42 −0.01

Hispanic 0.04 0.23 0.2

Native American 0.03 0.02 0.03

Asian 0.14 0.11 0.04

Pacific Islander −0.03 −0.02 0.03

trained is a multi-step weighted Mean Squared Error (MSE) loss, which helps to minimize

a notion of distance between the predictions and the target ground-truth while encouraging

(by assigning larger weights) to the windows that exhibit larger values. These thresholds

are empirically tuned and set prior to the training procedure. The learning curves for both

experiments indicate clear convergence in Figure 6.4.

To quantitatively evaluate the performance, we have reported the Root Mean Square

Error (RMSE) for the prediction of new daily deaths and cases due to COVID-19 in Table 6.6.

For comparison, we have used the ARIMA model as well with the parameters set according

to the work in [Kuf20] that have fine-tuned this scheme for forecasting the dynamics of

COVID-19 cases in Europe. We have also found the empirically optimal ARIMA model

in each scenario according to Augmented Dickey-Fuller (ADF) tests and based on Akaike

information criterion (AIC) and reported the results denoted by ARIMA*. The evaluation

is conducted on the test set, which includes the data from the end of June 2020 to July 22nd,

2020.

To compare with other predictive modeling works in this area, which are mostly focusing

on making inference for US states, we aggregated our county-level findings to form esti-
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Table 6.6: Daily Average RMSE Evaluations

Objective and Timeframe
New Daily Deaths New Daily Cases

10-day 15-day 10-day 15-day

DWLSTM 4.4347 3.0435 81.4205 92.4027

ARIMA* 29.9813 12.7631 233.3008 235.3828

ARIMA(1,2,0) 57.1886 22.4285 394.3747 566.5686

mators for state-level prediction. From the results reported in Table 6.7, it is interesting

to observe that the aggregated estimator based on our model achieves strong evaluation

result comparable to the models that achieve highest scores, while clearly outperforming

the other two models that are inherently county-level, namely, the works in [WWG20] and

[PS20a]. The baseline methodologies are evaluated on predicting the next 14 days and un-

til June 28th, 2020. The groundtruth pandemic outcomes come from different datasets on

pandemic events, namely, Johns Hopkins University (JHU) [YSH20, covb], New York Times

dataset (NYT) [nyt], and the US Facts dataset (USF) [usf]. It should also be noted that

even though the objective for the DWLSTM model was to predict county-level information,

the provided state-level errors which are obtained by aggregation fall in the range of the

dominant COVID-19 predictor models that rely heavily on the accuracy of the historical

epidemic data. The evaluation for our model has been conducted on the next 14 days during

July 2020, which is also particularly challenging due to drastic changes in the pattern of

outbreak trajectories in states such as California and Texas.

The predictions for several regions exhibiting different levels of severity are shown in

Figure 6.5. These results can help the reader in a qualitative assessment of the model

performances, in which the outputs of our approach demonstrate high stability and follow

the trajectory of the ground-truth with precision.
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Figure 6.4: Sample Test Prediction of Cumulative Death Count per 100k Population - Four

regions exhibiting different severity levels are chosen to show the efficacy of the model. The

95% confidence intervals for ARIMA* and DWLSTM models are shown and clearly indicate

the stability in training our model and the predictions made by it.

Table 6.7: Comparison with Published Models

Prediction

Window

(days)

Average

Daily

RMSE

Ground-

truth

Source

DWLSTM 14 24.94 JHU

SIkJa 14 23.63 JHU

UCLA SuEIR 14 22.97 NYT

CovidActNow SEIR CAN 14 27.78 NYT

IowaStateLW. STEM 14 26.67 JHU

Covid19Sim Simulator 14 27.82 JHU

JHU IDD CovidSP 14 48.97 USF

CU Select 14 32.36 USF

95



6.5 Discussion

6.5.1 Principal Findings

The primary objective of this work is focused on leveraging regional representations for

accurate short-term predictive modeling of the epidemic with minimal use of historical data.

It is plausible to assume that the features chosen in this work, which reflect on different

characteristics of a region, include valuable information for efficient prediction of pandemic

events. The static features include various socio-economic and demographical properties

associated with a region and its population. Combined with the dynamic set of features

such as influenza activity level and mobility patterns, this information was leveraged along

with a short track of pandemic time-series for predictive modeling. We do not claim that

the data points coming from this domain are statistically sufficient for the pandemic event

prediction tasks; however, empirical results indicate that they can be effectively utilized

for these objectives. There are occurrences outside of this domain that can impact the

outcomes (e.g., the initial impact of a large number of infected people arriving in a specific

location is not initially captured by our scheme). Nevertheless, the results indicate that

the data points coming solely from this work’s domain can help in the effective knowledge

extraction regarding the current and future values of pandemic-related time-series. The

result section elaborated on the statistical findings and introduced a measure of feature

importance. In addition, a neural network architecture that has a long short-term memory

configured recurrent neural network in its core was introduced to serve as a new baseline for

COVID-19 event prediction.

6.5.2 Comparison with Previous Studies

Since the beginning of the COVID-19 outbreak, there have been works focusing on gathering

information or performing statistical analysis related to this epidemic. This work is focused

on learning and analysis of the high-resolution spatiotemporal representation of urban areas.
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Figure 6.5: Sample Test Prediction of Cumulative Death Count per 100k Population - Four

regions exhibiting different severity levels are chosen to show the efficacy of the model. The

95% confidence intervals for ARIMA* and DWLSTM models are shown and clearly indicate

the stability in training our model and the predictions made by it.
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We provide a collection of datasets and select a large number of features to reflect on various

demographics, socio-economics, mobility, and pandemic information. We have used statisti-

cal analysis techniques to investigate the relationships between individual features and the

epidemic, while also considering the contribution of such features to the overall representa-

tion power. We have also proposed a deep learning framework to validate this idea that such

region-based representations can be leveraged to obtain accurate predictions of the epidemic

trajectories while using but a minimal amount of historical data on the outbreak events

(e.g., number of cases). Even though our model is trained with the objective of providing

county-level predictions, we have aggregated these county-level predictions and used these

aggregate values as state-level estimators to evaluate the loss on the most recent data. In

Table 6, we have compared these results with the information on the similar performance

measure of the eight COVID-19 prediction works that perform state-level inference making.

It can be seen that our framework provides a simple solution which outperforms the other

county-level methodologies (namely, [WWG20] and [PS20a]) on this task.

6.5.3 Applications

The importance of clearly defined policies enforced at the proper time on alleviating the

adverse impacts of a pandemic in different areas is crystal clear. One of the important

applications of this work is in providing researchers and agencies with a more in-depth

understanding of the co-occurrence of idiosyncratic patterns associated with regions and the

predicted pattern of the outbreak. This information can be used to assist policymakers,

for example, to render the details of their decisions such as lockdowns, more fine-grained

and attuned to the regional needs. These include the intensity and length of enforcing

such measures. The ability to predict pandemic-related occurrences (e.g., number of deaths,

cases, and recoveries) is another valuable application of this work. This knowledge will

provide hospitals and healthcare facilities with targeted information to help with the efficient

allocation of their resources. Another important application of this work is when there is a
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lack of availability for accurate and reliable historical data on the epidemic events, which is

also important for developing countries. For example, when it is realized that the previous

reports on the number of cases and deaths due to the pandemic were not reliable, such

finding will not affect our solution due to its less degree of dependence on the historical data

on the epidemic than other models which base their analysis on them at the core of their

analyses.

6.5.4 Limitations

This study has several limitations that should be discussed. The initial notion of feature

informativeness which was discussed in the earlier sections of this article mainly has to do

with the contribution of features to the variance in representing regions and areas. Given the

nature of this study, combining this and the relationship between them and the pandemic

and providing more in-depth prior domain knowledge can help with a better definition of fea-

ture importance. Our methodology provides a means to use region-based representations to

obtain predictions with less reliance on the historical epidemic data. Nevertheless, generaliz-

ing the network architecture in this work and providing access to more extended and reliable

historical data, if possible, can be an improvement and is worthwhile as a potential future

direction. Utilizing attention-based methodologies and other interpretation techniques with

the pre-trained weights is also a well-suited future direction to better understand what the

models learn.

6.5.5 Conclusions

In this study, we gathered a collection of datasets on a wide range of features associated with

US regions. Our approach then used various statistical techniques and machine learning to

measure the relationship between these regional representations and the pandemic time-series

events and perform predictive modeling with minimal use of historical data on the epidemic.
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Both quantitative and qualitative evaluations were used in assessing the efficacy of our design,

which renders it suitable for applications in various areas related to pandemic understanding

and control. This is crucial since the information on the patterns and predictions related to

an outbreak play a critical role in elaborate preparations for the pandemic, such as improving

the allocation of resources in healthcare systems that will otherwise be overwhelmed by an

unexpected number of cases.

100



CHAPTER 7

Non-intrusive Monitoring of Mental Well-being1

7.1 Introduction

Within the spectrum of mental health disorders, disorders related to stress and anxiety

are some of the most common groups of psychiatric problems affecting both children and

adults [BHG18, Car06, MHB10], with up to one in three people in the US meeting full

diagnostic criteria by early adulthood [TEW17, HHP08]. This manifests in the form of

roughly to 7 to 9% of the population in the US suffering from a specific phobia, 7% from

social anxiety disorder, and 2 to 3% each from panic disorder, agoraphobia, generalized

anxiety disorder, and separation anxiety disorder [APA19]. In the United States alone,

estimates are that 20% of the population suffers from at least one mental health condition

[Leo21]. Around 60 million adults are affected by at least one anxiety-related disorder (e.g.,

generalized anxiety disorder (GAD) and social anxiety), with less than 40% of them seeking

treatment [Men, APA]. In the United States, about 73% of people suffer from acute bouts of

stress to a degree of magnitude that impacts their mental well-being. Incidents of Anxiety

1This chapter is based on the following papers [FLB23, FLB22]:

• Fazeli S, Levine L, Beikzadeh M, Mirzasoleiman B, Zadeh B, Peris T, Sarrafzadeh M.
A Self-supervised Framework for Improved Data-Driven Monitoring of Stress via Multi-
modal Passive Sensing. arXiv preprint arXiv:2303.14267. 2023 Mar 24. (To be published
in IEEE International Conference on Digital Health (ICDH) 2023)

• Fazeli S, Levine L, Beikzadeh M, Mirzasoleiman B, Zadeh B, Peris T, Sarrafzadeh M.
Passive monitoring of physiological precursors of stress leveraging smartwatch data.
In2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2022
Dec 6 (pp. 2893-2899). IEEE.
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often manifest similarly to stress. However, it is notable that it is not always immediately tied

to a specific triggering or inciting event and may take longer to resolve. All told, both stress

and anxiety problems are very common, to the extent that most adults have been affected by

at least one anxiety-related disorder [APA]. Individuals with anxiety disorders contend with

substantial distress and impairment. They are at heightened risk for a host of adverse long-

term outcomes, including depression, substance abuse, educational underachievement, and

poor physical health [NMW14, BMC98, WF01, Cli]. Effectively managing mental health-

related disorders is a growing challenge to the healthcare community. In addition to the

significant costs and considerable resources required to provide proper help for patients,

limited access to care renders seeking treatment further challenging for the individuals in

need of it [JJD01, CWD04, SWM06, SW09]. The optimal method for the prevention or care

of mental illness is early identification, diagnosis, and proactive treatment[WKW16]. Time-

sensitive intervention is, therefore, crucial for preventing conditions from becoming chronic

and debilitating. However, traditional methods of psychiatric assessment, including clinical

interviews and self-reports, are limited in their ability to provide just-in-time interventions

as well as early identification. They depend heavily on retrospective summaries collected in

clinical settings, conditions often resulting in reporting biases, inaccurate recall, or late and

ineffectual treatment.

Additionally, stress and anxiety disorders are, for the most part, vastly overlooked and

under-treated in the community; only about 15-30% of anxious individuals receive treatment

of any kind. Recent research has found strikingly high levels of anxiety among college-age

youth. Indeed, 58.4% of college-aged youth report feeling “overwhelmed by anxiety” [Ass16].

Several other recent studies document the high proportion of college students meeting full

diagnostic criteria for an anxiety disorder [BMK18]. At the same time, young adults are

mainly overlooked within the health care system, with screening, identification, and referral

rates falling below those of children or adults [WF01]. Given this landscape, there remains a

pressing need for tools that improve early identification of anxiety symptoms, provide users

102



with platforms to monitor their activities, and raise awareness of factors impacting their

well-being.

The growing ubiquity of consumer devices, among them smartphones, smartwatches,

and in-home sensors, all equipped with an array of sensors and user logs, have resulted in

an unprecedented opportunity to catalog and quantify the daily aspects of an individual’s

life, creating repositories of personalized information [Swa12]. If harnessed and utilized

by the individuals themselves, there is significant potential for such monitoring to improve

their healthcare outcomes dramatically. This potential has long been recognized in physical

behavior and physiological health, as both are extensively tracked. In contrast, the mental

health domain is considerably less investigated.

7.1.1 Long-term Patterns of Anxiety

There have been research efforts that explored whether pervasive mental health monitoring

could be feasible through a smartphone and the embedded sensors, such as motion sen-

sors, ambient light, microphone, camera, Global Positioning System (GPS), proximity, and

touch screen[CFL17][OPC14][BSW15][NGT20]. These efforts have shown the promise of

this approach in successfully tying behavioral monitoring to mental health; however, such

approaches have not translated into fully mature frameworks and have focused almost ex-

clusively on depression-related conditions, which, while often spoken in conjunction with

anxiety, manifest in distinct ways[FIO19].

The advantages of leveraging a smartphone-based platform are that the continuous col-

lection of quantitative data potentially provides a more reliable indicator of an individual’s

risk at any given time, as well as offering a mechanism for just-in-time intervention should

a mental health episode occur[BSW15]. Conversely, smartphone-derived data present sev-

eral challenges, some of which have already been noted, which can result in limited accu-

racy owing to differences in behavioral patterns across users and the indirect manner of

detection[FIO19].
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Towards the recognition and monitoring of anxiety, we propose a smartphone-centered

platform named eWellness. The eWellness framework is designed to capture a broad spec-

trum of remote monitoring, survey data acquisition, secure data transmission and manage-

ment, data analytics, and visualization. The primary component of eWellness is a mobile

application that facilitates data collection and transmission harvested from an array of sen-

sors and usage logs from a user’s smartphone. The data is collected passively, pre-processed,

and transmitted through a secure gateway to the cloud, where it is securely stored and

indexed using a scalable database.

Concurrently the eWellness application includes an active querying component where

users can be prompted with Ecological Momentary Assessments (EMA) of their mental

health status. A back-end analytic engine complements this architecture, capable of map-

ping observed metrics and exogenous data sources to a user’s mental health state based on

adaptive statistical models and machine learning algorithms.

7.1.2 Short-term Patterns of Stress

Within the spectrum of personal electronics, smartwatches offer unique potential in the

realm of remote health monitoring [A 18]. While smartphones are the platform most typ-

ically associated with mobile healthcare applications, smartwatches are worn continuously

and directly on the skin, enabling a host of physiological sensing modalities that smart-

phones cannot emulate. The watch’s location, worn at a distal point of a major appendage

(the user’s wrist), also typically results in a more accurate reading of a user’s activities than

smartphones, whose location in relation to the user’s body may vary throughout the day

[Tex17]. Embedded smartwatch sensors increasingly rival the capabilities and sophistication

of dedicated wearable sensors such as chest straps. Additionally, smartwatches have advan-

tages over dedicated sensors in that their interactive features provide a means for engaging

the user with additional queries and therapeutic responses [J 17]. Finally, the generalized

nature of smartwatches increases the likelihood that users will utilize their healthcare fea-
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tures in addition to the broader set of desirable functions that users find in smartwatches.

This is much like how a user is likely to be more inclined to use a healthcare application on

a smartphone rather than purchase and use a custom device solely for the same intended

purpose.

As previously noted, smartwatch devices provide near real-time data measurements, allow

users to provide feedback via interactive queries, and enable intervention mechanisms in

ordinary day-to-day situations outside clinical environments. Furthermore, this platform

aggregates and analyzes patient data that can be communicated to healthcare providers and

family members to improve their treatment experience. This study, therefore, focuses on

presenting a smartwatch-based system for recognizing and monitoring physiological patterns

preceding episodes of short-term stressful responses.

While smart devices, like smartwatches, have demonstrated the technical capacity to

monitor physiological stress to varying degrees of accuracy, they demonstrate only a partial

picture of a wearer’s overall mental health.

This stems from the intrinsic disconnect between emotional perceptions of stress and

the underlying physiological stress response. There is growing evidence of notable differ-

ences in how individuals perceive their stress levels and the physiological manifestation of a

stress response. For instance, a meta-analysis found that a significant correlation between

physiological stress and perceived emotional stress was found in only 25% of social stress

studies[CE12].

Several factors are presumed to contribute to this low correlation. Foremost among

them is that, somewhat counter-intuitively, a direct linear relationship between these two

stress profiles is not present but instead is influenced by many additional factors. A detailed

study concluded that self-reports of perceived stress did not provide useful information about

physiological stress responses[OOB11]. Differing populations may also exhibit different cor-

respondence patterns that population-level models fail to account for (e.g., individuals with

ADHD, those who experience chronic stress, and family histories of substance abuse).[CE12]
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It is also theorized that differing response patterns may impact how stress manifests phys-

iologically. For instance, differing degrees of cognitive regulation of negative emotions may

result in individuals being able to adapt to stress differently[KMC15]. Previous work demon-

strating a higher correspondence between self-reported anxiety and physiological arousal in

women when compared to men is hypothesized to be explained by men showing emotion-

suppressing coping strategies to a greater extent than women[KMC15]. Finally, it has been

observed that positive emotions are more strongly associated with physiological responses

than negative emotions. This may be due to their social acceptability and disinclination to

control or dampen a physiological response when compared to negative ones[KMC15].

Perhaps the most challenging effort in effectively mapping these two stress profiles stems

from the fact that accurate and consistent measurement of emotional stress experiences is

currently considered an intractable challenge for the academic community[OOB11]. While

multiple scales have been developed to assess differing quantifiable mental health measures,

there is no clinically validated gold standard for assessing emotional well-being accurately

and consistently, both across a population and individuals over time. This stems from issues

with an individual’s recall and perception of stress, particularly if data is collected after

the fact, their evolving willingness to be forthright and transparent regarding emotional

well-being, and differences in the subjective assessment of stress across individuals (what

constitutes a moderate level of stress may differ dramatically across individuals)[OOB11].

In this work, we present an end-to-end wearable stress recognition and monitoring frame-

work that provides the opportunity for continuous, scalable, and low-cost monitoring of

relevant mental health indicators over time. Our contributions are as follows:

• Focusing on users’ usual anxiety responses during everyday life events, we propose a

smartwatch-based system for non-invasive and efficient monitoring of key physiological

attributes, including heart rate, heart rate variability, respiration, and pulse oximetry

readings. We then aim to leverage this information to make accurate predictions on

the occurrence of short-term episodes that individuals would perceive as stressful.
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• In a 10-day anxiety study approved by the Internal Review Board (IRB)2, we created

a corpus of primary physiological data from monitoring 14 college students with an

active-duty or ex-military affiliation. This helps us study the data obtained from a

critical cohort regarding susceptibility to stress and anxiety.

• We designed a survey-based self-assessment method for the subjects to receive feedback

regarding time and intensity of the moments and episodes they perceived as stressful

throughout the day. These assessments correspond to the stressful episodes in their

everyday lives and their perceived levels of experienced anxiety. Labeling these self-

reported episodes was done with the help of domain experts, which rendered our corpus

an informative benchmark for empirical performance evaluations.

• We designed deep inference pipelines for the fusion and processing of our smartwatch

data [FL]. Our framework enables the efficient use of artificial intelligence for stress-

focused deep representation learning. This is done by pre-processing preparation and

fusion of the multi-modal physiological time-series data recorded via smartwatch sen-

sors as well as leveraging the details of self-reported stressful events.

• We experimented with fusing sensory data at various pipeline stages and presented

comparative results.

• To make the most of our data which is limited in size and number of annotations, we

leveraged label smoothing and augmentation in windowing and observation formation,

as well as specific techniques of adversarial information removal and self-supervised

pre-training and contrastive regularization so as to improve the performance.

• The proposed late-fusion method is inherently modular with regards to the different

modalities of data. Therefore proper data-layer transforms allows leveraging various

2The Internal Review Board approved our study at the University of California, Los Angeles.

107



devices (e.g., smartwatches and wearable sensors different from ours) to learn efficient

representations for health monitoring.

• We employed an attention-based approach providing a diagnostic view of the system,

allowing the researchers to look into the empirical connection between various modes

of data for specific monitoring tasks, counteracting the masking effect of many deep-

learning frameworks on interpretability.

• In developing this framework, we conducted experiments on real-world data collected

on perceived stress and demonstrated the efficacy of our approach.

7.2 Data

7.2.1 Long-term Anxiety

7.2.1.1 Privacy

Data from the study, both sensor feeds and usage logs, along with user-generated EMA

responses, are first encrypted, cached locally on the user’s device, and then transmitted to

a secure remote server, where it is stored in an encrypted scalable MySQL database.

7.2.1.2 eWellness Data Collection

The eWellness mobile application, developed for Android devices, collects passive behavioral

data derived from communications logs, embedded sensors, and user logs capturing the

following metrics:

• Communication: is monitored by incoming and outgoing phone calls and text mes-

sages, including the duration of phone calls, the number of texts and phone calls, and

unique individuals contacted. This does not assess the content of communications or

the recipient of the communication beyond establishing a unique contact.
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Figure 7.1: eWellness Data Collection Hierarchy

• Location: is periodically sampled using GPS, network, and Wi-Fi detection. Prompts

for a new location after moving 5 meters, up to once a minute. This metric leverages the

Google Fused Location API. The application does not track specific locations; instead,

it keeps a total distance traveled using the vectorized haversine distance function.

• Ambient Sound: is a numeric measure designed to detect speech and communication

above 50 decibels using the phone’s microphone. It samples every 5 minutes for 5

seconds. This metric does not capture the audio files of communications and merely

documents the sound frequency and decibel level as numeric values.

• Activity and Movements: leverage the device’s accelerometer, gyroscope, and GPS

tracking. Activity is sampled every 60 seconds. In order to determine stationary and

moving activity-type, the application leverages Google’s Activity Recognition API.

• Light: detects light level associated with possibly being in an outdoor or indoor loca-

tion. This sensor is sampled every 6 seconds.
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• Phone use: is user-log monitoring the device’s screen on time.

We derived daily aggregated features from these metrics from these raw values to infer

a user’s sociability and behavioral patterns. These were then used to learn a model for

predicting anxiety symptom severity. We obtained statistical characteristics, such as min-

imum, maximum, mean, standard deviation, and the 25th, 50th, and 75th percentiles, of

the numeric values of noise exposure and ambient luminescence. The number of activity

transitions and duration of each physical activity per day also became a significant metric

for identifying mentally distressed days.

Recognizing the potentially invasive nature of applications like this, data collection was

carefully scoped to avoid collecting Personally Identifiable Information (PII) that could link

a particular user to a particular dataset. For example, when attempting to gauge sociability,

the application logs the total number of phone calls made, total time on the phone, and the

number of unique contacts called; the identities of specific callers were not tracked. This

has the consequence of introducing a degree of obscurity into an observed finding (e.g., as

the application cannot differentiate between calls to friends and calls to a customer-service

hotline). At the same time, in the interest of both respecting privacy and ensuring the

acceptability of the app, these efforts were felt to be necessary constraints on data collection.

An IRB-approved pilot study was conducted on a dozen individuals using the Android

version 5.0 and above from the university community, including students and staff. Study

participants did not have a reported history of mental illness. Participants were asked to

download and install the eWellness application (Figure 7.2) and then run it on their phones

for a month. Passive data was collected continuously by the application throughout the

month. Participants were asked to answer EMA daily through the eWellness app but did not

provide any other personal information, such as name, gender, or age, during participation.

The Kessler Psychological Distress Scale (K10) [AS01] is a validated measure of psycho-

logical distress over the past 30 days, used for clinical and epidemiological purposes. It has
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Figure 7.2: eWellness - User Interface

notable success in measuring feelings of anxiety along with depression. For this pilot, the

K10 was modified to assess criteria over the previous 24-hour period. The modified K10

prompted the users as daily EMA to measure their feelings of anxiety and depression. The

K10 is composed of ten questions, structured on the following standardized template, ”Over

the past 24 hours, how often have you...”, to which users can provide one of five standardized

responses: All of the time, Most of the time, Some of the time, A little of the time, and None

of the time). These responses are scored on a range from five (All of the time) through one

(None of the time). The minimum possible score of K10 is 10, and the maximum possible

score is 50. K10 results are categorized into four levels of psychological distress: low distress,

moderate distress, high distress, and very high distress (Table 7.1).
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Table 7.1: Categorization of K10 Scores [aus]

K10 Score Level Samples (N=146)

10-15 Low distress 91

16-21 Moderate distress 29

22-29 High distress 21

30-50 Very high distress 5

7.2.2 Short-term Stress

Considering the ultimate objective of our study, which has been to present a working so-

lution that the general population can use for continuous and passive monitoring of bouts

of stress, we concentrated on the intersection of two groups of people particularly at risk

for stress, namely, college students and military members. To create our cohort of data

on short-term stress, we recruited former and current members of the military within the

University of California - Los Angeles (UCLA) community for participation in this study.

We published our study’s advertisement in social media channels and military-affiliated or-

ganizations. Interested individuals were asked to complete an initial online screening survey.

Those determined to be eligible participated in a virtual informational onboarding session to

discuss the study protocol and determine their willingness to complete the required compo-

nents of the study. Bouts of stress in response to triggers or anxiety can happen to everyone

regardless of the formal clinical diagnosis of other mental health disorders. For this reason,

and because we aimed to learn universal representations for the stress recognition task and

evaluate the feasibility of such a system in the absence of any patient-identifying background

information, there was no need for a full clinical assessment at the onboarding phase.
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7.2.2.1 Data Collection

Participants were instructed to wear the watch continuously for 10 consecutive days. We

also needed to gather supervision signals to recognize perceived stress. To this end, we

designed a labeling scheme to allow participants to submit self-reported details of their

stressful episodes. An online survey particularly designed for this purpose was sent to them

via email daily, in which they were asked to provide the following:

1. A rating of their overall perceived stress level for that day (none, low, medium, or

high).

2. A recounting of any specific stressful incidents, including their description of the context

and what they believe to be the cause or trigger, in addition to the approximate time

or timespan at which these episodes occurred and perceived magnitude (low, medium,

or high).

3. Any times during which the device, based on its solely HRV-based approximation of

stress, triggered a high-stress indicator

4. Any times during which the watch was removed and for what reason (e.g., for charging

or showering).

Our chosen smartwatch has an internal approximation of physiological stress based solely

on heart-rate variability (HRV) analysis. Once this value gets past a certain threshold, the

watch will issue notifications to the individual so as to focus their attention on what could be

a stressful episode. As an essential intervention measure, the smartwatch then gives the user

the option to perform a breathing exercise to help relieve the stress. Additionally, to ensure

that sufficient records of stressful episodes were present in our data, with their informed con-

sent, the participants were asked to undergo two remote, stress-inducing laboratory sessions

under the direct guidance of study personnel. These sessions were scheduled at least one day

apart and around the same time of day. Study personnel would guide the participant over a
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video call through a series of three exercises designed to induce a controlled amount of stress

while the participant wore the smartwatch. Each exercise has been clinically established as

a method for induced stress control, invoking both cognitive, social, and physical stress. The

specific exercises were a cold pressor test [BGN16], Stroop Test [MBR05], and Maastricht

Acute Stress Test (MAST) [SLC17]. For the Stroop Test, participants were shown the name

of a color in a colored ”ink.” They were asked to say aloud the ink color and press the

corresponding key on their computer. For example, the word ”purple” appears as a green

color. Participants have to say “green” and not purple. The color names were shown one

at a time for a total test time of about one minute. The cold pressor test involved the par-

ticipant first submerging their hand without the watch in room temperature water (around

38°C) for two minutes, followed by submerging their hand in ice cold water (0°C- 4°C) for 2

minutes. Lastly, the MAST exercise consisted of a two-minute timed arithmetic test while

they submerged their hand in ice-cold water in the same fashion as the cold pressor test. The

participant’s self-assessed level of stress (measured as low, medium, or high) was recorded

after each test. Participants were also asked about their activities before and after the stress

test session to give context for their emotional state before and after the laboratory sessions.

7.2.2.2 Pre-processing and Initial Data Analyses

Data were collected in a continuous manner over regular intervals as predetermined by the

smartwatch manufacturer. For the purposes of this study, both raw sensor data, as well as

a selection of features produced by the smartwatch were collected. These included the pulse

oximeter/oxygen saturation, respiration rate, and heart-rate data. The watch also produced

a Stress level indicator derived from the measure of heart rate variability while the individual

was sufficiently inactive. Finally, the user’s sleep quantity from the previous night was tallied

and included.

Significant null values were observed in the data we collected. This is an acknowledged

issue with wearable sensors, particularly smartwatches that are not typically affixed tightly
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Table 7.2: Number of participants in our cohort per category based on their duty status and

service branch

Duty Status

National Guard 2

Active Duty 3

Veteran 9

Service Branch

Airforce 2

Marine 3

Navy 4

Army 5

to the skin [CKZ17] when consistent skin contact is required to accurately take a reading.

In attempting to address these gaps, Data was down-selected only to include intervals when

complete data was available. For episodes with a low degree of missing information, we

leveraged a causal interpolation scheme to utilize the last known value and complete the

available episode information by that. Stressful events in the data were labeled using the

daily journal surveys completed by participants, in which they specified approximate periods

of high stress, the stress magnitude, and the type of stress. Owing to the nature of individuals

self-reporting stress hours after the fact, the precise time intervals of these stressful events

could not be ascertained from the journals. Therefore, the decision was made to time-block

intervals to one-hour increments, with the stress label assigned to that hour. Additionally,

the dates and times when participants were taking part in stress testing were included and

processed similarly.
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7.3 Methods

7.3.1 Long-term Anxiety

Leveraging the K-10 entries made by the participants, we applied thresholds and formulated

a classification task. First, we select a sub-group of features based on the magnitude of

their correlation with the raw K10 score. This helps, given that the limited amount of

available data renders it cumbersome to deal with the resulting overfittings expected to

happen with many machine learning models. We then would apply classifiers and experiment

with classifying the results.

7.3.2 Short-term Stress

Data were collected in a continuous manner over regular intervals as predetermined by the

smartwatch manufacturer. For the purposes of this study, both raw sensor data, as well as

a selection of features produced by the smartwatch were collected. These included the pulse

oximeter/oxygen saturation, respiration rate, and heart-rate data. The watch also produced

a Stress level indicator derived from the measure of heart rate variability while the individual

was sufficiently inactive. Finally, the user’s sleep quantity from the previous night was tallied

and included. Tables 7.3 and 7.2 reflect on the data modalities and prominent features as

well as the breakdown of subjects by their duty status.

Significant null values were observed in the data we collected. This is an acknowledged

issue with wearable sensors, particularly smartwatches that are not typically affixed tightly

to the skin [CKZ17] when consistent skin contact is required to accurately take a reading. To

address these gaps, data was down-selected to remove time spans exhibiting a high degree

of data missingness. For episodes with a low degree of missing information, we leveraged a

causal interpolation scheme to utilize the last known value and complete the available episode

information by that. Stressful events in the data were labeled using the daily journal surveys
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Table 7.3: Data modalities and the features they are focused on

Modality Focus

Daily

heart-rate readings,

number of floors

climbed,

BMR kilocalories,

distance traveled,

activity levels,

aggregated HRV measures

Pulse Ox SPO2

Respiration Respiration rate

Stress HRV-based readings

completed by participants, in which they specified approximate periods of high stress, the

stress magnitude, and the type of stress. Owing to the nature of individuals self-reporting

stress hours after the fact, the precise time intervals of these stressful events could not be

ascertained from the journals. Therefore, the decision was made to time-block intervals to

one-hour increments, with the stress label assigned to that hour. Additionally, the dates

and times when participants were taking part in stress testing were included and processed

similarly.

7.3.2.1 Label Smoothing and Window Augmentation

Given the limited availability of data for enabling efficient training of our pipelines, we

needed to generate as many training examples as possible using our corpus. To this end,

we considered a label smoothing strategy to allow proposing an estimate of the stress level

at each point in time, leveraging a non-causal smoothened version of the events obtained
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from the self-reports. For each individual, we aimed to create a continuous and real-valued

teacher function f(·) enabling us to map a timestamp t (in seconds) to an estimation of the

severity of stressful response.

f(·)← f(·) + λ(d) · exp(−
t− µ(d)

2σ(d)2
)

The iterative process by which we created these functions is as follows: We start from a

constant function set to zero, f(t) = 0, which follows the intuitive assumption of default

state is non-stressed. Note that the individuals in our study are not patients, and they were

confirmed not to have any diagnosed condition affecting the prevalence of stressful episodes.

Then, we sweep the recorded entries and iteratively update the teacher function by adding

functional components. Consider each entry similar to the sample depicted in Figure 7.3 as

a record d. Each record contains an attribute titled probe datetime, which can take two

types of values:

1. timestamp: a single specific timestamp assigned to a reported episode of stressful

response. Note that in our study, the individual’s report is in 15-minute units (e.g.,

4:15 pm).

2. time span: a pair of timestamps indicating the participant’s reported start and end

times.

The update step involves the operation below:

f(·)← f(·) + λ(d) · exp(−
t− µ(d)

2σ(d)2
) (7.1)

The parameters associated with each update functional, namely, µ and λ, are selected to

make the resulting signals qualitatively reasonable to a human reviewer. Figures 7.4 and 7.5

showcase an example data window and its corresponding teacher function.
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{

"subject_id": "12345",

"stress_type": "general",

"perceived_rate": "low",

"stress_rate": "low",

"stress_description": """

I was stressed because of a deadline

""",

"probe_datetime": (

datetime(

2021 , 5, 10 , 9, 0, 0,

tzinfo=timezone.utc),

datetime(

2021 , 5, 10 , 18 , 0, 0,

tzinfo=timezone.utc))

}

Figure 7.3: A sample stress probe datapoint, showing the record structure
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Figure 7.4: Example: A slice of patient physiological signals recorded via smartwatch system
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Figure 7.5: Example: Anxiety levels - Subject trajectories through time

7.3.3 Representation Learning

7.3.3.1 Event Observations

The first step towards preparing our inference pipeline is defining the observations in this

study, or, in other words, the input to our pipeline. We define our entity, the episode, as

the 1 − hour episodes, and our observation is the collection of sampled data corresponding

to a 1-hour sensory reading episode, with data sampled from the aforementioned modalities.

The sampled records contain longitudinal information on the aforementioned data modal-

ities (heart rate and activity aggregates, heart-rate variability, pulse ox, and respiration)

throughout the span of the episode. To help with faster convergence and overall stabil-
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ity, we leveraged min-max normalization over the magnitudes and learned standardizers for

reshaping the data. We define the task of predicting perceived stress below:

Perceived Stress Task: Given the information provided by 1-hour observation of the

user’s physiological episode, determine whether or not the episode is one that ends in a

stressful note, a.k.a, with tend denoting the episode’s ending timestamp, determine whether

or not the statement fu(tend) > τ is true.

7.3.4 Fusion

When multiple data sources are involved in a single observation, one critical question would

be the point at which information merging should occur. In this study, we offer two solutions

in which we have early fusion for one representation learning pipeline and late fusion for the

other.

7.3.4.1 Early-fused Pipeline

The first approach to fuse the information is the simple choice of creating a hybrid continu-

ous token by synchronizing and concatenating the information from all data sources. This

approach is more intuitive, however, it is expected to render the system more prone to the

impact of inaccurate data.

Tackling Limited Data: In our early-fusion pipeline, given that we are working with a

more complex input and a single pipeline responsible to learn the corresponding joint distri-

bution, we designed a targetted information removal objective to reduce the overfitting and

help with the more efficient utilization of this data. To this end, we leverage gradient ascent

to unlearn the information biasing the model towards the peculiarities of data associated

with individuals rather than the task. Consider a model acting as a discriminator, denoted

as D(·;ψ1). This model aims to leverage the latent representation resulting from processing

the episode by our model and try to distinguish between different participants given their
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IDs as the task. We consider our pipeline’s stem as the core component of the generator

model, denoted as G(·;ψ2), which is to challenge the discriminator in making the aforemen-

tioned subject classification task more cumbersome to carry out. We implement D(·;ψ2) as

MLP-based multi-layer head applying on the latent representations:

D(·;ψ1) = fadv(·;ψ) (7.2)

To build the optimization component, we simply add the loss term LD −LG to the final

loss, in which LD and LG is defined as below:

LG = E[lce(fr(fadv)(z(x)), ysub)] (7.3)

LD = E[lce(fadv(sg(z(x))), ysub)] (7.4)

Note that in the above, fr(·) freezes the parameter set ψ and sg is the stop-gradient

operator, cutting off the gradient pathway to what comes before it.

7.3.4.2 Late-fused Pipeline

While intuitive and straightforward to build, the early-fusion pipeline introduces its problems

in training and inference. In that setup, we need to make assumptions on the regularity of

the data sampling, no missingness3, and the optimality of following a uniformly distributed

importance weights over the input information coming from different sources. To explore an

alternative solution, we propose a late-fusion pipeline in which the data from each modality

is represented by a dedicated neural network pipeline and mapped to a shared semantic

space.

The observations representing our episodic one-hour entities are easier to build compared

to the early-fusion pipeline. In this context, there is no need for additional transformations

3In our case, we do causal interpolation to deal with that.
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such as interpolation, upsampling, or synchronization. Each data point contains the infor-

mation thoroughly representing the episode’s time span, denoted as e = (tstart, tend), with

the information we have in the corpus:

xxx(p)m,e = {x(p)m,t ∈ x(p)
m |t ∈ e} (7.5)

This setup has a separate modality-specific dedicated encoder denoted as f(·; θm). Given

that our observation data comes from different modalities, for each modality m ∈ [M ], we

have:

f(·; θm) : Xm → S ∀m ∈ [M ] (7.6)

Note that in the above equation, S is a shared semantic space allowing the encoders

from different modalities to collaborate, teach each other, and contribute to the final learned

representations. Finally, each encoder creates a representation z
(p)
m,e for the corresponding

data, computed as below:

z(p)m,e = f(xxx(p)m,e; θm) ∀m ∈ [M ] (7.7)

There are numerous reasons for which it is plausible to assume that the information from

each modality and each episode can contribute differently to the final output if considered by

a Bayesian optimal classifier. The quality of the information made available via smartwatch

sensors can vary over time (based on how the watch is worn, how subtle the experienced

stressful episode was, and so on), which is a crucial matter to consider while deciding on the

contribution of these modalities. We designed a pooling pipeline based on attention pooling

to enable the model to make such decisions automatically and on the level of instance data.

a
(m)
i ← g(zzz

(m)
i ;ψψψ) ∀m ∈ [M ] (7.8)

Afterward, a softmax operation is applied to make sure that the summation of the pre-
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dicted contributions is 1.0; in other words, the contribution matrix is right stochastic:

α
(m)
i =

exp(a
(m)
i )∑

j∈[M ] exp(a
(j)
i )

(7.9)

The attention weights will then be used to tune the contribution of the semantics of each

modality to the construction of the final aggregated representation embedding the entire

episode. z =
∑M

i=1 α
(m)
i · zm.

To observe the content similarity between the latent representation and the aggregated

embedding, we use cosine similarity, which is a conventional choice in the contrastive learning

domain.

ϕ(uuu,vvv) =
h(uuu)T · h(vvv)

∥h(uuu)∥2 · ∥h(vvv)∥
(7.10)

The following objective will be involved in the final optimization, then injects the proper

incentives and penalties, guiding the encoders to represent the data for each episode closer

to each other and the aggregate representations. Note that our approach does not solely rely

on bootstrapping but also leverages negative examples. Therefore, training can take place

without the use of stop-gradient operation. Given the difficulty of providing comprehensive

data transformations that can apply to episodes without guaranteeing that the semantic

content will not be altered extensively, we chose this approach.

Lcl =
1

|B|
∑
i∈B

1

|M|
∑
m∈M

− log
exp(ϕ(zzz

(m)
i , zzzi)/τ)∑

j∈B,j ̸=i exp(ϕ(zzz
(m)
i , zzzj)/τ)

(7.11)

• Pre-training : Pre-training the model parameters by optimizing Lcl through a long

training sequence. Afterward, start with the resulting weights as the initial point for

the supervised fine-tuning of the model with the cross-entropy objective:

Lcross-entropy = −
∑
c∈C

yc ln pc (7.12)

In the equation above, C is the set of all classes (e.g., in our experiments, the two

categories of stressed and non-stressed for each episode), and pc is the predicted prob-

ability of class c for an observation, computed by passing representations through a

final projection and Softmax layer.
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• Regularization: Use λreg · Lcl as a regularization term in the overall loss, and train the

model by optimizing this loss simultaneously as the supervised learning objective.

There are several points worth remarking upon with regard to the comparison of these two

training schemes. To begin with, deciding whether pre-training is going to lead to better

generalization performance versus the regularization-based approach depends on model com-

plexity, availability of data, and the challenges of the specific task that one is targeting. That

being said, the regularization approach is expected to be considerably faster than the two-

stage pre-training and fine-tuning method, and in our experiments on the task of predicting

stress labels, it led to better test performance as well.

We have detailed the main intuitive advantages of this approach below:

Modularity: Having a separate dedicated encoder for each modality and fusion via

a shared semantic space allows a modular inference process. Our optimization scheme’s

reliance on contrastive regularization focuses on optimizing the individual branch’s ability

to generate representations optimal for the task.

Knowledge Transfer: The encapsulated view in the early phase of our pipeline allows

one to leverage knowledge transfer and employ weights and models that serve as suitable

initial points for training the pipelines. In addition, different optimizers and learning rate

schedulers can be used for each branch per the requirements of the fine-tuning scheme.

Plug-and-Play: The shared semantic space also has the empirical advantage of allowing

researchers and developers to apply the same pipeline with new modalities added or some

removed, assuming a corresponding expert model is either trained or fine-tuned to allow the

new modalities to work with the shared semantic space4.

4Our analyses show that the empirical contribution of data from different modalities is not uniform.
Therefore, further research on larger corpora can shed more light on whether one modality can be used as
the central data source in our observations, similar to the approach presented in [GEL23] for self-supervised
learning from multiple modalities.
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Figure 7.6: 3-class (Low, Moderate, and High distress) Classification Confusion Matrix.

7.4 Experiments

7.4.1 Long-term Anxiety

For the 4-class classification, we used 5-fold Cross-Validation (CV) with four models: K-

Nearest Neighbors (KNN), Extra-Trees (ET), Support Vector Machine (SVM), and Multi-

layer Perceptron (MLP). The class weight was automatically applied to the models inversely

proportional to the class frequencies to train the imbalanced dataset. The highest classifi-

cation accuracy achieved was around 76% with the extra-trees model. We also applied the

under-sampling technique to improve the performance of an imbalanced dataset. Samples

from the low distress class were removed randomly to make uniformly distributed class la-

bels. Samples from the very high distress class were also ignored. The confusion matrix in

Figure 7.6 demonstrates the performance.

7.4.1.1 Relevant Features

There are some notable and counter-intuitive findings regarding what data elements proved

to be most-highly correlated to mental health. It is not surprising to note the presence of

features closely related to physical activities (e.g., Duration of time spent biking or walking)

as such activities have been definitively linked to mental health [Ste88].
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What is somewhat less intuitive is the presence of multiple audio and light-sensing fea-

tures. Audio sensing was included in the protocol under the hypothesis that a moderate level

of sound could be indicative of pro-social activities like being outdoors or in group settings.

Conversely, overly loud or quiet noise profiles could be indicative of stressful environments

or isolated conditions that could be deleterious to mental health. But while interesting in

theory, there are many confounding causes of noise that, by limiting ourselves to solely cap-

turing the frequency and decibel levels of the sound, we would fail to distinguish (intuitively,

someone watching TV at home alone could register the same noise profile as someone out to

dinner with friends).

Similarly, it was hypothesized that light sensing could be indicative of an individual being

outside, which has been shown to positively correlate to mental health[TDC15], however here

too, many confounding factors would impact light readings, foremost among them, that the

user would actually have to have their phones out and exposed when outside for the light

sensor to register it.

We note that sound and light sensing is notable in that both were the most frequently

sampled of all features. It is possible that the high degree of granularity of readings afforded

to these particular sensing modalities explains their relevance. Regardless, we suggest addi-

tional work is needed to understand whether or not these features are indeed more universally

indicative of mental health and explore why that is potentially the case.

7.4.1.2 Limitations of the Study

While 10 subjects completing one-months worth of continuous data represents a critical vali-

dation of the technology and its potential utility, obtaining a larger dataset is still important

to improve the quality and robustness of the findings. Additionally, this pilot was scoped

to only include individuals without a clinical diagnosis of Anxiety. Consequently, there were

insufficient cases of user-reported mental distress, particularly moderate or severe cases, in

order to classify them effectively. Additional studies are planned to enlarge our dataset and
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include a cohort of individuals with diagnosed mental health conditions.

7.4.1.3 Accuracy of Labeling

At the time, a primary concern was that participants would fail to submit a sufficient number

of survey responses. Therefore the protocol was designed to combat this by prompting users

to fill out a daily EMA in the application via push notification, with manual outreach to

users who failed to complete an EMA within 48 hours, as well as designing the K10 to be

simple to complete multiple-choice assessment. This combination successfully encouraged

active participation in the study; however, there was no mechanism designed to confirm or

validate that the resulting inputs accurately reflected a user’s well-being.

It is highly likely, therefore, that at least some users were motivated to respond quickly,

and not necessarily accurately. This would result in users simply selecting the default answer

of no reported anxiety to each question.

Furthermore, there may have been a reluctance among users to accurately report mental

health issues given the perceived embarrassment or stigma associated with poor mental

health. Under-reporting of mental health issues is a persistent issue that plagues the domain

more generally and isn’t limited to this study [CW02]; however, failing to account for under-

reporting is a notable issue.

Finally, even well-meaning participants may have failed to accurately represent their

mental health state due to their either overlooking or mischaracterizing the stresses they

encountered. This is particularly true when comparing responses across users, where baseline

expectations of stress may vary wildly among participants, with prior work, for instance,

demonstrating a clear association between gender and reported wellbeing [PS01], the result

being that one participant’s perception of a ’normal’ day, might easily be classified as a low

or moderately-stressed day by another.

Solving this challenge is essential for ultimately achieving the intended goal of accurate
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classification of mental illness, for unlike alternative labeling exercises, where quantifiable

metrics are possible, here the labeling of an objective state, mental illness, particularly when

physiological monitoring is not available, is entirely reliant on subjective inputs, ones that

are difficult to capture accurately, and even more difficult to standardize across users.

We recommend that future studies work on addressing these concerns by better antici-

pating and correcting for challenges with accurate labeling of mental health.

There are a number of possible remedies to this. In the questionnaire itself, carefully

structuring the questions can engage users to provide more thought-out results. Cross-

validating questions designed to ensure internal consistency are also effective for ensuring

user accuracy [LHD98].

Consideration should also be given to alternative methods for collecting labels. Inter-

viewing subjects to determine their mental health, for instance, would likely produce more

accurate results, although would have attendant trade-offs of its own, such as reducing the

number of labels that could effectively be captured.

Educating participants on the presentations of anxiety could also be key to a more ac-

curate and consistent recall of symptoms. Finally, developing participants’ trust through

engagement and transparency could help solicit more honest engagement.

7.4.1.4 Subject Heterogeneity

The activities tracked by the eWellness app showcase significant heterogeneity across subjects

in terms of usage patterns. Variables like distance traveled, number of texts and calls, and

physical activity levels are all far more likely to be impacted by the individual’s lifestyle than

their mental health on any given day.

Figure 7.7 showcases a fairly typical distribution, in this case the duration spent on foot

in a given day, bucketed into quartiles, with the 4 labels of interest (with L1 or Level-1

corresponding to Low-distress, L2 to Moderate Distress, L3 to High-Distress, and L4 to
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Figure 7.7: Histogram of normalized values of Duration on Foot for the 4 labels of stress

Very high Distress), in this classification superimposed. While intuitively, more time spent

on foot may be associated with better mental health, here we observe no clear pattern.

It was therefore assumed that primary success would be achieved by classifying mental

health within users across time, once their baselines for normative behavior were estab-

lished, rather than across users. The limitations of this initial dataset did not allow for

adequate classifying by individual; however, the fact that classification success was achieved

by bundling samples across all subjects is remarkable in its indication that cross-subject

learning in this domain could be possible. We suspect that part of this result likely stems

from normalization performed on the data to account for habitual differences in subject

usage. By normalizing the data in this manner, the absolute number is rendered largely

moot, and instead, variances in user patterns are highlighted, as it is likely the day-to-day

variations that are more reflective of shifts in mental health. Additional data collection is

necessary to validate this finding.

7.4.1.5 Usability

Attempting to gauge the viability of the concept, participants in the pilot were asked to

submit a voluntary anonymized post-study questionnaire regarding their perceptions of the

application and its data collection practices. All participants responded. A significant major-

ity described the application as somewhat (40%) or mostly (40%) useful. Likewise, all users

endorsed feeling comfortable with the application, and only one user expressed reservations

130



about the data being collected.

All participants obtained detailed accounting of the data that was collected as part of

their onboarding process to the study. No individual declined to participate after learning

the precise nature of what was being tracked. This sampling suggests that, particularly

among young adults who are more accustomed to digitized lives, there is less concern about

data collection through their mobile devices. Limiting the collection of PII could be sufficient

to assuage most privacy concerns.

The primary issue users had with the application was its battery consumption resulting

from heavy over-sampling of the sensors. Future iterations of the application will seek to

optimize battery usage by minimizing the sampling frequency.

7.4.2 Short-term Stress

In this part, we discuss our proposed methods for the recognition of short-term stressful

episodes.

7.4.2.1 Labeling

In our experiments, we followed the strategy below in parameterizing the teacher function

for every subject:

µ(d) =


d[‘probe datetime‘] if single timestamp

avg(d[‘probe datetime‘]) if time range

σ(d) =


30× 60 sec if single timestamp

len(d[‘probe datetime‘])

(30× 60 sec)
if time range

In this work and as a proof of concept, we focused on predicting whether a window ends
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in a high-stress note. We considered the coefficient λ(d) which adjusts the magnitude of each

probe to be proportionate to the reported stress levels, and respectively defined the high-

stress window as one that the corresponding teacher function returning a value larger than

0.5 for its endpoint, which led to a high consistency between the resulting teacher functions

and the reported episodes. The sensory data used in our work was based on heart rate (every

15 seconds), a measure of heart-rate variability (every 3 minutes), pulse oximeter (every 1

minute), and respiration rate (every 2 minutes). On the input side and to help stabilize the

training further, we fit min-max normalizers on the features across the time slices in the

train set.

7.4.3 Modeling and Optimization

The recurrent neural network module we considered is a 4-layer bi-directional RNN in Long

Short Term Memory (LSTM) configuration, leading to a z ∈ R256 latent representation. To

prepare the inputs for processing, we perform early fusion of the sensory readings and create

a sequence of vectors representing physiological status at each timestamp, as it is a more

intuitive approach for modeling the inputs in this case.

Our optimization protocol employed the Adam algorithm with a learning rate of 1e-3

and a weight decay of 1e-4 to help with overfitting. We also made use of cosine annealing

scheduling, reducing the learning rate across our 100 epoch experiments.

With regards to adversarial regularization for enhancing subject invariance, our fadv(·;ψ)

is a two-layer MLP mapping the latent representation to the subject identifier label. The

results shown in Table 7.4 indicate an increase in the generalization performance.

Focusing on our real-world perceived stress corpus, we conducted experiments under the

main settings of 1) supervised training baseline, 2) pre-training the contrastive objective and

fine-tuning via supervised objective, and 3) training the supervised objective and simulta-

neously optimizing a scaled version of the contrastive term as a regularizing loss.
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Table 7.4: Performance overview for the task of recognizing high-stress windows

Acc

Supervised Setup 62.0

Supervised Setup

+ Adversarial Subject Invariance
64.5

Table 7.5: Performance comparison for the trained pipeline under different learning setups

Method Test Accuracy

Early-fusion + Supervised Training [FLB22] 64%

Late-fusion + Supervised Training 66%

Late-fusion + Contrastive Pre-training + Fine-tuning 70%

Late-fusion + Supervised Training

+ Contrastive Regularization 73%

We observed that leveraging more features and following a late-fusion protocol for com-

bining modality representations did lead to an improved generalization performance over the

supervised setup proposed in [FLB22], which combined the features at the beginning of the

pipeline. In the case of our cohort, training with contrastive regularization led to the best

generalization on the unseen test data, and the results are shown in Table 7.5. Note that,

in general, it is hard to say which self-supervised setup (pre-training versus regularization)

is best, as it could depend on other factors, including model complexity, optimization, data

availability, and task difficulty. That being said, our approach allows learning high-quality

representations by optimizing the modality-contrastive objective via both of these setups.

Additionally, we investigated the interpretability and leveraged the task-specific attention

mechanism in our pipeline, which pools the representations from different modalities, to

study the utility and contribution of observations from each feature group. This enables

the network to dynamically assign weights to each modality’s latent representation (in the
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shared space) as it processes each instance, allowing us to study their contribution both per

instance and in expectation for performing the desired task. In Figure 7.8, we have shown

the results on this matter for the contrastive regularization setup5. The results indicate that

even though the contributions of the different modalities follow a non-uniform distribution

as expected, none of them were ignored by the model, and they all play a part in the final

predictions.

heart resp pulseox stress

0

0.1

0.2

0.3

Figure 7.8: The average contribution of the four modalities to the final episode embeddings.

7.4.3.1 Broader Impact

In the context of remote health monitoring, there are several factors addressing which are

of paramount importance. In what follows, we elaborate upon these factors and how the

solution proposed in this work attempts to address them:

• Affordability and Compatibility : For the scalability of a proposed remote health moni-

toring framework, focusing on widely available devices sold at affordable prices makes

5The label heart in Figure 7.8 corresponds to the daily modality’s information, given that its main focus
is heart-rate.
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deploying the system easier. We focused on basic physiological signals for which reading

sensors are available in most commercially available smartwatches. Nonetheless, the

proposed methodology has no intrinsic limitation regarding the modalities used; thus,

additional data available in often more expensive devices (e.g., galvanic skin response)

can also be utilized in the same methodology, and the main requirement is providing

a modality-specific encoder fit for the data domain. Furthermore, this framework of-

fers a more encapsulated view in representing different modalities as the observation

from each can be embedded by a dedicated encoder first, and the contrastive objec-

tive encourages each local branch to optimize its parameters towards the given task as

well. This has clear advantages in terms of transferring knowledge as well, an example

of which could be initializing each branch separately via pre-trained weights so as to

prepare a better starting point for the model and optimization.

• Ease-of-use: Optimizing remote health monitoring with regards to minimizing the

amount of required user interaction makes it easier for individuals to use the system.

This is why passive monitoring techniques are receiving more attention in the eHealth

domain.

• Interpretation: In all automated healthcare applications of machine learning, any in-

sight and interpretation into what parts of the observation a model mostly focuses on

in determining the final decision is crucial and can help experts better validate the

system. We incorporated a task-specific attention mechanism for pooling the represen-

tations from different modalities. This helps determine the weights assigned to each

modality (per instance and in expectation) to perform the task efficiently.

• Limited Data: The data availability for eHealth applications is often limited due to the

difficulty and costs of conducting large-scale studies, the exclusivity of data, and privacy

reasons. It is, therefore, essential to try to maximize the use of data in model training.

This work combines label smoothing with inter-mode self-supervision objectives to go
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beyond self-reported supervision objectives.

7.4.3.2 Limitations

It is crucial to discuss the main limitations of this work given the sensitive nature of dealing

with health as its objective. In this work, we relied on self-reported entries to decide the

supervision signals for individual timelines. This has the issue of being prone to human

error, as one might not accurately recall the time and extent to which one has felt stress.

Additionally, reports on the intensity of the felt stress are also subject to noise. Another

challenge is the small size of our dataset. A primary reason behind our self-supervision com-

ponent in this work was alleviating the negative impacts associated with the aforementioned

limitations.

7.5 Conclusion

In this chapter, we discussed passive-sensing monitoring solutions for short-term episodes

of stress as well as longer-term manifestations of anxiety patterns. Our proposed solutions

leveraged sensor data obtained in a non-intrusive fashion via smartphone and smartwatch

and employed machine learning solutions to make inferences conditioned on their data on

individuals’ mental health status pertinent to stress and anxiety. Our empirical findings

demonstrated the efficient performance of proposed solutions to the defined tasks on stress

and anxiety.
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CHAPTER 8

Conclusion

In this thesis, we investigated algorithms and methods for effective training and efficient

optimization of representation learning pipelines focused on mapping longitudinal health

data for various applications. Our works covered a diverse set of domains in health analytics

in which the key observations were temporal in nature and discussed our proposed solutions

towards learning efficient representations suitable for desired downstream tasks. Specifically,

our discussion covered the following domains:

• Physiological Health: For outpatient healthcare and remote health monitoring, we

remarked upon the importance of effectively modeling time-series data and physio-

logical readings. Specifically, we focused on ECG as a widely used signal in health

applications. We demonstrated that focusing on representative supervised tasks can

help with learning highly transferable representations, exhibiting high performance

when employed towards predictive modeling on tasks defined on the same observation.

Additionally, we designed and utilized machine learning pipelines for activity recog-

nition in children, rehabilitation exercise tracking, as well as posture monitoring, and

discussed the importance of such problems in the HealthAI domain. In the context

of inpatient care, we discussed representation learning for electronic health records.

We demonstrated that even without large-scale annotations pertaining to highly rep-

resentative tasks, one could still leverage the data via unsupervised and self-supervised

training from multiple modalities to learn efficient representations. We demonstrated

the effectiveness of said representations on commonly defined supervised tasks on EHR
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corpora.

• Mental Health: We focused on stress and anxiety, which along with depression,

are recognized as the most common mental health issues. We conducted studies in

recognition and tracking of short-term bouts of stress, as well as longer-term manifes-

tations of anxiety in one’s behavior. For short-term stress monitoring, we designed a

smartwatch-based monitoring platform. We worked on efficient representation learning

from multiple modalities of data that it provides, and with techniques such as adversar-

ial objectives and self-supervised pre-training and regularization, managed to obtain

efficient representations for making predictions on whether or not a short-term window

is associated with the perception of stress by an individual. For the long-term patterns

of anxiety, we proposed a modeling framework centered around phone usage behavior

(e.g., number of calls). We gathered a variety of features, from aggregate high-level

information on the communication behavior as well as information having to do with

one’s environment (e.g., ambient sound level and light intensity), and utilized them in

making predictions on the levels of distress.

• Public Health: Going beyond healthcare solutions focused on individuals, we also

discussed the importance of leveraging computerized advancements in the public health

domain. Focusing on the recent worldwide pandemic of COVID-19, we proposed an

end-to-end platform including dataset creation, monitoring interface, and analytical

framework for modeling pandemic outcomes leveraging spatio-temporal representa-

tions. The idea was to go beyond the usual observations leveraged in traditional meth-

ods such as ARIMA and SIR, and focus on short-term fluctuations in the pandemic

outcomes. Our results demonstrated effective performance in county-level predictions

of the pandemic outcomes, highlighting the importance of considering spatio-temporal

features for predictive modeling and decision-making.

All in all, numerous subdomains of HealthAI benefit from efficient, accurate, and scalable
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representation learning methodologies. Compared to the other domains, due to reasons such

as patient privacy and the difficulty of obtaining data in many scenarios, representation

learning in the HealthAI domain has been challenged to a higher degree by a lack of large-

scale data and/or accurate expert annotations. In addition, the temporal and multi-modal

nature of the required observations for a wide range of tasks in health analytics makes it

particularly important for the researchers to work toward addressing the aforementioned

challenges and propose inference pipelines that make the most of the limited available data.

139



REFERENCES

[A 18] A. Ng, M. Rddy, and S.M. Schueller. “Veterans’ perspectives on Fitbit use in
treatment for Post-Traumatic Stress Disorder: An interview study.” MIR Mental
Health, 2018.

[AAB16] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
“Tensorflow: Large-scale machine learning on heterogeneous distributed sys-
tems.” arXiv preprint arXiv:1603.04467, 2016.

[Ada] Lady Ada. “Adafruit Feather 32U4 bluefruit le.”.

[AFO17] U Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan,
and Muhammad Adam. “Application of deep convolutional neural network for
automated detection of myocardial infarction using ECG signals.” Information
Sciences, 415:190–198, 2017.

[AJH18] Anand Avati, Kenneth Jung, Stephanie Harman, Lance Downing, Andrew Ng,
and Nigam H Shah. “Improving palliative care with deep learning.” BMC medical
informatics and decision making, 18(4):122, 2018.

[AMB19] Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tristan
Naumann, and Matthew McDermott. “Publicly available clinical BERT embed-
dings.” arXiv preprint arXiv:1904.03323, 2019.

[Ami12] Afshin Aminian. “Dynamic orthopaedic chair.”, July 31 2012. US Patent
8,231,175.

[anR] “An all-rounded helper to help you improve your sit-
ting postures.” http://ctms0168.epizy.com/2017/12/20/

an-all-rounded-helper-to-help-you-improve-your-sitting-postures-2/

?i=2.

[AOH17a] U Rajendra Acharya, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad
Adam, Arkadiusz Gertych, and Ru San Tan. “A deep convolutional neural net-
work model to classify heartbeats.” Computers in biology and medicine, 89:389–
396, 2017.

[AOH17b] U. Rajendra Acharya, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad
Adam, Arkadiusz Gertych, and Ru San Tan. “A deep convolutional neural net-
work model to classify heartbeats.” Computers in Biology and Medicine, 89:389–
396, 2017.

140

http://ctms0168.epizy.com/2017/12/20/an-all-rounded-helper-to-help-you-improve-your-sitting-postures-2/?i=2
http://ctms0168.epizy.com/2017/12/20/an-all-rounded-helper-to-help-you-improve-your-sitting-postures-2/?i=2
http://ctms0168.epizy.com/2017/12/20/an-all-rounded-helper-to-help-you-improve-your-sitting-postures-2/?i=2


[APA] APA. “Stress in America 2020.” https://www.apa.org/news/press/

releases/stress/2020/sia-mental-health-crisis.pdf.

[APA19] 2019.

[AS01] Gavin Andrews and Tim Slade. “Interpreting scores on the Kessler psychologi-
cal distress scale (K10).” Australian and New Zealand journal of public health,
25(6):494–497, 2001.

[ASN16] Mohammad Abu Alsheikh, Ahmed Selim, Dusit Niyato, Linda Doyle, Shaowei
Lin, and Hwee-Pink Tan. “Deep Activity Recognition Models with Triaxial Ac-
celerometers.” In AAAI Workshop: Artificial Intelligence Applied to Assistive
Technologies and Smart Environments, 2016.

[Ass] National Restaurant Association. “State Statistics.” http://web.archive.org/

web/*/https://www.restaurant.org/research/state. Accessed: 2020-07-15.

[Ass16] American College Health Association et al. “American college health association–
national health assessment II: Reference group executive summary spring 2016.”,
2016.

[aus] “Chapter - K10 Scoring.”.

[Bal12] Pierre Baldi. “Autoencoders, unsupervised learning, and deep architectures.” In
Proceedings of ICML workshop on unsupervised and transfer learning, pp. 37–49,
2012.

[BAS17] Renato Baptista, Michel Antunes, Abd El Rahman Shabayek, Djamila Aouada,
and Björn Ottersten. “Flexible feedback system for posture monitoring and cor-
rection.” In 2017 Fourth International Conference on Image Information Pro-
cessing (ICIIP), pp. 1–6. IEEE, 2017.

[BCB14a] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate.” arXiv preprint
arXiv:1409.0473, 2014.

[BCB14b] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate.” arXiv preprint
arXiv:1409.0473, 2014.

[BCE18] Tian Bai, Ashis Kumar Chanda, Brian L Egleston, and Slobodan Vucetic. “EHR
phenotyping via jointly embedding medical concepts and words into a unified
vector space.” BMC medical informatics and decision making, 18(4):123, 2018.

[BCF18] Mehdi Boukhechba, Philip Chow, Karl Fua, Bethany A Teachman, Laura E
Barnes, et al. “Predicting social anxiety from global positioning system traces of
college students: feasibility study.” JMIR mental health, 5(3):e10101, 2018.

141

https://www.apa.org/news/press/releases/stress/2020/sia-mental-health-crisis.pdf
https://www.apa.org/news/press/releases/stress/2020/sia-mental-health-crisis.pdf
http://web.archive.org/web/*/https://www.restaurant.org/research/state
http://web.archive.org/web/*/https://www.restaurant.org/research/state


[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning:
A review and new perspectives.” IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013.

[BGD14] Oresti Banos, Juan-Manuel Galvez, Miguel Damas, Hector Pomares, and Ig-
nacio Rojas. “Window size impact in human activity recognition.” Sensors,
14(4):6474–6499, 2014.

[BGN16] Hajra Banoo, Vibha Gangwar, and Nusrat Nabi. “Effect of cold stress and the
cold pressor test on blood pressure and heart rate.” 2016.

[BHG18] Rebecca H Bitsko, Joseph R Holbrook, Reem M Ghandour, Stephen J Blumberg,
Susanna N Visser, Ruth Perou, and John T Walkup. “Epidemiology and impact
of health care provider–diagnosed anxiety and depression among US children.”
Journal of developmental and behavioral pediatrics: JDBP, 39(5):395, 2018.

[BI04] Ling Bao and Stephen Intille. “Activity recognition from user-annotated accel-
eration data.” Pervasive computing, pp. 1–17, 2004.

[BKS95] R Bousseljot, D Kreiseler, and A Schnabel. “Nutzung der EKG-Signaldatenbank
CARDIODAT der PTB über das Internet.” Biomedizinische Technik/Biomedical
Engineering, 40(s1):317–318, 1995.

[BMC98] Anna M Bardone, Terrie E Moffitt, Avshalom Caspi, Nigel Dickson, Warren R
Stanton, and Phil A Silva. “Adult physical health outcomes of adolescent
girls with conduct disorder, depression, and anxiety.” Journal of the American
Academy of Child & Adolescent Psychiatry, 37(6):594–601, 1998.

[BMK18] Ronny Bruffaerts, Philippe Mortier, Glenn Kiekens, Randy P Auerbach, Pim
Cuijpers, Koen Demyttenaere, Jennifer G Green, Matthew K Nock, and Ronald C
Kessler. “Mental health problems in college freshmen: Prevalence and academic
functioning.” Journal of affective disorders, 225:97–103, 2018.

[BSG12] Neeltje M Batelaan, Jan Spijker, Ron de Graaf, and Pim Cuijpers. “Mixed
anxiety depression should not be included in DSM-5.” The Journal of nervous
and mental disease, 200(6):495–498, 2012.

[BSW15] Dror Ben-Zeev, Emily A Scherer, Rui Wang, Haiyi Xie, and Andrew T Campbell.
“Next-generation psychiatric assessment: Using smartphone sensors to monitor
behavior and mental health.” Psychiatric rehabilitation journal, 38(3):218, 2015.

[Car06] Sam Cartwright-Hatton. “Anxiety of childhood and adolescence: Challenges and
opportunities.”, 2006.

142



[CAT16] Cynthia S Crowson, Elizabeth J Atkinson, and Terry M Therneau. “Assessing
calibration of prognostic risk scores.” Statistical methods in medical research,
25(4):1692–1706, 2016.

[CBS16] Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey,
Michael Thompson, James Bost, Javier Tejedor-Sojo, and Jimeng Sun. “Multi-
layer representation learning for medical concepts.” In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1495–1504. ACM, 2016.

[CBS17] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, and Ji-
meng Sun. “GRAM: Graph-based Attention Model for Healthcare Representa-
tion Learning.” In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’17, pp. 787–795, New
York, NY, USA, 2017. ACM.

[CCA08] Alison J Campbell, Jonathan A Cook, Gillian Adey, and Brian H Cuthbertson.
“Predicting death and readmission after intensive care discharge.” British journal
of anaesthesia, 100(5):656–662, 2008.

[CDCa] CDC. “Laboraty-confirmed COVID-19 Associated Hospitalizations.”
https://gis.cdc.gov/grasp/covidnet/COVID19_3.html, archived at
https://archive.is/Mw9d1. Accessed: 2020-06-05.

[CDCb] CDC. “A Weekly Summary of US COVID-19 Hospitalization Data.”
https://gis.cdc.gov/grasp/COVIDNet/COVID19_1.html, archived at https:

//archive.is/qs0IJ. Accessed: 2020-06-05.

[CE12] Jana Campbell and Ulrike Ehlert. “Acute psychosocial stress: Does the emo-
tional stress response correspond with physiological responses?” Psychoneuroen-
docrinology, 37:1111–34, 01 2012.

[CFH17] Philip I Chow, Karl Fua, Yu Huang, Wesley Bonelli, Haoyi Xiong, Laura E
Barnes, and Bethany A Teachman. “Using mobile sensing to test clinical mod-
els of depression, social anxiety, state affect, and social isolation among college
students.” Journal of medical Internet research, 19(3):e6820, 2017.

[CFL17] Lucio Ciabattoni, Francesco Ferracuti, Sauro Longhi, Lucia Pepa, Luca Romeo,
and Federica Verdini. “Real-time mental stress detection based on smartwatch.”
In 2017 IEEE International Conference on Consumer Electronics (ICCE), pp.
110–111. IEEE, 2017.

[CGC14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.”
arXiv preprint arXiv:1412.3555, 2014.

143

https://gis.cdc.gov/grasp/covidnet/COVID19_3.html
https://archive.is/Mw9d1
https://gis.cdc.gov/grasp/COVIDNet/COVID19_1.html
https://archive.is/qs0IJ
https://archive.is/qs0IJ


[CGN18a] Xiangrui Cai, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Ying Zhang, and
Xiaojie Yuan. “Medical concept embedding with time-aware attention.” arXiv
preprint arXiv:1806.02873, 2018.

[CGN18b] Xiangrui Cai, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Ying Zhang, and
Xiaojie Yuan. “Medical concept embedding with time-aware attention.” arXiv
preprint arXiv:1806.02873, 2018.

[CH21] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learn-
ing.” In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15750–15758, 2021.

[CKN20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A sim-
ple framework for contrastive learning of visual representations.” In International
conference on machine learning, pp. 1597–1607. PMLR, 2020.

[CKZ17] Jenny Chum, Min Suk Kim, Laura Zielinski, Meha Bhatt, Douglas Chung, Sharon
Yeung, Kathryn Litke, Kathleen McCabe, Jeff Whattam, Laura Garrick, et al.
“Acceptability of the Fitbit in behavioural activation therapy for depression: a
qualitative study.” BMJ Ment Health, 20(4):128–133, 2017.

[Cli] Mayo Clinic. “Anxiety Disorders Symptoms and Causes.” https:

//www.mayoclinic.org/diseases-conditions/anxiety/symptoms-causes/

syc-20350961.

[CMM20] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. “Unsupervised learning of visual features by contrasting cluster
assignments.” Advances in Neural Information Processing Systems, 33:9912–
9924, 2020.

[cova] “COVID-19 Simulator.” http://web.archive.org/web/20200730193215/

https://www.covid19sim.org/. Accessed: 2020-07-30.

[covb] “Covid-19/coronavirus real time updates with credible sources in us and canada.”
https://coronavirus.1point3acres.com/en, archived at https://archive.

is/J3Vmg. Accessed: 2020-06-05.

[CPR11] Pierluigi Casale, Oriol Pujol, and Petia Radeva. “Human activity recognition
from accelerometer data using a wearable device.” Pattern Recognition and Image
Analysis, pp. 289–296, 2011.

[CW02] Patrick W. Corrigan and Amy C. Watson. “The Paradox of Self-Stigma and
Mental Illness.” Clinical Psychology: Science and Practice, 9(1):35–53, 2002.

144

https://www.mayoclinic.org/diseases-conditions/anxiety/symptoms-causes/syc-20350961
https://www.mayoclinic.org/diseases-conditions/anxiety/symptoms-causes/syc-20350961
https://www.mayoclinic.org/diseases-conditions/anxiety/symptoms-causes/syc-20350961
http://web.archive.org/web/20200730193215/https://www.covid19sim.org/
http://web.archive.org/web/20200730193215/https://www.covid19sim.org/
https://coronavirus.1point3acres.com/en
https://archive.is/J3Vmg
https://archive.is/J3Vmg


[CWD04] Kerry A Collins, Henny A Westra, David JA Dozois, and David D Burns. “Gaps
in accessing treatment for anxiety and depression: challenges for the delivery of
care.” Clinical psychology review, 24(5):583–616, 2004.

[CXS18] Edward Choi, Cao Xiao, Walter Stewart, and Jimeng Sun. “MiME: Multilevel
Medical Embedding of Electronic Health Records for Predictive Healthcare.” In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31, pp. 4547–
4557. Curran Associates, Inc., 2018.

[DBS16] Laura Dwyer-Lindgren, Amelia Bertozzi-Villa, Rebecca W Stubbs, Chloe Mo-
rozoff, Michael J Kutz, Chantal Huynh, Ryan M Barber, Katya A Shackelford,
Johan P Mackenbach, Frank J van Lenthe, et al. “US county-level trends in mor-
tality rates for major causes of death, 1980-2014.” Jama, 316(22):2385–2401,
2016.

[DCL18a] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert:
Pre-training of deep bidirectional transformers for language understanding.”
arXiv preprint arXiv:1810.04805, 2018.

[DCL18b] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”
CoRR, abs/1810.04805, 2018.

[Dev] UPRIGHT Posture Training Device. “UPRIGHT Posture Training Device.”
https://www.uprightpose.com.

[DH00] Odo Diekmann and Johan Andre Peter Heesterbeek. Mathematical epidemiology
of infectious diseases: model building, analysis and interpretation, volume 5. John
Wiley & Sons, 2000.

[DKF20] Sajad Darabi, Mohammad Kachuee, Shayan Fazeli, and Majid Sarrafzadeh. “Ta-
per: Time-aware patient ehr representation.” IEEE journal of biomedical and
health informatics, 24(11):3268–3275, 2020.

[DKS17] Amirhossein Esmaili Dastjerdi, Mohammad Kachuee, and Mahdi Shabany. “Non-
invasive blood pressure estimation using phonocardiogram.” In Circuits and Sys-
tems (ISCAS), 2017 IEEE International Symposium on, pp. 1–4. IEEE, 2017.

[DM18] Dmitriy Dligach and Timothy A. Miller. “Learning Patient Representations from
Text.” CoRR, abs/1805.02096, 2018.

[DMH17] Sajad Darabi, Babak Moatamed, Wenhao Huang, Migyeong Gwak, Casey
Metoyer, Mike Linn, and Majid Sarrafzadeh. “Heart rate compression & time
reduction method for HRV monitoring in athletes.” In 2017 IEEE Healthcare In-
novations and Point of Care Technologies (HI-POCT), pp. 152–155. IEEE, 2017.

145

https://www.uprightpose.com


[DP] Center of Disease Control and Prevention. “Mental Health and Coping
with Stress During COVID-19 Pandemic.” https://web.archive.org/

web/20200804105944/https://www.cdc.gov/coronavirus/2019-ncov/

daily-life-coping/managing-stress-anxiety.html. Accessed: 2020-08-04.

[EKS17] Amirhossein Esmaili, Mohammad Kachuee, and Mahdi Shabany. “Nonlinear
Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit Time
and Arrival Time.” IEEE Transactions on Instrumentation and Measurement,
66(12):3299–3308, 2017.

[ele] “County Presidential Election Returns2000-2016, 2018.” https://doi.org/10.

7910/DVN/VOQCHQ, archived at https://archive.is/cLVL5. Accessed: 2020-06-
05.

[EV16] Jheanel E Estrada and Larry A Vea. “Real-time human sitting posture detection
using mobile devices.” In 2016 IEEE Region 10 Symposium (TENSYMP), pp.
140–144. IEEE, 2016.

[FAH21] Chandra L Ford, Bita Amani, Nina T Harawa, Randall Akee, Gilbert C Gee,
Majid Sarrafzadeh, Consuela Abotsi-Kowu, Shayan Fazeli, Cindy Le, Ezinne
Nwankwo, et al. “Adequacy of existing surveillance systems to monitor racism,
social stigma and COVID inequities: a detailed assessment and recommen-
dations.” International journal of environmental research and public health,
18(24):13099, 2021.

[FDF10] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and João M Cardoso. “Prepro-
cessing techniques for context recognition from accelerometer data.” Personal
and Ubiquitous Computing, 14(7):645–662, 2010.

[FDN19] Emmanouil Fragkiadakis, Kalliopi V Dalakleidi, and Konstantina S Nikita. “De-
sign and Development of a Sitting Posture Recognition System.” In 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society (EMBC), pp. 3364–3367. IEEE, 2019.

[FIO19] Yusuke Fukazawa, Taku Ito, Tsukasa Okimura, Yuichi Yamashita, Takaki Maeda,
and Jun Ota. “Predicting anxiety state using smartphone-based passive sensing.”
Journal of biomedical informatics, 93:103151, 2019.

[FKS] Shayan Fazeli, Mohammad Kachuee, Majid Sarrafzadeh, and Afshin Aminian.
“WatChair: AI-Powered Real-time Monitoring of Sitting Posture and Corrective
Suggestions using Wearable Motion Sensor System.”.

[FL] Shayan Fazeli and Lionel Levine. “tabluence.”.

146

https://web.archive.org/web/20200804105944/https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/managing-stress-anxiety.html
https://web.archive.org/web/20200804105944/https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/managing-stress-anxiety.html
https://web.archive.org/web/20200804105944/https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/managing-stress-anxiety.html
https://doi.org/10.7910/DVN/VOQCHQ
https://doi.org/10.7910/DVN/VOQCHQ
https://archive.is/cLVL5


[FLB22] Shayan Fazeli, Lionel Levine, Mehrab Beikzadeh, Baharan Mirzasoleiman, Bita
Zadeh, Tara Peris, and Majid Sarrafzadeh. “Passive Monitoring of Physiological
Precursors of Stress Leveraging Smartwatch Data.” In 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 2893–2899. IEEE,
2022.

[FLB23] Shayan Fazeli, Lionel Levine, Mehrab Beikzadeh, Baharan Mirzasoleiman, Bita
Zadeh, Tara Peris, and Majid Sarrafzadeh. “A Self-supervised Framework for
Improved Data-Driven Monitoring of Stress via Multi-modal Passive Sensing.”
arXiv preprint arXiv:2303.14267, 2023.

[FMS21] Shayan Fazeli, Babak Moatamed, and Majid Sarrafzadeh. “Statistical analytics
and regional representation learning for covid-19 pandemic understanding.” In
2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), pp.
248–257. IEEE, 2021.

[fre]

[FZO21] Shayan Fazeli, Davina Zamanzadeh, Anaelia Ovalle, Thu Nguyen, Gilbert Gee,
and Majid Sarrafzadeh. “COVID-19 and Big Data: Multi-faceted Analysis for
Spatio-temporal Understanding of the Pandemic with Social Media Conversa-
tions.” arXiv preprint arXiv:2104.10807, 2021.

[FZS19] Yi Fan, Kai Zhao, Zheng-Li Shi, and Peng Zhou. “Bat coronaviruses in China.”
Viruses, 11(3):210, 2019.

[GAG00] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng,
and H Eugene Stanley. “Physiobank, physiotoolkit, and physionet.” Circulation,
101(23):e215–e220, 2000.

[GEL23] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. “Imagebind: One embedding space
to bind them all.” In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15180–15190, 2023.

[GFE19] Migyeong Gwak, Shayan Fazeli, Ghazaal Ershadi, Majid Sarrafzadeh, Melina
Ghodsi, Afshin Aminian, and John A Schlechter. “EXTRA: exercise tracking
and analysis platform for remote-monitoring of knee rehabilitation.” In 2019
IEEE 16th International Conference on Wearable and Implantable Body Sensor
Networks (BSN), pp. 1–4. IEEE, 2019.

[GHC19] Jiaqi Gong, Yu Huang, Philip I Chow, Karl Fua, Matthew S Gerber, Bethany A
Teachman, and Laura E Barnes. “Understanding behavioral dynamics of so-
cial anxiety among college students through smartphone sensors.” Information
Fusion, 49:57–68, 2019.

147



[GOM18] Diana Galvan, Naoaki Okazaki, Koji Matsuda, and Kentaro Inui. “Investigating
the Challenges of Temporal Relation Extraction from Clinical Text.” In Proceed-
ings of the Ninth International Workshop on Health Text Mining and Information
Analysis, pp. 55–64, Brussels, Belgium, October 2018. Association for Computa-
tional Linguistics.

[GS05] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures.” Neural Networks,
18(5):602–610, 2005.

[GSA20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
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