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ABSTRACT: Wastewater treatment plants (WWTPs) can
account for up to 1% of a country’s energy consumption.
Meanwhile, WWTPs have high energy-saving potential. To achieve
this, it is necessary to establish appropriate energy consumption
models for WWTPs. Several recent models have been developed
using logarithmic, exponential, or linear functions. However, the
behavior of WWTPs is non-linear and difficult to fit with simple
functions, particularly for non-numerical variables. Thus, tradi-
tional modeling methods cannot effectively describe the relation-
ship between water and energy in WWTPs. Therefore, a machine
learning method was adopted in this study to investigate the
energy consumption in WWTPs; a novel energy consumption
model with a non-numerical variable (discharge standard) for
WWTPs was developed using the random forest algorithm. The model can also predict the energy consumption of WWTPs after
upgrading discharge standards. We found that the unit electricity consumption of WWTPs exhibited an average increase of 17% after
the effluent discharge standard was increased from class I B to class I A (as per China’s classification). The correlation coefficient of
the model was 0.702. Thus, the developed model can provide a better understanding of energy efficiency in WWTPs.
KEYWORDS: machine learning, random forest, energy efficiency, energy consumption model, wastewater treatment plant

1. INTRODUCTION

Improving the energy efficiency of wastewater treatment plants
(WWTPs) is receiving increasing attention as saving energy
can help reduce economic costs and conserve the resources
and environment.1 With continuous development and
accelerating urbanization in the society, wastewater discharge
is rapidly increasing2 and water quality requirements are more
stringent; therefore, the total energy consumption of WWTPs
is also increasing. WWTPs are the primary energy-consuming
units of the urban water cycle.3 Thus, the high energy
consumption of WWTPs has become a global concern. It has
been estimated that in 2018, the energy demand of WWTPs in
some European countries accounted for 1% of the energy
consumption of the entire country.3 What is more, the U.S.
municipal wastewater treatment systems use approximately
30.2 billion kW h per year, which is about 0.8% of the total
electricity use in the U.S.4 In recent years, several energy
evaluation methods have been proposed5−7 to investigate the
energy consumption of WWTPs. In these methods, the energy
consumption of WWTPs is commonly related to factors such
as the capacity and influent and effluent concentrations of
pollutants.8

Many stakeholders have been exploring solutions to reduce
the energy consumption of WWTPs, such as equipment
renewal and maintenance,9 energy recovery,10 and technical

process improvements.11 Previous studies have mostly focused
on technical processes. However, with the use of new
equipment, technologies, and new standards, the change in
energy consumption has gradually attracted significant
attention.3 With increasing urban wastewater discharge and
high requirements of clean water, new WWTPs are regularly
established, and the discharge standards of the old WWTPs
have gradually improved.12 However, a larger process capacity
and higher standards may lead to higher energy consumption.
Therefore, while considering water quality, one should also
focus on the energy efficiency of WWTPs.
Machine learning is an important and relatively novel

method in environmental modeling, particularly with regard to
energy efficiency13 or WWTP operations.14 Machine learning
can be utilized in real-time agent modeling, employing real-
time data so that operators can forecast WWTP’s future
operating status; the model itself can be improved continu-
ously as new data become available, with the ability to adopt
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non-linear relationships. Once a set of inputs and the
corresponding outputs are presented to the model, it learns
the relationship between the inputs and outputs. Accordingly,
for a new set of inputs, the trained model can generalize this
relationship to produce the corresponding outputs.15−18

Random forest (RF) is an ensemble learning algorithm used
for classification,19 regression,20 and other tasks.21 During
training, numerous decision trees are generated to operate and
finally obtain prediction results;22 therefore, RF has a high
prediction accuracy and is not prone to overfitting.23 RF is one
of the most popular methods in data mining24 and big data
fields;25 it has the advantages of a fast-training speed and is
suitable for processing high-dimensional data.26 The method
has been widely used in several other fields, such as
medicine,27 criminal investigation,22 and architecture.28 RF
has also been applied to environmental engineering, such as for
mapping canopy nitrogen29 and in environmental assess-
ment.30 However, RF is rarely used to analyze and predict
energy consumption of WWTPs.31,32 Data envelopment
analysis33,34 and multiple linear regression35 are commonly
used methods to analyze the energy efficiency of WWTPs. The
main principle of data envelopment analysis is using the
method of linear programming, and multiple linear regression
is a kind of generalized linear model. However, data
envelopment analysis cannot be used when some data are
missing, and it cannot predict the future trend in a statistical
way. Multiple linear regression cannot achieve the accuracy we
need.
This study aims to develop an energy consumption model of

WWTPs through machine learning using data from 2472
WWTPs in China, employing the RF approach. This model is
expected to provide a better understanding of energy
consumption in WWTPs.

2. DATA AND METHODS

2.1. Data Sources. The data of this study were obtained
from the 2015 Urban Drainage Yearbook of China. A total of
2472 entries were selected from this yearbook with relatively
complete and reliable data. For the energy consumption of
WWTPs, the energy consumed by processing 1 m3 wastewater
is often used as an evaluation indicator of the energy intensity
of WWTPs.36 Related studies2,37−39 commonly use electricity
intensity (kW h/m3) to indicate the energy consumption of
WWTPs. In this study, the following parameters from the
Yearbook, which have also been used in related studies,2,37−39

have been adopted as the primary factors affecting the energy
consumption of WWTPs: influent BOD5 concentration
(BODi), influent COD concentration (CODi), influent
NH3−N concentration (NH3−Ni), effluent BOD5 concen-
tration (BODe), effluent COD concentration (CODe), effluent
NH3−N concentration (NH3−Ne), effluent discharge stand-
ards, wastewater treatment capacity, annual load rate (actual
treatment capacity divided by designed treatment capacity),
moisture content of sludge, and dry weight of sludge. The
discharge standards primarily include class I A, class I B, and
class II, referring to the Chinese National Standard, Discharge
standard of pollutants for municipal wastewater treatment
plants (GB 18918-2002).
2.2. Data Cleaning. To import data to develop the model,

all numerical data (including int64, float64) were converted to
float64, all non-numerical data (including string and object,
such as the discharge standard) were transferred into the

object, and all the default data were converted to NaN (not a
number).
Since a few of the WWTPs did not have the “unit electricity

consumption” (UEC) parameter in the Yearbook, to ensure
the reliability of the model, we removed the data for those 85
WWTPs so that the number of the remaining WWTPs was
2387.
Although there were some outliers, the database is large and

the RF model is good at dealing with this situation, so there
was no need to eliminate them. Essentially, the basic learner of
RF is robust to outliers, which makes the RF algorithm robust
to outliers. Unlike linear regression, the entire space in linear
regression has the same equation, so a very simple model can
be locally fitted to each subspace.
In the case of regression, it is usually a very low-order

regression model. Therefore, for regression, extreme values do
not affect the entire model because they are averaged locally.

2.3. Preprocessing of Regression Variables. The
numerical variables can be directly applied to the regression.
For the object-type variables, such as discharge standards, their
classification scheme was transformed into a matrix with 0 and
1 values such that the row of the matrix represents the different
WWTPs and the column represents the different discharge
standards. A value of 1 indicated that the WWTP represented
by this row used the discharge standard of this column.
Otherwise, a value of 0 was assigned. For example (Figure 1),

the discharge standards of WWTP A, WWTP B, and WWTP C
are class I A, class II, and class I B, respectively. Therefore, the
sum of each row in the matrix is 1, and the sum of each column
equals the total number of WWTPs using the discharge
standard of this column. In this study, numerical values (e.g., 1,
2, 3, etc.) were not used to represent the different discharge
standards. This is because the values themselves include the
potential relationship of size or numerical operation, and
substituting a relationship which is unrelated to the statistical
content into the regression model will lead to model deviation.

2.4. Random Forest. A preliminarily evaluation of the
relationship between UEC (kW h/m3) and other parameters
was performed using Python to conduct multiple linear
regression analysis between UEC and BODi, CODi, NH3−
Ni, BODe, CODe, NH3−Ne, wastewater treatment capacity,
annual load rate, moisture content of sludge, and dry weight of
sludge. It was found that R2 ≤ 0.2, which is too small; thus, the
regression equation was not sufficiently reliable. Moreover, the
discharge standard is a character-type variable that cannot be
included in the statistics and effectively predict its influence by
multiple linear regression. Owing to the high correlation
between the parameters, a large fitting deviation occurred
when using the multiple linear regression method to obtain the
relationship between UEC and dependent variables. In
addition, the use of a multiple linear regression model is
limited in this case because of the existence of non-numerical
variables, such as the discharge standard.

Figure 1. Matrix of discharge standard in WWTPs.
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Machine learning algorithms like TensorFlow or Keras
require very large databases, which are not available for this
study. While there are machine learning algorithms like Lars,
Lasso, or Support Vector Machine (SVM) which only need
small databases, they cannot reach the accuracy needed for this
study. Therefore, we considered a subset of machine learning
algorithms, including RF, boosting tree, gradient boosting
decision tree, and XGBoost. These algorithms are actually a
combination of different algorithmic frameworks and decision
trees (for details, see Table S1), so they perform quite
similarly. We selected RF because it is the only algorithm that
can show us the importance of each variable, which is very
valuable for the subsequent analysis.
Therefore, an RF algorithm was introduced to extract the

relationship between UEC and the different variables,
including non-numerical ones. Simultaneously, the factors
indicating the influence of each variable on UEC were
calculated, and then, the factors that significantly affected
UEC were selected for further analysis and to develop a model
for evaluating the UEC. Finally, the change in UEC was
calculated using the model after a simulated improvement of
the discharge quality to meet a higher standard, which can help
in future management of WWTPs.
The steps conducted for the RF approach are shown in

Figure 2.
From a mathematical perspective, a complex functional

relationship exists between independent variables and depend-

ent variables, which is composed of the basic operations of
independent variables. RF approximates the coefficients before
each dependent variable by learning from a large amount of
data. All the models in this study were coded in Python 3.7.3,
and the prediction curves were plotted from the Python data
using MATLAB R2018a.

2.5. Model Validation. RF uses a bootstrapping algorithm
for sampling. As the bootstrapping algorithm returns samples
after sampling, some data are not extracted. By calculating the
limit, it was observed that approximately 1/3 of the data were
not extracted.
Because out-of-bag (OOB) data were not used, RF can use

these data for model validation. Moreover, as each sample
obtained by bootstrap trains a small model Sn, the OOB data
can be tested for each model of the sample.
The self-detection of the model uses the mean squared error

(MSE), average absolute percentage (MAPE), root-mean-
square error (RSME), mean absolute error (MAE), median
absolute error (MedAE), and mean squared logarithmic error
(MSLE)40,41 as follows:

∑= −
=n

t tMSE
1

(actual ( ) predicted ( ))
t

n

1

2

(1)

∑=
| − |

×
=n

t t
t

MAPE
1 actual ( ) predicted ( )

actual ( )
100%

t

n

1 (2)

Figure 2. Process flow of the RF method.

Figure 3. Scatter plot and linear regression curve of (a) BODi/BODe, (b) CODi/CODe, and (c) NH3−Ni/NH3−Ne.
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where n is the number of decision tree models, actual(t) is the
actual UEC of a WWTP, and predicted(t) is the predicted
UEC of a WWTP.
2.6. Data Preprocessing. Certain evident linear relation-

ships exist between some variables in the Yearbook, which
were removed before modeling to obtain a model with
improved accuracy.
In Figure 3, each point in the figure represents a WWTP

data set, and it may be noted that the BODi and BODe, CODi
and CODe, and NH3−Ni and NH3−Ne for most WWTPs are
evenly distributed along a straight line. The light-red area
around the regression curve represents the confidence interval.
Therefore, we performed a linear regression between BODi
and BODe, CODi and CODe, and NH3−Ni and NH3−Ne,
which showed that the linear correlation between BODi and
BODe, CODi and CODe, and NH3−Ni and NH3−Ne was high.
At the same time, the correlation between each variable was
reduced to the lowest possible limit to improve the accuracy of
machine learning. In this study, the removal ratios BODi/
BODe, CODi/CODe, and NH3−Ni/NH3−Ne were used

instead of a single variable for analysis, which practically
represent the reduction multiple of BOD, COD, and NH3−Ne
of treated wastewater.

2.7. Importance of Features. The importance of a feature
X in an RF was calculated as follows:

A For each decision tree in an RF, the corresponding OOB
data were used to calculate the OOB data error, which
was recorded as errOOB1.

B Random noise interference was added to the character-
istic X of all samples of the OOB data, and the OOB
data error was calculated again, which was recorded as
errOOB2.

C If there are N trees in the RF, then the importance of the
feature is given as

∑= −X N(errOOB2 errOOB1)/Importance (7)

This expression can be used as a measure of the importance
of the corresponding features because if a feature was
randomly added with noise, the accuracy rate outside the
bag was highly reduced, which indicated that this feature had a
high influence on the classification results of samples; in other
words, it was of high importance.

3. RESULTS AND DISCUSSION
3.1. Correlation between Variables. To accurately

analyze the relationship between UEC and the different
variables, we calculated the correlation between these variables,
as shown in Figure 4.
In Figure 4, the correlation of UEC, wastewater treatment

capacity, annual load rate, moisture content of sludge, dry
weight of sludge, BODi, BODe, CODi, CODe, NH3−Ni, and
NH3−Ne are described by the thermodynamic diagram. The
number on the color block represents the correlation between
the corresponding variables of the abscissa and ordinate. A
darker red implies a higher correlation, and a darker blue
indicates a lower correlation. The UEC is highly correlated

Figure 4. Correlation thermodynamic diagram of variables.
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with BOD, COD, and NH3−N of the influent and effluent
(Figure 4).
3.2. Regression. The analysis of the importance of the

independent variables is presented in Table 1 and Figure S1.
The regression model had an R2 = 0.702, which was
significantly higher than that of the multiple linear regression,
implying higher accuracy.

As shown in Table 1 and Figure S1, the most important
variable was the wastewater treatment capacity, which is
expected since this determines the sizing of pumps, air blowers,
and other equipment that consumes electricity.42 This is
followed by the annual load rate, which is also expected to be a
major factor.42 Wastewater treatment capacity and annual load
rate can reflect the influence of the design and practical
operation of WWTPs on energy consumption, with a total
importance of 0.38. The high importance indicated that the
design of a WWTP was very important, so a clear treatment
target would significantly affect the energy consumption of
WWTPs.
The removal efficiency of COD and BOD had a significant

impact on the energy consumption of WWTPs, which also
verified that the level of removal of chemical oxygen demand
(COD) and biological oxygen demand (BOD) highly affected
the energy consumption of WWTPs.43 This is consistent with
other studies, and the pollution load is consistent with the
energy consumption load of WWTPs.42 CODi/CODe is
significantly more important than BODi/BODe since the
pollutants measured by BOD are a subset of pollutants
measured by COD, so COD contains some pollutants that do
not belong to BOD. Second, the model may divide the
pollutants that belong to both BOD and COD into the
importance of BODi/BODe and CODi/CODe. These two
factors may contribute to the finding that the importance of
CODi/CODe is significantly higher than that of BODi/BODe.
However, the removal efficiency of NH3−N, one of the

primary pollutants in sewage, is of relatively low importance to
UEC; this is because the primary function of most WWTPs in
China is to remove organic matter rather than denitrification,
which leads to the lower importance of NH3−Ni/NH3−Ne.
Some studies have shown that COD, BOD, and NH3−N are
correlated44 and the energy to power blower fans are actually
the main factor in electricity consumption for the removal of
COD, BOD, and NH3−N.45 Considering the fact that the
smaller the number of highly correlated variables, the more
convenient is the practical application of the model, and we
assigned the importance of the overlap between variables to
the high correlation variable, which led to the low importance
of NH3−Ni/NH3−Ne. Depending on the request to the
accuracy of the model, NH3−Ni/NH3−Ne can be neglected
during practical usage, but to analyze the model more clearly

and completely, we will still take NH3−Ni/NH3−Ne into
consideration in the following discussion.
There are limits to the moisture content of sludge, so there

will be energy consumption to separate water from sludge.
However, from Figure 4, it appears that moisture content of
sludge has low correlation with other variables, so its
importance will be higher. During sludge conditioning, drying,
and incineration, a large amount of energy is required;
however, in the current statistical yearbook of WWTPs, there
are no data on energy consumed for sludge disposal.
Therefore, we could not further analyze the importance of
sludge treatment.
The results in Table 1 show that compared with the data-

type variables, the importance of the discharge standard (Table
2) was low because BODi, CODi, and NH3−Ni are limited by

discharge standard, so discharge standard is highly correlated
to them. Since the current model is built to minimize the
influence of this correlation, the importance of discharge
standard is low. Table 1 indicates that the discharge standard is
low in importance; hence, in the following analysis, the
discharge standard was not used to forecast the UEC of
WWTPs.

3.3. Model Demonstration and Prediction of Energy
Consumption. An energy consumption model for WWTPs
was established through training using a large amount of data.
By changing the input variables, we can predict the change in
the energy consumption of a WWTP. We selected the
following variables with high importance: design treatment
capacity, annual average load rate, and removal ratios (BODi/
BODe, CODi/CODe, and NH3−Ni/NH3−Ne) to obtain the
prediction function. The model can be directly presented
through this curve, and it can be applied to the management of
energy efficiency of real WWTPs.

3.3.1. Wastewater Treatment Capacity. From the
predictive model shown in Figure 5, it is evident that the
wastewater treatment capacity is negatively related to UEC,
and for wastewater treatment capacities from 10,000 to
100,000 m3/d, the UEC decreases rapidly with an increase in
the design treatment capacity. Above 100,000 m3/d, there is a
minimal decrease in UEC, which is a consideration for the
design of WWTPs. The overall trend is consistent with the
finding of previous studies.33,34 What is more, this finding also
follows the scale economy of WWTPs.46

The construction scale of WWTPs in China can be divided
into five categories [according to the Ministry of Construction of
China (2001). Construction standard of urban sewage treatment
project. no. 77], as shown in Table 3:
From the predicted data (Figure 5), we found that the UEC

of WWTPs with a scale of I, II, and III was relatively low.
Therefore, we can conclude that the WWTPs larger than
100,000 m3/d have effectively reduced energy consumption,
and there are 245 WWTPs in this range in the database, which

Table 1. Variables and Their Importance

variable importance

wastewater treatment capacity (m3/d) 0.2130
annual load rate (%) 0.1758
CODi/CODe 0.1655
BODi/BODe 0.1170
moisture content of sludge (%) 0.1134
NH3−Ni/NH3−Ne 0.0846
dry weight of sludge (ton) 0.0747
discharge standard 0.0560

Table 2. Discharge standard of COD, BOD, and NH3−Na

parameter class I A class I B

CODe (mg/L) 50 60
BODe (mg/L) 10 20
NH3−Ne (mg/L) 5(8) 8(15)

aNote: the value in the bracket means the standard at temperature ≤
12 °C, which was not modeled in this study.
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is 9.91% of the total WWTPs considered in this study (Figure
6).
The ordinate of a point on the curve in Figure 6a shows the

proportion of the scale that is reflected by the abscissa of total
WWTPs in China. The ordinate of a point on the curve in
Figure 6b shows the accumulated proportion of the scale
smaller than abscissa of total WWTPs in China, and the slope
of the point shows the frequency. In Figure 6a, the curve peaks
in category V, which means that the scale of WWTPs
concentrated in category V and, after the peak, the number of
WWTPs decreases with the scale in an overall trend. In Figure
6b, the tangent slope of the curve also shows that category V
includes most of the WWTPs in China. In short, Figure 6
shows the scale distribution of WWTPs in China, and we can
find that most WWTPs in China are small-scale.

3.3.2. Annual Load Rate. Annual load rate means the
percentage usage of wastewater treatment capacity over the
year, and it reflects the divergence of design and actual usage of
WWTPs. As shown in Figure 7, the annual load rate has a

significant impact on the UEC. The UEC remained high when
the annual load rate was less than 40%, but the UEC decreased
significantly when the annual load rate was between 40 and
100%; meanwhile, the UEC remained stable in a low range
after the annual load rate was more than 100% (i.e., overload).
However, as overload may damage the instruments and
equipment, a load rate between 60 and 100% should be
maintained in the design and operation of WWTPs. The trend
in this study corresponds well the results of Huang et al.,34 and
it also follows the rule of extensive models of different factory
managements.47 This finding indicates that it will be better to
do more studies on the amount of wastewater needed to be
treated in one area before designing the treatment capacity of
the WWTP.

3.3.3. Reduction Ratios. In this section, the effects of
CODi/CODe, BODi/BODe, and NH3−Ni/NH3−Ne on UEC
are analyzed. As shown in Table 1, the importance of the UEC
of COD removal was significantly greater than that of BOD
and NH3−N, and UEC was primarily affected by COD
removal. To achieve a comprehensive study, the influence of
BOD removal and NH3−N removal on UEC is also discussed
herein. However, the low importance is reflected on the
ordinate of BOD and NH3−N. In general, the trends of COD
and BOD are generally in line with Huang et al.,34 while the

Figure 5. Predictive model of UEC as a function of wastewater
treatment capacity with other variables constant.

Table 3. Standard of the Construction Scale of WWTPs in
China

category construction scale

I 500,000−1,000,000 m3/d
II 200,000−500,000 m3/d
III 100,000−200,000 m3/d
IV 50,000−100,000 m3/d
V 10,000−50,000 m3/d

Figure 6. (a) Kernel frequency distribution and (b) probability distribution of wastewater treatment capacity of WWTPs in the model (to make the
figure clearer, all the WWTPs with a wastewater treatment capacity above 100,000 m3/d were not counted in the figure).

Figure 7. Predictive model of UEC as a function of annual load rate
with other variables constant.
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trend of NH3−N is a little conflict with the common sense, and
we are going to explain it in the following discussion.
When the independent variable was too large, a flat response

occurred in this region of the predictive model due to the lack
of data; in other words, when BODi/BODe or NH3−Ni/NH3−
Ne was too large, there will be insufficient data in the database
to train the model at this level and the prediction will be the
average of these data; therefore, these regions are not discussed
in the following analysis. However, with the construction of
huge WWTPs in China, there will be more data in the future,
reducing this issue.
From the predictive model shown in Figure 8a, it is seen that

CODi/CODe and UEC are positively correlated; that is, the
higher the COD reduction ratio, the higher the energy
consumption. As expected, a WWTP that seeks to have a
higher removal efficiency requires more energy. In the
predictive model, a relatively flat response occurs when the
reduction multiple is less than 9. From the available data, the
average CODi/CODe was 9.23 near the edge of the region
with a minimal slope, indicating that WWTPs had a high
energy efficiency in the removal of COD.
As shown in the predictive model in Figure 8b, BODi/BODe

and UEC are positively correlated for BODi/BODe in the
range of 0−15 and 25−30, with a minimal slope (except for
the platform) at 0−10 and a region with a slope of almost 0 in
the 15−25 range. From the available data, the average BODi/
BODe was 18.59 in the middle of the region with a slope of
almost 0, implying that WWTPs had a high energy efficiency in
the treatment of BOD but require further improvement.

As shown in Figure 8c, the overall trend of the predictive
model of NH3−Ni/NH3−Ne indicates that the UEC decreases
monotonically when NH3−Ni/NH3−Ne is lower than 5,
increases monotonically after NH3−Ni/NH3−Ne is greater
than 10, and finally tends to a constant value. A minimum
slope is observed between 5 and 10. Therefore, the optimal
value of ammonia nitrogen reduction should be between 5 and
10. When NH3−Ni/NH3−Ne is less than 10, it is negatively
correlated with UEC, which is contrary to the common
understanding that a larger reduction multiple leads to a higher
energy consumption. The specific reasons for this require
further analysis. However, the possible reasons are as follows:
(1) as the importance of NH3−Ni/NH3−Ne in UEC is low,
which causes the difference between the maximum and
minimum values of the final prediction result to be ≤0.04
kW h, the measuring instrument may not be highly accurate.
(2) When NH3−Ni/NH3−Ne is 5−10, the reduction multiple
is easily achieved. For a lower value, energy consumption may
be required to limit the reduction multiple. This study aimed
to predict the UEC of WWTPs if the plant upgrades to a
higher standard, thus improving the removal ratios (CODi/
CODe, BODi/BODe, and NH3−Ni/NH3−Ne). The number of
WWTPs applied was 1041 in class I A and 1184 in class I B,
with only 162 in class II. Therefore, we primarily considered
the improvement of the discharge standard from class I B to
class I A. The specific discharge standards are listed in Table 2.
The ratios CODi/CODe, BODi/BODe, and NH3−Ni/NH3−

Ne were used as variables in the model since the discharge
standard restricts CODe, BODe, and NH3−Ne. Therefore, the
following modifications were adopted in this study:

Figure 8. Predictive model of UEC as a function of (a) CODi/CODe, (b) BODi/BODe, and (c) NH3−Ni/NH3−Ne with other variables constant.
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where yCOD: CODI/CODE after upgrading to a higher class,
xCOD: CODE of class I A, yBOD: BODI/BODE after upgrading
to a higher class, xBOD: BODE of class I A, yN: (NH3−NI/
NH3−NE) after upgrading to a higher class, and xN: (NH3−
NE) of class I A.
From eqs 4−6, a new value of CODi/CODe, BODi/BODe,

NH3−Ni/NH3−Ne after the improvement of the discharge
standard from class I B to class I A was calculated. The model
predicted the UEC of WWTPs with the new data.
The results showed that when the discharge quality of

WWTPs was upgraded from class I B to class I A, the increase
in the UEC of WWTPs varied due to the various effluent
qualities. The UEC of WWTPs had an average increase of
17%, obtained from eqs 4−6.
3.3.4. Model Validation. As previously mentioned, the R2 of

the model was 0.702. MSE = 0.00662 (kW h/m3)2, MAPE =
5.74%, RSME = 0.106 kW h/m3, MAE = 0.0416 kW h/m3,
MedAE = 0.0416 kW h/m3, and MSLE = 0.00327 (obtained
from 1), which are very low.48 These low evaluation metrics
indicate that the model for UEC of WWTPs developed in this
study was quite accurate. As shown in Figure 9 and Figure S2,

the actual and predicted UECs exhibit the same trend when
the UEC is not too high or too low. The predicted UEC was
not accurate when the corresponding actual value was too high
or too low because of insufficient data for fully developing the
model. In fact, in practice, there are not many cases of too large
or too small WWTPs, so the effects of these WWTPs are not
significant.
3.4. Comparison with Other Approaches. Compared to

the data envelopment analysis, RF is more stable when some
input data are missing, which means that a unified model can
be made without considering special cases that one or more
variables are missing. Considering the fact that it is hard to set
up a monitoring system that would include thousands of
WWTPs across China with exactly the same variables, it would
be impossible to build a normalized model using data
envelopment analysis.

As mentioned in Section 3.1, the WWTP variables are
correlated, so the accuracy of a multiple linear regression
model compared to an RF model is relatively low. In this study,
the multiple linear regression model was considered, but the R2

(0.147) was too low. In comparison, the RF model can achieve
a much higher R2 (0.702). Therefore, RF is more suitable to
build the model than data envelopment analysis or multiple
linear regression.

4. CONCLUSIONS

In this study, an energy consumption model for WWTPs was
developed using machine learning. The UEC of a WWTP can
be predicted with a few key parameters by the model using the
RF algorithm. It can also predict the UEC of a WWTP for
policy formulation and improvement of sewage treatment
standards. This model can be a useful tool for investigating the
water-energy nexus in WWTPs. Although the particular model
in this study is based on data from Chinese WWTPs, it can be
easily applied to WWTPs worldwide by changing the input
data. In this study, we did not investigate the influence of local
climate and treatment technologies due to insufficient data,
which are also very important and deserve further research in
the future.
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