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A joint subspace mapping between structural and functional 
brain connectomes

Sanjay Ghosh*, Ashish Raj*,1, Srikantan S. Nagarajan*,1

Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 
Parnassus Ave, San Francisco, 94143, California, USA

Abstract

Understanding the connection between the brain’s structural connectivity and its functional 

connectivity is of immense interest in computational neuroscience. Although some studies have 

suggested that whole brain functional connectivity is shaped by the underlying structure, the 

rule by which anatomy constraints brain dynamics remains an open question. In this work, we 

introduce a computational framework that identifies a joint subspace of eigenmodes for both 

functional and structural connectomes. We found that a small number of those eigenmodes are 

sufficient to reconstruct functional connectivity from the structural connectome, thus serving as 

low-dimensional basis function set. We then develop an algorithm that can estimate the functional 

eigen spectrum in this joint space from the structural eigen spectrum. By concurrently estimating 

the joint eigenmodes and the functional eigen spectrum, we can reconstruct a given subject’s 

functional connectivity from their structural connectome. We perform elaborate experiments and 

demonstrate that the proposed algorithm for estimating functional connectivity from the structural 

connectome using joint space eigenmodes gives competitive performance as compared to the 

existing benchmark methods with better interpretability.

Keywords

Brain connectivity; Structural connectome; Functional connectome; Laplacian; Eigen 
decomposition

1. Introduction

The connection between the dynamics of neural processes and the anatomical substrate 

of the brain is a central question in neuroscience research. Understanding this interplay is 

essential for understanding how behaviour emerges from the underlying anatomy Sporns et 

al. (2005); Suárez et al. (2020). To this extent, a common way to represent the whole brain is 

using a network or graph Preti and Van De Ville (2019), where nodes represent cortical and 
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subcortical gray matter volumes and edges stand for the strength of structural or functional 

connectivity. Structural connectivity is typically extracted from tractography algorithms 

applied to diffusion magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI) 

data Berman et al. (2008). Functional connectivity usually refers to pairwise correlation 

between activation signals in various brain regions is measured by various functional brain 

imaging modalities - functional MRI (fMRI) Sahoo et al. (2020), electroencephalography 

(EEG) Coito et al. (2016), magnetoencephalography (MEG) Soleimani et al. (2022) etc. 

Although several studies Deco et al. (2011, 2013); Fukushima and Sporns (2020); Gerrish 

et al. (2014); Glomb et al. (2020); Honey et al. (2010); Saggio et al. (2016); Skudlarski 

et al. (2008); Zamani Esfahlani et al. (2022) have suggested that whole brain functional 

connectivity is shaped by the underlying structure, the rule by which anatomy constraints 

brain dynamics remains an open question and an interesting research challenge Deco et 

al. (2011). We note that a deeper analysis could explain how signals propagate within 

a structured graph between different regions, and interfere or interact with each other 

to induce a global pattern of temporal correlations. Conversely, a fuller understanding 

of this relationship will allow us to explore what portion of functional activity that 

are not explainable by structural connectome alone; potentially reflecting more complex 

transynaptic processing across brain networks Abdelnour et al. (2018, 2014); Atasoy et al. 

(2016).

Several studies have aimed towards understanding of the mapping between structural and 

functional connectivity Abdelnour et al. (2018, 2014); Liégeois et al. (2020); Meier et al. 

(2016); Pascucci et al. (2021); Robinson (2012); Rosenthal et al. (2018); Saggio et al. 

(2016); Verma et al. (2022). A broad class of these studies are built on complex generative 

models of functional activity Deco et al. (2011); Messé et al. (2014, 2015); Raj et al. (2020, 

2012); Robinson (2012); Verma et al. (2022) typically that generate simulated functional 

time-series from which the functional connectome is estimated. In contrast, some direct 

approaches Abdelnour et al. (2018); Becker et al. (2018); Meier et al. (2016) rely on the 

eigen decomposition of the structural connectivity matrix or its Laplacian and finding a 

link to eigendecomposition of the functional connectivity matrix Abdelnour et al. (2018, 

2021); Becker et al. (2018); Cummings et al. (2022); Deligianni et al. (2013); Meier et al. 

(2016); Robinson et al. (2016); Tewarie et al. (2020). Authors in Abdelnour et al. (2018) 

predict the functional connectome from the eigenmodes of structural Laplacian. In this 

paper, we use the term ”eigenmode” to refer eigenvectors and ”eigen spectrum” to refer 

eigenvalues. Similarly, authors in Tewarie et al. (2020) posed the structure-function mapping 

as a L2 minimization problem. However, similar to Abdelnour et al. (2018), the feasible 

eigenmodes were restricted to the individual eigenmodes of structural connectome (roughly 

equivalent to Laplacian eigenmodes). Despite the success of this approach, it can be limiting 

to enforce the functional eigenmodes to belong to the space of the structural Laplacian 

eigenmodes. Recently Becker et al. Becker et al. (2018) introduced an idea of using 

rotational operator between the connectomes. Recently, authors in Deslauriers-Gauthier 

et al. (2020) introduced a unified framework by which most existing mappings based 

on eigenmodes can be expressed [See Sec. 2.4 in Deslauriers-Gauthier et al. (2020)]. In 

particular, the predicted functional connectome by the spectral mapping of Becker et al. 

(2018) was shown to have a structured eigen polynomial of degree N, the number of ROIs. 
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Moreover, to achieve improved predictions, the authors in Deslauriers-Gauthier et al. (2020) 

proposed to add a constant symmetric matrix term within the expression of the predictive 

model. This structure-function mapping was posed was Riemannian distance You and Park 

(2021) minimization problem in Deslauriers-Gauthier et al. (2022).

In this paper, we introduce a new approach to integrate both structural Laplacian 

and functional connectivity by a common vector space. The underlying neuroscientific 

assumption is that functional correlations arise due to signal transmission on the structural 

network, hence the two should share a common set of ǣmodes ǥ or eigenvectors. However, 

a one-way mapping from structure to function, may not fully capture all underlying 

biological processes. The structural network is biased towards monosynaptic connections 

and also may not be considered a gold standard in view of our ability to accurately measure 

all connections (especially lateral cortical connections). Therefore, there remains a need 

for a joint mapping approach that does not privilege one or the other connectome. We 

build upon the seminal work in Abdelnour et al. (2018, 2014); Atasoy et al. (2016) that 

investigated the use of brain connectivity harmonics as a basis to represent spatial patterns 

of cortical networks. By using the orthogonality of connectome harmonics, it is shown that a 

linear combination of these eigenmodes can be used to recreate any spatial pattern of neural 

activity.

This joint estimation framework allows us to express functional connectivity of a particular 

subject (brain sample) as a subspace of the joint eigenmodes of both structure and function. 

We demonstrate that just a small fraction of the proposed joint eigenmodes are sufficient 

to span the functional connectivity. We further extend the core idea to develop a predictive 

model that is able to accurately predict functional connectivity from structural Laplacian. 

The bottleneck for this prediction model is to find a mapping from the projection of 

structural Laplacian and functional connectome to the joint space. We circumvent this by 

using a nonlinear and data-driven mapping technique. We refer our proposed predictive 

method as joint eigen spectrum mapping (JESM). This finally gives us an efficient method 

for structure-function mapping of human brain connectivity. In summary, the present 

work emphasizes on a deeper theoretical foundation towards analyzing brain structure and 

function. Two main contributions in this paper are:

1. We demonstrate how to jointly diagonalize both structural and functional 

connectivities using a common set of eigenmodes. To the best of our 

understanding, this is an interesting finding in context human brain connectivity 

analysis. This exploration could serve as a building block for more future 

research on the impact of brain diseases on brain structural and functional 

connectivity.

2. We propose an optimization based method for structure-function mapping using 

joint eigenmodes and the relationship between joint eigen spectra of both the 

connectomes.

This paper is outlined as follows. In Section 2, we introduce our framework governing 

the relationship between structural Laplacian and functional connectivity. The details on 

structure-function predictive model are presented in Section 3. In Section 4, we perform 
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thorough experimental analysis on a large dataset of healthy subjects and also compare 

our approach with existing state-of-the-art methods. We also experiment on data of 

schizophrenic patients to demonstrate that the proposed method generalizes beyond healthy 

subjects. Finally, we conclude in Section 5 with a summary of our work.

2. Theory and methods

Suppose S ∈ ℝn × n and F ∈ ℝn × n are the structural and functional connectivity matrices 

of an arbitrary subject. Here n corresponds to the number of regions-of-interest (ROI) in 

a brain atlas. The entry i, j  of these matrices represents the strength of the connectivity 

between regions i and j evaluated either structurally or functionally. In Table 1, we describe 

the parameters and variables used in this work.

We consider the problem of finding a joint or common vector space between S and F . We 

perform a unique decomposition of both connectomes sharing the same algebraic structure. 

This is referred as simultaneous diagonalization, which is a well-studied area in signal 

processing André et al. (2020); Cardoso and Souloumiac (1996); Luciani and Albera (2015). 

Our goal is to find a matrix A = a1 a2 … ∣ an  and ai ∈ ℝn × 1, ∀i = 1,2, …, n  that can express 

both structural and functional connectivity by its orthonormal column vectors ai. Without 

loss of generality, we instead work with structural Laplacian of the structural connectivity as 

in Abdelnour et al. (2018). Let D be the (diagonal) degree matrix of structural connectivity 

S. Then, the (normalized) Laplacian of the structural connectivity is given by:

L = I − D−1/2SD−1/2 ,

where I ∈ ℝn × n is an identity matrix. Finally, the revised mathematical problem is to find a 

matrix A = a1 a2 … ∣ an  such that:

L = A ΔΦ AT

F = A ΔΨ AT .

(1)

The above joint diagonalization gives us the pair of diagonal matrices ΔΦ and ΔΨ, where 

the diagonals Φ = ϕ1, ϕ2, …, ϕn  and Ψ = ψ1, ψ2, …, ψn  constitute the joint eigen spectra of 

L and F  respectively. We additionally assume A is orthogonal matrix such that AT A = I. 

From the perspective of projection theory, the eigen spectra Φ and Ψ could be viewed as 

the projections of structural Laplacian and functional connectome on the space spanned by 

a1, a2, …, an . For example, ϕ1 and ψ1 are the projections of L and F  respectively on a1. Thus, 

the problem in (1) could be equivalently formulated as a minimization as follows:

A∗ , Φ∗ , Ψ∗ = arg min
A , Φ , Ψ

‖F − A ΔΨ AT ‖F
2 s.t. L = A ΔΦ AT ; AT A = I,

(2)
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where the subscript F  stands for Frobenius norm of a matrix.

The mathematical problem in (2) is a particular instance of simultaneous diagonalization. 

There exist several algorithms to solve (2); here we choose the method by Cardoso and 

Souloumiac (1996) due to its computational simplicity. We refer the columns of A as 

joint eigenmodes of the pair L, F . One attractive aspect of joint eigenmodes is that we 

can diagonalize both structural (Laplacian) and functional connectome using the same set 

of these eigenmodes. We note that there could exist an interesting relationship between 

these joint eigenmodes and individual eigenmodes of structural Laplacian or functional 

connectome. We discuss this in detail in Section 2.2. Suppose U , ΔΛ  are the eigenmode 

and eigen spectrum respectively of structural Laplacian L and V , ΔΓ  are the eigenmode and 

eigen spectrum respectively of functional connectome. Then,

LU = UΔΛ, FV = V ΔΓ .

(3)

We note that the dominant eigenmodes of structural Laplacian L are those eigenmodes with 

least eigen spectrum, whereas dominant eigenmodes of functional connectome F  are those 

eigenmodes with highest eigen spectrum.

Suppose the eigenvalues of L are arranged as follows: λ1 ≤ λ2 ≤ … ≤ λn. Then one can show 

that 0 ≤ λi ≤ 2. A detailed proof is quite straightforward by using two facts: (i) symmetric 

nature of structural connectome S and (ii) non-negativeness of each entry of S. We also 

note that functional connectomes are positive semi-definite matrices because they arise 

from covariance matrices. Therefore, the eigenvalues in (3) of each functional connectome 

follows: γi ≥ 0, ∀i, where γi are the diagonal entries of ΔΓ.

It remains an open question to explore the connections between the joint eigen spectra and 

individual eigen spectra. We state two interesting theorems on the bounding properties of 

joint eigen spectra Φ and Ψ as follows:

Theorem 1: The joint eigenvalues of structural Laplacian ϕ1, ϕ2, …, ϕn  are bounded:

0 ≤ ϕi ≤ 2, ∀i ∈ 1, 2, …, n .

Proof. See Appendix .1.

Theorem 2: The joint eigenvalues of functional connectome ψ1, ψ2, …, ψn  are non-negative.

ψi ≥ 0, ∀i ∈ 1, 2, …, n .

Proof. See Appendix .2.

In Fig. 1, we display a pair of structural and functional connectomes and their respective 

eigen spectra (ordered) of a representative subject. It can be seen that the eigenvalues 
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of L lie in the range [0, 2] and the eigenvalues of the functional connectome are non-

negative. The structural and functional eigenmodes corresponding to the dominant/top four 

eigenvalues L and F  respectively are shown in second and third rows of Fig. 1. The 

bottom two rows show the joint eigen spectra and top four joint eigenmodes as a result 

of joint optimization of the L and F  pair. Notice some visual similarities between the 

joint eigenmodes with the respective dominant (individual) eigenmodes of structural and 

functional connectomes. We investigate this property in detail in Section 2.2.

Fig. 2 shows Φ, Ψ  eigen spectra for eight other representative subjects from Griffa et 

al. (2019). The joint diagonalization is performed independently on (L, F ) pair for each 

subject. Visual results from 8 subjects are shown in Fig. 2. Across all subjects, the first four 

joint modes lie in the lower-half of both the structural and functional eigen spectra. Also 

eigenvalues in Ψ for each subject sparse in nature, most of the eigenvalues are close to zero 

except a few. This unique nature of the Ψ motivates us to establish a subspace relationship 

between vector space of structural Laplacian connectome and vector space of functional 

connectome of the same subject. We also note that the most dominant eigenmode is often the 

one corresponds to the least value of Φ. However, subsequent (after the top one) dominant 

joint eigenmodes do not follow any consistent sequence across subjects.

2.1. Subspace relationship

In this section, we establish the fact that the functional connectome can be reconstructed 

using only a small number of the joint eigenmodes - i.e. a low-rank subspace. As an 

example, we re-arrange the joint eigenmodes ai ∀i ∈ 1, 2, …, n and Ψ of the subject from 

Fig. 1(n) in ascending order of the latter and shown in Fig. 3(a). We plot Pearson R metric 

Abdelnour et al. (2018) correlation between ground-truth functional connectome and the 

estimated one from the reduced eigenmodes as a function of number of joint modes k . Here 

k = 1 implies the estimated functional connectome from only one joint mode and k = n is 

when all modes are used in the estimation which results in perfect recovery.

Using the properties of singular value decomposition (SVD), the structural Laplacian can be 

expressed as outer-products of the joint eigenmodes:

L = ∑
k = 1

n
ϕkakak

T .

Similarly, the functional connectome can be expressed as the outer-products of the joint 

eigenmodes. The Pearson R plot in Fig. 3(b) suggests that K = 20 is enough to approximate 

F . In particular:

F ≅ ∑
k = 1

K
ψkakak

T .

Only a few number K ≪ n) of joint eigenmodes sufficiently span the functional 

connectome. Another example is shown the last row in Fig. 3. Here only K = 30 dominant 
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modes span the functional connectome n = 219 . In summary, the existence of joint 

eigenmodes and the sparse nature of Ψ lead to this subspace relationship. Note that the 

low-rank nature of functional connectome is also preserved in form of joint subspace 

Abdelnour et al. (2018, 2014).

2.2. Relationship between joint eigenmodes and individual eigenmodes

Here, we study the relationship between joint eigenmodes and individual eigenmodes 

of structural Laplacian and the functional connectivity matrix. In particular, we perform 

quantitative analysis in terms of Pearson R metric Abdelnour et al. (2018). We note that a 

high value of Pearson R implies high correlation. In Fig. 4, we show the results for subject 

#1 from dataset Griffa et al. (2019). For completeness, we also show the correlation with 

group-level joint eigenmodes of all 68 subjects in Griffa et al. (2019). We summarize the 

mean and variance statistics of absolute Pearson R (for the each pair in Fig. 4) across 68 

subjects in Tables 2, 3, 4, 5. We found a high correlation between the pair a1, v1  when we 

compare with individual joint eigenmodes. On the other hand, the group level mode a2 is 

found to have high correction with the functional mode v2.

We recall,

L = A ΔΦ AT and L = UΔΛUT .

We note that eigenmodes of a real symmetric matrix are orthogonal Strang (2006) and span 

the entire space ℝn. In other words, the vector space spanned by the columns of A, referred 

as ℂA has dimensionality n. Similarly, the vector space spanned by the column of U, referred 

as ℂU has dimensionality n. Therefore, there exists an invertable mapping RL:ℂU ℂA, 

such that:

A = URL
T .

Suppose the vector space spanned by the column of V  is given by ℂV , which has 

dimensionality n. Similar to the case of structural Laplacian, there exists a mapping 

RF :ℂV ℂA, such that:

A = V RF
T .

Therefore, the joint eigenmodes and the eigenmodes of the structural Laplacian and 

functional connectome are all related through rotational or other invertible similarity 

transformations.

3. Structure-Function mapping

In this section, we extend the concept of joint eigen space to estimate functional connectivity 

of a subject from its structural (via Laplacian) counterpart. Given the joint eigenmodes 

between the structural Laplacian and functional connectome, the task boils down to 

Ghosh et al. Page 7

Neuroimage. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimating Ψ from Φ at an individual subject level. It was reported in Abdelnour et al. (2018) 

that there could be an inverse relationship between log Ψ  and Φ based on a linear graph 

model predicting a subject’s functional connectivity matrix from their structural connectivity 

matrix via graph diffusion Abdelnour et al. (2014). Motivated by the findings in Abdelnour 

et al. (2018), here we aim to estimate Ψ from Φ.

3.1. Joint eigen spectrum mapping

We propose a data-driven approach to learn a group level mapping between Φ and Ψ. The 

idea is to consider the diagonals of both ΔΦ and ΔΨ as two points in a vector space of 

size ℝn × 1. Then we pose the mapping between Φ and Ψ as a least-squares problem Ghosh 

and Chaudhury (2016). Suppose there are M subjects in the group from which learn the 

least-squares mappings. Therefore, for each subject j ∈ 1, 2, …, m  there is a pair of joint 

eigenvalues Φj, Ψj  obtained by via performing joint diagonalization of the pair Lj, F j . First, 

we embed joint eigenvalues of each subject in two matrices X ∈ ℝn × m and Y ∈ ℝn × m as 

follows:

X = Φ1 , Φ2 , …, Φm ,
Y = Ψ1 , Ψ2 , …, Ψm ,

(4)

where Φj, Ψj ∈ ℝn × 1, ∀j ∈ 1, 2, …, m . We consider the following linear (directional) 

transformation W ∈ ℝn × n:

Y = W X .

(5)

To circumvent the limitation of over-fitting incurred by simple least-squares solution, we 

seek to impose rank constraint Pong et al. (2010) on W . Note that this problem is a NP-hard. 

Various approaches have been proposed in the literature to solve this problem approximately 

Liu and Vandenberghe (2010). One efficient approach is to regularize the objective by trace 

norm (sum of singular values), which is popularly called as nuclear norm. In particular, we 

consider the following minimization:

W = argmin
W

∥ Y − W X ∥F
2 + μ ∥ W ∥* ,

(6)

where μ > 0 and ∥ W ∥* is the nuclear norm of W . We solve the minimization using a primal 

gradient method Pong et al. (2010).

The reason we used structural Laplacian instead of structural connectome is as follows. The 

eigen spectrum of structural Laplacian is bounded in 0, 2 ; whereas no such bound exists 

for the eigen spectrum of structural connectome. We also note it can be shown theoretically 

that the eigen spectrum of functional connectome is non-negative. Therefore, while working 
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with structural Laplacian, the spectrum mapping W  does not exhibit polarity shift. However, 

in theory, one could simply work directly with structural connectome. In that case, the 

respective joint eigenmodes would be between structural and functional connectomes.

3.2. Predicting functional connectome with joint mapping

Here we aim to estimate the functional connectome F̂ l for an individual subject l, given 

their structural Laplacian Ll, group level joint eigenmodes and individual joint eigen 

spectra. An optimal spectrum mapping in (6) would work best under the assumption that 

joint eigenmodes for each subject is known to us. However, this is not really a realistic 

assumption from the perspective of a predictive model. We empirically notice that each 

subject has different set of joint eigenmodes. This is what makes the above formulation as 

bottleneck to being an efficient predictive model from structural to functional connectome. 

Instead, our aim is to find a set of group-level joint eigenmodes A ∈ ℝn × n, where each 

column represents group-level joint eigenmode. In particular, we consider the following 

optimization problem:

minimize
A ∑j = 1

m F j − A ΔΨj AT
F

2

subject to Lj = A ΔΦj AT ; AT A = A AT = I, forj = 1, 2, …, M,

(7)

where F j and Lj stand for functional connectome and structural Laplacian of subject j 

respectively. Using eigen spectrum mapping from (5), we get Ψj = W Φj which implicitly 

takes into account the fact that Lj = A ΔΦj AT . Further, by using standard trace equality 

and the connection between Frobenius norm and trace of a matrix, we further simplify the 

objective function above as follows:

∑
j = 1

m
tr F j

TF j − 2 tr F j
T A ΔW Φj AT +tr A ΔW Φj AT T A ΔW Φj AT .

By using AT A = I and cyclic property of trace of matrix, the third term above is 

simplified to Φj
TW TW Φj . In fact, it is clear that both first and third terms above do not 

depend on A. Thus, the reduced optimization is:

minimize
A

− tr∑j = 1
m F j

T A ΔW Φj AT

subject to AT A = A AT = I .

(8)

It is worth noting that there is no known closed-form solution to (8). We adopt the iterative 

algorithm described in Absil et al. (2009) to find an approximate solution.

In summary, we propose a two-step strategy for the structure function mapping. First, we 

construct matrices X and Y  using both structure and function connectomes of the subjects; 
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then we learn the spectrum mapping W  in (6). Second, we solve (8) to obtain group level 

joint eigenmodes A. In the next iteration, we re-train the mapping W  in (5) using these 

joint eigenmodes followed by estimating a refined group joint eigenmodes using the new 

mapping. Upon convergence, we obtain a final set of joint eigenmodes A and spectrum 

mapping W .

Detailed steps of the proposed JESM Algorithm are described in 1. We finally obtain the 

group level joint eigenmodes A and mapping W , and estimate functional connectome for an 

arbitrary subject l as follows:

Φl = diag AT Ll A .
Ψl = W Φl .

F l = A ΔΨl AT .

(9)

3.3. Dataset

To validate the proposed brain connectivity analysis framework, we experimented on data 

from 68 healthy subjects Griffa et al. (2019). The brain data acquisition comprised of (i) 

a magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence sensitive 

to white/gray matter contrast, (ii) a DSI sequence (128 diffusion-weighted volumes), 

and (iii) a gradient echo EPI sequence sensitive to BOLD contrast. These data was 

pre-processed using the Connectome Mapper pipeline Daducci et al. (2012). Gray and 

white matter were segmented using Freesurfer and parcelled into total of 68 cortical 

regions. Structural connectivity matrices are estimated for each subject using deterministic 

streamline tractography on reconstructed DSI data Wedeen et al. (2008). Functional data 

were estimated using the protocol in Power et al. (2012). This includes regression of white 

matter, cerebrospinal fluid, motion deblurring and lowpass filtering of BOLD signal.
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In addition, we have used a schizophrenia dataset Vohryzek et al. (2020) consisting of 

27 control subjects and 27 schizophrenia subjects. All connectomes in this schizophrenia 

dataset have 83 ROIs; of which 68 cortical and 15 sub-cortical regions.

3.4. Benchmark comparisons

We compare the performance of JESM with the following benchmark methods in terms of 

estimating functional connectivity of a subject from its structural counterpart.

1. Abdelnour et al. Abdelnour et al. (2018): The standalone eigenmodes of 

structural Laplacian Λ were used to estimate the functional connectome of the 

subject. Following Abdelnour et al. (2014), the functional eigen spectra Γ were 

estimated using an exponential transformation of Λ.

2. Tewarie et al. Tewarie et al. (2020): We implemented the optimization framework 

of Tewarie et al. (2020) to estimate the projections of functional connectome on 

the eigenmodes of structural connectome. Note that this work did not focus on 

a predictive pipeline. Therefore it did not include any form of spectrum or curve 

fitting. The core focus was on the theory to approximate functional connectome 

of a subject by the projection of each eigenmode of structural connectome. It 

was theoretically shown that given the eigenmodes of the structural connectome, 

the best estimation of the functional connectome is eigen spectral composition 
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of the projection of the functional connectome on each eigenmode. In our 

implementation, we display the best predicted functional connectome result 

which could be obtained when one is somehow provided with the optimized 

projection values.

3. Becker et al. Becker et al. (2018): We implemented the structure-function 

mapping method in Becker et al. (2018), where given both structural and 

functional connectomes of a particular subject, a rotation matrix and a 

polynomial expansion of the respective eigen spectra were used to estimate the 

functional connectome from structure. The core idea is to map the functional 

connectome from the structural connectome of a subject via a rotation operation. 

Authors Becker et al. (2018) further showed that such a rotation matrix 

could be derived only if we have access to stand-alone eigenmodes of both 

functional and structural connectomes for a particular subject. Therefore, it 

is not straightforward to directly estimate functional connectome from the 

structural connectome for a subject. However, it could be possible to construct 

a representative mapping in terms of rotation matrix for a group of subjects via 

some form of manifold optimization.

In summary, both Abdelnour et al. Abdelnour et al. (2018) and Tewarie et al. Tewarie et al. 

(2020) rely on the eigenmodes of structural connectome (or Laplacian). On the other hand, 

Becker et al. Becker et al. (2018) makes use of structural eigenmodes in an implicit manner 

to construct the rotation matrix based mapping.

3.5. Performance evaluation of the predictive model

We study the effectiveness of the proposed method in terms of accurately estimating 

functional connectome (FC) of a subject from its structural connectome (or Laplacian) 

and compare with state-of-the-art methods in the literature. The prediction performance is 

quantified in terms of Pearson R statistic between the estimated FC and true FC of a subject.

In our group level prediction pipeline, we learn the mapping between joint eigenvalues of 

structural Laplacian and eigenvalues of functional connectome. We perform 4-fold cross 

validation experimental setting to evaluate and compare the predictive methods. First, we 

use both structural and functional connectomes of the train set of subjects. We perform joint 

diagonalization and then obtain the initial estimate the linear mapping. Next we learn group 

level joint eigenmodes by solving an optimization problem using the toolbox in Boumal et 

al. (2014). Both the mapping and joint eigenmodes are further refined through few iterations. 

Finally, we use the learned mapping and group level joint modes to predict functional 

connectome from the structural connectivity of each subject from the test set.

4. Results

In this section, we first display and the group-level joint eigenmodes of a group of 68 

healthy subjects in the dataset Griffa et al. (2019). In particular, we run Algorithm 1 on the 

collection of connectome-pairs to obtain the group-level joint eigenmodes A. In Fig. 5, we 

display top four the joint eigenmodes, which are the first four columns of A. We draw few 

important observations on the group-level eigenmodes shown. The first mode in Fig. 5(a) 
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exhibits relatively low variation across the ROIs. This is perhaps, represent a low frequency 

mode of the underlined brain graph obtained from the structural Laplacian Preti and Van De 

Ville (2019). The second eigenmode in 5(b) has an interesting distribution across the ROIs. 

It is found to have prominent intensity gradient from perceptual and motor regions to default 

mode network (DMN) Margulies et al. (2016). Note that a similar intensity gradient profile 

is also present in the fourth eigenmode. Also notice that the intensity profile in the third 

eigenmode exhibits two polarity nature across the frontal and peripheral regions in the brain. 

In Fig. 6, we compare the correlation of these four group-level eigenmodes with 7 canonical 

networks Yeo et al. (2011): default, dorsal-attention, frontoparietal, limbic, somatomotor, 

ventral-attention, and visual. In terms of Pearson R metric (deep yellow is high), we see 

that a2 joint mode closely resemble with default network; a3 has positive alignment with 

both frontoparietal and ventral-attention networks; and a4 has high correlation with both 

dorsal-attention and frontoparietal networks. With reference to geodesic distance Venkatesh 

et al. (2020) metric, a1 mode exhibits high non-Euclidean proximity with all 7 networks 

and dorsal-attention also has high similarly to all 4 group-level joint eigenmodes. We note 

that that geodesic distance reflects the non-Euclidean geometry between two correlation/

symmetric matrices. Therefore, to compute the geodesic distance between two eigenmodes, 

we first construct outer product (rank-1) matrix from each and compute the non-Euclidean 

distance. For geodesic distance, a lower metric indicate better correlation between the pair of 

eigenmodes.

4.1. Comparison of structure-function mapping performance

Next, we perform detailed experiments to examine the effectiveness of the proposed joint 

eigenmode approach in structure-function mapping. We start with detailed experimentation 

of our proposed eigen spectrum mapping approach. Finally, we compare with state-of-the-art 

methods in the literature for structure-function mapping.

In Fig. 7 we present results of estimated functional connectomes using our method for two 

representative subjects Griffa et al. (2019). We also display the results for the benchmark 

methods: Abdelnour et al. Abdelnour et al. (2018), Tewarie et al. Tewarie et al. (2020), 

and Becker et al. Becker et al. (2018). We first group the dataset Griffa et al. (2019) of 

68 healthy subjects into two groups and then perform 4-fold cross validation setting for 

evaluation of the predictive methods. Note that the connectomes used in this experiment 

have 68 cortical regions. The respective Pearson R Abdelnour et al. (2018) values and 

geodesic distances Venkatesh et al. (2020) are noted below each panel. A higher value of 

Pearson R and lower value of geodesic distance indicate better prediction. It is visually 

evident that proposed JESM outperforms both Abdelnour et al. Abdelnour et al. (2018) 

and Tewarie et al. Tewarie et al. (2020). The estimated functional using JESM more 

closely resembles the ground-truth functional connectomes respectively. We summarize the 

comparison of our proposed algorithm and benchmarks for structure function prediction 

using violin plots for performance metrics across all subjects in Fig. 8. For this analysis, we 

group all 68 subjects into two and perform 4-fold cross-validation on each group containing 

34 subjects. Please note that each connectome has 68 ROIs. We used 4 quality metrics - 

Pearson R, geodesic distance Venkatesh et al. (2020), structural similarity index measure 

(SSIM) Wang et al. (2004), and mean squared error (MSE) Ghosh and Chaudhury (2016) 
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to quantify the prediction performance. For Pearson R and SSIM, higher values indicate 

better prediction. On the other hand, for geodesic distance and MSE, a lower value refers to 

superiority of the method. We further present a result in Fig. 9 on analyzing estimation at (a) 

intra - vs inter-hemispheric and (b) short vs long connections. In particular, we generate a 

histogram of the residual (upon linear model fitting) between the predicted and ground-truth 

functional connectomes. Notice that both in cases the residual histogram is zero-centered. 

The result suggests that functional connections are neither under-nor over-estimated. In other 

words, the functional connectivity values are well-estimated across ROIs. We further draw 

the following observations in terms of the similarity between intra/inter (and short/long) 

residuals and variances: (i) very similar residual pattern is found between both intra - vs 

inter-hemispheric and short vs long connections cases; (b) variance patterns are also similar 

between both intra - vs inter-hemispheric and short vs long connections cases.

We also make an attempt to investigate whether the individual differences are preserved 

by our method JESM. we examine the edgewise variance in empirical vs estimated 

connectomes for JESM and compare them to a benchmark (Becker et al.). In Fig. 12, we 

show the histogram of edge-wise variance at each ROI-pair of the function connectomes: 

(i) empirical functional connectomes (FCs), (ii) estimated FC by JESM, and (iii) estimated 

FC by Becker method. First, we note that the edge-wise variance is lower for estimates 

when compared to the empirical FCs. However, JESM exhibits higher edge-wise variance 

when compared to other benchmarks - we show the best performing benchmark by Becker 

et al. below. These results suggest some level of preservation of individual differences in FC 

estimates.

We note that our JESM method gives competitive structure-function mapping performance 

the benchmark methods In fact, we argue that our predictive model could asymptotically 

match Becker et al. (2018) under a suitable rotation of the eigenmodes. However, the 

important aspect is that our proposed approach has an interesting geometric interpretation. 

For a given subject, the existence of joint eigenmode could serve as a basis for both 

structural and functional connectomes. In other words, the joint eigenmode could be used 

as a mutual representation of the multimodal connectomes. In our current work, we have 

explored these joint modes to predict functional connectome from structural connectome 

of a subject. In theory, one could also extend the idea to predict structural connectome 

from the functional counterpart; which we consider as a future exercise. In a different 

direction, one could analyze the joint-mode for more than two connectome; for example - 

fMRI connectome, MEG connectome, and EEG connectome. This could be a new insight to 

capture the mutual information present in three different functional modalities.

4.2. Structure-Function mapping of schizophrenia disorder

In this subsection, we first study the nature of joint eigenmodes of the schizophrenia dataset 

using our JESM method. In Fig. 13, we display the first four joint eigenmodes from a 

set of 27 schizophrenia subjects Vohryzek et al. (2020). Note that the dimension of each 

connectome in this dataset is 83 × 83; which consists of 68 cortical and 15 sub-cortical ROIs. 

However, for visualization purposes, we display only the cortical ROIs. Notice the visual 

difference between joint modes in Figs. 5 and 13.
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4.2.1. Structure-Function mapping from joint modes of healthy subjects—To 

strengthen the analysis of our approach in context group-level joint modes based structure-

function prediction, we use the joint modes from an external, completely separate dataset. 

In this experiment, we train the joint modes and joint eigen spectrum mapping on a set of 

27 control subjects from the cohort studied by Vohryzek et al. (2020). Then, we test the 

prediction (of functional connectome) on Schizophrenia patients who were not present in 

the training set. Two such visual results are shown in Fig. 10. Note that all the connectomes 

used in this experiment contain 83 ROIs. The predicted functional connectome in (c, f) quite 

resemble the ground-truth in (b, e) respectively. In Fig. 11, we present the performance 

statistics of the functional connectivity prediction on all 27 Schizophrenia patients and also 

compare with the benchmark methods. This experiment confirms that the proposed method 

JESM generalizes beyond healthy subjects.

4.2.2. Structure-Function mapping from joint modes of schizophrenia 
subjects—Here study the structure-function mapping performance of JESM using group-

level joint modes of Schizophrenia subjects. In particular, we perform 3-fold cross-validation 

on 27 schizophrenia subjects. Therefore, in each fold, we learn the joint modes from 18 

schizophrenia subjects and use them for the prediction of the remaining 9 subjects. In Fig. 

14, we display a visual result for a subject (from Vohryzek et al. (2020) dataset). It is evident 

that the predicted functional connectome looks very similar to ground-truth.

We summarize the comparison of our proposed algorithm and benchmarks for structure-

function prediction for schizophrenia data using violin plots in Fig. 15. For simplicity, we 

report only Pearson R and geodesic distance results. The pair of violin plots suggest that 

our method JESM produces competitive performance in this setting of predicting functional 

connectome using group-level joint modes of schizophrenia subjects.

5. Discussion

We provided a principled mathematical framework to connect the structural and functional 

connectivity matrices. By expressing both connectomes using a common eigen space with 

biophysical interpretability, we simplified the subspace relationship between structural and 

functional connectomes with a joint harmonic mapping between structure and function. 

We then developed a novel algorithm for predicting functional connectomes based on 

structural connectomes and this joint mapping, and demonstrated the superiority of 

this prediction algorithm compared to existing benchmarks. Our theoretical framework 

generalizes benchmark approaches that predict functional connectomes using a rotation 

matrix applied to structural eigenmodes and polynomial mapping of structural eigen spectra 

Becker et al. (2018); Deslauriers-Gauthier et al. (2020).

The group level predictive model is of particular interest to us. For predicting the functional 

connectome for a particular subject from its structural connectome via joint subspace 

mapping, we need to know: (i) the mapping between joint eigen spectra of both and (ii) joint 

eigenmodes which closely diagonalize both connectomes. We address this concern by two-

step optimization. First, we learn a mapping from joint eigenvalues of structural Laplacian 

to joint eigenvalues of functional connectome via spectrum mapping. Second, we use this 
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learned spectrum mapping to estimate joint eigenmodes using manifold optimization. By 

efficient use of advanced numerical optimization, we obtain a group level eigenmodes that 

jointly diagonalize individual subject level structural and functional connectomes.

Among the notable existing works, Abdelnour et al. (2018) predicts the functional 

connectome using the eigenmodes of structural Laplacian. Authors in Tewarie et al. (2020) 

formulated this structure function mapping as a L2 minimization problem where the feasible 

eigenmodes were restricted to the individual eigenmodes of structural connectome. Becker 

et al. Becker et al. (2018) proposed an efficient eigenmode mapping, by introducing a 

rotation matrix along with the structural eigenmodes as a means to capture individual 

subjects’ FC. We show below that our methods are computational equivalent barring a few 

differences, with better interpretability offered by our method in contrast to Becker et al. 

First, for a single subject, we use a linear projection of the structural and functional eigen 

spectrum, whereas Becker et al. Becker et al. (2018) uses a polynomial approximation. 

Second, the rotation matrix R in Becker et al. (2018) can be viewed as somewhat equivalent 

to our joint eigenmode matrix A with a key difference though. Note that A jointly 

diagonalizes both F  and L, whereas R does not diagonalize either F  or L. Therefore, our 

proposal is more geometrically comprehensive with stronger mathematical interpretability. 

Third, for group-level predictive model, the joint approximation in JESM and Becker et al. 

Becker et al. (2018) are equivalent except for the above differences. Therefore, it is not a 

surprise that our result is similar to Becker et al. Becker et al. (2018).

To study the connection between the structural Laplacian eigenmodes, functional 

connectome eigenmodes, and joint eigenmodes, we also recall the recent works in Misic 

et al. (2016); Yusuf et al. (2019). The role of structural eigenmodes in the formation and 

dissolution of temporally evolving functional brain networks was shown in Tewarie et 

al. (2022). Authors in Misic et al. (2016) investigated the association between spatially 

extended structural networks and functional networks using a multivariate statistical 

technique, partial least squares. They studied whether network-level interactions among 

neural elements may give rise to global functional patterns. With sufficient experimental 

results it was demonstrated that the network organization of the cerebral cortex supports 

the emergence of diverse functional network configurations that often diverge from the 

underlying anatomical substrate. A multimodal connectomics paradigm utilizing graph 

matching to measure similarity between structural and functional connectomes was 

presented in Yusuf et al. (2019). In this paper, we also performed a statistical analysis 

to find the similarity in terms of Pearson R metric. We found that the joint eigenmodes 

are more similar to the functional eigenmodes than the structural eigenmodes at both the 

individual and the group level. To address the neuroscientific significance of the joint 

eigenmodes, we compared four group-level eigenmodes with the seven canonical cortical 

networks: default, dorsal-attention, frontoparietal, limbic, somatomotor, ventral-attention, 

and visual. Authors in Yusuf et al. (2019) reported high matching between structural and 

functional connectivity was shown at visual and motor networks are higher as compared 

to other more integrated systems. It presented an insight into the structural underpinnings 

of functional deactivation patterns between default mode network (DMN) and task positive 

systems in the brain. Authors in Osmanloglu et al. (2020) presented a study to systematically 
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analyze the consistency of connectomes, that is the similarity between connectomes in 

terms of individual connections between brain regions and in terms of overall network 

topology. The comprehensive study of consistency in connectomes for a single subject 

examined longitudinally and across a large cohort of subjects cross-sectionally, in structure 

and function separately. In contrast, our joint eigenmodes are somewhat associated with 

canonical networks depending on the metric of similarity. Specifically, we found that the 

pair (a2, default) has the highest similarity in terms of Pearson R metric and the pair (a1, 

dorsal-attention) has the highest similarity in terms of geodesic distance metric.

Our proposed idea of joint eigenmode decomposition looks promising in terms of both 

multimodal brain connectivity analysis and structure-function mapping. The main limitation 

of our estimation approach is computational complexity and numerical stability of group 

estimates, especially for manifold optimization with a large number of subjects and 

higher spatial resolution connectomes. Also, in this paper, we only examined the joint 

optimization of the structural Laplacian and fMRI functional connectomes. The sensitivity 

of the joint eigenmodes to identify both state and trait characteristics remain to be 

established. Specifically, explorations of whether joint eigenmodes estimate state changes 

in task-induced functional data, or trait changes in neurological or psychiatric diseases are 

needed in future studies. In a different-direction, referring to the result in Fig. 12, we note 

that the edge-wise variance by our method is lower for estimates when compared to the 

empirical FCs.

In summary, our contribution is a step forward in understanding multimodal brain 

connectivity: underlying structure-function networks that support the differences between 

diseased and healthy populations. The concept of common subspace in our predictive model 

could open the door to better data-driven tracking of brain diseases progression. Our long-

term vision is to obtain potentially sensitive structure-function biomarkers for differential 

diagnosis or prognosis or therapeutic monitoring in various neurological disorders.
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6.: Appendix

Lemma 1: For any X ∈ ℝn × 1 spanned by joint eigenvectors, the maximum joint eigenvalue 

of structural Laplacian follows

maxx
xTLx
xTx

= ϕn .

(10)

Proof. We have ai, i ∈ 1, 2, …, n  be joint eigenmodes in A such that an is the eigenmode 

corresponding to the largest joint eigenvalue n and a1 is the joint eigenmode corresponds 
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to the smallest joint eigenvalue ϕ1. Suppose x = c1a1 + c2a2 + … + nan , for some constants 

c1, c2, …, cn . Then

xTLx = c1a1 + … + cnan
TL c1a1 + … + cnan .

Using the properties of joint eigenmodes Lai = ϕiai for i ∈ 1, 2, …, n , we get

xTLx = c1a1 + … + cnan
T c1ϕ1a1 + … + cnϕnan

= ∑
N

i = 1
ci

2ϕi . since a1, a2, …, an are orthonormal

Similarly, xTx = ∑i = 1
n ci

2. Therefore,

xTLx
xTx

= ∑i = 1
n ci

2ϕi

∑i = 1
n ci

2 ≤ ϕn∑i = 1
n ci

2

∑i = 1
n ci

2 = ϕn .

Lemma 2: Given a symmetric matrix S with non-negative entries, and its diagonal degree 

matrix D, and the matrix S = D−1/2SD−1/2, then both I − S  and I + S  are positive 

semi-definite (PSD) matrices.

Proof. For any given x ∈ ℝn, spanned the joint eigenmodes in A we can write:

xT D − S x = ∑ i, j , i ≠ j Sij xi − xj
2,

(11)

where Sij = Sji using the symmetric properties of S. By construction of structural 

connectivity, each entry of S is non-negative real number. Therefore

xT D − S x ≥ 0 .

This proves that D − S  is a positive semi-definite matrix: D − S ≽ 0. We use the properties 

of eigenvalues of multiplication of matrices Meenakshi and Rajian (1999). Since D is 

positive definite matrix, D−1/2 is also positive definite. Therefore

D−1/2 D − S D−1/2 = I − S ≽ 0 .

(12)

Similar to (11), we have

xT D + S x = ∑
i, j , i ≠ j

Sij xi + xj
2 ≥ 0 .
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(13)

Using the properties of eigenvalues of matrix multiplication,

D−1/2 D + S D−1/2 = I + S ≽ 0 .

(14)

A1. Proof of theorem 1

The lower bound on eigenvalues of L directly follows from (12) in Lemma 2. It proves that 

L = I − S  is a PSD matrix. Therefore, the minimum joint eigenvalue of L follows ϕ1 ≥ 0.

To show the upper bound of eigenvalues of L, we recall (14) in Lemma 2 that I + S ⩾ 0. 

For any x, spanned the joint eigenmodes in A, we have

xTx + xTSx ≥ 0 xTx ≥ − xTSx .

By adding a positive quantity xTx to both sides:

xTx − xTSx ≤ 2xTx xT I − S x ≤ 2xTx .

By further simplification,

xTLx
xTx

≤ 2 .

(15)

Combining (10) in Lemma 1 and (15), we obtain ϕn ≤ 2.

A2. Proof of theorem 2

We show here that each functional connectome is a positive semi-definite matrix. Without 

loss of generality, we note that functional connectome Power et al. (2012); Sanchez Bornot 

et al. (2018) basically measures the second moment matrix of a temporal signal (/random 

variable) z ∈ ℝn × 1. In particular,

F = E zzT .

Suppose there are T  time-point at each ROI is used to estimate the connectivity. Then, 

E zzT = 1
T ∑t = 1

T z t z t T
. Now, for any random vector b ∈ ℝn × 1, we can write

bTFb = bTE zzT b = E bTzzTb = E bTz 2 ≥ 0
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Note that bTFb is the expectation of the square of the scalar random variable ẑ = bTz. 

Therefore, for any eigenmodes in A, the respective eigen spectrum is a non-negative number.

Data and code availability statement

Data: We used publicly available datasets 1, 2  from Prof. P. Hugmann’s group (https://

wp.unil.ch/connectomics/datasets/).

[1] A. Griffa, Y. Alemán-Gómez, P. Hagmann, Structural and functional connectome from 

70 young healthy adults [data set], Zenodo (2019).

[2] J. Vohryzek, Y. Aleman-Gomez, A. Griffa, J. Raoul, M. Cleusix, P. S. Baumann, 

P. Conus, K. D. Cuenod, P. Hagmann, Structural and functional connectomes from 27 

schizophrenic patients and 27 matched healthy adults [data set], Zenodo (2020).

Code: Our method is implemented in Matlab 2021a. All codes will be made publicly 

available upon publication.

Data availability
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Fig. 1. 
A pair of structural and functional connectomes (from public dataset Griffa et al. (2019) 

subject # 1) and their respective eigen spectra. The line plot in (b) shows eigen spectra of 

Laplacian of the structural connectome shown in (a). Similarly, the line plot in (d) displays 

eigen spectra of the functional connectome in (c). In second row, we show the top four 

eigenmodes (eigenvectors corresponding to least eigenvalues) of the structural Laplacian. 

Similarly, in the third row we show the top eigenmodes of functional connectome. 

The fourth row show the joint eigen spectra for the structural Laplacian and functional 
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connectome. The bottom row shows the top four dominant (with respect to Ψ) joint 

eigenmodes.
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Fig. 2. 
Joint eigen spectra for different representative subjects from dataset Griffa et al. (2019). For 

each subject, left plot is joint eigen spectrum (Φ) of structural Laplacian and right plot is 

joint eigen spectrum Ψ  of functional connectome. Across all subjects, it can be noted that 

the first four joint modes lie in the lower-half of both the structural and functional eigen 

spectra. However, there is no consistent ordering in the dominant eigenmodes with reference 

to ascending ordering of joint eigen spectra Φ  of structural Laplacian.
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Fig. 3. 
Example of subspace relationship in structure-function joint eigen-spectrum. (a): Ψ obtained 

via joint diagonalization. Top K = 20 values are marked in red. (b): Plot of Pearson R 

value as a function of K. For each K, we estimate functional connectome as in (). The red 

dotted x-line indicates the instance when estimated functional connectome almost matches 

with the ground-truth one. In the top example, it is K = 20 where the Pearson R is 0.996. 

Similarly, for K = 30, the Pearson R is 0.998 in case of 219 × 219  atlas in the bottom 

example. The respective estimated functional connectomes are displayed in the last column. 

It is evident that both the estimated connectomes are visually indistinguishable to the true 
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functional connectomes shown in third column. These examples demonstrate that functional 

connectome is contained within structural connectome. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Similarity of joint eigenmodes with structural and functional eigenmodes. Pearson R for 

different combination of (first four) eigenmodes for subject #1 in dataset Griffa et al. (2019): 

(a) eigenmodes of structural Laplacian of subject #1 vs its joint eigenmodes, (b) eigenmodes 

of functional connectome of subject #1 vs its joint eigenmodes, (c) eigenmodes of structural 

Laplacian of subject #1 vs the group-level joint eigenmodes, and (d) eigenmodes of 

functional connectome of subject #1 vs the group-level joint eigenmodes. A higher value 

indicates high correlation. With reference to self joint eigenmode of this subject, we observe 

highest correlation between v4, a4  pair in (b). For the group-level joint eigenmodes, the 

highest correlation is found between v2, a2 . In general however, the joint eigenmodes 

are more similar to the functional eigenmodes than the structural eigenmodes at both the 

individual and the group level.
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Fig. 5. 
Group-level joint eigenmodes: first four modes. These modes are obtained using Algorithm 

1 on all 68 subjects in the public dataset Griffa et al. (2019).
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Fig. 6. 
Similarity between 7 canonical networks and group-level (first four) joint eigenmodes of 68 

subjects in dataset Griffa et al. (2019). The pair (a2, default) has the highest similarity in 

terms of Pearson R metric. The pair (a1, dorsal-attention) has the highest similarity in terms 

of geodesic metric..
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Fig. 7. 
Comparison of structure function mapping for a representative subject (#7). The Pearson R 

and geodesic distance values for the estimated FC (with reference to the ground-truth one) 

are reported in the sub-captions. A higher R value indicates superior prediction. On the other 

hand, a lower value of geodesic distance implies better quality. Among all the methods, our 

proposed method JESM achieves best results in terms of both visual quality and numerical 

metrics.
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Fig. 8. 
Performance comparisons of structure-function mapping on 68 healthy subjects from Griffa 

et al. (2019). Metrics of performance are: (a) Pearson R, (b) Geodesic distance, (c) 

Structural similarity index measure (SSIM), and (d) Mean square error (MSE).
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Fig. 9. 
Residual and variance measures on the predicted functional connectivity values for the 

experimental setting in Fig. 8. Notice that the residual histograms are fairly symmetric 

distributions with zero mean at (a) intra- vs inter hemispheric and (b) short vs long cases. 

The mean and skewness of the histograms in (a) are (0,−0.172) and (0,−0.167). This 

indicates similar residual nature between the intra- and inter-hemispheric regions. The mean 

and skewness of the histograms of short and long connections in (b) are (0, 0.174) and 

(0, 0.172). Therefore, a highly similar residual pattern is also found between short vs long 

connections. The variance of FC estimates across subjects at intra- and inter-hemispheric 

regions shown in (c) have the same mean and median values as (0.012, 0.011). Similarly, 
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the variance at both short and long connections shown in (d) have mean and median values 

(0.013, 0.012). Therefore, very similar pattern of variances are found at both (c) intra- vs 

inter hemispheric and (d) short vs long cases. Moreover, JESM preserves the difference 

across subjects equally well at both intra- vs inter-hemispheric regions as well as short vs 

long connections in the brain..
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Fig. 10. 
Predicting FC on Schizophrenia dataset Vohryzek et al. (2020): group-level joint modes 

from healthy subjects. We train the model on connectome pairs of 27 control subjects and 

then estimate the FC of Schizophrenia patients using our proposed method JESM. The 

geodesic distance between (b, c) pair is 30.07 and (e, f) pair is 31.67.

Ghosh et al. Page 36

Neuroimage. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Statistics of the functional connectivity estimation on Schizophrenia patients data Vohryzek 

et al. (2020): group-level joint modes from healthy subjects.
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Fig. 12. 
Variance (point-wise) across 68 subjects at each ROI pair. Left: from input functional 

connectomes. Right: from predicted FCs using our method JESM.
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Fig. 13. 
Group-level joint eigenmodes of schizophrenia subjects: first four modes. These modes are 

obtained using Algorithm 1 on all 27 subjects obtained from the public dataset Vohryzek et 

al. (2020).
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Fig. 14. 
Visual comparison of structure function mapping on Schizophrenia Subject #2. In this 

experiment, we perform 3-fold cross-validation on 27 schizophrenia subjects. In particular, 

data from 18 subjects are used to train the group-level joint modes..

Ghosh et al. Page 40

Neuroimage. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
Statistics of the functional connectivity estimation on Schizophrenia dataset Vohryzek et 

al. (2020) with 27 patients. The group-level joint modes are learned from schizophrenia 

subjects via 3-fold cross validation.
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Table 1

Summary of the variables and definitions used in this text.

Symbol Description

n Number of region-of-interest (ROI).

S Structural connectome of size n × n .

L Structural Laplacian.

F Functional connectome.

Λ Eigenvalues (/eigen spectra) of structural Laplacian L .

U Eigenvectors of structural Laplacian.

Γ Eigenvalues of functional connectome.

V Eigenvectors (/eigenmodes) of functional connectome.

Φ Joint eigenvalues of structural Laplacian L .

Ψ Joint eigenvalues of functional connectome F .

A Joint eigenmodes of L and F .

m Number of subjects.

Lj Laplacian of subject j.

F j. Functional connectome of subject j.

Φj Joint eigenvalues of structural Laplacian of subject j.

Ψj Joint eigenvalues of functional connectome of subject j.

ΔΛ Diagonal matrix with diagonal entries Λ.

ΔΓ Diagonal matrix with diagonal entries Γ.

ΔΦ Diagonal matrix with diagonal entries Φ.

ΔΨ Diagonal matrix with diagonal entries Ψ.

ΔΦj Diagonal matrix with diagonal entries Φj of subject j.

ΔΨj Diagonal matrix with diagonal entries Ψj of subject j.
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Table 4

Mean and variance statistics of Pearson R across 68 subjects: U vs A (group).

u1 u2 u3 u4

a1 4 × 10−4 ± 0 4 × 10−4 ± 0 5 × 10−3 ± 2 × 10−3 2 × 10−3 ± 0

a2 1 × 10−3 ± 0 1 × 10−3 ± 0 4 × 10−3 ± 1 × 10−3 2 × 10−4 ± 0

a3 2 × 10−3 ± 0 4 × 10−4 ± 0 4 × 10−3 ± 1 × 10−3 7 × 10−3 ± 3 × 10−3

a4 2 × 10−3 ± 0 2 × 10−3 ± 0 7 × 10−3 ± 3 × 10−3 3 × 10−3 ± 0
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Table 5

Mean and variance statistics of Pearson R across 68 subjects: V  vs A (group).

v1 v2 v3 v4

a1 8 × 10−3 ± 4 × 10−3 4 × 10−3 ± 1 × 10−3 5 × 10−4 ± 0 5 × 10−3 ± 2 × 10−3

a2 3 × 10−3 ± 0 7 × 10−3 ± 3 × 10−3 2 × 10−3 ± 0 4 × 10−3 ± 1 × 10−3

a3 5 × 10−3 ± 2 × 10−3 5 × 10−3 ± 1 × 10−3 1 × 10−2 ± 1 × 10−2 7 × 10−4 ± 0

a4 9 × 10−3 ± 5 × 10−3 1 × 10−2 ± 6 × 10−3 4 × 10−3 ± 1 × 10−3 3 × 10−3 ± 0
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