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ABSTRACT OF THE DISSERTATION

Fraud Detection in Vehicle Insurance Claims using Machine Learning

by

Ziyang Zhang

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

Insurance fraud poses a significant financial burden on the industry, with fraudulent ve-

hicle insurance claims being a major contributor. This study explores the application of

machine learning techniques to accurately detect fraudulent vehicle insurance claims. Six

different models - Logistic Regression, Random Forest, Gaussian Naive Bayes, Decision Tree,

XGBoost, and Gradient Boosting classifiers - are evaluated on an imbalanced dataset. To

address class imbalance, oversampling techniques like SMOTE, Borderline SMOTE, and

ADASYN are employed. Performance is assessed using metrics such as F1 score, recall, and

AUC. Results indicate that XGBoost and Gradient Boosting models demonstrate superior

overall performance, effectively balancing precision and recall. The Gaussian Naive Bayes

model exhibits exceptional recall, making it suitable for minimizing missed fraud cases.
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CHAPTER 1

Introduction

Insurance fraud is a pervasive issue that poses significant financial and operational challenges

to insurers worldwide. Within the realm of vehicle insurance, fraudulent claims not only

contribute to substantial monetary losses but also undermine public trust and the overall

integrity of the insurance industry. A study by the Federal Bureau of Investigation estimates

that non-health insurance fraud costs more than $40 billion per year, with a significant

portion stemming from fraudulent vehicle insurance claims [FBI22].

Traditionally, the detection of fraudulent vehicle insurance claims has relied heavily on

manual investigations and the expertise of claims adjusters. However, this process is often

time-consuming, labor-intensive, and susceptible to human error or bias. As the volume and

complexity of claims data continue to grow, insurers are increasingly turning to advanced

data analytics and machine learning techniques to enhance their fraud detection capabilities.

Machine learning offers a powerful toolset for identifying patterns, anomalies, and intri-

cate relationships within large datasets that may be indicative of fraudulent behavior. By

leveraging historical claims data and a wide range of features, such as policyholder informa-

tion, vehicle details, and incident circumstances, machine learning models can be trained to

accurately classify claims as legitimate or fraudulent.

While numerous studies have explored the application of machine learning in fraud de-

tection across various domains, the unique characteristics of vehicle insurance claims present

distinct challenges. These challenges include the inherent class imbalance, where fraudulent

cases constitute a small minority compared to legitimate claims, as well as the presence of di-
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verse and complex feature interactions that may not be easily discernible through traditional

statistical methods.

This research aims to address these challenges by conducting a comprehensive evaluation

of multiple machine learning models and data preprocessing techniques specifically tailored

for vehicle insurance fraud detection. By employing state-of-the-art algorithms, such as

logistic regression, random forests, XGBoost, and gradient boosting classifiers, this study

seeks to identify the most effective approaches for accurately classifying fraudulent vehicle

insurance claims.

Furthermore, to tackle the class imbalance issue, which can significantly impact the per-

formance of machine learning models, this research explores various oversampling strategies,

including the Synthetic Minority Over-sampling Technique (SMOTE), Borderline SMOTE,

and Adaptive Synthetic Sampling (ADASYN). These techniques aim to balance the class

distributions and enhance the models’ ability to learn from the minority class, ultimately

improving their overall predictive power.

The findings of this study have practical implications for the insurance industry by pro-

viding insights into effective machine learning methods for vehicle insurance fraud detection.

Insurers can leverage these methods to mitigate financial losses, streamline claims processing,

and allocate investigative resources more efficiently.
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CHAPTER 2

Exploratory Data Analysis

2.1 Data Set

For this study, we use the dataset titled ”Vehicle Insurance Fraud Claim Detection,” which is

hosted on Kaggle. This dataset is specifically designed to facilitate the detection of fraudulent

activities in vehicle insurance claims. It encompasses a variety of features that describe the

insurance policyholder, the insured vehicle, and details of the insurance claims. The dataset

comprises 15,420 records, each representing an individual insurance claim. Each record

includes multiple attributes such as:

1.Policy Attributes: Policy number, policy deductible.

2.Insured Information: Age, sex, marital status,.

3.Incident Information: Incident type, collision type, authorities contacted, incident lo-

cation, incident hour of the day.

4.Vehicle Attributes: Vehicle make, vehicle type, year.

5.Claim Attributes: whether the claim was fraudulent

This data provides a comprehensive overview of the factors that may influence fraudulent

activities in vehicle insurance claims. The target variable, Fraud Reported, indicates whether

a claim was identified as fraudulent, offering a clear endpoint for our analysis. Notably, the

dataset exhibits a significant class imbalance, with fraudulent claims constituting merely 6%

of the total entries.
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2.2 Preparing data for modeling

2.2.1 Data Cleaning

Upon conducting an initial data cleaning process, it was observed that the dataset does not

contain missing values in the conventional sense; however, certain anomalies were detected

that required attention. Notably, fields such as DayOfWeekClaimed, MonthClaimed, and

Age presented entries with a value of zero, which are contextually invalid.

Instances with zero values in DayOfWeekClaimed and MonthClaimed categories were

relatively few. Considering the impracticality of these values representing any day or month,

these records were deemed erroneous and subsequently removed from the dataset. All records

with an Age value of zero corresponded to policyholders aged between 16 and 17 years. Given

the unlikely scenario of zero age in any practical context, these age entries were adjusted to

17 years, a more plausible representation within this age group.

Further analysis revealed that the PolicyType variable is a concatenation of VehicleCat-

egory and BasePolicy. Given that this variable redundantly combines information already

present in other fields, it was decided to remove PolicyType from the dataset to streamline

the data and focus on independent variables.

2.2.2 Feature Engineering

To enhance model performance, it’s crucial to appropriately transform the raw data. For

instance, without adjustments, the wide range in vehicle prices (often tens of thousands) and

the smaller scale of age (typically under 100) could disproportionately influence the model.

If used directly, minor changes in vehicle claim amounts might unduly affect outcomes,

potentially overshadowing other significant factors like age, which could also impact fraud

detection. Hence, processing continuous numerical variables is necessary to ensure reliable

model results and to maintain analytical balance.
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To manage the wide disparities in scales and potential impacts of the features, the ’Ve-

hiclePrice’ and ’Age’ variables were categorized to ensure a more balanced model input.

’VehiclePrice’ was segmented into bins ranging from ’less than 20000’ (0) to ’more than

69000’ (5), allowing for better normalization across different price levels. Similarly, ’Age’

was divided into four groups: 18-25 (1), 26-40 (2), 41-65 (3), and over 65 (4).

Evidence indicates a notably higher propensity for insurance fraud among younger indi-

viduals, particularly those under the age of 25. Studies have shown that this demographic

is less likely to perceive insurance fraud as a serious crime. Only about 65% of individuals

aged 18 to 25 view insurance fraud as a crime, compared to over 95% of those aged 55

and above who acknowledge its severity [Ver23]. This significant discrepancy underscores

the importance of incorporating age as a factor in our model, as it substantially influences

perceptions and behaviors related to insurance fraud. This trend is also depicted in Figure

2.1:

Figure 2.1: Fraud Detection by Age
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In the data preparation phase, numerical encoding was applied to temporal features,

namely the ’Month’ and ’DayOfWeekClaimed’ variables, to preserve their natural sequential

order. This encoding allows the model to recognize and leverage temporal patterns, which

are important for detecting fraudulent activities. For instance, the ’Month’ variable was

transformed by assigning a unique integer to each month, beginning with January as 1 and

concluding with December as 12. Similarly, the days of the week were encoded from Monday

as 1 through Sunday as 7. This approach ensures accurate interpretation by the model of the

progression of days and months, potentially identifying trends such as increased incidents

of fraud at certain times of the year or week. This systematic method not only boosts the

model’s capability to discern temporal patterns but also simplifies the dataset, facilitating

more efficient algorithmic processing.

As shown in Figure 2, the dataset shows a marginally higher probability of fraudulent

claims among males than females. To address this pattern, label encoding was employed for

binary categorical variables. The ’Sex’ feature was encoded with males as 1 and females as

0, allowing the model to directly assess the correlation between gender and fraud likelihood.

Similarly, the ’AccidentArea’ was categorized into Urban (1) and Rural (0) to further enhance

the model’s analytical precision.

Label encoding is a simple yet effective way to numerically represent categorical variables.

It works by mapping each category to a numerical label, enabling machine learning models

to process categorical data. This encoding not only reduces model complexity but also

enhances feature interpretability. By preserving any inherent ordinal relationships within

the categorical variables (if present), label encoding assists the algorithm in more accurately

capturing data patterns, thereby improving fraud detection capabilities. Compared to more

complex encoding techniques, such as one-hot encoding, label encoding offers the advantage

of being concise and efficient while still retaining the original data’s information effectively.
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Figure 2.2: Fraud Detection by Sex

As depicted in Figure 2.3, the analysis of fraud probability across different marital sta-

tuses revealed significant variations.

7



Figure 2.3: Fraud Detection by Marital Status

The data also revealed substantial discrepancies between different types of policyhold-

ers. Specifically, fraud rates among primary policyholders were recorded at 7.89%, while

those involving third parties were significantly lower at 0.88%. This notable difference high-

lights potential areas for enhancing fraud prevention measures, particularly among primary

policyholders, as illustrated in Figure 2.4.
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Figure 2.4: Fraud Detection by Fault

Primary policyholders, as direct contract holders with insurance companies, often have

greater familiarity with the nuances of their policies and might be more adept at exploiting

loopholes to commit fraud. In contrast, third parties typically lack direct access to the policy

details and are less incentivized to commit fraud due to the absence of a direct financial

relationship with the insurer.

As shown in Figure 2.5, further analysis of vehicle categories indicates that sports vehicles

have a fraud rate of 1.57%, which is significantly lower than the 8.22% observed for sedans.

The sample sizes for these categories are comparable, highlighting the crucial role that vehicle

type plays in the likelihood of fraud occurring.
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Figure 2.5: Fraud Detection by Vehicle Category

In the analysis of the ”AddressChange” feature, as illustrated in the Figure 2.6, it’s noted

that individuals who changed their address within the past six months exhibit a high fraud

rate of 75%. However, this observation is based on a very small sample size of only 4 cases,

compared to 14,323 cases involving individuals who did not change their address. This stark

difference in sample sizes means that conclusions about the impact of address changes on

the likelihood of fraud should be approached with caution, as the data does not robustly

support a definitive correlation.
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Figure 2.6: Fraud Detection by Address Change

As shown in Figure 2.7, the fraud rates vary significantly among different types of claims:

’Liability’ claims exhibit a notably low fraud rate of 0.72%, compared to ’All Perils’ at

10.16% and ’Collision’ at 7.3%. The similar sample sizes across these categories ensure that

the comparison is statistically valid. The much lower fraud rate in ’Liability’ claims can be

attributed to the nature of ’Liability’ insurance, which typically covers damages or injuries

that the policyholder causes to others. This type of claim might be harder to falsify compared

to claims under ’Collision’ and ’All Perils’ coverage, which often deal with the policyholder’s

own losses.
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Figure 2.7: Fraud Detection by Fault

As illustrated in Figure 2.8, the analysis of the ’Past Number of Claims’ feature reveals a

trend where the fraud rate decreases as the number of previous claims increases: no previous

claims show a fraud rate of 7.79%, one claim has a rate of 6.21%, two to four claims are

at 5.36%, and more than four claims drop to 3.38%. This pattern suggests that individuals

with a higher number of past claims are less likely to commit fraud, possibly due to increased

scrutiny from insurance companies for repeat claimants, or perhaps these individuals become

more risk-averse after undergoing multiple claims processes.
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Figure 2.8: Fraud Detection by Past Number of Claims

Analysis of the variables Days Policy Accident and Days Policy Claim revealed that over

98% of the claims occurred more than 30 days after the policy was issued. A proportional

analysis across categories—’1 to 7’, ’8 to 15’, ’15 to 30’, and ’more than 30’ days—indicated

no significant difference in the likelihood of fraud, leading to their removal for simplicity.

The variable Make, representing the brand of the vehicle, was also assessed. Figure 2.9

and Figure 2.10 from the data showed that some brands had a higher number of fraudulent

claims. However, these figures were proportional to the higher incidence of these brands in

the dataset, suggesting no inherent link between brand and fraud likelihood. Furthermore,

the high diversity of values within this variable complicated data processing and was not

conducive to model accuracy, resulting in its exclusion from further analysis.
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Figure 2.9: Frauds per Car Make

Figure 2.10: Number of Cars by Make

While some feature processing methods are quite similar and thus not extensively show-

cased here, all features have been transformed into numerical formats after the processing

steps. This conversion facilitates easier computation and model training. The complete

transformations and the final formats of the features are detailed in Table 2.1.
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Table 2.1: Unique Values by Column

Column Unique Values

Month 12, 1, 10, 6, 2, 11, 4, 3, 8, 7, 5, 9

WeekOfMonth 5, 3, 2, 4, 1

DayOfWeek 3, 5, 6, 1, 2, 7, 4

AccidentArea 1, 0

DayOfWeekClaimed 2, 1, 4, 5, 3, 6, 7

MonthClaimed 1, 11, 7, 2, 3, 12, 4, 8, 5, 6, 9, 10

WeekOfMonthClaimed 1, 4, 2, 3, 5

Sex 0, 1

MaritalStatus 2, 3, 4, 1

Age 1, 2, 3, 5, 4

Fault 0, 1

VehicleCategory 1, 3, 2

VehiclePrice 5, 1, 2, 0, 3, 4

FraudFound 0, 1

Deductible 0, 1, 2, 3

DriverRating 1, 4, 3, 2

PastNumberOfClaims 0, 1, 3, 5

AgeOfVehicle 2, 5, 6, 7, 4, 0, 3, 1

AgeOfPolicyHolder 2, 3, 1, 4

PoliceReportFiled 0, 1

WitnessPresent 0, 1

AgentType 0, 1

NumberOfSuppliments 0, 6, 4, 1

AddressChange Claim 1.0, 0.0, 4.0, 2.0, 0.5

NumberOfCars 3, 1, 2, 7, 9

Year 0, 1, 2

BasePolicy 1, 2, 3
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2.2.3 Feature Selection

Several variables were identified as irrelevant to the prediction of insurance fraud and subse-

quently removed from the dataset to streamline the analysis. Specifically, PolicyNumber and

RepNumber were excluded due to their lack of correlation with fraudulent activity. Addi-

tionally, the PolicyType variable, which appeared to be a concatenation of VehicleCategory

and BasePolicy, was deemed redundant and therefore eliminated.

Based on the correlation analysis performed with respect to the ’FraudFound’ variable,

detailed in Table 2.2, I selected features that have a correlation coefficient greater than 0.02

for inclusion in the model. This threshold was chosen to ensure that the features included

are likely to have a significant impact on the model’s ability to predict fraud, while excluding

features with negligible relationships to reduce model complexity and potential overfitting.

16



Table 2.2: Feature Importance for Fraud Detection

Feature FraudFound

BasePolicy 0.1571103145945941

VehicleCategory 0.135620477209498

Fault 0.1314107989324906

PastNumberOfClaims 0.0573612666072198

AccidentArea 0.03357274880743924

AgeOfVehicle 0.033312627812110474

NumberOfSuppliments 0.03260915172104851

VehiclePrice 0.031716474447517844

Sex 0.02996062638299658

AgeOfPolicyHolder 0.029165574517125606

MonthClaimed 0.02898223561418115

Month 0.02727555107811587

Age 0.025765528676146312

Deductible 0.025277719797434296

Year 0.02477830121562461

AgentType 0.0229803252664285

DayOfWeek 0.017429835207084115

AddressChange Claim 0.016472963394018037

PoliceReportFiled 0.01601017752105214

WeekOfMonth 0.01187166934971578

WitnessPresent 0.00808545420374933

DayOfWeekClaimed 0.00797394215784522

DriverRating 0.007259032798237225

NumberOfCars 0.007242908295227828

WeekOfMonthClaimed 0.00578338907885248

MaritalStatus 0.00362094088212295
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From the correlation heatmap, a high correlation of 0.82 can be observed between ‘Base-

Policy‘ and ‘VehicleCategory‘, indicating a strong linear relationship between these two fea-

tures. This likely suggests that the type of base policy chosen is closely tied to the category

of the insured vehicle. For instance, specific policies may be more common or tailored for

certain types of vehicles, such as luxury cars, sports cars, or utility vehicles.

Due to the high redundancy between ‘VehicleCategory‘ and ‘BasePolicy‘, the ‘VehicleCat-

egory‘ feature was removed to simplify the model and reduce the impact of multicollinearity.

By eliminating highly correlated redundant features, not only can model complexity be re-

duced, but it also helps to improve the model’s generalization ability and robustness.

Figure 2.11: Correlation Heatmap
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CHAPTER 3

Methodology

3.1 Model Introduction

3.1.1 Logistic Regression

Principle: Logistic Regression is a statistical model used in machine learning for binary

classification tasks. It predicts the probability that a given input belongs to a particular

category (usually labeled as 0 or 1) by applying the logistic function. The model estimates

the probabilities using a logistic function, which is an S-shaped curve that can take any

real-valued number and map it into a value between 0 and 1, but never exactly at those

limits.

Formula: The logistic regression model calculates the probability p that an observation

belongs to the class 1 using the logistic function:

p =
1

1 + e−z
(3.1)

. where z is a linear combination of the input features x, weighted by the coefficients β, plus

an intercept β0

z = β0 + β1x1 + β2x2 + · · ·+ βnxn (3.2)

. Advantages and Disadvantages: Logistic Regression is highly valued for its straightfor-

ward implementation and the clarity of its output, particularly in scenarios that require a
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probabilistic perspective for binary decision-making. Its computational efficiency allows for

quick model training and prediction, making it ideal for applications with less complex data

structures. However, the model’s effectiveness is constrained by its assumption of a linear

relationship between predictors and the logit of the outcome. This assumption can lead

to underperformance in cases involving nonlinear relationships or high-dimensional feature

spaces. Furthermore, logistic regression may exhibit biases when faced with imbalanced

datasets, necessitating additional techniques to handle such scenarios effectively.

3.1.2 Random Forest Classifier

Principle: The Random Forest Classifier is an ensemble learning method used for classifi-

cation (and regression) tasks that operates by constructing multiple decision trees during

training and outputting the class that is the mode of the classes (classification) or mean

prediction (regression) of the individual trees. It integrates the simplicity of decision trees

with flexibility, resulting in higher accuracy without substantial increase in complexity. Ran-

dom forests correct for decision trees’ habit of overfitting to their training set by averaging

multiple trees, which are trained on different parts of the same training set.

Formula: The Random Forest algorithm doesn’t involve a straightforward mathematical

formula like linear models. Instead, it builds upon the idea of decision trees and bagging.

The final prediction is made based on the majority vote (in classification tasks) from all the

trees. The conceptual formula for the classification performed by a Random Forest can be

described as follows:

RandomForestPrediction = mode({T1(x), T2(x), . . . , Tn(x)}) (3.3)

. Where Ti(x) represents the prediction of the i-th decision tree for input x.

Advantages and Disadvantages: Random Forest Classifier excels in handling high-dimensional

data and can model complex relationships without requiring feature scaling. Its ensemble
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nature makes it robust against overfitting, which is a common pitfall in decision tree models.

Moreover, it is capable of handling both numerical and categorical data and provides feature

importance scores, which are helpful in understanding the input features’ influence on the

model prediction.

Despite its strengths, the Random Forest model can be computationally intensive, which

may lead to longer training times, especially with large datasets. The model’s complexity

can also make it harder to interpret compared to a simple decision tree. Additionally, if

the data includes categorical variables with a large number of levels, Random Forests might

become biased in their favor, potentially leading to overfitting. Random Forests also require

careful tuning of parameters like the number of trees and tree depth to avoid underfitting or

overfitting, depending on the complexity of the data and the signal-to-noise ratio.

3.1.3 Gaussian Naive Bayes

Principle: Gaussian Naive Bayes is a variant of the Naive Bayes algorithm that is particu-

larly suited for continuous data that is assumed to be normally distributed. This classifier

applies Bayes’ theorem, assuming strong (naive) independence between the features. For

each class, it calculates the likelihood of the data assuming that the input features are nor-

mally distributed, which simplifies computation and makes it efficient for high-dimensional

datasets.

Formula: In Gaussian Naive Bayes, the conditional probability of a feature xi given a

class c is modeled using the Gaussian (normal) distribution. The probability density function

for the Gaussian distribution is given by:

p(xi | c) =
1√
2πσ2

c

exp

(
−(xi − µc)

2

2σ2
c

)
(3.4)

. Where µc and the variance σ2
c are the mean and the variance of the feature xi for class c,

respectively. The overall probability of a data point x = (x1, x2, ..., xn) belonging to class c
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is then computed as:

p(c | x) ∝ p(c)
n∏

i=1

p(xi | c) (3.5)

. Here, p(c) is the prior probability of class c.

Advantages and Disadvantages: Gaussian Naive Bayes is incredibly fast and easy to im-

plement, making it highly suitable for applications that require real-time predictions. Its

simplicity also allows for very good performance in cases where the assumption of indepen-

dence holds reasonably well. Furthermore, it requires a small amount of training data to

estimate the necessary parameters (mean and variance).

However, the naive assumption of feature independence can lead to significant perfor-

mance issues if the true underlying relationships are ignored, especially in cases where fea-

tures are correlated. This model also tends to perform poorly if the Gaussian distribution

assumption does not hold for the numeric features. Additionally, it can be particularly sen-

sitive to data with zero variance (features with the same value across all samples), which

can skew the probability estimates.

3.1.4 Decision Tree Classifier

Principle: A Decision Tree Classifier is a non-parametric supervised learning method used

for classification and regression tasks. It models decisions and their possible consequences

as a tree structure, consisting of nodes that represent tests on attributes, branches that

represent the outcome of those tests, and leaf nodes that represent class labels or target

values. The goal is to create a model that predicts the value of a target variable by learning

simple decision rules inferred from the data features.

Formula: While decision trees do not rely on mathematical formulas in the traditional

sense, they use algorithms to split the data at each node based on specific criteria. The most

common criteria for splitting include Gini impurity and entropy (information gain), which
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can be represented as follows:

• Gini Impurity:

G(p) = 1−
k∑

i=1

p2i (3.6)

. • Entropy (Information Gain):

H(S) = −
k∑

i=1

pi log2(pi) (3.7)

. Where S is the total set of samples, pi is the proportion of the samples that belong to

class i, and k is the number of classes. The decision at each node is made to maximize the

information gain — the reduction in entropy or impurity after the split.

Advantages and Disadvantages: Decision Tree Classifier is renowned for its interpretabil-

ity, as it provides a clear visualization of decision-making processes, making it highly acces-

sible for analysis. The model handles both numerical and categorical data effectively and

manages non-linear relationships, which enhances its versatility in practical applications.

Furthermore, decision trees do not require data normalization or scaling, simplifying the

preprocessing steps.

However, the model has several drawbacks, notably its propensity for overfitting, espe-

cially when the trees grow deep with many branches. This overfitting can often be mitigated

by pruning the tree, setting minimum sample sizes for node splitting, or limiting the tree’s

depth. Another significant issue is the high variance of decision trees; small changes in the

dataset can lead to drastically different tree structures, which can undermine the model’s re-

liability. Additionally, decision trees can develop a bias towards attributes with more levels,

necessitating careful balancing of the dataset to ensure fair and effective decision-making.
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3.1.5 XGBoost Classifier

Principle: XGBoost (Extreme Gradient Boosting) is an advanced implementation of gradient

boosting algorithms. It is designed to be highly efficient, flexible, and portable. XGBoost

systematically constructs a series of decision trees in a sequential manner, where each sub-

sequent tree aims to correct the errors made by the previous ones. The method combines

the output of multiple weak learners (typically decision trees) to produce a strong predic-

tive model. XGBoost optimizes both the computational speed and model performance by

implementing hardware optimizations and efficient handling of sparse data.

Formula: XGBoost uses the gradient boosting framework, where the model is trained to

minimize a loss function. Each tree is added to minimize the following objective function,

which is a combination of a loss term and a regularization term:

L(ϕ) =
n∑

i=1

l(yi, ŷ
(t)
i ) +

t∑
k=1

Ω(fk) (3.8)

.

Where:

• l(yi, ŷ
(t)
i ) is a differentiable loss function that measures the difference between the pre-

dicted ŷ
(t)
i and actual y

(t)
i values.

• Ω(fk) is the regularization term (typically used to penalize the complexity of the

model), and fk represents the k-th tree.

• t denotes the number of trees.

The gradient boosting process updates the model using an additive strategy:

ŷ
(t+1)
i = ŷ

(t)
i + η · ft(xi) (3.9)

Where η is the learning rate that scales the contribution of each tree.
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Advantages and Disadvantages: XGBoost Classifier is celebrated for its superior perfor-

mance and scalability, making it a preferred choice for many machine learning competitions.

It effectively handles a variety of data types and integrates smoothly into diverse data sci-

ence workflows. One of its notable strengths is its regularization feature, which significantly

reduces the risk of overfitting—a common drawback in many other boosting algorithms.

Additionally, XGBoost offers extensive flexibility, allowing users to define custom objectives

and fine-tune the tree splitting criteria to best suit their specific needs.

However, the complexity of the model makes it less interpretable compared to simpler

alternatives, which can be a drawback when explanation or transparency of the decision-

making process is required. Furthermore, despite its optimization for performance, XGBoost

can be computationally demanding, particularly with large datasets or an extensive number

of trees. Achieving optimal performance also demands careful parameter tuning, which

can be intricate and time-consuming, especially for those not well-versed in the nuances of

gradient boosting techniques.

3.1.6 Gradient Boosting Classifier

Principle: The Gradient Boosting Classifier is a popular machine learning technique that

builds on the concept of boosting, where multiple weak learners (typically decision trees) are

trained sequentially to correct the errors of the previous learners. Each new learner focuses

more on the instances that were misclassified or had larger errors by the previous ones. This

process continues until a predefined number of learners are created or improvements become

negligible, creating a strong overall model from many weak ones. The key concept behind

gradient boosting is to use the gradient of the loss function, which guides the algorithm on

how to effectively reduce errors in subsequent models.

Formula: The Gradient Boosting Classifier minimizes a loss function over each iteration

by adding weak learners that predict the gradients of the loss. Mathematically, this is

expressed as:
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Ft(x) = Ft−1(x) + ρtht(x)

Where:

• Ft(x) is the boosted model at iteration t.

• Ft−1(x) is the boosted model from the previous iteration.

• ρt is the learning rate which scales the contribution of each weak learner.

• ht(x) is the weak learner added at iteration t.

Each weak learner ht is fitted to the negative gradient of the loss function evaluated at

Ft−1, and ρt is typically determined by line search.

Advantages and Disadvantages: The Gradient Boosting Classifier offers remarkable flexi-

bility and is highly effective for both classification and regression tasks, capable of optimizing

various differentiable loss functions. Its strength lies in its predictive power, often outper-

forming other algorithms, particularly in structured data scenarios. Additionally, it adeptly

handles heterogeneous features, making it suitable for a wide range of applications

However, the training process for a Gradient Boosting model is computationally intensive

and can be quite time-consuming, as it builds numerous models sequentially. There is also a

significant risk of overfitting, especially if the model is not properly tuned or if the dataset

is noisy. Furthermore, the effectiveness of Gradient Boosting is heavily dependent on the

correct setting of its parameters, such as the number of trees, tree depth, and learning

rate. This sensitivity necessitates careful parameter tuning, often requiring extensive cross-

validation or grid search, which can complicate the training process and increase the time

and resources needed to develop an effective model.
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3.2 Handling Imbalanced Data

3.2.1 Under-sampling

Under-sampling involves reducing the size of the more prevalent class in an imbalanced

dataset. This technique achieves a more balanced class distribution by randomly remov-

ing samples from the dominant class. Consider the dataset where 94% of the samples are

non-fraudulent transactions and only 6% are fraudulent. Under-sampling would reduce the

number of non-fraudulent transactions to match the fraudulent ones. However, this method

may not be ideal in scenarios where the minority class constitutes a small percentage and the

total number of samples is limited. Removing significant portions of the majority class could

result in the loss of critical information, potentially leading to underfitting and a decrease

in model performance.

3.2.2 Over-sampling

Over-sampling adjusts the class distribution by increasing the size of the underrepresented

class through replication of existing minority class samples. For example, in a dataset

with 100 fraudulent transactions and 1,900 non-fraudulent transactions, over-sampling might

replicate the fraudulent transactions to balance the dataset. This method helps to preserve

all original information from the minority class but might lead to overfitting since it increases

the likelihood of the model learning noise from the replicated samples.

SMOTE, or Synthetic Minority Over-sampling Technique, addresses the over-sampling

problem by generating synthetic samples instead of duplicating existing ones. By choosing

two or more similar instances of the minority class and interpolating new instances between

them, SMOTE creates a more diverse and extensive feature space [CBH02]. For instance, if

there are minority class samples such as two fraudulent transactions with slightly different

transaction amounts or times, SMOTE would generate a new fraudulent transaction that
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combines features of these existing transactions. This approach allows for a broader and

more general decision boundary, potentially enhancing classification performance.

Borderline SMOTE refines the SMOTE algorithm by focusing synthetic sample genera-

tion specifically on the minority class samples near the decision boundary. This method first

identifies minority class samples that are close to the majority class—often those most likely

to be misclassified—and then generates new samples around these ’borderline’ instances

[HWM05]. By focusing on these critical areas, Borderline SMOTE helps to improve model

sensitivity and specificity around the decision boundary, effectively enhancing classifier per-

formance on hard-to-distinguish samples.

3.2.3 Synthetic Sampling

Synthetic sampling involves creating artificial data points based on the characteristics of

existing data. Unlike simple replication in over-sampling, this method uses statistical tech-

niques to generate new data points that are plausible yet not exact copies of existing ones.

This technique enhances the diversity of the training dataset, which is crucial for capturing

complex patterns in the data and avoiding model overfitting.

Adaptive Synthetic Sampling, or ADASYN, is an advanced form of synthetic sampling

that focuses on generating synthetic data for minority class samples according to their learn-

ing difficulty. The algorithm adjusts the number of synthetic samples for each minority

instance proportionally to the level of classification difficulty [HBG08]. For instance, if

certain fraudulent transactions are frequently misclassified, ADASYN will generate more

synthetic samples of these types to force the classifier to focus more on these challenging

areas. This adaptive approach promotes a more balanced learning process and helps improve

the predictive accuracy across varied instances within the minority class.
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Table 3.1: Model Evaluation Metrics

Prediction/Actual Fraudulent Normal

Fraudulent TP FN

Normal FP TN

3.3 Criteria to Measure Performance

3.3.1 Accuracy

Accuracy, which measures the proportion of correct predictions (both true positives and

true negatives) among all cases, can be deceptive in datasets with imbalanced classes. For

example, in the dataset where fraudulent transactions make up only 6% of the total, a

model that predicts all transactions as non-fraudulent would still achieve an accuracy of

about 94%. Despite this high accuracy, the model completely fails to identify any fraudulent

transactions, which are critical to detect. Thus, while accuracy provides a basic measure of

a model’s overall performance, it is not a reliable metric in scenarios with significant class

imbalances, where the detection of the minority class is crucial.

The formula for accuracy is given by:

Accuracy =
TP + TN

TP + TN + FP + FN

3.3.2 Precision

Precision measures the proportion of positive identifications that were actually correct and

is crucial when the cost of a false positive is high.

The formula for precision is:

Precision =
TP

TP + FP
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For Example, in email spam detection, precision is critical because misclassifying regular

emails as spam (false positives) can be more disruptive than missing a spam email (false

negative). High precision ensures that almost all emails marked as spam are truly spam,

minimizing inconvenience to users.

3.3.3 Recall

Recall indicates the ability of a model to find all relevant cases within a dataset, which is

vital when the cost of missing a positive (false negative) is significant.

Recall =
TP

TP + FN

In fraud detection, a high recall rate is crucial because failing to detect a fraudulent transac-

tion (false negative) can have serious financial implications. Therefore, it is more acceptable

to endure some false positives (innocent transactions flagged as possible fraud) than to allow

actual fraud to go undetected.

3.3.4 F1 Score

F1 Score is the harmonic mean of precision and recall and is used when seeking a balance

between precision and recall.

F1 Score = 2× Precision× Recall

Precision + Recall

For example, in a scenario where both false positives and false negatives are costly, such as

in legal document classification, the F1 score provides a more balanced view of the model’s

performance than using precision or recall alone.
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3.3.5 AUC

AUC measures the entire two-dimensional area underneath the entire Receiver Operating

Characteristic (ROC) curve from (0,0) to (1,1). It provides an aggregate measure of perfor-

mance across all possible classification thresholds, distinguishing between classes effectively:

AUC =

∫ 1

0

ROC Curve dx

These metrics provide a comprehensive framework for assessing the effectiveness of classifica-

tion models, aiding in the comparative evaluation and optimization of algorithms, especially

in scenarios where different types of classification errors carry different costs.
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CHAPTER 4

Models

4.1 Model Establishment

To tackle this vehicle insurance fraud detection task, we employed six different machine

learning models: Logistic Regression, Random Forest Classifier, Gaussian Naive Bayes, De-

cision Tree Classifier, XGBoost Classifier, and Gradient Boosting Classifier. To address the

class imbalance present in the dataset, we utilized three oversampling techniques: SMOTE,

Borderline SMOTE, and ADASYN, generating four dataset variants. Consequently, a total

of 24 model-dataset combinations were evaluated and compared.

4.2 Results Analysis and Comparison

4.2.1 Evaluation Metrics Selection

When evaluating the performance of models for this highly imbalanced vehicle insurance

fraud detection task, we should not place excessive emphasis on the accuracy metric. There

are two primary reasons for this:

First, the dataset exhibits a significant class imbalance, with non-fraudulent transactions

(negative class) accounting for 94% of the samples, while fraudulent transactions (positive

class) constitute only 6%. In such a scenario, a model that consistently predicts the negative

class, even without detecting any positive samples, would still achieve an accuracy of 94%.

Evidently, relying solely on accuracy is inadequate for assessing a model’s ability to identify
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the minority positive class.

Second,the data shows that across all models, whether using the original imbalanced

dataset or the balanced datasets generated through techniques like SMOTE, the accuracy

values are comparable, failing to demonstrate a clear distinction or discriminative power.

Therefore, accuracy is not an effective metric for evaluating the relative performance of

different models on this task.

Figure 4.1: Results of Model’s Accuracy

Instead, we propose focusing on the following three key metrics:

4.2.2 F1 Score Analysis

The F1 score, being the harmonic mean of precision and recall, effectively balances these

two important measures. For this imbalanced binary classification problem, the F1 score

can provide a robust evaluation of a model’s ability to identify the positive class (minority

fraudulent transactions).

The data reveals that on the original imbalanced dataset, all models exhibit F1 scores

close to zero, indicating an almost complete inability to recognize the minority positive class.

However, after applying oversampling techniques like SMOTE to balance the data, the F1

scores of all models show a significant improvement, with the XGBoost and Gradient Boost-
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ing models achieving the highest F1 scores of 0.242 and 0.247, respectively, demonstrating

relatively superior performance.

Figure 4.2: Results of Model’s F1 Score

4.2.3 Recall Analysis

Recall reflects a model’s ability to detect all positive class samples, which is a crucial metric

for this insurance fraud detection task. A high recall is essential, as failing to identify

fraudulent transactions can result in substantial economic losses for insurance companies.

The data shows that the Gaussian Naive Bayes model exhibits recall values exceeding

0.95 across all oversampled datasets, an outstanding performance indicating its capability to

detect the vast majority of fraudulent transactions. If the business objective is to minimize

the risk of missed fraud cases, the Gaussian Naive Bayes model can be considered a viable

option.
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Figure 4.3: Results of Model’s Recall

4.2.4 AUC Analysis

AUC provides an overall evaluation of a binary classification model’s performance across var-

ious threshold settings, serving as a widely adopted comprehensive metric. The data shows

that on both the original imbalanced dataset and the oversampled datasets, the XGBoost

and Gradient Boosting models demonstrate relatively high and stable AUC values, ranging

from 0.78 to 0.81.

Figure 4.4: Results of Model’s AUC
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4.3 Comprehensive Analysis

Considering the F1 score, recall, and AUC collectively, the XGBoost Classifier and Gradient

Boosting Classifier exhibit the most outstanding overall performance. They demonstrate a

superior ability to balance precision and recall while maintaining a high overall classification

level on this imbalanced dataset. Therefore, if the objective is to strike a balance between

precision and recall, these two models can be prioritized for this task.

On the other hand, if the business goal is to minimize the risk of missed fraud cases, the

Gaussian Naive Bayes model, with its exceptional recall performance, can also be considered

a viable option, despite its relatively lower F1 score and AUC values.
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CHAPTER 5

Limitations and Conclusion

While the proposed methods and models have demonstrated promising results in detecting

fraudulent vehicle insurance claims, it is important to acknowledge some inherent limitations

of this study.

Firstly, the analysis and conclusions drawn are primarily based on the specific dataset

utilized, which may not fully represent the diverse range of scenarios encountered in real-

world insurance fraud cases. Different geographic regions, insurance providers, or claim

types could potentially exhibit varying patterns and characteristics, necessitating further

validation and fine-tuning of the models.

Secondly, the feature engineering and selection processes employed in this study were

guided by exploratory data analysis and domain knowledge. However, it is possible that

certain relevant features were inadvertently overlooked or that more sophisticated feature

extraction techniques could enhance the models’ predictive capabilities further.

Thirdly, while measures were taken to address the class imbalance issue through over-

sampling techniques, the synthetic data generation process may have introduced biases or

artifacts that could impact the models’ generalizability to unseen data. Additional tech-

niques, such as ensemble methods or cost-sensitive learning, could be explored to further

mitigate the effects of class imbalance.

This study highlights the potential of machine learning models, particularly XGBoost

and Gradient Boosting Classifiers, in accurately identifying fraudulent vehicle insurance

claims. By leveraging advanced algorithms and data preprocessing techniques, insurers can
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enhance their fraud detection capabilities, reduce financial losses, and maintain the integrity

of their operations. However, it is crucial to continually refine and adapt these models as

new data becomes available and to integrate them into a broader risk management strategy

that incorporates human expertise and domain knowledge.
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