
UCLA
UCLA Previously Published Works

Title
Informatics tools to assess the success of procedural harmonization in preclinical 
multicenter biomarker discovery study on post-traumatic epileptogenesis

Permalink
https://escholarship.org/uc/item/0jt6z48c

Authors
Ciszek, Robert
Ndode-Ekane, Xavier Ekolle
Gomez, Cesar Santana
et al.

Publication Date
2019-02-01

DOI
10.1016/j.eplepsyres.2018.12.010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0jt6z48c
https://escholarship.org/uc/item/0jt6z48c#author
https://escholarship.org
http://www.cdlib.org/


Informatics tools to assess the success of procedural 
harmonization in preclinical multicenter biomarker discovery 
study on post-traumatic epileptogenesis☆
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Espinosac,d, Idrish Alic,d, Gregory Smithb, Noora Puhakkaa, Niina Lapinlampia, Pedro 
Andradea, Alaa Kamnakshe, Riikka Immonena, Tomi Paananena, Matthew R. Hudsonc,d, 
Rhys D. Bradyc,d, Sandy R. Shultzc, Terence J. O’Brienb,d,f,g, Richard J. Stabab, Jussi 
Tohkaa, Asla Pitkänena

aA.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland 
bDepartment of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA 
cThe Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 
Australia dDepartment of Medicine, The Royal Melbourne Hospital, The University of Melbourne, 
Victoria, 3052, Australia eDepartment of Anatomy, Physiology and Genetics, Uniformed Services 
University, MD, USA fDepartment of Neurology, The Alfred Hospital, Commercial Road, 
Melbourne, Victoria, 3004, Australia gDepartment of Neurology, The Royal Melbourne Hospital, 
Grattan Street, Parkville, Victoria, 3050, Australia

Abstract

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a National 

Institutes for Neurological Diseases and Stoke funded Centers-Without-Walls international 

multidisciplinary study aimed at preventing epileptogenesis. The preclinical biomarker discovery 

in EpiBios4Rx applies a multicenter study design to allow the number of animals that are required 

for adequate statistical power for the analysis to be studied in an efficient manner. Further, the use 

of multiple centers mimics the clinical trial situation, and therefore potentially the chance of 

successful clinical translation of the outcomes of the study. Its successful implementation requires 

harmonization of procedures and data analyses between the three contributing centers in Finland, 

Australia, and USA. The objective of the present analysis was to develop metrics for analysis of 

the success of harmonization of procedures to guide further data analyses and plan the future 

multicenter preclinical studies. The interim analysis of data is based on the analysis of data from 

212 rats with lateral fluid-percussion injury or sham-operation included in the biomarker discovery 

by April 30, 2018. The details of protocols, including production of injury, post-injury follow-up, 

blood sampling, electroencephalogram recording, and magnetic resonance imaging have been 

☆This article is part of a special issue ‘Discovery of diagnostic biomarkers for post-traumatic epileptogenesis – an interim analysis of 
procedures in preclinical multicenter trial EpiBios4Rx’
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presented in the accompanying manuscripts in this Supplement. Implementation of protocols in 

EpiBios4Rx project participant centers was visualized in 2D using t-distributed stochastic 

neighborhood embedding (t-SNE). The protocols applied to each rat were presented as feature 

vectors of procedure related variables (e.g., impact pressure, anesthesia time). The total number of 

protocol features linked to each rat was 112. The missing data was accounted in visualization by 

utilizing imputation and adding the number of missing values as a third dimension to 2D t-SNE 

plot, resulting in a 3D overview of protocol data. Intraclass correlation coefficient (ICC) using 

Euclidean distances and area under receiver operating characteristic curve (AUC) of k-nearest 

neighbor classifier (KNN) were utilized to quantify the degree of clustering by center. Both 

subsets of data with incomplete protocol vectors omitted and missing protocol data imputed were 

assessed. Our data show that a visible clustering by center was observed in all t-SNE plots, except 

for day 7 neuroscores. Both ICC and AUC indicated clustering by center in all protocol variable 

subsets, excluding unimputed day 7 neuroscores (ICC 0.04 and AUC 0.6). ICC for imputed set of 

all protocol related variables was 0.1 and KNN AUC 0.92. In conclusion, both ICC and AUC 

indicated differences in protocol between EpiBios4Rx participating centers, which needs to be 

taken into account in data analysis. Importantly, the majority of observed differences are 

recoverable as they relate to insufficient updates in record keeping. While AUC score of KNN is a 

more sensitive measure for protocol harmonization than ICC for data that displays complex 

splintered clustering, ICC and AUC provide complementary measures to assess the degree of 

procedural harmonization. This experience should be helpful for other groups planning such 

multicenter post-traumatic epileptogenesis studies in the future.

Keywords

Classification; Common data element; Dimensionality reduction; Intraclass correlation; k-nearest 
neighbor; Lateral fluid-percussion; Machine learning; Traumatic brain injury

1. Background

Preclinical studies have been criticized for lack of statistical power and reproducibility 

(Landis et al., 2012). This is also a concern in studies on epileptogenesis in rodent models of 

traumatic brain injury (TBI) as epileptogenesis is slow and frequency of spontaneous 

seizures in rats with post-traumatic epilepsy (PTE) is low (Pitkänen et al., 2017). 

Consequently, post-traumatic epileptogenesis studies require a long-lasting and laborious 

follow-up with prolonged period of video-EEG recording in order to conduct a statistically 

powered biomarker or treatment discovery study. Such studies are possible but challenging 

in a single-center study design, typically the video-EEG monitoring capacity being the 

bottleneck limiting the cohort size (Dongjun Guo et al., 2013; Liu et al., 2016; Nissinen et 

al., 2017).

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx, 2018) is an 

international, multicenter, multidisciplinary study aimed at preventing epileptogenesis after 

TBI (https://epibios.loni.usc.edu/). One of the major objectives of the EpiBioS4Rx project is 

to find diagnostic biomarkers for post-traumatic epileptogenesis, which would also serve as 

predictive biomarkers in antiepileptogenesis treatment trials (Pitkänen et al., 2018). To 

Ciszek et al. Page 2

Epilepsy Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://epibios.loni.usc.edu/


achieve sufficient statistical power in biomarker discovery for PTE, EpiBios4Rx is 

performing a preclinical multicenter study using the same rat model, lateral fluid-percussion 

injury (FPI), in three participating centers: University of Eastern Finland (Kuopio, Finland), 

Monash University (Melbourne, Australia) and University of Southern California in Los 

Angeles (UCLA). This approach is also expected to provide variability within the animal 

cohort similar to the heterogeneity of severe human closed-head TBI that can lead to PTE 

(Maas et al., 2017), and to more closely mimic the situation of a clinical trial – which would 

be multicenter – and therefore potentially increase the chance of positive translation of the 

outcomes. Further, multi-center trial design provides larger video-EEG monitoring capacity 

to achieve a high number of phenotyped animals within a feasible time window to facilitate 

the progress in biomarker discovery process. Moreover, multicenter study has additional 

advantages by reducing the risks of single-center related complications like unexpected 

health issues in animal colony or equipment-related technical issues.

To date, there have been no preclinical multicenter studies in epilepsy. In TBI field, 

Operation Brain Trauma Therapy (OBTT) has conducted a hypothesis-driven assessment of 

the efficacy of various therapies on post-TBI recovery in three centers, which also included 

biomarker analysis (Kochanek et al., 2011, 2016; Yang et al., 2018). However, OBTT 

applied three different models to reflect the heterogeneity of TBI, and thus, the model 

harmonization was not an issue. In parallel to this pioneering activity, both the TBI and 

epilepsy communities have been developing methodologies for harmonizing the 

methodologies and data collection to improve accuracy of reporting and reproducibility of 

experiments. The most concrete outcome being the generation of common data elements 

(CDEs) and case report forms (CRFs) for systematic data collection in preclinical TBI and 

epilepsy models (Smith et al., 2015; Lapinlampi et al., 2017; Harte-Hargrove et al., 2017).

EpiBios4Rx biomarker discovery study was started on January 15, 2017. All experimental 

procedures were harmonized between the three centers and procedural information was 

collected using project-tailored CDEs and CRFs. In the current study, we assessed the extent 

of harmonization for the induction of lateral FPI model production and post-injury follow-up 

(Ekolle Ndode-Ekane et al., 2019), blood sampling (Kamnaksh et al., 2018), seizure 

detection in electroencephalogram (EEG)(Casillas-Espinosa et al., 2019), detection of high-

frequency oscillations (HFOs)(Santana Gomez et al., 2019), and magnetic resonance 

imaging (MRI)(Immonen et al., 2019). Each of these procedures is also the subject of 

separate articles in this special Supplementary Issue. Here we present an approach using 

multivariate intraclass correlation and machine learning to develop quantitative metrics for 

analyzing the quality of inter-center harmonization to guide data analysis. The analysis 

results will have implications for the current EpiBioS4Rx studies as well as planning future 

preclinical multicenter trials. In particular, when considering the pre—project activities 

needed to train the personnel to achieve sufficient procedural harmonization and for 

collection of preliminary data to predict inter-center procedural variability to be included in 

power calculations.
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2. Materials and methods

The detailed methodologies have been presented in accompanying articles by Ekolle Ndode-

Ekane et al., (2019) for injury production and post-impact follow-up by Kamnaksh et al. 

(2018) for blood sampling, Casillas-Espinosa et al. (2019) for EEG analysis, and Santana 

Gomez et al. (2019) for HFO analysis. The outline of the study design in terms of variables 

included in this harmonization assessment is presented in Fig. 1. All protocols were 

approved by institutional and/or national animal research committees.

2.1. The EpiBioS4Rx dataset

EpiBios4Rx protocol dataset included 189 protocol related variables collected from 212 rats 

at the University of Eastern Finland (UEF), Monash University in Melbourne (Melbourne), 

and University of Southern California in Los Angeles (UCLA). The extent of protocol 

harmonization was assessed in terms of variables related to TBI induction, neuroscore 

measurements, blood sampling, animal weight and the timing of procedures (for a complete 

variable list, see Supplementary Table 1). TBI induction related variables included impact 

pressure, impact angle, apnea duration, time to self-righting and anesthesia time. Neuroscore 

measurements included test results for left and right sides of the animal for contraflexion, 

hind limb flexion, lateral pulsion, angle board, and total neuroscore of an animal. 

Neuroscores were included from baseline and on days 2, 7, 14, and 28 after TBI. The set of 

blood absorbance features consisted of absorbance values for A and B samples. The blood 

absorbance variables were included from baseline, days 2 and 9 after the impact, and one 

month after the impact. Body weight values were measured at baseline, days 2 to 9, day 14 

and day 30. Timing related features included different time points for blood sampling, 

anesthesia initiation and anesthesia termination. For use in Euclidean distance calculations 

between protocol vectors, times of the day were converted to seconds from midnight (00:00 

AM).

Additionally, distances in time between selected points in the protocol were calculated. The 

distances were measured from start of the quarantine to the induction of injury, from the 

start of quarantine to baseline blood sampling, from the baseline blood sampling to the 

injury, from injury to day 2, day 9 and 1 month blood sampling, and from injury to MRI at 

day 9 and one month time points. Finally, variable denoting the mortality at the level of the 

cohort of each animal was added. This resulted in a feature vector consisting of 112 

variables.

As none of the feature vectors contained data for all protocol related variables, separate 

subdatasets containing subsets of features with representative number of animals without 

missing values available from at least two centers were constructed. Six separate feature 

subsets were constructed for this purpose: neuroscore measurements at different time points, 

concatenation of all neuroscore measurements, variables related to blood sampling, variables 

related to timing, and temporal distances.

Animals that died before the latest measurement time points included in a feature subset 

were excluded from respective subdataset. The number of missing variables for each animal 

was counted. Non-numeric entries, e.g. “between 8–9 AM” or “midday” for time of day, 
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were treated as missing variables. However, during imputation described in Section 2.4, the 

variables were separately imputed using sensible heuristics, e.g. imputing “between 8–9 

AM” with 8:30, instead of utilizing imputation algorithms. Fig. 4. illustrates the missing data 

profiles for the three centers.

Analysis were conducted using Python 3.6.6, scikit-learn 1.9.2, scipy 1.1.0 and R 3.5.1 on 

Centos 7. t-SNE (van der Maatenand Hinton, 2008) to two dimensions was performed on 

each of the eight EPIBIOS protocol data subset using perplexity of 50. Protocol variables 

subsets and the complete protocol data were additionally imputed using MICE (Van Buuren, 

2007) and reduced with t-SNE to provide an overview of the level of harmonization. The 

analysis scripts are available from a public git repository (https://github.com/

UEFepilepsyAIVI/epibios4rx-harmonization/)

Multivariate ICC using unweighted Euclidean distance was calculated for both imputed and 

unimputed protocol vectors. In addition, univariate ICC scores were calculated using the 

ANOVA approach for all protocol variables. KNN classifier with a k of 10 was used to 

produce AUC score for imputed and unimputed protocol vector subsets. The 95% 

confidence intervals for ICC and KNN AUC were estimated by bootstrapping (Ukoumunne 

et al., 2003) using 1000 iterations.

Mann Whitney-U test with Bonferroni correction was performed for each pair of protocol 

variable and pair of centers to support the observed differences in protocols. Fifty-two out of 

112 protocol variables displayed statistically significant differences between centers (p < 

0.05).

2.2. Visualizing protocol implementation

Given a dataset consisting d protocol-related variables from n animals, each entry in the 

dataset can be treated as a feature vector with dimensionality d. Such feature vector, referred 

as protocol vector for the rest of the article, represents the protocol implemented for a single 

animal. The similarities among protocol vectors can be measured using a distance metric, for 

example Euclidean distance. For two animals subjected to similar protocol, the distance will 

be near zero with differences between animals resulting only from biological variability. As 

the dissimilarity between the implementations of the protocol increases, the distance 

between vectors increases.

Visualizing the similarities among protocol vectors provides an overview of the overall level 

of harmonization. Similarities of protocol vectors with more than three dimensions can 

presented in an intuitively interpretable form by embedding the vectors into a low 

dimensional space. In embedding, a low dimensional presentation of the data is constructed 

ensuring that vectors similar to each other in the original high dimensional space are located 

near each other in the low dimensional embedding, while dissimilar vectors are placed far 

apart. Multiple embedding methods have been presented, for example, Isomap (Tenenbaum 

et al., 2000) and Laplacian eigenmaps (a.k.a. spectral embedding) (Belkin and Niyogi, 

2003). The most suitable embedding method for strictly visualization purposes is t-

distributed stochastic neighborhood embedding (t-SNE) (van der Maaten and Hinton, 2008). 

t-SNE models the similarity of samples in high dimensional space as conditional 
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probabilities using normal distributions centered on each sample. Similar samples are given 

high probabilities, and the probabilities decrease quickly due to the shape of the distribution 

as the dissimilarity between data points increases. The similarities of data points in the low 

dimensional space are modelled using Student’s t-distribution, and the embedding is 

performed by minimizing the Kull-back-Leibler divergence between the two distributions. t-

SNE fills efficiently the low dimensional space, that is, it minimizes the empty space on a 

plot, for presenting the similarities of points in low dimensional space and retains the 

clustering among samples during embedding.

The low dimensional representation may not be able to faithfully present the all relationships 

between the vectors of the original high-dimensional data, as compromises in terms of 

distances must be made when the data is squeezed from high to low dimensional space. For 

visualization purposes t-SNE emphasizes the clustering present in the data and with low 

values of t-SNEs perplexity parameter, which controls the size of the fitted distributions, the 

algorithm can result in a reduction displaying exaggerated granularity. This would cause 

points within each cluster to additionally aggregate into small adjacent granules in the 

visualization. Additionally, an artificially low perplexity may result in a misleadingly 

heterogenous reduction by scattering the points from centers with a very little variance in 

protocol. In the analysis conducted, perplexity of 50 was utilized in all reductions. It should 

be also noted that if vectors belonging to the same high-dimensional manifold cannot be 

presented as a continuous shape in the low dimensional embedding, a cluster of points may 

be broken to two or more separate clusters in the embedding. Nevertheless, as the 

neighborhoods are retained in the embedding, the proximity of points in the embedding 

implies proximity in the original high dimensional space. By plotting the embedded feature 

vectors and by coloring the points by center the level of harmonization can be quickly 

assessed. In an ideal case (Fig. 2A), no clustering by site should be visible in the plot.

2.3. Quantifying center similarity

Humans have an aptitude for detecting patterns and shapes, whether they exist or not. To 

quantify the degree of clustering observed visually in the reductions, numerical measures for 

the similarity among clusters can be calculated. Two intuitive measures exist for the 

clustering by center. First, protocol vectors are known to be clustered by center if the 

between center variance is higher than the within center variance (Fig. 2B). Secondly, from 

clustering by center it follows that each protocol vector’s adjacent vectors belong to the 

same center. The former can be quantified using intraclass correlation coefficient and the 

latter by center-wise classification performance utilizing machine learning.

Intraclass correlation (ICC), first introduced by Fisher (1950) as a modification of Pearson 

correlation coefficient, measures the ratio by which the variability in the data is explained by 

clustering. Assume a dataset containing n samples from k centers, with nk animals from each 

center. Let x′ denote the mean of a variable x over the while data and let xk denote the mean 

of x for samples from center k. Using ANOVA framework, ICC is defined as (Wu et al., 

2012):
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ρ = MSB−MSW
MSB+MSW(nA − 1) (1)

where MSW =
∑i

k ∑ j
nk x j − xi

2

n − 1 , MSB =
∑i

k x − xi
2

k − 1  and nA = 1
k − 1

ICC is a univariate measure for correlation of vectors within each center. The idea of ICC 

can however be applied in the context of multivariate feature vectors by utilizing distance 

metrics. Within group variability is then measured by the mean distance to the cluster center 

in the high dimensional feature space, and between group similarity by the mean distance of 

group centroids to the center of the feature space. This approach results in a definition of 

ICC as

ρd =
db − dw

db + dw(nA − 1)

where dw = ∑i
k ∑ j

nk d xi, c j
2
, db = ∑i

k d xi, x 2 and d (a, b) is some distance metric (e.g. 

Euclidean distance).

As with univariate ICC, 0 indicates similarity among centers, i.e. perfect harmonization, and 

values near 1 clear separation into different clusters. Weighted Euclidean distance can be 

used to give different weight for each protocol related variables.

K-nearest neighbor classification (KNN) is a non-parametric machine learning algorithm 

that assigns a class to each vector based on the classes of the vector’s k “nearest” – e.g. the 

most similar, vectors (Duda et al., 2016). To assess the degree of aggregation by center, 

leave-one-out cross-validation is utilized. In leave-one-out cross-validation, a single feature 

vector is held out from the data and rest of the data is used to assign a center to the held-out 

vector by calculating the most common center among the k-nearest protocol vectors. This 

process is repeated on for all protocol vectors. By comparing the resulting classification to 

known real centers, multiclass micro-averaged area under curve (AUC)(Flach and Ferri, 

2011) score can be calculated. Micro-averaged AUC is calculated by aggregating the 

classification performances scores (number of true positives, true negatives etc.) from each 

class and calculating the AUC using the combined scores. AUC score near 0.5 will indicate 

dispersion of the points in the feature space (proper harmonization) and value near 1 perfect 

separation of points by center. As with ICC, weighted Euclidean distances can be utilized 

with KNN to weight protocol variables.

ICC is a global measure of protocol vector aggregation. It denotes solely the level 

correlation within centers, and in special cases, low ICC can be reached with data with 

significant center-wise clustering. Example of such scenario is splintering of data from each 

center into intermingled sub-clusters. If such splintered clusters are suitably located in the 

feature space, the overall ICC of the data may remain low despite clear clustering by center. 

Conversely, KNN AUC is a local measure of aggregation by center. It is sensitive to 
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splintering of vectors to small granules and to small differences in the centers. Example of 

the latter behavior is shown in Fig. 3, which illustrates t-SNE reductions of a synthetic data 

with 128-dimensional protocol vectors and three centers. All protocol variables were drawn 

from a normal distribution. A near ideal scenario is displayed in Fig. 3A, where all centers 

have equal means and differ in variance. Both the ICC and AUC indicate perfect 

harmonization. In Fig. 3B, centers have equal variances, but the means are placed a variance 

apart. ICC reports very little correlation within centers, which is visually explained by the 

number of points from each center mingled among points of other centers. The KNN AUC 

however is high, implying separation in terms of protocol. Fig. 3C displays a scenario with 

center means unit variance apart. As expected both AUC and ICC reach high values. In the 

last synthetic scenario (Fig. 3D), both the means and variances of each center differ, but only 

two of the centers (center 2 and 3) are partially mixed together. As a result, the micro-

averaged AUC is dominated by the separability of the less overlapped centers (centers 1 and 

2) and reports no clustering, while ICC indicates clear clustering by center.

2.4. Handling missing data

To be able to measure the similarity of two protocol vectors, no variables can be missing 

from neither of the vectors. Missing variables in the protocol data can be dealt either by sub-

setting the data into small sets of features within which a representative set of animals with 

intact data is available from all centers. Alternatively, the missing values for a vector can be 

imputed by filling the values based on the existing observations in the vector. In multiple 

imputation by chained equations (MICE), regression models are iteratively inferred based on 

the existing values and missing data is imputed using the model predictions (Van Buuren, 

2007). This provides a reasonable guess for the possible values and allows generation of an 

overview of the data in cases where omitting incomplete feature vectors would shrink the 

data to unrepresentative size.

2.5. Visualizing missing data

The number of missing values in an imputed reduction can be presented in a visualization 

by, for example, reducing the protocol data to two dimensions and adding a third dimension 

to represent the missing data count (Figs. 5 and 6). This enables quick assessment of both 

clustering by center, amount of missing data and the reliability of the assignment of points to 

the vicinity of each other.

3. Results

2D t-SNE reductions for intact subsets of protocol variables are presented in Fig. 5. No clear 

clustering by center was evident from the reduction of lateral FPI impact-related variables, 

but the points from the same cluster appeared to form small string-like groups (Fig. 5A). In 

blood related variables similarity among animals from UCLA and some mixing between 

UEF and Melbourne can be observed (Fig. 5B). Clear separation of UCLA from UEF and 

Melbourne can be seen in day 14 neuroscores (Fig. 5C).

In Fig. 6A–F, 3D plots of t-SNE reductions protocol vectors with missing data imputed are 

presented. The vertical axis in the 3D figures presents the number of imputed missing 
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variables. The number of missing variables contributes significantly to the clustering evident 

from the reduction of complete set of protocol variables and the subsets (Fig. 6A). The 3D 

plot with imputed blood sampling variables resembles the 2D t-SNE without imputation, 

with a single center appearing separated due to missing data (Fig. 6B). Clustering by vector 

similarity can be seen e.g. in combined neuroscores, where UCLA and UEF are clearly 

separated (Fig. 6C). In terms distance between procedure time points (Fig. 6D), Melbourne 

forms a cluster of its own. Majority of UEF protocol vectors are distributed to small clusters 

separate from Melbourne and UCLA. Lateral FPI (Fig. 6E) divides protocol data into two 

clusters. The smaller compact cluster appears mixed, while within the larger cluster some 

clustering by center is visible. In terms of weight, the centers appear to form a single mixed 

elongated cluster (Fig. 6F). As a large portion of the data visualized in Fig. 6F consisted of 

imputed variables, the apparent similarity of UEF, UCLA and Melbourne in terms of weight 

is questionable. The clustering observed in Fig.6 is most evident in the supplementary 

interactive 3D plots, which can be freely rotated (Supplementary Fig 1–13).

Tables 1 and 2 present the ICC values for protocol variable subsets with and without 

imputation, respectively. The overall protocol ICC calculated using imputed set of all 

protocol variables data was 0.08, which implies correlation among samples within the same 

center (Table 1). Unimputed baseline and day 14, 21 and 28 neuroscores show ICC above 

0.3, which likewise implies correlation within center (Table 2). KNN AUC scores for both 

imputed (Table 3) and unimputed (Table 4) data similarly indicate clustering by center. AUC 

score of 0.75 or higher was reached on every protocol variable subset, except for day 7 

neuroscores. While ICC for the overall protocol in the imputed dataset was only 0.08 (Table 

1), the respective KNN AUC was 0.93 (Table 3), implying strong tendency to form clusters 

by center. This conclusion is supported by the tSNE presented in Fig. 6. Although the ICC 

score 0.01 for timing (Table 1) appears near ideal, the AUC score 0.87 for the same subset 

(Table 3) is high. This can be explained by the positioning of the vectors in the feature space 

(Fig. 7), resulting from the imputed feature vectors for Melbourne and UCLA consisting of 

near identical values.

4. Discussion

We presented methods for visualization and quantification the level of procedural 

harmonization in preclinical trials. We visualized protocol similarity using t-SNE, and data 

integrity in a 3D plot by adding a third axis to a 2D protocol vector embedding to denote the 

amount of missing data.

ICC is an intuitive measure of the amount of procedural variance resulting from between 

center variance. However, for non-normally distributed data and in the presence of 

significant outliers, ICC may produce misleadingly low values. AUC score of KNN on the 

other hand is insensitive to the shape of distribution but requires the parameter k for the 

number of neighbors to be set on case-by-case basis. As global and local measures of center-

wise clustering ICC and AUC can be considered complementary. A high ICC combined with 

a high AUC implies clear separation between centers, whereas low to moderate ICC and 

moderate to high AUC implies center-wise clustering with some mixing between centers. 

Further, the distribution of the data may obscure the center-wise clustering in terms of a 
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single measure, but by combining both measures clustering can still be detected. 

Nevertheless, of the two measures the results presented indicate KNN AUC to be more 

straightforwardly interpretable measure for the success of procedural harmonization. In 

contrast to ICC, KNN AUC was shown to more often produce scores in line with the 

separation visible from t-SNE plots. Any machine learning algorithm could be applied 

instead of KNN in harmonization evaluation, as the purpose of machine learning in this 

context is merely to assess the center-wise clustering through the difficulty of assigning 

protocols to centers.

EpiBios4Rx protocol data displayed clear clustering by center both in the case of unimputed 

subdatasets and imputed complete protocol data. This suggests that assessment made using 

the imputed complete protocol data is not significantly distorted by imputation. Differences 

in protocol manifesting as significant center-wise clustering must be taken account during 

subsequent analysis. Majority of statistical analyses and sample size calculations assume 

statistical independence across subjects. Assumption of independence is violated when 

measurements are clustered by center, which can result in incorrect p-values and confidence 

intervals (Localio et al., 2001). When center-wise clustering is observed, suitable models 

accounting for the center-effect (e.g., mixed linear models or generalized estimating 

equations) should be utilized (Kahan, 2014).

About 50% of EpiBioS4Rx data consisted of missing variables, such as notes related to 

blood sampling or neuroscores, even though the tests had been performed. In the context of 

protocol harmonization, missing data forms one dimension and must be considered 

separately. Protocol containing a large ratio of inconsistently missing data cannot be 

considered harmonized as differing patterns of missing data indicate lack of consistency in 

recording of practices between the centers. However, missing data affects ICC or AUC only 

indirectly as entries containing missing values are either omitted or the missing values are 

imputed prior the calculations. In both cases, the steps taken to account for missing data can 

distort the indexes towards either failure or success in harmonization.

Observed differences in protocols can result from recoverable or unrecoverable deviations. 

For example, missing data caused by inadequate record keeping is recoverable and can be 

fixed by increasing the efficiency in documentation even retrospectively. In contrast, omitted 

procedures or differences in conducted procedures are un-recoverable. Majority of missing 

EpiBioS4Rx data falls into the recoverable category.

Use of electrical data capture systems - such as REDCap (Harris et al., 2009), can largely 

eliminate the discrepancy between protocols stemming from missing or malformed data. 

REDCap will be utilized in the next stages of the EpiBioS4Rx, and the centers are expected 

to converge in terms of protocol harmonization in the near future.

Our interim assessment of EpiBioS4Rx protocols emphasizes the importance of early 

analysis of harmonization success in order to specify the parameters, which contribute to 

statistical indicators of incomplete harmonization. Using this information, it will be possible 

to find and apply target-specific remedy to alleviate or cure the incomplete harmonization, 
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for example, by increasing the monitoring of consistent book-keeping, by performing 

continuous training of investigators, and by facilitating communication between the centers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Outline of the EpiBioS4rx study design and sampling time of parameters included in the 

present analysis. Weight and temperature were measured at baseline (pre-injury), and 

thereafter, on days (d) 1 to d7, d9, d14, d21 and d28. Neuroscore was measured at baseline, 

and on d1–d7, d14, d21 and d28. Blood sampling was performed at baseline, and thereafter, 

on d2, d9, and at 1, 5 and 7 months post-injury. Note that data collected after the 1st post-

injury month (shaded area) was not included in the present analysis.
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Fig. 2. 
Ideal harmonization and illustration of between and within center distances. (A) A scatter 

plot illustrating an ideal situation where protocol vectors from all centers are dispersed with 

no clustering by center. (B) The ratio of between center variance σb
2 to within center variance 

σw
2  is an intuitive measure for clustering by center. When the between center variance 

decreases, the scattering of points in panel B approaches that of panel A.
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Fig. 3. 
t-SNE reductions of synthetic data consisting of 128-dimensional protocol vectors drawn 

from normal distribution. (A) Near-ideal situation with centers having equal means and 

equal variances. (B) Slight difference in means results in high AUC score but only a small 

increase in ICC. (C) Clear difference in means results in both high AUC and ICC scores. 

Note that t-SNE exaggerates the distances between clusters but preserves the neighborhood 

relationships between similar protocol vectors. (D) An opposite case as presented in panel B. 

With suitably chosen different means and variances for each center, AUC reports poor 

separation into clusters while and correctly ICC implies tendency to form center-wise 

clusters.
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Fig. 4. 
The ratio of missing entries to total entries in feature sets containing variables related to day 

14 neuroscores (top), injury induction (middle), and blood sampling (bottom). Majority of 

day 14 neuroscore measurements from Melbourne are missing (i.e., ratios near 1.0), while 

neuroscore dataset from UCLA is mostly intact (ratios near 0). Similarly, ratios for injury 

induction and blood sampling-related variables from UCLA and UEF indicate very few 

missing entries, while larger ratios from Melbourne indicate several missing entries.
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Fig. 5. 
t-SNE reductions of subsets of protocol variables containing intact protocol vectors. (A) 

Lateral fluid-percussion injury (FPI) -related variables show clear clustering by center. B) 

Blood absorbance measurements from Melbourne and UCLA appear somewhat similar. 

Measurements from UEF aggregate into a group of their own. The three centers form layers 

on a single large cluster, indicating clear similarity within centers but nevertheless small 

distance between centers. (C) In day 14 neuroscore measurents UCLA clearly differs from 

UEF and Melbourne.
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Fig. 6. 
t-SNE reductions of imputed protocol vectors. The similarity among protocol 

implementations is presented in plane formed by width and depth axis. The axis 

perpendicular to the similarity plane denotes the number of missing measurements for each 

protocol vector. Overall in terms of all protocol variables and variable subsets, Melbourne is 

missing the largest number of protocol data points. Conversely, data from UEF is mostly 

complete. (A) The centers appear separated both in terms of protocol implementation and 

the amount of missing data. (B) While more mixing appears in the impute blood absorbance 

data, measurements from different centers are grouped together and measurements from 
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Melbourne shows high number of missing values. (C) Clustering by vector similarity can be 

seen in the combined neuroscores, where UCLA and UEF are clearly separated. (D) In terms 

distance between procedure time points Melbourne forms a cluster of its own with high 

missing data count. Majority of UEF protocol vectors are distributed to small clusters 

separate from Melbourne and UCLA. (E) Lateral FPI protocol data is divided into two small 

clusters, with missing data clearly separating Melbourne from the rest. (F) While the centers 

appear to form a single mixed elongated cluster in terms of weight, data from UCLA and 

Melbourne vectors contains a significant number of missing values. This results from UCLA 

and Melbourne data containing only baseline weight. As majority of the visualized vectors 

from the two centers consisted of imputed variables, the similarity of points in the upper 

cluster is questionable.
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Fig. 7. 
3D tSNE presenting the protocol vectors for variables related to the timing of experiments. 

The positioning of the points in the feature space results in a low ICC but nevertheless high 

AUC. UCLA contains mostly “midday” and Melbourne “between 8–9” values. As explained 

in the text, this is counted as missing data but imputed using 12:00 and 8:30 instead of using 

MICE.
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Table 1

ICC values for the EpiBioS4Rx protocol data with imputation. LCI and UCI present upper and lower 95% 

confidence intervals, respectively. All feature sets display lower within center correlation in comparison to 

unimputed data. Weight, lateral FPI, procedure timing and combination of all protocol variables displayed 

relatively low ICC (bolded and underlined values). The ICC values nevertheless indicate clustering by center – 

especially in terms of baseline neuroscores (bolded).

Protocol variable TBI SHAM TBI + SHAM

ICC LCI UCI ICC LCI UCI ICC LCI UCI

Combined neuroscore 0.37 0.32 0.4 0.04 0 0.13 0.28 0.23 0.33

Neuroscore baseline 0.40 0.33 0.48 0.41 0.31 0.5 0.42 0.37 0.47

Neuroscore 2 0.14 0.07 0.22 0.26 0.13 0.42 0.11 0.05 0.15

Neuroscore 7 0.33 0.24 0.44 0.4 0.29 0.52 0.21 0.15 0.29

Neuroscore 14 0.48 0.41 0.56 0.36 0.25 0.50 0.31 0.26 0.36

Neuroscore 21 0.41 0.31 0.5 0.37 0.27 0.51 0.28 0.22 0.35

Neuroscore 28 0.38 0.27 0.47 0.39 0.27 0.52 0.28 0.23 0.35

Lateral FPI 0.46 0.34 0.6 0.1 0.02 0.19 0.07 0.03 0.17

Blood sampling 0.22 0.14 0.3 0.26 0.16 0.39 0.21 0.14 0.27

Weight 0.03 0 0.09 0.04 0 0.19 0.03 0 0.09

Distance between timepoints 0.13 0.08 0.18 0.1 0.03 0.18 0.12 0.08 0.18

Procedure timing 0.02 0 0.11 0.02 0 0.09 0.01 0 0.05

All protocol variables 0.11 0.04 0.27 0.17 0.06 0.24 0.08 0.03 0.15

Abbreviations: AUC, area under curve; ICC, intraclass correlation; FPI, fluid-percussion injury; LCI, lower confidence interval; UCI, upper 
confidence interval; TBI, traumatic brain injury.
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Table 2

ICC values for the EpiBioS4Rx protocol data without imputation. LCI and UCI present upper and lower 95% 

confidence intervals, respectively. Feature sets that did not contain data from at least two centers were 

excluded. Unimputed baseline and day 14, 21 and 28 neuroscores show clear correlation within center (bolded 

values). Conversely, day 7 neuroscore (bolded and underlined) displays smallest but existing within center 

correlation.

TBI SHAM TBI + SHAM

ICC LCI UCI ICC LCI UCI ICC LCI UCI

Neuroscore baseline 0.51 0.43 0.60 0.49 0.36 0.61 0.50 0.44 0.56

Neuroscore 2 0.29 0.2 0.39 0.36 0.19 0.52 0.16 0.09 0.24

Neuroscore 7 0.17 0 0.58 0.05 0 0.46 0.04 0 0.22

Neuroscore 14 0.60 0.53 0.66 0.5 0.39 0.61 0.39 0.32 0.47

Neuroscore 21 0.59 0.51 0.66 0.5 0.41 0.61 0.39 0.33 0.47

Neuroscore 28 0.60 0.51 0.68 0.53 0.43 0.63 0.42 0.35 0.52

Lateral FPI 0.48 0.35 0.62 0.11 0 0.7 0.18 0.05 0.33

Blood sampling 0.24 0.15 0.34 0.32 0.21 0.44 0.24 0.17 0.31

Abbreviations: ICC, intraclass correlation; FPI, fluid-percussion injury; LCI, lower confidence interval; UCI, upper confidence interval; TBI, 
traumatic brain injury.
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Table 3

KNN AUC values for imputed feature sets. LCI and UCI present upper and lower 95% confidence intervals, 

respectively. Moderate to high AUC scores indicate center-wise clustering in terms of all feature sets, 

excluding blood-sampling for sham animals (bolded and underlined). The overall protocol differs clearly 

between centers, with AUC of 0.93. The bolded values denote feature sets for which ICC was deemed 

relatively low (< 0.1, Table 1), but which are clearly aggregated by center. While ICC for procedure timing 

was only 0.01 (Table 1), centers can nevertheless be classified by procedure timing.

TBI SHAM TBI + SHAM

AUC LCI UCI AUC LCI UCI AUC LCI UCI

Combined Neuroscore 0.84 0.78 0.90 0.74 0.61 0.84 0.89 0.85 0.93

Neuroscore baseline 0.88 0.84 0.92 0.78 0.68 0.86 0.9 0.87 0.92

Neuroscore 2 0.8 0.76 0.85 0.76 0.67 0.86 0.86 0.81 0.9

Neuroscore 7 0.84 0.79 0.9 0.77 0.66 0.87 0.85 0.81 0.89

Neuroscore 14 0.9 0.86 0.93 0.77 0.68 0.86 0.88 0.84 0.92

Neuroscore 21 0.86 0.82 0.91 0.76 0.65 0.85 0.87 0.83 0.9

Neuroscore 28 0.83 0.77 0.89 0.72 0.63 0.85 0.85 0.81 0.9

Injury 1 0.99 1 0.7 0.54 0.86 0.95 0.92 0.97

Blood sampling 0.74 0.68 0.81 0.56 0.42 0.68 0.77 0.72 0.82

Weight 0.83 0.76 0.89 0.74 0.62 0.83 0.83 0.8 0.88

Distance between timepoints 0.97 0.95 0.99 0.82 0.65 0.94 0.98 0.96 0.99

Procedure timing 0.86 0.83 0.9 0.68 0.54 0.78 0.87 0.85 0.89

All protocol variables 0.95 0.88 0.99 0.74 0.63 0.85 0.93 0.90 0.97

Abbreviations: AUC, area under curve; ICC, Intraclass correlation; KNN, k-nearest neighbor; LCI, lower confidence interval; UCI, upper 
confidence interval; TBI, traumatic brain injury.
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Table 4

KNN AUC values for feature sets without imputation. LCI and UCI present upper and lower 95% confidence 

intervals, respectively. Feature sets that did not contain data from at least two centers were excluded. Except 

for day 7 neuroscores(bolded and underlined), KNN AUC indicates high classification performance and 

therefore clear center-wise clustering.

TBI SHAM TBI + SHAM

AUC LCI UCI AUC LCI UCI AUC LCI UCI

Neuroscore baseline 0.99 0.98 1 0.99 0.94 1 0.99 0.97 1

Neuroscore 2 0.94 0.9 0.97 0.91 0.82 0.97 0.94 0.9 0.96

Neuroscore 7 0.65 0.38 0.91 0.17 0 0.69 0.6 0.37 0.82

Neuroscore 14 0.97 0.96 0.99 0.93 0.89 0.98 0.96 0.94 0.98

Neuroscore 21 0.98 0.96 0.99 0.98 0.96 0.99 0.96 0.94 0.98

Neuroscore 28 0.98 0.96 0.99 0.95 0.95 0.96 0.97 0.95 0.98

Injury 0.99 0.98 1 0.88 0.82 0.95 0.92 0.89 0.95

Blood sampling 0.84 0.78 0.89 0.82 0.73 0.9 0.82 0.76 0.87

Abbreviations: AUC, area under curve; ICC, Intraclass correlation; KNN, k-nearest neighbor; LCI, lower confidence interval; UCI, upper 
confidence interval; TBI, traumatic brain injury.
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