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Abstract 

Buildings consume more than one-third of the world’s primary energy. Reducing energy use and
greenhouse-gas emissions in the buildings sector through energy conservation and efficiency
improvements constitutes a key strategy for achieving global energy and environmental goals.
Building performance simulation has been increasingly used as a tool for designing, operating
and retrofitting buildings to save energy and utility costs.  However,  opportunities remain for
researchers,  software  developers,  practitioners  and  policymakers  to  maximize  the  value  of
building  performance  simulation  in  the  design  and  operation  of  low  energy  buildings  and
communities that leverage interdisciplinary approaches to integrate humans, buildings, and the
power grid at a large scale. This paper presents ten challenges that highlight some of the most
important issues in building performance simulation, covering the full building life cycle and a
wide range of modeling scales. The formulation and discussion of each challenge aims to provide
insights into the state-of-the-art and future research opportunities for each topic, and to inspire
new questions from young researchers in this field.
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Introduction

The buildings sector consumes about 40% of primary energy in the United States and European
countries and about 25%-30% in developing countries like China. In the United States, federal,
state  and  local  governments  set  stringent  energy  goals  for  new  and  existing  buildings.  For
example,  in  the  2016 multi-year  program plan  (U.S.  Department  of  Energy 2016),  the  U.S.
Department  of  Energy’s  Building  Technologies  Office  set  a  goal  to  reduce  the  energy  use
intensity (EUI) of buildings by 30% by 2030 and 50% over the long-term. At the state level,
California’s long-term energy efficiency strategic plan (California Public Utilities Commission
2008) stipulates that all new residential buildings must be zero-net-energy (ZNE) by 2020, all
new commercial buildings must be ZNE by 2030, and 50% of existing commercial buildings
must be retrofitted to ZNE by 2030. At the city level, the City of San Francisco requires all new
municipal construction projects of 5,000 square feet or larger to be LEED Gold certified; several
other U.S. cities have similar new construction requirements.

Building performance simulation (BPS) – also known as building simulation, building energy
modeling, or energy simulation - has played a growing role in the design and operation of low
energy, high-performance buildings and development of policies that drive the achievement of
the  aforementioned energy goals.  BPS is  defined as  the  use  of  computational  mathematical
models  to  represent  the  physical  characteristics,  expected  or  actual  operation,  and  control
strategies of a building (or buildings) and its (their) energy systems. BPS calculations include
building energy flows, air flows, energy use, thermal comfort and other indoor environmental
quality indexes (e.g., glare).1

BPS has a  decades-long history of  development,  beginning with the  replacement  of  manual
procedures with computing tools to determine HVAC loads in the 1960s (Clark, 2001 and 2015;
Hensen and Roberto, 2011; BEMBook 2018). Several review articles (e.g., Hong et al. 2000; Li
and Wen, 2014; Clarke 2015; Clarke and Hensen 2015; Wang and Zhai 2016; Østergård et al.
2016; Harish and Kumar 2016) survey key developments, applications and challenges for the
BPS field across its history.

BPS development has been particularly pronounced in the past ten years, as demonstrated by the
founding  of  two  new  journals  in  2008,  Building  Performance  Simulation  and  Building
Simulation,  as  well  as  the  growth  of  the  International  Building  Performance  Simulation
Association  (IBPSA),  which  was  formed  in  1987.  In  parallel,  several  international  research
efforts under the International Energy Agency (IEA)’s Energy in Buildings and Communities
(EBC) Programme have advanced the application of BPS to support the design of buildings and
communities  (Hong  2018).  Key  BPS-related  IEA EBC  projects  include:  Annex  1,  which
developed  algorithms  to  determine  load  and  energy  of  existing  buidings;  Annex  10,  which
focused on building HVAC system simulation;  Annex 21 and 43,  which developed standard
methods and test cases to validate and benchmark BPS programs; Annex 30, which provided best
practices to integrate simulation in various phases of building design; Annex 53, which used BPS
to analyze impact of six influencing factors of real building performance (Yoshino et al. 2017);

1 For a more detailed overview of BPS, see the U.S. Department of Energy’s “101” articles (Roth 2017) on building
energy modeling and major use cases including architectural design, HVAC design and operation, building 
performance rating, and building stock analysis.



Annex  58,  which  studied  methods  and  collected  data  for  full-scale  empirical  validation  of
detailed BPS Programs; Annex 60, which developed a Modelica-based library of building energy
system component models (Wetter et al.  2015); Annex 66 (Yan et al. 2017), which developed
new data, methods, modeling tools and case studies to understand, model and quantify occupant
behavior in buildings; and Annex 22, 51 and 73, which studied energy efficient communities.

From a practical perspective, BPS is commonly used to: (1) perform load calculations in support
of HVAC equipment selection and sizing, (2) demonstrate the code compliance of a building by
comparing  the  energy  performance  of  the  proposed  design  with  the  code  baseline,  and  (3)
evaluate  and  compare  design  scenarios.  For  further  details,  the  book  Building  Performance
Simulation for Design and Operation (Hensen and Lamberts 2011) provides a comprehensive
overview of how building performance simulation is used in the complete building life-cycle
from conception to demolition. Note that although the use of BPS in the building design process
is widespread, its use in the operation, control and retrofit of existing buildings remains limited.

Figure 1 outlines a theoretical BPS ecosystem in which successful applications integrate users
(i.e.,  energy  modelers),  programs,  data  and  resource  support.  These  three  components  are
discussed further below.

Figure 1 A theoretical Building Performance Simulation ecosystem integrates users, programs,
data and resource support.

Regarding BPS users, the Rocky Mountain Institute has developed the concept of ‘black belt
energy modeling’ (Rocky Mountain Institute 2010) to set forth BPS user expectations, training
materials,  and professional  development  paths.  Under  this  concept,  becoming a  master  user
requires  a  depth  and  breadth  of  knowledge  about  engineering,  building  science  and  BPS
programs. Additionally, ASHRAE’s Fundamentals Handbook Chapter 19, Energy Estimating and
Modeling Methods, covers fundamental concepts for energy modelers, particularly those new to
the field.  ASHRAE’s building energy modeling professional  certification further ensures that
BPS users have the training needed to develop and perform successful energy simulations.



Regarding  BPS  programs,  though  many  are  available,2 no  program  is  perfect  in  terms  of
accuracy and ease-of-use (Zhu et al. 2013; Zhou et al. 2014). Moreover, available BPS programs
are used to answer a wide range of questions for architects, engineers and other stakeholders, and
it is important to select a BPS program that is appropriate for the particular application of interest
– indeed, this notion is the basis of the fit-for-purpose modeling concept (Gaetani et al. 2016).
Stretching a BPS program beyond its intended scope of use should be avoided; this practice may
lead to modeling errors and at minimum requires a deep understanding of the BPS program in
question.

Finally,  regarding data and resource support,  inadequate efforts to collect supporting data for
BPS underpin the “Garbage In,  Garbage Out” aphorism. When modeling new buildings,  for
example,  users must  anticipate  how the building will  be  used and accurately specify design
performance goals. When modeling existing buildings, on-site inspections and energy audits can
be used to establish reliable input data for energy models. Sound data collection is not replaced
by parallel efforts, e.g., model calibration that attempts to fine-tune key model input parameters.
As data for many parameters are needed to build detailed energy models using BPS programs
such as EnergyPlus (U.S. Department of Energy 2018a), user experience is needed to focus data
collection around the most important model input parameters.

Looking ahead, several studies have surveyed state-of-the-art in BPS research and highlighted
key challenges and research items for future BPS development. For example, Hong et al. (2000)
presented seven use categories of BPS and predicted continued BPS development in five areas:
(1) integrating BPS with knowledge-based systems to support decision making, (2) using BPS in
early design stage, (3) integrating information monitoring and diagnostic systems (Piette et al.
2001)  with  BPS for  building  energy management  and control,  (4)  integrating  multiple  BPS
programs in the building life cycle, and (5) using virtual reality technology to enable digital
building design and operation experience. Despite some advances in these five areas over the last
20 years, each remains a significant challenge.

In another study, Clarke (2015) developed 16 propositions for IBPSA to advance the BPS field,
emphasizing the need for high-integrity emulations of building performance through BPS while
acknowledging  the  need  for  accordant  changes  to  company  work  practices,  user-interfaces,
support, and accreditation, tool screening, scientific communication, and process management.
Clarke  and  Hensen  (2015)  further  summarized  the  state-of-the-art  in  building  performance
simulation, outlining issues relating to a high integrity representation of building performance,
identifying  emerging  challenges  that  will  dictate  new  directions  for  BPS  development,  and
characterizing barriers to collaborative development in the field. 

Wang and Zhai (2016) provide an overview of BPS advancements and trends for development
and application achieved between 1987 and 2014,  focusing on six different topics including
ventilation performance prediction, whole building energy and thermal load simulation, lighting
and daylighting modeling, building information modeling, indoor acoustic simulation, and life
cycle analysis of buildings. 

2 The building energy software tools directory, https://www.buildingenergysoftwaretools.com/, lists hundreds of 
BPS programs at various levels of fidelity, accuracy, complexity and ease of use.



Building on these forward-looking studies, this paper aims to pinpoint and discuss the ten most
important challenges currently facing the BPS research area, discussing potential solutions to
each challenge while acknowledging its technical complexity and significance to a variety of
stakeholders.  Table  1  lists  the  selected  challenges  and outlines  the  practical  significance  of
addressing each. As seen in the Table, the challenges cover several existing or emerging areas of
BPS research and application, including: (1) understanding the gap between expected and actual
building  performance  to  achieve  targeted  design  performance  goals,  (2)  understanding  and
quantifying human-building interactions, (3) modeling existing buildings and their large energy
use contributions to the building sector, (4) supporting the design and operation of ZNE and grid-
responsive buildings, (5) large-scale building technology adoption, evaluation, and modeling to
inform energy policy making in city, state and federal governments,  and (6) integrating BPS
across the building life cycle.

The  challenges  were  selected  based  on  the  preceding  literature  review  and  reflect  recent
advances in  the  technologies and software  capabilities that  support  BPS,  as well  as  broader
advances in the BPS field and building simulation community as a whole. These challenges also
reflect the wide range of potential BPS applications, spanning multiple stages in the building life
cycle  from design  to  operation  and retrofit,  and multiple  scales  of  analysis  from individual
buildings and building occupants to cities, utility regions, and the national building stock (Figure
2). The paper’s broad coverage of potential BPS tasks aims to highlight common research needs
surrounding data collection, standardization, and integration; model development and selection;
and the development of modeling workflows that are of practical use.

Table 1 Ten challenges of building performance simulation
Challenge Significance
 Addressing the building performance gap BPS supports verification of building 

performance goals and ratings/certifications
 Modeling human-building interactions BPS incorporates models of 

environmentally adaptive occupant 
behavior, which has significant impacts on 
building energy performance

 Energy model calibration
 Modeling operation, controls and retrofits
 Modeling operational faults in buildings

BPS supports operational improvements and
energy efficiency improvements/retrofits in 
existing buildings

 Zero-net-energy (ZNE) and grid-responsive 
buildings

BPS supports the design of ZNE buildings 
and representation of building energy load 
dynamics needed to deploy building 
efficiency as a grid resource

 Urban-scale building energy modeling BPS supports city-scale building energy 
efficiency measures needed to achieve 
energy/environmental goals

 Evaluating the energy-saving potential of 
building technologies at national or regional
scales

 Modeling energy efficient technology 
adoption

BPS supports government decision making 
on building efficiency research, technology 
development and assessment



 Integrated modeling and simulation BPS supports decision making across the 
entire building life cycle

Figure 2 The ten BPS challenges described in this paper span multiple stages in the building life
cycle and scales of focus, which range from the individual building level to the national building
stock level. 

We provide an overview of each challenge, discuss why it is important, highlight recent advances
in addressing it, and propose potential future research directions. Note that herein, the scope of
the term building ‘performance’ is limited to energy performance simulation, though the authors
acknowledge that important challenges exist  in modeling other types of performance metrics
such as thermal comfort, indoor air quality and CFD in the built environment.

Ten Challenges

1. Addressing the building performance gap

With the increasing demand for more energy efficient buildings, the buildings industry is faced
with the challenge of ensuring that the energy performance predicted during the design stage is
achieved  once  a  building  is  in  use.  However,  previous  studies  have  identified  a  significant
‘performance gap’ between designed and actual energy performance of both commercial and
residential buildings (Frei et al. 2017; Calì et al. 2016; Van Dronkelaar et al. 2016; Meng 2016;
De Wilde 2014), also known as the ‘credibility gap’ (Bordass et al. 2004; Dasgupta et al. 2012).
The performance gap between designed and measured energy use is best illustrated by Figure
Error: Reference source not found3, from a study by the New Buildings Institute  (Turner and
Frankel 2008). Here, it is clear that while measured and design energy use intensities (EUI) are
correlated, they often differ substantially from one another in absolute terms. 



Energy performance gaps may originate in all stages of the building development process, from
design to construction to operation. For example, factors such as miscommunication between
designers,  engineers,  and contractors, and inadequate quality control during construction may
contribute to observed performance gaps.

Three  types  of  performance  gap  are  identified  by  Wilde  (De  Wilde  2014) from the  energy
calculations  perspective:  (1)  a  mismatch  between  ‘first  principle’  energy  models  and
measurements undertaken on actual buildings,  (2) a mismatch between data-driven empirical
approaches and measurements from real buildings, (3) a mismatch between the energy ratings
provided by compliance test methods and energy display certificates as enshrined in regulation.
The performance gap is not only limited to  energy and has recently been extended to other
metrics such as embodied emissions (Pomponi and Moncaster 2018). In this paper, however, the
focus is placed on the energy performance gap.

Figure 3 Measured versus Design EUIs (Turner and Frankel 2008).

When faced with an energy performance gap, building owners may suggest the designers mis-
specified their energy model, while designers might argue that the building is used in unexpected
ways and/or  improperly  operated and managed  (Bordass  et  al.  2004).  The performance gap
erodes the credibility of the design and engineering sectors of the building industry; in turn, this
leads to skepticism about high-performance building concepts, undermining public confidence in
the role  of  building energy efficiency in  national  carbon reduction efforts  (De Wilde 2014).
Indeed,  bridging  the  energy  performance  gap  is  essential  if  designers  and  engineers  are  to
influence the delivery of high-performance buildings that meet ambitious targets such as zero-
net-energy (ZNE, covered in  a  subsequent  section).  Bridging this  gap will  also improve the
ability  of  buildings  to  adapt  to  changing use  conditions  by  ‘occupant  proofing’ or  ‘climate
change proofing’ (De Wilde 2014).

Multiple factors are potentially responsible for the energy performance gap. According to IEA
Annex  53’s  findings,  building  energy  consumption  is  mainly  influenced  by  six  factors:  (1)
climate (Cui et al. 2017; Hong et al. 2013), (2) building envelope (Fang et al. 2014), (3) building
services and energy systems, (4) building operation and maintenance (Lin and Hong 2013), (5)
occupant  activities  and  behavior  (D’Oca  et  al.  2018) and  (6)  indoor  environmental  quality



provided. The latter three factors, related to human behavior, can have an influence as great as or
greater than the former three factors, which are building-related (Yoshino et al. 2017). 

Indeed, Li studied 51 high-performance office buildings in the US, Europe, China and other parts
of Asia, and discovered that climate, building size, or technology do not determine energy use
alone;  occupant  behavior,  building  operation  and  maintenance  also  significantly  influence
realized energy savings (Li et al. 2014). In particular, occupant behavior has been identified as a
major factor contributing to the discrepancy between simulation predictions and real energy use
(Yan et al. 2017; Ahn et al. 2017). User-related factors are stochastic and have been found to vary
substantially from design values in buildings; accordingly, new scientific approaches are needed
to describe and quantify the influence of occupant behavior and account for this influence in the
building  simulation  process  (see  next  section).  Moreover,  the  existence  of  ‘rebound’ and
‘prebound’ effects can further lead to the over- or under- estimation of the effects of occupant
behaviors on energy use (Haas and Biermayr 2000; Sorrell et al. 2009; Hens et al. 2010; Galvin
2014; Sunikka-Blank and Galvin 2012). 

In recent years, several research efforts have focused on reducing the energy performance gap.
Eschewing  traditional,  deterministic  energy  simulation,  for  example,  Sun  proposed  a
probabilistic framework of predicting energy consumption using computation-based uncertainty
quantification,  which  shows  improvement  in  model  prediction  capabilities  and  reduces
prediction  errors  for  case  study  buildings  (Sun  2014).  IEA Annex  66  proposed  scientific
approaches  to  reduce  the  energy  performance  gap  by  representing  occupant  behaviors  in  a
standardized quantitative way, going further by integrating simulated behaviors with current BPS
programs (Yan et al. 2017). Regarding behavior modeling approaches, Markov Chain (Wang et
al.  2011),  probabilistic  (Sun  et  al.  2014),  and  random  walk  (Ahn  et  al.  2017) models  of
occupancy have been proposed. 

Post-occupancy  evaluation  (POE)  has  also  proven  essential  in  understanding  the  energy
performance gap and can potentially be used to inform better predictions, improving the input
assumptions used in detailed energy modeling and closing the building performance feedback
loop  (Van  Dronkelaar  et  al.  2016;  Menezes  et  al.  2012;  Choi  et  al.  2012).  POE has  been
embedded into Building Information Modeling (BIM) to engage different stakeholders in the
collaborative effort of continuous building performance improvement (Göçer et al. 2015). 

Efforts  to  bridge  the  performance  gap  span  the  building  design  stage,  construction  and
operational stage (De Wilde 2014; Jones et al. 2015; Burman et al. 2014; Dasgupta et al. 2012).
Regarding the design stage, design guidance and reports have been developed to raise awareness
amongst  clients  and  design  teams,  ensuring  that  design  intent  and  responsibilities  are
communicated  and  leaving  no  room  for  error  during  building  construction.  Regarding  the
construction stage,  efforts  such as Building with Care  attempt to  increase the  quality  of  the
construction  delivery  process  (Tofield  2012).  Finally,  regarding  the  operational  stage,
standardized data collection and monitoring techniques have been used to reduce uncertainty in
collected operational data. The handover between the construction and operation stages is also
being improved by new programs such as ‘Soft Landings’ (BSRIA and UBT 2014), which was
developed in the UK to keep designers and constructors involved in verifying the performance of
buildings beyond completion.



In order to  continue bridging the energy performance gap caused by miscommunication and
misalignment of different roles within a building development process, future work should focus
on  developing  integrated  methods  of  building  design,  construction,  operation,  and
commissioning.  Such  methods  will  enable  a  more  thorough  and  accurate  exchange  of
information across the building life cycle. As stated in the Zero Carbon Hub report, this effort
will involve fundamental changes to the traditional building industry (Zero Carbon Hub 2014).
At the same time, more work is needed to address the issue of occupant behavior, among the
strongest influences on the performance gap. Improved representation of occupant behavior in
detailed energy modeling requires a better understanding of the nature of occupants’ interactions
with  different  types  of  buildings,  including  how  occupants  use  energy  and  respond  to
socio/technical energy saving initiatives. This topic is the subject of the next section. 

2. Modeling  the  human-building  interaction  for  occupant-centric  building  design  and
operation

Building occupants interact with indoor environments and control systems through their presence
in a space and the adaptive actions they take to maintain personal environmental satisfaction.
These  human-building  interactions  (HBIs)  affect  both  energy  use  and  occupant  comfort
outcomes  and  are  therefore  central  to  building  design  and  operation  (D’Oca  et  al.,  2018).
Occupants’ behavioral interactions with buildings are of a wide variety, including the passive
exchange of heat with space; opening and closing doors and windows; adjustment of thermostat
settings, light settings, blinds and shades, or clothing levels; use of personal heating and cooling
devices;  and consumption of  warm or  cold drinks.  Each interaction  may be  motivated by a
number of factors ranging from the physical environment and availability of control options to
occupants’ personal  preferences  and environmental  attitudes,  social  interactions,  and broader
cultural context (Fabi et al. 2012; Gunay et al. 2013; Langevin et al. 2015).

Modeling capabilities that accurately simulate HBI are needed for both design-stage tools for
BPS and controls system software  that  enables more efficient operation and management  of
building energy services. In the building design stage, the ability to represent expected occupant
behaviors  and their  effects  on simulated energy flows can support  design  strategies  that  are
robust to these behaviors. In the building operation stage, models of building occupants, their
comfort and behavior can support model-predictive control (MPC) and human-in-the-loop (HIL)
control schemes that minimize building energy use while maximizing occupant comfort.

Efforts  to  model  the  human-building  interaction  face  the  scientific  challenge  of  accurately
representing behavioral diversity and its potential determinants as well as the practical challenge
of implementing such models in widely used building design and operation software. Observed
behaviors tend to vary widely across and within occupant populations and can even vary within
an individual upon repeated observation  (Yan et al. 2015). Moreover, the set of variables that
best explains the observed variation in behaviors depends strongly on the particular building
context of interest, characteristics of the occupant population, and the type of behavior(s) being
studied.  Top-down,  equation-based modeling frameworks  (Haldi  and Robinson 2009,  2010),
which are the most tractable to implement as part of BPS program, cannot explicitly represent
the causal structures that yield behavioral diversity across individuals and populations. Agent-
based models (ABMs) (Azar and Menassa 2012; Langevin et al. 2015; Lee and Malkawi 2014b;



Putra et al. 2017), which can simulate individual-level decision-making processes for multiple
behaviors at once and social interactions, offer greater flexibility in exploring causality; however,
these models require more resources to develop and implement in BPS programs (e.g.,  more
data, modeler time, computing power).

Efforts to put data behind HBI models bring their own challenges (Wagner et al. 2018; Sun and
Hong 2017b). Certain occupant behaviors may be difficult or impossible to measure without the
use  of self-report  surveys,  which introduce potential  recall  bias and limit  the  frequency and
duration  of  measurement  campaigns.  Moreover,  given  the  wide  array  of  potential  occupant
behaviors  and  the  heterogeneity  in  occupant  characteristics  and  building  contexts,  in  situ
occupant  data  collection  efforts  must  target  a  large  sample  of  occupants  to  yield  broadly
representative  insights  about  observed behaviors.  In  practice,  resources  may  not  allow such
large-scale sampling of occupants in real building settings. Additionally, cross-sectional (point-
in-time) field studies may fail to capture a full range of behavior outcomes or detect statistically
significant  relationships  between  these  outcomes  and  other  measured  variables  (e.g.,
environmental conditions). While longitudinal field studies are better suited to capturing time-
resolved  variation  in  behaviors,  these  studies  are  expensive  to  implement  and  are  often
constrained to smaller sample sizes. Laboratory experiments offer the most control over occupant
sample selection and exposure to environmental conditions, but may omit important aspects of a
field setting (e.g., availability of natural light, social interactions).

HBI models and datasets that overcome these challenges will improve the accuracy of building
energy  modeling  and  support  occupant-centric  building  control  schemes  with  large  energy
savings potential. Previous research has established occupant behavior as one of six influencing
variables on real building energy use  (Yoshino et al. 2017) and a key source of uncertainty in
predicting energy use; multiple studies report the sensitivity of simulated energy use outcomes to
changes in occupant behavior parameters (up to 150%) (Clevenger and Haymaker 2006; Hong
and  Lin  2013).  Behavior-related  energy  model  inputs  also  strongly  affect  simulated  indoor
environmental conditions and thermal comfort performance  (Langevin et al. 2016). Regarding
building controls, HBI models can serve as proxies for direct occupant measurements in control
schemes that require occupant feedback, such as occupant-based MPC  (Mirakhorli and Dong,
2016) and  indirect  or  hybrid  human-in-the-loop  controls  (Munir  et  al.  2013).  Importantly,
modeled HBI proxies reduce occupant reporting and measurement burdens, a key barrier to the
long-term implementation of such control schemes. Previous studies report the potential for these
schemes  to  yield  from  10-40%  HVAC  and  lighting  energy  savings  while  maintaining  or
improving comfort (Ghahramani et al. 2014; Nagy et al. 2015; A. Williams A et al. 2012).

Recent progress in HBI modeling and data collection has been strongly supported by the IEA
EBC Annex 66: Definition and Simulation of Occupant Behavior, which has driven rapid growth
in the number of studies concerning building occupant behavior (Yan et al. 2017). Progress can
be grouped into three categories: fundamental model development, data collection methods, and
model integration with building design and operation software. Model development in the Annex
has found that equation-based discrete-time or discrete-event Markov and survival models can
accurately describe the adjustment of lights, blinds, windows, and the use of plug-in equipment.
Agent-based models, though not a focus of the Annex, have continued to grow in use throughout
the  occupant  behavior  modeling community.  Most  ABMs have been used in  an  exploratory



fashion  without  validation  efforts,  e.g.,  (Papadopoulos  and  Azar,  2016;  Putra  et  al.,  2017);
attempts  at  ABM  validation  have  shown  promising  predictive  capabilities,  but  for  limited
occupant samples (Langevin et al. 2015).    

HBI data collection advances supported through the Annex are categorized as in situ, laboratory
and surveys. In situ experiments have benefited from advances in occupant sensing technologies,
which  include  continuous  logging  of  occupant  presence  and  movement,  control  state  (e.g.,
window position, thermostat setting, light level), and plug loads. Sensors that transmit occupant
data  wirelessly  are  now  widely  available,  reducing  maintenance  burden  for  longer-term
experiments.  Nevertheless,  up  front  sensor  costs  remain  high  (U.S.  Department  of  Energy
2015b). Online surveys have been used as lower cost substitutes for sensor measurements that
can also directly explore the social and psychological determinants of behavior  (D’Oca et al.
2017). Emerging approaches include mixed method data collection (Creswell, 2006), which uses
both qualitative and quantitative measurement techniques, and immersive virtual environments
(IVEs)  (Heydarian  and  Becerik-Gerber  2017),  which  blend  aspects  of  laboratory  and  field
studies.

State-of-the-art integration of HBI models with widely used building energy simulation programs
leverages the Functional Mockup Interface (FMI) standard (Otter et al. 2011) for co-simulation
of behavior and energy use. An occupant behavior Functional Mockup Unit (FMU) (obFMU,
Hong et al. 2016c) was developed to support the exchange of behavior data in a standardized
XML format (obXML, Hong et al. 2015b, 2015c) with building energy simulation programs like
EnergyPlus and ESP-r. Here, energy models simulate environmental conditions to use as inputs
to the behavior model, while the behavior model provides the energy model with updated control
states.  Additionally,  some studies have attempted to integrate occupant models with building
controls systems. For example, the use of predictive occupancy models in MPC schemes has
been explored  (Mirakhorli  and Dong 2016), and Bayesian schemes for learning personalized
environmental preference profiles that tune HVAC operation have also been developed (Lee et
al. 2017).

Going forward, multiple areas of HBI research development are needed. First, meta-analyses of
existing  HBI  modeling  studies  should  quantitatively  compare  existing  equation-  and  non-
equation-based models using a  consistent  set  of  metrics.  Metrics might  include  measures of
model accuracy, parsimony, and uncertainty across the range of behaviors typically studied in the
residential and commercial building sectors. Ideally, model comparison and validation would be
performed by those outside the research team that developed each model, with data that were not
used to develop the models (Yan et al. 2017).

Data  for  meta-analyses  should  be  compiled  from  the  large  number  of  existing  field  and
laboratory HBI studies, a second area of focus for future work. Indeed, while the number of HBI
measurement  studies  has  grown  dramatically  in  recent  years,  a  single,  easily  accessible
repository for HBI data does not yet exist. Such repositories have spurred research advancements
in  related fields – see,  for  example,  the  ASHRAE RP-884 Database  (de  Dear  1998),  which
supported  the  development  of  an  adaptive  thermal  comfort  standard  and continues  to  drive
progress in thermal comfort modeling.



Third, future work should seek further dissemination of HBI modeling capabilities in widely
used BPS programs. While methods for co-simulation of behavior and energy models have been
successfully demonstrated by tools like obFMU, dynamic HBI modeling capabilities are not yet
offered with new builds of major energy simulation engines. Additional work is needed to add
HBI modules to standard releases of these engines and associated interfaces like OpenStudio,
DesignBuilder, and Sefaira. This work can continue to build on the FMI standard, which allows
HBI models to be executed by any software that adheres to the same. Given the large numbers of
behavior models that may be selected, HBI menus should encourage a fit-for-purpose approach
to model selection (Gaetani et al. 2016).

Finally,  future work must re-examine the typical building- or zone-level scale of HBI model
application  in  the  face  of  growing  interest  in  occupant-centric  building  operations  (U.S.
Department  of  Energy  2018b) and  in  interactions  between  buildings  and  the  utility  grid
(Nemtzow 2017). At the occupant scale, advances in both human-in-the-loop control approaches
and  technologies  for  localized  environmental  conditioning  (U.S.  Department  of  Energy
Advanced Research Projects Agency 2014) demand the representation of individual preferences,
actions, and their impacts across a zone or building-level occupant population. At the grid scale,
accurate  models of  hourly energy load shapes  (Electric  Power Research Institute  2018) that
consider HBI are needed to design efficiency programs that shift these loads away from peak
periods  of  energy  use  while  maintaining  occupant  comfort.  Agent-based models,  which  can
generate aggregate-level HBI predictions for building-to-grid operations from individual-level
representations of occupant and operator decisions, warrant further consideration for these new
scales of model application.

3. Model calibration

As the first challenge section described, previous studies have indicated significant discrepancies
between simulated energy use from building energy models and actual measured data (Balaras et
al. 2016; Yoshino et al. 2017; Yin et al. 2014; Karlsson et al. 2007; La Fleur et al. 2017; Maile et
al.  2012).  Again,  this  undermines  confidence  in  model  predictions  and  curtails  adoption  of
building energy performance tools during design, commissioning, operation  (Samuelson et al.
2016; Coakley et al. 2014) and retrofit  (Johnson 2017; Heo et al. 2012). To address this issue,
building  energy  models  must  be  improved  to  closely  represent  the  actual  performance  of
modeled buildings.  This can be achieved through model  calibration,  the process of using an
existing BPS program and “tuning” or calibrating various inputs to the program so that observed
energy use matches closely with that predicted by the simulation program (Reddy 2006). 

Calibration can significantly improve the validity of and confidence in  energy models while
being used to: (1) compare the cost-effectiveness of ECMs in the design stage, (2) assess various
performance  optimization  measures  during  the  operational  stage  (Coakley  et  al.  2014),  (3)
implement  continuous  commissioning  or  fault  detection  measures  to  identify  equipment
malfunction  (Reddy  2006;  Zibin  et  al.  2016),  and  (4)  support  decision  making  in  existing
building retrofits,  assessing the benefits and uncertainties associated with each  (Reddy 2006;
Heo et al. 2012).



While  the  simulation  accuracy  of  building  energy  models  is  determined  by  thousands  of
parameters, there are usually limited measured data available as calibration inputs. This makes
calibration  a  highly  under-determined  and  over-parameterized  problem  without  a  unique
solution. Moreover, the collection of detailed sub-metered data may entail considerable time and
cost. Currently, building energy simulation models are considered ‘calibrated’ if they meet the
internationally-accepted  criteria  defined  by  ASHRAE  Guideline  14  (ANSI/ASHRAE  2014).
However, there are numerous models that meet these criteria and may be considered “calibrated”
for the same building; non-unique solutions therefore remain a key issue with model calibration.
In addition, it should be noted that current calibration criteria relate solely to predicted energy
consumption and do not account for input parameter uncertainty or inaccuracy, the accuracy of
BPS program, or the accuracy of the simulated environment (e.g., temperature profiles) (Coakley
et al. 2014).

Manual and automated are the two main categories of model calibration. As manual calibration is
a user-driven process of trial and error, it not only requires professional engineering expertise
and experience,  but  is  also  very  time-consuming and cost-ineffective.  Therefore,  researchers
have expended significant effort to improve existing manual calibration procedures to make them
more systematic and efficient. In parallel, a number of innovative automated calibration methods
have been developed. Recent progress in this area includes: 

 Researchers are breaking down the traditional whole building calibration problem into sub-
pieces that are easier to solve. For example, Cacabelos et al. divides the entire building into
different  sub-models  and  calibrates  them  separately  according  to  output  temperatures,
delivery  energy  or  power  consumption,  varying  the  most  influential  parameters  during
different periods of the year  (Cacabelos et al. 2017). The results show that the new multi-
stage procedure can achieve better accuracy than those obtained with a global calibration.
Mihai  and  Zmeureanu  proposed  a  bottom-up  calibration  technique  based  on  Building
Automation System trend data, which starts with zone level calibration with supply air flow
rate  to  each  zone,  indoor  air  temperature  and  cooling  load,  followed  by  AHU  level
calibration. The results show that the AHU model was calibrated naturally on top of most
calibrated  zones,  which  avoids  any  additional  tuning  through  the  trial-and-error  method
(Mihai and Zmeureanu 2017). 

 Occupancy patterns and internal loads contribute significantly to the discrepancy between the
predicted  and  actual  energy  consumption  and  have  thus  formed  a  key  focus  for  input
calibration (Sun et al. 2014; Hong et al. 2017a; Liang et al. 2016; Yan et al. 2017; Sun and
Hong  2017a).  Kim  et  al.  applied  the  occupancy  and  plug-load  schedules  derived  from
metered electric use data to building energy model calibration, substantially improving the
accuracy of building energy modeling results (Kim et al. 2017). Similarly, Lam et al. adopted
occupant behavior data mining techniques to generate occupancy schedules, using them in
the model calibration process and achieving better calibration accuracy  (Lam et al. 2014).
Sun et al. proposed a stochastic model to describe overtime occupancy, and used the model to
generate overtime occupancy schedules, which were applied to energy model calibration and
improved model accuracy (Sun et al. 2014).

 Advanced  optimization  techniques  are  being  used  to  improve  the  performance  of
optimization-based automated calibration methods. For instance, Hong et al. developed an
automatic calibration model using the genetic algorithm (GA) with the optimization objective



of approaching the minimum CV(RMSE) (Hong et al. 2017b). The CV(RMSE) was reduced
from  18.10%  to  12.62%.  Multiple  other  studies  have  used  the  GA algorithm  for  auto-
calibration  (Ramos Ruiz et al. 2016) (Andrade-Cabrera et al. 2016; Andrade-Cabrera et al.
2017).  The  Autotune  project  developed  by  Oak  Ridge  National  Laboratory  leverages
supercomputing,  large  simulation ensembles,  and big data  mining with multiple  machine
learning algorithms to allow auto-calibration of energy simulations (Garrett and New 2015). 

 Several  studies address the  computational  cost  of  auto-calibration,  which has slowed the
adoption of such techniques. Specifically, the computational cost can be reduced by fitting a
statistical  emulator  or  meta-model,  to  replace  the  physical  model.  A typical  application
example is Bayesian calibration, where meta-models are often adopted in combination with
Bayesian calibration approaches (Kristensen et al. 2017; Kim and Park 2016). Manfren et al.
successfully  integrated  model-driven  and  data-driven  procedures  by  training  a  Gaussian
process meta-model with computer simulation data and using it in a Bayesian calibration
process,  reducing computational  cost  without  sacrificing  much  accuracy  (Manfren  et  al.
2013).  Lim and Zhai  evaluated the  performance of  five  types  of  meta-models  and their
effects on the Bayesian calibration based on computing time and calibration accuracy. It was
found that all five meta-models significantly reduced the computing time compared with the
original process without meta-models; a Gaussian process emulator was found to be the most
accurate but most time-consuming approach, while a multiple linear regression model was
the fastest approach but showed the worst performance (Lim and Zhai 2017a). Li addressed
the issue of high computing time for a standard Gaussian process emulator by introducing a
lightweight approach with the linear regression emulator. The regression emulator calibrates
more  quickly  while  maintaining similar  performance compared to  the  standard  Gaussian
process  emulator  (Li  et  al.  2016b).  Lastly,  for  optimization-based  auto-calibration
approaches,  feature  selection  and  sampling  is  a  very  important  step;  emerging  methods
include Latin Hypercube Sampling (Kim and Park 2016; Yun and Song 2017), Markov chain
Monte Carlo (MCMC) (Garrett and New 2015) and No-U-Turn-Sampler MCMC (Chong et
al. 2017), etc.

 Optimization  is  based  on  mathematical  methods  and  typically  lacks  critical  inputs  from
physics  and engineering  perspectives,  thus  sometimes leading to  unreasonable  calibrated
results.  Sun  et  al.  addressed  this  issue  by  combining  the  strengths  of  both  manual  and
automated calibration based on pattern recognition, encompassing more engineering insights
and experience than purely mathematical optimization-based methods for auto-calibration
(Sun et al. 2016).

 An  automatic  assisted  calibration  tool  was  developed  that  couples  building  automation
system trend data with building commissioning tasks. This tool reduces the considerable time
required  to  manually  process  and  analyze  large  sets  of  trend  data  for  use  in  calibrated
simulation (Zibin et al. 2016).

In general, while calibration techniques have improved greatly in recent years, current calibration
criteria from ASHRAE guideline 14 may not be sufficient for comprehensively assessing the
accuracy of calibration results. Such criteria specify broad ranges of allowable error in the total
predicted  energy  consumption  of  a  building  but  do  not  specifically  address  uncertainty  or
inaccuracy in input parameters or zone-level environmental data. More comprehensive criteria
are needed to accommodate different levels and purposes of model calibration. 



Looking ahead, one important area for advances in BPS calibration is Urban Building Energy
Modeling (UBEM),  which is  increasingly  used to  explore  energy efficiency solutions at  the
urban or district scales (see subsequent section on this topic). As there are at least hundreds of
buildings involved in UBEM, it is extremely time-consuming to collect detailed information and
calibrate the buildings one-by-one to guarantee the accuracy. Future work must, therefore, shift
attention  from single  building  calibration  to  urban-scale  calibration,  supporting  the  growing
interest in urban-scale modeling. 

The most common approach for formulating a UBEM involves segmenting a building stock into
archetypes,  characterizing  each  type,  and  validating  the  model  by  comparing  its  output  to
aggregated measured energy consumption. Calibration is needed to define unknown or uncertain
parameters  in  the  face  of  incomplete  information  about  the  buildings  being  modeled.  For
example, Julia et al. developed a Bayesian methodology to calibrate the parameters of building
archetypes using measured energy data.  Probabilistic  representation was used for parameters
with limited or no information, and distributions were updated to a posterior joint distribution
that was more representative of the district (Julia et al. 2017). While computational cost might be
a concern for such applications of Bayesian calibration to UBEM, other studies mentioned above
show a successful reduction of this cost by integration of Bayesian calibration with simplified
meta-models. Such advances make Bayesian calibration a promising approach for urban-scale
modeling.

4. Modeling building operations, controls, and retrofits

From a life cycle point of view, most of a building’s energy is consumed during its operational
phase; thus, it is crucial that building simulation tools be applied during this phase to identify and
evaluate impactful energy-saving technologies and strategies. Moreover, in developed countries
the buildings sector is dominated by existing buildings. Accordingly, improvement of existing
building operation and controls and existing building retrofits are key strategies for reducing the
overall energy use of the buildings sector. Three important use cases of building simulation in the
building operation, control and retrofit phases are presented as follows.

Energy retrofit analysis

Detailed energy models created using BPS programs can be used to explore and evaluate energy
conservation  measures  (ECMs)  for  energy  retrofit  projects.  Usually,  the  basecase  model  is
calibrated using monthly  utility  bill  data  before  being used to  simulate  and analyze  ECMs.
Recent developments in this area include web-based platforms or toolkits that enable easy-to-use
energy retrofitting analysis, which in turn informs ECM selection. 

For example, in the commercial sector CBES (Hong et al. 2015a) is a web-based energy retrofit
analysis toolkit for small-to-medium-sized commercial buildings in California. The tool provides
energy  benchmarking and three  levels  of  retrofit  analysis  considering the  project  goal,  data
availability, and user experience. The three levels of retrofit analysis are: (1) smart meter data
analytics  to  derive  and  benchmark  electric  load  to  identify  no  or  low-cost  operation
improvements (Luo et al. 2017), (2) a lookup table style query of ECMs using building high-
level information and a pre-simulated large database (Lee et al. 2015), and (3) detailed energy
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modeling and a pattern-based calibration method (Sun et al. 2016) to evaluate retrofit ECMs.
CBES currently offers 82 ECMs for lighting, envelope, plug-in equipment, HVAC, and service
hot water retrofit upgrades, using OpenStudio and EnergyPlus to create and run energy models.
An extended version of the tool, CBESPro, covers all U.S. climate zones. Regnier et al. (2018)
demonstrated the use of EnergyPlus models to assess ECMs for retrofitting a building in Hawaii.
Emphasis is on the integrated systems approach to consider all related energy systems and their
integrative effects for deep energy retrofit of buildings

On the residential side, Home Energy Saver™ (HES) empowers homeowners and renters to save
money by reducing energy use in their homes. HES recommends energy-saving upgrades that are
appropriate to each home and make economic sense given the home's climate and local energy
prices. HES also estimates the home's carbon footprint and shows how much this footprint may
be reduced by energy-saving upgrades. For the urban scale energy retrofit analysis, more tools
are emerging; for example, CityBES (Hong et al. 2016a) is a web-based data and computing
platform for large-scale energy retrofit analysis of hundreds or thousands of buildings in a city
district or entire city (Chen et al. 2017a).

Model-based retro-commissioning

Most  buildings  do  not  perform  as  well  in  practice  as  intended  by  design,  as  their  energy
performance levels deteriorate over time. Reasons for this deterioration in performance include
faulty  construction,  malfunctioning  equipment,  incorrectly  configured  control  systems  and
inappropriate operating procedures. One approach to addressing this problem is to compare the
predictions of an energy simulation model of the building to  the measured performance and
analyze  significant  differences  to  infer  the  presence  and  location  of  faults,  a  topic  that  is
discussed further  in  the  next  section.  Model-based retro-commissioning refers  to  this  use of
building energy models to help identify and evaluate operation problems in buildings as part of a
retro-commissioning  process.  Calibrated  energy  models  can  be  a  good  tool  in  assisting  the
measurement  and  verification  (M&V)  of  a  retro-commissioning  project.  As  an  example,
Marmaras (2014) discussed how building energy models can be used in the retro-commissioning
process of an under-performing LEED Gold-level certified police station.

Real-time optimization, control, and fault detection and diagnosis

Building control systems are critical to ensuring efficient operations and occupant comfort. To
support building control, BPS is being coupled in real time with building energy monitoring and
control systems (EMCS) and sensors, where it is used to predict thermal loads in buildings and
provide guidance on energy- and comfort-optimal control strategies (e.g., set point adjustments,
charging and discharging of energy storage, demand response strategies). 

Typically, real-time building operation data (equipment and systems), predictive weather data,
and occupant data are fed to energy models that simulate and evaluate various control strategies
across a future time horizon, identifying the control strategy with the best predicted energy and
comfort  outcomes.  This  type  of  model  predictive  control  (MPC) is  an  advanced method of
process control that has been in use in  chemical plants and oil refineries since the 1980s, only
recently being appropriated for  power system balancing models and building controls (Morari
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and Lee 1999; Salakij et al. 2016). Model predictive controllers rely on dynamic models of the
process,  most  often  linear  empirical models  obtained  by  system  identification.  The  main
advantage of MPC is the fact that it allows the current operation timeslot to be optimized while
simultaneously accounting for future timeslots. 

In an early example, Cumali and Sezgen (1989) introduced a control optimization approach in a
high rise office complex, solving nonlinear equations that represent the building environmental
system in real time to identify optimal control strategies, which were subsequently implemented
through an EMCS. 

More recently, a research project (Piette et al. 2016; Blum and Wetter 2017) under the joint U.S.-
China Clean Energy Research Center (CERC) is developing and demonstrating a hierarchical,
occupancy-responsive MPC framework that optimizes the operation of buildings and campuses
by controlling lighting levels,  HVAC operation,  indoor air  temperature and humidity,  indoor
environmental quality, window opening, and shading devices. The framework takes into account
anticipated weather, occupancy, price signals from the electrical grid or district heating/cooling
networks and active and passive measures to store energy and reduce peak loads. The proposed
occupancy-responsive  MPC technology seamlessly  integrates  building technologies,  controls,
and human behavior - a substantial need for zero-net-energy and grid-responsive buildings.

Real-time BPS can also be used to detect and diagnose faults (FDD) in buildings, a topic that is
covered  in  more  detail  in  the  next  section.  For  example,  Pang  et  al.  (2012)  introduced  a
framework  for  simulation-based  real-time  whole  building  performance  assessment.  The
framework allows comparison of actual and expected building performance in real time using
EnergyPlus, the Building Controls Virtual Test Bed (BCVTB) and an Energy Management and
Control  System  (EMCS).  Here,  an  EnergyPlus  model  determines  and  reports  the  expected
performance of a building in real time; the BCVTB provides the software platform for acquiring
relevant  inputs  from  the  EMCS  through  a  BACnet  interface;  and  these  inputs  are  sent  to
EnergyPlus as well as a database for archiving. Pang et al. (2016) updated the framework to use
the open functional mockup interface (FMI) standard. In a separate study, Bonvini et al. (2014)
introduced a  robust  online  FDD for  HVAC components  based on nonlinear  state  estimation
techniques.

Going forward, key challenges to the use of building simulation in improving building operation,
control, and retrofit decisions include: (1) the need to create a detailed physics-based energy
model of a building in cases with limited data availability  (e.g., when as-built drawings and
specifications or records of building changes are not available or are in a form that can be easily
used),  (2) the lack of training data for data-driven or reduced-order models,  (3) the need to
execute  simulation  models  in  real-time,  requiring  computationally  fast  processes  for  data
collection,  communication,  and  model  execution,  and  (3)  the  lack  of  BPS  expertise  and/or
technical  resources among building operation staff  or energy managers.  Regarding the  latter
challenge,  the  use  of  BPS in  model-based retro-commissioning or  real-time control  requires
specialized  skills  that  are  still  new  to  the  building  simulation  community  -  particularly
practitioners.  Improved practitioner education and pilot  demonstration projects are  needed to
promote and scale up such applications in real-world settings.

javascript:void(0)
javascript:void(0)
https://en.wikipedia.org/wiki/System_identification
https://en.wikipedia.org/wiki/Empirical


5. Modeling operational faults in existing buildings

Operational faults are common in existing buildings, leading to decreased energy efficiency and
occupant discomfort. It is estimated that poorly maintained and improperly controlled HVAC
equipment is responsible for 15% to 30% of energy consumption in commercial buildings. Most
buildings,  especially  those with complex building energy systems,  have  various degrees and
types of operational problems. Mills et al. (2005) analyzed 85 retro-commissioning projects of
existing buildings  and found a total  of  3,500 deficiencies,  11  per  building.  Correcting these
deficiencies  through retro-commissioning proved to  be  cost  effective.  It  is  reported that  the
number  of  maintenance  requests  for  building  energy  systems  has  increased  exponentially
throughout the past decades, indicating an increase in building operational faults (Cotts et al.
2010). Typical operational faults may come from improper installation, equipment degradation,
sensor offset  or failures,  or control logic  problems.  Such faults  can be grouped into several
categories,  including:  (1)  control  faults,  (2)  sensor  offset,  (3)  equipment  performance
degradation, (4) fouling faults, (5) stuck faults, and (6) others (Cheung and Braun 2015). Figure
Error: Reference source not foundError: Reference source not found4 (Zhang and Hong 2017)
illustrates some common faults in a typical variable air volume (VAV) system with a central
plant.

Figure 4 Potential operational faults in a typical VAV system with a central plant (Zhang and

Hong 2017).

HVAC  operational  faults  may  lead  to  a  considerable  discrepancy  between  actual  HVAC
operation performance and design expectations (Djuric and Novakovic 2009; Karaguzel et al.
2014; Wang and Cui 2005). A series of questionnaire surveys and interviews conducted by Au-
Yong et al. (2014) show the significant influence of poor HVAC operation on occupant comfort,



and  some  maintenance  factors  are  identified  that  are  significantly  correlated  with  occupant
satisfaction.

Simulating HVAC operational faults allows for an estimation of the severity of common faults
and thus supports decision making about timely fault corrections, which can then enable efficient
system operation, improve occupant thermal comfort, reduce equipment downtime, and prolong
equipment service life (Comstock et al. 2002; Wang et al. 2013). Such modeling can also support
commissioning efforts by providing estimates for potential  energy/cost  savings that  could be
achieved by fixing the faults during retro-commissioning.

Quantified information on the impacts and priorities of various coexisting operational faults can
be  provided  to  the  commissioners  or  the  building  management  system,  resulting  in  more
reasonable and reliable commissioning decisions, especially when budget and staff resources are
limited.  Moreover,  modeling  operational  faults  is  critical  to  achieving  more  reliable  energy
model calibrations, as most energy models for existing buildings assume ideal conditions without
any operational problems. Specifically, this ability to estimate the severity of common faults is
expected to improve the accuracy and transparency of the calibrated model, thereby increasing
the analysis accuracy of different retrofit measures (Lam et al. 2014; Hong et al. 2015a).

Various FDD methods have been developed for HVAC operational faults at the component or
subsystem level. Cheung and Braun (2015, 2016) developed fault models for a variety of typical
building energy system equipment with three modeling techniques: empirical modeling, semi-
empirical  modeling,  and  physical  modeling.  Radhakrishnana  et  al.  (2016)  investigated  the
various  constraints  of  HVAC  scheduling  and  proposed  a  novel,  token-based  distributed
control/scheduling  approach  that  can  account  for  varying  indoor  environment  and  occupant
conditions.  Zhao  et  al.  (2013)  proposed  a  pattern  recognition-based  method  to  detect  and
diagnose faults in chiller operations, using a one-class classification algorithm. Li et al. (2016a)
also investigated chiller operational problems, but with a two-stage, data-driven approach based
on linear discriminant analysis. Cai et al. (2014) developed a novel method to analyze the faults
of a ground-source heat pump. Cai’s model achieves multi-source information, fusion-based fault
diagnosis  by  deriving  Bayesian  networks  from sensor  data.  Han  et  al.  (2012)  proposed  an
automated fault detection and diagnosis strategy for vapor-compression refrigeration systems,
 combining  principle  component  analysis  feature  extraction  and  a  multiclass  support  vector
machine  classification  algorithm. The  operational  faults  of  several  other  major  HVAC
components have also been investigated, such as air handling units (Du and Jin 2008; Gao et al.
2016; Najafi et al. 2012), heat exchangers (Palmer et al. 2016), and fan coil units (Lauro et al.
2014). 

Existing methods for fault detection and diagnosis generally fall short of holistically predicting
the  overall  impacts  of  faults  at  the  building level—an approach that  addresses  the  coupling
between various operational components, the synchronized effect between simultaneous faults,
and the dynamic nature of fault severity. One recent advance in this area is the addition of new
features to EnergyPlus to model HVAC operational faults and simulate their impact on energy
use and occupant comfort in buildings (Zhang and Hong 2017). With this addition, EnergyPlus
can now represent the whole building impacts of sensor faults (temperature, humidity, pressure,
and enthalpy),  faults in thermostat and humidistat offsets,  economizer damper faults, and the



fouling of air filters, coils, cooling towers, chillers, boilers and evaporative coolers. 

Modeling  operational  faults  remains  a  challenge  due  to  an  inadequate  understanding of  the
complexity and dynamic nature of faults and limitations in the measured operational data from
real building systems and equipment. Going forward, state-of-the-art experimental facilities such
as  LBNL’s  FLEXLAB (Lawrence  Berkeley  National  Laboratory  2018)  can  be  leveraged  to
generate new data to develop, test and benchmark fault modeling and simulation capabilities in
tools like EnergyPlus. Key technical challenges include the development of simple yet robust
fault  models,  the  collection  of  high-quality  data  to  represent  fault  characteristics,  and  the
integration of physics-based and data-driven methods or models. As larger volumes of data from
sensors, meters, energy monitoring and control systems and IoT devices in buildings become
available, advanced data analytics, machine learning, and hybrid modeling techniques can be
used to extract valuable information for the development and application of novel fault modeling
and simulation approaches in BPS programs. 

6. Zero-net-energy buildings and grid-responsive buildings

Zero-net-energy buildings

Zero-net-energy (ZNE) buildings, also named net-zero-energy buildings, refer to buildings that
are self-sufficient with on-site energy production meeting their energy consumption needs on an
annual basis. The definition of ZNE buildings may vary depending on what energy performance
metrics are used (U.S. Department of Energy 2015a), for example, annual site (final) energy use
and annual source (primary) energy use. In the U.S. and Canada, the number of ZNE buildings is
on the rise. New Building Institute’s Getting to Zero database (New Building Institute 2018) lists
nearly 500 certified,  verified and emerging ZNE buildings  projects,  reflecting a  steep curve
upward with the count increasing over 700% since 2012.

There are a number of long-term advantages of moving toward ZNE buildings, including lower
environmental  impacts,  lower  operating  and  maintenance  costs,  better  resiliency  to  power
outages  and  natural  disasters,  and  improved  energy  security.  Reducing  building  energy
consumption in new building construction or renovation can be accomplished through various
means, including integrated design, energy efficiency retrofits, reduced plug loads and energy
conservation programs. Reduced energy consumption makes it simpler and less expensive to
meet the building’s energy needs with renewable sources of energy. 

In its long-term energy efficiency strategic plan, California targets ZNE buildings for all new
residential construction by 2020 and all new commercial construction by 2030. The ZNE goals
will play a significant role in regulatory agency and utility efforts to promote the achievement of
the  state’s  greenhouse  gas  reductions  goals.  ZNE buildings  usually  adopt  energy  efficiency
technologies and advanced operation and controls to reduce energy demand as much as possible
first, then generate on-site renewable power with solar PV or wind turbines. The Road to ZNE
(Heschong Mahone Group 2012), lists loading order or ‘steps to ZNE buildings’ including: (1)
minimizing building loads, (2) optimizing system efficiency based on equipment efficiency and
use, (3) using highest efficiency appliances, (4) optimizing building operations to better meet



occupant and energy efficiency needs, (5) improved occupant interactions with the building, and
(6) renewable power generation when feasible.

Integrated design approaches and dynamic controls (Arup 2012) are usually adopted for ZNE
buildings that optimize energy performance at the system and whole-building levels considering
interactions between all energy end-use systems including envelope, HVAC systems, lighting,
plug-loads, and domestic/service hot water. In a recent book, Eley (2016) identifies the building
types and climates where meeting the ZNE goal will be a challenge and offers solutions for these
special cases. One critical challenge is to balance the operation of energy efficiency technologies
on the demand side and renewable generation on the supply side. 

Evaluation and optimization of ZNE design and operation strategies varies for each ZNE project
and cannot be done using general rules-of-thumb. Supporting such case-by-case analysis, BPS
provides a quantitative evaluation of design alternatives with various levels of complexity to
inform decision making. Modeling passive and advanced interactive control strategies (Shen and
Hong 2009; Hong and Fisk 2010) for ZNE buildings remains a challenge for BPS programs and
users, e.g., natural ventilation, effective use of thermal mass, precooling, phase change materials,
radiant cooling/heating systems, dynamic facades integrating needs of daylighting and shading,
zonal HVAC systems enabling individual zone on-demand controls (e.g., VRF systems, Hong et
al. 2016b), and smart devices managing plug-loads based on occupancy and use.

Grid-responsive buildings

Until  recently,  buildings  have  been  regarded  as  pure  energy  consumers  of  grid  electricity.
However,  with  on-site  electricity  generation  from  solar  PV  and  other  renewable  sources,
buildings are  now able  to  produce more electricity  than they consume and can feed surplus
energy to the grid – e.g., buildings are becoming prosumers rather than consumers. Accordingly,
from the  perspective  of  electricity  flows,  the  building-to-grid  relationship  is  moving in  two
directions. Additionally, with increased deployment of intermittent distributed energy resources
like solar PV and wind turbines grid capacity is becoming more variable and uncertain. 

Grid-responsive  buildings  are  those  that  can  adjust  electricity  demand  and  on-site  energy
generation  based  on  the  dynamic  needs  of  the  grid.  The  ways  and  means  of  such  grid-
responsiveness are found in increased deployment of IoT devices and equipment and human-in-
the-loop feedback control strategies. The resulting flexibility in building electricity demands help
to avert system stress, enhancing the reliability of the entire power grid. 

The design and operation of grid-responsive buildings is challenging because energy cost may be
valued differently depending on fast-changing grid conditions. Use of various types of energy
and electricity storage is key to serving critical loads in such buildings, which must also be able
to operate in partial services modes both in time and space. Rapidly coordinating demand and
supply from groups of buildings is necessary for smooth grid operation and security. Viewed
from the perspective of BPS tool development, a key challenge is coupling traditional building
energy simulation with simulation of renewable energy generation and the utility grid, where the
temporal and spatial fidelity of such models can be dramatically different.



Recently,  the  U.S.  Department  of  Energy’s  (DOE)  Building  Technologies’  Office  (BTO)
launched  a  grid-interactive  efficient  buildings  (GEB)  initiative  to  promote  research  on
technologies and policies that enable buildings to be responsive and dispatchable in response to
grid needs (Nemtzow 2018). The BTO GEB initiative works closely with DOE’s broader Grid
Modernization Initiative (GMI), a comprehensive effort with public and private partners across
different DOE offices and national laboratories to help shape the future of our nation’s grid.

Energy-positive buildings and zero-net-emission buildings

As buildings become more grid-responsive, the potential for energy-positive and carbon-neutral
buildings is also emerging. Such buildings employ advanced technologies, including: building-
integrated PV, direct-current driven appliances and HVAC equipment, electric batteries, thermal
energy storage, smart thermostats, occupant-based controls, and electric space heating, hot water
heating, cooking and drying (e.g., via heat pumps). Modeling these technologies interactively
poses a particular challenge for BPS applications.

In  these  advanced  cases,  accurately  representing  both  the  technologies  and  behavioral
opportunities may be beyond the native modeling capabilities of BPS programs. Accordingly,
BPS programs must  be flexible  to  the  addition of  expanded modeling capabilities -  e.g.,  by
coupling with other simulation programs. BPS programs like EnergyPlus already allow users to
write custom computer code using an Energy Management System feature, which can enable
new control models and/or overwrite existing algorithms for the program. However, such use
requires advanced user experience and deep knowledge of a particular BPS program. Coupling
BPS  with  Modelica-based  equation-type  modeling  tools  (Wetter  2009,  2015)  is  another
possibility that evidences greater modularity and flexibility in meeting such advanced modeling
needs.

7. Urban building energy modeling

In  cities,  buildings  are  responsible  for  up  to  70%  of  total  primary  energy  use.  Energy
conservation and efficiency improvements constitute a key strategy for achieving cities’ energy
and  climate  goals.  To  support  such  improvements,  cities  and  their  consultants  need  urban
building energy modeling and analysis  tools that combine measured data,  physics-based and
data-driven models to inform urban energy planning as well  as to guide building retrofits at
scale. 

While there is currently no common definition of urban building energy modeling (UBEM),
UBEM usually refers to computational simulation of the performance of a group of buildings in
an urban context (from a city block to a district to an entire city) to account for the dynamics of
individual buildings and, more importantly, inter-building effects that are coupled with the urban
microclimate, providing quantitative insights for urban planning and energy policy making. The
concept  of  urban  building  performance  includes  individual  building  energy  performance,
occupant  comfort,  district  energy  systems,  as  well  as  building  on-site  or  community-scale
renewable power generation and storage systems.



Accurately  representing the  urban microclimate  constitutes  a  key  challenge  for  UBEM. The
urban microclimate is determined by: (1) local air velocity, temperature and humidity; (2) solar
irradiation and specular and diffuse reflections; and (3) surface temperatures of buildings, the
ground and the sky, with the respective long-wave radiant exchange between surfaces. While the
urban environment has strong influences on building thermal loads, operation strategies (e.g.,
natural  ventilation),  on-site  renewable  power  generation  (e.g.,  solar  PV),  and  energy  and
occupant comfort, buildings also influence the urban environment (for example, buildings emit
air  and  heat  to  the  surrounding  urban  context).  UBEM  captures  these  interactions  between
buildings and the urban microclimate, and can represent on-site renewable energy generation as
well as district energy systems that serve a group of buildings, taking advantage of their thermal
load diversity and the potential for heat recovery between buildings. Considering urban buildings
as part of whole urban systems (a system of systems) enables greater performance improvements
than would be possible given independent consideration of individual buildings.

Increasingly,  UBEM tools  are  becoming available  with  diverse  fidelity  and requirements  of
computational resources and user inputs. Recent examples (Keirstead et al. 2012; Reinhart and
Davila 2016) include the Urban Building Energy Models (UBEM) (Reinhart and Davila 2016;
MIT Sustainable Design Group 2016),  the Urban Modeling Interface (UMI) (Reinhart  et  al.
2013),  CitySim  (Emmanuel  and  Jerome  2015),  UrbanOpt  (National  Renewable  Energy
Laboratory 2018), and the City Building Energy Saver (CityBES) (Hong et al. 2016a, Chen et al.
2017a). Each tool is further described here. 

UBEM  estimates  citywide  hourly  energy  demand  from  energy  simulations  of  individual
buildings in a city, supporting city policy makers to evaluate strategies on urban building energy
efficiency. UMI is a Rhino-based design environment for architects and urban planners interested
in  modeling  the  environmental  performance  of  neighborhoods  and  cities  with  respect  to
operational  and  embodied  energy  use,  walkability  and  daylighting  potential.  UMI  creates
EnergyPlus models using simplified zoning and HVAC systems. CitySim uses its own XML
schema  to  represent  building  information  and  a  reduced  order  energy  models  assuming
simplified zoning and HVAC systems. UrbanOpt is an analytics platform for high-performance
buildings and energy systems within one geographically cohesive area in a city. UrbanOpt uses
Openstudio and EnergyPlus to model and evaluate city district planning scenarios. Note that such
tools are limited to specific applications, and do not use open data standards, which are key to
sharing and exchanging information across a wide array of urban modeling tools.  

Another approach by KU Leuven and 3E uses the Modelica-based framework developed for
open  Integrated  District  Energy  Assessment  by  Simulation  (OpenIDEAS).  This  approach
employs building load profiles to optimize district energy, leveraging Modelica libraries (Fuchs
et al. 2015; Wetter et al.  2015) and integrating physics-based modules of systems in a larger
context such as district  heating/cooling or shared energy infrastructures (Baetens et al.  2012;
Baetens et al. 2015). 

CityBES is an open web platform for simulating city building energy efficiency. It provides: (1) a
GIS-based building performance visualization, (2) portfolio scale building energy benchmarking,
and (3) urban scale building energy retrofit modeling, simulation and analysis. CityBES builds



upon  open  city  datasets  compiled  in  CityGML which is  an  international  OGC standard  for
representation and exchange of 3D city models. 

While UBEM programs such as CitySim and OpenIDEAS employ reduced order energy models,
others  use  physics-based  detailed  energy  models  -  e.g.,  UMI,  UrbanOpt  and  CityBES  use
EnergyPlus. 

Recent advances in UBEM include new features added to EnergyPlus version 8.8 to improve its
use  for  UBEM,  including:  (1)  enabling  import  and  export  of  external  shading  results,  (2)
explicitly considering the long-wave radiant exchange between buildings to address the urban
canyon effect,  and (3) using urban microclimate  conditions to  address  the urban heat island
effect. 

Additionally,  an  exascale  computing  project  (U.S.  Department  of  Energy  2018),  Multiscale
Coupled Urban Systems, is currently developing a data and computing framework to  couple
building  energy  models  (EnergyPlus),  urban  climate  models  (WRF and NEK5000,  National
Center for Atmospheric Research 2018; Argonne National Laboratory 2018) and transportation
models  (Transportation  Utility  Management  System  2018),  and  to  quantify  their
interdependencies to inform urban planning. 

As  hundreds  or  more  buildings  are  involved  in  a  typical  urban  building  energy  modeling
application, automatic integration of data and simulation tools in a seamless workflow with high-
performance computing capabilities remains a challenge for users. Specific issues include:

a. Big data: as large amounts of operational data (at the terabyte scale) become available
from buildings  and cities,  significant  effort  is  needed to  quality  control  the  data  and
integrate  them into  models  and standards  that  support  interoperability  across  diverse
urban analysis tools and applications. 

b. Modeling and simulation: the interdependencies of city sectors must be further studied by
coupling urban system models at various spatial and temporal resolutions, encompassing
buildings, the urban microclimate and transportation.

c. Computing: UBEM may constitute an exascale computing problem that requires next-
generation supercomputers. For example, consider the computing that would be required
to  run  millions  of  building  energy  models  representing  the  City  of  New  York  in  a
reasonable time frame (say, up to one hour). 

d. Workflow: GIS-based visualization of UBEM results is needed to ensure that stakeholder
easily  understand key  takeaways,  such  that  UBEM models  can  meaningfully  inform
decision making in a seamless workflow.

8. Modeling the national or regional impacts of building energy efficiency

Moving beyond the urban scale, BPS is relevant to regional and national modeling efforts as
well. Indeed, federal and state policy efforts to drive long-term reductions in energy use and CO 2



emissions through building energy efficiency require quantitative representations of the national
or regional building stock and its energy use under future scenarios of technology deployment.
Such  building  efficiency  impact  models  integrate  three  classes  of  information:  (1)  national
building and technology stocks and their  change over time; (2) the energy use intensities of
installed  building  equipment,  envelope  components,  and  operational  routines;  and  (3)  the
likelihood  of  consumer  or  organization  choices  to  adopt  new  technologies  or  operational
strategies, or to replace or retrofit existing technologies.

Existing models of the building stock segment buildings by geographic location and physical
characteristics (e.g., size, vintage, program type) and apply functions for annual additions and
demolitions in  each stock segment in  order  to  make projections  (Energy and Environmental
Economics (E3) 2016; U.S. Department of Energy Building Technologies Office (BTO) 2017;
U.S. Energy Information Administration 2017a). Installed bases of equipment in each segment
are concurrently represented along with flows into and out of equipment stocks over time as
technologies  are  replaced upon  burnout  or  retrofitted.  The  overall  energy  use  intensity  of  a
particular segment depends on the rate of turnover in its installed equipment base, the unit-level
energy performance level of installed equipment,  and physical improvements to  the building
structure.  Here,  building-level  energy  use  may  be  represented  implicitly  or  explicitly  by
statistical  or engineering models,  discussed further  below. New, more  efficient  equipment or
building  components  penetrate  the  installed  base  over  time  based  on  technology  choice
assumptions, which are often driven by economic considerations about the cost of purchasing
and operating the new technologies over the course of their useful lifetimes (e.g., (Wilkerson et
al. 2013) and see next section on technology adoption modeling).

National and regional-scale  impact models are  challenged by the large  scale  of the modeled
phenomena over time and space, which leads to difficulties in collecting and updating the data
needed to specify a model with a high degree of geographic granularity and in developing model
validation methods for outcomes that span several decades into the future. Regarding the data
collection challenge: in the United States there are 125 million homes and 6 million commercial
buildings,  each  of  which  has  a  unique  equipment  inventory,  construction  characteristics,
occupant population, and energy use intensity  (U.S. Energy Information Administration 2016,
2017d).  Collecting  data  that  are  sufficiently  representative  of  this  heterogeneous  building
population and comprehensive enough to inform national-scale stock and energy models requires
a robust measurement protocol and substantial buy-in from the building owners who will be
asked to provide these data.

From a  modeling  perspective,  efforts  to  validate  the  outputs  of  national  or  regional  impact
assessments confront the impossibility  of evaluating predictions that extend decades into the
future. As a result, key dynamics in the model, such as rates of equipment turnover, technology
market penetration rates, and changes in energy prices, are extrapolated from historically-derived
relationships (Koomey 2000). When historical data are not available, such assumptions may be
based on educated guesses  by the  modeler  and/or  expert  elicitation.  Absent  well-established
protocols for reporting and validating these assumptions, models are limited to exploratory rather
than explanatory and/or predictive use cases.  Nevertheless,  these model validation issues are
rarely highlighted, leading to the incorrect treatment of simulated results as predictions about the



future  rather  than  rough  indicators  of  impactful  strategies  for  long-term  energy  and  CO2

curtailment.  

The importance of developing high-quality building efficiency impact models lies in the use of
such models to  frame high-profile  energy policy decisions.  Indeed,  models of  national  scale
energy demand have been used to  evaluate  participation  in  international  climate  agreements
(U.S. Energy Information Administration 1998), develop and assess energy use and emissions
reduction targets  (Williams et al. 2012), and craft technology R&D strategies that are likely to
yield long-term energy savings cost-effectively (Farese et al. 2012). Moreover, such models may
be useful outside the policy context – for example, for utilities designing building efficiency
program measures and incentives, or for businesses seeking to anticipate future trends in the
building efficiency market.

Recent  progress  in  building  efficiency  impact  modeling  can  be  grouped into  top-down  and
bottom-up  studies  (Lim  and  Zhai  2017b).  In  top-down  studies,  historical  relationships  are
derived between aggregate-level energy use and macro-economic indicators (e.g., gross domestic
product,  price indices),  climatic  conditions,  appliance ownership,  and housing stock turnover
rates.  Top-down  approaches  benefit  from  their  simplicity  and  reliance  on  widely  available
historical data; however, energy use scenario projections are strongly dependent on historical
trends,  and the lack of end use- or technology-level energy use disaggregation precludes the
assessment of impacts for specific ECMs. Example top-down models include the Global Climate
Change Assessment Model (GCAM) (Joint Global Change Research Institute 2017). 

By  contrast,  bottom-up  modeling  studies  use  statistical  or  engineering  models  to  explicitly
represent energy end uses at the building level along with key determinants of energy use (e.g.,
climate,  equipment,  occupancy,  building  shell  characteristics).  Sector-level  energy  use
projections are then developed from stock- or floor area-weighted combinations of the energy
use  calculated  for  multiple  building  types.  Given  their  greater  degree  of  energy  use
disaggregation, bottom-up models allow the direct assessment of ECMs; however, they require
more data to develop than top-down models, and may also be more complex. Example bottom-
up  models  include  the  EIA  National  Energy  Modeling  System  (NEMS)  (U.S.  Energy
Information  Administration  2017b,  2017c) Scout  (U.S.  Department  of  Energy  Building
Technologies Office (BTO) 2017), ResStock (National Renewable Energy Laboratory 2017), and
EnergyPATHWAYS (Energy and Environmental Economics (E3) 2016).

Ongoing building  stock and energy data  collection  efforts  include  the  U.S.  EIA Residential
Energy  Consumption  Survey  (RECS)  (U.S.  Energy  Information  Administration  2017d) and
Commercial  Building  Energy  Consumption  Survey  (CBECS)  (U.S.  Energy  Information
Administration  2016),  which  have  been  conducted  on  a  nationally  representative  sample  of
residential and commercial buildings roughly every four years since the late 1970s. RECS and
CBECS  data  collection  includes  building  characteristics,  appliances  and  equipment,
demographics,  and  energy  use.  The  U.S.  Department  of  Energy’s  Building  Performance
Database  (U.S.  Department  of  Energy 2018d),  which contains records on the  energy-related
characteristics of over one million buildings,  provides another source of large-scale  building
energy use data, though these data are not yet nationally representative. In the European Union, a
Building Stock Observatory (European Commission - Energy 2018) was recently launched that



aggregates national-level studies of the building stock from 20 member countries and establishes
a plan for continuous data updating in the future; the data track a similar set of variables to RECS
and CBECS.

Future work should explore innovative methods for large-scale stock and energy data collection.
By pairing machine learning techniques with GIS data, for example, the physical characteristics
of a national-scale building stock can be determined without the need to conduct costly in-person
assessments, as is currently done for RECS and CBECS. Moreover, the burden of building owner
surveys can be reduced by conducting the surveys online and pairing responses with readings
from  advanced  metering  infrastructure  (U.S.  Energy  Information  Administration  2015).  In
parallel with these advances in data collection methods,  advances are needed in methods for
organizing and sharing available data. For example, existing platforms like the U.S. Department
of Energy’s Building Energy Data Specification (BEDES) (U.S. Department of Energy 2018e),
which  serves  as  a  buildings  data  dictionary,  should  be  explored  as  common  standards  for
building stock and energy data exchange.

On the modeling side, protocols must be developed to improve the transparency of impact model
elements,  development,  and  validation.  While  recent  modeling  progress  mostly  concerns
national-scale  analyses,  certain  tools  claim flexibility  in  extending to  regional  or  state-level
analyses,  given regionally- or state-specific  input  data.  Without  a  clear description of model
elements, however, development of custom input datasets that are compatible with the model is a
substantial  burden  for  utility  or  state  energy  analysts.  Indeed,  available  building  efficiency
impact  models  range  in  their  geographical  scale  of  applicability,  input  variable  types,  and
implementation. Description guidelines akin to the ODD protocol (Grimm et al. 2010), which is
used to compare agent-based models across disciplines, will help structure a comparison of these
disparate  impact  modeling  options.  Such  protocols  can  also  improve  the  understanding  of
approaches to model validation and uncertainty quantification, which are currently not widely
published. 

Recently, a new IEA EBC Annex was launched (International Energy Agency (IEA) Energy in
Buildings  and  Communities  Programme  2018) that  seeks  to  support  many  of  these  future
research tasks. Specifically, Annex 70 proposes the epidemiological study of large-scale energy
demand, which will inform models that estimate changes in this demand due to energy efficiency
and occupant behavior measures.  The Annex places a particular focus on cataloging existing
datasets and models and establishing best practices for new data collection and modeling efforts. 

9. Modeling the adoption of energy efficient technologies

As  the  previous  section  suggests,  forecasts of  the  regional  or  national  energy  and  CO2

emissions reduction potential of building efficiency technologies depend on the assumed rates at
which the technologies diffuse into targeted segments of building energy use. These rates stem
on one hand from technology stock-and-flow dynamics – rates of new construction, retrofits, and
replacement, for example – and on the other hand from the behavioral dynamics of consumer or
organization technology adoption decisions. Yet, little research has been devoted to developing
building  technology  adoption  models  and studying  their  application  to  forecasts  of  future
building energy use.



Efforts to model building technology adoption decisions are challenged by the broad array of
potential  adoption  drivers  and constraints,  which may vary  by adoption  decision  type  (U.S.
Energy Information Administration; 2017b), adopter type  (Rogers 1995), and technology type
(Jaccard and Dennis 2006). Examples of such variables include: adopter preferences, perceptions
of technology attributes, the availability of capital and expertise to implement the technology,
social  influences,  demographic,  political,  and  economic  trends,  and  external  constraints  on
technology installation.

Several  modeling  frameworks  may  be  used  to  explain  and/or  predict  technology  adoption
outcomes (Gilshannon and Brown 1996; P.S. Raju and A.P.S. Teotia Energy 1985; Packey 1993).
Indeed, adoption model types range from simple historical analogy approaches, where the market
penetration  of  a  new  technology  is  mapped  to  the  historical  shares  of  a  similar,  existing
technology, to agent-based approaches, where adoption decisions are explicitly represented at the
level of individual adopters. Nevertheless, little guidance exists on which modeling framework
should be chosen for a particular use case.

Additionally,  all  of  these  modeling  approaches  require  some  degree  of  supporting  data  on
historical market sales, technology characteristics, adopter characteristics, and/or societal trends;
yet,  relevant  datasets  are  sparsely  organized  and  differ  in  their  degree  of  relevance,
representativeness, recurrence, and richness  (Ratcliffe et al. 2007). Even if these existing data
were  made  more  widely  accessible  and comprehensive,  clear  trends  in  technology adoption
might take several years or even decades to emerge, and past trends in adoption may not hold for
new or emerging technologies that depart substantially from the features of historical precedents.

The importance of addressing such challenges through future research is underscored by the
clear influence that building technology adoption assumptions have on the outcomes of national-
scale energy use projections. In the U.S. Energy Information’s 2014 Annual Energy Outlook
(AEO) projections (U.S. Energy Information Administration 2017a), for example, a scenario
that  assumes  adoption  of  only  the  best  available  technologies  yields  a  20%  reduction  in
Reference Case building energy use by 2040. A study of an earlier AEO version (Wilkerson et al.
2013) similarly  explored  the  effects  of  both  more  and  less  efficient  technology  choice
assumptions on Reference Case outcomes, finding +11%/-14% sensitivities in projected energy
use outcomes by 2035. Similar analyses by IEA  (International Energy Agency 2017) further
evidence  the  influence  of  technology  choice  assumptions  on  projected  energy  use  and  CO2

outcomes,  finding that these outcomes are more strongly tied to modeled technology choices
than to modeled technology performance improvements.

Recent  progress  in  modeling  energy  technology  adoption  mostly  concerns  the  areas  of
transportation and renewable energy; however, the fewer buildings-focused studies that do exist
represent a wide range of modeling approaches.  On the simpler end of the spectrum, multiple
Technical Support Documents (TSDs) from DOE’s Appliance Standards Program rely on time
series  and  historical  analogy  models,  which  project  future  equipment  shipments  based  on
average historical market saturations for the technology in question or - if these historical data
are not  available  – on the  saturations for a  similar  technology with available  historical  data
(Navigant Consulting and Lawrence Berkeley National Laboratory 2011; Navigant Consulting
and Pacific Northwest National Laboratory 2014, 2016). 



Other studies have relied on diffusion modeling approaches, assuming that the spread of a new
technology is driven by a process of innovation (“external influence”) and/or imitation (“internal
influence) (Buskirk 2014; Elliott et al. 2004; Farese et al. 2012); cost models, where technology
market  shares  are  projected  based on tangible  costs  (e.g.,  capital  cost,  operating  costs)  and
intangible costs (e.g.,  perceived changes to comfort and system responsiveness) (Jaccard and
Dennis 2006; U.S. Energy Information Administration 2017b; Weiss et al. 2010), econometric
and discrete choice models , where a functional relationship is developed between technology
market share and one or more influencing variables (Andrews and Krogmann 2009; Higgins et
al.  2014;  Kok  et  al.  2012;  Li  2011;  Navigant  Consulting  and  Lawrence  Berkeley  National
Laboratory  2014;  Noonan  et  al.  2013;  U.S.  Energy  Information  Administration  2017c);  and
system dynamics and agent-based models where causal mechanisms behind adoption behavior
are explicitly represented at the aggregate or individual adopter level (Lee et al. 2014a; Moglia et
al.  2017;  Muehleisen  et  al.  2016;  Müller  2013;  Nachtrieb  2013;  Navigant  Consulting 2013;
Sopha et al. 2013; Zhang and Nuttall 2007).

The data requirements of the above modeling frameworks range from historical market shares
(time  series,  historical  analogy,  and  diffusion  models)  to  perceived  technology  attributes,
individual-level  adoption  preferences  and  decision  weights,  and  contextual  factors  (discrete
choice, system dynamics, and agent-based models). Market share data are available from DOE
Appliance Standards TSDs  (Navigant Consulting 2017; U.S. Department of Energy Appliance
Standards Program 2016) EIA consumption surveys  (U.S. Energy Information Administration
2016, 2017d), ENERGY STAR (ENERGY STAR 2017), and several industry associations such
as  the  Consumer  Technology  Association  (CTA)  (Consumer  Technology  Association  2018),
American  Heating  and  Refrigeration  Institute  (AHRI)  (American  Heating  and  Refrigeration
Institute  (AHRI)  2017),  and  the  National  Electrical  Manufacturers  Association  (NEMA)
(National Electrical Manufacturers Association (NEMA) 2018). DOE, EIA, ENERGY STAR,
and AHRI also offer publicly available datasets on technology performance, cost, and/or lifetime
characteristics  (American Heating and Refrigeration Institute  (AHRI) 2018; ENERGY STAR
2018;  Navigant  Consulting  2017,  2016;  U.S.  Department  of  Energy  Appliance  Standards
Program 2016). Consumer and/or organization data are collected through surveys, most notably
the Johnson Controls Energy Efficiency Indicator  (Institute for Building Efficiency, 2016) and
ENERGY STAR Awareness Survey (EPA Office of Air and Radiation 2017). Data on consumer
demographics and larger social, economic, and political trends may be obtained from the U.S.
Census  (U.S. Census Bureau 2017a, 2017b), U.S. Bureau of Economic Analysis (BEA)  (U.S.
Department  of  Commerce  2017),  and  American  Council  for  an  Energy  Efficient  Economy
(ACEEE) (ACEEE 2017).

Examined independently, existing building technology adoption models and datasets exhibit a
narrow focus  on  one  or  a  few technology  types,  predictor  variables  of  interest,  or  areas  of
application within the buildings sector; indeed, each of these modeling approaches and datasets
has unique strengths and drawbacks. Near term research efforts must accordingly focus on using
the strengths of one model type or dataset to mitigate the weaknesses of another. Parallel, long
term research efforts could then be dedicated to filling the gaps that are most likely to remain
after existing models and data are merged.



Regarding models,  areas for potential  integration include: using historical analogy models to
select diffusion model parameter coefficients for new technologies with little data; using cost
models and/or econometric models to provide long range market share potential estimates for
diffusion models; and incorporating bottom-up agent adoption dynamics into top-down system
dynamics or equation-based models. Some of these model combinations are already observed in
the buildings literature, albeit for a limited set of technology types (e.g., see (Farese et al. 2012;
Higgins et  al.  2012;  Jaccard and Dennis 2006;  Navigant  Consulting and Lawrence Berkeley
National Laboratory 2014)).

Similar opportunities for data integration are observed. For example, in the residential sector,
ENERGY STAR historical shipments data may be cross referenced with concurrent versions of
the  ENERGY  STAR  Awareness  Survey,  the  ENERGY  STAR  products  database,  Census
demographics  data,  and  ACEEE energy  policy  environment  data.  In  the  commercial  sector,
Johnson Controls EEI data  on efficient  measure  adoption,  adoption barriers,  and/or  payback
preferences may be cross referenced with point-in-time shipments and saturation data (e.g., from
TSDs, CBECS, ENERGY STAR). Emerging data sources such as Google Trends and Correlate
(Choi  and Varian  2009;  Google  Labs  2011,  2018),  Amazon Mechanical  Turk   (Amazon Inc.
2017)  , and the Twitter API should be explored for their ability to supplement these traditionally
referenced databases.

Looking further ahead, new data collection efforts must anticipate the gaps in key variables that
will remain after existing datasets are merged. Here, data on consumer or organization decision
preferences is expected to  serve as an  important  area of  focus;  these data  can be  generated
through large-scale discrete choice experiments (Henser et al. 2015) that elicit parameter weights
for explanatory models of technology adoption.

Finally,  protocols  must  be  developed to  guide  the  selection,  verification  and validation,  and
communication of building technology adoption models. Model selection should be determined
by the model’s use case, the simulated time horizon, the scope of modeled technologies, and the
level  of  resources  available  for  model  development.  Model  verification  and validation  must
address the difficulty in acquiring long-term technology market share data to validate modeled
outcomes against and emphasize the importance of ground-truthing key input assumptions and
variable  relationships  (Koomey  2000).  Model  communication  efforts  should  seek  to  clearly
describe  model  inputs,  outputs,  and  key  relationships;  the  data  sources  used  for  model
development  and validation;  and the  limitations inherent to  the modeling approach and data
sources  (for  example,  see  (Sopha  et  al.  2013)).  Given  inevitable  gaps  in  the  data  that  are
available for building technology adoption model development and validation, uncertainties in
modeled outcomes should be  communicated through scenario  analysis  and quantified where
possible using formal statistical techniques.

10. Integrated building performance simulation

The preceding sections suggest  a  wide  field of  potential  applications for  BPS.  Ensuring the
future flexibility and robustness of BPS across these varied use cases will require greater focus
on integration activities across four dimensions: (1) data, (2) domain, (3) tool, and (4) workflow.
These opportunities for BPS integration are described further below.



Data integration 

During the building life cycle, BPS is used in various ways from early design to detailed design
to commissioning, operation and controls to retrofit. Data from all available sources should be
integrated  under  the  building  information  modeling  (BIM)  framework,  which  enables  the
application of one model across multiple simulation cases (Hong et al. 1997). Specifically, an
energy model developed to inform early design decisions can be refined as more data are made
available in the detailed design or operation phases, allowing the model to inform decisions later
on in the building life cycle. In practice, such efforts are hindered by the lack of regulations or
policies that require new building projects to submit BIM or energy models of the buildings. By
result, most BPS models are not standardized or shared among key stakeholders. This leads to
the time-consuming, error-prone, and wasteful effort to recreate multiple models of the same
building for different purposes by different users.

Although BIM started decades ago to represent building geometry data and simplified data of
thermal loads in buildings, it is still limited in representing HVAC systems, occupant behavior or
operational and control data. This leads to problems with storing, managing and integrating these
other data  sources.  Current  BIM is also  limited in  representing simulation results  at  various
levels of spatial and temporal resolutions. 

Domain integration

As BPS moves from its application to individual building design and operation to the simulation
of  grid-responsiveness,  communities,  and regional  or  national  energy use,  multiple  technical
domains must be integrated such that their interactive effects may be quantified, yielding more
holistic assessments across a diverse set of stakeholder needs. Technical domains to be integrated
include: (1) energy efficiency of buildings,  (2) occupant behavior of energy use and human-
building interactions, (3) energy storage, (4) building operation controls, (5) renewable energy,
on-site or at the community scale, (6) demand response and grid-responsive strategies, (7) indoor
environmental quality including thermal comfort, visual comfort and indoor air quality, and (8)
water use in buildings. 

Simulation tool integration

Modeling and simulation efforts that span multiple technical domains usually require the use of
several different simulation tools, which may cover building energy flows (e.g.,  EnergyPlus),
distributed energy resources (e.g., DER-CAM), CFD (e.g., FLUENT), grid conditions (e.g., the
Integrated Grid Modeling System IGMS), and human behavior (e.g., agent-based modeling tool
AnyLogic, obXML and obFMU (Hong et al. 2015b, 2015c), Occupancy Simulator (Chen et al.
2017b)). Various approaches have been developed (Trcka et al. 2009; Wetter 2011) to couple
cross-domain tools through co-simulation. Co-simulation using the functional mockup interface
and  functional  mockup  units  shows  particular  promise:  here,  two  simulators  solve  coupled
differential-algebraic systems of equations and exchange data that couples these equations during
the time integration. Additionally, visualization of the co-simulation process and results across
simulation tools is important for supporting design decision making. Chen et al. (2017b) provide



an  example  of  simulating  and  visualizing  occupant  behavior  and  its  impact  on  building
performance.

Workflow integration

Within the buildings industry, companies and consultants each use their own workflows and suite
of  tools  to  support  decision  making  on  buildings  projects  across  the  building  life  cycle.
Integrating new BPS programs with these existing workflows and tools (e.g.,  CRM, finance
tools,  databases) is a  challenge from a business perspective.  A particular issue for new BPS
programs is the need for data exchange and interoperability with existing tools,  such that no
duplicate data need be collected or re-entered for existing BPS applications. Integrating BPS
across stakeholders from multiple firms (architects, engineers, energy consultants and building
owners) brings the additional challenge of data privacy and IP ownership concerns. In this area,
web-based tools and the integration of web services for businesses are becoming popular.

Summary and Future Perspectives

Over the past decade, building performance simulation (BPS) has emerged as a crucial tool for
the design and operation of low energy buildings and communities. The selected ten challenges
aim to highlight some of the most important technical needs currently facing BPS, covering the
full  building life  cycle  and a  wide range of  modeling scales  of  focus.  The formulation and
discussion of each challenge aims to provide insights into the state-of-the-art for the given topic
and future research directions, and to inspire new questions from young researchers in the field.
In  addition  to  these  research-level  needs,  several  practical  barriers  to  BPS  adoption  and
implementation warrant further discussion here. 

An overarching practical issue that most energy modelers face is the time and effort required to
collect  adequate  data  and  develop  reliable  energy  models.  Detailed  energy  modeling  using
today’s BPS programs requires many inputs, and modelers may not have full knowledge of each
input’s  relative  importance to  simulation outcomes,  level  of  uncertainty,  and the  appropriate
default values to use (if not already specified). This issue is exacerbated when actual or realistic
data  (e.g.,  occupancy,  operational  schedules,  infiltration)  are  not  available  and the  use  of  a
typical input value or assumption is not appropriate for the application case. The issue can be
addressed by developing new standards for collecting and sharing input data for energy models –
for example, ASHRAE SPC 205, Standard Representation of Performance Simulation Data for
HVAC&R and Other Facility Equipment.

Additionally, while BPS is often beneficial to use for building design and operation, this is not
always the case. For example: when a project lacks the time, budget or expertise to develop
sound energy models; when a project does not have the buy-in or support from key stakeholders
(e.g., building owners, architects and engineers); or when rules-of-thumb and recent experiences
are sufficient for conventional design needs. 

Finally, BPS programs that originate from sophisticated research problems are only valuable in
the  long  term  if  they  are  of  interest  to  a  broad  set  of  users.  Regarding  this  point,  the
aforementioned building performance gap is important to address going forward, as it affects the



perceived credibility of BPS and weakens the justification for its widespread use by building
practitioners. This problem must be addressed through a dedicated, interdisciplinary effort that
engages  stakeholders  spanning  research,  academia  and  industry.  In  parallel,  BPS  value
propositions must be communicated amongst these stakeholders and reflected through building
codes  and  standards,  rating  schemes,  policy  and  regulations.  Furthermore,  best  practices,
education and training, and professional certification programs for BPS practitioners should be
enhanced to highlight the quality and value of BPS among its potential user base. 

BPS is presently entering a new era of research and application,  given more affordable and
powerful computing resources and the rapid development of IoT, big data, machine learning and
artificial  intelligence. In  the future,  we believe BPS will  provide unprecedented value to the
design and operation of low energy buildings and communities that address timely issues of
resource efficiency, environmental sustainability, and resiliency in the built environment. Under
this vision, every new building will be virtually designed and tested using building information
modeling, computational modeling and simulation, and virtual reality technologies, and will be
operated using augmented reality and machine learning-driven predictive controls to  achieve
ambitious energy performance goals. 
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